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1. Introduction

In this chapter we discuss some of thc ways in which topology has been used
in combinatorics. The emphasis is on methods for solving genuine combinatorial
problems that initially do not involve any topology ~ rather than on more the-
orctical aspects of the combinatorics—topology connection — and the selection of
material reflects this aim.

The chapter is divided into two parts. In part 1 several examples are presented
which illustrate different uses of topology in combinatorics. In part II we have
gathered a number of tools which have proven uscful for dealing with the topo-
logical structure found in combinatorial situations. Also, a brief review of relevant
parls of combinatorial topology is given. Part 11, which begins with section 9, is
intended mainly for reference purpuses.

Among the examples in part I one can discern at least four ways in which
topology enters the combinatorial sphere. Of course, it is in the nature of such
comments that no rigid demarcation lines could or should be drawn. Also other
connections exist between topulogy and combinalorics that follow different paths.

(i) In the first three examples (sections 2-4) topology enters in the following
way. First a relevant simplicial complex is identified in the combinatorial context.
Then it is shown that this complex has sufficiently favorable properties to allow
application of some theorem of algebraic topology, which implics the combinatorial
conclusion.

(ii) A different approach is seen in section 5 and in Bérdny’s proof in section 4.
There a combinatorial configuration is represented in concrete fashion in R or on
the d-sphere, and a topological result (Borsuk’s Theorem) has the desired effect
on the configuration.

(iii) ‘The casc of oriented matroids (section 7) is unique. For these combina-
torial objects there is a topological representation theorem, saying that oriented
matroids are the same thing as arrangements of certain codimension one sub-
sphercs in a sphere. Of course, in this situation the topological perspective is
always at hand as an alternative way of looking at thesc objects. Some non-
trivial propertics of oriented matroids find particularly simple proofs in this
way.

(iv) The neecd for homotopy results in combinatorics sometimes arises as fol-
lows. Say we want to define some property & at all vertices of a connected graph
G —(V,E). We start by defining & al some root node 7, and then give a rule
for how to define % at v’s neighbors, having already defined it at v € V. The
problem of consistency arises: Can different paths from r to v lead to different
definitions of ® at v? One strategy for dealing with this is to define “elemen-
tary homotopics”, meaning certain pairs of paths which can be exchanged without
affecting the result (usually such pairs form small circuits such as triangles and
squares), Then we need a “homotopy theorem” saying that any path from r to v
can be deformed into any other such path using clementary homotopies. Tutte’s
and Maurer’s homotopy theorems (section 6) are of this kind. From a topological
point ol view, the “clementary homotopies™ mean that certain 2-cells are attached
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to the graph, and the homotopy theorem then says that the resulting 2-complex is
simply connected.

Being topulogically k-connected has a direct combinatorial meaning for k =0
(connected), and, as we have seen. also for k=1 (simply connccted). The way
that higher connectivity influences combinatorics is more subtle; see the examples
in sections 4 and 6.

In scction 8 a glimpse is given of the Hard Lefschetz Theorem and its appli-
cations to combinatorics found by R. Stanley. The question here is of finding a
complex projective variety whosc topology (in the form of its cohomology ring)
is relevant to the combinatorics at hand, This rarefied method has found a few
striking applications. Since it deals more with algebraic-geometric matters (the
topology is somewhat subordinate), section 8 is rather loosely connected with the
rest of the chapter.

Topological reasoning plays an important role in connection with several other
topics in discrete mathematics not treated here. Among these, let us mention:
embeddings of graphs in surfaces (sce chapter 5 by Thomassen). convex poly-
topes (see chapter 18 by Klee and Kleinschmidt and also Bayer and Lee 1993),
arrangements of subspaces (see Orlik and Tcrao 1992 and Bjorner 1994a), group-
related incidence geometries (diagram gcometries, chamber systems, posets of sub-
groups) (see Buekenhout 1995, Ronan 1989 and Webb 1987), compulational ge-
ometry and realization spaces (sce Bokowski and Sturmfels 1989). lower bounds
for decision and computation trees (see chapter 32 by Alon and also Bjérner
1994a),

Notation and terminology is explained in part II. We treat simplicial complexes
and posets almost interchangeably. The order complex of a poset and the poset
of faces of a complex — these two constructions take posets to complexes and vice
versa, and no ambiguity can arise from the topological point of view.

This chapter was written in 1988, and was revised and updated in 1989 and 1993,

PART L. EXAMPLES
2. Evasive graph properties

By a graph property we shall understand a property of graphs which is
isomorphism-invariant: if G; = G, then G, has the property if and only if G,
does. The following discussion will concern simple graphs having some fixed ver-
tex set V. These graphs can be identified with the various subsels of (';). Also,
itis convenient to identify a graph property with the subset of the power set 2
which consists of all graphs having the property. A graph property @ C 29 is
called monotone if it is prescrved under deletion of edges. 1 is called trivial if
either @ = P or @ =20

In section 4.5 of chapter 23 by Bollobds the concept of complexity (sometimes
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called “argument complexity”) of graph properties is discussed. Also, evasive graph
propertics are defined as those of maximal complexity. The following result (stated
as Theorem 4.5.5 in chapter 23) confirms [or prime-power number of vertices 1 a
well-known conjecture.

Theovem 2.1 (Kahn, Saks and Sturtevant 1984). Let n — p* where p is a prime.
Then every non-trivial monotone property of graphs with n veriices is evasive,

We will sketch the proof of Kahn et al. to show the way in which topology is
used.

Suppose that card V = p*, p prime, and that @ / @ is a monotone nonevasive
graph properly. % is a family of subsets of ('2') closed under the formation of
subsets - i.e., a simplicial complex. The conclusion we want to draw is that @ is
trivial. which, since @ # 0, must mean that ({) € ? ~ iec., topologicatly @ is the
full simplex.

These two facts are crucial:

2.2. The geometric realization ||| is contractible.

2.3, There exists a group I of simplicial automorphisms of % which acts transitively
on (‘2/) and which has a normal p-subgroup /7. such that I'/I} is cyclic.

For (2.2) one argues that the monotone property % is not cvasive in the algorith-
mic sense defined above if and only if as a simplicial complex 2 is nonevasive in
the recursive sense of (11.1). By (11.1) all nonevasive complexes are contractible.

The group I" nceded in (2.3) is constructed as follows. Identify V with the
finite field GF(p*). Let I'={x+ >ax+blabe GF(p*),a #0} and I} = {x+ »
x+ b|b e GF(p*)}. The assumption that & is an isomorphism-invariant property
of graphs on V' means that if y is any permutation of V - in particular, if ye I’
—then A € @ if and only if y(A) € . Hence. I'is a group of simplicial automor-
phisms of . One checks that I is doubly transitive on V = GF(p*) and that the
subgroup 17 has the required properties.

By a theorem of Oliver (1975), any action of a finite group I', having a subgroup
I with the stated properties, on a finite Z,-acyclic simplicial complex must have
stationary points. Since our complex 2 is Z,-acyclic (being contractible). this means
that there exists some point x € [|P | such that y(x) = x for all ¥ € I'. The point x
is carricd by the relative interior of a unique face G € @ (the lowest-dimensional
face containing it), and the fact that x is stationary implics that y(G) = G for all
v € I'. But since I'is transitive on (}) this is impossible unless G = (¥). Hence,
(‘2/) € P, and we are done.

It has been conjectured that all non-trivial monotone graph propertics are eva-
sive. This conjecture remains open for all non-prime-power n 3> 10; the n = 6 case
was verified by Kahn et al. (1984). The evasiveness conjecture has been proven
also for the case of bipartite graphs by Yao (1988), using the topological method.
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3. Fixed points in posets

A poset P is said to have the fixed-point property if every order-preserving self-map
f+P — P has a fixed point x = f(x). [t was shown by A. C. Davis and A. Tarski
that a lattice has the fixed-point property if and only if it is complete (mcaning
that meets and joins cxist for subscts of arbitrary cardinalily). Tt has long been
an open problem to find some characterization of the finite posets which have
the fixcd-point property. See Rival (1985) for references to work in this area. In
the absence of such a characterization efforts have becn directed toward finding
nontrivial classes of finitc posets which have the fixed point property. For this the
Fefschetz fixed-point theorem has proved to be useful.

Let L be a finite lattice and z € L. Then y is said to be a complement of z,
written y Lz, if yAz=0and yvz =1. Let €o(z) = {y € L|y L z}. The lattice
L is called complemented il 6o(z) ## for all z € L.

A finite Jattice L has the fixed point property, as is easy to sce. It is more
interesting to look at the proper part L =1, — {0 1} of the lattice, which may or
may nol have the fixed point property. This is also natural from the point of view
of lattice automorphisms, for which every nontrivial fixed point must lie in L.

Theorem 3.1 (Bactawski and Bjorner 1979, 1981), Ler L be a finite lattice and z €
L. Then the poser 1 — @o(z) has the fixed point property. In particular, if L is
noncomplemented then 1. has the fixed point property.

By Theorem 10.15 the order complex A(L - €o(z)) is contractible, and therefore
by Lefschetz’s Theorem 13.4 it has the topological fixed point property. From this
the result easily follows.

For example, et L. be a finitc Boolean lattice of order n. Then L has (n—1)!
fixed-point-free automorphisms, but the removal of any one element from L, leads
to a posct with the fixed point property.

The preceding argument is, of course, applicable to any Q-acyclic finite poset
[see (11.1) [or some other combinatorially defined classes of such]. Also, with this
method onc can prove more about the combinatorial structure of the fixed-point
sets P/ = {x € P |x = f(x)} than merely that they arc nonempty.

Let f:P - s+ P be an order-preserving mapping of a finite (Q-acyclic poset. Then
the Mobius function u computed over P/ augmented by new bottom and top
elements must equal zero: u(P/) = 0. This follows from the Hopf trace formula,
see (13.5) and the comments following it. A consequence is that for instance two
or more incomparable points cannot alone form a fixed-point set in an acyclic
poset. For other finite posets with the fixed point property such fixed-point sets
are, however, possible.

Similarly,let g: P — P be an order-reversing mapping of a finite Q-acyclic poset.
Then the Hopf trace formula (13.2) specializes to u(Py) =0, where P, = {x €
P | x =g*(x) < g(x)}. In particular, if no x € P satifies x = g%(x) < g(x) then g has
a unique fixed point. See Baclawski and Bjorner (1979) for further details and
examples.
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4. Knesers Conjecture

Consider the collection of all n-element subscts of a (27 + k)-clement set. n >
I,k > 0. It is casy to partition this collection into k + 2 classes so that every palr
of n-scts within the same class has nonempty intersection. Can the same be done
with only k + 1 elasses? M. Kneser conjectured in 1955 that the answer is negative,
and this was later confirmed by L. Lovdsz.

Theorem 4.1 (Lovész 1978). If the n-subsets of a (2n+ k)-element set are parti-
tioned into k + 1 classes, then some class will contain a pair of disjoint n-sets.

Lovisz's proof relies on Borsuk's Theorem 13.6 and homotopical connectivity
arguments. Soon after Lovdsz’s breakthrough a simpler way of deducing Kacser's
Conjecture from Borsuk’s Theorem was discovered by Bérdny (1978). However,
Lovis?’s proof method is applicable also to other situations and hence perhaps
of greater gencral intercst. See also chapter 24 by Frankl for a discussion of this
result.

Let us first sketch Bdrdny's proof. By a theorem of Gale (1956) (sec also Schrijver

1978). for n,k > 1 there exist 2n + k points on the sphere §* such that any open
hemisphere contains at least n of them. Partition the n-subsets of these points
into classes 6, 61,...,%. For 0<i <k, let G, be the set of all points x ¢ §
such that the open hemlsphere amund x contains an n-subset from the class €;.
Then (0;)g<i<k gives a covering of $¥ by open scts. Part (i) of Borsuk’s Theorem
13.6 implics that onc of the sets, say ¢, contains antipodal points. But the open
hemisphcres around these points are disjoint and both contain n-subsets from the
class €,. Hence, 6, contains a pair of disjoint n-sets.

For Lovdsz's proof it is best to think of the problem in graph-theoretic terms.
Deline a graph KG,, as follows: The vertices are the n-subsets of some fixed
(2n+k)-clement set X and the cdges are formed by the pairs of disjoint n-sets.
Then Theorem 4.1 can be reformulated: The Kneser graph KG, ;. is not (k + 1)-
colorable.

For any graph G = (V, k) let X(G) denote the simplicial complex. called the
neighborhood complex, whose vertex set is V and whose simplices arc those sels
of vertices which have a common neighbor (i.c.. A € X(G) ilf there exists v € V
such that {v,a} € £ for all @ € A). The topology of this complex has surprising
combinatorial content.

Theorem 4.2 (Lovisz 1978). For any finite graph G, if N(G) is (k — 1)-connected,
then G is not (k + 1)-colorable.

To prove Theorem 4.1 it will then suffice to show that N(KG,p) is (k—1)-
connected. This can be done as follows. Let # = {AC X |n <card A <n+k).
Ordcered by containment P is a subposct of the Boolean lattice B(X) of all subscts
of X. B(X) is shellable (L1.10) (iv), hence by (11.2) and Theorem 11.14 P is (k — 1)-
connccted. Let C be the crosscut of n-clement sets. By Theorem 10.8, P and the
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124 234

(d)

Figure 1.

f:msscut complex (P, C) are homotopy equivalent. It follows that I'(P,C), which
is the same thing as N(KG, ), is also (k — 1)-connected. T

The known pr'oofs for Theorem 4.2 are more involved. A very elegant [unctorial
argument was given by Walker (1983a), which we will sketch here in briefest pos-
sible fashion. The same general argument was also found by Loviasz (unpublished
lecture notes) as a variation of his original proof.

Let G = (V,E) be a finite graph. The mapping »: ¥(G) — ¥(G) defined by
v(A)={vc V|{v,a} € E for all a € A} has the properties

(i) ACB implies v(A) 2v(B), and (ii) #}(A) D A.

Let N (G) denote the order complex of the poset of fixed points of »2 ordered by
containment. Thus, #(G) is a subcomplex of the barycentric subdivision of N(G).
In fact, the subspace [|#(G)|| is by Corollary 10.12 a strong deformation retract of
!|N(G) I, 50 N(G) and N(G) arc of the same homotopy type. This construction is
illustrated in fig. I, where part (a) shows a graph G, (b) the neighborhood complex
N(G), (c) its baryeentric subdivision, and (d) the retract complex #'(G).

) Properl_y (i) of the mapping v : N(G) — X(G) shows that v restricts to a simpli-
cial mappllngy LN(G) - N(G), and from property (ii) it follows that ¢2 — identity.
Hence, (.N‘(O), v) (or, 1o be precise, X (G Iz 1D) is an antipodality space. Fur-
thermore, it can be shown that cvery graph map (mapping of the nodes which takes
cdges to edges) g: Gy 5 6, iduces an cequivariant map g: ¥(G) » N(G,). As
these facts suggest, the construction N(-) suts tip a functor Hhom the category of
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finite graphs and graph maps to the category of antipodality spaces and homotopy
classes of equivariant maps, sce Walker (1983a). For the cxample illustrated in
fig. 1(d), the induced antipodal mapping of #'(G) coincides with its antipodal map
X +— —x as a circle.

For Ky, , the complete graph on k + 1 vertices, one sees that ¥ (K,,) = ¥ (Ky,)
is combinatorially the barycentric subdivision of the boundary of a k-simplex. Tt
is also easy to verify that, as an antipodality space, (X (K,,;),#) is isomorphic to
the sphere ($¥~', a) with its standard antipodality map a(x) = —x.

