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Printed in U.S.A. 

INTERSECTION THEORY OF MANIFOLDS WITH OPERATORS WITH 
APPLICATIONS TO KNOT THEORY 

BY RICHARD C. BLANCHFIELDt* 

(Received March 29, 1956) 

Introduction 
Let 9N be an oriented combinatorial manifold with boundary, let 9)1, be any 

of its covering complexes, and let G be any free abelian group of covering trans- 
formations. The homology groups of 9N* are R-modules, where R denotes the 
integral group ring of the (multiplicative) group G. Each such homology module 
H has a well-defined torsion sub-module T, and the corresponding Betti module 
is B = H/T. 

The automorphism y -> -1 of the group G extends to a unique automorphism 
a -a & of the ring R = R. Following Reidemeister [4] there is defined an inter- 
section S which is a pairing of the homology modules of dual dimension to the 
ring R, and also a linking V which is a pairing of dual torsion sub-modules to 
Ro/R, where Ro is the quotient field of R. Two duality theorems are proved: 

(1) S is a primitive pairing to R/rm of dual Betti modules with coefficients 
modulo tm and Tm respectively, where or is zero or a prime element of R and m is 
any positive integer. 

(2) V is a primitive pairing of dual torsion modules to Ro/R. 
These theorems are analogous to the Burger duality theorems [1]; in case R is 

the ring of integers, they specialize to the Poincar6-Lefschetz duality theorems 
for manifolds with boundary. 

Although dual modules are not, in general, isomorphic, it is demonstrated 
that if one torsion module has elementary divisors A0 c Al c ... then its dual 
has elementary divisors Ao C Al C * ... . (The numbering differs from that of 
[2] in that we begin with the first non-zero ideal.) 

This result is applied to the maximal abelian covering of a link in a closed 
3-manifold. It is proved that the elementary divisors Ai of the 1-dimensional 
torsion module are symmetric in the sense that Ai = At . For the case of a knot or 
link in Euclidean 3-space, the ideal A0 is generated by the Alexander polynomial, 
and the symmetry of A0 has been proved previously by Seifert [6] for knots and 
Torres [7] for links. 

The "symmetry" of the Alexander polynomial was proved by Seifert and 
Torres in a slightly more precise form [8, Cors. 2 and 3]. The problem of similar 
extra precision in the more general case of a link in an arbitrary closed 3-manifold 
remains open. 

* Died July 25, 1955. The revision of his Princeton 1954 Ph.D. dissertation presented 
here was made by J. W. Milnor and R. H. Fox. Aside from minor corrections the only 
changes were a strengthening of Lemma 4.3 and the insertion of Lemma 4.10 and Corollary 
5.6. 
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1. Let 9M be an oriented n-dimensional manifold with boundary S. Let G 
be a multiplicative free abelian group of orientation-preserving homeomorphisms 
of WN onto itself such that no point of W9 is fixed under any element of G other 
than the identity. We assume that WN has been triangulated in such a way that 
G operates on 9 as a complex; that is to say, the elements of G map cells onto 
cells preserving the incidence relations. The canonical example of such a manifold 
is a covering complex of a triangulated manifold where the covering transforma- 
tions form a free abelian group. 

Let 9) be the dual cell complex of 9W. Except for those cells of W9 which lie 
entirely in the boundary Q3, each cell of 9N has a dual cell in W0. If the original 
triangulation of W9 is sufficiently fine, the complex W9 will be a deformation 
retract of 9t. We use W9 for the study of relative homology and WN for absolute 
homology. 

Let R be the group ring of G with integer coefficients. Define j = e-1 for all 
7 e G. The mapping y -> jy can be extended to an automorphism of R by linearity. 
Observe that for any a E R, a = a. 

Let Ci be the group of i-dimensional chains of WN modulo A3, and let Cn-i be 
the group of (n - i)-dimensional chains of 9W, i = 0, *, n. The elements of 
G operate naturally as automorphisms on Ci and C,2_j, and by linearity we may 
regard the elements of R as operators on Ci and C,,-i. Hence [3] we may regard 
Ci and Cni as R-modules. Note that Ci and C0-i are free modules in the sense 
that each one is isomorphic with the direct sum of R with itself a finite number 
of times. 

For any x E Cj let aix be the relative boundary of x. Then a is an operator 
homomorphism of Ci into Cji_ and we have the usual relation aidai = 0 for 
i= 1, ***, n. Similarly we have operator homomorphisms 4i: >- Where 
no confusion can result, we write aj and As in abbreviated form as 0. In the usual 
way one can define relative and absolute homology modules. As abelian groups 
these homology modules are the usual homology groups. The operator structure 
of the modules is inherited from the corresponding structure on the chain 
modules. The homology modules are invariants of the pair (9S, G), where we con- 
sider two pairs (9S, G) and (9M', G) equivalent if there exists a homeomorphism 
op of 9onto 9' such that-ysp = eo for ally EG. 

Following Reidemeister [4] we introduce an intersection S as follows. Let e 
denote the ordinary intersection of chains (disregarding operators). For x E C 
and x e Czi define 

S (x,) -,,,GS(x, -x) y ER. 

All but a finite number of terms on the right are zero, so the sum is finite. The 
following properties of S are easily verified. 
(1) S(x + y, x) = S(x, x) + S(y, x). 
(2) S(x, x + y) = S(x, x) + S(x, g). 
(3) S(ax, ,3) = aS(x, )for all a, dER. 
(4) S(x, ax) = (-1)tS(ax, x) where x E C0 and x e Cn-i+l . 
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(5) There exists a pair of dual bases xl, , Xr for Ci and xl, ., r for C.- 
such that S(xi, Tj) = bij for i, j = 1, ,r. 

It follows from (4) that the intersection of a cycle with a bounding cycle is 
zero, and hence the intersection S gives rise to an intersection of homology classes. 

