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Chapter 1

Introduction

"... the theory of "Cobordisme" which has,
within the few years of its existence,

led to the most penetrating insights into

the topology of differentiable manifolds."

H. Hopf,

International Congress of Mathematics, 1958.

1.1 History

In the early fifties Rohlin [127] and Thom [149] studied the cobordism groups of
manifolds. At the 1958 International Congress of Mathematicians in Edinburgh,
René Thom received a Fields Medal for his development of cobordism theory.

Then, Fox and Milnor [43, 44] were the first to study cobordism of knots,
i.e., cobordism of embeddings of the circle S! into the 3-sphere S ; knot cobor-
dism is slightly different from the general cobordism, since its definition is more
restrictive. After Fox and Milnor, Kervaire [72] and Levine [89] studied em-
beddings of the n-sphere S™ (or homotopy n-spheres) into the (n + 2)-sphere
S"*+2 and gave classifications of such embeddings up to cobordism for n > 2.
Moreover, Kervaire defined group structures on the set of cobordism classes of
n-spheres embedded in $”%2, and on the set of concordance classes of embed-
dings of S™ into S™*2. The structures of these groups for n > 2 were clarified
by Kervaire [72], Levine [89, 90| and Stoltzfus [147].

Note that embeddings of spheres were studied only in the codimension two
case, since in the PL category Zeeman [169] proved that all such embeddings in
codimension greater than or equal to three are unknotted, and Stallings [144]
proved that it is also true in the topological category (here, one needs to assume
the locally flatness condition), provided that the ambient sphere has dimension
greater than or equal to five. In the smooth category Haefliger [52] proved that
a cobordism of spherical knots in codimension greater than or equal to three
implies isotopy.

Later, people studied embeddings of manifolds, which are not necessary
homeomorphic to spheres, into codimension two spheres. One motivation comes
from the topology of complex hypersurfaces near isolated singular points. More
precisely, Milnor [109] showed that, in a neighborhood of an isolated singular
point, a complex hypersurface is homeomorphic to the cone over the algebraic
knot associated with the singularity. Hence, the embedded topology of a com-
plex hypersurface around an isolated singular point is given by the algebraic
knot, which is a special case of a fibered knot. After Milnor’s work, the class
of fibered knots has been recognized as an important class of knots to study.
Usually algebraic knots are not homeomorphic to spheres, and this motivated
the study of embeddings of general manifolds (not necessarily homeomorphic
to spheres) into spheres in codimension two. Moreover, in the beginning of
the seventies, Lé [85] proved that isotopy and cobordism are equivalent for 1-
dimensional algebraic knots. Leé proved this for the case of connected (or spher-
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ical) algebraic 1-knots, and the generalization to arbitrary algebraic 1-knots
follows easily (for details, see §7.1).

During Arcata’s symposium of pure mathematics in 1974, Durfee [38] listed
several unsolved problems about algebraic knots ; and after Lé’s result concern-
ing one dimensional algebraic knots, the following question seems natural

Problem 5([38]): Are cobordant algebraic knots (with K homeomorphic to
a sphere) isotopic?

But we had to wait about twenty years for an answer when Du Bois and
Michel [35] gave the first examples of algebraic spherical knots that are cobor-
dant but are not isotopic. These examples motivated the classification of fibered
knots up to cobordism.

1.1.1 Contents

This book is organized as follows. In Chapter 1 we give several apropos defi-
nitions to the cobordism theory of knots. The Seifert form associated with a
knot is also introduced.

In Chapter 2 we introduce Morse function and handle decomposition of
manifolds. Then we prove the h-cobordism Theorem and explain surgeries on
manifolds.

In Chapter 3 we review the classifications of (simple) spherical (2n—1)-knots
with n > 2 up to isotopy and up to cobordism.

In Chapter 4 we review nice properties of fibered knots.

In Chapter 5 we define algebraic cobordism and we clarify this definition with
several explicit examples. Then we prove that this relation is an equivalence
relation on the set of unimodular bilinear forms defined on free Z-modules of
finite rank.

In Chapter 6 we present the classifications of simple fibered (2n — 1)-knots
with n > 3 up to isotopy and up to cobordism, and we introduce the algebraic
cobordism of integral bilinear forms.

In Chapter 7 we review the properties of algebraic 1-knots and present the
classification theorem of algebraic 1-knots up to cobordism due to Lé [85].

In Chapter 8 we study cobordism of 3-dimensional knots, and we introduce
the notion of Spin cobordism.

In Chapter 9 we define the pull back relation for knots which naturally arises
from the viewpoint of the codimension two surgery theory.

In Chapter 10 we present several relevant examples concerning the notions
introduced in the previous chapters.

In Chapter 11 we study embedded surfaces in S*

In Chapter 12 we prove that embeddings of simply connected and closed
4-manifolds in S% are all concordant.

In Chapter 13 we present the most general topological background in which
we can study cobordism of knots, and we extend the result about 3-knots to a
larger class.

in Chapter 14 we list several open problems related to the cobordism theory
of non-spherical knots.

With all the results collected in this book, we have classifications of knots
up to cobordism in any dimensions. Only the classical case of one dimensional
knots, and the case of three dimensional knots remain to have complete classi-
fications.
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Some chapters of this book are made of a series of lectures for graduate
students in Louis Pasteur university of Strasbourg during the academic year
2006-2007. The purpose of these lectures was to give the opportunity to students
to learn topology of high dimensional manifolds while studying knot cobordism.

Many proofs and results in this book are coming from papers written before
on the subject, and published in different journals. I want to thank here all my
co-authors.

1.1.2 Notations

We will work in the smooth category, but sometimes manifolds might have
corners. When a manifold M has boundary we denote it by dM. Moreover, if
M is an oriented manifold with boundary we use the outward first convention
to orient its boundary M. All the homology and cohomology theory used have
integer coefficients. The symbol 2 denotes a diffeomorphism between manifolds
or an isomorphism between algebraic objects. An embedding of a manifold K
in a manifold M is denoted by K < M. The closure of X is denoted by X,

and its interior is denoted by )% or by IntX. We denote by A the transpose of
a matrix A.

1.2 Definitions

In this section we introduce knot cobordism. We also present some detailed
constructions in order to give to the reader a precise idea of the subject.

Since our aim is to study cobordism and concordance of codimension two
embeddings of manifolds which are not necessarily homeomorphic to spheres,
we define knots as follows.

Definition 1.1. Let K be a closed n-dimensional manifold embedded in the
(n + 2)-dimensional sphere S"*2. We suppose that K is

(k — 2)-connected if n =2k — 1 and k > 2, or
(k — 1)-connected if n = 2k and k£ > 1.

When K is orientable, we further assume that it is oriented. Then we call K or
its (oriented) isotopy class an n-knot, or simply a knot.
An n-knot K is spherical if K is a homotopy n-sphere.

Remark 1.2. With our definition, one dimensional knots may have several
connected components. But spherical 1-knots are connected and diffeomorphic
to S', see Figure 1.1 and Figure 1.2.

We impose a connectivity condition in Definition 1.1, this is first motivated
by the usual definition of algebraic knot (see Definition 1.13), and second because
we will need connectivity conditions to perform embedded surgeries.

In order to define, and compute, invariants of isotopy and cobordism classes
of knots, we will need some algebraic data associated with knots like Seifert
forms and Alexander polynomials. In the classical knot theory, i.e., the case
of spherical 1-knots, it is usual to make combinatorial computations associated
with crossing of planar representations. We will have another approach, in
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Figure 1.1. The trefoil knot is a spherical 1-knot

&

Figure 1.2. The Hopf link is not a spherical 1-knot

a sense may be more algebraic, since we will do computations using integral
bilinear forms.

The first step is to define Seifert manifolds associated with knots.

1.2.1 Seifert manifolds associated with knots

Proposition 1.3. For every oriented n-knot K with n > 1, there exists a com-
pact oriented (n+1)-dimensional submanifold V of S"+2 having K as boundary.
Such a manifold V is called a Seifert manifold associated with K. When K is
a one dimensional knot, the manifold V' is usually called a Seifert surface.

Remark 1.4. Seifert manifolds are not unique. For a given Seifert manifold of
dimension k, one can construct a new one by doing its connected sum with a
compact closed k-manifold embedded in S**1.

Proof. The construction of Seifert surfaces associated with 1-knots is elemen-
tary, see [129], for example.

Start by assigning an orientation to each component of the knot, and then
choose a regular projection into the plane. Around each crossing do the following
modification:
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N N

Then the regular projection of K has become a disjoint collection of oriented
S embedded in the plane. Each one bounds a disk, and by pushing the interior
of these disks off the plane in the three sphere they can be made disjoint. The
orientations of the S! induce orientations of disks. Hence we can connect these
oriented disks at each crossing with half twisted strips in order to form an
embedded, 2-manifold in S3, whose boundary is K as depicted bellow:

N A

This construction gives the desired surface, embedded in S, which has the
knot as boundary. When K is not spherical it is moreover necessary to do the
oriented connected sum of the connected components of the surfaces we just
constructed.

For general dimensions, the existence of a Seifert manifold associated with
a n-knot K can be proved by using the obstruction theory as follows.

Let p : Tk — K be the normal bundle of K < S"*2 and let py : 7% — K
be the bundle p without the zero section, i.e., for all x € K the fibers satisfy
po ' (z) = p~'(z) \ {0}. A global orientation for 7x means that we choosed a
prefered generator p of H?(7x,7%).

The zero section of the bundle 7 is an embedding of K in 7x, moreover K
is a deformation retract of 7x and p* : H?(K) — H?(7g) is an isomorphism.

Let us denote ¢ the inclusion map of (7, &) into (7, 7k \ K ), which induces
the morphism i* : H?(7x, 7k \ K) — H?(7x) in cohomology.

Recall that the Euler class e(7x) = p* o i*(p) of the normal bundle is an

obstruction to having a nonzero normal section.’

Let T = K x D2 be an open tubular neighborhood of K in §™*2. The 2-
disk bundle Tk is diffeomorphic to 7x and we have the following commutative
diagram

ISince K is a n-knot then we have e(7x) € H?(K) = 0 as soon as K is 2-connected. Then
we already have that 7x is trivial for n > 5.
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H2(S7+2, §7+2\ K) —S 5 H2(Tx,Tx \ K) —2— H2(rg,7%)

o o

/| ! E

0=HX(S5"?) Y  HY(K) 5 H2(rx)

=

IR

Where H?(S7T2 SnH2\ K) =~ H2(Tk, Tk \ K) is given by the excision, and
the morphisms j* and v* are induced by inclusions.
—1
Since e(7x) = p*  0i*(u), the commutativity of the diagram gives

e(tx) =p* oi*(n)=v o o og* (u)=0.
So the normal bundle of K < S"*2 is trivial.

Let Nk = K x D?, the closure of Tk in S™12, be a closed tubular neighbor-
hood of K in 8™*2, and

®:ONx > K x St 72 g1

the composite of the restriction of 7 to the boundary of Ng and the projection
pro to the second factor. Using the exact sequence

HY(S" "2\ Tx) — H' (ONg) — H*(S"?\ Tx,0Ng),

associated with the pair (S"™2 \ Tk, dNk), we see that the obstruction to ex-
tending ® to ® : "2\ Tx — S! lies in the cohomology group

H?*(S™2\ Tx,0Ng) = H,(S""2\ Tk).
By Alexander duality we have
H,(S" "\ Tk) = H'(K),

which vanishes if n > 4, since K is simply connected for n > 4. When n < 3,
we can show that by choosing the trivialization 7 appropriately, the obstruction
in question vanishes. Therefore, a desired extension ® always exists. Now, for
a regular value y of ®, the manifold ®~!(y) is a submanifold of S"*? with
boundary being identified with K x {y} in K x S'. The desired Seifert manifold
associated with K is obtained by gluing a small collar K x [0, 1] to 5’1(7;). O

Let us now recall the classical definition of Seifert forms of odd dimensional
oriented knots, which were first introduced in [140] and play an important role
in the study of knots cobordism.

Definition 1.5. Suppose that V is a compact oriented 2n-dimensional subman-
ifold of $?"*1 and let G be the quotient of H,, (V') by its Z-torsion. The Seifert
form associated with V is the bilinear form 21 : G x G — Z defined as follows

A:GxEGE — Z
(x,y) — Az, y) =lgzn+1(E4,m).
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where lgz2nt1(.,.) denotes the linking number of chains in S*"*! the two n-
chains ¢ and 7 are representing the cycles x and y respectively, and &, is the
n-chain 7 pushed off V into the positive normal direction to V in S27*1,

Recall that the linking number of two n-chains ¢ and 7 in S?**! is given by
the algebraic intersection number in S?"*1 of a (n + 1)-chain ©, which bounds
¢ in S?"*1 and 7 (resp. by the algebraic intersection number in S?"*1 of ¢ and
a (n + 1)-chain 2, which bounds 1 in S?"*1) ; or by the algebraic intersection
number in D?"*2 of a (n+1)-chain ©’, which bounds ¢ in D?"*2 and a (n+1)-
chain Q’, which bounds 5 in D?"+2,

By definition a Seifert form associated with an oriented (2n — 1)-knot K
is the Seifert form associated with V', where V is a Seifert manifold associated
with K. A matrix representative of a Seifert form with respect to a basis of G
is called a Seifert matriz.

Remark 1.6. One can as well define the Seifert form 2'(z,y) to be the linking
number of £ and 7, instead of £; and 7, where £ is the n-cycle £ pushed off V'
into the positive normal direction to V in $27+1. There is no essential difference
between the two forms 21 and 21'. However some formulas may take different
forms.

More precisely, for a given n-chain & in F' we denote by £_ the n-chain &
pushed off V into the negative normal direction to V in S2"*!. Then we have

132n+1 (Ea 77+) = 152”'+1 (5—7 77)7

and recall
Lsznsr (&,1) = (=1)" M gansa (9, €).

According to these formulas we get

AUz, y) = lsnt1(§4,m)
Ql(xvy) = (_1)n+1l52"+1 (77754-)
Az,y) = (=1)""A(y,2)

So if A is the Seifert matrix associated with 2 and A’ is the Seifert matrix
associated with 21" we have A’ = (—1)"T11A

Let us illustrate the above definition in the case of the trefoil knot. First
consider the Seifert manifold F' associated with the trefoil knot as depicted
in Fig. 1.3, where “+" indicates the positive normal direction. Note that
rank(Hl(V)) = 2. We denote by £ and n the 1-cycles which represent the
generators of Hy(F). Then, with the aid of Fig. 1.3, we see that the Seifert
matrix for the trefoil knot is given by

-1 1
(i)
Definition 1.7. Let n > 1. We say that an (2n — 1)-knot is simple if it admits
an (n — 1)-connected Seifert manifold.

Let K be a simple knot with an (n — 1)-connected Seifert manifold F. The
Universal coefficient Theorem [16] states that the following short exact sequence
is exact

0 — Ext(Hy_1(F, K)) — H*(F, K) — Hom (Hy(F, K)) — 0.
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E &im o g

NN’

F
Figure 1.3. Computing a Seifert matrix for the trefoil knot

Since F' is an (n — 1)-connected Seifert manifold, then Ext(H,_1(F,K)) =0
and the group H"(F, K) is torsion free. But by Poincaré-Lefschetz duality we
have H"(F, K) = H,,(F'). Hence H, (F) is torsion free.

In the following, when a (2n — 1)-knot is simple, we consider an (n — 1)-
connected Seifert manifold associated with this knot unless otherwise specified.

When n > 2, the long exact sequence associated with a simple (2n — 1)-knot
K and its (n — 1)-connected Seifert manifold F', induces the following short
exact sequence

0= Ho(K) = Hy(F) 23 Hy(F, K) = H,_1(K) = 0 (1.1)

where the homomorphism S, is induced by the inclusion. Let
P : Hy(F, K) = Homg (H,(F),Z)

be the composite of the Poincaré-Lefschetz duality isomorphism and the uni-
versal coefficient isomorphism.
If we denote by & the intersection pairing?

S : H,(F) x Hu(F) — Z,

then for all (a,b) € H,(F) x H,,(F) we have &(a,b) = (P o S.(b))(a).

Proposition 1.8. Let K be a simple (2n — 1)-knot with an (n — 1)-connected
Seifert manifold F. Let 2 be the Seifert form associated with F and & the
intersection pairing. If we denote by A the Seifert matriz and by S the matriz
representative of &, then S = A+ (—1)"tA.

Proof. Let 0 < € << 1. First we identify a regular tubular neighborhood of F
in S2n*! with F x [—¢,¢]. For each t € [—¢,¢] we define a diffeomorphism

it : F — 82n+1

which is a translation by a vector of length ¢ in the positive normal direction
when ¢ is positive, and in the negative normal direction when ¢ is negative.
Remark that for a n-chain v we have

i = i(3). (1.2)

2Sometimes called intersection form.
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where v; was introduced in Remark 1.6 in order to compute the matrix of
Seifert forms.

Let 2 and y be two n-cycle in H,, (F), set z = [¢] and y = [)] for two n-chains
& and 7.

As consequence of Equation 1.2 we get

lg2ni1(&,ic(n)) = lgznsr (i—c(€), 7).
Let A = Ui qit(§) = € x [~¢,¢] the oriented (n + 1)-chain in S+

with OA = (i(€) —i—.(£)) since we use the outward first convention for the
orientation of the boundary of an oriented manifold. The intersection of £ and
nin F is equal to the intersection of A and 7 in S?"*!  this implies the following
equalities

6($7y) = ZSZ"+1(8 )1 )

S(x,y) = lsznt1(ic(€),m) — lsznsr (i-c(€), )
S(z,y) = AUw,y)— (1" sensa (ic(n), €)
S(r,y) = A,y + (~1) Ay, )

This implies the desired relation between matrices. O

Remark 1.9. Intersection forms & are (—1)"-symmetrical, contrary to Seifert
forms, which are not generally symmetrical. For example see the matrix of the
trefoil knot we computed with the aid of Fig. 1.3.

Let us now focus on cobordism and concordance classes of knots.

Definition 1.10. Two n-knots K and K in S™t? are said to be cobordant if
there exists a properly embedded (n+1)-dimensional manifold X of S"*2x [0, 1]
such that

1. X is diffeomorphic to Ky x [0, 1], and
2. 0X = (Ko x {0}) U (K3 x {1}).

The manifold X is called a cobordism between Ky and K;. When the knots are
oriented, we say that Ky and K, are oriented cobordant (or simply cobordant)
if there exists an oriented cobordism X between them such that

OX = (=Ko x {0}) U (K1 x {1}),
where — K is obtained from K by reversing the orientation.

Recall that a manifold with boundary Y embedded in a manifold X with
boundary is said to be properly embedded if 0Y = 0X NY and Y is transverse
to 0X.

It is clear that isotopic knots are always cobordant. However, the converse
is not true in general (see Fig. 1.5). For explicit examples, see §10.

We also introduce the notion of concordance for embedding maps as follows.

Definition 1.11. Let K be a closed n-dimensional manifold. We say that two
embeddings f; : K — S™*2, i = 0,1, are concordant if there exists a proper
embedding
®: K x[0,1] — 8" x [0,1]
such that
Dlpwpiy = fi K x {i} = S" x {i} , i=0,1.
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S™t2 x {0} St x {1}

Kol

52 0,1]

Figure 1.4. A cobordism between Ky and K3

Figure 1.5. A cobordism which is not an isotopy

Where an embedding map ¢ : Y — X between manifolds with boundary is
said to be proper if Y = ¢~ 1(0X) and Y is transverse to 9.X.

Remark 1.12. Concordant knots are cobordant, but the converse is not true
in general. See Theorem 3.14 for the spherical case and Remark 11.8 for non
spherical examples of 2-knots.

