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TOPOLOGICAL QUANTUM FIELD THEORIES FOR
SURFACES WITH SPIN STRUCTURE

C. BLANCHET AND G. MASBAUM

Introduction. A Topological Quantum Field Theory (TQFT) in dimension 3 is
a functor from a 2 + 1-dimensional cobordism category to a category of modules,
satisfying certain axioms. This terminology was introduced by Atiyah [1-1 follow-
ing Witten’s interpretation [32], in terms of quantum field theory, of the Jones-
polynomial invariant of links in the 3-sphere. The TQFT-axioms imply that the
functor is determined by its values on closed bordisms. These lie in the ground
ring, and are 3-manifold invariants. They are sometimes called quantum invariants.
Existence of quantum invariants was first proven by Reshetikhin and Turaev
[28]. Other constructions of invariants were given, e.g., in [6-1, [16], [17], [18],
[19-1, 1-27], [31]. A construction of TQFT-functors based on the invariants of [6]
was given in [8].

Refined quantum invariants which depend nontrivially on a choice of spin
structure on the manifold were constructed independently by Kirby and Melvin
[16], Turaev [29] (using quantum groups), and the first author [5] (using the
Kauffman bracket [13]). As a special case, these invariants include (a version of)
the well-known classical Rohlin (or #-)-invariant.
A formula of [5], [16], [29] asserts that the sum of the spin invariants of a

closed 3-manifold is equal to the "unspun" invariant. The question arises of how
this generalizes on the level of TQFTs. A partial answer was given already in [8-1,
where it was shown that the Vak-module of a surface is naturally decomposed into
a direct sum of stibmodules associated to spin structures on the surface.
The philosophy of [8] was to start from the 3-manifold invariant, extend it by

a universal construction to a functor on a cobordism category, and then prove
the TQFT-axioms. In the present paper, we use the same philosophy but start
from the spin-refined invariants. The aim is to find out what a "Spin TQFT"
should be, and to understand its relationship with the "unspun" theory.
We consider a series of functors Vk on 2 + 1-dimensional spin cobordism cate-

gories (k" (The indexing by 8k, k > 1, is for notational coherence with [8].)
These functors are constructed from (a suitable renormalization of) the spin in-
variants of [5]. They are quantization functors (in the sense of [8-1), and satisfy
surgery properties and (spin) Kauffman relations at a primitive 16kth root of
unity.

There are three main results. The first is that the Vk-modules associated to
surfaces are free of finite rank (Theorem 7.3). We also give, in the last section,
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230 BLANCHET AND MASBAUM

explicit dimension formulas depending on the genus of the surface and the Arf
invariant of the spin structure.
The second main result concerns the Vk-modules associated to disjoint unions.

It turns out that the functors Vk do not satisfy the usual multiplicativity axiom of
TQFT, but an "extended" tensor product formula (Theorem 13.1). Rather than
viewing this as a flaw of the theory, we consider this as an interesting new feature.

In the language of [8-1, the extended multiplicativity property can be naturally
expressed in terms of bimodules over algebroids (see Remark 14.3). Another way
of describing it is explained in Section 18: One may consider Vk as the even part
of a Z/2-graded functor Vk such that the Vk-module of a disjoint union satisfies
a tensor product formula in a Z/2-graded sense.
The third main result is a complete answer to the question raised above, i.e., a

description of the relationship between the spin functors Vk and the "unspun"
TQFT-functors V8k of [8]. This is given by a transfer map from the unspun theory
to the spin theory (Theorem 15.3). The transfer map identifies the spin submodules
found in [8] with the "zero graded parts" of the Vk-modules. In particular, this
means that the spin theory is strictly richer than the unspun theory.
The proofs of these results are organized as follows. On the one hand, we

establish structural results about the Vk-functors such as the decomposition the-
orem (Theorem 9.2) and the extended multiplicativity formula (Theorem 13.1).
On the other hand, we prove the transfer theorem (Theorem 15.3). Taken together,
these determine the spin theory completely, and allow us to deduce the finiteness
result from the finiteness result for the unspun theory proved in [8].
An important technical ingredient of this paper is the notion of spin structure

complementary to a link or graph (see also Gilmer [9]). In Section 2, we develop
an obstruction theory for such structures, which we also call "singular" spin
structures. As a byproduct, we define in Section 3 the spin Jones-Kauffman skein
module and obtain some information on the forgetful map from the spin skein
module to the usual one.
The main results of this paper were announced in [21].

Note. As is well known, TQFTs are closely related to representations of map-
ping class groups. The transfer theorem may be used to compare the representa-
tions arising from the spin theory with those of the unspun theory. In [22-1, this
is applied to reprove and generalize a result of G. Wright [33] concerning the
Birman-Craggs homomorphisms from the Torelli group to Z/2.

Convention. In this paper, an integer k > 1 will be fixed. Invariants and func-
tors will be generally indexed by 8k. But the subscript will be quite often omitted,
to simplify notation.

1. Basic definitions

Convention. All manifolds are supposed to be compact, smooth, and oriented.
The closed interval [0, 1] is denoted by I.
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Spin structures and w2-structures. The notion of a spin structure on an oriented
manifold M may be defined homotopy-theoretically as a lift of a classifying map
of the stable tangent bundle of M to the classifying space BSpin. In this paper,
we need to distinguish between an actual lift and its homotopy class. This leads
to the definition of w2-structures below (analogous to the definition of p-struc-
tures in [8]). The name "w2-structures" is used because the fibration 7spin: BSpin
BSO is induced by a map BSO K(Z/2, 2) corresponding to the second Stiefel-
Whitney class WE.

Let spin denote the pull-back rin(so) of the universal stable vector bundle so
over BSO. Recall that if M is a manifold (always supposed to be oriented, by the
convention above), there is a "classifying" map f: M - BSO and an orientation-
preserving isomorphism between the stable tangent bundle of M, zM, and f*(so).
Equivalently, there is a bundle morphism F from zM to so, which is an orienta-
tion-preserving linear isomorphism on each fiber.

Definition 1.1. A w2-structure on a manifold M is a bundle morphism from
the stable tangent bundle of M, zu, to spin, which is an orientation-preserving
linear isomorphism on each fiber. A spin structure on M is a homotopy class of
w2-structures.

This definition of spin structure is equivalent to the usual one, given, e.g., in
[26], [15].

If manifolds M, M2 with w2-structures t, t2 are given, we say that an orienta-
tion-preserving diffeomorphism q: M - M2 preserves w2-structures if 2 o do
t, where dq is the (stable) tangent map of

Note. A w2-structure on a manifold M determines a Riemannian metric on
the stable tangent bundle of M, obtained by pulling back the canonical metric
on Yso.

Orientation reversal. Given a w2-structure on a closed manifold E, we define
the orientation reversed w2-structure on -E (the manifold E with reversed orien-
tation) by composing with the automorphism of z which is the orthogonal reflec-
tion in the direction of the first stabilization.

If M has nonempty boundary OM, using the "outward normal vector first"
convention, zou is identified with the restriction of %t to OM. If a w2-structure is
given on M, its restriction to the boundary OM is defined using this identification.
Notice that if the opposite normal vector were used, one would get precisely the
orientation-reversed w2-structure on OM.

If a Wz-structure tr is given on OM, then we call relative spin structure a homo-
topy class (tel. boundary) of w2-structures on M extending

If a relative spin structure on M is given, we define the orientation-reversed
relative spin structure as follows. Pick a unit vector field in the stable tangent
bundle of M extending the outward normal vector field on OM, and consider
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the w2-structure obtained by composing a w2-structure representing the given
relative spin structure with the automorphism of zt which is the orthogonal
reflection in the direction of the chosen vector field. By obstruction theory, such a
vector field exists and is unique up to homotopy (rel. boundary). Therefore the
induced relative spin structure on -M is well defined. It depends only on the
given relative spin structure on M.

Observe that with this definition, orientation reversal commutes with restric-
tion to the boundary.

Links, graphs, and complementary spin structures. We are going to study
"singular" w2- or spin structures on 2- or 3-manifolds; in the definition below (see
also I-9]), the link appears as the singularity of the structure. Here link in a
3-manifold M stands for smoothly embedded circles, or segments ending tranver-
sally in the boundary of M.

