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Abstract

Two theorems are proved. One concerns coverings of a simplicial complex 4 by
subcomplexes. It is shown that if every f-wise intersection of these subcomplexes is
(k —t+ 1)-connected, then for j<k there are isomorphisms m;(4)=mn;(.4") of homotopy
groups of 4 and of the nerve ./ of the covering.

The other concerns poset maps f: P— Q. It is shown that if all fibers f~!(Q«,) are k-
connected, then f induces isomorphisms of homotopy groups m;(P) =m;(Q), for all j<k.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The Nerve Theorem, usually attributed to Borsuk [3], and the poset Fiber
Theorem of Quillen [6] are important and versatile tools in topological
combinatorics. For pointers to their many uses we refer to the survey [1]. Both
theorems assert the homotopy equivalence of two simplicial complexes under
suitable conditions.

In this paper, we sharpen both results to versions (summarized in the abstract and
stated more carefully as Theorems 2 and 6) that assert the isomorphism of homotopy
groups up to a certain dimension. The “classical” versions are obtained as
consequences, and some other related versions (due to Quillen and others) as special
cases, see the remarks following the proofs.

Our proofs are elementary, the main ingredients being a homotopy carrier lemma
and simplicial approximation. The idea to use such a carrier lemma to prove the
original version of the Fiber Theorem is due to Walker [7].
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2. Preliminaries

We use standard notions of topology, see e.g. [4]. In particular, continuous
functions are called maps, and a space T is said to be k-connected (k>0) if, for every
0<r<k, every map of the r-sphere into 7' is homotopic to a constant map (or,
equivalently, it can be continuously extended across the interior of the (r + 1)-ball).
Thus, 0-connected means ‘‘arcwise connected”, and 1-connected means ‘“‘arcwise
connected and simply connected”. Extending the definition, we let (—1)-connected
mean ‘“‘nonempty”’, and agree to consider every space (empty or not) to be k-
connected for every k< — 2.

Notational distinction between an abstract simplicial complex 4 and its geometric
realization ||4|| will be made only if the meaning is otherwise not clear from context.
The k-skeleton of 4 is denoted by 4%,

Let 4 be a simplicial complex and T a space. A function C taking faces ¢ of 4 to
subspaces C(o) of T is a carrier if C(6)= C(t) forallo=tin 4. Amap f: ||4||-> T is
carried by C if f(||o]|) = C(o) for all ce 4.

The following is a connectivity version of [5, Theorem 11.9.2, p. 76; 7, Lemma 2.1],
see also [1, Lemma 10.1]. Let ke NuU { o0 }.

Lemma 1 (Carrier Lemma). (i) Assume that C(c) is dim(a)-connected for all 6 A%).
Then any two maps f,g: ||A®)||- T that are both carried by C are homotopic: f ~g.

(i) Assume that C(c) is (dim(a) — 1)-connected for all c€ A®). Then there exists a
map ||A®)|| > T carried by C.

Proof. The proof is quite straightforward from the definitions. For details, see the
proof of [5, Theorem 11.9.2] or [7, Lemma 2.1]. O

3. Fibers

By poset map we mean a map f:P—Q of posets (partially ordered sets)
that is order-preserving (x<py = f(x)<of(»)). With a poset P we associate the
(abstract) simplicial complex A(P) (the order complex) whose faces are the c
hains (totally ordered subsets) of 4. This way of associating a topological space to a
poset is quite common in combinatorics. See [1] for more details, examples and
references.

In order to unburden notation we do not always distinguish notationally between
P, A(P), and ||4(P)||, if context makes it clear whether we are referring to a poset,
its order complex, or its geometric realization. Without real loss of generality we
assume that our posets are comnected (each pair x,yeP is linked via a path
X<z122< - 22,1 <2, 2Y), in order to make homotopy groups 7;(P) independent
of basepoint.

The following result was stated without proof in [1, p. 1850].
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Theorem 2. Let P and Q be connected posets and f : P— Q a poset map. Suppose that
the fiber [~1(Q<,) is k-connected for all ge Q. Then the induced map on homotopy
groups f7*: mj(P) > m;(Q) is an isomorphism for all j<k.