We now abstract the algebraic properties of this setup which are used in the 
following sections. Let R be a Noetherian ring with unit element 1. We assume 
that there is given a fixed isomorphism of R onto a ring R. In the application we 
will have R = R, and the relation a = a will be valid. 

DEFINITION. An R-module M is an additive abelian group with operators R 
such that: 
(1) (a + f)x = ax + #x for all a, AER,xEM 
(2) 1 x = x for all x eM. 

Since R is a Noetherian ring it follows that if Mll is finitely generated, then 
every submodule of M is finitely generated. 

DEFINITION. Let M1 and M3 be R-modules and let M2 be an R-module. Then 
P is a pairing of M1 and M2 to MN if P assigns to every pair (X1 X X2)X X1 E NM1, 
X2 E M2, an element P(x1 , X2) ME N3 such that 
(1) P(x1 + yl , x2) = P(x1 , x2) + P(yl , x2) for all xi , yl E M1, X2 E M2 
(2) P(x1 , x2 + Y2) = P(x1 , x2) + P(x1 , Y2) for all xi E M1, X2, Y2 E M2 
(3) P(ax, , j~x2) = afP(xi, x2) for all a, : ER, xi E M, XX2 E M2 . 

DEFINITION. Let P be a pairing of M1 and M2 to MN3. The annihilator A1 of 
M2 is the submodule of all elements xi EM 1 for which P(xi, x2) = 0 for all X2 E M2 . 
Similarly the annihilator A2 of Ml is the submodule of all elements X2 E M2 for 
which P(xl, x2) = 0 for all x e M1 . 

DEFINITION. A pairing P of M1 and M2 to M3 is primitive if the annihilators of 
M1 and M2 are both zero. 

DEFINITION. Let M1 be a finitely generated free R-module and let M2 be a 
finitely generated free R-module. Let P be a pairing of M1 and M2 to R. Then 
bases xi, .*. , X? of M1 and Yi, Y, Yr of M2 are called dual bases when P(xi, yj) = 
bij for i, j = 1, * * , r. 

Note that if there exists a pair of dual bases, then the pairing is primitive. 
DEFINITION. An n-dimensional chain complex with coefficients in R is a system 

of finitely generated free R-modules and operator homomorphisms 

CM( < Co(R) ... C1((R) 

such that 9i1 i9 = 0 for i = 1, , in. The submodule of cycles Zj(R) is the 
kernel of at, i = 1, , n. Zo(R) = Co(R). The submodule of bounding cycles 
Bi(R) is the image of diTl, i = 0. , n- 1. Bn(R) = 0. 

DEFINITION. Let I Ci(R) } and { C0.-(R) } be n-dimensional chain complexes 
with coefficients in R and I respectively. Then {CJ} and { n-i} are said to be 
dual chain complexes with pairing S if: 
(1) S is a pairing of Ci and CO_ to R, for i = 0. , n. 
(2) S(x, 0x) = (-1)tS(Ox, x), for all x E C1 , 1 E On-i+l E 
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(3) There exists a pair of dual bases for Ci and C7_i for i = 0***, n. 
Note that the chain modules introduced earlier form dual chain complexes 

with the intersection pairing S. For another example, take Ci to be chain modules 
from some geometric complex and take Cni to be the i-dimensional cochains. 
Then the Kronecker product forms a suitable pairing. 

2. THEOREM 2.1. Let P be a pairing of Ml and M2 to M3 . Let Al be the annihilator 
of M2 and let A2 be the annihilator of M1. Then P induces a natural primitive 
pairing P,7 of M1/A1 and A12/A2 to M3 . 

PROOF. Let m7i:Mi -> Mi/Ai, i = 1, 2, be the natural homomorphisms. Define 
PJ101(X1), 42(X2)) = P(Xl , X2) E1 M3 for all xi EM 1, X2 E M2 . This P. is well de- 
fined because, for i = 1, 2: 

i(xi) = ni(yi) = xi - yi E Ai 

z= P(Xl , X2) - P(Y1, Y2) = P(X1, X2) - P(X1, Y2) + P(X1, Y2) - P(Y1, Y2) 

= P(x1 , x2 - y2) - P(Xl - ly, Y2) = 0 

-> P(Xi , X2) = P(y1, 112). 

Trivially P, is a pairing of M1/Al and M2/A2 to M3 . To show that P, is primitive: 
(1) P,%(71(xl), 712(x2)) = 0 for all 712(x2) Ie M2/A2 

P P(x1, x2) = 0 for allX2 E M2 ==xl EA, == 7 1(xi) = 0. 
(2) Similarly P(ni(x1), 772(X2)) = 0 for all i7i(xi) EM11A 1 

= P(x, x2) = O for all x eM1 =?> X2 EA2 ==2(x2) = O. 
We now assume that R is a unique factorization domain with R = P and 

such that the identity a = a holds. Let gCi(R)} and ICn-i(R) } be dual chain 
complexes with pairing S. Let r be a prime element of R. Then in a natural way 
we have dual chain complexes {Ci(R/wr')} and {Cn-i(R/#m)} with a pairing 
which we also call S. It is convenient to regard 0 as a prime so that Rrm' may be 
the same as R. 

If we restrict S to be a pairing of the cycles Zi(R/irm) and Zn ~(R/m) then 
this pairing is in general no longer primitive. The object of the remainder of 
this section is to determine the annihilating submodule of the cycles. The basic 
tool for this investigation is the consideration of chains with coefficients in 
local rings. 