Cobordant knots are diffeomorphic. Hence, to have a cobordism between two
given knots, we need to have topological information about the knots. Since a
simple fibered (2n — 1)-knot is the boundary of the closure of a fiber, which is
an (n — 1)-connected Seifert manifold associated with the knot, by considering
the above exact sequence (1.1) we can use the kernel and the cokernel of the
homomorphism S$* to get topological data of the knot. Note that in the case
of spherical knots, these considerations are not necessary since S, and S* are
isomorphisms.

1.3 Complex hypersurfaces isolated singularities and
fibered knots

We are motivated by the study of the topology of isolated singularities of com-
plex hypersurfaces, let us be more precise.
Let

f:Cc"o—C,0
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{(f=o0

2n+1
Sz

N
Ky
|~

Figure 1.6. The algebraic knot Ky . associated to the singularity at 0 of a germ f

be a holomorphic function germ with an isolated singularity at the origin. If
¢ > 0 is sufficiently small, then in [109] Milnor proved that

Ky = 0)n s

is a (2n — 1)-dimensional manifold which is naturally oriented and (n — 2)-
connected, where S2"*1 is the sphere in C" "1 of radius ¢ centered at the origin.
Furthermore, its (oriented) isotopy class in 27! = §27+1 does not depend on
the choice of & (see [109]).

Definition 1.13. We call Ky the algebraic knot associated with the isolated
singularity at 0 of f.

Fortunately, algebraic knots are some knots in the sense of Definition 1.1.
Moreover, Milnor proved that the pair

(D22, )N D)
is homeomorphic to the cone over the pair
(S€2n+1’ Kf)~

Hence the algebraic knot completely determines the local embedded topological
type of f71(0) near the origin, where D?"*2 is the disk in C"*! of radius
centered at the origin.

In [109], Milnor considered only polynomial functions. However it is known
that a holomorphic function germ with an isolated critical point is topologically
equivalent to a polynomial function germ.

Moreover, the complement of an algebraic knot Ky in the sphere G2+l
admits a fibration, called Milnor fibration, over the circle S, and the closure of
each fiber is a compact 2n-dimensional oriented (n — 1)-connected submanifold
of §?"*! which has K as boundary.

Then we define

Definition 1.14. We say that an oriented n-knot K is fibered if there exists a
smooth fibration
¢:S"\K = S!

and a trivialization
7:Ng — K x D?
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of a closed tubular neighborhood Nk of K in S"*2 such that ®| N\ K coincides
with 7 o 7|y, \ k, Where

7: K x (D*\ {0}) = S!

is the composition of the projection to the second factor and the obvious pro-
jection D?\ {0} — S!. Note that then the closure of each fiber of ¢ in S™*2
is a compact (n + 1)-dimensional oriented manifold whose boundary coincides
with K. We shall often call the closure of each fiber simply a fiber.

Furthermore, for n > 1 we say that a fibered (2n — 1)-knot K is simple if
each fiber of ¢ is (n — 1)-connected.

The definition of fibered knots gives a topological framework for algebraic
knots associated with isolated singularities.

Though the notion of fibered knot it is much more restrictive, it gives addi-
tional nice properties, like monodromy and variation map see Chapter 4, which
are very useful.

When K is a fibered knot, the closure of a fiber is always a Seifert manifold
associated with K. In the following, for a fibered (2n — 1)-knot, we use the
Seifert form associated with a fiber unless otherwise specified.

1.4 Alexander polynomial

The Alexander polynomial associated with a knot K was initially defined for
spherical 1-knots, and was computed with a combinatorial presentation of 1-
knots, i.e., crossings. But, with the aid of a Seifert form associated with a knot,
it is possible to define Alexander polynomials for knots of every dimension.

Let K a (2n — 1)-knot, with n > 1. Set A be a Seifert form for K associated
with a Seifert manifold F. The polynomial

Au(t) = det(tA + (—1)"*4)

of Z[t,t71], defined up to units of Z[t,¢t71], is called the Alezander polynomial
of K.

We define the Alexander polynomial up to units of Z[t, '] since the Seifert
manifold associated with the knot is not unique. More precisely, the connected
sum of a Seifert manifold with a closed oriented manifold of same dimension
will change the Alexander polynomial by a product of a unit of Z[t,t~].

For the study of fibered knots, if we restrict to Seifert forms associated with
a fiber of the fibration, then this polynomial is uniquely defined. Moreover, in
that case, the Alexander polynomial will be the characteristic polynomial of the
monodromy (see Chapter 4, section 4.1.3).

We will see later that the Alexander Polynomial is a very powerful tool to
study the embedded topology of knots. For instance cobordant one dimensional
algebraic knots have same Alexander polynomial, see Lé [85].



Chapter 2

h-cobordism Theorems and surgeries on
manifolds

Macbeth ...— What is the night?
Lady Macbeth Almost at odds
with morning, which is which.
MacBeTH Act III, sc IV

The goal of this Chapter is to gives clues to prove the h-cobordism The-
orem. In fact we will explain how to prove a slightly more general theorem,
which is called s-cobordism Theorem. We choose to give the proof of the s-
cobordism theorem because of the similarity of the proofs, though we need to
consider Whitehead torsions to prove the s-cobordism Theorem. The first step
is to introduce Morse theory and handlebody decomposition for manifolds. In
conclusion of this Chapter we will describe modifications of manifolds called
surgeries.

2.1 Morse functions and handle decompositions of
manifolds

In this section we recall briefly some classical results on Morse theory, we refer
to [106] and [98] for detailed proofs.

We will consider functions defined on manifolds. Let M™ be a n-dimensional
manifold with n € N*, recall that we only consider smooth manifolds. A func-
tion f : M — R is smooth if there exists a local coordinate system (z1,...,z,)
around each point p of M in which f is C*°. By opposition we define

Definition 2.1. A point pg € M is a critical point, or a singular point, of the
function f: M — R if

aq{;(po):o, i:l,...,n.

It is easy to check that this definition does not depend on the choice of a
coordinate system.

Definition 2.2. We say that a critical point pg of f is nmon-degenerate if the
determinant

8% 82
87,%(])0) e 7(%18];" (po)
Hy(po) = det : :
8% 82
Wé}l(po) cee azg (Po)

is not zero, and it is degenerate if Hy(po) = 0. We call Hy(po) the Hessian of f
at the critical point pq.
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Let (21,...,7,) and (y1,...,yn) be two coordinate systems, and set
3 d
Tﬁ(po) e ﬁ(po)
o] n o) n
a0~ (Po) - F=(po)

which is usually called the Jacobian matriz of the coordinate transformation
evaluated at pg.

If we denote by HY (po) the Hessian of f in the coordinate system z =
(x1,...,xp), then by direct computation we get

HY(po) = J(po)HF (po)J (po)-

Definition 2.3. A real number c is called a critical value of a f : M — R if
there exists a critical point py € M such that f(pg) = c.

Since the Jacobian of the coordinate transformation at a point py has a
non-zero determinant, then we have

det H}(po) = det (% (po)) det(HF (po)) det(J(po)).

But the determinant of the Jacobian of any coordinate transformation at a
point pg has a non-zero determinant. Hence det H)?(po) # 0 if and only if
det Hf (po) # 0, and the property of a critical point of a function being non-
degenerate or degenerate does not depend on the choice of a coordinate system
at Po-

Definition 2.4. A function f : M — R is called a Morse function if every
critical point of f is non-degenerate.

Theorem 2.5 (Morse Lemma). Let py be a non-degenerate critical point of
f: M — R. Then there exists a local coordinate system (x1,...,2n) at po such
that with respect to these coordinates f has the form

—a}— ... -3+ a2 ..+ 2d+ f(po)

Sylvester’s law implies that 0 < A < n is well defined and do not depend
on the choice of the coordinate system. Since A depends only on the function f
and the critical point pg, then we define

Definition 2.6. The integer ) is called the index of the non-degenerate critical
point pg of the function f.

Proof of Morse Lemma. Without loss of generality one can assume that f(pg) =
0, and let (z1,...,2,) be a local coordinate system around the origin py. Since
f(po) = 0, then according to the fundamental Theorem of calculus one can find

1
n smooth functions h;(x) = ﬁ tx)dt, i =1,...,n such that
0
0o 0%

flz, ... zn) = le hi(z1,. .., x,).
i=1
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0
With this decomposition we get 8—5(0, ...,0)=h(0,...,0) fori=1,...,n.

K3
Now, since the origin py in the local coordinate system (z1,...,z,) is a
critical point for the function f, then we have h;(0,...,0) =0fori=1,...,n.
As made before for f, for each h;,i = 1,...,n one can find n smooth functions

hij,j=1,...,n such that
n
hi(l‘l, . ,CC”) = Zl‘j hi,j(:cl, - ,Jin).
j=1
Putting these decompositions all together, we get

n
flz, ... zn) = Z xix; hij(x, ..., xn),

ij=1
setting H; ; = M4t gives H; ; = H;,; and the following quadratic represen-
tation of f
n
[y, an) = Z viwj Hij(@1,. .., an). (2.1)
ij=1

We will now reduce this representation to the wanted one using the Gauss
algorithm on quadratic forms.
The computation of the second order partial derivative of 2.1 gives

2
7 (...
8xi8xj

.,0) =2H,;;(0,...,0).

Since py is a non-degenerate critical point of the function f, then we have
det Hy(po) = det H§(0,...,0) = det(Hm-((), e 70))1,,], # 0. Moreover, up to a
change of local coordinates, we can assume that

0% f

—5(0,...,0) #0,

hence since the functions H; ; are continuous this gives H; ; # 0 (eventually on

a smaller neighborhood of py than the one of the local coordinate system).
Now for an appropriate choice of local coordinate (X1, xo,...,x,) the func-

tion f is of the form

f(X1, 20, 2n) = £X7 4+ @(xa,.. ., 2,) (2.2)

with p(ze, ..., z,) a quadratic form with n—1 variables zs, .. ., z,. By induction
on the number of variables one can reduce the function f to the desired form. [

Corollary 2.7. Let f : M — R be a Morse function. Any mon-degenerate
critical point of f is isolated, and when M is a compact n-manifold f admits
finitely many critical points.

Proof. According to Morse Lemma, in a small coordinate neighborhood of a
critical point po, the function f is of the form —z% — ... — 23 + x?\ﬂ + ...+
22 + f(po). So the origin, i.e., the point po, is the only critical point in the
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coordinate neighborhood of pg. Recall that for a Morse function any critical
point is non-degenerate.

Assume that the Morse function f admits infinitely many distinct critical
points (p;)iez where Z is an infinite set. Since non-degenerated critical points
are isolated there exists disjoint open sets (U;);ez such that U; C M contains
only one critical point p;. First construct U C M an open set such that for all
i in Z the point p; is not in U, then the infinite cover

McUUm
i€l

can’t be reduced to a finite one. This is in contradiction with the hypothesis of
compactness for M.
Finally the Morse function f admits only finitely many critical points. [

Now we will see that every function f : M — R on a compact manifold can
be approximate by a Morse function.

Definition 2.8. Let M be a compact manifold, and let ¢ > 0 be a real. A
function f : M — R is a C2-approzimation of a function ¢ : M — R if there
exists a compact covering M C J,_; , Y and on each compact Y¥; C M,
i=1,...,m the following hold o

L vyeYi|f(y) -9yl <e,

2. Vy6Y|af(” %g—if)|<s,j:1,...,n,

3‘weY|$g;—§ﬂm¢<e%k_1
Theorem 2.9 (Existence of Morse functions). Let M be a compact manifold
without boundary, and f : M — R a smooth function. Then for each real
e > 0 there exists a Morse function 1) on M which is a C2-approzimation of f.
Moreover one can assume that the critical values associated with distinct critical
points of ¥ are distinct.

We refer to [98] for a detailed proof of this Theorem.

Using Morse functions defined on a manifold M, we will explain now how to
construct some particular tangent vector fields on M. These vector fields make
easier to understand the behavior of the manifold around the critical points of
the Morse functions.

Before, recall, that for a given vector v € T, M the directional derivative of a
function f : M — R can be defined as follows. Let ¢(7) = (z1(7),...,2n(7)) be

d
a curve in M such that ¢(0) = p and —C(O) = v. Then the directional derivative

of f in the direction v at p is the real function defined on M

n

Z (’hl

When X is a tangent vector field on M, i.e., to each point p in M we associate
a tangent vector X (p) in T,,(M), we extend this definition. We compute the



22 2 h-cobordism Theorems and surgeries on manifolds

Tr+15--rTn

e aad — v
=~ 0 A a

Figure 2.1. The gradient vector field of z? — ... — 2% + miﬂ +... 422

directional derivative of f in the direction X (p) at p. Then we can differentiate
f with respect to X as well. A tangent vector field is defined by

Zfl (83}1)

where &;(p) are smooth functions defined on a coordinate system at p for i =
1,...,n. Then set

(Zfl (8331) f)@)

Now let us consider the gradient vector field of a Morse function f : M — R
in a small neighborhood of a critical point for f. We saw that in an appropriate
local coordinate system (z1,...,x,) the function f has the form

—xf—...—xi—l—xiﬂ—l—...—kxi.

Its gradient vector field is

+ ...+ 2z,

0 0
Vi=-2x1——...— 20— +2 —_—
f T T\ + 2T )41 FENe i

ox X1 ax)\

5f

Remark that Vy.f = Z 2 >0, and (Vy.f)(p) > 0 when p is not a

critical point of the Morse functlon f. This inequality means that locally the
gradient vector field of f follows a direction into which f is increasing.
This induces the following definition.

Definition 2.10. We say that a vector field X on M is a gradient like vector
field for the Morse function f: M — R if

1. (Xf) (p) > 0 for any non-critical point p € M,

2. around any critical point of f there exists an appropriate coordinate sys-
tem such that X = V.

Theorem 2.11. Let f: M — R be a Morse function on a compact manifold.
Then there exists a gradient like vector field on M.



2.1 Morse functions and handle decompositions of manifolds 23

A way to prove this Theorem is to glue all together gradient vector fields of
f defined on a finite number of coordinate neighborhoods. We refer to [98] for
a detailed proof.

We illustrate the utility of gradient like vector fields with the two following
Propositions.

Proposition 2.12. Let f : M — R be a Morse function. If the function f has
no critical value in a real interval [a, (5], then the manifold

Mia,5 = {p € Mla < f(p) < B}

is diffeomorphic to the product f~(a) x [, 8], and M, is diffeomorphic to Mg.

Proof. Let X be a gradient like vector field of f. Since f has no critical point
1
on M, g, then (Xf) (p) > 0 for all p € M}, 5. Set Y = X—fX a vector field

on M, ), and let v, (7) the integral curve of Y which start at = € f~'(a).

d
Since %f(%(ﬂ) =Y.f =1, then the integral curve ~,(7) starts at = € M,

when 7 = 0 and is reaching Mg when 7 = 5 — a. We know that the integral
curves 7, (7) depend smoothly on both z and 7 and two distinct integral curves
never meet, hence the map

h: Ma X [Ovﬁ - O[} — M[O‘»B]
(x,7) = h(z, T) = 7. (7)

is a diffeomorphism.

M, = f~1(a)

O

Proposition 2.13 (Existence of collar neighborhood). Let M be a manifold
with compact boundary OM. Then there exists a neighborhood V' of OM in M,
which is diffeomorphic to OM x [0,1).

Proof. First glue two copies of M along their boundary M to get a smooth
closed manifold W = M Ug M. Then if f: W — R is a Morse function on W,
up to change one can suppose that f has no critical value in a neighborhood of
0 and f(OM) = 0. Then we have

M=W;so = {peWlo < f(p)}-

Hence we may assume that there exists a Morse function f : M — R¥* on
M such that f~1(0) = M and 0 is not a critical value. As in the previous
Proposition, one can construct a gradient like vector field, for which integral
curves give the desired diffeomorphism.
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2.1.1 Handle decompositions of manifolds

In this subsection we will use Morse functions to describe handle decompositions
of compact manifolds.

Let f : M — R be a Morse function on a compact n-manifold M with a
critical point at pg € M of index A, and set

M<; ={pe M|f(p) <7}

We will describe the changes of M<, when 7 €]c—¢, ¢+ ¢[ where € > 0 is a real
such that ¢ = f(pg) is the only critical value of f in |c — &, ¢+ €[.
As seen before, in a local coordinate system around pg, the function f is of
the form
—x%—...—xi—l—x%\_,_l—i—...—l—mi.

In the following picture we illustrated the behavior of f on M in a small co-
ordinate neighborhood of the critical point py, we made a normal projection
of a small neighborhood of the critical point py of the manifold M onto R™.
The shaded areas correspond to the set points of M for which the value of f is
greater or equal to T + €, the doted areas correspond to the set of points of M
for which the value of f is lower or equal to 7 — €.

f>1+e

f=7

Do

TXA41y--5Tn
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Definition 2.14. The product manifold D* x D"~ is called a \-handle, and
the A-disk D* x {0} € D* x D"~ is called the core of the handle.

In the following picture we glued a A-handle D* x D", along D>~ x D",
to the boundary of the set of points of M for which f takes value lower or equal
toT —e.

With the gradient like vector field depicted by the arrows on the picture, one
can see that, after smoothing, the manifold MST_auDA x D™= is diffeomorphic
to M§T+E .

Remark 2.15. Let c¢q,...,c; the distinct critical values of a Morse function
f+ M — R defined on a compact manifold M without boundary. Let € > 0 a
real small enough, then the following hold

1. M<oy—e = 2,
2. M<¢,+e = D", is a 0-handle,
3. M<oye =M.
Let X be a n-manifold with non-empty boundary, and let
0: S x DA 59X
be an embedding. Using ¢ we can attach a A-handle to X. Set
Y =X U, (DY x D",

which is the manifold obtained from X by gluing the A-handle D* x D"~ to
X along p(S*~1 x D"~*). After smoothing corners if necessary we can assume
that Y is smooth.



26 2 h-cobordism Theorems and surgeries on manifolds

Definition 2.16. We say that Y is obtained by attaching a A-handle to X, and
@ is called the attaching map of the A-handle. We will use the notation

Y = X U (o).

The disk D* x {0} is called the core of the A\-handle, and the sphere {0} x S"~*~!
is called the transverse sphere of the A\-handle.

the transverse sphere
{0} % Sn—k—l

the core
D> x {0}

0X

QD(S)‘_I % Dn—/\)

Remark 2.17. Sometimes, the transverse sphere to a handle is called a belt
sphere.

When we attach several handles to X, we use the same notation, e.g.
Y =XU (MU ).

But beware of this description the order of attaching is important, so it should
be written

Y= (XU(eh) U,

meaning that first the A-handle is attached to 0X and then the p-handle is
attached to O(X U (¢*)).

Definition 2.18. A manifold obtained from D" by attaching handles of various
indices is called a handlebody.

When the boundary of a compact manifold X is of the form X, ][] X1, then
it is sometimes more convenient to give a handle decomposition in which we
attach the first handles to a collar neighborhood of the component Xy C 0X of
the boundary.

To do that, it is enough to start with a Morse function f : X — R which
maps Xy to f(Xo) =0, X3 to f(X1) = 1 and such that all the critical values
Aty -y Ap of f )O( are in ]0, 1[. Then the first handle, corresponding to the first

critical value A\ of f, must be attach to a collar neighborhood of X, (see the
following picture).



2.1 Morse functions and handle decompositions of manifolds 27

™ (,01(5)‘71 X an)\)
(¢1")

XO X [O, 1]

Xo

Then using this Morse function we have a handle decomposition for X as
stated in the following Proposition

Proposition 2.19 (Handle decomposition of boundary manifolds). Let X be a
compact manifold with boundary 0X = Xo[[ X1. Then X possesses a handle-
body decomposition up to diffeomorphism

X=Xox[0,1] |J (¢

i=1,....m

Remark 2.20. When 0X = & the statement remains valid since in that case
the first handle must be of index 0 and the last one must be of index n. The
process start with a collection of n-disks, the 0-handles, then handles of index
greater or equal to one are glued on these disks.