Proof. For ceA*V(Q) (ie., the (k+ 1)-skeleton of A(Q)), let C(o) =
£ (Q<maxs)- Then C is a k-connected carrier from A**V(Q) to subcomplexes of

A(P). Hence, by Lemma 1(ii) there exists a map g:||4%*D(Q)||—||4(P)|| carried
by C.

The idea now is to show that the induced map on homotopy groups
g7 :m(Q) > m;(P) is an isomorphism for all j<k, and moreover its inverse is f*.

Claim 1. g7 : 7;(Q) - m;(P) is injective for all j<k.

For e A% (Q) let D(6) = Q<maxs. Then D is a carrier from A%D(Q) to
subcomplexes of 4(Q), and D(o) is always contractible (being a cone). Let id be the
identity map on 4**1(Q). Now, the two maps id and fog: |[|A**V(0)||-[|4(Q)]|
are both carried by D. Hence, by Lemma 1(i) they are homotopic. This implies that
firegr = (fog);." = id}: (A% (Q)) - ;(4(Q)) , which is an isomorphism for j<k
(since the homotopy groups in dimensions up to k live on the (k + 1)-skeleton).
Hence, g7 is injective.

Claim 2. g7 : 7;(Q) - m;(P) is surjective for all j<k.

Let ren;(P). Via simplicial approximation we can assume that there is a simplicial
subdivision X of the j-sphere such that r: ||Z|| —||4%)(P)]| is a simplicial map (in the
original homotopy class). Let ¢ = for:||Z||—||4%)(Q)]|; so, in particular, tem;(Q).
We will show that r = ¢g*(¢) by again using Lemma 1(i).

For 1€X, let E(1) = ' (Q<max i(x)). Then E is a k-connected carrier from the
j-dimensional complex X to subcomplexes of 4(P). Both maps r and got = gofor
are carried by E. Hence these maps are homotopic: r~got , i.e., r = g*(¢). O

Remark 3. If the assumption is strengthened to “suppose that the fiber f~! (O<«y) is
contractible for all ge Q”, then the conclusion “f*: 7;(P) > m;(Q) is an isomorphism
for all je N” implies, via Whitehead’s theorem [4, p. 486; 5, p. 125], that f induces
homotopy equivalence P~ Q. This consequence of the theorem is the original
version due to Quillen [6, Proposition 1.6].

Remark 4. If the conclusion is weakened to “then P is k-connected if and only if Q is k-
connected’ the theorem specializes to another result of Quillen’s [6, Proposition 7.6].

Remark 5. If the assumption is weakened to “‘suppose that the fiber f‘](Q<q) is
min(k,dim(Q«,))-connected for all ge Q”, then the following weaker conclusion can
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(* i (P) > m(Q) is surjective for all j<k”. The proof is the same, up to

but not including Claim 2.

be drawn: “

4. Nerves

A CW complex is said to be regular if every attaching map can be chosen
to be a homeomorphism on the entire cell being attached (not just on its
interior), cf. [5, Chapter III]. Simplicial complexes are examples of regular CW
complexes.

The nerve of a family of sets (X;),_; is the (abstract) simplicial complex A4"(X;)
defined on the vertex set / by the rule that a finite set 6 =1 is in A7(X;) if and only if
nieo- X;é@

Theorem 6. Let A be a connected regular CW complex and (4;);.,; a family of
subcomplexes such that A =\J,_; A;. Suppose that every non-empty finite intersection
Ay "4y A, ds (k— t+ 1)-connected, t=1. Then there is a map f: ||4|| = ||A]],
where N denotes the nerve N (4;), inducing isomorphisms of homotopy groups
S im(4)=m(AN°) for all j<k.

Proof. Let P = 7 (A) and Q = 7 (") denote the respective face posets (i.e., closed
cells ordered by containment). It is a fact that taking the order complex A(% (4)) one
obtains a simplicial complex homeomorphic to 4 (a generalized barycentric
subdivision). See the discussion in [1, pp. 1860-1861] or [5, pp. 78-83] for more
details about this construction.

Define the order-reversing poset map f:P—>Q by f(o)={iel|oe4;}.
Thus, f:4(P)->4(Q) is a simplicial map inducing a continuous map
A= 4(P)|| - 14(Q)||=]||-A7]]- This is the map “f” of the theorem.