We now have all the ingredients for a proof of Theorem 4.2. Suppose that
a graph (i is (k+ I)-colorable. This is clearly equivalent to the existence of a
graph map G — K;,,. Hence, we deduce the existence of an equivariant map
N(G) — F(Ki,1) = $*". So hy part (v) of Borsuk’s Theorem 13.6, we conclude
that 4(G), and hence N (G), is not (k — 1)-connected.

Schrijver (1978) has shown, using Bérdny’s method, that the conclusion of Theo-
rem 4.1 remains true for the class of n-subsets that contain no consecutive elements
i,i+1 in circular order {mod 2r + k), and that this class is minimal with this prop-
erty. A different application of Theorem 4.2 is given in Lovdsz (1983).

The following generalized “Kneser” conjecture was made by P. Erdds in 1973
and has recently been proved.

‘Theorem 4.3 (Alon, Frankl and Lovasz 1986). Let n,t 2 1 and k > 0. If the n-
subsets of a (in+ (¢ — 1)k)-element set are partitioned into k + | classes, then some
class will contain t pairwise disjoint n-sets.

The proof is analogous to Lovisz’s proof of Theorem 4.1, For general r-uniform
hypergraphs /1 a suitable neighborhood complex €(#) is defined. It is shown thal
if ¢ is a prime and €(H) is (k(r 1) 1)-connected then H is not (k + 1)-colorable.
To prove this for odd primes ¢ the Bardny-Shlosman-Sziics Theorem 13.8 is used
rather than Borsuk’s Theorem. It can be shown by an clementary argument that
if Theorem 4.3 is valid for two values of ¢ then it is also valid for their product.
Hence one may assume that ¢ is prime. See Alon el al. (1986) for the details.

Theorem 4.3 has been further generalized by Sarkaria (1990) to involve -
wise disjoint” instead of “pairwise disjoint” families of n-sets. The proof uses a
generalized Borsuk—Ulam theorem and the deleted join construction for simplicial
complexes (defined in scction 9).

S. Discrete lications of B ks Th

PP

One of the most famous consequences of Borsuk’s Theorem 13.6 is undoubtedly
the Ham Sandwich Theorem 13.7. This result, or some version of the “ham sand-
wich” argument which leads to it (outlined in connection with Theorem 13.7), can
be used in certain combinatorial situations to prove Lhat composite configurations
can be split in a balanced way. Two examples of this, due to N. Alon and coau-
thors, will be given in this scetion. Also, we discuss how Borsuk’s Theorein and its
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gencralizations have been used in connection with results of “Tverberg” type. For
other applications of Borsuk’s Theorem to combinatorics, see Barany and Lovasz
(1982), Yao and Yao (1985), and scction 4. Surveys of this topic are given by Alon
(1988), Barany (1993) and Bogatyi (1986).

Suppose that 2n points arc given in general position in the planc &2, half colored
red and the other half blue. It is an elementary problem to show that the red points
can be connected to the blue points by n nonintersecting straight-line segments,
A quick argument goes like this. Of the ! ways to match the blue and red points
using straight-line segments, choose one which minimizes the sum of the lengths.
If two ol its lines interseet, they could be replaced by the sides of the guadrilatcral
that they span, and a new matching of cven shorter length would result. No such
clementary proof is known for the following gencralization to higher dimcusions.

Theorem 5.1 (Akiyama and Alon 1989). Let A be a set of d-n points in general
position (no more than d points on an y hyperplane) in R?. Let A — AUA U0
Ay be a partition of A into d pairwise disjoint sets of size n. Then there exist n
pairwise disjoint (d — |)-dimensional simplices, such that each simplex intersects
each set A, in one of its vertices, 1 <i <d.

The idea of Akiyama and Alon is (0 surround cach point p € A by a small ball of
radius £, where ¢ is small enough that no hyperplane intersects more than d such
balls. Give each ball a uniform mass distribution of measure | /n. Then each color
class A, 1 <igd,is naturally associaled with its n balls, forming a measurable set
of measure 1. By the Ham Sandwich Theorem 13.7 there exists a hyperplane #
Wwhich simultaneously bisects cach color class. If # is odd, then # must intersect
at least one ball from each A;. General position immediately implics that H must
intersect preciscly one ball from each A;, and in fact bisect this ball, By induction
on n, the points on each side of // can now be assembled into disjoint simplices,
and finally the points in # form onc more such simplex. The argument if n is cven
is similar, but in that case 4 might have to be slightly moved (o divide the points
correctly for the induction step.

The next example has a more “applicd” Mavor. Suppose that k thieves steal a
necklace with & - 51 jewels. There are 1 kinds of jewels on it, with k - 4; jewels of type
i,1 €i <t The thieves want to divide the necklace lairly between them, wasling
as little as possible of the precious metal in the links between jewels. They need
to know in how many places they must cut the necklace? If the jewels of each
kind appear contiguously on the opened necklace, then at least t(k — 1) cuts must
be made. This number of cuts in fact always suffices. (Of course, what the thicves
really need is a fast algorithm for where 10 place these cuts.)

‘Theorem 5.2 (Alon and West 1986, Alon 1987). Every open neckluce with k -q;
beads of color i,| <i <1, can be cut in at most t(k - 1) places so that the re-

sulting segments can be arranged into k piles with exuctly a, beads of color i in cach
pile, | i<t

The idea for the proof is to turn the situation into a continuous problem by
placing the open necklace (scaled to length 1) on the unit interval, and then to
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use 4 “ham-sandwich”-type argument there. For k =2 this was done in Alon and
West (1986) using Borsuk’s Theorem. The cxtension to general k was achieved in
Alon (1987) using the Barany-Shlosman-Sziics Theorem 13.8.

Radon’s Theorem, a well-known result in convexity theory, says that any collec-
tion of d + 2 points in R can be split into two nonemply blocks whosc convex hulls
have noncmpty intersection. This was generalized by Tverberg (1966) as follows:
Forallp>2and d > 1, any set of (p — 1)(d 4 1) + 1 points in R can be pa.rrifioned
into p blocks B,,..., B, so that conv(B,)N. --(veconv(B,) # 0. For a quite short
proof of Tverberg’s Theorem, see Sarkaria (1992). Results of the Radon-Tverberg
type have gencrated a lot of interest, and recent work shows that in many cases
such results rely on topological foundations that tead to formulations more general
than the original ones in terms of convexity. See Eckhoff (1979) and Bdrdny (1993)
for surveys of results of this kind.

Radon’s theorem can he obtained as a consequence of Borsuk's Theorem, as was
shown by Bajmoczy and Bardny (1979). Here is the connection. Let 47 denote the
d-dimensional simplex. Bajméczy and Bérany prave that there exists a continuous
map g:8% — A'! such that the supports of g(r) and g(—x) are disjoint for every
xe 8§ Suppose now that Radon’s Theorem is false; say it fails for the puints
Yis-o Yarz i RY Define £: 441 5 RY by sending the ith vertex of 44! 10 y, and
extending linearly. ‘Then the map fog: 8¢ — R would violate the Borsuk-Ulam
Theorem 13.6 (ii). )

In the preceding argument the map f could as well be an arbitrary continuous
map (i.e., not nceessarily lincar). In a similar way, using Theorem 138 instead
of Borsuk’s Theorem, Bdrdny, Shlosman and Sziics (1981) proved the following
“topological Tverberg thcorem™: Suppose that f: A¥ — RY is a continuous map-
ping, where N = (p — 1)(d + 1) and p is prime. Then there exist p pairwise disjoint
faces ay,. .., 0, of AV such that f(a)0) .- N flop) # . 1t is still unknown whclhc;r
the restriction to prime p is needed here in the non-linear case. Sec Sarkaria
(1991b) for even more general results ol this kind.

The following result has the gencral llavor of Tverberg's Theorem, and goes in
an opposite direction from Theorem 5.1.

Theorem 5.3 (Zivaljevié and Vrccica 1992). let A~ Ay UAU---UAy,, be a set
of points in R? partitioned into d + 1 pairwise disjoint sets (color classes) of size
|A 2 4n — 1. Then there exist n pairwise disjoint (d + 1)-subsets B,,...,B, of A
such that |A, O B,| = | for all i, j and conv(B() 0. -Neonv(B,) # 0.

The proof for this “colored Tverberg thcorem™ uses a Borsukalam—typ'e rc.sull
for free Z,-actions, p prime, which establishes the non-existence of an equivariant
map from a certain “configuration space” of sufficiently high conneclivity to a
sphere of appropriate dimension.

It has been conjectured by Bérdny and Larman that |A,| > n sulfices in Theorem
5.3. This has been proven for d =2 by Bérdny and Larman and for n —2 by
Lovész, whose proof uses Borsuk’s theorem. See Zivaljevié and Vreéica (1992) for
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these references and for a fuller discussion of the status of this “colored Tverberg
problem™,

6. Matroids and greedoids

This section and the next are devoled to certain topological aspects of mmmu}s
and of two related structures — oriented matroids and greedoids. For the bas.lc
definitions see chapter 9 by Welsh. Additional topological facts aypul matroid
complexes and geometric lattices are mentioned in (11.10): see also Bjorner (1992).

Basis complexes and partitions of graphs

The following result was proven by E. Gyéry and L. Lovdsz in responsc to a
conjecturc by A. Frank and S. Maurer.

Theorem 6.1 (Lovisz 1977, GySry 1978). Let G = (V,E) bea k-cunnejcled graph,
{v1,02,..., Uk} a set of k vertices, and ny,n, ..., ny positive integers with my + ny +
oo+ ng = |V|. Then there exists a partition {V;, Vz,.:.,Vk} of V such that v, €
Vi, |V} = n; and V; spans a connected subgraph of G,i — 1,2,....,k

The proof of Lovisz uses topological methods, that of Gytry does er(. At the
end of this section Lovdsz's proof will be outlined for the casc "f: 3 in order to
iltustrate its usc of topological reasoning,. It relies on the connectivity of a certain
polyhedral complex associated with certain forests in G. Similar complexes can
be defined over the bases of a matroid, and more generally over the bascs of a
greedoid. The greedoid formulation contains the others as .specml cas‘es',_and we
shall use it to develop the general result. We begin by recalling the dehm?lon,

A sctsystem (B, ), F C 2F is called a greedoid if the following axioms are
satisfied:

(GHacCF, -

(G2) for all nonempty A € F there exists an x € A such that A —x € &,

(G3)if A,B € F and |A| > |B|. then there exists an x € A - B such that Buxe
:y i . :

If also the extra condition (G4) is satisfied, then (E, %) is called an interval
greedoid:

(G4)ilA C B C C where A,B,C € ¥and Aux,CUx € ¥ forsome x € E-C,
then also Bux € &. i

The sets in F are called feasible and the maximal fcasible sets hases. All bascs
have the same cardinality 7, which is the rark of the greedmd.. )

The only examples which will be of concern here are matroids .([ca51b]e sets =
independent sets) and branching greedoids of rooted graphs (feasible sets = edge
sets which form a tree containing the root node). Both. arc interval greedoids. For
other examples and fusther information about greedoids, see chapter 9hy Welsh
and the expository accounts Korte, Lovasz and Schrader (1991) and Bjorner and
Ziegler (1992).
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The feasible sets of a greedoid do not form a simplicial complex other than in the
matroid case. However, a uscful topology is given by (the order complex of) the
pusel & = F — {#}, ordered by inclusion. A greedoid (E, %) is called k-connected
if for each A ¢ F there exists B € F with A C B,|B — A| = min(k, r —|A}) and
such that C € F forevery A C C C B. Matroids are r-connected, and the branching
greedoid of a k-conneceted rooted graph is k-connected.

Proposition 6.2 (Bjorner, Korte and Lovész 1985). Let (E,¥) be a k-connected

interval greedoid (k > 2). Then the poset of feasible sets (¥,C) is (topologically)
(k —2)-connected.

This result follows from (11.10) (iii) via Theorem 10.8, since for the crosscut C
of minimal elements in F the crosscut complex I'(F, C) is a matroid complex of
rank > k.

Let 3 be the collection of all bases in a greedoid (£, F) of rank r. Two bascs B,
and B; asc adjacent if By N By € Fand |ByNBy| =r—1. Attaching edges between
all adjacent pairs we get a graph with vertex set 9, the hasis graph.

The shortest circuits in the basis graph can be explicitly described. There are
two kinds of triangles and one kind of square (quadrilateral):

6.3. Three bases AUx, AUy, AUz, where A € %,|A|=r -1, span a triangle of
the first kind.

6.4. Three bases AUxUy, AUxUz, AUyUz, where A ¢ &, |4} =r~2, span a
triangle of the second kind.

6.5. Four bases AUxUu,AUxUv, AUy U, AUy Uv, where A € F A =r-2,
span a square.

For branching greedoids triangles of the second kind cannot occur.

Now, altach a 2-ccll (a “membrane™) into cach trianglc and square. This gives
a 2-dimensional regular cclt complex X, which we call the basis complex.

Tt is a straightforward combinalorial exercisc to check that the basis complex of
any 2-conneceted greedoid of rank < 2 is 1-connected (ie., conneeted and simply
connecled). For rank 2 (the only non-trivial case) this {ollows dircetly from the
exchange axiom (G3). In higher ranks the following is truc.

Theorem 6.6 (Bjorner, Korte and Lovasz 1985). The basis complex % of any 3-
connected interval greedoid is 1-connected.

In order to illustrate some of the tools given in part II, we give a short proof
of this. Let P be the poset of closed cells of % ordered by inclusion, and let Q be
the top three levels of (F, C). ie., the feasible scts of ranks r 2,r—1andr. Let
f:P - Q be the order-reversing map which sends each cell 7 to the intersection
of the bases which span 7. By Proposition 6.2 and Lemma 11.12 the poset () is
1-connecled, so by Theorem 10.5 we only have to check that the fibers FUQsa)
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arcAl-cunneclcd foralt A e Q. Butil r(A) =7 —i, i =0,1,2, then f HQ.4) is the
basis complex of the rank i greedoid obtained by contracting A and we }lave
already checked that basis complexes of rank < 2 greedoids arc l—éonnecled.

L.;et P —BB,---Byand Q = BBy, -+ - B, be paths in the basis graph of a ma-
troid, and let PQ = B\B,.-- B,B,,, --- B, be their concatenation. Say that paths

7Q and PRQ differ by an elementary homotopy if R is of the f Ny Ny
or BCDER with B = B,. i om BCBBCbE

Th'eore.m 6.7 (M:%urer 1973). Let P and P’ be any two paths with the same end-
points in the basis graph of a matroid. Then P can be transformed into P’ via a
sequence of elementary homotopics.

Maurer’s “Homotopy Theorem™ 6.7 is clearly a combinatorial reformulation of
:Thenrem 6.6 in the matroid case. An application to oriented matroids will be piven
in the next section.

The time has cone to return to Theorem 6.1. The following outline of the proof
for the k = 3 case is quoted from Lovisz (1979) (with some adjustments in square
brackets to better suit the present discussion): 4

. “So let G h(? a 3-connceted graph, v),v3,v3 € V(G) and 5y + 1y + 13 — V()1
?akc a new point @ and connect it Lo vy, v;, and vs. Consider the topoldgical space
J constructed for this new graph G, {In our language, ¥ is the basis complex
of the branching greedoid determined by the rooted graph (G',a). This greedoid
whose bases are the spanning trees of G, is 3-connected.] For each spanning lrcc;
T of 7, let £,(T') denote the number of points in 7 accessible from o along the
edge (a,v,)(i = 1,2). Then the mapping

frT = (A(T), H(TY

maps the vertices of ) onto lattice points of the planc. 1.et us subdivide cach
qu:lf]rilalcml 2-cell in JC by a diagonal into two triangles; in this way we obtain
a tr@ngu]alion H# of J. Extend f affinely to each such triangle so as to obtain a
continuous mapping of X into the plane. Obviously, the image of % is contained in
!hc triangle A= {x 2 0,y > 0,x+y < n}. We are going to show that the mapping
is onto 4.