The decomposition given in Theorem 2.19 is not unique. So we will try to find
good decompositions for our purpose. First we have to describe modifications
of handlebody decompositions which do not change the diffeomorphism type.
The goal is to find decompositions with less handles, and as few as possible
of distinct indexes of handles. Note that all the following lemmas are due to
Smale [142], see [71] and [94] as well for proofs.

Lemma 2.21 (Isotopy lemma). Let X be a manifold of dimension n such that
its boundary 0X is Xo[[ X1. Let p,¢ : S* 1 x D" — X be two isotopic
embeddings. Then there exists a diffeomorphism between X U (¢) and X U (1))
which is the identity on Xg.

Proof. The idea of the proof is to find an ambient isotopy on X which is identity
on Xp. It induces a diffeomorphism h on X with h o ¢ = %, and then a
diffeomorphism between X U () and X U (¢). O

Remark 2.22. We sometimes call isotopy between attaching map of handles
sliding of handles. This terminology comes from the fact that we can illustrate
this isotopy by the moving of one handle to the other by the sliding of the gluing
set.

In the following, for two handle decompositions

X=Xox[0,1] |J ().

i=1,....m
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X=Xox[01 |J @),

1=1,..., m

of X, we will construct diffeormorphism of X which is the identity on Xy x {0}.

Definition 2.23. We say that the two handle decompositions

X:XOX[Ov]-} U (901)\1)’

i=1,....m
X=Xox[01 |J @),
1=1,..., m
of X, are diffeormorphic together relatively to Xy when the diffeomorphism is

the identity on X x {0}.

Lemma 2.24. Let X be a manifold of dimension n such that its boundary 0X
is Xo [[ X1. If A < pu are some positive integers, then Xy x [0, 1] U (o) U (o)
is diffeomorphic to Xo x [0,1] U (¢2) U (¥*) relatively to Xo for an appropriate
attaching map @y .

Proof. The inequality of dimensions (A—1)+4 (n—pu—1) < n—1 holds, so up to
an isotopy ¢(S*~1 x {0}) does not meet the transverse sphere of the y-handle.
Hence one can find an embedding

@t ST DTN O(X U (v))

which does not meet the image of 1 in dX, namely (S*~1 x D"~#). By
Lemma 2.21 we have that

Xo x [0,1]U (¥*) U (¢Y)

is diffeomorphic to
Xo % [0,1] U (92) U ().
O

Remark 2.25. Let A < p, and let Xgx [0, 1]U(¢*)U(¢)*) the manifold obtained
by attaching two handles. Note that the attaching map of the p-handle

P ST DM 9(X U (@)
may not be isotopic to an embedding

by SH1x DR a(X \ (p(S* x D’H))).

This means that the formula X x [0, 1]U (¢¥*) U(¢*) may be meaningless (up to
diffeomorphism as well) in this situation, since the attaching map % may not be
defined (up to isotopy) on Xy x {1}. Hence the order in which handles appear
is very important and changing this order must be done carefully.

Let us consider the manifold Y obtained from X, x [0,1] by adding two
handles of consecutive index, say A and A 4+ 1. If ¢ and 1 are the attaching
maps one can write

Y = X, x [0,1]U (M) U ().
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Assume that ¥ (S* x {0}) meets the transverse sphere of the A-handle, namely
{0} x S"~A~1 transversally in exactly one point ». Let I be a small neigh-
bourhood of the transverse sphere {0} x S"~*~! in the A-handle (¢*). Then
one can find an isotopy between D"~* x U and the A-handle. Then we have
(St x {0}) N (p*) = D* x {5}.
Then it is technical, but not difficult, to check that the n-manifold

A n—A>A\ A+1 n—A—1
D X D U%Sxanfx)meanf)\ D X D ’

which is the gluing of the A-handle and the (A +1)-handle along 1(S* x D"~*)N
D*x D™ *, is homeomorphic to the contractible manifold D™. This implies that
X and Y are diffeomorphic. The following picture illustrates this cancellation
phenomenon.

{0} x Sn=A-1L

(5™ % {0}) ’

X() X {1}

\./

XO X [07 1]

N~ -/

We proved

Lemma 2.26 (Cancellation Lemma). Let Xy be a manifold without boundary,
and let Y = Xox [0, 1JU(e*)U( 1) such that p(S* x {0}) meets the transverse
sphere of the A-handle transversally in exactly one point. Then Xo x [0,1] and
Y are diffeomorphic.

Using this Lemma, if needed, one can change a handle decomposition and
add two handles with consecutive indexes. First choose an embedded n-disk D
in Xy x {0}. Then construct an embedding

0:SAx D" =D
and an embedding
¢ MU DA 5 9(X U ()

such that ¥(S* x {0}) meets the transverse sphere of the A-handle transversally
in exactly one point. According to the Cancellation Lemma 2.26 the manifolds
X x [0,1] and Xg x [0,1] U (¢*) U (»**1) are diffeomorphic relatively to Xo.
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Let us describe how to remove a A-handle. The first step is to construct a
(A + 1)-handle with a transversality condition with the A-handle which allows
cancellation. Then construct a handle of index A+ 2 such that the two handles
of indexes A + 1 and A2 are canceling together.

Now, up to technical assumptions we are ready to eliminate a A-handle and
replace it by a (A + 2)-handle as stated in the next Lemma.

First we have to fix some notations. Suppose that we have a handle decom-
position of a manifold

Pp1 Pn

Y = X, % [0,1] U(wi)..- U(w?%

then we denote
Pp1 Pq

e Y9 =X4x]0,1] U(gozl) . U(gog), the manifold obtained from X x [0, 1]

i=1 i=1
after the gluing of handles of index less or equal to g,

Pg+1 °
o YT =0v9\ [] ¢t (s7x D19
i=1
Lemma 2.27. Let Xg be a (n—1)-manifold without boundary and 1 < X\ < n-—3.

Px Px+1 Pn

Fiz a handle decomposition of Y = Xg x [0,1] U(gof‘) U (M) ... U((p?),
i=1 i=1 i=1
with no handle of index strictly less than .
Let 1 < k < px be a fized integer. Suppose that there exists an embedding
P SA x DA 5 YA such that

1. w’\+1|5)\ % {0} is isotopic in Y to an embedding 1 : S* x {0} — oY
which meets the transverse sphere of the handle (@2) and is disjointed from
the transverse spheres of the handles (¢2) P—

itk
2. ¢)‘+1|S,\ « {0} is isotopic in OY**! to an embedding of S* into a (n—1)-
disk D"t C Oy ML,

Y N

Then'Y is diffeomorphic, relatively to Xo, to a manifold which has the following
handle decomposition

X0y U e U@Hue e Uen

Proof. All the technical assumptions made in this Lemma allow to add first
a new (A + 1)-handle (¢**!) which cancel with the handle (¢3), second to
glue a new (A + 2)-handle (»**2) which cancel with (¢**1). With the second
assumption made in the statement, the gluing of the two handles (¢**!) and
(**+2) can be made in a (n — 1)-disk embedded in JY 2.

Then according to the Isotopy and Cancellation Lemmas (2.21 and 2.26) we
can find the appropriate embeddings {@sz lk=A+1,...,n;4=1,...,pr} to
give the desired handle decomposition of a manifold which is diffeomorphic to
Y relatively to Xj. O
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This Lemma will be very useful to prove the h-cobordism Theorem. But first
we have to introduce a CW-complex associated with handle decompositions of
manifolds. This CW-complex will allow us to compute the Whitehead torsion
that appears in the s-cobordism Theorem.

2.1.2 CW-complex and handlebodies

In this subsection, we briefly recall some elementary properties of relative CW-
complexes, and then we will construct a CW-complex which is associated with
the handlebody decomposition of a manifold.

Let us denote by X(© a set of discrete points. Let n > 1 be an integer.
If the set X1 has been defined, then consider {tn}aca, a set of maps
e 1 81— X (=1 Get

XM = x(=1 (U DZ)
oo acA,

be the gluing of X1 and some n-dimensional disks along their boundaries
dD" = S"~1 with the maps 1q.
This induces a filtration

XOcx®Wec  cx™c...,

the path components of X (") \X("_l) are called open n-cells, the maps 1,
are called attaching maps, and the maps ¥, : D, — X induced by 1, are
called characteristic maps.

The set

X = U x )
neN

is called a CW-complex. When A is not finite, then a set is open in X if its
intersection with each X is open in X (™). The letter C stands for CLOSURE
FINITE and the letter W stands for WEAK TOPOLOGY. A set is open if its
intersection with each X (™ is open in X ("),

Remark 2.28. An open n-cell is open in X, but usually is not an open set
in X.

The image of a characteristic map is a compact subset of X, which is some-
times called a closed cell, but usually is not homeomorphic to D™.

A relative CW-complex (X, A) consists of a pair of topological spaces A C X,
such that X is obtained from A by gluing A-cells, with A > 1, as we did for CW-
complexes. The associated filtration is

A=XAD cxWV e cxc .

Let (X, A) be a relative CW-complex. Assume that X is arcwise connected®
and set m = m1(X). Let p : X — X be the universal covering of X, and set
X@ = p~1(X@) and A = p~'(A). Then (X,A) is a relative CW-complex
with the filtration A c XM c...c X" c ...

IThis assumption is only made in order to avoid considerations about base points and
simplify the argument.
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Recall that the homology of the relative CW-complex ()Z' ,E) can be com-
puted using a Z[r]-chain complex C, (X, A). The ¢ Z[r]-chain module is the
singular homology Hq()? (@), X (qfl)) and the m-action is coming from the cover-
ing transformations, the ¢*" differential is then given by the composite map

H,(X@, X0y g (X)) 3 gy, (XD Xa-2),

where 9, is the ¢*® boundary map associated with the homology long exact
sequence of the pair ()Z'(‘I), )Z'(q’l)) and 4, is induced by the inclusion.

If we denote by 3; the image of a generator of H,(D?, 597 !) 2 Z under the
map (W2, ¢7), : Hy(D?,8971) = Cy(X,A) = Hy(X@, X@ 1) then the set
{Bi}ica, is a Z[r]-basis for C, (X, A). We call this basis the cellular basis.

Recall that the homology of a relative CW-complex is given by the homology
of the Z[r]-chain complex we just defined, i.e.,

H. (X, A) = H., (C.(X, A)).

Let M be a closed (n — 1)-manifold. Now suppose we have a handle decom-
position of a manifold

Px Pxx+1 Pn

Y =Mx[0,1]J) J @) U,

i=1 i=1 i=1

where the A-handles are attached on M x {0}. We denote by Y9 the manifold

vi=ax 011U U@ U

obtained from M x [0, 1] by adding handles of index less or equal to q.
Let us denote M x {0} by My. Then we construct by induction over ¢ =
A, ...,n a sequence of spaces X (9 with a filtration

Myc XM c...cx®=x

such that (X, Mj) is a relative CW-complex. We define the attaching maps of the
relative CW-complex (X, M x {0}) using the attaching maps of the handlebody
decomposition of Y.

More precisely set

a1 YA =M x[0,1] = XA~ = M

the projection, which is a homotopy equivalence.

Assume that, for ¢ > X, the set X~ is constructed and there exists
a homotopy equivalence f,_; : Y9t — X1 Then define the attaching
maps fq—1© gof'Sq_l x {0} fori=1,...,p, to construct Y¢. Now consider the

relative CW-complex (Y?,Y?), where Y9 is constructed from Y9 by adding ¢-

cells with the attaching maps {gog|5q_1 % {0}}1,_1 o One can see that both
=455 Pq

X (@ and Y7 are homotopically equivalent to J?, hence there exists a homotopy
equivalence f, : Y7 — X (@) such that fq|Yq71 = fg-1-
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Denote by p : Y — Y the universal covering of Y with 7 = 71 (Y) as covering
transformations group. Set Y= p~1(Y9). As done before in the general con-
text of relative CW-complex, one can associate a Z|7]-chain complex C, (Y, ]\%)
The ¢ Z[n]-chain module is the singular homology H, (Y@ y@=1) and the
¢*" differential is then given by the composite map

H,(V0, 7070) 24, (VD) 5 B,y (PO, 7072),

where 9, is the ¢*® boundary map associated with the homology long exact
sequence of the pair (17(‘1), ?(qfl)) and 44 is induced by the inclusion.

Since the maps f; : Y4 = X (@) constructed before are homotopy equiva-
lences, then we get an isomorphism of Z[r]-chain complexes

~ ~ _ © ~ ~
C*(Y7MO) = C*(:{a MO)

Moreover each handle of index qv with attaching map ¢f for i = 1,...,p, deter-
mines an element [p?] € C,(Y, MO) And the basis {[¢]]}i=1,....p, of Cq(Y, M)

maps to the cellular basis of C, (X, M) under ©.
Now we are ready to prove the h-cobordism Theorem.

2.2 h-cobordism Theorem

First let us state the h-cobordism Theorem due to Smale.

Theorem 2.29 (h-cobordism [142]). Let My and Ms be two closed oriented
and simply connected manifolds of dimension n > 5. If there exists an oriented
compact manifold W with OW diffeomorphic to the disjoint union of My and

—Ms, and each component of OW is a deformation retract of W then W is
diffeomorphic to My x [0,1].

The manifold — M, is the manifold M> with the reversed orientation.

Remark 2.30. As an important consequence we have that the two manifolds
My and Ms are diffeomorphic to each other.

Remark that the inclusions M; — W, for i = 1,2, are homotopy equiva-
lences. And the letter h in h-cobordism is for homotopy equivalence.

The h-cobordism Theorem can be reformulated as follows.

Theorem 2.31 (h-cobordism). Let M; and My be two closed oriented and
simply connected manifolds of dimension n > 5. If there exists an oriented
compact manifold W with OW diffeomorphic to the disjoint union of My and
—Ms, and H, (W, My) = 0 then W is diffeomorphic to My x [0, 1].

Remark 2.32. In the second statement of the h-cobordism Theorem it is equiv-
alent to replace H, (W, M;) = 0 by H,. (W, Mz) = 0.

More precisely, when H, (W, M;) = 0 the universal coefficient Theorem im-
plies H* (W, M;) & Hom(H*(I/V, Ml)) = 0, and by Poincaré duality we get
H.. (W, M3) = 0. Similarly H, (W, M3) = 0 implies H,.(W, M) = 0.

Assuming Theoerem 2.29 one can prove Theorem 2.31.
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Proof of Theorem 2.31. First remark that if M; and M, are both deformation
retracts of W then we have H, (W, M;) = 0, and H, (W, Mz) = 0 as well.
Second when 71 (M7) = 0, 7 (W, M;) = 0 and H,.(W,M;) = 0 then, ac-
cording to the relative Hurewicz isomorphism Theorem (see [16]), we have
m;(W,M;) = 0 for i« € N. Then one can construct a deformation retraction
from W to M;. As explained in Remark 2.31 the nullity of H, (W, M) implies
H.(W,M3) = 0, and M> is, by the same argument, a deformation retract of
w. O

The h-cobordism Theorem is crucial for the study of cobordism classes of
high dimensional knots. It concerns simply connected manifolds, but this con-
nectivity condition is automatic for knots of dimension greater or equal to 2.

In the subsection 2.2.1 we will prove an extension to non-simply connected
manifolds called s-cobordism theorem. Though we will not need this extension
for the study of knot cobordism, we choose to give this proof since the core of
the proof is the same of the proof of the h-cobordism Theorem and is essentially
made of Smale’s lemmas .

The s-cobordism Theorem was proved by Barden in [4], by Mazur in [99]
and by Stallings (who never published his proof). For additional details we refer
to Kervaire’s paper [71] devoted to a detailed proof of this Theorem.

2.2.1 s-cobordism Theorem

Theorem 2.33 (s-cobordism Theorem). Let My and My be two closed oriented
and connected manifolds of dimension n > 5, and let m = m (M) the funda-
mental group of My. If there exists an oriented compact manifold W with OW
diffeomorphic to the disjoint union of My and —Ms, and each component of OW
is a deformation retract of W then W is diffeomorphic to My x [0,1] if and only
if the Whitehead torsion 7(W, M) € Wh(r) vanishes.

To make this statement understandable we have to define briefly Whitehead
groups and Whitehead torsion, see [151] for details.

Whitehead groups. Let 7 be a group, and let GL(TL,Z[’IT]) the group of
invertible matrices of order n on the group ring Z[r]. We denote by GL(Z[r])

the set of disjoint union U GL (n, Z[w]), it is the set of invertible matrices of
n€eZ
arbitrary size with entries in Z[r].

Let us denote by E}'; a n x n matrix with all entries 0 except for a 1 in the
(i,7) spot; and by A(y) a n x n diagonal matrix with entries on the diagonal
equal to 1 except for v in the (4,4) spot. If I,, denotes the identity matrix
of rank n, then an elementary matriz is a matrix of the form (I, + aE};),
with a € Z[r]; and let E(Z[r]) be the subgroup of GL(Z[r]) generated by the
elementary matrices.

It is not difficult to show that E(Z[r]) is the commutator subgroup of
GL(Z[r]), and any subgroup of GL(Z[r]) which contains E(Z[r]) is a normal
subgroup of GL(Z[n]).

Let us consider the subgroup £7 of Z[x] of trivial units, namely

{plpentu{-p|lpen}=tn<Z[n].
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Then we define I+, to be the set
Lin={M € GL(Z[r]) | M = A}(y) with v € 7, or M € E(Z[r]}.

In I, we collected the matrices of F(Z[r]) and the matrices of the form

o O M
o o
HNo o

with v € +7.
Hence the group E,, which is generated by the matrices of I, is a normal
subgroup of GL(Z[r]).

Definition 2.34. The whitehead group Wh(r) is the abelian quotient group

In the following we will use another definition of Wh(r), which is more
complicated but more convenient for our purpose. On GL(Z[r]) we define an
equivalence relation, denoted by R, generated by the elementary operations
listed below.

Let A be a matrix in GL(Z[n]),

1. multiply the i-th row of A from left by +v with v € m;
2. add the i-th row to j-th row of A;

3. change the matrix A € GL(n, Z[r]) to (1(;1 (1)>7

4. change the matrix <61 (1)> € GL(n+1,Z[x]) to A (this is the inverse of

the previous item).

Remark 2.35. We do not use column operations in our definition, i.e., right
product with elementary matrices. Because if two matrices A and B are re-
lated together with column and row operations, then there exist two matri-

ces F7 and Fs, which are product of elementary matrices, such that I, =
A 0

FEy 4 0 B~! E,. But this means that E;l =F; B~1, and then
0 I 0 I
I, = Es F, (61 IO) B~!. This implies that A and B are related together only
q

using row operations.

One can define a product on classes of matrices in GL(Z[r]) /R We denote
by [4] € GL(Z[TF])/R the class of a matrix A € GL(Z[r]). Let [A] and [B] be
in GL(Z[?T])/R, then there exist two integers ¢ and j (may be equal to 0) such
that the two matrices A @ I; and B @ I; are invertible matrices of same rank.
We define

[Al.[B] = [(A& L,).(B& I))].
The neutral element is given by [I,,] for any positive integer n. The inverse of
[A4] is given by [A~!]. One can prove that (GL(Z[’]T])/R, ) is an abelian group,
and Wh(r) is the quotient GL (Z[T(])/R
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Proposition 2.36. These two definitions of Whitehead groups are equivalent
together.

See [29] for this equivalence.
In the following we will denote by A both a matrix in GL(Z[x]) and its class
in Wh(r).

Whitehead torsion. We will define the Whitehead torsion of a pair (X,Y)
when both X and Y are CW-complexes such that Y is a deformation retract
of X. But Whitehead torsion may be defined algebraically for acyclic chain
complexes over a ring R under some assumptions for R, we refer to [151] and
[108] for detailed expositions on Whitehead torsion.

Since the inclusion Y — X is a homotopy equivalence, then it induces an
isomorphism of fundamental groups 71 (Y) = m(X) = 7, provided we choose
a base point in Y. Let us consider again the universal covering p : X 5 X ,
it induces the covering ﬁ|)~/ :Y — Y and the subcomplex Y is a deformation

retract of X. Therefore the Z[r]-chain complex C,(X,Y) of length n is acyclic.
Recall that 7 acts on C,(X,Y), and this makes it a free chain complex over
Z[r]; each Z[r]-module C,;(X,Y’) equiped with the cellular basis B, = {f;}ica,
see § 2.1.2.