Let Q%1 be the truncation of Q to dimensions 0, 1, ...,k + 1, i.e., the face poset
of the (k+ 1)-skeleton of 4. For aged(Q¥*)) let C(0) =f " (Qsmins) =
Miemin » 4i- Then C is a (k — dim(min ¢))-connected carrier from 4(Q**V) to
subcomplexes of 4(P). Note that dim(min ¢) 4 dim(¢) <k + 1, since e A(Q*+D).
Hence, the carrier C is in particular (dim(s) — 1)-connected. By Lemma 1(ii) there
exists a map ¢ : ||[4(Q%*+V)|| = ||4(P)|| carried by C.

As in the previous proof the idea now is to show that the induced map on
homotopy groups g7 : 7;(Q) - m;(P) is an isomorphism for all j<k, and moreover its
inverse is f;‘ The arguments are similar but a bit more involved.

Claim 1. g7 : 7;(Q) - m;(P) is injective for all j<k.
For ceA(Q¥*)) let D(6) = Qsmin,. Then D is a contractible carrier

from 4(Q**V) to subcomplexes of A(Q). Let id be the identity map on
Q"+, The two maps id and fog:||4(Q%*V)||—||4(Q)|| are both carried by D.
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Hence, by Lemma 1(i) they are homotopic. This implies that ];*og;f‘ =(f og)f =

id} : m;(Q**+1)) - m;(Q), which is an isomorphism for j<k. Hence, g7 is injective.
Claim 2. g7 : 7;(Q) - m;(P) is surjective for all j<k.

Let ren;(P). Via simplicial approximation we can assume that there is a simplicial
subdivision X of the j-sphere such that r:||Z|| —||4(P)|| is a simplicial map (in the
original homotopy class). Then also for: ||X|| —||4(Q)]| is simplicial.

Let u: X — 4% be a simplicial approximation to for, where 2 is some sufficiently
fine iterated barycentric subdivision of X. Finally, let t =sdu: sd X —»sd 4% =
A(QW) s A(Q*FD), obtained by one more barycentric subdivision. Then tem;(Q).
We will show that r = g*(z).

For tesd 2, let E(1) = (O min «(v)). Then E is a (k — dim(min #(t)))-connected
carrier from the j-dimensional complex sd X to subcomplexes of A(P). Note that
dim(min #(z)) 4 dim(z) <k, since dim («(v)) <dim (v) for all faces v of 2. Hence, the
carrier E is in particular (dim(t))-connected.

By construction, E carries got: sd ¥ —A(P). Furthermore, E also carries
risd2 — A(P). This is equivalent to the statement: for every tesd >, all elements
of the chain for(t) are above min #(t) in the partial order of Q. This follows from
what it means for u to be a simplicial approximation to fer, see e.g. [4, p. 251].

Thus, both maps r and got are carried by E. Hence, by Lemma 1(i) these maps are
homotopic: r~got, i.e., r = g*(). O

Remark 7. If the assumption is strengthened to ‘“‘suppose that every nomn-empty
finite intersection A; NA;,N---nA4;, is contractible”, then the conclusion
“fFimi(A4) = ( A (4:) for all jeN” implies, via Whitehead’s theorem [4, p. 486;
5, p. 125], that /" induces homotopy equivalence 4~ .4"(4;). This consequence of the

theorem is the usual form of Borsuk’s [3] Nerve Theorem.

Remark 8. If the conclusion is weakened to ““then A is k-connected if and only if
N (4;) is k-connected” the theorem specializes to [2, Lemma 1.2].

Example 9. An application of the classical Nerve Theorem in combinatorics is
to give an easy proof of the homotopy version of the Crosscut Theorem. See
[1, Theorem 10.8] for this (including references). Applying Theorem 6 in the same
way gives various ‘‘k-connected crosscut theorems”. As an example, for £k = 1 one
can conclude this:

Let A be the set of minimal elements of a poset P. Suppose that P and all nonempty
pairwise intersections P~ NP, for x#y in A, are connected. Define a 2-dimensional
simplicial complex I' on the vertex set A as having edges {x,y} when P~ P~ ,#0
and 2-faces {x,y,z} when P.,NP.,NnP..#0. Then there is isomorphism of
Sundamental groups: n,(P)=mn(I').
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This results from covering 4(P) with the family of subcomplexes (4(Pxy)),. 4 and
considering the nerve.
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