Let ir be a prime element of R and let r7:R -* R/7rm, m > 0, be the natural 
homomorphism. We contend that ?(r) generates a prime ideal in R/wm. Suppose 
n(a) 7() E I1(r)(R/rm) for some a, : E R. Then 

n (a) * n( = (7r) -n(-y) for some y e R 

a oa3 = 7ry + irmb for some y, 5 E R 

m 7r divides a or r divides A 

m ?1(a) e n(r)(R/rm) or l(CU) E n(7r)(R/7rm) 
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Therefore tn(7r) generates a prime ideal. Let (R/rm),(,) denote the local ring at 
this prime ideal. The ring (R/7rm),() is the ring of quotients of elements of R/rm 
where only elements not belonging to the ideal q(tr)(R/r') are allowed as de- 
nominators. In particular the local ring R, is just the subring of the quotient 
field of R which consists of those elements that can be written with denominators 
prime to 7r. In particular Ro is the quotient field of R. We always regard R/ir' 
as a subring of (R/i7r),n() . 

LEMMA 2.2. There is a natural isomorphism between the rings (R/7rm),n,7) and 
Rf/trmR, . 

PROOF. We define a mapping(: Rf, -* (Rf/7rm),7() by setting sp(a/l) = n(a)/n(#), 
a, A e R with d prime to 7r. Note that 77(a)/tj(3) is admissible as an element of 
(R/irm),7(,) because if 77(3) = 77(7r)7(,y) for some y e R, then : = wry + irma for 
some oy, 3 e R, which contradicts the assumption that d is prime to 7r. It is easily 
verified that the mapping so is a homomorphism of R., onto (R/7rm),7(,). To deter- 
mine the kernel of so let a/: e R.,f. Then 

p(al) = 77(a)/3(O) = 0 

7 t(a) = 0 

a = 7rmy for some y E R 

a L! e vmRft 

4 e a/: e 7rmR, because : is a unit in R,. 

Hence the kernel of so is 7rmRi . 
The ideals in Rx have a particularly simple structure. Any element in R which 

is prime to 7r is a unit in R, . Hence for a/j e Rt, a/fl belongs to a given ideal if 
and only if a belongs to the ideal. Let 7rry = a where y is prime to 7r, r > 0. 
Then a belongs to the given ideal if and only if 7rr belongs to the ideal. Hence 
the only ideals in Rf, are the principal ideals generated by some power of 7r. 

We return now to our dual chain complexes {CI(R) } and { Cn-i(R) } with the 
pairing S. These chain complexes may be extended to a pairing (which we also 
call S) of Ci(R,) and 0,-i(Rfr) to R,. The dual bases xi, , Xr of CQ(R) and 

x*,r of Cn_?(R) are also dual bases for CQ(Rr) and Cn-i(Rf) respectively. 
Since Rf, is a principal ideal ring whose only ideals are 7rfR, e- 0 1, 2, 

there exists a basis yi , -*, yr of Ci(Rf) such that 7r.eyl. 7* erYr generate 
Bi(Rf), the submodule of bounding cycles. Expressing the Yi, * , Yr in terms 
of the xi, , Xr and conversely, we have 

Yi = EpcivXv Xi = J:iVYV 

1:,aiP:j = bij = 1yaiji,. 

Let yi = EYj^I.v . Then 1, Pr is also a basis for Cn ~(ft;) because 

Xi= Ev,Ap'i#JpIXA = Pi8P. 
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Also P(y, ,j) = P(EaX , , ,8>jx^) = ZaCti43rj = bij so that yl , , Yr 
and Pi, -.. , Yr are dual bases. 

Now considering the chain complexes with coefficients in RT/IrtmhR and R.,/rmR-r 
respectively, or, what is the same thing, with coefficients in (Rbrm),7() and 
(R/-m),(;) , we have dual bases Yi, , Yr and Pi, , Yr of Cj((R/7rm),j(,r)) and 
Cn-i((R/#m)X )) respectively such that 77(rel)y * -q(ere)Yr generate 
Bj((R/rm),7()), 0 < e, _ m - 1. (We could equally well have chosen the dual 
bases so that -(fel)gl *-- 7, r)r generate Bn-j((R/ir`)t( )). 

LEMMA 2.3. The annihilator of the submodule of cycles Zn-i((R/#rm)X,;()) is the 
submodule of bounding cycles Bi((R/7rm),, (,)). Dually the annihilator of Zi((R/7rm) .(7)) 
is fBn-i((R/f m),(ir)). 

PROOF. Let 2 = 1(009)1 + + 77(0r)Pr be any element of Cn-i((R/#m)17(0)) 

Then 

z C- Zn-i((R/,Tm),7 (7r) 

a = 0 

? S(x, a2) = 0 for all x e Cj+j((R/7rm)v(,r)) 

? S(dx, 2) = 0 for all x e Ci+,((R/7rm),7(,) 

z annihilates B&((R/7rm),7(,r)) 

S S(q(7rei)yi, z) = O for i = 1, , r 

? S(0(7re)yi ,72(i)gi) = .7rei"i) = 0 for i = 1, , r 

0 (mod 7rni)fori = 1, r 
is ~~~~~~rn-elg- n-er 

X z is a linear combination of rprw yi, rnryr. 

Therefore Zni((R/f m),7(i)) is generated by 7nell , r. Pr An element 
a = acyi + + ay, e Ci((R/7r'),,(ir)) annihilates Zn.i((R/#m),7(,)) 

X S(a,7 n-eii) = O for i = 1, , r 

'~ Sfcx~y7, _n-e=) = n(a ) = 0 for i = 1, , r 

ai iO (mod 7rei) for i= 1, , r 

? a e Bj((R/rm),7(,r). 