1. First assume that for all integer 0 < ¢ < n the Z[r]-module Imd,, is free.
Since the complex is acyclic, then we have the short exact sequences

0= Imd, — Cy(X, V) % Imd,_; — 0.

By exactness of the last short sequences we get sections s, of dg, then
set Iy | = s4(Z,) the image of the basis Z, 1 of Imd,_; under s,. Note
that, since for any distinct integers ¢ and j the two Z[r]-modules Z[r]*
and Z[r]’ are not isomorphic, then the juxtaposition of the two basis Z,

and Zy_, is a basis of C’q()?,f/). Set Tz,z:_,—p, the transition matrix
from Z,Z;_, to B,.
The following product matrix

n 1
_ (=1)°
T= H TIqu*_lan
i=0
is invertible.

Moreover one can prove that its class in Wh(rw) does not depend on the
choices of the basis and is invariant under cellular subdivisions. According
to these facts when for all integer 0 < ¢ < n the Z[r]-module Imd, are
free, then we define the torsion of the complex C*()z, 37) to be the class
of 7 in Wh(r).

2. When the Z[r]-module Im d, are not free we have the following Lemma

Lemma 2.37. For all integers 0 < q < n there exists a free Z[r]-module
F, such that the Z[r]-module Imd, & F, is free.
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Proof. Note that Imdy = Co(X,Y) is free.

We will prove the property by induction on . Assume there exists an
integer k > 0 for which there exists a free Z[r]-module F} such that the
Z[r)-module Im dy, ® Fy, is free.

Since the Z[r]-chain complex C, (X, Y) of length n is acyclic, then we have
the following short exact sequence

0— Imdy1 — CW(X,Y)® F, “ Ima;, & F), — 0.

The last Z[r]-module is free, hence there exists a section oy, for dy & Id.
The Z[r]-module o,(Im dy, @ Fy) is free, and Imdy11 @ o4(Imdy, ® Fy) =
Cr(X,Y) @ Fy, as well. O

Let us denote by C{(F) the free based acyclic Z[r]-chain complex associ-
ated with a free based Z[r]-module F', which has d, : F' — F as the only
non-trivial differential

...—>0—>Fi$F—>O—>....

Define a new Z[r]-chain complex C, ()~(, 17) @D,_, CF(Fy). Since in this
free acyclic Z[r]-chain complex the image of the differential are some free
Z[n]-modules, then we can compute its torsion as just made before. One
can prove that the torsion of this complex does not depend on the choices
made on the free Z[n]-modules F, for ¢ =0,...,n.

We define the torsion 7(X,Y") to be the torsion of the Z[r]-chain complex
Cu(X, Y) @Z:O Cf(Fk>

Come back to the statement of the s-cobordism Theorem. Assume that W is
an oriented compact manifold with boundary OW 22 M; [ —Ma, such that both
My and M are deformation retracts of W. To a handlebody decomposition

W= x 0,1 ). e e,
=1 =1 i=1

one can associate first a Z[r]-chain complex C. (W,Ml) and second a relative
CW-complex (%, M, 1) such that the Z[r]-chain complex C, (%, Ml) is isomorphic
to C,. (W, M).

Since M is a deformation retract of W, in the relative CW complex (%, Ml)
we have that M is a deformation retract of X as well. Hence T(%7 ]T/fl) is well
defined, and the torsion (W, My ) is by definition equal to the torsion 7 (X, M, 1)

Simple homotopy equivalence. When the map f: F — F is a homotopy
equivalence between CW-complexes, then F' is a deformation retract of the
mapping cylinder

My = (X< 0.1 [TY/ (1) ~ f(2)
of f.
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We define the Whitehead torsion of f, denoted by 7(f) € Wh(m(Y)), to
be the image of the torsion 7(My,Y) € Wh(m;(My)) in Wh(71(Y)) under the
isomorphism between Wh (7 (My)) S Wh (71(Y)) induced by the isomorphism
T (My) S m (Y).

This torsion is well defined, and when two cellular homotopy equivalences
between two CW-complexes are homotopic the torsion are equal.

Definition 2.38. We say that a homotopy equivalence f : X — Y of finite
CW-complexes is simple if the torsion 7(f) vanishes in Wh(m (Y)).

This definition extends to homotopy equivalences between smooth manifolds.

Remark 2.39. In the statement of the s-cobordism Theorem the inclusions
M; — W are simple homotopy equivalences. The letter s in s-cobordism refers
to simple homotopy equivalence.

Proof of the s-cobordism Theorem. To prove the s-cobordism Theorem
we need some technical Lemmas. There exists many written proofs of these
crucial Lemmas in the literature, see Liick [94] and Kervaire [71].

Let us fix some notations. In the following we will consider handle decom-
positions of a manifold W which has M; [] M> as boundary.

Po Px Pn
W= My x [0,1] [ J?) ... [} ... [ Jeh.
i=1 i=1 i=1
Then we will denote
Po Px

WA =My < (0,11 D) .- )

i=1 i=1
the manifold obtained from M; x [0, 1] after the gluing of handles of indexes
less or equal to A\, and

Dx+1

OWD = aWw™\ (H eS8 M x B"—H) [ x {0})
i=1

the upper boundary of W* without the gluing sets of handles of index A + 1.

Lemma 2.40. Let W be an oriented compact n-manifold with n > 6 and OW
is diffeomorphic to the disjoint union of two compact (n — 1)-manifolds My and
M. Suppose that each component of OW is a deformation retract of W, then
W is diffeomorphic to

< 0,11 U en)
=1 =1

relatively to M.

Proof. Let My x [0,1] U, (¢?) ... U, (¢) be a handle decomposition of W.
To prove this Lemma we have to show that we can remove the handle of indexes
0 and 1.
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Recall that to add a 0-handle we make the disjoint union with a n-disk.
But since W is connected there exists almost one 1-handle joining M; x [0, 1]
to this n-disk. Up to isotopy all the gluing sets of 1-handles, which are not in
the O-handles, are in M; x {1}, hence the order of attaching 1-handles is not
important. So if (?) is the first 0-handle, one can assume that the 1-handle (1)
is joining M; x [0, 1] to (¢9). But the gluing of (¢}) with (¢9) is homeomorphic
to a n-disk since we only attach one connected component of the boundary of
the 1-handle to the 0-handle. These two handles (p1) and (¢9) are canceling
together, so we can remove the O-handle (¢{) and the 1-handle (¢}). Finally
one may assume that there is no 0-handle.

The handle decomposition of W became

< f0,1) - U,

Since 3W$ consists only in M x {1} with 2p; disks of dimension (n — 1)
removed, then 771(3W$) = m (M x {1}). Moreover My x {1} is a deformation
retract of W, so m; (3W_€) maps surjectively onto 71 (W). Let

¢1: D' x D" W!

be the embedding of the 1-handle (1) . Consider now [o] € 71 (W) given by
the homotopy class of

o= ¢1(D' x {0}) Ui (sox{oy)

the gluing , along their boundary of the core the 1-handle and a path v, which
join in 3W£ the two points of 1(S° x {0}). By construction [o] is not equal
to 0 in 71 (W1); but since 7 (W) = 71 (M), then [o] must be 0 in 1 (W). This
means that ¢ is null-homotopic in W. Because of the dimensions, one can find
some attaching maps {¢/?};—1 . p, isotopic to {p?};—1 . p, such that for all
i=1,...,p2 the images of ©/> do not meet the loop o. Hence one can construct
an embedding

¢: St — oWt
such that

[6(51)] = [o]
and ¢(S') meets the transverse sphere of (¢}) transversally in exactly one point.
Since ¢ is null-homotopic in W, then ¢ is null-homotopic in W and in OW? as
well. This means that the image of ¢ bounds an immersed 2-disk, and twice
the dimension of this disk is strictly less than the dimension of W2, which is
5. According to Whitney’s embedding Theorem, this homotopy can be realized
with an embedding of a 2-disk in OW?2. This means that one can extend ¢ to
an embedding ® : S' x D"~! — 9W? which is isotopic to a trivial embedding
in OW?2. By construction ® fulfills the hypothesis of Lemma 2.27, so we can
eliminate the first 1-handle in the decomposition of W. By induction we get the
desired decomposition

we o x 0,1 @) U@ @)
=1 =1 =1
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Remark 2.41. In the proof we strongly used the assumption n > 6 to smooth
immersed disks to embedded disks.

As a consequence of this Lemma one can give a description of the Z[r]-chain
complex C,(W, M) in term of homotopy groups, see § 2.1.2 for the definition

of this complex, where we have identified M; x {0} to M, the manifold W is
the universal covering of W and = = m (W).

First we fix a base point in M; x {0} and a lift of that point in p~(W), all
the homotopy groups will be considered with respect to these base points. Now
we define the Z[r]-chain complex

0 if ¢ <1,

* *—1\
7T*(W ;W )_{ﬂ'q(Wq,qu) lquQ

The differentials are given by the composite maps

mg (W, W) 2 (W) S (Wt a2

where J, is a boundary operator, and i,_; is induced by the inclusion.

For all ¢ > 1 the group m (Wq’l) is trivial, then the relative Hurewicz
homeomorphism 7, (W4, W=1) — H, (W4, W9=1) is an isomorphism. Moreover
the covering maps py : W — W1 induce the isomorphisms

wq(WQ,Wq—l) >, (W, W,
Finally we get an isomorphism of Z[r]-chain complexes
C.(W, M) = m (W, W),

Each basis element [p!] € Cq(W,]\,Zl), associate with the attaching maps of
the handles, can be considered as an element of 7, (W% W?~!) with this iso-
morphism. It corresponds to the element given by the homotopy class of the
mapping (D9 x {0}, p?(S77! x {0}) — (W9, Wa~1).

In the following Lemma we give conditions which ensure that the embedding
of a sphere meets suitably the transverse spheres of a handle decomposition.

Lemma 2.42. Let W be a compact n-manifold with n > 6 and OW is diffeo-
morphic to the disjoint union of two compact (n — 1)-manifolds My and Ms.
Suppose that W is diffeomorphic to

< 0.1 U Ul

relatively M. .
Fiz A € {1,...,n—3} and k € {1,...,px}. Let f : S* — OW} be an
embedding. Then the following are equivalent

1. There exists an embedding g : S* — [:)Wﬁ isotopic to f which meets the
transverse spheres of the A\-handle (¢}) transversally in exactly one point

and is disjoint from the transverse spheres of the A-handles {((pf‘)}#k,
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2. For any lift f: SA 5 W of f under p,—,; if [f] denotes the image of f

W
under the composite map mx(W?) — mx(WA WA — Hy (WA, WAL,

then there exists v € m such that [f] = £v[pp].

Proof. When the transversality conditions of the first statement are fulfilled,
the second follows easily.

Let us explain the converse. Because of dimensions the image of f meets the
set of transverse spheres of the A-handles only in a finite number of points, set

n—A—1 _ . .
LRSS S
Fix * € Im f a base point in W, and in each transverse sphere {0} x Sf”‘fl
fix a base point *;, for ¢ = 1,...,py, such that x; & {%‘,1, e 795%}7%}1':1
Now let

2%
C@ji[o,l]—+ SA

be a path such that for all (4,5) € {1,...,pa} x{1,...,n;} we have foc; ;(0) = *
and foc (1) = ;. Let
b@ji[o,l]—ﬁ M7A

be a path such that for all (¢, j) € {1,...,pa} x{1,...,n;} we have b, ;(0) =z, ;
and b; ;(1) = *;. And let
a; - [0,1] = W

be a path such that for all i € {1,...,px} we have a;(0) = *; and a;(1) = *.
Now let I; ; a loop base in *, which is the composite path of f(c; ;), b; ; and
a;. if we denote by ~y; ; the homotopy class of [; ; in m = 71 (W, %), then we have

Px n;

[f] = Z Z €ij Yirj 7]

where €; ; = £1.

We assume that there exists v € Z[r| such that [f] = £7[¢}], but since the
set {[w?]}iy »,, 18 @ basis of Hy (W, WA1) then, for i # k, we can associate

the elements of {xi’l, . 7wm} R by pairs such that for each pair, say

i=1,...,
(%441, i,j,), we have € j, €5, = —1. pThis means that the loop, which is the
composite path of f(c; j,), b; j,, the inverse of b; ;, and the inverse of f(c; j,) is
null-homotopic in éW_f_‘

Now, since n > 6, then one can apply the Whitney trick (see [162]) to modify
f with an isotopy, and get new embedding of S in 8AW$ with the two inter-
section points z; ;, and x; ;, removed and no change to the other intersection
points with the transverse spheres.

ng
By induction we get the first statement with v = + Z €k,j Vhyj O
j=1

Lemma 2.43. Let f: S — 3W_f‘_ be an embedding , and let {x;};=1.. be

a set of elements of Z[r].

cHPA+1
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An embedding g : S* — 3W_f‘_ is isotopic to f if and only if to each lift

f: SA — WA of f under ﬁWNV,\ one can find a lift g : S* — W of g such that

in HA(W)‘, W21 we have

DPx+1

G =[f1+ Z zjdyia [t

where dyy1 is the (A + 1)-differential of the complex C*(W, Ml)

This Lemma is more or less proved in Smale’s work [142], for a proof see [71]
or [94].

Lemma 2.44. Let W be an oriented compact n-manifold with n > 6 and OW
is diffeomorphic to the disjoint union of two compact (n — 1)-manifolds My and
M. Suppose that each component of OW is a deformation retract of W, then
for any X € {2,...,n — 3} there exists a handlebody decomposition of W of the

form
Px Pr+1

My x (0,1 @) U (0.

i=1 =1

Proof. We saw that handles of indexes 0 and 1 can be removed so we start with
a handle decomposition for W of the form

P2 Pn

W= My x [0,1] | (). [ J@e)).

i=1 i=1

Now we will show that we can decrease p, by one provided that p, = 0 for
r<g—1landqg<n-—3.
Start with a decomposition

Pq Pn

W2y x (0,1 (). | eh).

i=1 i=1

As done before the trick is to attach a new (¢ + 1)-handle, which cancel with
(p1), and a new (g + 2)-handle such that the two new handles cancel together.
To do that we will use Lemma 2.27.
Let
gatl; getl o proal o e

be an embedding such that its image is included in a n-disk D™ C 3Wf_
Since the inclusion M; < W is a homotopy equivalence, then the Z[r]-

chain complex C, (W, ]\71) is acyclic. But we assume that there is no k-handle
with k¥ < ¢ — 1 in the handle decomposition for W, hence the the Z[r]-module
qul(w, M) = Hq,l(Wq’l, W4=2) is trivial. So the (¢ 4 1)-differential of the
complex C, (W, M), namely dgt1 : CqH(W,Z\Z) — Cq(W,]\Z), is surjective.

This implies that there exists a set {x}i=1,... p,,, of elements in Z[r], such that

Pg+1

Hq(ﬁ?qqu_l) > [‘P({] = Z T dq+1([¢g+1])~
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According to Lemma 2.43, one can find an embedding
PItl: §utt s pratl L Gt
which is isotopic to WIt! in JWIH! | such that

Pg+1

Wﬁ;qlx{o}} = [‘I’l\];lx{o}] + Z i dq+1([¢g+l])~
i=1

But [wﬁ‘;lx ol = [¢]] since [\I/‘nglX (0y) 1s null-homotopic in OWIT!. Moreover,
according to Lemma 2.42 the embedding wf;1X (0} is isotopic in éWi‘H to an

embedding S7 — éWfrl which meets the transverse sphere of (¢{) transversally
exactly in one point and do not meet the transverse spheres of the other g¢-
handles.

We can apply Lemma 2.27 to find a new handle decomposition

Pq Pqg+1 Pq+2 Pn
w2 My x [0,1] (e |J @ Hu @) @ U@,
=2 =2 =2 =1

and the number of g-handle decreased by one. By induction we can remove all
g-handles.

Now using the dual handle decomposition for W, i.e., the handle decom-
position associated with the Morse function — f instead of f which start with
M5 x [0, 1]; we have the following decomposition

Po Px Pn

W= My x [0, 1] (1) - [ J(er ™) [ (e))-

i=1 i=1 i=1

As just explained before one can remove handles of indexes less or equal to
n — A — 2 in this decomposition, and

Po Pr+1
W My x [0,1] [ J(@7) ... [ (67 ).
=1 =1

If we take again the dual handle decomposition of the last one, then one can
find a handle decomposition for W of the form

Po Pr+1
W My x [0,1] [ J(@))... | (@).
i=1 i=1

Now we remove all handles of indexes less or equal to A\ — 1 in the last
decomposition and we get the desired result

P Px+1
W= My < [0,1] [ J(e) | (™).
i=1 i=1

We are ready to finish the proof of the s-cobordism Theorem.
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Proof of s-cobordism Theorem. With the previous Lemma 2.44 we can assume
that the manifold W admits a handle decomposition of the form

P
U /\+1

The number of handle is the same since we assume that both M; and My are
deformation retracts of W. o

The acyclic Z[r]-chain complex C,(W, M;) has only one differential which
is non zero, namely

W = M1><01

I C@

dxt1 : HA+1(WA+1,WA) — H,\(VNV,MWAA)

Let D be the matrix of the isomorphism dy 1 with respect to the basis { ’\+1 }1 1

=1,...,p

ofC)\H(W, Ml) = HAH(VV,\H7 W)\) and the basis { goi }7::1 o ofCA(W, Ml) =

HA(WA,’VVA,Q. The entries d; ; € Z[n] of the matrix D, for i,j =1,...,p, are
defined by the equations

p
d)\+1 Zd i, QDJ
j=1

By definition, the Whitehead torsion 7(W, M) is given by the class of the
matrix D in Wh(r).

Let us give the geometrical interpretation of the four elementary operations
which generate the Whitehead group described in Definition 2.34 and Proposi-
tion 2.36, when these operations are made on the matrix D we just defined.

1. The multiplication of the k-th row of D by ++ with « € Z[r] correspond to
the modification of the lift in WA*1 of ¢p. But according to Lemma 2.43
this corresponds to the gluing of a new A-handle (¢}) instead of (7).
The resulting manifold is diffeomorphic to W.

2. Similarly to the previous item, the addition to the k-th row of the j-th
row of D can be realized by the gluing of a new A\-handle which is isotopic

o (¢p)-

3. This operation corresponds to the gluing of a new A-handle (1/*) and a
new (A + 1)-handle (¢**1) in a n-disk of W+, such that these handles
are canceling together.

4. This operation is the converse of the previous one, when we do it we
just remove to handles, which are canceling together, from the handle
decomposition of W.

Since all of the modifications on the matrix D correspond to modifications of
the handle decomposition of W which do not change W up to diffeomorphism,
then we see that the Whitehead torsion 7(W, M;) vanishes if and only if W
admits a handle decomposition in which all handles can be removed, and then
W = My x [0,1]. O

Proposition 2.45. The s-cobordism Theorem implies the h-cobordism Theo-
rem.
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Proof. Recall that any invertible matrix over the integers can be reduced by
elementary operations to the identity matrix. So all the matrices in GL(Z)
are equivalent in Wh(Z) which is trivial. When the manifolds M; and M, are
simply connected, then Wh(r) = {0} and the s-cobordism Theorem implies the
h-cobordism Theorem. O

2.2.2 The relative case

The notion of relative h-cobordism was introduced by Heafliger [51].

Definition 2.46. Two pairs (M7, V;) and (Ma, V3) of manifolds with V; C M;
for i = 1,2 are h-cobordant if there exists a pair of manifold (M, V) with V .C M
such that OM = My — My, 9V = V; — V5 and the inclusion M; — M, V; =<V
are homotopy equivalences for i = 1, 2.

Then the h-cobordism and s-cobordism theorems can be extended to the
relative case.