“Let us pick three spanning trees, 77, 7%, T} first such that F(T) — (0,0, f(Ty) =
(0,n), f(T3) = (0,0). Obviously. such trees exist. Next, by applying [tlyle ‘fact that
the basis graph of a 2-connected greedoid is connected| to the graph G’ — (a,v3)
we sclect a polygon Py, in Jf connecting Ty to 7y and having fi(x) =0 avl d"
points. Thus f(P15) connccts (12,0) to (0,n) along the side of the l}ianglc 4 with
these endpoints. Let Py and Py be defined analogously.

“By Theorem 6.6, Py3 + Py, + Paj can be contracted in % to a single point. There-
iqre, F(P12) + f(Pn}+ f(Px)) can be contracted in f(%) to a single point. But ‘ob-
viously’ (or, rather, by applying the well-known fact [Brouwer’s Theorem 13.1] that
the bound.ary of a triangle cannot be contracted (o a single point in the triangle

one mterlor‘ point taken out), f() must cover the whole triangle A. So in
Llle point (n(,n;) belongs to the image of %, and therefore it belongs to

/
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the image of a triangle of . But it is casy lo scc that this implics thal (ry,n;) is
the image of one of the vertices of I i.e., there exists a spanning trec T with

flTy=ny, fo(T)=na

The three components of T — a now yield the desired partition of V(G).”

‘Theorem 6.6 is a special case of a more general result saying that for any k-
connected interval greedoid a certain higher-dimensional basis complex is (k —
2)-connected. This more general result implies Theorem 6.1 for arbitrary k hy
extension of the ideas we have just scen in the k = 3 case. See Lovész (1977) and
Bjorner, Korte and Lovisz (1985) for complete details.

Tutte’s Homotopy Theorem

A matroid is called regular if it can be coordinatized over every field. In Tutte
(1958) a characterization is given of regular matroids in terms of forbidden mi-
nors. The proof relies in an cssential way on a “Ifomotopy Theorem”. expressing
the 1-connectivity of certain 2-dimensional complexes. Tutte’s Homotopy Theorem
was also used by R. Reid and R. Bixby to prove the forbidden minor characteriza-
tion for representability over GF(3). More recently other proofs of these results,
avoiding usc of the Homotopy Theorem, have been found by P. Seymour and
others. See chapter 10 by Seymour for an up-to-date account.

Tutte’s Homotopy Theorem seems 1o be the oldest topological result of its kind
in combinatorics. Unfortunately it is quite technical both to statc in full and to
prove. Here we shall state the Homotopy Theorem in sufficient detail that the
naturc of the result can be understood. Complete details can be found in Tutie
(1958) and Tutte (1965).

Let L be a finite geometric lattice of rank r, and write L' for the set of flats of
rank i: so L7 is the sct of copoints, L2 the colines and J/~* the coplanes. Flats
X ¢ L will be thought of as subscts of the point set L' via X —{p e L'[p < X}

Given any point a € L' we define a graph TG(/.,a) on the vertex set LT}A' =
{X € 17" | X#a} as follows: two copoints X and Y “off a” (i.e., in the set L
span an edpe if X A Y is a coline and X UY £ L' — a. On this graph we construct a
2-dimensional regular ccll complex TC(1.,a) by attaching 2-cells into the triangles
and squares of the following kinds:

6.8. Triangles XY Z.X for which tk(X AY A Z) 2 r—3.

6.9. Squares XYZTX for which tk(P)=r -3, where P=XAY AZAT, and
either the coline P v a is covered by exactly two copoints or else the interval [P, 1]
is isomorphic to the lattice of flats of the Fano matroid F7 minus one of its points.

If L has no minor isomorphic to £, the dual of the Fano matroid, then (6.8)
and (6.9) describe all the 2-cells of the Tutte complex TC(L,a). [This means that
for use in representation theory the definition (6.8)-(6.9) of TC(L,a) is sufficient.]
In general it is necessary to attach 2-celis also into certain squares XV ZT X for
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whi'ch rk(X A YAZAT) =r~ 4. The definition of these squares (of the “corank
4 kind”) is fairly complicated, so we refrain from describing them here.

Theorem 6.10 (Homotopy Theorem, Tutle 1958). The complex TC(L,a) is 1-
connected.

The combinatorial meaning of Theorem 6.10 is that any two copoints X and
Y “off ¢” can be connected “off g by a path in the Tutte graph TG(L,a}, and
that any two such paths differ by a sequence of elementary homotopies of type
XYX,XYZX asin (68), or XYZTX asin (6.9) or of the corank 4 kind. (Compare
the discussion preceding Theorem 6.7.)

The given formulatian of the Homotopy Theorem differs in form but not in
content from the statement in Tutte (1958). ‘Tutte has remarked about his theorem
(Tutte 1979, p. 446) that “the proof .. is long, but it is purely graph-theoretical
and geomctrical in nature. | am rather surprised that it scems 1o have acquired a
reputation for extreme difficulty”. No significant simplification of the original proof
seems 10 be known, other than in special cases. One such case is if X U Y AL —a
for all pairs X, Y of copoints “off a” such that X AY is a coline. Then the top
three fevels of 1 - [a, 1] form a poset which is 1-connected by (1 L10) (iv), (11.2)
and Theorem 11,14, and the I-connectivity can be transferred to TC(L,a) by an
application of the Fiber Theorem 10.5, similar to the proof of Theorem 6.6. A
simpler and more conceptual proaf of Tutte’s Theorem in tull strength would be
aof definite interesl.

Unfortunately the available space does not permit a thorough cxplanation of
how Theorem 6.10 is used in representation theory. Here is a briefest possible
sketch of the idea. Tutte's proof of sufficiency for his characterization of regular
matroids runs by induction on the size of the ground set (that is why it is of interest
1o delete the point a). Roughly speaking, the “regular” coordinatization lives on
the copoints, and its value at the new point a is extended from one copoint in L;;,’
to another via paths in the Tutte graph TG(L, a). The Homotopy Theorem is then
needed to check that differcnt paths do not lead to contradictions. A similar idea
is illustrated in greater detail in the proof of Theorem 7.6.

7. Oriented matroids

TW() topies Trom the theory of oriented matroids will be discussed in this sec-
tion. Most important is the topological fepresentation theorem of Folkman and
Lawrence (1978), which states that every oriented matroid can be realized by an
arrangement of pseudospheres. As an application we show how such realizations
lead 1o quick proofs of some combinatorial properties of rank 3 oricnted ma-
troids. Sceond, we sketch (lollowing Las Vergnas 1978) how Maurer’s Homotopy
Theorem 6.7 can be used to deduce the cxistence of a determinantal sign function.

Oriented matroids are defined in chapter 9 by Welsh. Since we will usc a slightly
different formulation of the concept (due to Folkman and Lawrence 1978) and
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need to refer 1o the linear case for motivation, we will start with a quick review
of the basics, which will also serve 1o fix notation. More cxiensive treatments can
be found in the monographs Bachem and Kern (1992) and Bjorner, Las Vergnas,
Sturmfels, White and Ziegler (1993).

Let E be a finite set with a fixed-point free involution x — x* (ie., x* #x=x"
for all x € E). Write A" = {x* |x € A}, for subsets A C E. An oriented matroid
O — (E, *, €) is such a set together with a family € of nonempty subsets such that

(OM1) € is a clutter (i.e., C; # C; implics C; € € for all €, C; € %)

(OM2) if C€ 6 then C' € €and CNC* — ¢;

(OM3)if Cy, (5 € €,C, # C; and x € C, N}, then there exists D € € such that
DCCuUC —{xx').

‘the sets in € are called circuity of the oriented matroid ©. For elemenis x € £
let & — {x,x7}, and let A = (X |x € A},ACE, and € = {C | C € €}. The system
4 satislics the usual matroid cireuit-exchange axioms, so @ (£,'€) is 2 matroid,
called the underfymy matroid of ©. Not all matroids arise from oriented matroids
in this way; those that do are called orientable. A subsct B C E is called a basis of
© il B is a basis of 6. The rank of & cquals the rank of €. Without significant loss
of generality we will make the tacit assumption in what follows that all oriented
matroids arc simple, meaning that no circuit has fewer than three clements.

The fundamental models for oriented matroids are sets of vectors in &Y and
the relation of positive linear dependence (or, more generally, positive linear de-
pendence of vectors over any ordered field). Suppose that E is a finitc subset of
R?— (0} such that E= F,and if x #y in E arc parallel then y = —x, For x € £
let.e” = —x. A subset A C E is positive lincarly dependent if % Az x == 0 for some
real cocfficients A, > 0, not all equal to zero. Let € be the family of all inclusion-
wise minimal positive linearly dependent subsets of E, cxcept those of the form
{x,x"},x € E. Equivalently, ¢ consists of all subscts of £ which form the vertex
set of a simplex of dimension > 2 containing the origin in its relative interior. Ori-
ented matroids (£, +,€) which arise in this way are called linear (or, realizable)
over R. Not all oricated matroids are isomorphic to linear ones.

Topological Representation Theorem

To pave the way for the Representation Theorem for oriented matroids it is best
(o loak at the lincar case for mativation, The Representation Theorem in fact says
that intuition gained from the linear case is going to be essentially correct (mod-
ule same topological deformation which cannol be 100 bad) for general micnted
matroids.

Let £ be a finite subset of R - {0} such that E = -E, and let O=(E +€)
be the lincar oriented matroid as previously discussed. For cach e e £ = {x -
{x,x'}|x € E}, let H, be the hyperplane orthogonal to the line spanned by e.
The arrangement of hyperplanes # = {1, | ¢ ¢ E} comtains all information about
0, since onc can go from H, back to a pair of opposite normal vectors, and the
definition of the sets which form circuits in @ (i.e., the sets in %) is independent
of the length of vectors. By intersecting with 1he unit sphere 8¢ ' we can alterna-
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tively look at the arrangement of spheres ¥ = {H,n$* ! |e € E}, which is merely
a collection of equatorial (d — 2)-spheres inside the (d — 1)-sphere. Clearly: linear
oriented matroids (up to reoricntation), arrangementy of hyperplanes and arrange-
ments of spheres are the same thing,

When thinking about a linear oricnted matroid (£,%,6) as an arrangement of
spheres it is useful to visualize clements x € £ as closed hemispheres H, = {y €
Sy 2 0}. Then a subsct A C £ belongs to % if and only if ANVA* = ¢ and
A is minimal such that |, , #, = 8 '

We shall nced the following terminology. A sphere y is a topological space
for which there is a homcomorphism f:$/ - > with (he standard j-sphere
§ = {xe R [|x]| =1}, for some j 20. A pseudosphere S in Y is any image
§ = f({x €8] x;, =0}) under such a homeomorphism. [In the topological liter-
ature pseudospheres are known as “tamely embedded (or, flat) codimension-one
subspheres™, cf. Rushing (1973).} The two sides (or, pscudohemispheres) of S are
S'=f{xr eS| xuz0and S —f({xes | X0 < 0}). Clearly, § is the inter-
section of its two sides, which are homcomorphic to balls.

The crucial definition is this: An arrangement of pseudospheres (E, ) in $47' is
a finite collection « = {S, | e ¢ E} of distinct pseudospheres S, in $9~! such that

(AP1) Livery nonemply interscetion Sy - NecaSe, ACE is a sphere.

(AP2) For cvery nonemply intersection S, and all e € E, either S, C S, or
$4 018, is a pseudosphere in S, with sides S, NS; and §,NS;.

This definition is due to Folkman and Lawrence (1978). They actually required
more, but the addilional assumptions in their definition were proved to be wedun-
dant by Mandel (1982).

In analogy with the linear case (arrangement of spheres), an arrangement of
pseudospheres (E, ) gives rise to a system O(sl) = (E,+,%) as follows: put
E={S;]ec EYU{S, |e € E}, let (5})* = S- and vice versa, and define € (o be
the collection of the minimal subsets A C E such that Ua= $* Vand ANA* = 0.
It turns out that 6(«) is an oriented matroid (in spite of the topological defor-
mations). What is more surprising is that the construction leads to aff oriented
matroids. We call an arrangement o essential if N —o.

Theorem 7.1 (Representation Theorem, Folkman and Lawrence 1978).

() If o4 is an arrangement of pseudospheres in 847, then O(sd) is an oriented
matroid. Furthermore, if o is essential then rank O(d) — d.

(i) If O is an oriented matroid of rank d, then 6 = C(st) for some essentiul
arrangement of pseudospheres in 8¢ 1.

(iii) The mapping 4 — O(sd) induces a one-to-one correspondence between rank
d oriented matroids and essential arrangements of pseudospheres in $7°1, up 1o
natural equivalence relations.

The proof of this result is quite involved. For pail (ii} a posct is first constructed
from the oriented matroid, and then it is shown using Theorem 12.6 that this poset
is the poset of faces of some regular cell complex €. This complex € provides the
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(d ~ 1)-sphere and various subcomplexes the (d — 2)-subspheres forming the ar-
rangement. The sphere 4 is constructible (Edmonds and Mandel 1978, Mandel
1982), and even shehable (Lawrence 1984), which implies thal the whole construc-
tion of ¢ and the relevant subcomplexes can be carried out in piecewise linear
topology. In particular, this mcans that no topological pathologies need to be dealt
with in representations of oriented matroids. Complete proofs of ‘Theorem 7.1
can be found in Folkman and Lawrence (1978), Mandel (1982), and Bjorner, Las
Vergnas, Sturmfels, White and Ziegler (1993).

The Representation Theorem shows that orienled matroids of rank 3 correspond
to arrangements of “pscudocircles™ on the 2-sphere or, in the projective version,
arrangements of pseudolines in the real projective plane. This representation can
be used for quick proofs of some combinatorial propertics as in the following
application.

‘Theorem 7.2. Let M be an orientable matroid of rank 3. Then:
(i) M has a 2-point line,
(ii) if the points of M are 2-colored there exists a monochromatic line.

Here is how Theorem 7.2 follows from Theorem 7.1. Represent the points of M
as pseudocircles on the 2-sphere. ‘Then lines are maximal collections of pseudocir-
cles with nonempty intersection (which is necessarily a O-sphere, i.e., two points).
The arrangement of pseudocircles gives a graph 7 whose vertices are the points of
intersection and edges the segments of pseudocircles belween such points. Since
this graph lics cmbedded in $2 it is planar, and since rk(M) =3 il is simple. We
need the following lemma.

Lemma 7.3. For any planarly embedded simple graph:

(i) some vertex has degree at most five,

(i} if the edges ure 2-colored then there exists a vertex around which the edges of
each color class are consecutive in the cyclic ordering induced by the embedding.

Part (i) is a well-known consequence of Euler's formula (cf. chapter 5 by
‘Thomassen). Part (i) is also a consequence of Euler's formula, but not as well
known. It was uscd by Cauchy in the proof of his Rigidity Theorem for 3-
dimensional convex polytopes.