The proof of the dual statement is similar. 
LEMMA 2.4. The annihilator of Zn-i(R/#rm) in Ci(R/7r'") is Bi((R/7rm),7(,r)) n 

Ci(R/7r"). Dually the annihilator of Zi(R/7rm) is 3n-i((R/#m),,(ir)) n On-i(R/m) 
PROOF. If x e Bj((Rb7r")v(or)) n CQ(R/rm) then x annihilates Zn-i((R/#m),,(j)) by 

the preceding lemma, so, trivially, x annihilates Zn-i(R/#m). 
Conversely suppose x e Ci(R/7rm) and x annihilates Z,-j(R/#m). Let z be any 

element of Z,,-i((R/frm),(;r)). Since Cn-i((R/-m),(7r)) is of finite rank, there exists 
an element 77(i) e R/#rm such that 77(A) is not a multiple of 77(#r) and 
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072 ()Zn-i(R/Tr') m 

Then 

S(x, j(A)2) = X (A)S(x, 2) = 0 in R/rm 

=> S(x, 2) = 0 in R/rm because 77(o) is not a multiple of 77('r). 

Hence x annihilates Znfj((R/'f)f(7))), and by the preceding lemma 

x e Bj((R/r),7(,)). 

The proof of the dual statement is essentially the same. 
DEFINITION. A cycle z e Zi(R/rm) is weakly bounding modulo rm if there exists 

a chain x e Ci+i(Rxrm) such that ax = 1(a)z where a e R is prime to 7r. Weakly 
bounding modulo zero is simply called weakly bounding. 

LEMMA 2.5. A cycle z e Zi(R/rm) is weakly bounding modulo rm if and only if 
z e Bi((R/irm'X(r)) n QR/r'). 

PROOF. If ax = 77(a)z, with a e R prime to 'r, then d(7i(a)-'x) = z with coeffi- 
cients in (R/irn),7(r) , so that z e Bj((R/'7rm),,(7r)) n Ci(R/rm). 

Conversely given z e B((R/frm),(,r)) n Ci(R/frm), there exists a chain 
x e Cj+l((R/7rm(,(,r)) such that ax = z. But for any x e Cij+((R/frm),,(r)) there exists 
an a( e R prime to 'r such that 77(a)x e Cj+j(R/frm). Hence a(77(a)x) = 771(a)z is the 
desired relation. 

We are now in a position to state and prove the main theorem of this section. 
We have assumed that R is a Noetherian unique factorization domain with an 
automorphism a --> a such that & = a. We have a prime element 7r in R(7r = 0 
is allowed) and dual chain complexes { Ci(R) } and { en_?(R) } with pairing S. 

DUALITY THEOREM 2.6. The pairing S defines a primitive pairing of 
Zj(R/7rm)/Wj(R/7rm) and Znj(R//rm)/Wn-i(R/frm) to R/wrm, where Zi(R/7rm) and 
Znj(R/frm) are the cycles modulo irm and #rm respectively, and Wj(Rftrm) and 
Wfn_(R/irm) are the weakly bounding cycles modulo irm and frm respectively. 

PROOF. It remains only to observe that since Wi(Rfrm) is the annihilator of 
Zi(R/frm) and Wn-i(R/'rm) is the annihilator of Znj(R/#m), we may apply 
Theorem 2.1. 

3. { C (R) } and { Cni(R)} are dual chain complexes with pairing S. Unless 
indicated otherwise, all coefficients are in R. Let Wsi- and Wni be the modules 
of weakly bounding cycles. We now introduce the notion of linking V, which is 
a pairing of Wi-1 and Wn-i to Ro/R, where Ro is the quotient field of R. Let 
w e W,-i and i e WJn_ and choose chains x and I such that ax = aw and 
ax = Av with a, $ 0. Observe first of all that 

- S(x1 w) = - S(x, a) = (-1) d S(dx, x) = (-1) - S(w, x). a ' a af30 

This shows that (l/a)S(x, i) is independent of the choice of x and 
(- 1)t(1/)S(w, x) is independent of the choice of x. Define 
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V(w, 'ii) = 1S(xA') ( 1) - S(w, ) eRo/R. a 

This V is a pairing of Wi-1 and Wni to Ro/R because: 

V(w1 + W2, Wi) = (-1) d S(W1 + W2, 

(1) 
- (-1)i A-[S(wiX + S(Wi,)] = V(w1 I) + V(w2,i ) 

V(w, W1 + W2) = -S(X, W1 + W2) = - [S(x, W1) + S(x, W2)] 
(2) a a 

= V(w, W1) + V(w, W2) 

(3) V(-yw, bb) = - S(yx, R) = - ybS(x, w) = ybV(w, iw). 

We take the values of V modulo R so that the bounding cycles will be an- 
nihilators and hence V will be a linking of homology classes. The purpose of the 
remainder of this section is to characterize the complete annihilators of Wi-1 and 
Wn-i . 

THEOREM 3.1. Let Di-, be the submodule of Wi-1 which is the annihilator of 
W.ni . Then w e Di-, if and only if w is weakly bounding modulo rm for all m > 0 
and all primes 7r. Dually the annihilator Dn-i of Wi-1 consists of those cycles in 
Wni which are weakly bounding modulo #m for all m > 0 and all primes ir. 

PROOF. Suppose w o Di,1 . Then there exists a w- E Wn- such that V(w, iw) 4 0 
(mod R). Let x be a chain such that d& = a&i with a $ 0. Then 

V(w, i) = (-1) S(w, x) 4 O (mod R) 

S(w, x) # O (mod a) 
= S(w, x) 4 0 (mod 7r') where fr is some prime divisor of a, and a is divisible 

by #rm but not by 7m+1 
= w is not weakly bounding modulo irm because x is a cycle modulo #rm with a 

non-trivial intersection with w modulo irm. 
Conversely suppose w is not weakly bounding modulo 'r' for some prime 7r 

and some m > 0. Then by the duality theorem 2.6 there exists a chain y E On-i+ 

such that d 0 (mod #rm) and S(w, y) 4 0 (mod 7rm). But 

a -0 (mod 'i--) => = Tmx for some x E Cn-i 

Hence I is a weakly bounding cycle such that 

V(w, x) = (-1)t(lbrm)S(w, y) 4 0 (mod R). 

