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INVARIANTS OF SELF-LINKING'

By R. C. BrancurierLp anp R. H. Fox
(Received June 23, 1950)

By a multiplication (with respect to the rationals mod 1) defined over a finite
(additive) abelian group G is meant a function L which associates to every
ordered pair of elements a, b of G a rational number L(a, b) in such a way that’

0 < L(a,d) <1,
L(a,b + ¢) = L(a,b) 4+ L(a,c)  (mod 1),
L(a 4+ b,¢c) = L(a,c) + L(b, ¢) (mod 1).

We shall deal only with symmetric multiplications, i.e. multiplications L which
satisfy the condition

L(a, b) = L(b, a).

An element a of G is called an annihilator of L if L(a, b) = 0 for every element

b of G; a primitive’ multiplication is a (symmetric) multiplication L which has

no annihilators other than zero. Multiplications L and L’ defined over isomorphic

groups G and G’ are equivalent if there is an isomorphism ¢ of G on @’ such that
L(a, b) = L'(¢(a), ¢(b)).

(Hence multiplications L and L’ defined over the same group G are equivalent

if there is an automorphism ¢ of G satisfying this relation.)

Numerical invariants of equivalence classes of primitive multiplications were
constructed by Seifert [5]. This system {¢} is complete if the order of @ is odd,
i.e. two multiplications defined on an odd-ordered group G are equivalent if
and only if they have the same Seifert invariants ¢. In practice there may be
some difficulty in calculating Seifert’s invariants, especially if one is considering
a whole range of groups with multiplications, for the reason that the definition
of {s} is in terms of a particular choice of a basis for G. In §1 we exhibit a set
of invariants {x} which are invariantly defined. For odd-ordered groups the
effectiveness of these new invariants is the same as of those of Seifert: in §2 we
show that one can express the system {x} in terms of the system {¢}, and con-
versely. Nevertheless the system {x} has greater flexibility, because of the free-
dom from choice of basis, and this will be exploited in a subsequent paper.*

1 This paper is substantially the junior paper [8] of R. C. Blanchfield submitted to the
Department of Mathematics at Princeton University in February 1949.

2 To define L(a, b) to be a least non-negative residue seems to be more convenient than
to define it to be a residue class.

2 All multiplications, with the exception of the auxiliary multiplication L* of §1, con-
sidered in this paper are primitive. Only primitive multiplications occur in the applica-
tions.

4 R. H. Fox: The homology characters of the cyclic coverings of the knots of genus one. To
appear in these Annals.
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Over the (2N + 1)-dimensional torsion group G of a (4N + 3)-dimensional
closed oriented manifold I a primitive multiplication L, called the self-linking
(Eigenverschlingung), is defined in a natural way.® In order that there be an
orientation-preserving topological mapping of such a manifold 9t upon another
one M’ it is necessary not only that the groups G and G’ be isomorphic but that
their self-linkings L and L’ be equivalent. Hence the invariants x and ¢ of (G, L)
are invariants of I (with respect to orientation-preserving homeomorphisms).

When calculating {x} in concrete cases one is usually presented not with the
self-linking L but with a system of fundamental boundary relations and a matrix
of intersection numbers. In §3 we derive a formula which enables one to calculate
the invariants x directly without explicitly constructing the self-linking L.
This algorithm will be used in the application mentioned above.

The invariants x were suggested by and are analogous to certain well-known
invariants from the arithmetic theory of quadratic forms® (with which the self-
linking has a more than superficial connection’).

1. We consider a finite abelian group @ and a primitive multiplication L de-
fined on G. For future reference we note that

(1) L <:El a; A, ;B,b,) = ‘; a;B;L(a,-, bj) (mod 1)

and that

2) aa = 0 implies aL(a, b) = 0 (mod 1).

It is well-known that the finite abelian group G is the direct sum of (non-trivial)
subgroups G, -+, G. of respective orders 7, ---, 7, such that r;,; divides
r;fori =1,--- ,n — 1. The numbers 71 = 72 = -+ = 7, > 1 are called the
torsion coefficients of G and are uniquely determined by @G. It is convenient to
define 7, = 1 forr =n+ 1,n 4+ 2, --- . An n-tuple (z,, - - -, x,) of elements
of G is called a basis if z; generates a cyclic subgroup G; of order r; > 1 and G
is the direct sum of Gy, --- , G, . Two bases (x;, --- ,z,) and (31, --- , y») are
called dual if

@) Lz, y;) = 8j/7:.

The multiplication L being primitive, at least one pair of dual bases can be
found [2]. The symbols zy, -+ , %, ;%1, - - - , Y= Will always denote some selected

pair of dual bases.
Let » = n be an index for which 7. > 7,4, . There is a unique symmetric multi-
plication L* over @ satisfying the condition

L*(a, b) = 1,yaL(a,b) (mod 1).