To finish the proof of Theorem 7.2, look at the graph G determined by the
arrangement of pseudocircles. If all lines in M have at least 3 points, then every
vertex in G will have degree at least 6, in violation of (1). i the pscudocircles are
2-colored and through every interscction point there is at lcast one pseudocircle
of each color, then the induced coloring of the cdges of G will violate (ii).

The proof of the first part ol Theorem 7.2, a generalization of the Sylvester—
Gallai Theorem (sce chapter 17 by Erdés and Purdy), has been known since the
1940s in the lincar case. The following strengthening by Csima and Sawyer (1993)
also uses pseudoline representation: The number of 2-point lines in M is at least
I%(card M). The proof of the second part, due to G.D. Chakcrian in the lincar
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case, was rediscovered by Edmonds, Lovész and Mandel (1980}, who also observed
the generalization to oriented matroids.

Basis signatures

Just like ordinary matroids, oriented matroids can be characterized in se\_'eral ways.
We shall discuss a characteristic property of the sct of bases B of an ()rlcnlc'd ma-
troid, namely that a determinant can be defined up to sign .(hut not n'mgmtudc).
This was first shown by Las Vergnas (1978). Characterizations of. oriented ma-
troids in terms of signcd bases were also discovered by J. Bokowski, A. Dress, L.
ierrez-Novoa and J. Lawrence. ~ )
Gl;f‘eetrus review some essential features of the function 8:% - {+1,-1}. takm.g
ordered bascs of a lincar oriented matroid (E,*,6),E C R4, to the sign of their
determinants. A function 1 can be defined for certain pairs of ordered bases 8
and g’ in R’ as follows:

7.4, Suppose § and B’ are permutations of the same basis B. Let n(8,p’) = +1 if
they are of the same parity and = —1 otherwise.

7.5, Suppose B = xixz---X, 1y and B’ = X1x3 -+ X, 1T withy # z. Let n(B8,8') — +1
if y and z are on the same side of the hyperplane spanned by {xy,..., %1}, and
= -1 otherwise.

Now, once we choose an ordered basis By and put det(By) = +1, the function
det(pB) and its sign 8(8) is detcrmined for all ordcn?d basfas B by the 'usual rules of
lincar algebra. But the function 8(8) is also combmalon.ﬂlly dctermined, because
any pair of ordercd bases can be connecled by a chain (?f steps of type (7.4)
or (7.5) and we have: If B and B’ are ordered bases as in (74) or (15) then
] B 8B ]

(g":ye }?rchgir)\g c:il:c)ussion points the way how to gene{alize the del_erm_mantal
sign function to all oriented matroids. First, to cast (7.5) in a fqrm which is more
compatible with the axiom system (OM 1)-(OM 3), we replace it by the following
reformulation:

7.5'. Suppose B =xyx---%, 1y and B =xx 0%, 1z.wilh y#2z, apd ify £ {‘
let {C,C'} be the unique pair of circuits such that in the undf:rl){mg matroid
{72} C € C{Fy,... %, 5, 7). Put n(B,B') =~ +1 if onc of v and z lies in C and the
other in C*. and put 7(B, ') - -1 otherwisc.

Theorem 7.6 (Las Vergnas 1978). Let % be the set of ordered bases of an oriented
matroid, and let By € B. There exists a nnique function 8: 98 — {+1.- 1} such ll,mf
8(By) = +L and if B,B' € @ are related as in (1.4) or (1.5') then 8(B) = n(B,B')-
8(8').

The proof runs as follows. Define a graph on the vertex set 971‘ '.w connec!—
ing pairs {8, 8’} which are related as in (7.4) or (7.5') by an edge. The graph is
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clearly connected, and there is a projection 7: 5 — B to the basis graph % of the
underlying matroid. Now, put 8(8,) := +1, and for 8 € R define

8(8):= I8 1.8)

i=t

for some choice of path By, 8i,...,8:, = B in . The proof is complete once we
show that this definition is independent of the choice of path from 8 to 8. If
Py and P, are two such paths then by Theorem 6.7 their projections w(Py) and

@(F2) in the basis graph differ by a sequence of clementary homolopies. Thus the
checking is reduced (o veriflying

k
It vay=1
i=1
for closed paths ag, ay,...,a, = aq in B whose projection in & is an edge BCB,

triangle BCDB or square BCDEB. However, the basis configurations which give
triangles or squares in the basis graph are explicitly characterized in (6.3)-(6.5),

and this way the checking is brought down to a manageablc size. Sce Las Vergnas
(1978) for further details.

8. Discrete applications of the Hard Lefschetz Theorem

One of the most esoteric results to have found applications in combinatorics is the
Hard Lclschetz Theorem. It was used by R. Stanley to prove the Erd6s-Moser
conjecture (chapter 32 by Alon) and to show necessity in the characterization of
f-vectors of simplicial convex polytopes (chapter 18 by Klee and Kleinschmidt).

In this section we will state the Hard Lefschetz Theorem and briefly explain
how it is used for these applications. The presentation follows Stanley (1980a,b,
1983b, 1985, 198Y). Other applications appear in Stanley (1987a,b).

Unfortunately, concepts must be used here which go beyond what is reviewed
and cxplained in part IT of this chapter. In particular we must assume some fa-
miliarity with the singular cohomology ring of a topological space, and with a few
basic notions of algebraic geometry (projective varieties, smoothness, etc.). See
Hartshorne (1977) for this.

Let X be a smooth irreducible complex projective variety of complex dimen-
sion d, and let H*(X) = HY(X) & HY(X) @ - - & HX(X) denote its singular coho-
mology ring with real coefficients. Recall that if w ¢ J/(X)} and 7€ I#{X) then
w - 7 € H*/(X). Being projective, we may interscct X with a generic hyperplane H
of an ambient projective space. By a standard construction in algebraic geometry
the subvariety X 1 /1 represents a cohomology class € I12(X).

Theorem 8.1 (The Hard Lefschetz Theorem). Let X and w € H2(X) be as above,
and let 0 < i < d. Then the linear map H'(X) — H>' '(X) given by multiplication
by o is an isomorphism of vector spaces.
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See Stanley (1983b) for references to various proofs of this theorem (the first
rigorous one is due 1o W. Hodge). Nole that the fact that H'(X) and 1/24-'(X)
are isomorphic is known already from Poincaré duality. Thus the point of the
thcorem is cntircly the existence of a special cohomology class w with such fa-
vorable multiplicative properties. Whereas Poincaré duality is a purely topological
phenomenon (valid for all compacl orientable manifolds, and in various versions
also more generally), the Hard Lefschetz Theorem uses smoothness in an essential
way. There is not (as far as is known) any intrinsically topological construction of a
good cohomology class @ that would make Theorem 8.1 valid for some reasonable
class of topological manifolds. Nevertheless, the Hard Lefschetz Theorem has been
extended to some more gencral classes of varictics, ¢.g., to Kihler manifolds in
differential topology and to V-varieties (nonsmooth varieties with finite quotient
singularitics, ¢.g.. the toric varictics of simplicial polytopes discussed below).

Stanley’s (1980a) proof of the Erdds-Moser conjecture is outlined in section 9 of
chapter 32 by Alon. Referring (o the discussion there, and using the same nolation,
we will now indicate how Theorem 8.1 is used.

For 4 certain poset M (n) of rank N = (";‘) and with rank-level sets M (n);,i =
0, 1,...,N, let V, be the real vector space with basis M(n);. For the proof
it is needed to construct lincar mappings ¢;: V, — V,,; such that the compo-
sition @n_, 19 @n.,.20-- 0@ :V, = Vy_, is invertible, for 0 <i < [N /2], and if
x € M(n)i and @i(x) = 3y, v - ¥ then ¢y # 0 implics y > x.

Take the special orthogonal group G = SO,,,(C) and let P be the maximal
parabolic subgroup corresponding to the simply-laced pari of its Dynkin diagram.
Then G/P is a smooth irreducible complex projective variety having a cell decom-
position (in a certain algebraic-geometric sense) such that the posct of closed cclls
is isomorphic to M {n). This cell decomposition of G/P (induced by the Bruhat
decomposition of () has cells only in even dimensions, and we may identify M (n);
with the set of 2i-dimensional cells and conclude that V; = HZi(G/P). The rcle-
vance of Theorem 8.1 is now becoming clear: indced, letting the lincar mapping,
@i : Vi — Vi, be multiplication with . all required propertics turn out to hold.

The poset M (r) is a member of a class of finite rank-symmetric posets arising as
Bruhat order on Weyl groups and on their quotients modulo parabolic subgroups.
Using Theorem 8.1, Stanley (1980a) showed that all such posets are rank-unimodal
and satisfy a strong form of the Sperner property.

Many of the results of Stanley (1980a). including the proof of the Erdiés-Moser
conjecture, can be proven with just lincar algebra. sce Proctor (1982). This is done.
essentially, by rewriting the first proof (including a proof of the Hard Lefschetz
Theorem) as concretely as possible and throwing out all mention of algebraic
geometry.

We now turn to the characterization of f-vectors of simplicial polytopes. This
application of Theorem 8.1 uses more of its content. The fact that the linear map-
pings ¢; constructed above are given hy multiplication is irrelevant for the previous
argument, whereas the global multiplicative structure of 777(X) is essential in what
follows.
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We refer to chapter 18 by Klee and Kleinschmidt for definitions relating 1o
simplicial d-polytopes P and their h-vectors #(P) — (hy. . ..., h;). As observed
there, every simplicial polytope in R is combinatorially equivalent to one with
vertices in Q7.

Let P be a d-dimensional convex polytope with vertices in Q“, There is a general
construction (see Ewald 1995, Fulton 1993 or Oda 1988) which associates with P
an irreducible complex projective variety X (#) of complex dimension d, called a
toric variety. This variety is in general not smooth, not even in the simplicial case.

Suppose now that P is simplicial. Then the following is true [work of V.I. Danilov,
J. Jurkiewicz, M. Saito and others; sce the cited books or Stanley (1983b, 1985,
1987a)]:

(i) the cohomology of X (P} vanishes in all odd dimensions, and dimg H* (X (P))
h(P), fori —0,1,...,d.

(i) H*(X(P)) is gencrated (as an algebra over R) by H2(X(P)).

(iii) the Hard Lefschets Theorem 8.1 holds for X=X(P) and the class of a
hyperplane section w € H2(X).

It follows from (iii) that the mapping 77%(X) — H**D(X) given by multiplica-
tion with  is injective if i < d/2 and surjective if i > [d/2]. Therefore, 1aking the
quotient of the cohomology ring

H*(X) =@ H*(X)
by the ideal gencrated by w, we get a graded ring
R=H'(X)/{w) = &R,

where R; = HY(X)/wH?% *(X), fori > 1, and Ry = H(X) = R. Furthermore, R is
generated by Ry [by (ii)], and dimg R, = h; — i; 1 by (i) and (iii)]. This shows that
(hoyhy — hoyhy — .. Riaga) — Ryagyy 1) is an “O-sequence”, as defined in Theorem
6.2 of chapter 18 by Klce and Kleinschmidt. As cxplained afier Theorem 6.5 of
that chapter, this is preciscly what needs to be shown to complete the proof of
necessity of the characterization of f-vectors of simplicial polytopes.

A more elementary (and self-contained) proofl of necessity has recently heen
found by McMullen (1993). 11¢ replaces the cohomology ring of the toric variety
by a certain subalgebra of the polytope algebra and proves the needed analog of
the Hard Lefschetz Theorem using convex geometry.

In Stanley (1987a) sharp lower bounds are given for the differences /i, — f,_,,1 <
i < [d/2], for a centrally symmctric simplicial d-polytope. The proof involves the
interaction between the Hard Leflschelz Theorem and a finite group action.

The toric variety X=X (P) of a non-simplicial polytope P with rational vertices
is unfortunately more difficult to use for combinatorial purposes. For instance,
dimg H'(X) may depend on the embedding of 2 and not only on its combinatorial
type, and cohomology may fail 1o vanish in odd dimensions. However, the inter-
section cohomology (of middle perversity) 7/ (X). defined by M. Goresky and R.
MacPherson, turns out to be comhinatorial and to satisfy a module version of the
hard Lefschetz theorem. This leads to some interesting information for general
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rational polytopes, such as Theorem 6.8 of chapter 18 by Klee and Klcinschmidt.
Sce Stanley (1987b) for more information.

PART II. TOOLS

The rest of this chapter is devoted to a review of some definitions and results
from combinatorial topology that have proven to be particularly useful in combi-
natorics. The material in sections 9 (simplicial complexes), 12 (cell complexes) and
13 (fixed-point and antipodality theorems) is of a very general nature and detailed
treatments can be found in many topology books, Specific references will therefore
be given only sporadically. Most topics in sections 10 and 11, on the other hand, are
of a more special nature, and more substantial references (and even some proofs)
will be given.

Many of the results mentioned have been discussed in a large number of papers
and books. When relevant, our policy has been Lo reference the original source
(when known 1o us) and some more recent papers that contribute simple proofs,
extensions or up-to-date discussion (a subjective choice). We apologize for any
inaccuracy or omission that may unintentionally have occurred.

9. Combinatorial topology

‘This section will revicw basic facts concerning simplicial complexes. Good gencral
references are Munkres (1984a) and Spanier (1966). Basic notions such as (topo-
logical) space, continuous map and homeomorphism will be considered known.
Throughout this chapler, every map between Lopological spaces is assumed to be
continuous, even if not explicitly stated.

Simplicial complexes and posets

9.1 An (abstract) simplicial complex A — (V,4) is a st V (the vertex ser) together
with a family 4 of nonempty finite subsets of V (called simplices or faces) such
that # # o C 7 € A implies o € A. Usually, V ={J A (shorthand for V = Usea @)
s0 V' can be suppressed from the notation.

The dimension of a face o is dima = card o 1, the dimension of A is dimA —
max,cadimo. A d-dimensional complex is pure if every face is contained in a
d-face (i.e., d-dimensional facc). The complex consisting of all nonempty subsets
of a (d + 1)-element set is called the d-simplex.

Note that our definition allows the empty complex 4 = #. It is, by convention,
(—1)-dimensional. [Remark: The definition of a simplicial complex (with nonemply
faces) that we use here is the standard one in topology. In combinatorics it is usually
more convenient to allow the empty set as a face of a complex; in particular, this
is consistent with the detinition of reduced homology.)
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Let A* = {k-faces of 4} and A%F = Ujci &', for k 2 0. The elements of 4° = v
and A! are called vertices and edges, respectively. If 4 is pure d-dimensional the
elements of A* are called facets (or chambers). AS* is the k-skeleton of A. It is a
subcomplex of A,

A (geometric) simplicial complex is a polyhedral complex in R? [in the sensc
of (12.1)] whose cells are geometric simplices (the convex hull of affincly inde-
pendent point-sets). If I is a geomctric simplicial complex then the family of
extreme-point-sets of cells in " form an abstract simplicial complex A(1") which
is finite. Conversely, if 4 # § is a d-dimensional finite abstract simplicial complex
then there cxist geometric simplicial complexes I'in B! such that A(1") & A, The
underlying space | J I of any such I, unique up 1o lincar homeomorphism, is called
the geometric realization (or space) of A, denoted by ||4]|. Conversely, 4 is called a
triangulation of the space {| 4[|, and of every space homeomorphic to it. Thus, ab-
stract and geometric simplicial complexes are equivalent notions in the finite case
{and more generally, when linite-dimensional, denunicrable and locally finite). The
geometric realization || 4] of arbitrary infinite abstract simplicial complexes 4 can
be constructed as in Spanicr (1966).