2.3 Stabilized h-cobordism, and h-cobordism Theorem for
3-manifolds

During the proof, we saw that the h-cobordism Theorem is valid when the
dimensions of manifolds are greater or equal to five. In this section we present
the stabilized h-cobordism Theorem for four dimensional manifolds.

First recall that in [156] Wall proved that if (W, M, M’) is an h-cobordism
between closed, simply connected 4-manifolds M and M’, then M#(#,5% x 5?)
is diffeomorphic to M'#(#k52 X 52) for some positive integer k.

Then in [83] Lawson extended the proof to 4-manifolds which are not simply
connected.

Theorem 2.47. Suppose (W; My, M_) is a smooth s-cobordism whose bound-
ary cobordism from OMy to OM_ has a product structure. Then for some
integer k the k-fold stabilization of W by connected sum along an arc with
(5?2 x5%)x[0,1] has a product structure extending the one given on the boundary.

2.4 Surgery on manifolds

In this section we describe modifications on manifolds called surgeries. We
introduce them now since they are related to handle gluing. When we give
handlebody decompositions of manifolds we attach handles in order to give
some descriptions of the manifolds, but when we do surgeries we attach handles
to kill some homology classes.

Start with a n-manifold X, and let ¢ : S*¥ x D"™* — X be an embedding
for 0 < k < n. Set Y be the manifold obtained from X as follows

Y = X\ (Z/J(Sk % ank) Us (DkJrl X Sn7k71)7

where the gluing is given by the identification of boundaries.
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Definition 2.48. We say that Y is obtained from X after a surgery on ¢(S*).
When the manifold X is embedded in a manifold W, if there exists an
embedding

¢ : DM §PETL o (W X)U(w(S% x §*7F )
such that ¢(S* x S"7F~1) = )(S* x S"~*~1) then we say that the manifold
Y =X\ (¥(S*¥ x D"F) Ug ¢(D* x S"F1),
is obtained from X after an embedded surgery on (S*).

In fact surgeries can be described with handles gluing. The manifold Y
constructed by surgery on ¥(S¥) can be viewed as the upper boundary of

X % [0, 1] U ("),

as depicted bellow

(¢k+1) w(Sk x D"—k)
Y
X x [0,1]
X

Modifications of manifolds with surgeries change homology groups. More
precisely a surgery on 1(S*) in a manifold X gives a manifold Y in which the
homology class of 1(S*) is zero. So if ¥(S¥) is a n-dimensional chain which
represents a non trivial homology class in X, then the rank of the k** homology
group of Y may not be equal to those of X. Moreover if 1)(S*) is a n-dimensional
chain which represents a trivial homology class in X then a surgery on (S*)
must add some homology class of dimension not equal to n.

Anyway, using Mayer-Vietoris exact sequences associated with decomposi-
tion of manifolds like

X\ (’(/)(Sk? X Dn—k) Us (Dk-l-l % Sn—,’c—l)7

one can compute exactly how a surgery modifies the homology of X.

As a reference we cite [154]

We will combine surgeries and h-cobordism Theorem to construct cobordism
of knots. More precisely, to prove that two knots Ky and K; are cobordant, we
need to find a manifold X such that 0X = Ko[[K; and X = Ky x [0,1]. A
way to do that is to start with a manifold Z such that 0Z = Ky ][ K; and do
some surgeries on Z to get a manifold X with H,(X, Ky) = 0 and then apply
the h-cobordism Theorem to get X = Ky x [0, 1].



Chapter 3

Spherical knots

"Die Mathematiker sind eine Art Franzosen:
Redet man zu ihnen, so libersetzen sie es in ihre
Sprache, und dann ist es alsbald etwas anderes."

J.W. von Goethe,
- Maximen und Reflexionen

In this chapter, we consider the case of spherical knots. In the sixties,
Kervaire and Levine gave classifications of spherical knots up to cobordism,
we will recall some of their results in the following.

Unless specified all knots in this chapter are simple spherical (2n — 1)-knots.

3.1 S-equivalence

The Seifert form is the main tool to study cobordisms of odd dimensional spher-
ical knots. Since spherical knots are not in general fibered, then there exists
many distinct Seifert manifolds for a given spherical knot. Before going further,
the first step is to know what happen on Seifert forms when we change the
Seifert manifolds associated with a spherical knot. In [91] Levine described the
possible modifications on Seifert forms of a spherical simple knot corresponding
to alterations of Seifert manifolds.

For a given (2n — 1)-knot K embedded in S?"*1 let us consider two Seifert
manifolds V; and V, associated with K. One can suppose that V; x {i} is
embedded in St x {i} — §?"FT! x [0,1] for i = 0,1. We denote by 2l; the
Seifert form associated with V;, and by &; = 24; + (—1)"2(; the intersection
form associated with V; for ¢ = 0, 1.

Recall that intersection forms of spherical knots are unimodular.

With similar arguments as those used to prove that every knot bounds an
embedded Seifert manifold, one can see that there is no obstruction to construct
an embedded submanifold W of S?"*1 x [0,1] such that

oW =Vy UK x [0,1]UV;.
Then the handle decomposition associated with a Morse function
f: W —=]0,1]
shows that Vj and V; are related each other by embedded surgeries.

Remark 3.1. The manifold W is very useful to construct submodules on which

the Seifert forms vanish. More precisely, we will se that when two n-cycle o and
B in H(Vp) @ H(V4) are null-homologous in H, (W) then

(Ao D —Al)(x,y) =0.
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To prove this equality, remark that the positive direction of the normal
bundle of V5[] V1 in S2"+! extend to a positive direction of the normal bundle
of W in S?"*1 % [0,1]. Set & and 7 some (n + 1)-chains in W such that [0¢] =
and [On] = y and &, the chain & pushed out W in the positive normal direction
in §?271 % [0,1]. Since the two chains £, and 7 do not intersect together, then

(Ao S *Al)(xy y) = lgamn ((8§)+, (377))a
A @ —Al)(% y) = Is2n+lx[o,1] (§+w 1),
Ag @ —Al)($,y) = 0.

We will now study the manifold W. When the critical points of f are not
of index n nor n + 1 then the associated surgeries on V; x [0,1] do not affect
n-homology hence the groups H,,(Vp) and H, (V7) are isomorphic ; consequently
the Seifert forms associated with Vg and Vi are the same.

Since the critical points of f are isolated, then it suffices to consider the
case where f has only one critical point. Moreover, if f has a critical point
of index n + 1, then it is a critical point of index n for the Morse function
fl®) = 1— f(x). So we can assume that f has only one critical point of
index n. The corresponding surgery means that we attach a n-handle to the
upper boundary of a collar neighborhood of V. More precisely, we first remove
D"t x 8§71 and then glue S™ x D™ along the new boundary.

Elementary computations with Mayer-Vietoris sequences give

Hn(VVa VO) = Hn+1(VV7 Vl) =7

and
H, (W, V1) 2 H, 1 (W, V) = 0.

Let a be the image in H, (V}) of the generator of H,,11 (W, V1), which is given
by the homology class of the core the handle we attached.

e If a has a finite order, then Seifert forms associated with V; and V; are
isomorphic since they are defined modulo torsion.

e If a has infinite order, then it is a multiple of a primitive element ag of
H, (V7). Since the intersection forms of spherical knots are unimodular,
then there exists by in H,, (V1) such that &4 (ag, bg) = 1. Moreover

rank (H, (V1)) = rank(H, (Vo)) + 2

and we can take (ci,...,cx) in H, (V1) such that (ag,bo,c1,...,cx) is a
basis of H,(V7) and (eq,...,c;) are homologous to a basis (dy, ..., dg) of
H,, (Vo).

There exists a (n + 1)-chain T'; in W such that OT' is a n-chain which
represent the cycle d; — ¢; for i = 1,... k. Then for all 4,5 in {1,...,k}
we have (d;,d;) — A1(cs, ¢j) is the intersection number of I'; and the
translate of T'; off W in the positive normal direction of W in $2"*1x [0, 1].
Since this intersection number is zero then for all ¢, j in {1,...,k} we have

Q[o(di,dj) = 911(61-, C]').

By definition a is null-homologous in W, hence we get 24 (a, ¢;) = 21 (¢;,a) =
A1 (a,a) =0 for i =1,...,k. Thus we have the following equalities

21 (a0, ¢i) = A1(cs,a0) = Ai(ag, ap) = 0.
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If Ao (resp. A;) is the matrix of 2y (resp. ;) with respect to the basis
(di,...,dy) (resp. (c1,...,cCk,a0,b0)), then

AO O 1%
A=t 0 wl,
th 2w

where O is a column vector whose entries are all 0, and v,  are column
vector of integers.
Since &1(ag,bp) = 1 then we have w + (—1)"z = 1. Recall that the
Alexander polynomial of K is well defined up to a unit in Z[t,¢t~1]. If we
denote by A 4, (t) the Alexander polynomial associated with 2; for i = 0, 1,
then

Ay, (t) = (tw+ (—1)"2)(tz + (—1)"w) A4, (1)

So w or z must be 0, if w = 0 then one can modify the vectors of the basis

(c1y...,cCkya0,bp) to get
Ay O O
A=t 0 o0
‘O 1 0

Consequently we define the enlargement A’ of a square integral matrix A as
follows

A O O A [ O
A= 0 0o |'O 0 1],
O 1 0 O 0 0

where O is a column vector whose entries are all 0, and, « and 8 are column
vectors of integers. In this case, we also call A a reduction of A’.

Definition 3.2. Two square integral matrices are said to be S-equivalent if they
are related each other by enlargement and reduction operations together with
the congruence. We also say that two integral bilinear forms defined on free
Z-modules of finite rank are S-equivalent if so are their matrix representatives.

This equivalence relation characterize isotopy classes of spherical simple
(2n — 1)-knots with n > 2 as stated in the following Theorem proved by
Levine [91].

Theorem 3.3 ([91]). Forn > 2, two spherical simple (2n—1)-knots are isotopic
if and only if they have S-equivalent Seifert forms.

We will need the two following Lemmas for the proof.

Lemma 3.4. Let K be a simple spherical (2n — 1)-knot, and let A be a Seifert
matriz associated with a (n — 1)-connected Seifert manifold for K. If B is an

enlargement of A then B is a Seifert matriz associated with a (n — 1)-connected
Seifert manifold for K as well.

Proof. This result is a direct consequence of Alexander duality (see [16]). O

Lemma 3.5. If n > 2, then two simple spherical (2n — 1)-knots admitting
identical Seifert matrices, associated with (n — 1)-connected Seifert manifolds
for K, are isotopic.
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We refer to [91] p.191 for a proof of this Lemma, which is based on handle
decompositions for Seifert manifolds. Though the result is valid for all n > 2,
we have to mention that special arguments must be used when n = 2.

When K is a spherical (2n — 1)-knot with Seifert manifold F, then the long
exact sequence in homology of (F, K) induces the exact short sequence

0= H,(F) 3 H,(F, K) — 0.

Moreover when K is simple then H,, (F, K) is isomorphic to Homg (Hn(F), Z);
and if we equip H,,(F, K) with the dual basis of the one choosed for H, (F) then
the matrix of S, is A+ (—1)" A, where A is the Seifert matrix associated with
F. So in that case we have det(A + (—1)"'A) = £1. The converse is also true
as stated bellow.

Proposition 3.6 ([91]). Let n be an integer greater or equal to 2, and let A be
an integral square matriz such that A+ (—1)"tA is unimodular. If n # 2, there
exists a simple spherical (2n — 1)-knot with Seifert matriz A; if n = 2, there
exists a simple spherical 3-knot with Seifert matriz S-equivalent to A.

Proof of Theorem 3.3. First suppose that two simple spherical (2n — 1)-knots
Ky and K, are isotopic, then using the same argument to compute modifications
on Seifert forms corresponding to alterations of Seifert manifolds, we see that
their Seifert forms are S-equivalent.

For the converse, start with two simple spherical (2n — 1)-knots, denoted by
K and K’, with S-equivalent Seifert forms. Then there exists a finite sequence
of matrices Aq,..., A such that A; = A is a Seifert matrix for K, A, = A’
is a Seifert matrix for K’ and for all + = 1,...,k — 1 the matrix A;y; is an
enlargement or a reduction of A; up to congruence.

Now it is easy to see that K; and K, are isotopic. One can suppose that
A;y1 is an enlargement of A; (if necessary we exchange K; and K;y1), then
according to Lemma 3.4 A;1 is a Seifert matrix associated with K;. But this
implies that K; and K;,1 admit the same Seifert matrix associated with simple
Seifert manifolds, hence they are isotopic by Lemma 3.5 O

3.2 Cobordism of spherical knots

Let us denote by C;, the set of cobordism classes of spherical n-knots, and by
C,, the set of concordance classes of spherical n-knots. These two sets have a
natural group structure. The group operation is given by the connected sum
see [72] Chapter III for details.

We say that an n-knot K C S™*? is null-cobordant if it is cobordant to the
trivial knot, i.e., if there exists an (n + 1)-disk D"*! properly embedded in the
(n +3)-disk D™*3 such that 9D" 1 = K C S"™2 = 9D"*3. Similarly we define
the notion of null-concordant knot.

The neutral element of C,, is the class of null-cobordant n-knots, and the
neutral element of C,, is the class of null-concordant n-knot.

To construct the inverse of a n-knot K one can suppose that K is embedded
in the upper hemisphere S}*? of the unit (n + 2)-sphere 9D"3 = §"+2
R"3. Let p be the reflection in the equatorial hyperplane £ of D"*3, and
7 : R"3 — £ the projection onto &.
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SB

Figure 3.1. The connected sum of trefoil knot and its inverse in C4

Then we construct the connected sum K’ = K#p(K) of K and p(K) in
S2n+1. we illustrate this construction in Fig. 3.1 when K is the trefoil knot
embedded in S®. Moreover, one can suppose that this connected sum is made
in order to have m(K') = w(K' N S?"*'), where S3"*! is the upper hemisphere
of $2"*1 which contains K.

Then, set D = (7(K') x [0, 1]) N D™*3, remark that since 7(K') is a (2n—1)-
disk, then D is homeomorphic to a (n+1)-disk ; moreover D = K’ = K#p(K).

Since K'#p(K') bounds a (n + 1)-disk embedded in D"*3 then K#p(K)
is null cobordant and p(K) is the inverse of K. We have just proved that the
inverse of K is given by its mirror image with reversed orientation, which we
denote by —K'.

Similarly we can construct the inverse of a knot class in the concordance
groups C,.

First, let us focus on the case of spherical (2n — 1)-knots. Kervaire and
Levine used the notion of Witt equivalence for integral bilinear forms.

Witt equivalence of integral bilinear forms

Definition 3.7. Let 2 : G x G — Z be an integral bilinear form defined on a
free Z-module G of finite rank. The form 2 is said to be Witt associated to o if
the rank m of G is even and there exists a submodule M of rank m/2 in G such
that M is a direct summand of G and 2 vanishes on M. Such a submodule M
is called a metabolizer for 2.

The following theorem was proved by Levine [89] and Kervaire [73].

Theorem 3.8. For n > 2, a spherical (2n — 1)-knot is null-cobordant if and
only if its Seifert form is Witt associated to o.

We will only give some idea of the proof.

Proof. To prove that the condition on Seifert forms is necessary M. Kervaire con-
structed a metabolizer associated with Seifert forms of null-cobordant spherical
knots. Since we use the same construction in the case on non-spherical knots,
we refer to the proof of Theorem 6.5.

To prove that null-cobordant spherical knots have Seifert forms Witt asso-
ciated to 0, M. Kervaire proved that it is possible to do embedded surgeries on
a basis of the metabolizer in order to get an embedded disk with boundary the
spherical knot. O
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For two spherical (2n — 1)-knots Ky and K; with Seifert forms 2, and
2y respectively, the oriented connected sum K = Kojj(—Ki) has 2l = Ay &
(—2(;) as the Seifert form associated with the oriented connected sum along
the boundaries of the Seifert manifolds associated with K, and —Kj, where
— K| denotes the mirror image of K; with reversed orientation. Hence, as a
consequence of Theorem 3.8, we have that two spherical knots Ky and K are
cobordant if and only if the form 2A = Ay & (1) is Witt associated to o. In
this case we sometimes say that 2y and 2; are Witt equivalent.

Remark 3.9. Witt equivalence is not an equivalence relation on the set of
integral bilinear forms of finite rank. Let 21 and B be two integral bilinear
forms of rank r such that 2 & —B is not Witt associated to o. If we denote by
9, the zero form of rank r, then both 2 and 8 are Witt equivalent to o, but
2 and ‘B are not Witt equivalent.

For ¢ = %1, let C%(Z) be the set of all Witt equivalence classes of integral
bilinear forms 2 defined on free Z-modules of finite rank such that 2 + &2 is
unimodular (for the notation, we follow [73]).

It can be shown that C°(Z) has a natural abelian group structure, where
the addition is defined by the direct sum. Then we have the following.

Theorem 3.10 (Levine [89]). Let ®, : Cy, 1 — CUV"(Z) be the (well-
defined) homomorphism induced by the Seifert form. Then ®,, is an isomor-
phism for n > 3. But ®5 is only a monomorphism whose image CtY(Z)° is a
specified subgroup of C(Z) of index 2; and ®, : C1 — C~Y(Z) is merely an
epimorphism.

Furthermore, Levine [90] showed the following (see also Remark 6.30).

Theorem 3.11. For ¢ = +1, we have
CNZL)ZZF DLY ©Z™, (3.1)

where the right hand side is the direct sum of countably many (but infinite)
copies of the cyclic groups Z, Zy and Zy.

Note that the right hand side of (3.1) is not an unrestricted direct sum,
i.e., each element of the group is a linear combination of finitely many elements
corresponding to the generators of the factors.

Remark 3.12. Michel [102] showed that for n > 1, spherical algebraic (2n—1)-
knots have infinite order in C5,_1 as soon as we assume that the associated
holomorphic function germ has an isolated singularity at the origin and is not
non-singular. Note, however, that they are not independent. See Remark 7.3.

For n =1, ®; : C; — C~Y(Z) is far from being an isomorphism. The non-
triviality of the kernel of this epimorphism was first shown by Casson-Gordon
[26]. The classification of spherical 1-knots up to cobordism is still an open
problem. Moreover, for spherical 1-knots, there is also the important notion of
a ribbon knot (see, for example, [129]). Ribbon knots are null-cobordant. It is
still an open problem whether the converse is true or not.

For even dimensions, we have the following vanishing theorem.

Theorem 3.13 (Kervaire [72]). For all n > 1, Cy,, vanishes.
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Let C,, be the group of concordance classes of embeddings into S™+2 of
1. the n-dimensional standard sphere S™ for n < 4, or
2. homotopy n-spheres for n > 5.

In [72] Kervaire showed that the natural surjection i : Cn — Cp is a group
homomorphism.

Let us denote by ©,, the group of h-cobordism classes of smooth oriented
homotopy n-spheres, and by bP,; the subgroup of ©,, consisting of the h-
cobordism classes represented by homotopy n-spheres which bound compact
parallelizable manifolds [74]. Then we have the following

Theorem 3.14 (Kervaire [72]). For n <5 we have C, = Cp, and forn > 6 we
have the short exact sequence

0— Op41/bPni2 — C, 4 C, — 0.

Note that for n > 4, ©,,11/bP,12 is a finite abelian group. For details, see
[74].
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Fibered knots and algebraic knots

"Ce chemin qui débouche sur la route de Chinon, bien au-dela de Ballan,

longe une plaine ondulée sans accidents remarquables, jusqu’au pays d’Artanne.
La se découvre une vallée qui commence & Montbazon, finit a la Loire, et semble
bondir sous les chateaux posés sur ces doubles collines; une magnifique coupe
d’émeraudes au fond de laquelle I’Indre se roule par des mouvements de serpent."
Honoré de Balzac,

- Le lys dans la vallée

In this chapter we will work only with odd dimensional knots. We first
define the notion of fibered knot and prove that Seifert forms of fibered knots are
unimodular, then we define algebraic knots associated with isolated singularities
of complex hypersurfaces.