Definition 1.2. Let K be a link in a 2- or 3-manifold (possibly with boundary).
A spin structure complementary to K is a spin structure on M K which does
not extend across any component of K.
A w2-structure complementary to K is a w2-structure on M K such that the

induced spin structure is complementary to K.

A w2- or spin structure complementary to a link will sometimes be called a
singular w2- or spin structure.

In the following, we will speak of a banded link in a 3-manifold M for a
finite number of smoothly embedded oriented copies of either S x i--e, e-I, or
I x I-e, Q ending tranversally in the boundary of M. A finite collection of
oriented segments in a surface will also be called a banded link; thus the bound-
ary of a 3-manifold with banded link is a surface with banded link.
The notions of spin and w2-structures complementary to a banded link are

defined in the obvious way.
A banded 3-valent graph in a 3-manifold M is a graph G, contained in an

oriented surface SG c M, such that:
--G meets c3M transversally in the set of vertices of G of degree 1;
--every vertex of G contained in the interior of M is of degree 2 or 3;
--the surface SG is a regular neighborhood of G in SG, and SG c t3M is a

regular neighborhood of G c cOM in SG n tM. (Note that SG c t3M is a banded
link in t3M.)

Colorings. Recall that we have fixed an integer k > 1. A color is an integer
such that 0 < < 4k 2.
A coloring of a banded link is an assignment of a color to each component of

the link. A w2- or spin structure complementary to a colored link is defined to be
one complementary, in the sense previously defined, to the odd-colored sublink.
An admissible coloring of a 3-valent banded graph is an assignment of a color
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to each edge, in such a way that

colors adjacent to a 2-valent vertex are equal;
colors a, b, c adjacent to a 3-valent vertex are subject to the admissibility

condition a b < c < a + b, a + b + c even.

A w2- or spin structure complementary to a colored banded graph is one com-
plementary, in the sense previously defined, to the odd-colored subgraph (which
is in a natural way a banded link).

Glueing and cobordism categories. Let El, E2 be closed surfaces. A cobordism
from E1 to 2 is a triple (M, il, i2) where M is a 3-manifold, and i:
and i2:E2--* t3M are orientation-preserving diffeomorphic embeddings whose
images are disjoint and cover tM. If (M’, i, i) is another cobordism from E2 to
Ea, M and M’ can be glued together to yield a cobordism M" from
Note that the diffeomorphism class (rel. boundary) of M" is determined by the
diffeomorphism classes (rel. boundary) of M and M’. In this way, one obtains a
category, whose objects are closed surfaces, whose morphisms are diffeomorphism
classes (rel. boundary) of 3-dimensional cobordisms, and composition is given by
glueing. Taking diffeomorphism classes ensures that composition is well defined
and associative, and the product manifold, Y. x I (with the obvious inclusions of
E into the boundary), represents the identity morphism of E.

The spin cobordism category. A collection of objects and (co)bordisms "as
above" will be called a cobordism category. We shall only be concerned with
cobordism categories where objects and morphisms are as above, but enriched
with additional structure. For example, we may consider an extension of the
above to the case where the objects (surfaces) are equipped with w2-structures,
and the cobordisms are equipped with relative spin structures. (Here, we demand
that the inclusions ij preserve the w2-structures.) If the surfaces E, E2, E3 are
equipped with w2-structures, and the cobordisms M, M’ are equipped with rela-
tive spin structures, then there is a well-defined relative spin structure on the
composite cobordism M". Hence, one obtains again a category, which might be
called the spin cobordism category.

Convention. When speaking of a cobordism M from E1 to )’2, we shall from
now on, for notational reasons, omit mention of the inclusions ij, and pretend t3M
is equal to E H 2.

p-structures [8]. Let nx: X--. BSO be a map, and let 7x be the pull-back of
the universal bundle 7so to X. A (precise) X-structure on a manifold N is a bundle
morphism from the stable tangent bundle of N to 7x, which is an orientation-
preserving linear isomorphism on each fiber. We have already discussed the case

Recall that by convention, all manifolds are assumed compact and oriented.
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X BSpin, where the corresponding X-structure is called a w2-structure. Con-
sider the space Xpl which is the homotopy fiber of the map BSO K(Z, 4) corre-
sponding to the first Pontryagin class Pl. Then an Xpl-structure is called a P1-
structure. (Another example for X is the classifying space of the trivial group,
where the corresponding structure is a (stable) framing.) The notions of relative
p1-structure, orientation reversal, and p-cobordism category are defined as for
w2-structures.

The cobordism categories (k" Recall that we have fixed an integer k > 1. The
main subject of this paper is the study of certain functors on the cobordism
category cs ck defined as follows. An object ofs is a qaadruple E (E, , l, tr),
where
--E is a closed oriented surface;
m is a p-structure on E;
ml is a colored banded link in E;
--a is a w2-structure which is complementary to I.
If E (E, , l, tri), (i 1, 2), are objects of, a cobordism from to E2 is a

quadruple M (M, , L, t?), where
--M is a cobordism from Ex to E2 in the usual sense;-- is a relative pl-structure on M;
--L is a colored banded trivalent graph in M realizing an embedded cobordism

from l to/2;
--t? is a relative spin structure which is complementary to L.
A morphism in is a diffeomorphism class (rel. boundary) of cobordisms,

where the diffeomorphisms are required to preserve the relative spin and px-
structure.

Remarks. (a) There is a "geometric" cobordism category which is defined as
above, except that uncolored banded links are used. This uncolored cobordism
category is included in the colored one, by coloring each component with the
color 1. Although we could define the spin theory without using colors, we need
them to compute the theory, and to express the multiplicativity property.

(b) Forgetting the w2- or spin structures defines a forgetful functor from k to
the "unspun" cobordism category used in [8].

(c) One could use a slightly different definition of the cobordism category, using
framings instead of w2- together with p-structures. (This would lead naturally to
Bass-Sullivan’s notion of S-singular framed manifolds, see e.g., [4].) The result-
ing theory should be essentially the same.

(d) We have introduced w2-structures on surfaces because it is convenient
when it comes to glueing cobordisms together, and natural (at least from the
point of view of obstruction theory). But one could use a weaker notion where
one would use spin structures on surfaces, plus a trivialization at a point in each
component.
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2. Obstruction theory for singular spin structures. It is well known [26], [15]
that a manifold M admits spin structures if and only if its second Stiefel-Whitney
class w2(M is zero, and in this case the set of spin structures is affinely iso-
morphic to Hi(M; Z/2).
The generalization to the relative case is as follows. Let E be a submanifold of

M, with trivialized normal bundle. The stable tangent bundle zz is then identified
with the restriction over E of zM. In this context a w2-structure on M induces one
on E, and the extension problem makes sense.

PROPOSITION 2.1. Suppose Z, is a submanifold of M with trivialized normal bun-
dle and tr is a w2-structure on Z,; then tr extends over M if and only if the obstruc-
tion WE(a H2(M, E; Z/2) is zero, and in this case the set of homotopy classes
(relative to Z,) of extensions is affinely isomorphic to HI(M, E; Z/2).

We now consider singular w2- and spin structures, i.e., those which are comple-
mentary to a link. It turns out that there is also an obstruction theory which
nicely parallels the usual one.

Notation. Suppose (E, l) is the boundary of a 3-manifold-link pair (M, K).
Assume we are given a w2-structure tr on E l, complementary for I. We denote
by Spin(MlK, tr) the set of relative spin structures on M- K, extending tr, and
complementary for K (homotopy classes, relative to E l, of extensions of tr).

PROPOSITION 2.2. (a) If it is not empty, the set Spin(MlK, a) is affinely iso-
morphic to H (M, Z; Z/2).

(b) There exists an obstruction w2(M[K, tr) H2(M, ; Z/2) which is zero if and
only if Spin(M[K, tr) is not empty. Furthermore, every class in H2(M, ; Z/2) can
be realized by a convenient K (the w2-structure tr being fixed).