A simplicial map f:4, - A, is a mapping f:4Y — 4} such that f(v) € 4,
for all o € 4;. By affine cxtension across simplices it induces a continuous map
170140 4.

Whereas the rectilinear realization of all d-dimensional simplicial complexes
in R™! is casy 10 prove (and 2d+ 1 is best possible), the existence in special
cases of rectilincar and of topological realizations in spaces R/, for d < j < 2d, are
difficutt and much studicd problems. For  — 1 this is the question ol planarity
of graphs (see chapter 5 by Thomassen), for rectilinear embeddings when d > 2,
see, e.g., Bokowski and Sturmfels (1989) and the references found therein, and for
topological embeddings seec Rushing (1973). It is for instance not known whether
cvery triangulation of the 2-dimensional torus has a rectilincar embedding into R,
A classical result concerning topological cmbeddings is the van Kampen-Flores
Theorem (from 1932-33), which says that the d-skeleton of a (2d +2)-simplex
does not embed into R, Sarkaria (1991b) gives an up-to-date discussion of this
result in a setting which also includes the topological Radon-Tverberg theorems
discusscd in section 5, see also Sarkaria (1991a).

9.2. Let P = (P, <) be a poset (partially ordered sct). A (ofally ordered subset
Xy < Xy < - <xy is called a chain of length k. The supremum of this number over
all chains in P is the rank (or lengih) of P. I all maximal chains have the same
finite length then P is pure. P is a lattice if every pair of elements x,y € P has a
least upper bound (juin) x vy and a greatest lower hound (meef) x Ay,

Forxe P, let P, P, ,P P bedelined by P., = {y e P:y>ux}, ete. For
x <y define the open interval (x,y) — P., 11 P, and the closed interval |x,y| —
PLxNPgy. A bottom element Oanda top element 1 in P are elements satisfying
6<x (respectively x < 1) for alt x € P. if both 0 and 1 exist, P is bounded. Then
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P=pP- {O, i} denotes the proper part of P. For arbitrary poset P, = Peup{0,1}
denotes P extended by new top and bottom elements (so, card (f’\P) =2).

Let P be a pure poset of rank r. For x € P, let r{x) = rank(P,). The rank
function r: P — {0,1,...,r} is bijective on each maximal chain. It decomposes P
into rank levels P = {x € P: r(x) —i},0 <i <r.

9.3. The face poset P(4A) = (4,C) of a simplicial complex A is the set of faces
ordered by inclusion. The face lattice of 4 is P(4) = P(4) U {0,1}. It is a lattice.
P(4) is pure iff A is pure, and rank P(4) = dim A.

The order complex A(P) of a poset P is the simplicial complex on vertex set P
whosc k-faces are the k-chains xy < x; < --- < x4 in P. A poset map f: Py — P,
which is order-preserving |x < y implics f{x) < [(y)] or order-reversing |x < y im-
plics f(x) 2 f(¥)] is simplicial f: A(Py) — A(P;), and therclore induces a continu-
aus nap [|f[| - {A(2)) — | A(22)| The detinition of A(P) goes back 1o Aleksan-
drov (1937).

For a simplicial complex 4, sdA = A(P(4)), is called the (first) barycentric subdi-
vision (due Lo its geometric version). A basic fact is that 4 and sd4 are homeomor-
phic. Therelore, passage between simplicial complexes and posets via the mappings
P(-) and A(-) does not affect the topology, and from a topological point of view
simplicial complexes and poscts can be considered to be essentially equivalent
notions.

The geometric reatization || P[] .- |A(7)]| associates a topological space with ev-
ery poset P. In this chapter, whenever we make topological statements about a
poset P we have the space ||P|| in mind.

There exists at Icast one other way of associating a uscful topology with a poset
P (also duc to Aleksandrov 1937), namely, let the order-ideals (subsets A C P
satisfying x < y € A implies x € A) be the open sets of a topology on P. Denote
this space T(). For instance, for the poset depicted Lo the right in fig. 2 (section
12), T(P) is a space with cxactly ten open sets, whereas A(P) is homeomorphic
to the 2-sphere. For the ideal topology T(-) the continuous maps are precisely
the order-prescrving maps and homotopy [see (9.10)] has a dircet combinatorial
meaning. For instance, T(P) is contractible iff £ is dismantlable in the sense of
(11.1); see Stong (1966). The ideal topology T(P) is relevant for sheaf cohomology
over posets (Baclawski 1975, Yuzvinsky 1987) and has surprising connections with
the order complex topology A(P) (McCord 1966).

9.4. Let T be a topological space, ~ an equivalence relation on 7', and #: 7 —»
T/~ the projection map. The quotient T /~ is made into a topological space by
letting A C T/~ be open iff 7~ 1(A) is open in T. If $,,i € I, are pairwise disjoint
subsets of T, then T'/(S,)ics denotes the quotient spuce obtained by identifying the
points within cach set $;,i € 1. For example, cone(T) = 1" x [0,1]/(T" x {1}) is the
cone over T, and susp(T) — T x [0,1]/(T x {0}, T x {1}) is the suspension of T.
The d-ball modulo its boundary is homeomorphic Lo the d-sphere; BY/§4 ' = 59
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If (T,,%)ic1,% € Ti, is a family of pointed pairwise-disjoint spaces, then the
wedge of this family is |J,., Ti/(U,¢, {x.})- The join of two spaces T, and T is the
space Ty * Tp = T\ x Ty x [0, 1}/({(t,x,0) | x € T2}, {(», 5, )|y € T' Prcty et

The join of two simplicial complcxes 4; and 4, (with 43N 43 = ) is the com-
plex A x4 =4 UAH U{oUT|0o € A and 7 € 4;}. Furlher, the cone over 4 and
suspension of 4 are the complexes cone(4) = Ax I, susp(4) = A= 15, where [ is
the 0-dimensional complex with { vertices, i = 1,2. There is a homeomorphism

4y » A = 14, + [{ 2. (9.5)

[In case 4, and A, are not locally finite the topology of the right-hand side may
need to be modified 1o the associated compactly generated topology, sce Walker
(1988).] In particular, [jconc(4)|| = cone(]|4]|) and {[susp(4)|| = susp(j|4])).

The join of two complexes 4, and 4, has the following geometric realization.
First rcalize 4, and 4, in the same spacc R, with d sufficiently large, so that two
distinct line segments (x1, x5] and [y,,y] with x;,y, € {|4,]] and x,,y; € [{4,]| never
intersect in an interior point. Then take the union of all such line scgments (with
the topology induced as a subspacc of R¥) — this gives |[4; * 4, .

The p-fold deleted join AP of a simplicial complex A is defined as follows. Let
4y,..., 4, be disjoint copies of A with isomorphisms f, : 4; — A. Then A% is the
subcomplex of 4, * ...+ A, consisting of all faces &y U--- U g, such that fi(a;) N
f(a;) = 0 for all i #j. For combinatorial uses of this construction see Sarkaria
(1990, 1991a,b) and Zivaljevié and Vrcéica (1992).

The direct product P x Q of two posets is the Cartesian product set ordered by
(x,y) <@, y)ifx<x'in P and y <y in Q. The join (or ordinal sum) P x Q of
two posets is their disjoint union ordered by making each element of P less than
each element of Q and otherwise keeping the given orderings within P and Q.
Cleasly, A(P Q) = A(P) » A(Q).

There are the following homeomorphisms (Quillen 1978, Walker 1988):

12 x Qi = 1P| x 1Ll (9.6)
P x @) el Z PN+ 1R 1 9.7
(G, ), ', ¥ 0 = susp(llCe, X))+ (1Cv, ")),

ifx<x'inPandy<y inQ. 9.8)

(Again, special care has to be taken with the topology of the right-hand sides if
the participating order complexes are not locally finite.)

9.9, Lct 4 be a simplicial complex and o € AU {#}. ‘Then define the subcomplexes:
deletion dly(o) ={7€d|tNag =0}, star siy(c)={r€A|TU0c € A} and link
Iky(o)={red|7na =0 and TUa € A}. Clearly, dl(o) Nst(or) = k(o) and o *
k(o) = st{a). If o € 4" then also dl(a) Ust{a} = 4; and dI(}) = st(¥) = 1k(}) = A.
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Homotopy and homology

9.10. Two mappings fu, f1: 1 — T> of topological spaces are homotopic (written
fo~ fi} if there exists a mapping (called a homotopy) F: Ty x [0,1} - T, such
that F(¢,0) = fo(t) and F(¢,1) = fi(¢) for all € 7. (Remember that all mappings
between topological spaces are assumed to be continuous.) The spaces Ty and T,
are of the same homaotopy type (or are homotopy equivalent) if there exist mappings
fi:Ty— Ty and f;: T; — T such that f, 0 fi ~idy, and f; o f; ~idy,. Denote this
by T) =~ T3. A spacc which is homotopy equivalent to a point is called contractible.

Let 87 ' = {x e B lxf| - 1} and B! - {x « R?|||x|| < 1} denote the standard
(d — 1)-sphere and d-ball, respectively. Note that § ' = ¢, §* = {two points} and
B" = {point}. The class of spheres and balls is closed under the operation of taking
joins (up to homeomorphism): §° « " 22 §7"! B« B> > B* 1 gP = pr b1,

A space T is k-connected if lor all 0 <i < k each mapping f:S' -+ T can be
extended to a mapping f: B*' — T such that f(x) = f(x) for all x € §'. In partic-
ular, 0-connected means arcwise connected. The property of being k-connected is
a homotopy invariant (i.e., is transferred to other spaces of the same homotopy
type). $7 is (d — 1)-connected but not d-connected (see Theorem 13.1), B is con-
tractible. It is convenient to define the following degenerate cases: (—1)-connected
means “nonempty”, and every space (whether empty or not) is k-connected for
k< -2

A simplicial complex 4 is contractible iff A is k-connected for all k 2 0 (or equiv-
alently, for all 0 < k < dim 4). (The corresponding statement for general spaces is
false in the nontrivial direction.) Furthermore, a simplicial complex is k-connected
iff its (k + 1)-skeleton is k-connected. )

Let m(T) = m(T,x) denote the set of homotopy classcs of maps f:§' — T
such that f((1,0,...,0)) = x, from the pointed i-sphere to a pointed topological
space (,x),x € T, 1 2 0. For i 2 1 there cxists a composition that makes m,(T')
into a group, the ith homotopy group of T (at the point x). For i > 2, the group
m,(T) is Abelian. m(T) is the fundamental group, and T is simply connected if
m(T) — 0. The space T is k-connected iff m(7,x)=0Dforal0<i<kandxe T.
So, 1-connected means simply connected and arcwise connected.

9.11. For the definitions of simplicial homology groups H{4, G) and reduced sim-
plicial homology groups H,(4,G) of a complex A with coefficients in an Abelian
group G, we refer to Munkres (1984a) or Spanier (1966).

Let I7,(4) = H,(4,7). The degenerate casc
g Zoi=-1
mo={ 5 120

should be noted. For A # 0, I7,(4) = 0 for all i < 0 and all i > dim 4, and Hy(4) =
7', where c is the number of connected components of A, H;(4) = H;(4) for all
i#-1,0; H_{(4) — 0 and Hy(A) = Hy(A) D Z.
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Let 4; and 4, be finite complexes and assume that at least onc of I:l,,(AI) and
11,(4A,) is torsion-Trce when p + g -i 1.Then
Haldix &)= @ (Fp(4) © 11,(4y). ©.12)
Prgt

The same decomposition holds (without any restriction) for reduced homology
with coefficicnts in a field. See Milnor (1956) or chapter V of Cooke and Finney
(1967) for further details.

For a finite simplicial complex A let B, = rank /7,(4) = dimg Hi(4,Q),i >0.
The Betti numbers B, satisfy the Ewler-Poincaré formula

(1) card(a) = Y (-1)8;. (9.13)

i20 iz

Either side of (9.13) can be taken as the definition of the Euler characteristic
X(4). 'The reduced Euler characteristic is g(4) = x(4) — 1. Formula (9.13) is valid
with §; =dimy #1,(4,k) for an arbitrary field &, although the individual integers
Bi may depend on k. Additional relations exist between the face-count numbers
f, = card(4’) and the Betti numbers g, (Bjorner and Kalai 1988). Much is known
about the f-vectors f(4) = (fy.fi,...) for various special classes of complexes A.
See chapter 18 by Klee and Kleinschmidt for the important case of polytope bound-
aries, and Bjorner and Kalai (1989) for a survey devoted to more general classes
of complexes.

The Mébius function of a (locally) finite poset is defined in chapter 21 by Gesscl
and Stanley. Theorem 13.4 of that chapter (due ta P Halt) can in view of 9.13)
be restated as

mx,y) = 7(A(x,y), ifx<y, (9.14)

where the right-hand side denotes the reduced Buler characteristic of the order
complex of the open interval (x, y). This connection between the Mobius function

and topology. first pointed out by Rota (1964) and Folkman (1966), has many
interesting ramifications.

9.15. Two complexes ol the same homotopy typc have issmorphic homology groups
in all dimensions. A complex A is k-acyclic over G if H,(4,G) =0 for all i < k.
So, (—1)-acyclic means nonempty and O-acyclic means nonempty and connected.
Further, 4 is acyclic over G (or simply “G-acydlic” if confusion cannot arise) if
H(4,G)=0 for all i € 7. When G is suppressed from the notation we always
mean G =4

We now list some relations between homotopy properties and homology of a
complex 4, which are frequently useful. They are consequences of the theorems
of Hurewicz and Whitehead (see Spanier 1966).

9.16. A is k-connected iff 4 is k-acyclic (over Z) and simply connected, k > 1.
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9.17. 4 is contractible iff A is Z-acyclic and simply connected.

9.18. If 4 is simply connected, Hi(A) =0fori#d > 1, and Hy(4) > Z* then 4 is
homotopy equivalent to a wedge of k d-spheres.

9.19. Assume dim 4 = d 2 0. Then 4 is (d - 1)-connected iff 4 is homotopy equiv-
alent to a wedge of d-spheres.

[Remark: The analogues of (9.17)-(9.19) may fail for non-triangulable spaces.)

9.20. I 4, is kj-acyclic and 4; is ky-acyclic then 4y * 4, is (k) + k» +2)-acyclic. This
follows from (9.12). Using (9.16) it implies that if 4; is k,-connecled then A, * 4,
is (ky + ky + 2)-connected. {For this, see also Milnor 1956.)

10. Combinatorial h topy th

In this section we collect some tools for manipulating homotopies and the ho-
motopy type of complexes and posets, which have proven to be useful in com-
binatorics. Parallel tools for homology exist in most cases. We begin with some
elementary lemmas.

Suppose 4 is a simplicial complex and T a space. Let C:4— 2" be order-
preserving (i.e., C(0) C C(1) C T, for all ¢ C 7 in 4). A mapping f: ||| — T is
carrvied by C if f({|o]) C C(o) forall o € A. Let k € Z, U {o0}.

Lemma 10.1 (Carrier Lemma). Assume that C(o) is min(k, dim(o))-connected for
all o € A Then:

(i) if f,8: ||AS{| — T are both carried by C, then f ~ g,

(ii) there exists a mapping ||A”**'|| - T carried hy C.

In particular, if C(o) is always contractible then ||4] can replace the skeleta in
(i) and (ii) (k = oo case). Carrier lemmas of various kinds are common in topology.
For proofs of this version, see Lundell and Weingram (1969) or Walker (1981b).

Lemma 10.2 (Contractible Subcornplex Lemma). If Aq is a contractible subcom-
plex of a simplicial complex 4, then the projection map ||A|| — ||A|/||40l| is @ ho-
motopy equivalence.