4.1 Fibered knots

As explained in the introduction the set of fibered knots is much more smaller
than the set of knots. But using the fibration of the complementary of the knot
over S! we will be able to define many useful tools for the study of cobordism
classes of fibered knots.

Recall (c.f. Definition 1.14) that a (2n — 1)-knot K is fibered when there
exists a trivialization 7 : Nx — K x D? of a closed tubular neighborhood N of
K in §?"T! and a smooth fibration ¢ : "1\ K — S such that the following
diagram is commutative:

NK\K%KX (DQ\{O})
Bl (N \K) p g p

where p denotes the obvious projection. In this case, for each t € S, we denote
by F the closure of ¢~1(t) in S?"*1 ; and F is also called a fiber of K. Note
that F' = ¢~ !(t) UK and is a compact 2n-dimensional manifold with boundary
OF = K.

4.1.1 Monodromy and variation map

Any C® locally trivial fibration ¢, as in Definition 1.14, over S with fiber
F such that OF # &, is given up to isomorphism by a map called geometric
monodromy.

Definition 4.1. The geometric monodromy m : (F,0F) — (F,0F) is defined
up to isotopy such that ¢ identifies with

(F, 3F) X [0, H/(I,O) -~ (m(:c),l) — [0, 1]/0 ~ 1
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and the restriction m| oF is the identity.

The geometric monodromy induces two algebraic monodromies.

Definition 4.2. Let K be a fibered knot with fiber F' and geometric monodromy
m: (F,0F) — (F,0F).
The algebraic monodromy is the homomorphism

h:Hy(F) = Hy(F)

induced by the geometrical monodromy m, the characteristic polynomial of the
algebraic monodromy is denoted by A(t).
The relative algebraic monodromy is the homomorphism in relative homology

h:H,(F,0F) — H,(F,0F)
induced by m.

Using the geometrical monodromy one can define another operator, called
variation map. More precisely, let K be a fibered (2n — 1)-knot with fiber F.
For any relative n-chain a with da € OF = K, we have

d(a—m(a)) = d(a) — m(da) = 0.

Hence a — m(a) is an absolute chain. In the following, if a is a chain, then we
denote by [a] its homology class.

Definition 4.3. The following map V is called variation map.

V:H,(F,0F) — H,(F)
[a] = [a—m(a)]

Let a fibered (2n — 1)-knot K with fiber F, the Wang exact sequence asso-

(o)

ciated with the fibration S?"+1\ N(K)— S! with fiber F provides

o

0 — Hop (S2"1\ N(K)) — H,(F) '5"

S Hu(F) = H, (S*" T\ N(K)) =0
by Alexander Duality (see [16]) we get Hy(S?"+1\ N(K) )= H** *(K), and
by Poincaré Duality we have H*"*(K) = H;,_ (K). Hence the previous Wang
exact sequence becomes

Id—h

0 — Hyyt (K) = Hy(F) 'S H, (F) — H, (K) =0 (4.1)

Using the variation map, the exact sequences 1.1 and 4.1 can be related
together as follows.
First for k = n,n + 1, let us define Gysin isomorphisms

gk - Hk (52n+1 \K) — kal(K)
[a] = g([a]) =N K]

where b is a boundary chain of dimension (k + 1) which meets K transversally
in S?"*! and with boundary the k-chain [a].
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Then the following diagram is commutative

0= Huppi(SPN\K) — Ho(F) '5B" H.(F) 5 Hu(S*'\K) —0
ig'nd»l H TV \Lgn
0— H,(K) = Ho(F) 3% HJ(FK) —  H, .(K) =0

The first square is commutative since g,41 is an isomorphism, the second
square is commutative because of the definition of V (recall that S, is induced
by the inclusion). We only have to check the commutativity for the last square.

Start with a relative cycle in H,,(F, K) given by the homology class [c] of a
relative chain ¢ of dimension n. Then V([¢]) = [¢ —m(c)], and if b is a (n + 1)-
chain with boundary ¢ —m(c) = 0b then g, (i([c—m(c)])) = [bN K] = [Oc|. This
proves the commutativity, and as a consequence the five Lemma implies that V
is an isomorphism. We proved

Proposition 4.4. The variation map V : H,(F,0F) — H,(F) is an isomor-
phism.

4.1.2 Seifert form

We already defined Seifert forms associated with simple knots, but in the case of
simple fibered knot one can define the Seifert form associated with a fiber using
the geometrical monodromy. Let us be more precise, and consider a fibered
(2n — 1)-knot K with fibration ¢ and fiber! F. Write Fp = ¢~ !(e?) for any

0 € [0, 27], then Fp is homeomorphic to }% Moreover let h be a continuous map
h:[0,1] x Fy — S* 1\ K
such that hy maps Fy homeomorphically onto Fp, 6 € [0,2x[ , when 6§ = 0

ho = Id Fy and ho, is the geometrical monodromy (which is defined up to

isotopy).

Since ¢ is a locally trivial fibration, then distinct fibers never meet together.
This elementary fact implies that for two cycles [x] and [y] in H,,(F), and for
6 €]0, 27| we have

lgzn+1 (i+(x), ZU)) =gzt (he(ﬂﬁ)a y),
where [g2n+1 denotes the linking number of chains in §27+1,
Then the Seifert form 2 is defined as follows
A:H,(F) x H,(F) — Z
([=], [y]) = lgensn (he(2),y)

For ¢ in H,(F, K) and ¢ in H,,(F) we denote by < &,{ > the intersection
number which is defined by

<&C>=P()©)

where q~3 : H,(F,K) = Homg (Hn(F),Z) is the composite of the Poincaré-
Lefschetz duality isomorphism and the universal coefficient isomorphism.

With the last definition of the Seifert form we easily get the following propo-
sition

1Recall that we decide to call fiber the closure of a preimage of a point.
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Proposition 4.5. Let (o, ) € Hy(F) x H,,(F, K) then %A(a,V(B)) =< a, 8 >.

Proof. Start with ([a], [b]) € H,(F) x H,(F, K) then the following equalities
hold

Ql([a],V([b])) = lSQn+l ,r(a s m( ))
l52n+1( ,T(a , UGe[O gw]hg(b)))
)s ee[o P ha(b))

(I
~
U

'—‘l\)
3
T
/\w
QL
zD‘
3
.—v/\

As a corollary of the previous proposition we have
Proposition 4.6. The Seifert form associated with a fibered knot is unimodular.

Proof. Let K be a fibered knot with fiber F. As before 2l and V are the Seifert
form and the variation map associated with F'. We first fix a basis B = (8;):cz
for H,, (F'), and then we take the basis B* = (5} );ez for H,, (F, K) which is the
dual basis of B. By dual we mean that for all (4,5) in Z? we have

‘ﬁ(ﬂz) (Bj) = dij,

where 0;; = 1 if i = j and §;; = 0 if ¢ # j. With these choices, when § is
a relative chain in H,,(F, K) and « is a n-chain in H,,(F) which have the two
column vectors b and a respectively as matricial representations, then

<o, f>= ‘33(04)([3) = 'ab.

Let us denote by A the matrix of the Seifert form 2[, and by V the ma-
trix of the variation map V relatively to the basis B and B*. According to
Proposition 4.5, for all («,8) in H, (F, K) x H,(F) we have

A, V(B)) =< a,B > .

If we denote by a and b the two column vectors which represent o and (3 relatively
to the basis B and B* then the previous equality becomes

a(AV)b =

Since this equality holds for any column vectors a and b we have A = V1.
We already proved that V is an isomorphism so detV = det A = +1 and 2 is
unimodular. O

Proposition 4.7. Let K be a simple fibered (2n — 1)-knot with fiber F. Set
A be the matriz of the Seifert form, S the matriz of the intersection form and
H be the matriz of the monodromy associated with F. If I is the matriz of the
identity, then the following holds

S=A(I-H), H=(-1)""tA""A
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Proof. Let a and 8 be two n-cycles in H, (F), set a = [z] and 8 = [y] for two

n-chains x and y.
2w

Set Z = U ho(y) the (n+ 1)-chain in S?"*! with boundary 9Z = y —m(y).
9=0

And set A and B two (n+1)-chains in $?"*1 such that A = y and OB = m(y).
Then Z + B — A is a (n + 1)-chain without boundary which represents the
homology class of a (n + 1)-cycle in S?"*!. Hence the intersection number
between Z + B — A and h,(z) in S?"*1 must be zero.

If we denote by <X , Y> the intersection number between two chains in §2"+1,
then the following equalities hold

<hﬂ(a:), Z+ B — A> = <hﬂ(x), Z>—|—<h,,(m),B>—<h,,(m),A>
= IFﬂ(hTr(x)’hTr( )) €T
= 6(1‘,3}) +2 x’h(y)) - Q[(l‘,y)
= 6(z,y) + Az, h(y)

The nullity of (h(z), Z + B — A) gives S = A(I — H).
By Proposition 1.8 we have S = A + (—1)"!A and A is invertible, then we
get
I-H=AY A+ (-1)""A) =T+ (-1)"A~ 1A,

Finally H = (—=1)""! A~! A as desired. O

With the unimodularity of Seifert forms associated with fibers of fibered
knots Durfee and Kato independently generalized the work of Levine.

Theorem 4.8 ([36],[65]). Let n > 3. There is a one-to-one correspondence
of isotopy classes of simple fibered knots in S®"T' and equivalence classes of
integral unimodular bilinear forms. The correspondence associates to each knot
its Seifert form.

Proof. Let Ky and K7 be two simple fibered (2n — 1)-knots which are isotopic.
Using the same proof that we gave for spherical knots, we can see that the
Seifert forms associated with the fibers of Ky and K, are S-equivalent. But S-
equivalence of unimodular forms reduces to congruence of matrices, hence the
associated Seifert forms are equivalent.

Conversely, given an integral matrix A, to realize A as the matrix of an
integral bilinear form 2, we can construct a simple knot with Seifert form 2.
This is done as Kervaire did in [72] for spherical knots?, by gluing n-handles on
a the boundary of a (2n—1)-disk. The knot is the boundary of this handlebody,
and the handlebody itself is a Seifert manifold F' for this knot K. The core of
the handles are the generators of the n* homology group H, (F), so we glued
such that the linking numbers between the handles correspond to the coefficients
of the matrix A. By construction the knot K is simple, we will prove that K is
fibered using the h-cobordism Theorem.

First let us fix some notations. Set X be the complementary in S?"*! of an
open tubular neighborhood of K in $?"*! and let W = FNX. Set N a normal
tubular neighborhood of W in X, hence if M is a normal tubular neighborhood
ot F'in 82"t then N = M N X. Moreover, it makes sense to follow notations

2The same technic works since Kervaire additional conditions were only used to insure that
the knot is spherical.
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of Definition 1.5 and set N = W, x [0,1] where W, = F, N X correspond to
W pushed in the positive normal direction in S2"+1,
Set Y = X \ N, then the exact long homology sequence of the pair (Y, W)
gives
oo He (W) -5 He (V) - Hip (Y, W) — .. (4.2)

Moreover the manifold W, is (n — 1)-connected; and because of Alexander
duality H(Y) = H>"*(F), so Hi(Y) = 0 for k > n 4 1. Hence the relative
homology groups Hy (Y, W) vanishe for k > n+1, by Poincare-Lefshetz duality
we also have Hy (Y, W, ) vanishe for k¥ < n — 1. Then the long exact sequence
(4.2) reduces to

0—-H,(Wy) > H,(Y) = H,(Y,Wy) — 0.

But since the matrix A is unimodular, then the inclusion W, — Y induces the

isomorphism H, (W) 3 H,(Y). Remark that the injectivity also comes from
the fact that the image of a non trival homology class x of H, (W, ) in H, (Y)
can’t be null homologous otherwise A will be degenerated because A(x,y) =0
for any y in H, (F).

The surjectivity is a consequence of the unimodularity of A. To see that,
first remark that according to Alexander duality the free Z-modules H,,(Y") and
H,,(W,) have same rank. Second, since the inclusion is injective, then if it is
not surjective there exists an indivisible element, namely «, in H,, (W) which is
homologous to an element oy of H, (Y) where o £ —1,0, 1 and y lies in H, (V).
But this implies that « divides det A, which contradicts the unimodularity of
A.

Finally we get H,, (Y, W) = 0 and Y is homeomorphic to W, x [0, 1] ac-
cording to the h-cobordism Theorem.

Now it is not difficult to see that the knot K constructed is fibered. This
comes from the decomposition of X in two pieces, namely N = W x [0, 1] and
Y = W, x [0,1]. The identification of N and Y along their boundaries induces
an homeomorphism m : W — W such that X is homeomorphic to the quotient
W x [0,1] by the equivalence relation (z,0) ~ (m(x),1). Since all these maps
extend to S?"*1\ K, then the knot K is simple fibered. O

Remark 4.9. For spherical simple (2n — 1)-knots, we have another algebraic
invariant, called the Blanchfield pairing, which is closely related to the Seifert
form (see [68, 150]). In fact, it is known that giving an S-equivalence class
of a Seifert form is equivalent to giving an isomorphism class of a Blanchfield
pairing.

We just saw that fibered knots have unimodular Seifert forms, moreover
fibered knots have a nice topological behavior as stated in the following propo-
sition.

Proposition 4.10. Let n > 1. Let K be a fiber knot of dimension 2n — 1 and

let F be a fiber of the fibration, then we have the following short exact sequence

0 — Hy(K)—H,(F) 2 Hy(F,K) — H,_1(K)—0.

Proof. Recall that F' is a Seifert surface associated with K. Moreover we know

that S?"*1\ K is homeomorphic to F x [0, 1]/(33 0) ~ (m(z), 1) where m is the
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geometrical monodromy. Hence S?"*1\ F has the same homotopy type as F.
Now by Alexander duality we have

Hy(F) = H2" RS2\ F) 2 H™F(F) for k> 0.
Moreover by Poincaré duality we have
Hy (F, ) = B (F),

and this implies
Hy(F,K) 2 Hg(F) for k> 0. (4.3)

Since K is (n — 2)-connected, then the long exact sequence

o H(K)—H, (F) 3 H,(F,K) — ..
gives the following short exact sequence

0— Hyp1(F) 3 Hy(F,K) = Hy(K) — H, (F) —

H,(F,K) — H,_1(K) = H,_(F) 3 H,_,(F,K) = 0

According to (4.2) the monomorphism « is an isomorphism, and the epimor-
phism S as well. Finally we get the desired short exact sequence

0 — Hy (K)—H,(F) 55 Hy (F, K) — Hyo 1 (K)—0
0

According to this proposition we see that the topological data about the
knot K are coming from the Kernel and the Cokernel of the intersection form
of F.

Moreover, as a consequence of the short exact sequence of Proposition 4.10
we see that the middle homology group of the fiber is a free abelian group.

4.1.3 Alexander polynomials of fibered knots

Let K be a (2n — 1)-fibered knot with fiber F. As before, set X be the com-
plementary in S2"*! of an open tubular neighborhood of K in S?"*! and let
W = F' N X the intersection of the fiber with X.

Then we take the quotient of W x R by the equivalence relation (z,a) ~
(m¥, a + k) for any k € Z. This quotient is homeomorphic to X and W x R is
the infinite cyclic covering of X. Let 7 be the generator of the Galois group of
the covering W x R — X, which is the infinite cyclic covering of X. The action
of 7 is given by the map which maps (z,a) to (m(z),a +1). If 7 induces an
action, denoted by ¢ on H,(W x R) which acts as the monodromy h acts on

The homology group H, (W x R) is a free abelian group which is finitely
generated because it has the homotopy type of a compact CW-complex. The
generator of the first elementary ideal of the Z[t, t—1]-module H, (W x R), i.e.,
the ideal generated by minor of maximal rank, is the characteristic polynomial of
t. Moreover this polynomial is the Alexander polynomial of H, (W x R). Since
the action of ¢ reduce to the action of h on H,, (W), then we get the folklore
Theorem (see also [124])
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Theorem 4.11. Let K be a fiber (2n — 1)-knot with fiber F. The Alexan-
der polynomial of H,,(F x R) is the characteristic polynomial of the algebraic
monodromy h : H, (F) — H, (F).

This result is compatible with the previous Definition of the Alexander poly-
nomial of a (2n — 1)-knot K to be

Ak (X) =det(tA+ (—1)"*A)

since when K is a fibered knot, then the Seifert form A is unimodular and the
monodromy has H = (—1)"*1'4 A~ as matrix. This gives

Ag(X) =det(tA+ (—1)"'A) = det(tId — H).

Since the Alexander Polynomial of a fibered knot K is Ax (X) = det(X Id—
h), then as a consequence of the exact sequence (4.1) the fibered knot K is an
integral homological sphere if and only if Ax(1) = £1. this is also a conse-
quence of the short exact sequence of Proposition 4.10 since the matrix of the
intersection form S, is equal to A+ (—1)" ‘4 and Ak (1) = det(A+ (—1)"*A) =
det S = £1 if and only if the knot K is an integral homology sphere.

When K is a fibered knot Ak is a characteristic polynomial so its leading
coefficient must be 1, and its last coefficient is equal to +det H which £1, so
we get the following Proposition.

Proposition 4.12. A necessary condition for a knot to fiber is that the extremal
coefficients of the Alexander polynomial should be £1.

4.2 Algebraic knots

As said in the introduction, algebraic knots are one motivation to the study of
fibered knots. In this section we will review some classical definition and result
about algebraic knots, we refer to [33, 109, 119] for details and proofs.

Let f : C**1 0 — C,0 be a holomorphic function germ with an isolated
singularity at the origin. Recall that there exists a positive real number ¢y such
that for all € in |0, o[ the set

Ky = f1(0)n szt

is a (2n — 1)-dimensional manifold which is naturally oriented, where S2"*1 is
the sphere in C"*! of radius ¢ centered at the origin. Furthermore, its (oriented)
isotopy class in S2"*! = §27*1 does not depend on the choice of ¢, and we call
it the algebraic knot associated with the isolated singularity of f.

Theorem 4.13 ([109]). Let f : C*"*1,0 — C,0 be a holomorphic function germ
with an isolated singularity at the origin.

There exists a positive real number g such that the following map ¢ defined
on the complement of the algebraic knot Ky

©: 552”"’_1 \Kf — St
f(2)

z = e(2) = e

is a locally trivial fibration for any 0 < € < g9 which is called the Milnor
fibration, its isomorphism class does not depend on the choice of €.
The fiber associated with a Milnor fibration is called a Milnor fiber.
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Moreover Milnor proved the following

Theorem 4.14 ([109]). Let f : C"*1,0 — C,0 be a holomorphic function germ
with an isolated singularity at the origin.

1. The algebraic knot Ky is (n — 2)-connected,

2. The Milnor fiber is (n — 1)-connected and is homotopic to a bouquet of
(n — 1)-dimensional spheres.

Since the closure of each fiber is a compact 2n-dimensional oriented (n — 1)-
connected submanifold of $2"*! which has K ¢ as boundary, then algebraic knots
are simple fibered knots.

Definition 4.15. The n-th Betti number of the Milnor fiber is called the Milnor
number of f at the origin, we denote it by py (or p for simplicity).

It is known that

o= dimc Ocn+1 af
(821-)1‘:1..4714-1
where Ocn+1 denotes the ring of germs of holomorphic functions at the

origin, and (gj

) denote the Jacobian ideal which is generated by the
1=1...n+1

partial derivatives af/az, fori=1,...,n+1.
(3

4.2.1 Functions with independent variables.

Definition 4.16. When f : C™*"2 — C is a holomorphic function of the type
f(z+u) = fi(z) + f2(u),

where z € C™, u € C™ and f; : C* — C is a holomorphic function for
i =1,2 ; then we say f is of independent variables.

We will now describe the behavior of the Milnor fiber of holomorphic func-
tions of independent variables.