5 See [4], [5] or [6]. Self-linking is also defined over the 2N-dimensional torsion group of
a (4N + 1)-dimensional manifold, but it is then a skew-symmetric multiplication. It has
been exhaustively studied by de Rham [3].

¢ See [1].

7 An n-ary integral quadratic form may be regarded as a multiplication with respect to
the integers defined over a free abelian group of rank n.
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The annihilators of L* form a subgroup K of G; let G = G/K and denote by
@ the coset of K in G of which a is a member. Define

L(a, b) = L*(a, b),

observing that the definition is independent of the choice of the representatives
a and b of the respective cosets @ and b. It is easily verified that L is a primitive
multiplication over G.

LemMa 1. The torsion coefficients of G are 7i/tr4y, 5 = 1, -+- , 1.

Proor. It is sufficient to prove that K is the subgroup of G generated by the

T1 Tr .
elements — &, --- , — &, Zr41, ** , T . To see this we note first of all that
Tr41 Tr41

L*<T€1xi:yi>5TiL(xiyyj)EO (mOdl)y i=1""’ri

Tr4
L*(xl' ) yl) = Tf+lL(xi ’ y!) =0 (mOd 1)7 t=r+ 1) o, m,

T1 Ty e
by (2), so that the elements — #;, --- , — x,, %41, - - - , Z, are all annihila-
Tr41 Tr41

tors of L*. Then we have only to show that an arbitrary annihilator a =
D 71 ax; can be expressed as a linear combination of these elements. And, in
fact,

0 =L*a,y) = 7L <Z o T, y;) =72 (mod 1)
i=1

LE]

so that a; = vj7;/7,41, Where v1, - - - , v, are integers, and hence

a = Z:—l‘)’:" = z; + Z?—r+l aiT; .
Tr+1
For any two r-tuples (a;, -+-, a,) and (b;, ---, b,), r < n, of elements of G
we consider the matrix

LY = L(ay, -+, @301, ,b) = || L(as, ;) |[sjeteoorr

LEMMA 2. 71 --- 7, | LY | 4s an integer; for any r X r integral matriz
M, 7o 7, | LY 4+ M® | 4s also an integer and 7, --- 7, | L + M? | =
71 7| L” | mod 7,.

ProoF By INDUCTION ON 7: For r = 1 the first statement follows from (2)
because the order of every element of G divides 7; ; the second statement follows
immediately because

A {10+ MP | = L[} = | M® |,
We may express the elements @, -+, a, and by, -+ - , b, in terms of the dual

bases z;, -+, 2, and y;, - -+, ¥, obtaining

@G = D an and b = ;Bﬂ Y,

k=1
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where a,; and B;; are integers. From (1) and (3) it follows that there exist integers
Wij, %, 3 = 1,---, r such that

L(a;, b;) = kZ} ok B + wij.

Tk

Assuming now the truth of the lemma for indices smaller than r, we note that
LY + M?| — |L”| = IM”| + X, = | L,| - | M, | where L, ranges
over all the minors of L™ of order less than r and greater than 1 and M, denotes
the minor of M complementary to L,. By the inductive hypothesis r; - - -
71| Lg | is always an integer; since | M, | is also always an integer it follows

that 7y - (| L + M® | — | L® | ) is an integral multiple of r,. Applying
this result to the case M = || — u;j||s,jm1.....r , We see that to prove the first
statement it suffices to prove that 7y -+ 7, | D_pm B e | is an integer. But
T®
i aixBir air; Bk ; Buey = Brie, |
—| = —L T |y |,

K=l Tk k1ee e ik ypmml Tkj kjieooskyml Tky *°° Tke
| ax; | vanishes unless the indices k;, - -, k. are distinct, and 7, - - 7, di-
vides 71 - -+ 7, if the indices k;, ---, k, are distinct. Consequently 7 -- -7,

| >oi a‘:fj" | must be an integer, and the induction is complete.

The number 7; - - - 7, | L(ai , @;) | 4, j=1.--..r , Which according to Lemma 2, must
be an integer, will be denoted by D(a;, -+, a,),r =1, ---, n.

THEOREM 1. Let p be any odd prime divisor of 7./7,41, where 1 = r < n. Then
there exist r-tuples (a,, - -+ , a,) of elements of G for which D(a,, --- , a,) s not
divisible by p. Moreover®

(Rl )) _ (D(bl o,

for any pair of such r-tuples (a1, :-- , a,) and (b1, -+, by).