(c) Let Z’ be an embedded surface in M, such that dZ,’ c Z I. Suppose Z,’ and
K are in general position; then the evaluation of the obstruction w2(M[K, tr) on
[Z’, t3Z,’] is E’.K + q,(t3Z’). (Here, E’.K is the algebraic intersection number
mod 2, and q, denotes the quadratic form on Hi(Z, l; Z/2) associated to tr.)

Remark 2.3. We recall the relationship between spin structures on surfaces
and quadratic forms. (See [2], [10].) Let E be a (not necessarily closed) oriented
surface. Every class in H(E; Z/2) can be represented by an embedded circle on
Z. Let Pz be the oriented frame bundle and be the lift of ), given by the tangent
vector. A spin structure s on E can be seen as an element cs H(P; Z/2) which is
not zero on the fiber (see [26], [15]). The assignment qs(),)= 1 / c() defines
a quadratic form q on Hi(E; Z/2) inducing the intersection form (i.e., q:
H(E; Z/2) Z/2 satisfies q(a + b) qs(a) / q(b) + a’b). This induces a bijec-
tive correspondence between spin structures on E and such quadratic forms.

Alternatively, q(,) is the value of (equipped with the restriction of s) in the
spin cobordism group flvi Z/2. In other words, q(,) 0 if and only if (,, sir
bounds some compact oriented spin 2-manifold. (This description of q(,) is valid
for any (i.e., possibly nonconnected) embedded curve 7.)
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Proof of 2.2. Consider the following diagram whose line and columns are
exact. (The group of coefficients is Z/2.)

0

H(M, Z)

O, H(M, E

0

f H2(M, z)

H(M, M- K) H(M -l),,, I-I(M- K, E l)

H2(Z, 2 l)

The group H2(M, M- K) is isomorphic to (Z/2)#K (where #K is the number
of components of K), and has a standard basis. Let # be the sum of the basis
elements. A w2-structure 5 on M- K is complementary for K if and only if
w2(M, 5) H2(M, M K) is equal to #. Moreover if 5, 5’ are two w2-structures
on M- K extending tr, one has w2(M 5’)- w2(M 5)---t([5"]- l-5]). ([5] de-
notes the homotopy class of extensions represented by 5.) We deduce that the set
Spin(MIK, tr), if not empty, is affinely isomorphic to Ker(6)

_
H(M, ,) (asser-

tion (a)).
Since tr is complementary for l, the class i’(#) w2(M tr) . H2(M, ., 1) lies in

the kernel of j. We define w2(MIK, tr) H2(M, E), by j(w2(MIK, a)) i(#)
w2(M tr). If there exists an extension 5 complementary for K, then j(w2(MIK, tr))

i(#) i(w2(M, 5)) 0, and w2(MIK, tr) 0. Now suppose converSely that
w2(MIK, tr) 0; then w2(M K, tr) i(w2(M, tr)) i’i’(#) 0, so there exists
an extension 50 over M-K. Observe that i(WE(M, 5o))=i*(/), choose
x HI(M K, l), such that 6(x) /- w2(M, 50); then [50] + x belongs to
Spin(MlK, a). To complete the proof of assertion (b), it remains to see that every
class can be obtained. This is obtained using Poincar6 duality.
Denote by l’ the link K c E’ in E’. The obstruction w2(MIK, tr) evaluated on

[E’, 8E’] is zero if and only if there exists over E’ an extension of trlo., complemen-
tary for l’. Such an extension exists if and only if the number of components of l’
has parity q#(tE’). This gives (c), and completes the proof of the proposition. El

For later use, we note the following special case. The set Spin(E x Ill x I,
a x cl) of relative spin structures on the identity cobordism (E, l) x I has a group
structure given by the composition of cobordisms. By Proposition 2.2, this group
is isomorphic to H(E x I, Y. x dl; Z/2) H(E; Z/2). (The element 0 H(E; Z/2)
corresponds to the product extension.)
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Now Spin(E x Ill x I, tr x dl) acts by glueing on the set Spin(MlK, tr). Thus
we have a natural action of H(E; Z/2) on Spin(MIK, tr).

LEMMA 2.4. Under this action, the auomentation class 1 H(E; Z/2) acts as
the identity on Spin(MIK, tr), hence the action factors through the reduced 9roup
t2(Y; Z/2).

Proof. The action corresponds to the connecting homomorphism H(E; Z/2)
Hi(M, E; Z/2), and since the class 1 comes from H(M; Z/2), the result follows. El

3. A spin refinement of the Jones-Kauffman module

The Kauffman skein relations. We suppose A is an invertible element in a
commutative ring A. Let M be a closed 3-manifold. The Jones-Kauffman skein
module of M, denoted by ’(M), is the A-module freely generated by banded
links in M, quotiented by ambient isotopy and the Kauffman relations [13]:

L w Q 6 L with di -A A-2

FIGURE 1

(where L is any banded link). For example, one has f(S3) A, the isomorphism
being given by the Kauffman bracket.

Note. As is well known, the Kauffman bracket is essentially equivalent to
Jones’s original V-polynomial [12]. But for our purposes, the Kauffman bracket
is more convenient.

The following is an extension of the above definition to the case of singular
spin structures.

Definition 3.1. Let M be a closed 3-manifold. The spin Jones-Kauffman mod-
ule of M, denoted by fS(M), is the A-module freely generated by the pairs (K, s),
where K is a banded link in M, and s is a spin structure complementary for K,
quotiented by ambient isotopy and the usual Kauffman relations.

Observe that the Kauffman relations make sense in this context, because if a

w2-structure tr, complementary for the link, is given outside the small ball, the
extension over the complement of the two segments (or the circle) in the ball is
unique up to homotopy; and if we change tr by a homotopy outside the ball, the
homotopy extends (see Proposition 2.2).
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Definition 3.2. If M is a 3-manifold with boundary, given a w2-structure tr

complementary for a banded link in OM, the relative spin Jones-Kauffman mod-
ule, denoted by S(M, l, or), is the A-module freely generated by the (K, t), where
K is a banded link in M meeting OM tranversally in OK l, and c? is a homotopy
class of extensions of cr complementary to K, quotiented by ambient isotopy (rel.
boundary) and the Kauffman relations.

Forgetting the relative spin structure defines a map from S(M, l, or) to the
usual relative skein module, denoted by f(M, l). This is the same as quotienting
out by the natural action of the group Ha(M, c3M; Z/2) on (M, l, or). For
u H2(M, OM; Z/2), let r,(M, l, or) be the submodule of g(M, l) generated by
those K with obstruction w2(MIK, or) equal to u. Using Proposition 2.2 (c), one
has the following.

PROPOSITION 3.3. The relative skein module :;f(M, l) is the direct sum of the
submodules :;f,(M, l, a), for u H2(M, c3M; Z/2). The imaoe of the forgetful map is
precisely :;fo(M, l, or).

Remark 3.4. (1) Note that it follows from Proposition 2.2 (b) that :Uu(M, l, tr)
is nonzero for all u.

(2) The direct sum decomposition of (M, l) is independent of the w2-structure
cr on E l. Only the indexing of the submodules depends on it; in fact, it depends
only on the induced spin structure [tr], in the following way. If [cr’] [cr] + x
with x 6 Hi(E; Z/2), then

:;f(M, l, or’) ;;fu+otx)(M, l, tr),

where di: H (E; Z/2) H2(M, ; Z/2) is the coboundary.

Example. The classical Jones-Kauffman module of the solid torus D2 x S is
isomorphic to the A-algebra A[z]. Here, z is represented by J x S a, where J c D2

is a small embedded interval. We denote by A[z]even and A[z]dd respectively
the even and odd part of A[z]. If cr is a w2-structure on S x S (without link),
the module oT’S(D2 Sa, o’) is isomorphic (as a module) to A[z] or A[z]aa,
depending whether the w2-structure cr extends over D2 x S or not.

Note. An interesting example is M S2 X S 1. Its spin Jones-Kauffman mod-
ule is computed in [23].