Theorem 4.17 (Join Theorem). Let f = f1 + fa be a holomorphic function of
independent variables, and let F; be the Milnor fiber of f; for i = 1,2. Set h;
the algebraic monodromy associated with f; for i =1,2.

Then F the Milnor fiber of f has the same homotopy type of the join Fy x Fy
and the algebraic monodromy associated with f is equal to the join of hy and ho
up to homotopy.

Remark 4.18. The join F} * F5 is defined as the quotient space

Fy«Fp = (FlXFQX [0’1])/~

of F} X Fy x [0,1] by the identification
(z,u,0) ~ (z',u,0)

and
(Z7u’ 1) ~ (Z7u/’ 1)

for any z,z’ € F; and u,u’ € I}
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Moreover in the case of holomorphic functions of independent variables we
have some information about the Seifert form as stated below
Theorem 4.19 ([138]). If f1 : (C**1,0) — (C,0) and fo : (C**1,0) — (C,0)
are holomorphic function germs with an isolated critical point at the origin, then
the Seifert form associated with the holomorphic function germ

fie fa: (C}HH?,O) - (C,0)

defined by

(fl@f2)(2’1, 2250 ,Zk+£+2) = f1(Z1, 22500 ny Zk+1)+f2(2k+1, ZlA42y 00 Zk+e+2)
coincides with

(_1)k€A.f1 & Af27
where Ay, denotes the Seifert form of f; fori=1,2.

Since the fiber of a holomorphic function of independent variables is well
understood, then we also have the following for the algebraic monodromy.

Theorem 4.20 (Thom-Sebastiani). Assume that fi : (C**1,0) — (C,0) and
fa 1 (CH1,0) — (C,0) are holomorphic function germs with an isolated critical
point at the origin. Set Fy, be the fiber and hy, be the algebraic monodromy for
i =1,2, then we have the following commutative diagram

- - hy ®hs, ~ .
Hy(Fp,) @ H(Fy,) =" Hy(Fy,)® H(Fy,)
1= 1

~ h(f1+2) ~
Hiq111(Fpy+4,) o Hyyi01(Fry )

4.3 Brieskorn knots
Let us consider now some very special functions of independent variables called
Brieskorn polynomials?
Definition 4.21. A Brieskorn polynomial is a polynomial of the form
f(217~'~72n+1) = Z?l +ZgQ ++ZZT11

with n > 0, the integers a; > 2, j =1,2,...,n + 1, are called the exponents.
The complex hypersurface in C"*! defined by f = 0 has an isolated singu-
larity at the origin, which is called a Brieskorn singularity.

According to [36] Proposition 2.1 the Seifert form associated with the one
variable Brieskorn polynomial

f(z) = ="
has the (a — 1) x (a — 1) integral following matrix
11 0 ... ... 0
01 1 0 ... 0
0
Afa) =
Lo 1 1
o0 ... ... 0 1

3Sometimes they are called Brieskorn-Pham polynomials.
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Then the Seifert form associated with the Brieskorn polynomial

fzr, ) = 21 + 252 4+ - 4 200

has a matrix of the form
Af = A(al) ® e ® A(an+1).

We will now give conditions on exponents of a Brieskorn polynomial to have
a Brieskorn knot which is a sphere. But before we have to introduce a graph
associated to
(21, zng1) = 27 + 252 + -+ 200

Let G be the graph which has n+1 vertices denoted by the letters aq, ..., an41,
and two vertices a; and ay are connected by an edge if ged(ay, ar), the greatest
common divisor of a; and ay, is strictly greater than 1. We denote by Ce, s
the connected component of Gy which contains all even exponent a;. Note that
Cev,r may contain some odd vertices.

Theorem 4.22 ([19]). Let Ky be the Brieskorn knot associated with
Fzresznin) = 20 4 257 4 - 200

1. The algebraic knot Ky is a rational homology sphere if and only if G¢ has
either

(a) at least one isolated point,

(b) the component Ce,. y contains an odd number of vertices and we have
ged(a;, aj) =2 for any two vertices a; and a;j in Cey 5.

2. The algebraic knot Ky is a integer homology sphere if and only if G; has
either

(a) at least two isolated points,

(b) an isolated point which is odd and the component Ce, ; contains an
odd number of vertices and ged(a;,a;) = 2 for any two vertices a;
and aj in Cey, f.

We will not prove this Theorem, but we give some important steps in the
proof (see [33]).

First it is important to know that K is a rational homology sphere if and
only if 1 is not a root of the Alexander polynomial A, and it is equivalent that
1 is not an eigenvalue of the monodromy.

Moreover K is an integral homology sphere if and only if Af(1) = +1.

Then according to Thom-Sebastiani Theorem the monodromy h¢ is given
by the formula

hy=he ®...®hq,,,

where hg, : Ho(F,,) — Hy(F,,) is the monodromy of the zero-dimensional
singularity associated with f,,(z) = 2% and Fy, is the Milnor fiber

F,, ={\eClA% =1}
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Set &, = exp(2m/a;) and &, = EF1 — €k | then the set
(6]6)]6:1,‘..,(17;71
is a basis of Ho(Fy,).

Since the geometric monodromy associated with h,,; is in fact the multipli-
cation with &,, then the matrix of h,, relativley to the basis (5k)k:1

,‘..,aifl
is
o0 o ... —1
10 0 ... —1
o1 0 ... -1
0 0 1 -1

then it follows that
Ao, (t) =det(tId —hy,) =t%"14+ ... +1

and the eigenvalue of the monodomy h,, are exactly the a;-roots of unity dif-
ferent from 1.
Finally the eignevalue of the monodromy h; are exactly the products

Jo Jn+1 ; _
ag &ty for 1 <jr <ap—1.

This shows that K is a rational homology sphere if and only if the equation

LU
ap Ap+1
has no solution with m € Z and 1 < j; < ar + 1.
The case of integral homology sphere is slightly more difficult and we refer

to [19] for details.

=m



Chapter 5

Algebraic cobordism

" L’algébre est généreuse, elle donne
souvent plus qu’on ne lui demande."
Jean Le Rond D’Alembert

In this chapter we introduce the notion of algebraic cobordism for unimod-
ular integral bilinear forms. We will work only with bilinear forms in a purely
algebraic context. Later, we will use algebraic cobordism classes of Seifert forms
associated to fibered knots.

5.1 Definitions

First we fix some notations used in this chapter.

Let A be the set of unimodular bilinear forms defined on free Z-modules G
of finite rank.

Let € be +1 or —1.

If Ais in A, we denote by

A the transpose of A,
S the e-symmetric form A + € ‘A associated to A,
S* : G — G* the adjoint of S (G* being the dual Homz(G; Z) of G),

E: G x G — Z the e-symmetric non degenerated form induced by S on
G=G /Ker S*

Recall that a submodule M of G is pure if G /M is torsion free. If M is any

submodule of G' we will denote by M” the smallest pure submodule of G which

contains M. In fact M" is equal to (M ® Q) N G. For a submodule M of G we
will denote by M the image of M in G.

Definition 5.1. Let A : G x G — Z be a bilinear form in A. The form A
is Witt associated to 0 if the rank m of G is even and if there exists a pure
submodule M of rank % in G such that A vanishes on M ; such a module M
is called a metabolizer for A.

Remark 5.2. In the case of e-fomrs, i.e., integral bilinear forms A for which
the form A + €?A is unimodular M. Kervaire [73] and J. Levine [89] said that
an e-form Witt associated to 0 is null cobordant.

Definition 5.3. Let A; : G; Xx G; — Z, i =0,1, be two bilinear forms in
A. Let G be Go ® G and A be (Ag ® —A;). The form Ag is algebraically
cobordant to A; if there exists a metabolizer M for A such that M is pure
in G, an isomorphism ¢ from Ker S to Ker S; and an isomorphism 6 from
Tors (Coker Sg) to Tors (Coker S}) which satisty the two following conditions
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c.l: M NKerS* = {(z,¢(x));z € Ker S },

c.2: d(S*(M)") = {(z,0(x));z € Tors (Coker Sj)}, where d is the quotient
map from G* to Coker S*.

Topological meaning of algebraic cobordism. At first reading Defini-
tion 5.3 seems very technical. To understand its meaning it is important to
consider algebraic cobordism of Seifert forms in the topological context given
by fibers of fibered knots.

Recall, cf. Chapter 4, that the Seifert form of a 2n — 1 dimensional fibered
knot K, with a Seifert surface F' (which is the closure of a fiber), is related to the
intersection form of F'. More precisely we have S = A+ (—1)" A, where S and A
are the matrices of the intersection form and the Seifert form respectively. If we
choose an integer n > 3 such that ¢ = (—1)", then we can realize any unimodular
bilinear integral form as a Seifert form!. Then the long exact sequence of the
couple (F, K) gives

0 — H,(K)—H, (F) % H,(F, K) — H,_1(K) — 0,
where S, is induced by the intersection form.

So the n!"-homology group of K can be identify with the kernel of the
intersection form, and the (n — 1)!"-homology group of K with the cokernel of
the intersection form. In Definition 5.3 conditions c.1 and c.2 fix the behavior
of the elements in the metabolizer which are related to the (n — 1)**-homology
group of K and the n—*"*-homology group of K.

When we consider cobordism classes of knots, then topological data must
be related to cobordism classes of Seifert forms, in this sense conditions c.1 and
c.2 in Definition 5.3 are natural.

We can also point out that when the knot is a sphere, the homomorphism
S* in the exact sequence just above is an isomorphism. So e-forms used by
M. Kervaire [73] and J. Levine [89] are Seifert forms of spherical knots.

5.2 Examples.

In order to clarify the relation of algebraic cobordism, we present here several
examples.

(1) Let us consider any integral bilinear form A in A such that A + ¢4 is
unimodular. Then, A & (—A) is always algebraically cobordant to the
zero form.

(2) Let us consider the integral bilinear forms Ay and A; represented by the

matrices
1 1 q 2 -1
o6 ) 2 4

respectively, which are given in [73, p. 93]. Then it is easy to check that the
subgroup of Z* generated by {3,1,3,0) and 0,1,2,1) is a metabolizer

1This is done by adding handles to a 2n-ball such that the linking numbers of these handles
coincide with the entries of the form ; then the resulting manifold is a Seifert surface F' for its
boundary K with the desired Seifert form.
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for Ag ® (—A1). Since A; — 'A; are unimodular, i = 0,1, we see that Ay
and A; are algebraically cobordant for e = —1. Note that Ay and A; are
not congruent to each other.

This example is a generalization of the examples given in [7]. Let us
consider the two matrices

21 21
A0:<fl O) and A1:<31 0),

which are identified with the corresponding integral bilinear forms, where
p and ¢ are odd integers with 1 < p < ¢. Note that they are both
unimodular and

So=Ap+e'do=51=A +c'A; = < _02 g )7
where ¢ = —1. Let us show that Ay and A; are algebraically cobordant
in the sense of Definition 5.3 for e = —1.
Let 7 be the greatest common divisor of p and ¢ and set p = rp’ and
q = rq’. Furthermore, set m = %q’,0,p’,0) and m’ = %0,p’,0,q’). Then
it is easy to see that the submodule M of Z* generated by m and m’
constitutes a metabolizer for A = Ag & (—A;). Since Sy = S; are non-
degenerate, we have only to verify condition (¢2) of Definition 5.3.
Set S = Sy @ (=S1) = A— A Let S* : Z* — Z*, S} : Z? — Z? and
Sy : Z? — Z? be the adjoints of S, Sy and S; respectively. It is easy
to see that Coker S5 = Coker Sy is naturally identified with Zy @ Zs.
Furthermore, we have

S*(m) = 'mS = (0,2¢',0,-2p’) and S*(m') = 'm'S = (-2p’,0,2¢,0).

Therefore, S*(M)", the smallest direct summand of Z* containing S* (M),
is the submodule of Z* generated by (0, ¢’,0, —p’) and (—p’, 0, ¢, 0). Hence,
for the natural quotient map d : Z* — Coker S* = (Zy ® Zo) © (Zo © Z>),
we have

d(S*(M)") = {(z,z) : v € Coker S5 =Zy ® Zs},

since Im S} is generated by (2,0) and (0,2), ¢ = 0,1, and Im S* is gen-
erated by (2,0,0,0), (0,2,0,0), (0,0,2,0) and (0,0,0,2). Therefore, we
conclude that the unimodular matrices Ay and A; are algebraically cobor-

dant.
(%))
(%, ()=

then there exists an element x € Z? such that v Agx = p?. Moreover such
an element does not exist for A; because p and ¢ are both odd integers
with 1 < p < q. Hence Ay and A; are not congruent,

Since

and
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5.3 Equivalence relation

Let us come back to the algebraic case. We will prove that algebraic cobordism
is an equivalence relation on the set A of unimodular bilinear forms defined on
free Z-modules of finite rank, but before we need some preliminary results.

Notations. Let Ay and A; be two algebraically cobordant forms, let A be the
form Ay @ —A; defined on G = Gy @ G, and S be A + ¢ A.

We will use the following notations, if E is any subset of G we denote by
(E) the submodule of G, generated by E. If L is any submodule of G then

LJ‘z{xGG | S(z,l)=0VleL}

Homg (G, 2) = {f € G* | J() =0Vie L}

Moreover if L and Lo are two submodules of G, orthogonal for S, we denote
by Ly @t Ly their (orthogonal) direct sum.

Variation map. We construct a new map denoted by V and called variation
map.?

Let A, an integral bilinear form defined on a free Z-module of finite rank
G, be in A. Since A is unimodular, then for all f in Hom(G, Z) there exists an
unique yy in G such that A(.,ys) = f. We define

V:Hom(G,Z) — G
o=y

Then for all z in G we have A(x,yy) = f(z).

If we denote as well by A and V the matrices of the bilinear form and
the associated variation map, relatively to a basis for G and its dual basis for
Hom(G,Z), then A.yy = f and we have the following equality of matrices

V=A"
Moreover since for all f in Hom(G, Z) and all z in G we have
Az, V() = [(@),
so when f = S5*(y), then for all y in G we have f(z) = S(z,y) and
A2, V(8" w)) = S(a,v). (5.1)

Recall that we have V = A~! and S* = A + ¢'A. If we denote by I the
identity map on G and by I’ the identity map on Hom(G, Z), then the maps

VoS*:G— Hom(G,Z) = G

S*oV :Hom(G,Z) —» G — Hom(G, Z)

2This map is defined as the usual variation map associated with the Seifert form for fibered
knots, cf. Definition 4.3.
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are well defined. Moreover we have the following commutative diagram

Ker(S*) — G 5 Hom(G, Z) 4 Coker(S™*) (5.2)

S

G =< Hom(G,Z)

Note that the maps S* and I — H = V o S* have same kernel since V is an
isomorphism. Then the previous commutative diagram gives

V(5*(G)") NKer(Ss*) = {0}. (5.3)
Moreover the morphisms H and H' are fulfilling
I-H=A"A+c'A)=I+cA A,
I'-H = (A+e"A)A™ =T +£ 447"

so we have

H=—-cA1,
H = —c'4A7%
We will use the variation map V to describe metabolizers associated with

algebraically cobordant unimodular integral bilinear forms defined on free mod-
ules of finite ranks.

First properties of variation map. From now we suppose that the two
elements Ay and A; of A are algebraically cobordant. And we denote by M
the metabolizer in the sense of Definition 5.3. As before set A = Ay @ —A;,
S = A+ e'A and S* be the adjoint of S. We denote by V the variation map
associated with A.

In the following, when ¢ : R — S is an isomorphism of Z-modules, then we
will denote by A(p) the submodule

Alp) ={(z,¢(z));z € R} CR®S.
Lemma 5.4. For all x and y in G we have
A(H(x), H(y)) = Az, y).
Proof. Let x and y be in G, then

A(H(x),H(y)) = Y—eAlAz)A(—cA 1 Ay)
= IpAATTAA Ay
= lzAy
= Az,y)
O

Lemma 5.5. When M is a metabolizer for A that gives the algebraic cobordism
of Ay and Ay, then the submodule

H (M)

of G is a metabolizer for A that gives the algebraic cobordism of Ay and A; as
well.
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Proof. As a direct consequence of the previous Lemma we have that for all x
and y in H(M)"
Az, y) =0.

Moreover since H is unimodular then the rank of H(M)” is half the rank of
G.

Since H is the identity on Ker S* then H(M)" fulfills c.1 in Definition 5.3.

With diagram 5.2 we see that S* o H = H' o S* and H' is equal to identity
on d~* (Coker S*). Hence H(M)" fulfills c.2 in Definition 5.3. O

Lemma 5.6. When M is a metabolizer for A that gives the algebraic cobordism
of Ag and Ay, then we have the following decomposition

M = A(p) @ (Vo §*(M))"

where ¢ is the isomorphism between Ker S; and Ker Sy that gives the algebraic
cobordism of Ay and Ay.

Proof. Let m and n be in M, then according to (5.1) we have
A(m, v(s*(n))) = S(m,n) = A(m,n) + = A(n,m) = 0.

Hence if V(S’*(n)) = « v, with v indivisible, is not in M, then in a basis for G
in which v is an element the matrix of A is of the form

where O is a null square bloc of size half of the matrix corresponding to the
metabolizer.

But this imply that the determinant of A must be zero, which is not possible
because A is unimodular.

Finally V (S*(n)) is in M so

V(S*(M)) € M.

Moreover we have
M NKerS* = A(yp),

V(S*(M)) NKer S* = {0}

. rank(V(S*(M))) = rank M,

then we have the following decomposition

M =A(p) @ (VoS (M),
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Preliminary results.
Lemma 5.7. The following holds S*(G) N S*(M)" = S*(M*1).
Proof. Let r be the rank of Ker S5 and s be the rank of S*(M). As M is a
metabolizer for S which fulfills condition c.1 in Definition 5.3 we have
rank(Ker §*) = 2rank(M N Ker S*) = 2rank(Ker S5) = 2,
moreover rank(S*(G)) = 2s and rank(M=*) = s + 27. Hence
M+ = (M + Ker $*)"
and
S*(M*) C S*(G) N S*(M)".

On the other hand, since S*(M) is of finite index in Homg (G 'Z) and

|ML7

Homz (G ;Z) is a pure submodule of G*, then we have

|MJ_7

S*(M)/\:Homz(G 'Z).

|ML7

So if S*(z) € S*(M)", then S*(z,1) = 0 for all [ in M+ and z is in M. This
gives
S*(G)nS* (M) C S*(M*1),

and the Lemma is proved. O

Since S*(M) is of finite index in S*(M)", one can write

(S*(M)"Y) /(1 @Z/az
where a; € Z \ {0} and a; divides a;+1 (we do not exclude that there exists an
integer [ such that a; =1fori=1,...,1).
Proposition 5.8. The submodule M is pure in G if and only if

S*(M*) = S*(M).
Proof.
— First, suppose that M is pure in G. Since we have
rank (M N Ker S*) = rank(A(p)) =,

then the module M + Ker S* has rank s+ 2r. Then M + Ker S* is of finite
index in M.

Let  be in M~ ; there exists a positive integer k such that kz = y + m,
where y is in Ker S* and m is in M ; so

m = kT.

Since M is pure in G then T is in M, so there exists 3 in Ker S* such
that z + 4/ is in M. Finally S*(z) = S*(z+y') € S*(M), and S*(M*) C
S*(M). But M C M+ so S*(M~*) = S*(M).
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— Second, suppose that S*(M) = S*(M™). We will prove that M- is pure
in G.
Let z be in M+ with Z = kT where x is in G and k is a positive integer.
So there exists y in Ker S* such that kz = z +y. For all m in M we have
S(kz,m) = S(z+y,m) =0, so S(xz,m) =0 and x is in M*.
Now we prove that S*(M*) = S*(M) implies M = ML,
Let z be in M*. If S*(z) = f there exists m in M such that S*(m) = f.

So z—m =y isin KerS*, and z =m is in M. Finally, since M+ is pure
in G and M1+ C M we get M1+ = M is pure in G.