This is a consequence of the homotopy extension property for simplicial pairs
{for more details see Brown (1968) or Bjorner and Walker (1983)].

“a 10.3 (Gluing Lemma). Examples of simple gluing results for simplicial
es Ay and A, are:
v and Ay N 4, are contractible, then 4; U 4, ~ A,,
nd A; are k-connected and A\ N 4, is (k — 1)-connected, then A;U A,

“nd 4y N4, are k-connected, then so are also Ay and A,.

o
™
i
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Such results are often special cases of the theorems in this section. especially
Theorem 10.6. Otherwisc they can be deduced from the Mayer-Vietoris long ex-
act sequence (for k-acyclicity) and the Scifert-van Kampen theorem (for simply-
conncctedness), using (9.16) and (9.17).

A general principle for gluing homotopies appears in Brown (1968. p. 240) and
Mather (1966). It gives a convenicnt proof for part (i) of the following lemma,
For part (ii) use Lemma 10.2. A more general method for gluing homotopies (the
“diagrams of spaces” technique) appears in Ziegler and Zivaljevic (1993).

Lemma 104, Let A= AyUA U-.-UA, bea simplicial complex with subcomplexes
4, and assume that A;N A, C Ay forall L <i<j<n
(i) If 4; is contractible for all 1 <i < n, then

A~ JyU U cone(Ag N 4;)
il

(i.e., raise a cone independently over each subcomplex Ay N A;).
(i) If 4; is contractible for all 0 < i < n, then

A= wedge, .., susp(do M 4;).

Some of the following results concern simplicial maps f: A — P from a simplicial
complex 4 to a poset P. Such a map sends vertices of 4 to elements of P in such a
way that each o € 4 is mapped to a chain in P. In particular, an order-preserving
or order-reversing mapping of poscts 3 — P is of this type.

Theorem 10,5 (Fiber Theorem, Quillen 1978, Walker 1981b). Let f:A— P be a
simplicial map from a simplicial complex A 1o a poset P.

(i) Suppose all fibers f '(P.),x € P, are contractible. Then f induces homotopy
equivalence between A and P.

(i) Suppose all fibers f-'(Ps.),x € P, are k-connected. Then A is k-connected if
and only if P is k-connected.

Proof. Suppose that all fibers are contractible. Then the mapping C(o)=
FYPsmna), 0 € A(P), is a contractible carrier from A(P) to ||4f. By Lemma
10.1 (ii) there exists a continuous map g: A(P) — 4 carricd by C, i.e., g(ljol]) C
[lf =" (P>mina)ll, for every chain & € A(P). One sees that g is a homotopy inverse
to f as follows, using T.emma 10.1 (i): C"(or) = || Pomine ||, & € A(P), is contractible
and carries fog and id;,, and C"(7) = ||f ‘(P%mi,,ﬂ,,))h, T € 4, is contractible and
carries go f and ids. Hence, fog ~idp and go f ~id,.

The sccond part is proved analogously by passing to (k +1)-skeleta and using
k-conncceted carriers in Lemma 10.1. O

The nerve of a family of sets (A, ),, is the simplicial complex N = A(A;) defined
on the vertex set / so that a finitc subsct o C [ is in' ¥ precisely when NMje, A; # 6.
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Theorem 10.6 (Nerve Theorem, Borsuk 1948, Bjorner et al. 1985, 1994). Let A
be a simplicial complex (or, a regular cell complex) and (4;),e; a family of sub-
complexes such that A=|J,, A,

(i) Suppose every nonempty finite intersection A, NA,N---NA; is contractible.
Then A and the nerve N (4;) are homotopy equivalent.

(ii) Suppose every nonempty finite intersection A, NA,N--NA, s (k—t+1)-
connected.Then A is k-connected if and only if N(4,) is k-connected.

Proof. For convenience, assume that the covering of A by the 4’s is locally finite,
meaning that each vertex of A belongs to only linitely many subcomplexes 4;. (The
case of more general coverings requires a slightly different argument.)

Let @ = P(A)and P — P(&'(4,)) be the face poscts. Define a mapping f: Q -» P
by mr s {i e l|me 4} Clearly fis order-reversing, so f: A(Q) — P is simplicial.
The fiber at o € P is f '(P..,) =(\,., 4. Part (1) now follows from Theorem 10.5.
Also, if all noncmpty finite interscctions are k-connecled, part (ii) follows the same
way. In the stated generality, part (ii) is proved in Bjomer et al. (1994). o

The Nerve Theorem has several versions for coverings of a topological spacc
by subspaces. The earliest of these seem to be due to Leray (1945) and Weil
(1952). Discussions of results of this kind can be found in Wu (1962) and McCord
(1967). We state here a version which seems suitable for use in combinatorics. An
application to oriented matroids appears in Edelman (1984).

Theorem 10.7 (Nerve Theorem, Weil 1952, Wu 1962, McCord 1967), Let X be a
triangulable space and (A,),; a locally fine family of open subsets (or a finite
family of closed subsers) such that X = U.er Av. If every nonempty intersection AN
A, (-1 A, is contractible, then X and the nerve N (A,) are homotopy equivalent.

By locally finite is meant that each point of X lies in at most finitely many sets
A,. We warn that Theorem 10.7 is false for locally finite coverings by closed sets
and also for too general spaces X. For a counterexample in the first case, take X
to be the unit circle and A, = {*™|1/(i+1) <t < 1/1},1=1,2,.... In the second
casc one can, e.g., let X' be the wedge of two topologist's combs A, and A [asin
Spanier (1966, Ex. 5, p. 56)].

The conclusions in part (1i) of Theorems 10.5 and 10.6 can be strengthened:
In Theorem 10.5, if all fibers are k-connected, then f induces isomorphisms of
homotopy groups m,(A) = 7 (), lor all j < k. Consequently, if in Theorem 10,6
all nonempty finite inlersections 4; N4, N---NA4, are k-connected, then wi(4) =
7;(N(4;)), for all j < k. A similar k-connectivity version of Theorem 10.7 appears
in Wu (1962).

Let P be a poset. A subsct C C I is called a crosscut it (1) C is an antichain, (2)
for every finite chain o in £ there exists some element in C which is comparable
to each clement in a, (3) if A C C is bounded (here meaning that A has an upper
bound or a lower bound in P) then the 10oin VA or the mect AA exists in P, For
instance, the atoms of a lattice L of finite length form a crosscut in L and in L.
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A crosscut C in P determines the simplicial complex I'(P, C) consisting of the
bounded subscts of C.

Theorem 10.8 (Crosscut Theorem, Rota 1964, Folkman 1966, Bjérner 1981).
The crosscut complex I'(P,C) and P are homotopy equivalent.

Proof. For x € C, let 4, = A(P<,UP5,). Then (A,)cc is a covering of A(P), by
condition (2), and every noncmply intersection is a cone, by condition (3), and
henee contractible. Since I'(P, C) = #(4, ), Theorem 10.6 implies the result. O

The neighborhood complex of a graph defined in section 4 is a special kind
of nerve complex. The following result gives a special decomposition property of
neighborhood complexes of bipartite graphs.

Theorem 10.9 (Bipartitc Relation Theorem, Dowker 1952, Mather 1960). Suppose
G =(Vo,V(,E), E C Vg x Vy, is a bipartite graph, and let A;i — 0,1, be the simpli-
cial complex whose faces are all finite subsets o C V, that have a common neighbor
in V) ;. Then A; and A, are homotopy equivalent.

Proof. First delete any isolated vertices from G. This does not affect Ay and 4.
Now, [or every x € ¥, let A consist of all finite subsets of {y € Vy|(y,x) € E}.
Then (A,),cv, is a covering of 4 with contractible nonempty intersections. the
nerve of this covering is A¢, so Theorem 10.6 applies. (0

Theorems 10.6 (i), 10.8 and 109 arc cquivalent in the sensc that either one
implies the other two. The following is a variation of the Fiber Theorem 10.5.

Theorem 10.10 (Ideal Relation Theorem, Quillen 1978), Ler P and Q be posets
and suppose that R C P x Q is a relation such that (x,y) < (x',y') € R implies that
(x,y) € R (That is, R is an order ideal in the product poset.) Suppose furthermore
that R, = {y € Q| (x,y) ¢ R} and Ry, ={x € P |(x,y) € R} are contractible for all
x€Pandyec Q. Then P and Q are homotopy equivalent.

Proof. By symmetry it suffices to show that / and R are homotopy equivalent.
By Thcorem 10.5 it suffices for this 10 show that the fiber 7 Y(P,,) is con-
tractible for all x € P, where 7: R — P is the projection map 7(x,y) =x. Lel F, —
m WPy —{z,y)eR|z 2 x}, and kel p: F, -» R, be the projection p(z,y) — y.
Now, p "((Re)zy) = {(z,w) € Fx | w2y} = {(z,w) € R|(z,w) > (x/y)} is a cone
and hence contractible, for all y € R,. So by the Fiber Theorem F, is homaotopy
cquivalent W Ry, which by assumption is contractible. (Remark: There is also an
abvious k-connectivity version of this result.) [0

Theorem 10.11 (Order Homotopy Theorem, Quillen 1978). Let f,g: A — P besint-
plicial maps from a sumplicial complex Ato a poset P If f(x) < g(x) for every vertex
x of A, then f and g are homotopic.
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Prof)f. For each face o € A, let C(0) = f(o) Ug(o). The minimal element in the
Qhaln f(@) is below every other element in C(a). So the order complex of C{a)
15 a cone, and hence contractible. Since C carries both f and g, these maps are
homotopic by Lemma 10.1.

Corollary 10.12. Let f:P — P be an order-preserving map such that f(x) 3 x for
all x € P. Then f induces homotopy equivalence berween P and f(P).

If also f*(x) = f(x) for all x € P (f is then called a closure operator on £) then
f(£) is a strong deformation retract of P. The hypotheses of Theorem 10.11 and
Corollary 10.12 can be weakened to that f(x) and g(x) [resp., f(x) and x] are
comparable for all x.

Call a poset P join-contractble (via p), if for some clement p € P the join (least
upper bound) p V x exists for all x € P. Define meet-contractible in dual fashion.

Corollary 10.13 (Quillen 1978). If P is join-contractible then P is contractible,

Pn.ml‘. Since x < pv x > p, for all x € P, Theorem 10.11 shows that id ~ pVvid~
. i.e., the identity map on P is homotopic to the constant mapp. 0

The following is a consequence of Corollary 10.12, and also of Theorem 10.8.

Corollary 10.14. Let L be a lattice of finite length and A the set of its atoms. Let
J={vB|BCA} Then L and L.0J are homotopy equivalent.

Proof. The mapping f(x) = V(AN Le,) satisfies f2(x) = f(x) <x for all x ¢ L.
Now use Corollary 10.12. O

The sel of complemenl_s ®o(z) of an element z in a bounded lattice L is defined
in section 3. Recall that L = £ — {0, 1}.

Theorem 10.15 (Homotopy Complementation Theorem, Bjorner and Walker 1983).
Let L be a bounded lattice and z € I.. ’

(i) The poset L — €a(z) 1s contractible. In particular, if 1. is noncomplemented
then L is contractible.

(ii) If €o(z) is an antichain, then

L = wedge susp(L.., * L.,).
yewo(z)

Proof. For each chain o in P =L — %o(z), let Clo)={xeP|x=2z}U{ye
P|y < maxo}. Either zvmaxo exists in P, in which case C(o) is meet-
contractible via it, or else z Amax o exisls, and (o) is join-contractible via it
So, C is contractible and carries the constant map z as well as idp. Therefore
by Lemma 10.1 z ~ id,., which proves part (i). Part (ii) then follows by 1.emma
104 (ii). p
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Suppose that L is a bounded lattice whose proper part is not contractible.
Then by part (i) every element x has a complement in L. This conclusion can
be strengthened in the following way: [Lovisz and Schrijver (unpublished)] Every
chain xp <X < .- <xg in L has a complementing chain yg >y, > --- 2y, (ic.,
X, Ly for 0<i<k). Here onc can even demand that each complement y; is a
join of atoms (assuming that atoms exist, which is the case, e.g., if L is of finite
length).

A more gencral poset version of Theorem 10.15 is given in Bjorner (1994b).
There the antichain assumption is dropped from part (ii) at the price of a more
complicated description of the right-hand side as a quotient space of a wedge
indexed by pairs « < y in 60(z).

11. Complexes with special structure

Some special properties of complexes that are frequently encountered in combi-
natorics, and which express a certain simplicity of structure, will be reviewed,

Collapsible und shellable complexes

111 Let A be a simplicial complex, and suppose that o € A is a proper face of
exactly one simplex 7 € A. Then the complex A’ = A\{o, 7} is obtained from A by
an clementary collapse (and A is obtaincd from A’ by an elementary anticollapse).
Note that A" = A If A can be reduced to a single point by a sequence of clementary
collapse steps, then A is collapsible.

The class of nonevasive complexes is recursively defined as follows: (i) a single
vertex is nanevasive, (ii) if for some x € A° both Ik 4(x) and dl4(x) are nonevasive,
then so is A.

The following logical implications are strict (i.e., converses are falsc):

cone = nonevasive — collapsible = contractible = Z-acyclic.
Furthcrmore, for an arbitrary field k:
Z-acyclic = k-acyclic =+ Q-acyclic =» y = 0,

and Z-acyclic <= Z,-acyclic for all prime numbers p.

Nonevasive complexes were defined by Kahn et al. (1984) 10 model the notion
of argument complexity discussed in section 2. A complex A is nonevasive iff for
all F ¢ A% it is possible in less than card A” questions of the type “Is x € ¥ 7” to
decide whether F € A.

Collapsibility has long been studied in combinatorial topology. Notewarthy is the
fact that two simply connected linite complexes A and A’ are homotopy equivalent
iff a sequence of el tary collapses and ¢l tary anticollapses can transform
Ainto &' (see Cohen 1973). 1n particular, the contractible complexes are precisely
the complexes that collapse/anticollapse to a point.
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An clement x in a posct P is irreducible if P, has a least clement or P., a
greatest element. A finite poset is dismantiable if successive removal of irreducibles
leads 10 a single-element pusel. A dismantlable poset is nonevasive. A topological
characterization of dismantlable posets of Stong (1966) is mentioned in (9.3). A
directed posct (for all x,y € P there exists z € P such that x,y < z) is contractiblc.

11.2. Let A be a pure d-dimensional simplicial complex, and suppose that the k-face
o is contained in exactly one d-face 7. Then the complex A’ = A\{y}o C y C r}is
obtained from A hy a (k,d)-collapse. If o # 1, then A’ ~ A. I{ A can be reduced to
a single d-simplex hy n sequence of (k,d)-collapses, 0 < k < d. then A is shellable.

A purc simplicial complex A is vertex-decomposable if (i) A=90 or (i) A4
consists of a single vertex, or (iii) for some x € A% both lks(x) and dls(x)
are vertex-deccomposable. For cxample, cvery simplex and simplex-boundary is
verlex-decomposable. The class of constructible complexes is defined by: (i) ev-
ery simplex and @ is constructible, (ii) if Ay, A; and Ay N A; are constructible and
dimA, —dim 4; = 1 +dim(4, N 4,), then A, U 4, is constructible.

The following logical implications between these properties of a pure d-
dimensional complex are strict:

verlex-decomposable = shellable = constructible

=3 (d — 1)-connected.