Proor. We prove this theorem first for the case r = n. Accordingly p is now
any odd prime divisor of 7, . Lo prove the first statement we express the basic
elements y;, - -+ , ¥, in terms of the dual basis z,, - -- , z, :

. Yi = kZ_l'Ykak .
Then, by (1) and (3),
8i;

= L(z;i, y;) = ,‘Z; vk L(x; , xx) (mod 1),

1

so that, by Lemma 2,
1= I'YikI'D(xl"“)xn) (mOdp))

8 (D/p) denotes the Legendre symbol and is equal to =1 according as D is or is not a
quadratic residue mod p.
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which shows that D(z,, - - - , x,) is not divisible by p. To prove the second state-

ment we consider an arbitrary n-tuple (a,, - - - , a.) of elements of G and express
these in terms of x; , - -« , z, .

n
a; = Z Qg Tk
k=1

Then, by (1),
L(a;, a;) = kz:l asajp Lz, 1) (mod 1),
8o that, by Lemma 2,

D(G’l’""an)Ela‘k|2°D(xl,""xn) (mOdP)-
Hence either | ax | = 0 and D(a1, --- ,a,) =0 (mod p) or
|a"kl¢0’D(a1)"')an)¢0 (mOdP)

and <D(a1 , p , a,.)) _ (D(xl, p ,x,.)).

For r < n we apply the preceding result to the group G, whose torsion co-

efficients according to Lemma 1 are 7,/7,41, + - , 7+/7,31 . Accordingly we define
= - T1 Tr | T/s =
D(@y,+++,a,) = —~ «-- | L(@: y @) |isjmtyeeer «
Tr+1 Tr+1

By the special case of the theorem proved in the preceding paragraph applied to

the group G we see that there exist r-tuples (a1, - - - , a,) of elements of G for
which D(a, , ---, a,) is not divisible by a given odd prime divisor of 7,/741,
and that

<l-)(dl , p ,d,)) _ <D(51 , p ,l';,))

for any pair of such r-tuples. To complete the proof of the theorem we have only
to observe that

D(d]_, ey, dr) =T1°°" -r,]L(a;,a;) l i ful, ey = D(al, ey, a,.)

For any index r = 1, --- , n and odd prime divisor p of 7,/7,,1 We define
D(ay, -+,
(4) Xr(p) = <___(alp—ar)) ’

where (a,, -+, a,) is any one of the r-tuples for which p { D(a;, ---, a,).
This definition is valid by virtue of Theorem 1. Note that the “residue charac-

ters” x.(p) are, by their definition, invariants of the group with multiplication
@G, L).

2. We now briefly recall the definition [5] of the Seifert invariants and relate
them to our invariants x.
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Let p be an odd prime and write 7; = p**r;,fori = 1, --- , n, where d; = 0
and p does not divide 7; . Let r; < 7, < -+ < r,, be the indices 7 for which
7+/7r41 = 0 (mod p), so that

= - =d,>dpy= - = dey> oo D>l 1= - =dp, >0
and

d. =0forr > rm,

where 7, < n. The elements of G whose orders are powers of p form a subgroup
for which the r,, elements z; = 7iz;,5 = 1, -+, r,, form a basis.
By (2)

Ay

pmin(d,b.d,,)

1 L& ) osmtrorn = \

k,lm=l,c00,m

where Ay; is an integral (r, — 7)) X (r1 — r,_;) matrix. Seifert showed that

none of the determinants | Ay |, -++, | Amm | are divisible by p. Seifert’s in-
variants of (G, L) are the residue characters
A
afb(p)=<|_pl‘k_l>, k=1,...,m.
Forl=1,.--,m, .
An pd'l-d': A pi'l::'l Ay,
ﬁ pd;\_| L(:L': x;) ll’ el = An A22 P ra T A 1
oy PP ) st S
A, A A,
= |Au||An| | Au] (mod p).
By Lemma 2,
r rl
H Th* l L(.’E: ) x;) |.',j..1,...,” = H Th* l 1'2 T;'L(x.' , .’2?_,') l.‘_j_l'...'” (mod p),
so that
Ty ry
hHI P | Liz: 73) | = de"- | 7¢ 75 L(zs, 25) | (mod p)
Tl
= hI-IlT',I'D(xl) i 1xr1) (mod p)

Combining these two results we get

ry 4

(5) H on(p) = ,.I..Il (3) xn (D), l=1,--+,m,

from which one may compute either the ¢ from the x or the x from the o.
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Thus in particular the residue characters x.(p) form a complete system of
invariants if the order of the group @ is odd.’