4. Kirby calculus for singular spin structures. The Kirby calculus [14] describes
3-manifolds in terms of banded links in the 3-sphere. It is well known how to
describe spin structures in terms of characteristic sublinks (see [5], 1-16]). In this
section, we generalize this to the case of singular spin structures.
Assume that M is presented as the result of surgery on a framed link L in the

3-sphere S3. Thus, M OWL where WL is the 4-ball B’ with 2-handles added
along the components L of L c OB4 S3. Up to isotopy, any banded link in M
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may be assumed to lie in S3 L. If K is such a banded link, we ask for existence
of spin structures complementary to K in M. To such a spin structure, a, corre-
sponds a characteristic sublink of L denoted by C,. It is defined as follows. A
component of L belongs to C, if and only if the restriction of tr to S3 -(L u K)
does not extend across that component.

PROPOSITION 4.1. The correspondence tr - C, defines a bijection between the
set of spin structures complementary to K in M, and the solutions of the following
equation (the components of L are denoted by Li)

Vi Li.(C u K) Li’Li (mod 2).

Here the point between two distinct components stands for the linking number
in Sa, and L.L is the framing coefficient.

Remark 4.2.
can be written

The equation above can be seen as a linear system in (Z/2)#L. It

Vi boc= b. + ki,

where b0 L.L, k L. K and c 1 whenever L belongs to C. The numbers
cj Z/2 are called the characteristic coefficients.
Assuming the proposition for a moment, let us denote by Mt.,c,r) the 3-manifold

obtained by surgery on the banded link L equipped with the spin structure com-
plementary to K corresponding to the characteristic sublink C.

THEOREM 4.3. The two manifolds Mt,c,r and Mtr.,,c,,r, are spin diffeomorphic
if and only if (L, C, K) and (L’, C’, K’) are equivalent under the relation generated
by the following mov.e.
Add to L an unknotted component Li with framing coefficient e +_ 1 and change

L K by giving a twist (right or left handed, depending on the sign of e) to the part
of L w K lying in a regular neighborhood of a disk bounded by Li. The characteris-
tic coefficient of the new component is c 1 + Ik(L, C K); the other characteris-
tic coefficients remain unchanged.

This follows in standard fashion from Kirby’s theorem [14]. Details are left to
the reader. (The case where K is treated in [5]. For the extension to the
general case, one may consult [7, p. 44].)
We now prove Proposition 4.1. A spin structure on a manifold M can also be

defined as a cohomology class in HI(PM; Z/2), where PM is the oriented frame
bundle (see [26], [15]). If M is 3-dimensional, we can evaluate this cohomology
class on a banded knot, which represents a 1-cycle in Pu. (The result does not
depend on the orientation of the core of the banded knot.) Note that the evalua-
tion of this cohomology class on a trivial banded knot with writhe zero is not
zero, but 1.
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LEMMA 4.4. Given a link L (L,..., L) in S3 and a sequence v, v in Z/2,
there exists a unique spin structure a on Sa L such that for all j, the evaluation
of tr on the meridian m1 (viewed as a banded knot in the obvious way using the
meridinal disk) is v).

Proof. Let fro be the spin structure on Sa- L induced by the unique spin
structure on S3. Then Spin(S3 L) tro + H(Sa L; Z/2), and <tro + c, m>
1 + < c, p>, where/ is the core of the banded meridian m. The lemma follows.

Remark. Observe that the evaluation of a on a banded knot V in Sa- L is
1 + ,., / i(1 v1)(y. Li).
Proof of 4.1. Spin structures complementary to K in M are in one-to-one

correspondence with cohomology classes on the oriented frame bundle of
S3 (L w K) which take the value 0 on the meridians around components of K,
and the value 1 on the preferred longitude of the components of L. Using the
lemma, we may describe such a spin structure by a sequence of v’s. The v’s
corresponding to K are zero, and the remaining v’s must satisfy conditions given
by the remark above. These conditions are equivalent to the condition in the
statement of 4.1, since the v corresponding to a component L of L is zero if and
only ifL is in the characteristic sublink C corresponding to the spin structure.

5. The invariant O]i(M). In this section, we generalize the invariants of [5]
to 3-manifolds with banded link and complementary spin structure.2 Although
we can define a spin invariant for each root of unity whose order is not congruent
to 8 modulo 16, we suppose here that A is a primitive 16kth root of unity. The
reason is that in other cases, the invariant depends only weakly on the spin
structure (see [5-1).

The coefficient rin9. Let k > 1 be a fixed integer. We suppose that A is a ring
(commutative, with unit, but not necessarily an integral domain) in which we are
given the following data.

(a) A primitive 16kth root of unity A.
(b) An element x such that x6= A-6-4t. (This element will be used for the

p-normalization of the invariant.)
(c) An involutive automorphism which sends A and x to their inverses.

We suppose moreover that

(d) 2 and k are invertible in A.

A natural choice for A is (tpn is the d-indexed cyclotomic polynomial)

Z IA, lc, -]/(q)16k(.Zl), l6 A-6-4k).

This generalization was stated without proof already in [7].
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The metabracket. Given a banded link L, one can replace each of its com-
ponents L by k parallels, and then evaluate the Kauffman bracket of this
cabled link. Since (D2 x St) A[z], this yields a multilinear form A[z] (R) A,
which we call the metabracket of L (see [5], [6], [18], [19]). If L (Lt, Lv),
the metabracket of L will be denoted by (L(),...,L()). The notation
(L(a), L(a)), where a, a are polynomials in the variable z, means
that each component of L is replaced by the formal cabling corresponding to a;
the Kauffman bracket of such a thing is obtained expanding linearly. For e + 1,
(U()) stands for the metabracket associated with the trivial knot with framing e.
The metabracket associated with the zero-framed unknot is simply denoted ( )
as usual. We denote by (H(,)) the metabracket associated with the Hopf link,
where each component has framing zero.

The invariant 0spin. Following [5], define elements fo, fl {’(D2 Sl)=
A[z] by

k-1

i=0

, (-A2 A-2)-*Zo,

where the Chebychev polynomials ej A[z] are defined by e_t 0, eo 1, and

ze e_ + e/t.

Remark 5.1. The elements f are the "reduced" elements denoted by in [5].
As explained there, one may also use (1/2)2=k (e2i)e2i in place of fo, and
(1/2) __k2 (e2i+)e2i+t in place of ft. (This will be used in the proof of Lemma
16.1.)

Let (L, Co, K) be a surgery presentation for the closed 3-manifold M equipped
with a banded link K and a complementary spin structure a. Thus M OWL and
Co is the characteristic sublink as defined in 4.1. Let (b/, b_) be the signature of
the intersection form on H2(W.; R). Using Theorem 4.3, the methods of [51 gen-
eralize to give the following.

THEOREM 5.2. The expression

spin(M, K, a)8k
(Co(fit), (L C.)(fo), K>

is a topological invariant of (M, K, tr).

Remark. One has (fo)= (f)=-2k/(A2- A-2)2 and (U(fo))= 0. The
computation of (U(fl)) reduces to a Gauss sum:

<U,(nt)> (A2.- A-2*)-tA-3*0sk(
2k-1

with Oak(e) A4"j2.
i=0

For A ei’/ak, Oak(l) Oak(-- 1) ,/(1 + i).
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Remark 5.3. The normalization of aspin is as in [5-1 If k 1 the invariant is a’8k

version of the classical Rohlin invariant /(M). In fact, pin(j)._ (__A)-3(M)
(where M has empty link).

The Jones-Wenzl idempotents f. (See [18], [19], [24], [8].) Let us denote by
nTm the Jones-Kauffman module (D2 x I, 1), where is a standard banded link
with n components in D2 x 0 and m components in D2 x 1. Thus, an element of
Tm is a linear combination of (n, m)-tangles, taken modulo skein relations. Com-
p ition of tangles makes the collection of these A-modules into a A-algebroid. In
particular, if n m, T is a A-algebra, called the Temperley-Lieb algebra on n
strings. If < 4k- 1, this algebra has a unique central idempotent f with the
property that f annihilates all tangles that factor through a (j, j)-tangle with
j < i. (These idempotents were first considered (in a different language) by Jones
[11] and Wenzl [30].)