DUALITY THEOREM 3.2. The pairing V defines a primitive pairing of Wi~l/Di-1 
and Wn-i/Dn-i to Ro/R, where Di-, and Dn-i are the submodules of JT-& and 
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W.-i respectively consisting of all cycles which are weakly bounding modulo 7r" for 
all m > 0 and all primes 1r. 

PROOF. Since Di-, and n_ i are the annihilators of Wni and Wi 1 respectively, 
we need only apply Theorem 2.1. 

For the next section, we need another characterization of the annihilators 
Di-, and &i . 

THEOREM 3.3. The annihilator Di-, of Wni is the submodule of all elements 
w e Wi-1 for which there exist a finite number of elements al, ar, e R, with 
greatest common divisor 1, such that .lw, , oarw are all bounding cycles. 

PROOF. Suppose we have l, a, cur relatively prime, with alw, , arw all 
bounding cycles. Then for any x en 

V(alw, x)_ _V(arW, x)- (mod R) 

alV(w, x) -arV(w, x) 0 (mod R) 

V(w, x) 0 (mod R) 
w EDi-, . 

Suppose conversely that w e Di-, . Choose a chain x such that ax = aw with 
a 5 0. Let ir be any prime divisor of a. By Theorem 3.1 we know that w is 
weakly bounding modulo rm for all m > 0. Explicitly we have xm e Ci, 
ym e Ci-& , am e R, such that dxm = amw + ym with ym = 0 (mod 7r') and cam 
prime to ir for m > 0. The chain ym has a finite number of coefficients, say 

, ***X mS. Choose k such that oil is divisible by irk1 but not by irk. For 
m > k choose 7m and 6im relatively prime such that ymi1ll + b~mfml = 0. We know 
that 7rm divides ,mi, SO -xm-k+1 divides 7m, and hence 6,m is prime to 7r. 

a(dmXl + bmxm) = (7mcal + 6m.am)w + (7rnYl + 6,mYm), in ? k. 

Since ir divides ym but not bm0!m, we conclude that (7mcl + amCxm) is prime to 7r. 
Also (7ymyi + ymm) =0 (mod 7rm-k+). Hence we have a new sequence of equali- 
ties of the form dax = acw + ym with y$= 0 mod -xm k+l) and a' prime to r for 
m > k. 

Now however the first coefficients in the chains ym are all zero. By repeating 
this process on the new equalities for the second coefficients, and so on, we ob- 
tain finally a sequence of equalities with all the coefficients of the y's zero. The 
first of these equalities is of the form dax = alw where al is prime to ir. 

Similarly for every prime divisor ir, of a, we can find an xj e Ci such that 
dx, = ajw with ac prime to irj. Hence we have elements a, ac e R with greatest 
common divisor 1 and aw, ajw are all bounding cycles. 

There is of course a dual theorem for &-i . 

4. Let M be a finitely generated R-module. Then 11 has a presentation with a 
finite number of generators x1, , xn and a finite number of defining relations 
ai1xl + + aixn = 0 i = 1, ,m. Strictly speaking M is a homomorphic 
image of the free R-module generated by xi , , x,, where the kernel of the 
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homomorphism is the submodule generated by ail x1 + ... + aiX i = 1, 
* * , m. We write the relations in matrix form as follows: 

/ a i an \ 

aml /mn 

Let As(A), i = 0, * , n -1, be the principal ideal generated by the greatest 
common divisor of the minors of A of order n - i. We agree to adjoin rows of 
zeros to A if necessary for the definition of Ai(A) to make sense. For i ? n we 
define Ai(A) = R. It can be shown that if we take any other finite set of gener- 
ators for M and if we let B be any matrix of defining relations for M, then 
Ai(A) = Ai(B) for all i ? 0. Accordingly we define Ai(M) = hi(A) for i > 0. 
The ideals Ai(M) are invariants of the module M and we call Ai(M) the determi- 
nant divisor of M of deficiency i. 

LEMMA 4.1. Let M be an R-module with generators x1, , xn. Let N be the suib- 
module generated by X2, a , x* n . Then Ai(N) divides Ai(M). 

PROOF: Let 

all ain\ 
A =| . . . } 

ami *amn/ 

be a matrix of defining relations for M. Let B be any r X r submatrix of A. In 
order to prove the lemma, it suffices to prove that An-r(N) divides I B B R. The 
matrix B involves r rows of A which we call pi , * *, Pr. We may assume that 
these are the first r rows of A. Let the columns in B be those corresponding to 
the generators xil, Xi , . We adopt the notation 

P1 
B I = . ; 

Pr 1 

the subscripts indicating which columns of the matrix 

Pr 

are to be used in forming the determinant. Write ail =ba'i, i = 1, , r, 
where 6 is the greatest common divisor of acll, , arl . Then alilai- aial = 0. 
Form ( ail P2 - a21P1 

all Pr arl pl 

which is a matrix of relations involving only x2, * r , Xr. Let Bj = 

I B' l i ...7 . Each Bj is a minor of a relation matrix for N, so An-r(N) 
divides BjR. 
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avli 1Bi + (-l)r-la>li, B, 

Pi Pi 

= P211 -a2lP1 = all P2 = (al)rl B j. 

all Pr - arl Pi ti ...r all Pr i- ..ir 

Therefore An-r(N) divides (,Xl)r-1I B R. 
Similarly Andr(N) divides (aiJ)r-1 B I R, for j = 1, * , r. (The same argu- 

ment applies by renumbering the rows of A.) Since a' ar , are relatively 
prime, An-r(N) divides IB . 

THEOREM 4.2. Let M be a finitely generated R-module and let N be a submodule 
of M. Then Ai(N) divides A/(M) for all i ? 0. 