3. If one were to set about calculating self-linking invariants for a given
(4N + 3)-dimensional manifold I, very likely one would first find (cf. [6]) a
system of (2N + 1)-dimensional cycles A,, ---, A,, representing elements
ay, -+ ,a,of the 2NV 4 1)-dimensional torsion group G, a system of 2N-dimen-
sional chains B, - -+, B, such that the boundary relations

n
B»"—)ZlfiiAiy ’I:=1,°'°,7L,
o

determine G, and then the n X n matrix of intersection numbers s;; = S(B,, A7),
4,7 = 1, ---, n, where A} is a cycle homologous to A; but in a dual sub-
division. We shall now find a formula for D(as,, -+, as,) in terms of the two
(non-singular) matrices F = ||f;;|| and S = || s;;||. In order to obtain' x.(p)
from D(as,, -, ax,) it is only necessary to choose h,, - - -, h, in such a way
that D(ax,, -+, an,) # 0 (mod p).

Let B(A;, A7) denote the linking number of the two cycles A; and A} . Then

s = S(B:, AF) = Z;fu%(A,-, Ai).
£

Denoting by F;; the cofactor of f;; in F, we deduce that

L ZF&jsck = L Z Fij a'l%(Al’A:)
[F| = |F| &=
= L S IF| 54241, A1)
|F|i=
= B(4;, 41).

The self-linking L of G is defined as the multiplication over G that satisfies the
condition

L(a;, a) = B(4;, AF) (mod 1).

9 For a group G of even order further invariants, analogous to the ‘‘supplementary
characters’ of [1], may be defined. For example theorem 1 holds with p replaced by 4 or
8 (other powers of 2 are useless) provided (D/4) and (D/8) are properly interpreted. How-
ever these invariants do not form a complete system as the following example shows: r =
7o = 4, L(z:, z;) = 8;j,L'(z:i,z;) = —8j,1,7 =1, 2. These two (primitive) multiplica-
tions are indistinguishable by the character x2(4). But it is easy to see that, as a ranges
over G, L(a, a) ranges over O, 1/4, 2/4 and L'(a, a) over O, 2/4, 3/4. This problem was con-
sidered by Van Kampen [7] and a solution was indicated. Nevertheless it seems that a
usable set of invariants has yet to be found. In principle a reasonable solution of this
problem should exist since the corresponding problem for quadratic forms has been solved.
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Hence
L(a;, a) = Z Fijsix (mod 1)
IF I t=al
Let us denote, for 1 <4, < - <% =nandl1 =l < --- <h =, by

Fi . ...ir; hy,---h, the product of (— )it hiethat e and the determinant of
the (n — r) X (n — r) matrix obtained from F by deleting the #;*, - - | 7t
rows and the ki, --- | h,t columns, and by (FYS):,...», the “hybrid” matrix
obtained from F by replacing its k;** column by the corresponding column of
Sforl=1,:--,r. Then

D(an,, -+ ,an) =71+ Tp: IL(ahi,ah,k)l Lk=1 -+ r
=TT, IF | .,2-:1 Fin; 8ijng (mod 7,)
(by Lemma 2)
= T Z"I Finy =+ Fin, | Sipng | (mod ,)
IFlIm s e !
= 1'1|F|"rr 16 Tt gn | Fipma |+ | signa | (mod 7,)

FI"™Fipei, oy
IF|r 1£41<-+-<irSn l l 31 'r’,hl hr

. | Si;hy l (mod T,)
(by Jacobi’s theorem of the adjugate)
=rFr | IS | (mod r,)
(6) i
. - | (FXS)h,.n | (mod ,).

Tr41 **° Tn

4. The restriction to the n-dimensional group of a (2n + 1)-dimensional
manifold may be removed by dualizing homology to cohomology and inter-
section to cup product. Let & be a complex of any dimension, H* the (n + 1)-
dimensional cohomology group of & with integral coefficients, and H*"*'(R)
the (2n + 1)-dimensional cohomology group of & with coefficient group R =
rationals mod 1. A multiplication Q, with respect to H*"*'(R), is defined over
the torsion subgroup T of H™*" as follows: If u, » ¢ T and U, V are cocycles re-
presenting u, v respectively there is an n-dimensional cochain W whose co-
boundary is 8V, where 8 is the order of the element » of 7. Then 1/8 (U v W),
regarded as a cochain with coefficients in R, is a cocycle, and, as such, represents
an element Q(u, v) of H*"*'(R). It may be shown that Q(u, v) is independent of
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all the choices made in this construction and that the multiplication Q is sym-
metric or skew-symmetric according as n is odd or even. If ® is a 2n + 1)-
dimensional closed, oriented manifold H****(R) &~ R and duality establishes
the equivalence of (T, @) with (G, L).

To obtain numerical invariants of (T, @) in the general case one would try to
generalize the results of §1 by replacing R by H*"*'(R). Although this might be
a useful thing to do we have not attempted it as we do not at present see any
immediate application.
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