Extension to 3-manifolds with colored graphs. It is clear that 0spin extends to a
well-defined linear invariant on the spin Jones-Kauffman module S(M). We
extend the invariant also to colored banded 3-valent graphs G in M with comple-
mentary spin structure a, by setting

Ospin(M, G, a)= Ospin(E(M, G, a)),

where E(M, G, a) S(M) is the expansion of (G, a) defined as follows.
Each/-colored edge of the graph is replaced by parallel banded segments, and

a copy of the Jones-Wenzl idempotent f is inserted. The admissibility condition
ensures that all these segments can be joined together in a natural way to get a
link, more precisely a linear combination of links. (See Section 4 of [8"1 for more
details.) Furthermore, the complementary spin structure a given outside the graph
has, for each link which appears in this linear combination, a well-defined exten-
sion complementary to this link. The resulting element of (M) is the expansion
of (G, a).

Remark 5.4. Expanding an/-colored circle component (which is viewed as an
/-colored edge with the two vertices identified) is the same as cabling that compo-
nent by the Chebychev polynomial e.

]l/l%spin6. The invariant <,, sk The functors Vk on the cobordism categories
will be defined by a universal construction from an invariant < >pn of closed
bordisms in Ck. This invariant is just a slight modification of ’akaspin, but depends
on the p1-structure. The use of this modified invariant gives nice surgery prop-
erties for the functors Vk.

3Recall that #(M) takes values in Z/16: it associates to a closed oriented 3-manifold with spin
structure, M, the signature mod 16 of an oriented spin 4-manifold with boundary equal to M.
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The invariant a(). Let be a p1-structure on a closed 3-manifold M. Suppose
M t3WL is given by surgery on the banded link L in S3. Let pl (L, ) Z be the
obstruction to extending to WL, evaluated on the fundamental class [W.]
H4(Wr., M; Z). As in [8-1, we define a()= 3 signature(W.)- p(L, ), which, by
Hirzebruch’s signature formula, is a well-defined integer (see Atiyah [3]).

In the ring A (see Section 5), we set4

r/s /3<U1(1)>-1 =/3(A2 A-2)A3sk(1)-1

In the definition below, the closed bordism M (M, , K, a) in cs is the disjoint
union of the connected bordisms (M, , K, a), 1 < < bo; is a pl-structure on
M, and at is a spin structure complementary for the colored graph K. Let b
denote the first Betti number of M.

Definition 6.1.

bo
<M .spin l,/bo+bl H I’r(oti)Oin(Mi’ Ki, ai)’8k

i=1

PROPOSITION 6.2. The invariant <M >spin is multiplicative:

<M II M’ >spin <M >spin < M’ >spin and < >spin 1

and involutive:

< M >spin <M >spin.

Proof. Multiplicativity is obvious. Involutivity follows from qs q and the
involutivity of 0spin, which is proved in routine fashion from the behaviour of the
Kauffman bracket under mirror images.

Remark 6.3. If a connected closed bordism M (M, , K, a) has a surgery
presentation which is a banded link L in S3 with characteristic sublink C, then

<M>spin I’]slC-P’(L’a)<Ca((O1) (L C,)(Co),

where

090 2fo, ogt 2f

with 2 0/s(fo))-.
Remark 6.4. For e {0, 1}, let S2 x $2 be S2 x S equipped with the empty

link, a standard p1-structure (with a-invariant zero), and a spin structure which

4The notation r/ is used because r/ is different from the number r/used in [8]: one has r/ 2r/.
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extends to S2 x D2 if and only if e 0. Then for both e 0 and e 1, one has

<S2 x Se >spin /,]s(fD) 1.

7. The functors V
Definition of Vk(E). Let E be an object of the category k. Denote by

the A-module freely generated by the set of all bordisms M such that
The formula

< M, M’ >:pin <M y, (- M’) >spin

extends to a sesquilinear form <, >pin on ’(Z).

LEMMA 7.1. The form <, >pin is hermitian.

This follows essentially from the involutivity of the invariant < >spin. A de-
tailed proof will be given in the next section.

Definition 7.2. The module F(E) is defined to be the quotient of (E) by the
radical of the form <, >pin.

The induced hermitian form on V(E) is denoted again by <, >,pin; it is non-
degenerate by definition. The class of M in V(E) is denoted by Z(M). Thus, for
all bordisms M, we have an element Z(M)e V(dM). The multiplicativity of the
invariant < >spin implies that V() is identified with A, with Z() correspond-
ing to 1 e A, and, mo;e generally, ZS(M) corresponding to <M>spine A when-
ever M is a closed bordism. Furthermore, if M is a cobordism from Z to Z’,
glueing along E defines a homomorphism, denoted by Zt, from F(Y,) to F(E’).

Note. The above is an adaptation of the universal construction of 1-8] to the
invariants defined in 6.1. The pair (V, Z) is a quantization functor on the cate-
gory k, as defined in I-8, Section 1.A].

Note. Glueing along E defines a natural map

V’(- Z II X’) - Hom(V’(Z), V’(Z’)).

This map sends Z(M) to Zt. (This map need not be an isomorphism; see Re-
mark 12.2.)

In the next sections we are going to compute the theories (V, Z). The follow-
ing theorem will be proven in Section 17.

THEOREM 7.3 (Finiteness). For all objects X in , the module V’(E) is free and
finitely #enerated, and the hermitian form <, >pin is unimodular.

Let V(E)* denote the dual module Hom(V(E), A).
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COROLLARY 7.4.
isomorphism.

The map V’(-E) V(E)* (defined by #luein#) is an

Proof. For all bordisms M, M’ with boundary E, we have

< M, M’ "-spin ,pin M’ ’pinf_ <M’,M <M,

Hence orientation reversal extends to a well-defined isomorphism from V(E)
(the conjugate module) to V(-E). The map V’(-E) V(E)* is equal to the
inverse of this isomorphism, followed by the adjoint map Vs(E) Vs(E)*. Uni-
modularity means that the adjoint map is an isomorphism, whence the result.

A precise description of V(E) will be given. An interesting point will be to
discuss multiplicativity. We shall see in Section 12 that the obvious map V(E1)(R)
VS(2) VS(,l I_I E2) need not be an isomorphism. However, we will show that
the theory satisfies some kind of Z/2-graded multiplicativity property.

8. Glueing and orientation reversal. Let E be an object of cg. As already said
in Section 2, the set of relative spin structures on E x I is canonically identified
with H(E; Z/2). So, to each c H(E; Z/2) is associated a cobordism (E x l)c,
between Y, and itself (we choose the trivial extension of the pl-structure).
The following technical construction is a key point in understanding the tricky

sign questions involved with orientation reversal of relative spin structures. Let
M be a bordism with boundary tM. Recall that we have defined the orientation-
reversed bordism, -M, with boundary -t3M, by composing the w2- and
structure with the orthogonal reflection in the direction of a unit vector field in
the stable tangent bundle of M which extends the outward normal vector on cOM.

LEMMA 8.1. Assume t3M is decomposed as a disjoint union of components Z, H E’.
Let M’ be the bordism, with boundary -t3M, obtained from M by composing the
w2- and p1-structure on M with the orthogonal reflection in the direction of a unit
vector field which extends the outward normal vector on E’, and the inward normal
vector on Z,. Then

M’= (-M) ((-E) x 1)1,

where 1 H(E; Z/2) is the augmentation class.

Proof. We may assume that the vector fields used for constructing -M and
M’ coincide except in a collar E x I of E, where the first one, v, say, is constant in
the time direction, and the second one, v’, say, is inward at both ends. Our prob-
lem is to compare the w2- and p1-structure on (-E) x I obtained by using the
reflections in the direction of v and v’, respectively. Using v we get the cobordism
((-E) x I)o which acts trivially. A moment’s thought shows that using v’ we get
((-E) x 1)1. This proves the lemma. E!
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Note. The point here is that the reflection in the direction of the vector field
(cos rot, sin 7t) in the stable tangent bundle of the interval I (where R 0 is

the tangent direction, and 0 R is the direction of the first stabilization), gives
the nontrivial relative spin structure on -I. Note, however, that the induced
relative p1-structure is trivial, so that this technical problem can be ignored for
pl-structures.