PROOF. Let x1, ' * X, n be generators of M and let yi X * ym be generators 
of N. Let Nj be the submodule generated by Xj+, X * * , Xn, Yl, 

''' , Yi n, for 
j=0, Xn-1.ThenN = NncNn-l C cNo = Misachain of sub- 
modules with the property that Nj+l is obtained from Nj by dropping one of the 
generators of Nj. By the preceding lemma Ai(Nj+1) divides Ai(Nj). Therefore 
Ai(N) divides Ai(M). 

Let M be a finitely generated R-module. We define the dual M* of M to be the 
R-module of all homomorphisms x: M -* Ro/R. Addition and multiplication by 
an element of R are defined as usual in M, namely (xi + x2) (x) = xi(x) + X2(X) 
and (ax)(x) = ax(x). We wish to study the determinant divisors of M*. However 
in general M* need be finitely generated only when every element of M is of 
finite order, that is, for every x E M, there exists an a e R, a 5 0, with ax = 0. 
For example take R = integers and M = infinite cyclic group. Then M* is 
isomorphic with the rationals mod 1 as an R-module. 

LEMMA 4.3. In order that every element of M be of finite order it is necessary and 
sufficient that Ao(M) 5 0. 

PROOF. Suppose first that M is generated by xl, n, x, and that aixi = 0 
with ai = 0 for i = 1, * , n. Let A be the diagonal matrix with at as the i 
diagonal entry. Then A is an n X n submatrix of some relation matrix and 
A I 0. 
Suppose conversely that Ao(M) 5? 0. Then if M is generated by n of its elements 

x, ... , x,, there must be an n X n submatrix 

an ... aI 

\anl ... nn / 
of the corresponding relation matrix such that i A ] 5 0. By multiplying the 
ith row by the cofactor of aij and adding, we deduce that i A xj = 0. Hence 
every element of M is of finite order. 

Assume that every element of M has finite order, i.e. that Ao(M) 5 0. In 
order to find generators and relations for M*, we study first the case where M 
has a square matrix of defining relations 
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/ll ain\ 
A= 

Otnl atnn/ 

with generators x1, * , xn . Let 

lAl, Ain\ 

A- = ; A_'A = AA-' = identity matrix. 
\Anl *Annl 

Define a homomorphism x' from the free module {x1, xn} to Ro by 
xi(xj) = Aj I i, j = 1, , n. Then xi gives rise to a homomorphism xi of M 
into Ro/R since 

Xi(aklXl + * + aknXn) = aklAli + * + aknAni = 8ki e R. 

Let x be any element of M*. Then x is represented by a homomorphism 
x' from the free module generated by xi, * * *, xn into the module Ro . Let x (a ixi 
+ +axinn) =f i eR, i = 1, * * *, n. Contention: x = fsixi + + fnxn . For 

x'(xj) = x'((A jiall + * + A inanl)Xl) + * * + x'((A uialn + * + A jnann)xn) 

= A jlx' (anlxi + * + alnxn) + * + AinX'(anlXl + *. + annXn) 

= Aj3lol + * + Ann 

= (fAlx + * + fOnXn)(xi). 

Therefore X' = I1xi + * + InXn. 

This shows that Xi, , Xn generate M*. Certainly alixi + + aniXn 0, 
i = 1, * **, n, are relations among xi, , Xn because 

ajixi(xi) + . + aniXn(Xi) = aliAil + * * * + aniAin = bij E R. 

Contention: Any relation is a consequence of the relations alix1 + + 
aniXn = 0, i = 1, *., n. LetliXl + *0 + jnXn = 0 be any relation. Let 

yi = %lAil + + 3nAin = OlXl(xi) + + InXn(Xi) e R. Then 

'yi(aiXli + * + anlXn) + * + Yn(alnXl + * * * + annXn) 

= (jlAl+ + .+ nAln)(ailxi + .. + anlXn) + * 

+ (flAnl + * . + IOnAnn)(alnXl + + annXn) 

= Z>n L=l (A ia~i + * + Anvapyn)fYXi 

=OiXi + + /nXn 

which shows that oixi + *. + InXn = 0 is a consequence of the relations 
aliX1 + * * * aniXn = O, i = 1, * * n. 

Summarizing. If M has generators xi, *, xn with a square non-singular 
matrix A = (asi) of defining relations, then M* has generators Xi, *, Xn with 
matrix of defining relations tA = transpose of A, where xi(xj) = A ' (cofactor 
of a i ). 
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THEOREM 4.4. Let M be a finitely generated R-module in which every element 
has finite order. Then Ai(M) = Ai(M*) 

PROOF. Let A be a matrix of defining relations. Let B be a square submatrix 
of A of deficiency zero with I B s - 0. Let MB be the R-module with the matrix 
B of defining relations. The module M* is naturally a submodule of MB, for M* 
consists of those elements of M* which happen to be zero on all relations of A. 
Therefore Ai(M*) divides Ai(M*) = Ai(MB). However Ai(M) is generated by the 
greatest common divisor of the generators of Ai(MB) as B ranges over the square 
non-singular submatrices of A of deficiency zero. (This is so because any non- 
zero j X j minor of A is also a minor of some non-singular matrix B.) Therefore 
Ai(M*) divides As(M) for all i ? 0. Since Ao(M) - 0 it follows from Lemma 4.3 
that every element of M* is of finite order; replacing M by M*, Ai(M**) divides 
Ai(M*) . 

The elements of M may be regarded in a natural way as homomorphisms of 
M* - Ro/R. Thus M is naturally a submodule of M** and As(M) divides 
Ai(M**). Combining these divisibility relations, we have As(M) = Ai(M*). 

THEOREM 4.5. Let M1 be an R-module and let M2 be an R-module. Let P be a 
primitive pairing of M1 and M2 to Ro/R. Then Ai(M1) = Ai(M2). 