The first implication and the definition of vertex-decomposable complexes are
due to Provan and Billera (1980). The concept of shellability has an interesting
history going back to the 19th century, see Grinbaum (1967). Constructible com-
plexes were defined by M. Hochster, sce Stanley (1977).

Shellability is usually regarded as a way of putting together (rather than collapsing
— taking apart) a complex. Therefore the following alternalive definition is more
common: A finite pure d-dimensional complex A is shellable if its d-faces can be or-
dered ay.05,..., 07 50 that (8oy U---U 8oy )N 80y is a pure (d - 1)-dimensional
complex for 2 € & <1, where daj - 2”’\[&‘),0,] is the boundary complex of o,.
Equivalently, for all 1 <i <k <t there exists j < k such that o; "oy C a,Noy
and dim(o; N oy) = d — 1. In words, the requirement is that the kth facet oy inter-
sects the union of the preceding ones along a part of its boundary which is a union
of maximal proper faces of ox. Such an ordering of the facets is called a shelling.

If & € A and A is a shellable (or constructible) complex, then so is Iks(o). Shella-
bility is also preserved by some other constructions on complexes and posets such
as Theorem 11.13. Several basic propertics of simplicial shellability (also for infi-
nitc complexes) are reviewed in Bjorner (1984b). Shellability of cell complexes is
discusscd in Danaraj and Kice (1974) and Bjorner (1984a); see also chapter 18 by
Klee and Kleinschmidt. To establish shellability of (order complexes of) posets,
a special method exists called lexicographic shellability. See Bjorner (1980) and
Bjorner and Wachs (1983, 1994) for details. The notions of shellability and vertex-
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decompuosability and most of their uscful propertics can easily be generalized to
non-pure complexes, sce Bjorner and Wachs (1994).

11.3. Simplicial PL spheres and PL balls are defined in {12.2), (Pi. = piccewisc
linear). The property of being PL is a combinatorial property - whether a geometric
simplicial complex 4 is PL. depends only on the abstract simplicial complex A.

For showing that specific complexes are homeomorphic to spheres or balls, the
following result is frequently useful.

Theorem 11.4. Let A be a constructible d-dimensional simplicial complex.
(1) If every (d — 1)-face is contained in exactly two d-faces, then A is a PL sphere.
(ii) If every (d —1)-face is contained in one or two d-faces, and containment in
only one d-face occurs, then A is a PL ball.

Theorern 11.4 follows from some basic PL topology such as the facts quoted in
(12.2). For shellable A it appears implicitly in Ring (1964) and explicitly in Danaraj
and Klee (1974).

If Ais a triangulation of the d-sphere (or any manifold) and o € A%, then k(o)
has the same homology as the (d — 1 — k)-sphere. If o € A", then there is even
homotopy equivalence between lk,(o) and 59! However, if A is a PL d-sphere
and a € A%, then Ik,(o) is itself a PL (d — 1 — k)-sphere.

Cohen-Macaulay complexes

11.5. Let k be a field or the ring of integers Z. A finite-dimensional simplicial
complex A is Cohen-Macaulay over k (written CM/k or CM if k is understood or
irrelevant) if ks(a) is (dimlks(o) — 1)-acyclic over k for all o € AU {@}. Further,
A is homotopy-Cohen—Macaulay if Iks(a) is (dim 1k (o) — 1)-connected for all o €
A {8},

The following implications arc strict:
constructible =3 homotopy ~-CM = CM/7 = CM/k = CM/Q,

for an arbitrary field k. Furthermore, CM/7 «<= CM/Z, for all prime numbers
p. The first implication follows from the fact that constructibility implies (d — 1)-
connectivity and is inherited by links, the second implication follows from (9.15),
and the rest via the Universal Coefficient Theorem. In particular, shellable com-
plexes are homotopy-CM.

An important aspect of finite CM-complexes A is that they have an equivalent
ring-theoretic definition. Suppose that A’ — {x;,x3,...,x,}, and consider the ideal
I in the polynomial ring k[xy, x,...,x,] gencrated by monomials x, x,, ... x,, such
that {x,, X, .., X, } €A1 < dy <y < <y Sk 2 1. Let k{A] = k[xy,..., ¢/
1, called the Stanley-Reisner ring {or face ring) of A. Then A is CM/k iff the ring
k{4] is Cohen-Macaulay in the sense of commutative algebra (Reisner 1976). An
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exposition of the ring-theoretic aspects of simplicial complexes, and their com-
binatorial usc. can be found in Stanley (1983a). There other ring-theoretically
motivated classes of complexes, such as Gorenstein complexes and Buchshaum
complexes, are also discussed. Other approaches (o the ring-theoreltic aspects of
complexes and to Reisner’s thcorem can be found in Bactawski and Garsia (1981)
and Yuzvinsky (1987). Sce also section 5 of chapter 41 on Combinatorics in Purc
Mathematics.

Cohen-Macaulay complexes and posets were introduced around 1974-75 in the
work of Bactawski (1976, 1980), Hochster (1977), Reisner (1976) and Stanley (1975,
1977}. The notion of homotopy-CM first appeared in Quillen (1978). Bjorner, Gar-
sia and Stanlcy (1982) give an clementary introduclion to CM posets. A notable
combinatorial application of Cohen-Macaulayness is Stanley’s proof of tight upper
bounds for the number of faces that can occur in each di ion for triangulations
with n vertices of the d-sphere (Stanley 1975, 1983a; see also chapter 18 by Klee
and Kleinschmidt.) An application to lower bounds is given in Stanley (1987a).

11.6. Define a pure d-dimensional complex A to be strongly connected (or dually
connected) if cach pair of facets o, 7 € A? can be connecied by a sequence of facets
o=y, 0r,..., 00 = 7,80 that dim(o,. \ Nay) =d  1for1<i<n.

Proposition 11.7. Fvery CM complex is pure and strongly connected.

This follows from the following lemma. which is proved by induction on dim A:
Let A be a finite-dimensional simplicial complex, and assume that \ks(a) is con-
nected for all o € AU{0} such that dim{(lky(o)) 2 1. Then A is pure and strongly
connected.

The property of being CM is topologically invariant: whether A is CM/k or not
depends only on the topology of [|A]|. This is implied by the following reformulation
of CM-ness, duc to Munkres (1984b).

Theorem 11.8. A finite-dimensional complex A is CM/k iff its space T = ||A|| sat-
isfies: H(T k) = H(T,T\p,k) =0 for all p € T and i < dim A.

In this formulation H; denotes reduced singular homology and H, relative sin-
gular homology with coeflicients in k. A consequence of Theorem 11.8 is that
if M is a triangulablc manifold (with or without boundary) and H,(M) =0 for
i <dimM, then every triangulation of M is CM. For instance: (1) every triangu-
lation of the d-sphere, d-ball or R? is CM/7, but not necessarily homotopy-CM
(beware: homotopy-CM is not topologically invariant), (2) a triangulation of rcal
projective d-space is CM/k iff char k # 2.

11.9. The dcfinition of Cohen-Macaulay posets (posets P such that A(P’) is CM)
descrves a small additional comment. Let P be a poset of finite rank and o: xq <
X < --- < xy achain in P. Then lkypy () = Pog # (X0, %1) % -+ % (Xg_1, Xg) * Py,
It therefore follows from (9.20) that P is CM [resp. homotopy-CM] iff every open
interval (x,y) in Pis (rank(x, y) — 1)-acyclic [resp. (rank(x,y) — 1)-connected].
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Some uses of Cohen-Macaulay posets in commutative algebra are discussed in
section 5 of chapter 41 on Combinatorics in Pure Mathematics.

1L.10. An abundance of shellable and CM simplicial complexes appear in combi-
natorics. Only a few important cxamples can be mentioned here.

(i) The boundary complex of a simplicial convex polytope is shellable (Brugges-
ser and Mani 1971, Danaraj and Klce 1974; see also chapter 18 by Klee and Klein-
schmidt). Every simplicial PL sphere is the boundary of a shellable ball (Pachner
1986). There exist non-shellable triangulations of the 3-ball (M.E. Rudin) and of
the 3-sphere (see below). Shellability of spheres and balls is surveyed in Danaraj
and Klee (1978).

(i) The following implications are valid for any simplicial sphere: constructible
= PL = homolopy-CM. The S-spherc admits triangulations that are non-
homotopy-CM (R.D. Edwards, see Daverman 1986), and also PL triangulations
that are non-constructible (Mandel 1982). Every triangulation of the 3-sphere is
PL, but all ure not shellable (Lickorish 1991, see also Vince 1985). Face lattices of
regular complex polytopes are CM (Orlik 1990).

(iii) The complex of independent sets in a matroid is constructible (Stanley
1977) and vertex-decomposable (Provan and Billera 1980). More generally, the
complex generated by the basis-complements of a greedoid is vertex-decomposable
(Bjorner, Korte and Lovész 1985). Complexes arising from matroids are discussed
in Bjéroer (1992).

(iv) Every semimodular (in particular, every geometric or modular) lattice of
finite rank is CM (Folkman 1966) and shellable (Bjorner 19%0). For any element
x#0ina geometric lattice L. the poset L\[x, i] is shellable (Wachs and Walker
1986).

(v) Tits buildings are CM (Solomon-Tits, see Brown 1989 or Ronan 1989) and
shellable (Bjorner 1984b). The tapology of mare general group-related geometries
has been studied by Ronan (1981), Smith (1988), Tits (1981) and others with a
view to uscs in group theory. See Buekenhout (1995) and Ronan (1989) for general
accounts,

(vi) The poset of clementary Abcelian p-subgroups of a finitc group was shown
by Quillen (1978) to be homotopy-CM in some cases. See also Stong (1984). The
full subgroup lattice of a finite group G is shellablc (or CM) iff G is supersolvable
(Bjérner 1980). Various posets of subgroups have been studied from a topological
point of view. See Thévenaz (1987), Webb (1987) and Welker (1994) for a guide
to this literature.

Induced subcomplexes

Connectivity, Cohen—Macaulayness, etc., are under certain circumstances inherited
by suitable subcomplexes. For a simplicial complex 4 and A C A, let A, = {oc e
Al o C A} (the induced subconplex on A).

Lemma 1L11. Let A be a finite-dimensional complex, and A CV = A%, Assume that
Ika(a) is k-connected for all o € Ay\4. Then Ay is k-connected iff A is k-connected.
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Lemma 1112, Let P be a poset of finite rank and A a subset. Assume that P.., is
k-connected for all x € P\A. Then A is k-connected iff P is k-connected.

Proof. These lemmas are equivalent, We start with Lemma 11.12. Let f:A—P
be the embedding map. For x € P,

' _ ) A, ifxeA,
FP) { P..NA, ifxgA.
Now, A, is contractible (being a cone), and £_, N A is k-connected by induction
on rank(P). The result therefore follows by Theorem 10.5 (ii).

To prove Lemma 11.11, let P = P(A) and Q = {r € A|TNA ##} C P. Since
P,y = P(lks(a)) is k-connected for all o € P\Q, Lemma 11.12 applies. On the
other hand, by Corollary 10.12 the map f(7) =7NA on Q induces homotopy
eyuivalence between Q and f(Q) = P(4,). U

The homology versions of l.emmas 11.11 and 11.12, obtained by using k-
acyclicity throughout, can be proven by a parallel method, Also, if the hypothesis
“k-connecled” were replaced by “contractible” in these lemmas, then the conclu-
sion would be that 4, and A (resp. A and P) are homotopy cquivalent.

Theorem 11.13. Let A be a pure d-dimensional simplicial complex, A € A% and
L <m < d Suppose that card(ANa) =m for every facet o € A4, If A is CM/k,
homotopy-CM or shellable, then the same property is inherited by Ay

For CM-ness this result was proven in varying degrees of generality by Bactawski
(1980), Munkres (1984b), Stanley (1979) and Walker (1981a). It follows casily from
Lemma 11.11. For shellability, proofs appear in Bjorner (1980, 1984b).

Suppose that 4 is a pure d-dimensional simplicial complex and that there exists
amapping r: 4% — {0,1,. .., d} which restricts to a bijection on each facet o € A9,
Then A is called completely balanced (or numbered, or colored) with type-map t.
For instance, the order complex of a pure poset is completely balanced with type-
map ¢ = rank [cf. (9.2)], and also building-like incidcnce geometries (Buekenhout
1995) give rise to completely balanced complexes. CM complexes of this kind were
studicd by Stanley (1979) and others.

For each J € {0,1,...,d}, the type-selected subcomplex Ay, = A, \(sy is the in-
duced subcamplex on ¢ '(J) C 4° Thearem 11.13 shows that if A is CM then 4,
is also CM and hence (caid J — 2)-acyclic. A certain converse is also true in the
sense of the following result, which gives an alternative characterization of the
CM property for completely balanced complexes. It is due to Bactawski and Gar-
sia (1981) in the finite CM case, and to J. Walker (letter to the author, 1981) in
gencral including the homotopy case.

Theorem 11.14. Let A be a pure d-dimensional completely balanced complex. Then
A is CM/k [resp., homotopy-CM] if and only if Ay, is (card J —2)-acyclic over k
[resp., (card J —2)-connected) for all J C {0,1,...,d}
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12, Cell complexes

Most classes of cell complexes differ from the simplicial case in that a purely
combinatorial description of these objects as such cannot be given. However, the
two classes defined here, polyhedral complexes and regular CW complexes, are
sufficiently close to the simplicial case to allow a similar combinatorial approach
in many cases. For simplicity only finite complexes will be considered.

Good general references for polyhedral complexes are Griinbaum (1967) and
Hudson (1969), and for ccll complexes Cooke and Finney (1967) and Lundell and
Weingram (1969). Cell complexes are also discussed in many books on algebraic
topology such as Munkres (1984a) and Spanier (1966).

Polyhedral complexes and PL topology

12.1. A convex polyiope 7 is a bounded subset of B¢ which is the solution sct of a
finite number of linear cqualities and inequalitics. Any nonempty subset obtained
by changing some of the inequalities to cqualities is a face of . Equivalently,
7 CR7 is a convex polytope iff 7 is the convex hull of a finite set of points in
RY. See chapler (8 by Klee and Kicinschmidt for more information about convex
polytapes.

A polyhedral complex (or convex cell complex) I is a finite collection of convex
palytopes in RY such that (i) if w ¢ I" and o is a face of 7 then o € 1", and (ii)
itw,7c ! and w7 £ then w715 a face of both 7 and 7. The members
of I' are called cells. The underlying space of I'is ||I'| = |JI", with the topology
induced as a subset of RY. If every cell in I' is a simplex (the convex hull of
an affinely independent set of points) then I’ is called a (geometric) simplicial
complex. The dimension of a cell equals the linear dimension of its aftine span, and
dim I" = max - dim 7. Further terminology, such as vertices, edges, facets, pure, k-
skeleton, face poset, face lattice, etc., is defined just as in the simplicial case, see
(9.1) and (9.3).

12.2. A polyhedral complex I is a subdivision of another such complex I3 if
[IT3]l = |72} and every cell of I is a subsct of some cell of /3. The abstract simpli-
cial complex A(# (1)), i.e., the order complex of I”s face poset, has geometric real-
izations (by choosing as new vertices an interior point in each cell) that subdivide
I'. Every polyhedral complex can be simplicially subdivided without introducing
new vertices.

Let 2¢ denote the complex consisting of a geometric d-simplex and all its faces,
and let 827 denote its boundary. These complexes provide the simplest triangula-
tions of the d-ball and the (d — 1)-sphere, respecuvely. A polyhedral complex 'is
called a PL d-ball (or PL (d — 1)-sphere) if it admits a simplicial subdivision whose
face poset is isomorphic to the face poset of some subdivision of %/ (resp. 8%¢).
This is equivalent to saying that there cxists a homeomorphism [17) — 124 (resp.