Example 8.2. In particular, the above argument shows that

-((E x I)o)= ((-,) x I)1.

Note that orientation reversal is not functorial. The following corollary to
Lemma 8.1 describes the defect.

COROLLARY 8.3. Let M1 be a cobordism from E1 to E2, and M2 be a cobordism
from -,2 to Y3. Then

-(M1 y.,. M2)= (-M1)---((-Y2)x 1)1
-zw_2 (- M2),

where 1 H( E2; Z/2) is the augmentation class.

Remark 8.4. In the special case where E1 or 3 is empty, Lemma 2.4 implies
that the insertion of ((-E2) x 1)1 does not change the relative spin structure, and
hence can be omitted.

Note. It is possible to define orientation reversal in such a way as to get a
functor, by making the definition of the orientation-reversed manifold dependent
on the way it is regarded as a cobordism. For simplicity, we have chosen not to
do this here.

Proof of Lemma 7.1. We must show that the form <, >pin is hermitian. Let
M, M’ be bordisms with boundary E. By the involutivity of the invariant < >spin,
it suffices to show that the spin and p1-structure on M’ w (-M) is equal to the
orientation reversal to the spin and p1-structure on M uy. (-M’). This follows
from Corollary 8.3 (with M1 M, M2 -M’) and the remark following it. E!

9. The decomposition theorem. Let Z be an object of s. For c H(E; Z/2),
the cobordism (E x l)c (defined in the previous section) induces an endomorphism
zc on Vs(E). If an element of V(E) is represented by a bordism M with cOM E,
then z(M) is represented by M uz (E x I).

PROPOSITION 9.1. is an isometry.

The proof is deferred to the end of this section.

Thus, we have an isometric action z of the group H(Y.; Z/2) on V’(E). Lemma
2.4 shows that, under this action, the augmentation class 1 e H(E; Z/2) acts
as the identity on V(E). Hence the action factors through the reduced group
(E; Z/2).
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This action of/(E; Z/2) immediately gives the following decomposition of
VS(). For a Ho(Z; Z/2) we set

Vs(E; a) {x V(E): Vc Zc(X) (- 1)c(a)x}.

THEOREM 9.2 (Decomposition theorem).
composition

There is a canonical orthooonal de-

V(E) , V(E; a).
Ho(y-; Z/2)

Remark 9.3. Consider an object E’ obtained from E by homotoping the w2-
structure. This homotopy defines a cobordism from Z to E’ which induces an
isomorphism V(12; a) V(E’; a) for all a Ho(E; Z/2). In general, this isomor-
phism depends on the chosen homotopy. But, by their very definition, the "zero-
graded" parts V(E; 0) and Vs(E’; 0) are canonically isomorphic.

It remains to prove Proposition 9.1. It is a consequence of the following more
general lemma.

LEMMA 9.4. Suppose C is a cobordism between Eo and El, whose underlyin9
manifold is Y’, x I; then Z" V’(Eo)-, V(E1) is an isometric isomorphism.

Proof. First we observe that w2- or px-structures on E x I are nothing but
homotopies between the w2- or p-structures on Zo and Zx. Let C’ be the co-
bordism between E and Eo corresponding to the inverse homotopies; then the
cobordism C wzl C’ is equivalent to the trivial (E0 x I)0. We deduce that Zc and
Zc, are inverse isomorphisms.

Suppose that M and M’ are bordisms with boundary Eo, then <Z:(M),
C"Z:(M’) >spinzl is the invariant of the manifold M WZo Cw Wo (-M’), where C"

is obtained from C by composing the structures with the reflection in the time
direction. Using the diffeomorphism

(x, t) -* (x, 1 t),

we can replace C" by the cobordism C’, and then forget C
equality

C’. Whence the

< Z:(M), Z(M’)’sPin

which shows that Z is an isometry.

< M, M’ .,,.spin

10. Surgery axioms. Let S3 denote a closed bordism whose underlying 3-
manifold is the 3-sphere (with empty link), with a standard w2- and p1-structure
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(extending to D’). Since < S3 >spin =/s, we have

(S0) < S3 >spin is invertible in A.

Assume SO x D3 and D x S2 are equipped with their product orientations and
some relative spin and p-structure, such that O(S x D3) O(D x S2) SO x S2,
and such that the structure on the 3-sphere SO x D3

Wsoxs2 -D S2 extends to
the 4-ball. (This fixes the relative pa-structure on D x S2, but allows both rela-
tive spin structures.)

(S1) (Index-1 suroery) Z(S x D3) rlZ(D x S2) Vs(s0 X $2).

Proof. It suffices to check that an index-1 surgery multiplies the invariant of a
closed bordism M by r/-. Performing a surgery of index 1 on M means either
replacing two components of M by their connected sum (in this case, an argu-
ment as in Lemma 2.4 shows that the spin structure on the connected sum does
not depend on the relative spin structure on D: x $2), or replacing a component
M by its connected sum with (S2 x S:)o or (S2 x St): (which have the same
invariant; see Remark 6.4). Using the fact that the invariant 0pi" is multiplicative
under connected summing, one checks that in each case one gets the required
factor. 13

Notation. Let S x S) be the torus S x S equipped with a fixed w2-structure
such that the corresponding quadratic form (see 2.3) takes the value e on the
meridian S x { 1 } and the value e’ on the longitude { 1 } x Sa.
Assume S x D2 and D2 x S are equipped with their product orientations so

that O(-S x D2) O(D2 x S) S x Sx. Fix relative p-structures respectively
on D2 x S and -S x D2 such that the structure on the 3-sphere D2 x S Wss
S x D2 extends to the 4-ball. We denote by D2 x $2 (respectively, -$2 x D2)
the p-manifold above equipped with a w2-structure which extends the one given
on S x $2 (respectively, on $2 x S).
($2) (Index-2 suroery) For e {0, 1}, the element Z(D2 x S2) V(S x S2)

lies in the submodule 9enerated by links and complementary (relative) spin
structures, in the solid torus -S x D2.

Proof. Consider the expression for the invariant <M>v" given in Remark
6.3. The surgered manifold M is obtained by taking out a tubular neighborhood
isomorphic to -S x D2 of each component L of L, and replacing it by D2 x $2
(e depends on whether L is characteristic or not). Formula 6.3 says that if, instead
of doing surgery, L is cabled by 09, then the same invariant is obtained. It follows
that ZS(D2 x Sir) is represented by co,, whence ($2). El

Note. For e 0, the above is surgery in the spin category, whereas for e 1,
it is "characteristic" surgery. One can show that existence of 090 satisfying the
spin surgery formula implies existence of cox satisfying the characteristic surgery
formula.

The following is a key result for the computation of V(Y).
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LEMMA 10.1. Let be an object of cs, and N be a connected 3-manifold with
boundary E. Then Vs(E) is #enerated by the elements Z(M), where the bordism M
has N as underlyin# manifold. Furthermore, if N’ is another connected 3-manifold
with boundary , then an element 2iZ(Mi) Vs(E) is zero if and only if

2i < Z(M), Z(M’) >pin is zero for all bordisms M’ with N’ as underlyin# mani-

fold.
Proof. This follows from the surgery axioms. Details are omitted, as the proof

is analogous to the proof of Proposition 1.9 of [8]. El

Remark 10.2. Let E be an object of cs, with banded link l, complementary
w2-structure tr, and px-structure . Let N be a 3-manifold with boundary E,
equipped with a relative px-structure extending . There is a well-defined map
from the spin Jones-Kauffman module :,r(N, 1, a) (see Section 3) to Vs(E), send-
ing (K, t) to Z(N, , K, ). (This follows from the fact that the invariant < >spin,
considered as a function of a banded link K in a fixed manifold, satisfies the
Kauffman relations.) This map depends affinely on the relative px-structure on
N, in the sense that the set of relative px-structures on N is affinely isomorphic to
Ha(N, E; Z), and changing by a cohomology class c multiplies the map by xd,
where d is the evaluation of c on the fundamental class I-N, t3N].