PROOF. Let M* be the R-module of all conjugate homomorphisms x:M 
Ro/R. By a conjugate homomorphism is meant an additive homomorphism x 
satisfying x(&x2) = ax(x2) for all a e R. X2 E M2. The elements of M1 may be 
regarded as belonging to M2* by identifying x1 e M1 with the conjugate homo- 
morphism x2 -* P(x1 , x2). This identification is one to one because P is primitive. 
It is easily checked that M is identified with a submodule of M* . Hence Ai(M1) 
divides i(Mk*). 

Now if x is any element of M2*, define X: M2 Ro/R by X(X2) = x(X2). Then 
x is an ordinary homomorphism: 

X(aX2) = R(ZX2) = &R(X2) = aX(X2)- 

Let xi, , n be generators of MR2 with relation matrix A. Then xi, X. Xn 
will be generators of M* with relation matrix A. Hence i(M!*) = Ai\(M*) and 
we have proved that Ai(M*) = Ai(M2) is divisible by Ai(M1). 

Now define a new pairing P of M2 and M1 to Ro/R by P(x2, X1) = P(xl, x2), 
where we now regard M2 as an R-module and M1 as an R-module. Then by the 
preceding argument Ai(M2) divides zAi(M1). 

COROLLARY 4.6. Let J1-1 and Wi be the modules of weakly bounding cycles 
of a pair of dual chain complexes and let Di-1 and Dni be the submodules of cycles 
which are weakly bounding modulo 7rm for all primes 7r and all m > 0. Then 

j(Wi_l/Di_l) = A j(Wn-i/Dn-i) 
THEOREM 4.7. Let M be a finitely generated R-module. Let D be the submodule of 

M consisting of all elements x E M for which there exist a finite number of relatively 
prime elements a1, , aE E R such that aix = **= X = 0. Then Ai(M) = 

zi(M/D). 
PROOF. Let A be a matrix of defining relations for M. A matrix for M/D can 
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be obtained by adjoining a finite number of rows pi, * * , p,, to A. Each pi cor- 
responds to an element of D. Hence for each pi, we have relatively prime ele- 
ments ail, ... , ai E R such that aijip = 0 are consequences of the relations 
in A. We adjoin all relations aijpi to A, obtaining a matrix B of defining relations 
for M. Then 

is a matrix of defining relations for M/D. However Ai(B) = /i(C) because any 
minor of C involving some of the rows P1, . *, pn can be expressed as the greatest 
common divisor of minors of B involving some of the rows aijpi. 

COROLLARY 4.8. Let Wi-1 and Wfni be the modules of weakly bounding cycles of a 
pair of dual chain complexes and let Bi-1 and Pn-i be the submodules of bounding 
cycles. Then Aj(Wi_1/Bi_1) = Aj(Wn-i/Bn-i)- 

PROOF. By Theorem 3.3 the submodules Di_1/Bi-1 and &dni/ of Wi_1/Bi-1 
and Wn-i/&-i respectively, satisfy the hypothesis of Theorem 4.7. Hence 
Aj(Wi_1/Bil) = Aj(Wn-i/Dn-i) and Aj(Wil/Bi-l) = AA(n-i/Dn-i) 

THEOREM 4.9. Let M be a finitely generated R-module and let N be a submodule 
of M. Then zi+j(M) divides Ai(N) . Aj(M/N) for all i, j > 0. 

PROOF. Let x1, * , Xn be generators of N and let x1, * * *, yn, Y, , ym be 
generators of M. There exists a matrix of defining relations for M of the form 

/A 
D= 

MB C 

where A is a matrix of defining relations for N, and 0 represents a zero matrix of 
appropriate size. Then C is a matrix of defining relations for M/N. The product 
of any i X i minor of A and any j X j minor of C may be realized as an 
(i + j) X (i + j) minor of D. Hence Ai+j(D) divides Ai(A) Aj(C). 

DEFINITION. The torsion submodule of a module M is the submodule consisting 
of the elements of finite order. 

LEMMA 4.10. If r is the maximum number of linearly independent elements in a 
finitely generated module M, and if T is the torsion submodule of M then 

Ai(M) = O for i < r, 

= /Air(T) for i ? r. 

PROOF. Let Fo denote a submodule of M1 generated by a set of r linearly inde- 
pendent elements. Let xi , * * , x, generate M/Fo . There exist non-zero elements 
al... , a. of R such that axix E Fo, i = 1, ... , n. If M is torsion-free, the 
mapping x -> ala2 ... arX imbeds 31 isomorphically in the free module Fo; 
hence M c F1, where F1 is a free module of rank r. By Theorem 4.2, Ar(Ml) 
divides Ar(Fl) = R. Thus A,(M) = R for a torsion-free module M of rank r. 
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Now let M be an arbitrary finitely generated module and Fo as above. Con- 
sider the submodule M' generated by Fo and T. By direct calculation 

Ai(M') = 0 for i < r, 

= Ai-r(T) for i ? r. 

Since M/T is torsion-free, zr(M/T) = R. By Theorem 4.9, zAi(M) divides 
1i-r(T)Ar(M/T) = Ai-r(T) if i ? r. But, by Theorem 4.2, Ai(M') divides 
Aq(M), so that A/(M) = Ai-,(T). If i < r then A/(M) = 0 because, by Theorem 
4.2, Ai(M') divides Ai(M). 

5. Let 9N be a combinatorial 3-manifold with boundary A, where e3 is the union 
of , disjoint tori Q31, *.. , A,. Such a manifold may arise for example from a 
tame link of , components in a closed manifold by removing a suitably small 
neighborhood of the link. Let i*: H1(0) -> H1(9U) be the injection homomorphism 
of the homology groups with integer coefficients. It will be convenient to think of 
these groups as written multiplicatively. 