1860 A. Bjirner

(] — #1824 which is induced by a simplicial map defined on some subdivision
(a piecewise linear, or PL, map). The boundary complex of a convex d-polytope is
a PL (d -- 1)-sphere.

The PL property is mainly of technical interest. Several properties of balls and
spheres that are desirable, and would in many cases seem intuitively “obvious”,
hold only in the PL case. Some examples are: (1) (Newman’s Theorem) the closure
of the complement of a PL d-ball lying in a PL d-sphere is itself a PL d-ball; (2)
the union of two PL d-bulls, whose intersection is a PL (d — 1)-ball lying in the
boundary of each, is a PL d-ball; (3) the link of any face in a PL sphere is itself
a PL sphere (cf. remark following Theorem 11.4). All these statements would be
false with “PL” removed.

See Hudson (1969) for proofs and further information about PL topology. Man-
del (1982) develops basic PL topology from a combinatorial perspective.

Regular cell complexes

12.3. By “celt complex” we will here understand what in topology is usually called
a “finite CW complex™.

Let X be a Hausdorff space. A subset o is called an open d-cell if there exists
a mapping f: B -» X whose restriction to the interior of the d-ball is a homeo-
morphism f: In(BY) -+ &. The dimension dimo = d is well-defined by this. The
closure & is the corresponding closed cefl. 1t is true that f(BYY=0c, but & is not
necessarily homeomorphic to BY. We write ¢ - a\a.

A cell complex ‘€ is a finite collection of pairwise disjoint sets together with a
Hausdorff topology on their union 11€1} = LU % such that:

(i) each o € € is an open cell in |l and

(ii) & C 6°“™Mv (the union of all cells in € of dimension less than dim o), for
all ¢ € 6.

Then % is also called a cell decomposition of the space ||€||. Furthermorc, €
is regular i each mapping f:BY ||€|| defining the cells can be chosen to be a
homeomorphism on afl of BY. Then, of course, cvery closed cell & is homeomorphic
to a ball. (However, it is not enough for the definition of a regular complex to only
require that every closed cell is homcomorphic to a ball. ‘The smallest example
showing this has three vertices, three edges and one 2-cell.)

The cell decomposition of the d-sphere into one 0-cell and one d-celi (a puint
and its complement in §%) is not regular. Every polyhedral complex is a regular
cell complex (the relative interiors of the convex polytopes are the open cells).
Regular cell complexes are more general than polyhedral complexes in several
ways. For instance, it is allowcd that the intersection of two closed cells can have
nontrivial topological structure.

12.4. From now on only regular cell complexes will be considered. Define the face
poset P(%) as the sct of all closed cells ordered by containment.The following two
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Figure 2.

particular properties make a regular complex % favorable from a combinatorial
point of view (see Cooke and Finney 1967 or Lundell and Weingram 1969 for
proois):

(i) The boundary & of each cell o € € is a union of cells (a subcomplex). Hence,
the situation resembles that of polyhedral complexes: each closed d-cell & is home-
omorphic to B¢, and its boundary ¢ (homcomorphic to $*') has a regular cell
decomposition provided by the cclls that intersect 4.

(i) ||| = |AP(9))|, i-e., the order complex of P(€) is homeomorphic to ||‘6(|
Geometrically this means that regular cell complexes admit “barycentric subdivi-
sions™. From a combinatorial point of view it means that regular cell complexes
can be interpreted as a class of posets without any loss of topological information.

Because of (i), regular cell complexes can be characterized in the following way:
A family of balls (homeomorphs of B, d 3> 0) in a Hausdorff space X is the set of
closed cells of a regular cell complex iff the interiors of the balls partition X and
the boundary of each ball is a union of other balls. This is what Mandel (1982)
calls a “ball complex”,

An imporlant consequence of (i) is that a d-dimensional regular cell complex
% can always be “realized” in R?*! by a simplicial complex, so that every closed
cell in € is a triangulated ball (a cone over a simplicial sphere).

For a detailed discussion of regular cell complexes from a combinatorial point of
view, see section 4.7 of Bjorner et al. {1993). Figure 2 shows a regular cell decom-
position 6 of the 2-sphere, its face poset P('6), and its simplicial represenlalion
A(P(6)), where each original 2-cell is tri lated into four triangl

E
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12.5. Given a finite poset P, docs there exist a regular cell complex (or even a
polyhedral complex) € such that PP (€); and if so, what is its topology and how
can 6 be constructed from P? This question is discussed in Bjorner (1984a) and
Mandecl (1982) from diffcrent perspectives. One answer is that P is isomorphic
to the face poset of some regular cell complex iff A(P..) is homeomorphic to a
sphere for all x € I'. However, since it is known that simplicial spheres cannot be
recognized algorithmically this is not a fully satisfactory answer. The question of
how to recognize the face posets of polyhedral complexes is one version of the
Steinitz problem (see chapter 18 by Kiee and Kieinschmidt).

For the cellular interpretation of posets the following result, derivable from
Theorem 11.4, has proven useful in practice. Sce Bjdrner (1984a) for further details,
Let us call a poset P thin if cvery closed interval of rank 2 has four elements (two
“in the middle”). Also, P U {0} will denote P with a new minimum clement §
adjoined, and P = P u (6,1} as usual.

Theorem 12.6. Let P be a pure finite poset of rank d. Assume that A(P) is con-
structible.

i) IfPu {6} is thin, then P =2 P (%) for some regular cell complex € homotopy
equivalent to a wedge of d-spheres.

(i) If P is thin, then P = P (€) for some regular cell decomposition of the d-
sphere.

13. Fixed-point and antipodality theorems

The topological fixed-point and antipodality theorems of greatest use for combina-
torics will be reviewed. We start by stating four equivalent versions of the oldest of
them: Brouwer’s fixed-point theorem (from 1912). Proofs and refercnces to origi-
nal sources for all otherwise unrefercnced material in this section can be found in
many topology books, e.g., in Dugundji and Granas (1982). Recall that mappings
between Lopological spaces are always assumed to be continuous.

Theorem 13.1 (Brouwer’s Theorem)., (i) Every mapping f:B* = B has a fixed
point x = f(x).

(ii) %! is not a retract of B (i.c., no mapping B — $1 leaves each point of
S fixed).

(iii) 9" is not (d — 1)-connected.

(iv) 8%V is not contractible.

Brouwer’s Theorem is implied by the following combinatorial lemma of Sperner
(1928), see also Cohen (1967): If the vertices of a frianguiation of 847" are colored
with d colors, then there cannot be exactly one (d — 1)-face whose vertices use all
d colors. Sperner’s Lemma was generalized by Lovdsz (1980): If the vertices of a
(d — 1)-dimensional manifold are labeled by elements from some rank-d loopless
matroid, then there cannot be exactly one (d — 1)-face whose vertices form a basis
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of the matroid. A further generalization and an application to hypergraphs appcar
in Lindstrom (1981). Sperner’s Lemma is of practical use for the design of fixed-
point-finding algorithms in connection with applications of Brouwer’s Theorem
see Todd (1976).

It is well known that Brouwer’s Theorem for d - 2 implies that there is no draw
in the 2-person game IHEX. Actually the implication goes the other way as well.
Gale (1979) defines a d-person d-dimensional HEX game, and proves that for
each d > 2 the Brouwer Theorem 13.1 is equivalent to the impossibility of a draw
in d-dimensional HEX.

We turn next to the (Hopf -)Lefschetz, fixcd-point theorem (from 1927-28), which
gives a vast generalization of Theorem 13.1, Lefschetz’ Theorem and the closely
related trace formula of Hopf will be stated in simplicial versions.

Let A be a nonempty simplicial complex and f: Al — [|A|| a continuous map.
The Lefscherz number A(f) is defined by A(f)=%,.4( -1) trace (f'), where
£ H(4,Q) - H(A,Q) is the induced mapping on i-dimensional reduced ho-
mology. (We usc Q-coefficients throughout here for simplicity; other fields may
of course be used instead.) Note that f ~ g implies A(f) = A(g) (since homotopic
maps induce identical maps on homology), in particular if f is null-homotopic
(meaning homotopic to a constant map) then A(f) = 0. Also, if A is Q-acylic then
A(f) =0 for all self-maps f.

Now, suppose that f:4— A is simplicial, and say that a face 7€ A is fixed
if f(r)= 17 as a set. Let @' (f) [resp. ¢, (f)lbe the number of fixed i-faces
whose orientation is preserved [resp. reversed]. Here we consider the orienta-
tion of 7= {xq,%,,...,x) to be preserved if the permutations Xy, Xp,...,X, and
F(x0), f(x1),..., f(x,) have the same parity. The following is a special case of the
Hopf trace formula:

A 1= ot (D) — o, (). (13.2)

20

Notice that for f —=id formula (13.2) specializes to the Euler—Paincaré formula
(9.13).

One sees from (13.2) that if f has no fixed face, then A(f) — —1. Using simpticial
approximation and compactness the following is deduced.

Theorem 13.3 (Lefschetz’s Theorem). If f:||Al — Al is a wnapping such that
A(f) # -1, then f has a fixed point.

The following two consequences of Theorem 13.3 generalize Brouwer’s Theorem
in different directions.

Corollary 134. Let T be a compact triangulable space.
(a) Every null-homotopic self-map of T has a fixed poini.
(b) If T is Q-acyclic, then every self-map of T has a fixed point.

The following consequence of the Hopf trace formula is useful in some combi-
natorial situations. I.et once more f: A — Abe a simplicial mapping of a simplicial
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complex A. Assume that a face 7 € 4 is fixed if and only if 7 is point-wise fixed [i.e.,
f(r) = 7implies f(x} = x for all x € 7]. One may then define the fixed subcomplex
A = {r€ A} f(1) = 7}, which coincides with the induced subcomplex on the set
of fixed verlices, and (13.2) specializes to

AN = x(4). (13.5)

One situation where this is used (see, e.g., Curtis, Lehrer and Tits 1980) is in con-
nection with groups acting on finite complexes, where (13.5) says that the “Lef-
schetz character” has a topological interpretation as the reduced Euler character-
istic of the fixed subcomplex. Another such situation (see Bactawski and Bjorner
1979 and section 3 of this chapter) is when f: P — P is an order-preserving poset
map, in which case (13.5) can be rewritten A(f) = u(P/), the right-hand side de-
noting the value of the Mobius function computed over the subposet of fixed points
augmented with a new 0 and 1 [cf. (9.14)).

The following definitions will now be nceded. Let p be a prime. By a Z,-space
we understand a pair (T, ») where T is a topological spacc and v : T — T is a fixed-
point free continuous mapping of order p (i.e., »” =id). A mapping [: T} = T»
of Z,-spaces (T,,#),i=1,2, is equivariant if vy0 f = fov. A Z,-space is often
called an antipodality space. The standard example is (87, ), the d-sphere with its
antipodal map a(x) = - x.

We state five equivalent versions of the antipodality theorem of Borsuk (1933).

Theorem 13.6 (Borsuk’s Theorem).
) If 84 is covered by d + 1 subsers, all closed or all open, then one of these must

contain a pair of antipodal points. (Borsuk-Liusternik-Schnirelman)

(i) For every continuous mapping f:8% — R? there exists a point x such that
f(x) = f(—x). (Borsuk-Ulam)

(iii) For every odd [f(—y) = —f(y) for all y| continuous mapping f:8¢ — R4
there exists x for which f(x) = 0. (Borsuk-Ulam)

(iv) There exists no equivariant map 8" — 8%, if n > d.

(v) For any d-connected antipodality space T, there exists no equivariant map
T8

Borsuk’s Theorem is implied by a certain combinatorial lemma of A.W. Tucker,
much like Brouwer's Theorem is implied by Sperner’s Lemma. See Freund and
Todd (1981) for a statement and proof of Tucker’s L.emma and further references.
In Theorem 13.6 (v) it suffices to assume that T is d-acyclic over Z,, see Walker
(1983b).

Steinlein (1985) gives an extensive survey of generalizations, applications and
references related to Borsuk’s Theorem. Applications to combinatorics are sur-
veyed by Alon (1988), Bédrdny (1993) and Bogatyi (1986); sce also scctions 4 and
5 of this chapter.

The following extension of the Borsuk-Ulam Theorem appears in Yang (1955):
For every mapping $°" — R* there exist n mutually orthogonal diameters whose 2n
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endpoints are mapped to the same point. The same paper also gives references to
the following related theorem of Kakutani-Yamabe-Yujobd: For every mapping
§" — R there exist (n+1) mutually orthogonal radii whose (n+ 1) endpoints are
mapped to the same point. An inlercsting conscquence of the last result is that every
compact convex body K C R*'! is contained in an (n+ 1)-cube C such that every
maximal face of C touches K [for each x € $” let f(x) be the minimal distance
between two parallel hyperplancs orthogonal Lo the vector x and containing K
between them)].

Suppose E| and E; are two hounded and measurable subsets of R?. Identify
R? with the affine plane A = {(£,1,1)} in R?, and for each x €52 let fi(x) be
the measure of that part of E, which lics on the same side as x of the plane H,
through the origin orthogonal to x, for i = 1, 2. The Borsuk-Ulam Theorem implies
that fi(x) = fi(—x) and f,(x) = fy(—x) for some x € $%, which means that the line
AnNH, bisects both E; and E;. This “ham sandwich™ argument generalizes to

arbitrary dimensions and leads to the following consequence of the Borsuk—Ulam
Theorem.

Corollary 13.7 (“Hain Sandwich Theorem™). Given d bounded and Lebesgue mea-

surable sets in R there exists some affine hyperplane that simultaneously bisects them
all.

Also Corollary 13.7 has several generalizations and related results. The case
when k < d bounded and measurable sets are given is covered by the following
result of Zivaljevi¢ and Vreéica (1990): Let iy fa,- -5 i be a collection of o-
additive probability measures defined on the o-algebra of all Borel sets in R 1 <
k < d. Then there exists a (k —1)-dimensional affine subspace A CR' such that
for every closed halfspace H C RY and every i =1,2,...,k,A C H implies p;(H) >
1/(d — k +2). For k = d this specializes to a measure-theoretic version of the Ham
Sandwich Theorem (sec also Hill 1988), and for k = | it gives a theorem of Rado
(1946) which says that for any measurable E C R there exists a point x € R? such
that every halfspace containing x contains at least a 1/(d + 1)-fraction of E.

We end by stating a useful generalization of the Borsuk-Ulam Theorem to
Z,-spaces for p > 2. First a few definitions, see Bardny et al. (1981) for com-
plete details. Lel p be a prime and 5 > 1. Take p disjoint copies of the n(p - 1)-
dimensional ball and identify their boundaries. Call this space X,,,,. Therc cx-
ists a mapping » : §"" 11—, §70- 11 of the identified boundary which makes it
into a Z,-space. Extend this mapping to X, as follows. If (y,7,q) denotes the
point of X, , from the gth ball with radius r and §"” " '-coordinate y, then put
v(y,r,q) = (vy,r,q+1), where g + 1 is reduced modulo p. This mapping v makes
X, into a Z,- space. [Note that (X,,5,v) = ($", )]

Theorem 13.8 (Bérdny, Shlosman and Sztics 1981). For every continuous mapping
f: X, , — R there exists a point x such that f(x) = f(vx) = -~ = f(p? lx).

Some applications of Theorem 13.8 are mentioned in sections 4 and 5.
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