Note. In Section 3, the spin Jones-Kauffman module ,r(N, l, tr) was defined
only for uncolored links. This definition can be extended to colored links and
graphs using the notion of expansion explained above. We leave this to the
reader, as it is not needed in the sequel.

Convention. To simplify language, a bordism M in c with underlying mani-
fold N will from now on be called a structure in N. Also, all manifolds are
assumed to be equipped with px-structures which will not be mentioned explicitly
any more.

11. Some examples. We denote by S2(ix,..., iv) a sphere with a v-component
banded link colored by (ix, iv) (ix +’"+ iv must be even). We can compute
the following examples. Note that in (a)-(e) below, the complementary relative
spin structure is unique.

(a) Vs(S2(i))=f ifi=0
otherwise.

A generator of Vs(S2(O))-Vs(S2) is represented by the standard 3-ball with
empty link.

(b) Vs(S2(ix, i2))=fA0 if ix i2
otherwise.

A generator of l/’s(S2(i, i)) is represented by the standard 3-ball equipped with a
standard graph having just one edge colored by i.
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A triple (it, i2, i3) is said to be 8k-admissible if it satisfies the admissibility condition
lix i21 < i3 < it + i2 and it + i2 + i3 even, and if, moreover, it + i2 + i3 < 8k- 2.

yA if (it, i2, ia)is 8k-admissible
Vs(S2(il, i2, ia))

otherwise.

If (it, i2, ia) is 8k-admissible, a generator of Vs(S2(il, i2, ia)) is represented by
the standard 3-ball .equipped with a standard "trivalent vertex."

ili2

FIGURE 2

Proof. Statements (a)-(c) are proved as follows. By the first part of Lemma
10.1, the l/S-module in question is generated by structures in the 3-ball. Applying
the Kauffman relations and taking into account the defining property of the
idempotents fi, we see that it has a generator as claimed. Using now the second
part of the lemma, we see that it suffices to compute the hermitian product of this
generator with structures in a complementary 3-ball. Applying Kauffman rela-
tions again, we just have to test the generator with itself. Up to multiplication by
< S3 >spi,, this amounts to computing the bracket of a certain colored graph in
Sa. Case (a) is obvious. In case (b), the graph is an/-colored circle, and its bracket
is <i> (-1)i[i + 1], where In] (A2n- A-2n)/(A2- A-2). In case (c), the
graph is a 0-shaped graph with edges colored by it, i2, i3, and the result is (see
[24])

<it, i2, i3 > "-(--1)+#+v
[0 + fl + 7 + 1]![0]![fl]![7]!

where , fl, 7 are determined by it -fl + 7, i2 7 + , ia- 0 + fl, and [n]!
[1][2]".[n]. Since <i> is invertible in A for all colors i, and <i,i2, ia> is
invertible precisely in the required range, and zero otherwise, the V-module in
question is as asserted. !

(d) (Fusion law) In the module Vs(S2(il, i2, it, i2)), one has

FIGURE 3

il

ia

il

(The sum is over those ia such that (it, i2, ia) is 8k-admissible.)
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Proof. An argument as in the proof of Theorem 3.4 of [8], together with
case (c) above, shows that the graphs appearing on the right-hand side represent
orthogonal generators of V’(S2(i, i2, i, i2)). Computing the hermitian form as
above (using [24]) gives the required formula.

(e) (Band move) As a special case, in the module Vs(S2(4k 2, 4k 2, 4k 2,
4k- 2)), one has

FIGURE 4

12. The computation of I/’s(-$2(il)I_[ $2(i2)). While the formulas in the pre-
ceding section follow from standard Kauffman bracket computations, the compu-
tation of Vs(-S2(ix)H $2(i2)) is specific to the spin theory.

If is even, the manifold $2(i)x I has two different relative complemen-
tary spin structures (use Proposition 2.2). We let ($2(i) x I)o denote the product
extension and ($2(i)x l)x the other one. (This notation was already used in
Section 8.)

PROPOSITION 12.1. Vs(-S2(ix)L[S2(i2))={2 if ix i2 0 or ix i2 4k 2
otherwise.

If O, a generator is given by Zs((S2 x I)o) Zs((S2 x l)x).
If 4k 2, a generator is given by Z((S2(4k 2) x I)o), which is equal to

-Zs((S2(4k- 2) x l)x).

Proof. First of all, we may suppose ix, i2 are even (otherwise there is no com-
plementary spin structure on S2(ij)). By Lemma 10.1, the module V(-S2(ix)H
$2(i2)) is generated by bordisms M, with S2x I as underlying manifold. One
can suppose that the graph is contained in a tube D2 x I. By example (b) of
Section 11, it follows that V(-S2(ix)H $2(i2)) is zero except if ix i2. Moreover
V( $2(i)H $2(i)) is generated by bordisms whose underlying manifold is $2(i) x I,
i.e., by ($2(i) x I)0 and ($2(i) x l)x. We must compute the hermitian product

<($2(i) x I),, ($2(i) x I),, .>spin
S2(i) I.IS2(i)

Note that the "closure" of ($2(i) I) is $2(i) x Sxx+, where the subscripts are
taken modulo 2 (see, e.g., the discussion of spin structures on the circle in [15]).
As already observed in Example 8.2, -(($2(i) x I)) is equal to ((-$2(i)) x l)x +.
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Hence, the hermitian product is equal to

>spin S2 >spin<($2(i) x I) us,-{o,1} ((-$2(i)) x I)1+, < (i) x S+,

r/(n(og+,, e)}

1 if/=0

(-1)+’’ ifi=4k-2
0 otherwise.

It follows that the module Vs(--S2(i)n $2(i)) is zero except if 0 or 4k 2,
and in these cases, it is free of rank 1, generated by Zs((S2(i)x I)o)=
+_ Zs((S2(i) x 1)1 ). (The sign is plus, if 0, and minus, if 4k 2.) This com-
pletes the proof. El

Notation. We denote $2(4k 2) by 2.

Remark 12.2. Since VS(;2)=0 and Vs(-;2H2)= A, the multiplicativity
axiom of TQFT does not hold for the functor Vs. Also, if M 2 x I, then ZS(M)
generates V(-g2 H g2) A, but Z lives in Hom(VS(g2), VS(g2)) 0.

As a consequence, one has the following description of the decomposition of
Vs(_ $2 H S2) and VS( g2 II g2) given in Theorem 9.2.

COROLLARY 12.3. Vs(-S2I.IS2"a)=fA0 /fa=0
otherwise

if a=O
otherwise.

This follows from the following lemma.

LEMMA 12.4. Let be an object of cs having a component equal to + S2 (resp.
+_ 2). Let c H(E; Z/2) be the class dual to that component. Then zc is the iden-
tity (resp. minus the identity) of

Proof. Since Vs(-E) is V(E) (the conjugate module), we may suppose the
component is S2 (resp. g2). The action zc is given by glueing (S2x 1)1 (resp.
(g2 x 1)1). As shown in Proposition 12.1, one has Zs((S2 x I)1)= Zs((S2 x I)o),
and ZS((g2 )< 1)1) -ZS((2 x I)0), whence the lemma. El

COROLLARY 12.5. VS(g2 H g2 I_I g2) 0.

Proof. Let c be the class dual to one component. By the preceding lemma,
is minus the identity. Since the augmentation class 1 acts trivially, z is equal to
z1- which acts as the identity. The result follows. El
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Remark 12.6. Using an orientation-reversing diffeomorphism q of the 2-sphere,
one can construct a cobordism from _g2 to g2. Lemma 9.4 shows that for all
objects E, this cobordism induces an isometric isomorphism

However, there does not seem to be a canonical choice for such a cobordism.
(Observe that one needs to choose a homotopy between the canonical structure
on -g2, and the structure on g2 transported by dip.) Therefore, we prefer not to
identify g2 and -2.

13. Extended multiplicativity.
plicativity property.

Using g2 we can formulate the extended multi-

THEOREM 13.1 (Extended multiplicativity).
c the map

For all objects Z, ,’ in the cate#ory

v’(x) (R) v’(x’) + v’(x tt (R) v,(- lax’) v’(x ii x’)

(defined by #lueint) is an isomorphism. Moreover, this isomorphism is an isometry,
if the sum is considered as an orthogonal sum.