THEOREM 5.1. The rank of i*Hi(23 ) is non-zero for i = 1, **, , 

PROOF. Suppose , = 1 and assume the rank of i*Hi(50) is zero. Then i*Hi(23) 
consists entirely of weakly bounding cycles in H1(9). Hence S(i*a, x) = 0 for 
all a e H1(23), x e H2(9)1, 23), where e is the ordinary intersection. This inter- 
section has the property (see [5]), S(i*a, x) = ?i'(a, ax), where C' is the inter- 
section in d3. Hence 2'(a, ax) = 0 for all a e H1(f), x e H2(9J1, Q3). Since A' is 
primitive, H1(e) being free abelian, we must have ax = 0. In the exact sequence 

a~~~~~~~~~~~ 
H2(9)1, '-)* H1(9)1) the image of a is 0, so the kernel of i* is 0. 
But this is a contradiction of the assumption that i*Hi(23) has only torsion ele- 
ments. 

For the case 1i > 1, fill in 232, * * , 3 in some way to obtain a manifold 9' 
with boundary t . Then the injection homomorphisms i* :H1(231) -* H1(9') and 
i*: Hi (231) - Hi(I) satisfy the relation 

kernel i* D kernel i* 

Therefore rank i*Hi(31) < rank i*Hi(31) and 0 < rank i*Hi(23i). 
Similarly 0 < rank i*Hi(23) for i = 1, * , /. 

Let At be the maximal covering complex of 9Y which has a free abelian group 
of covering transformations. The subgroup of 'ri(9) corresponding to 911 is the 
subgroup generated by the elements of finite order modulo commutators. The 
group G of covering transformations is isomorphic with the 1-dimensional 
Betti group of P. Let R be the group ring of G with integer coefficients. The 
automorphism R -> R = R is defined as the unique extension of Py -Ha = ly-1 
for all -y e G. The chains of M as R-modules and the relative chains modulo t 
as R-modules form dual chain complexes with the intersection pairing S as de- 
fined in Section 1. As usual we have an exact sequence of homology modules 
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Hi (V; R) '* )Hi(1(t; R) j* )Hi (VI Vt; R) )Ho (V; R). 

DEFINITION. An ideal a in R is called symmetric if a = a. An element of R is 
called symmetric if it generates a symmetric ideal. 

LEMMA 5.2. There is an element a e R, a :X 0, such that a has only symmetric 
prime factors and a Hj(5B; R) = 0 for i = 1, 0. 

PROOF. Each surface 3, is covered by a collection of connected surfaces OB'k in 
91. Each VBk is either a plane or a cylinder. It is not possible for any Vlk to be 
a torus since in that event i*Hi(e%) would have to have rank zero. 

Hj(V; R) is generated by the cycles in various Hj(VBk ; R). We are to find 
an element of R which annihilates all these cycles simultaneously. One of the two 
generators of H1(e%) must represent a non-torsion element a, E H1(i)). The 
covering transformation -y, e G corresponding to a, will slide the non-trivial cycle 
on OBlk along the cylinder or plane and hence 1 - -y annihilates Hi(5B; R). 
Therefore the element a = JI~=A (1 - -y) annihilates Hi(5 ; R). Clearly the 
prime factors (1 - -y,) of a are all symmetric. 

DEFINITION. A torsion module is a module of weakly bounding cycles modulo 
bounding cycles. The torsion submodule of a homology module is indicated by 
replacing the H with a T. 

LEMMA 5.3. The kernel of 0: T1(9, (9 ; R) -> To(V; R) is j*TT(91; R). 
PROOF. 

H1(V; R) L* Hi(9; R) X H1(Ml, V; R) L Ho(V; R). 

By exactness j* T,(91; R) is contained in the kernel of 0. Let x e T1(91, At; R) 
with ox = 0. Then there exists a y e Hi(91; R) such that j*y = x. Let f e R such 
that ox = 0, i # 0. Then j*Oy = 0. Hence there exists a z e Hi(V; R) such 
that i*z = fy. By the previous lemma there exists an a e R, a X 0 such that 
az = 0. Therefore afly = 0 =m> y e T,(91; R) =X x e j*T,(91; R). 

LEMMA 5.4. If OR divides Ao(To(V; R)), then f is symmetric. 
PROOF. The element a of Lemma 5.2 annihilates To(V; R), and every divisor 

of a is symmetric. Hence, for a set of generators xi, , x,, of To(9$; R), we 
have relations ax, = * = ax,, = 0. The determinant from these rows of a 
relation matrix is a'. Therefore Ao(To(V; R)) divides a'R, so any divisor of 
Ao(To(V; R)) is a divisor of anR and hence symmetric. 

THEOREM 5.5. The ideals Aj(Ti(9k; R)) are symmetric for i = 0, 1, 2 
PROOF. By Lemma 5.4 all elements dividing Ao(To(V; R)) are symmetric. By 

Lemma 5.3 T1(91, t; R)/j* T(91; R) is isomorphic with a submodule of 
To(V; R). Hence all elements dividing Ao(Tj(9l, I; R)/j*Tj(91; R)) - a 
are symmetric. By Theorem 4.9, Aj(T1(9)j, V; R)) divides at Ai(j*T1(91; R)). 
By Corollary 4.8, Aj(T1(9+1, 3; R)) = Aj(Ti(91; R)). Since j*Tj(91; R) is a 
homomorphic image of T1(9+; R), A&(j*Tj(91; R))divides Aj(Ti(9)1IF; R)) which 
in turn divides a Ai(j*TTi(9;; R)). Let ir be a prime divisor of Ai(j*TT(91; R)). 
Then either ir divides a in which case ir is symmetric, or ir and Tr must divide 
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Ai (j* Tl(9Y+; R)) to exactly the same power. Hence Ai(i* Ti(9I+; R)) is symmetric. 
It follows that Ai(Ti(9t; R)) is symmetric since it differs from Ai(j*Ti(9t; R)) 
at most by symmetric prime factors. 

COROLLARY 5.6. The ideals Ai(H1(9Jt; R)) are symmetric for i = 0, 1, 2, 
PROOF. Theorem 5.5 and Lemma 4.10. 
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