Proof of 13.1. We first show that we have an epimorphism. We choose a
cobordism N (respectively N’), from -E to S2 (respectively from S2 to E’). By
Lemma 10.1, elements of V(E H X’) are represented in N" N Us N’. Let M" be
a bordism, with N" as underlying manifold. The colored banded graph in M"
(supposed to meet S2 tranversally) induces a colored banded link in S2. We claim
that bordisms M" which induce a 1-component link on S2 generate V(E H E’).
To see this, we can use the graphical identity (fusion law) given in example (d) of
Section 11 to modify the graph near the sphere. Proposition 12.1 shows that
bordisms inducing a 1-component link colored by i, i 0 and i# 4k- 2, give
zero. Surjectivity follows.
To show injectivity, it suffices to show that the hermitian forms are preserved.

...,.spin in three cases.We are going to compute <M, M2
Case 1. If each M’ is a disjoint union of bordisms M, M, such that

tgM Z’, then clearly

,,,spin<M1, M2 fxHx’ <M1, M2 >pin <MI, M2 >.p,in

Case 2. If M’’ is a disjoint union of bordisms M, M, such that tgM X,
8M E’, and M is a union over 2 of bordisms M2, M[, such that dM2

""-P 0. But this isX;II2, t3M 2LIE, then we must show <M1, M2fti.,
clear since V(2) 0.
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Case 3. If each M;’ is a union over g2 of bordisms M, M;, such that dM
EH g2, tgM; g2 H E’, then we must show that

.,.spin ,,>spin ,,>spin<M’, Mu.’ <M, M2_xH2 <M, M2--_g2Hz,.

...spin is minus the invariant of the closed bordismObserve that <M1, M2.ztlz,
shown in the figure below. The minus sign comes from 8.3 and the fact that
Z(((-g:) x I)1)= -Z’(((-g) x I)o).

FIGURE 5

Hence, we must show that the invariant of this closed bordism is minus the
invariant of the following closed bordism:

FIGURE 6

To see why this is true, observe that the difference between the two closed
bordisms under consideration is that we have replaced a cobordism from g2 H g2
to itself by another one. The first one is the "horizontal" identity cobordism
C1 ((_ g2 I.I g2) x I)o. The second, "vertical," one is C2 (--2 x I)o I1 (2 x I)o
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viewed as a cobordism from -;2 H ;2 to composed with a cobordism from
to g2 H

Thus, the result is a consequence of the following.

LEMMA 13.2. One has Z,. -ZI.
Proof. The space V(-;2H2) is generated by Z((g2 x I)o ). By pasting C2

onto the bordism (;2 x I)o we get the disjoint union

(,2 x S’), II(2 x I)o.

Since <(;2 x S1)1 >spin 1 (see the computation in the proof of Proposition
12.1), we have Zc -Idv,(_g ugh) -Z:I, as asserted, rn

14. Description of V’(; a)

Notation. For 15, ’ {, g2}, we put

v’(x),, w(- v u x u v’).

Let X; LI[=I x; be a disjoint union of connected objects X. To each sequence
v (vl,..., v,-1) {, g2},-1, we associate a(v) - v(v,)([Y,+l] [E,])
o(Y; Z/2), where v() 0 and v(g2) 1.

THEOREM 14.1. The #lueing map

VS($"l)v, ()vt VS(X2)v2 I)... t)V/_l VS(,l)f,-- VS(,)

is an isometric injection, with image equal to V(E; a(v)).

Proof. It follows by induction from Theorem 13.1 that the map

O VS(Jl)vt () v, VS("2)v2 ()""" () v/_ VS(X,) VS(x)

is an isometric isomorphism. In Lemma 14.2 below, we are going to compute
the action of H(X;; Z/2), and we shall show that the image denoted W of the
summand corresponding to a given v is included in V(E; a(v)). As v a(v) is
one-to-one, the theorem will be proved. E!

LEMMA 14.2. We have

Vx Vc e H(E; Z/2) zc(x) (- 1)c(a(v))X.

Proof. Let c H(E; Z/2) be the class dual to the component X;. The action
of c is given by glueing (X; x 1)1. We have to compute the element represented by
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the manifold below:
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V Vi-1

Mi

vi

FIGURE 7

The action of c can be computed locally, i.e., it suffices to compute zc(x) for

xi vi 1VS(Z)v" Since the augmentation class 1 H( vi-1 H Ei H v; Z/2) acts
trivially, the action is also given by glueing -(v-i x 1)1 H(vi x 1)1. The case
v,-1 v, is trivial. In the case {v,-1, v,} {, g2}, we get %,(x3 -x, by
Lemma 12.4, and in the case vi-1 vi g2, the formula is zc(xi) (-1)2x xi.
This completes the proof. El

Remark 14.3. In the language of bimodules over algebroids (see [8]), Theorem
13.1 may be expressed as follows. Define an algebroid A with two objects and
g2 by setting

A, ,V’(), V’(-vtI v’), v, v’ (, g:}.

The obvious glueing makes V(Z)_ into a A-bimodule. The algebroid A is com-
pletely reduced, i.e., one has A, A, and A, 0 if v - v’. Theorem 13.1 says
that glueing induces an isomorphism

v’(x)_ (R) v’(x’)_ *, v’(x tI x’)_.
A

In the language of [8], this means that a certain algebroid AS(), whose objects
are all objects of c6’, and which is naturally associated to the functor V, is Morita
equivalent to the completely reduced algebroid A.

15. The transfer theorem. In this section, we describe a natural transfer map
from the TQFT-functor (Vak, Zsk) constructed in i-8] (here called the unspun the-
ory) to the functor (Vdk, Zgk) (called the spin theory).
The functor Vsk of [8] has the same coefficient ring as the functor Vdk, and is

defined on a cobordism category Sk which is obtained from k by omitting the
w2-structures.
As before, we fix k > 1 and write V for Vak, V for Vdk, etc. In this and the next

section, it will be convenient to use the notation E for an object of the cobordism
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category cg (rather than cgs), and to denote an object of cgs by (E, tr) (where tr is a
w2-structure complementary to the link in E). The spin structure induced by tr

will be denoted by s [tr].
We recall the following result of [8].

THEOREM 15.1 [8]. Let X be an object of the cobordism cateoory c, and let be
the (colored) link in E. There is a natural orthooonal decomposition

v(x)=
Spin(Yll)

where Spin(El l) is the set of spin structures complementary to in E.

Remark 15.2. In [8], the submodules were denoted by Vak(E, q), with q run-
ning through the quadratic forms on HI(Y.- l; Z/2) inducing the intersection
form. Recall that those correspond bijectively to spin structures on Z (see 2.3).
It was noted in Remark 7.11 of [8] that the submodule is zero if the correspond-
ing spin structure is not complementary to 1.

Suppose now that tr is a (singular) w2-structure over an object E in c, and
s [tr] is the corresponding spin structure. Now we are given two modules,
namely V(E, s) and V(E, a). The (b) statement of the next theorem identifies
V(E, s) with V((E, tr); 0) (the fixed part under the action of H(E; Z/2)).

THEOREM 15.3 (Transfer theorem). Let E be an object of the cobordism cate-
gory c, and let be the (colored banded) link in E. Let tr be a w2-structure on ,
complementary to l, and let s [a] denote the induced spin structure.

(a) There exists a well-defined linear map

+.: v(x) -+ v’(x,

with the followino property. For every bordism M in c such that 3M ,,
**(Z(M)) 2-b(’:) Z(M, ),

O Spin(MlK, ix)

where K denotes the colored banded oraph in M with 3K l, and Spin(MIK, tr)
is the set of relative spin structures complementary to K (see Section 2).

(b) This map factors through the orthoonal projection rcs: Vff,) V(,, s), and
induces an isomorphism

(L: v(x, s) --, v’((x, o).

(c) Moreover, the hermitian forms satisfy

Vx, y V(E, s) < x, y >. 2-bo<) ((I)tr(X), (1)a(y)><],).spin
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