O

By Definition 5.3 M is pure in G, so Lemma 5.7 and Proposition 5.8, and,
conditions c.1 and c.2 in Definition 5.3 imply that Coker S* is isomorphic to

77 @ (@Z/aiz)z.

Now we will show how the algebraic cobordism between Ay and A; allows
us to describe S. To fix the notation, let M, ¢ and 6 be as in Definition 5.3,

m be rk(G) and r be rk(Ker S§). As a consequence of Definition 5.3 we have
s = rk(5*(M)) = Lrk(S*(G)) and tk(M) =7 4 s = 2.

Proposition 5.9. There exists a basis B = {m;, m};i=1,....s+r} of G such that:
1. {m;;i=1,....s+r} is a basis of M,

2. {m;, m};i=s+1,...s4r} is a basis of Ker S* and {m};i=s+1,...s+r} is a basis
of Ker S5,

3. the submodules (m;, m}),i=1,...s+r ; are orthogonal for S, and

c= @ “mim),

1<i<s+r

4. when i=1,...s,S(m;,m}) = a;.
Definition 5.10. Such a basis is called a good basis of G associated to M.

Proof. of Proposition 5.9. We have seen that S*(M)" = HomZi(G|Ml; Z). Let

My be any direct summand complement of (M N Ker S*) in M. There exits a
basis {m;;i=1,....s} of My and a basis {h;;i=1,....s} of HOmZi(G‘MJ_ ; Z) such that

where a; € Z \ {0} and a; divides a;11. Let mj be any element in G such that
G =Kerhy @ (m}) and hy(m}) = S(m1,m?).a;t = 1.
We will first prove that for all z in G, a1 divides S(z, m]).

— If a; = 1 it is obvious.
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— Ifay > 1, condition ¢.2 in (1.2) implies that (S*(G)A)/S*(G) is isomorphic
2 s 2
to ((S*(M)") 5+ (ary) = EBZ 7 ) and the rank of S*(G) is 2s.
(500" s an)) = (D%, )

So ay divides S*(z) for all z in G.
Now, we will construct an orthogonal complement (M; & Ry) for (my, mj})
in G such that

1) MZ <m1> @Mh
11) Kerh1 :M@Rl

Let M; be the submodule of M generated by m} = m; — afl S(m;,m3).my,
2 <i<s,and M NKerS*. By construction M; is orthogonal to (my,m}) and
M = <m1> D Ml.

By construction Ker h; is orthogonal to m; and M is in Ker h;.

If {x;,i=2,....s+r} is a basis of any direct summand complement of M in
Ker hy, let Ry be the submodule of Ker h; generated by z, where

xh =z —ayt S(ws,my)my.

Then Ker hy = (m1) ® M7 @ Ry and R; is orthogonal to mj.
Now we have an orthogonal decomposition of G in (m1,m}) &+ (M; ® Ry).
By induction on s we obtain an orthogonal decomposition

G = (& (m;,m})) &+ (M, ® R,) where Ker S* = M, & R,.

Let {msyi1,...,msir} be any basis of Ker S* N M. Thanks to condition
cl, Ker S* N M = {(z,¢(x));x € KerS5}. So any basis {m} ,...,m}, .}
of Ker S§ can be used to build up a basis of G which fulfills the statement of
Proposition 5.9. [

The following proposition is sometimes useful since it gives an equivalent
definition of algebraic cobordism.

Proposition 5.11. Let Ay and Ay be in A. Then Ay is algebraically cobordant
to Ay if and only if there exists a pure submodule H of G = Gy ® G1 on which
A = Ap & —A; vanishes, an isomorphism ¢ from Ker S5 to Ker ST and an
isomorphism 0 from Tors (Coker Sg) to Tors (Coker ST) such that:

c.ll: A(p) C H,
c.12: the image H of H in G = G/Ker g* is a metabolizer for S=5® -5,
c.2: d(S*(H)N) = A(6).

Proof. Let M, ¢, 0 be as in Definition 5.3. Then M satisfies conditions c.1 and
c.2. The existence of ¢ shows that KerSj and Ker ST have the same rank, r.
So the rank of G is (mg +my — 27). Since M is a metabolizer for A

mo +my

(M) = 0T
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and by c.1 we get
M NKerS* = A(p).

So e+ m
rk(ﬁ):%fr

and S vanishes on M. It implies that M is a metabolizer for S.
Conversely let H,p and 6 be as in the statement of Proposition 5.11. As
A(yp) is pure in H and in Ker S*, then there exists a direct sum decomposition

HnNKerS* = A(p) ® M.

Moreover, since Ker S* is pure in GG, then there exists also a direct sum decom-
position
H = M; & (HNKerS").

Let M be My @ A(p), by construction A vanishes on M, and
M NKerS* =A(p), S*(M)=S*(H).

So M, ¢ and 6 satisfy c.1 and c.2 of Definition 5.3. Furthermore, H= @: M
and by c¢.12 the rank of H is % — r. But M; being isomorphic to My, the
rank of M is W and M is a metabolizer for A. O

The following Lemma describes how to construct metabolizers by transitiv-
ity.
Lemma 5.12. Let B; : G; x G; = Z bein A, i =0,1,2. Let m; be the rank of

G;. If there exists a metabolizer Hoy (resp. Hya) for By@—DBy (resp. Bi®—DBs)
and if the B; are non-degenerate, then

the form By @ —Ba vanishes on Hoz = w(L) and,
rk Hop = 51k (Go @ Ga),

where: G = Go®G10G1®G2, H = Hyn®H12, A ={(y,y) € G1®G1; y € G1},
L=HnN(Gy®A®Gs) and 7 is the projection of G on Gy ® Ga.

Proof. As By ® —Bs vanishes on Hyy by construction, it is sufficient to prove
that the rank of Hys is w The definition of Hyy gives the following exact
sequence:

05 LNASLTS Hyy — 0.
So we get:
(%) rk(L) =rk(L N A) +rk(Hpz).

If v is in H, there exists unique z in Gy, y; and ys in G and z in G5 such
that v = (x,y1,y2,2). Let p: H — G1 ® G be defined by p(v) = (y1 — y2,0).
Let us denote by L; the image p(H). By construction L is the kernel of p and
we get the exact sequence: 0 — L — H % L; — 0. Both this sequence and (*)

show:

mg +ma + 2my
(o) TR

Relatively to the form (B; @ —Bj) we have the following decomposition

— I'k(Ll) = I‘k(L n A) + I‘k(HQg).

(ANL)@t (L1 @A) (xx%).
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Indeed, A is self-orthogonal ; if (y,y) is in AN L, then (0,y) is in Ho;
and (y,0) is in Hip. On the other hand, an element of L; is of the
form (y1,—y2) where there exists (x,y;) in Ho; and (yo2,2) in Hia. So
Bi(y,y1) = Bi(y1,y) = 0 and —Bi(y,y2) = —Bi(y2,y) = 0.

Since the rank of L; & A is equal to mq + rk(L;), then the property (x % %)
implies that the rank of the restriction of By @ —Bj to (AN L) x (G1 ® Gy) is
smaller or equal to my —rk(L). But By & — B is non-degenerate by hypothesis,
S0

tk(ANL) <my —rk(Ly).

With (#x) it implies

But By and Bs are non-degenerate by hypothesis and as By @& — By vanishes
on Hpyg, so rk(Hpz) < % and

mo + Mo

l"k(HOQ) = 2

It ends the proof of the lemma. O

Equivalence relation. We are now ready to prove the following Theorem.

Theorem 5.13. Algebraic cobordism is an equivalence relation on the set A of
unimodular bilinear forms defined on free Zi-modules of finite rank.

Proof. The only non trivial property to check is the transitivity of the relation
"algebraic cobordism".

Let A; be algebraically cobordant to A;41, ¢ =0,1. Let M; ;41 be a metab-
olizer for A; & —A;4+1 with the isomorphisms ¢; and 6; fulfilling conditions c.1
and c.2 in Definition 5.3.

Set
G=Gya G oG G,
Soz2 = So & — 952,
Go2 = Go @ G,

S=5®-51®5 ®-95,,
A:{(x,x) ; :ceGl} Cc Gy ® Gy,

d be the quotient map from G to Coker S* and dys be the quotient map from
Goz2 to Coker S,. Let 7 (resp. 7) be the obvious projection from G (resp.
Coker S*) to Gy ® G (resp. Coker Sg,).

d: G — CokerS*
do2 : Goa2 — Coker S5y
m:G— Go®Ge
7 : CokerS™ — CokerSg,
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Recall that Mi,iﬂ is pure in G; ® éi_}rl, and with Lemma 5.6 we have the
following decompositions

Gi ® Gy =Ker(S)) & A(pi) ® Viig1 (S5 is1 (Miig1)") ® Riigr.

Set T; i1 = Viig1 (Sii+1(Mi’i+1)/\) ® R;i+1 then we have the following
decomposition
G = Ker 581 (&) Ker Sikz b T01 D T12.

Let us denote by Ty (resp. Ty, 1], T») the projection of Tyy (resp. To1, Ti2,
T12) to GO (resp. Gl, Gl, Gg)
Set T02 = ’/T(T()l ) T12) = TO D TQ, and let

A
Moz = (W(Vm(Sé‘l(Mm)A)) ® Via (S (M12)™)) N (Go @ A @ G2>)
be the smallest pure submodule of Tys which contains the projection of
L = (Vou (551 (Mo1)")) @ Viz(S12(M12)")) 1 (Go ® A @ Ga)

on T02-

Since the forms are unimodular, then they are non-degenerate. Hence, ac-
cording to Lemma 5.12 the module My, is a metabolizer for Aqg & —A;.

As A= Ag® —Ay, we set o = 1 0pg and 6 = —(6; o by).

By Proposition 5.11, to prove that Ag is algebraically cobordant to As it
is sufficient to prove that Moz = A(p) & Vo2 (Sga(Mo2)") is a metabolizer for
Ap & —A,, and, My, fulfill conditions c.11, ¢.12 and c.2. First we remark that
My fulfills ¢.11 by definition.

Lemma 5.14. The submodule Moo satisfies dgo (532 (Mog)/\) = A(—01 0 6p).
Proof. By definition we have
d(S*(G)") = Tors(Coker S*)

and
doo (SSQ(MOQ)A) = %(d(S*(L)A)).

But c¢.2 for the two metabolizers My; and M7, imply

d(S*(L)") = (A(6o) ® A(61)) Nd(S*(Go & A& G2)"),

so we get d(S*(L)") = {(m,@o(x),y,ﬂl(y));x € Tors(Coker S3) , y = 790(%)}.
And finally the following holds

do2 (Sga(Mo2)") = {(x, —61 0 0g(x)); x € Tors(Coker Sa‘)} = A(—0; 0 6y).
O

Lemma 5.15. The submodule Moo is a metabolizer for So @ —95,.
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Proof. By construction Sy@— S5 vanish on the submodule Mgs = Vo (552 (MOQ)/\) ,
and rk ‘/02 (SS2(M02)/\) = %I‘k (Gio &) G72)

Suppose that Mys is not pure, then there exists an indivisible element m in
My and an element z not in My such that for an integer a % 4+1 we have

m—ax = Bkr € KerS*,

where k is indivisible and /3 is an integer which is relatively prime to o because
m is indivisible.

We have avx + B Kk in Moo so if k is in Mys then vz is in Mys, but My, is a
pure submodule of Gy @& G5 so x must be in Mys. Hence we can assume that
is not in Mys.

Now for all p in My, we have

Al ) = ~ A, 1) = ~ Alm — 1) = — = A(B s, ).

Recall that A(z, p) is an integer, this implies that 8 A(k, u) € a Z, but we have

« and f relatively prime so
Ak, p) € aZ.

In a basis for Gy & G2 beginning with a basis of My, and k, the matrix of
Ay @ —As is of the form

where the entries x are all in awZ and the square sub matrix with entries 0 is of
size half of the matrix.

But this implies that the determinant of Ag ® —As is in a Z, and since the
forms Ay and Ay are unimodular we must have o = +1 which is impossible
according to our assumption.

Finally My is pure in Gy ® G and it is a metabolizer for Sy @ —Ss. O

The above properties of M2, and, Lemmas 5.14-5.15 imply conditions c.11,
¢.12 and c¢.2 of Proposition 5.11, and Ay is algebraically cobordant to As. [

Properties of V, H and H’. To finish this chapter we give some useful
relations between the forms introduced before.

Set
<.,.> Hom(G,Z)yxG — Z

(,8) — aB)
be the pairing such that for all z in G and all y in G we have

< S*(x),y >= S(z,y).
Lemma 5.16. For all 2 in Hom(G,Z) and all y in Hom(G, Z) we have

< H'(2),V(y) >=—-e<y,V(z)>.



5.3 Equivalence relation

Proof. Let x be in Hom(G, Z) and y be in Hom(G, Z), then

< H'(z),V(y) > = a(-e'A71A)A 1y
—clrtA 1y
—ei(Atr)y
—ely(A 1)

= —e<yV(z)>

Lemma 5.17. For all x in Hom(G,Z) and all y in Hom(G,Z) we have
S(V(z),V(y) =e<zV(y) >+ <y, V(z)>.
Proof. Let x be in Hom(G,Z) and y be in Hom(G, Z), then

S(V(z),V(y)) = =AY (A+e4)A ™y
LA 4 e Ay

(A lz)y +elr Aty
WAz 4 elr A1y

= <y, V(z)>+e<z,V(y) >

Lemma 5.18. For all z in Hom(G,Z) and all y in G we have
< H'(z),H(y) >=<z,y > .
Proof. Let x in Hom(G,Z) and all y in G, then we have
<H'(z),H(y) > = A TTAA Ay

= <z,y>



Chapter 6

Cobordism of simple fibered (2n — 1)-knots with
n>3

" L’essence des mathématiques c’est la liberté."
Georg Cantor

In this Chapter, we will give the classification of simple fibered (2n—1)-knots
up to cobordism for n > 3.

To begin we have to mention that Durfee [36] and Kato [65] independently
proved an analogue of Theorem 3.3 for (not necessarily spherical) simple fibered
knots as follows.

Theorem 6.1. Let n > 3. There is a one-to-one correspondence of isotopy
classes of simple fibered (2n — 1)-knots in S*"1 and equivalence classes of in-
tegral unimodular bilinear forms. the correspondence associates to each knot its
Seifert form.

Where equivalence classes of unimodular bilinear forms are given by iso-
morphism classes, which correspond to congruence classes of integral square
matrices.

We already proved that Seifert forms associated with simple fibered knots
are unimodular, hence Theorem 6.1 shows that simple fibered knots can be
studied using their Seifert forms.

The classification of odd dimensional simple fibered knots up to cobordism
cannot be done by a direct generalization of the results proved by Kervaire and
Levine for spherical (2n — 1)-knots with n > 2. In fact, we have to consider
the topological data contained in the kernel and the cokernel of the intersection
form of the fiber (see the exact sequence (1.1)), this is illustrated by the example
below.

Example 6.2. Let us consider the two following unimodular matrices

0100

0 1 1000
A0_<1 0)’A1_0001
001

Now one can construct some simple (2n — 1)-knots Ky and K;, with n > 3
and n odd, which have Ay and A; as Seifert forms. The module M generated
by the first elements of the basis in which Ag is defined, and, the first and the
third elements in the basis in which A; is defined is a metabolizer for Ao ® —A;.

We have rank(Hn(Ko)) = 2 and rank(Hn(Kl)) = 4, because the intersec-
tions forms associated with Ag and A; are respectively zero forms of rank 2 and
4.

Hence though the knots Ky and K; have Witt-associated Seifert forms they
are not cobordant since they are not homeomorphic to each other.
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For n > 3, Du Bois and Michel [35] constructed the first examples of spherical
algebraic (2n — 1)-knots which are cobordant but are not isotopic. So, for
algebraic knots of dimension greater than or equal to 5 the notions of cobordism
and isotopy are distinct, and they do not have the nice behaviour of algebraic
1-knots.

Moreover, there exist infinitely many examples of knots, not necessary spher-
ical nor algebraic, which are cobordant but are not isotopic in any dimension.
For example, for the dimension one, the square knot, which is the connected
sum of the right hand and the left hand trefoil knots, is cobordant to the trivial
knot, but is not isotopic to it. (For more explicit examples, see Chapter 10.)

Using Seifert forms, we have a complete characterization of cobordism classes
of simple fibered knots as follows (see [8, 6]).

Theorem 6.3 ([8]). Forn > 3, two simple fibered (2n — 1)-knots are cobordant
if and only if their Seifert forms are algebraically cobordant.

Remark 6.4. Related results had been obtained by Vogt [152, 153], who proved
that if two simple (not necessarily fibered) (2n — 1)-knots, n > 3, are cobordant,
then their Seifert forms are Witt equivalent and satisfy certain properties which
are weaker than the algebraic cobordism. Conversely, if two simple (2n — 1)-
knots, n > 3, with torsion free homologies have such (algebraically) cobordant
Seifert forms, then they are cobordant.

In Theorem 6.3 the condition on the integer n is only used to prove the suffi-
ciency, and we have the following theorem which is valid for all odd dimensions.

Theorem 6.5 ([8]). Forn > 1, two cobordant simple fibered (2n—1)-knots have
algebraically cobordant Seifert forms.

Furthermore, the following holds for (not necessarily fibered) simple knots.

Theorem 6.6 ([8]). Forn > 3, two simple (2n — 1)-knots are cobordant if their
Seifert forms associated with (n—1)-connected Seifert manifolds are algebraically
cobordant.

Recall that the knot cobordism is an equivalence relation. Furthermore, any
unimodular matrix can be realized as a Seifert matrix associated with a simple
fibered (2n — 1)-knot, n > 3. Therefore, Theorem 6.3 implies the following

Theorem 6.7. Algebraic cobordism is an equivalence relation on the set of
unimodular forms.

which gives a topological proof of Theorem 5.13.

We have to mention that we do not know if algebraic cobordism is an equiv-
alence relation on the whole set of integral bilinear forms, the following example
illustrate this remark.

Example 6.8. Let us consider the three matrices

0 4 -2 -3 0 4 1 2
-4 0 -2 1 -4 0 1 -2
Ao = 2 2 0 -1 | A=

3 -1 0 0 -2 2 -1 0
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and
0 4 -6 1
-4 0 -2 -1
Az = 6 2 0 1 |
-1 1 0 0

which are given in [153, p. 45]. We identify A; with the corresponding bilinear
form Az : Gz X Gz — 7 with Gz = Z4, 1= 0, 1,2 Set

mi = (0,0,1,0,0,0,2,0) € Go & Gy,
ms = (0,1,0,2,0,0,0,1) € Go & G4,
ms = (1,0,0,0,1,0,0,0) € Go & Gy,
ms = (0,1,0,0,0,1,0,0) € Go & Gy,
n = (0,0,2,0,0,—1,1,0) € G1 @ G,
ny = (0,0,0,1,0,0,0,—2) € G & Ga,
ns = (1,0,0,0,1,0,0,0) € G1 & Gy,
ng = (0,1,0,0,0,1,0,0) € G4 & Gs.

Then we see that the subgroup generated by m1, mo, ms, mg of Go ® G gives a
metabolizer for Ay @ (—A;), and that the subgroup generated by ni,ns, ns, ng
of G1 ® G4 gives a metabolizer for A; @ (—As). Furthermore, it is easy to check
that A; and A;;1 are algebraically cobordant for ¢ = +1 with respect to the
identity
Z0Zo0p0=KerS; - KerS;, | =ZOZD0®O0,

i=0,1, where S; = A; + 'A;,i=0,1,2.

Using the method described before to prove the transitivity for the algebraic
cobordism of unimodular integral bilinear forms, we see that if

»m = (0,0,1,0,0,—1,—1,0) € Go ® G,
vy = (0,1,0,2,0,0,0,—2) € Go & Ga,
vs = (1,0,0,0,1,0,0,0) € Gy & G,
vy = (0,1,0,0,0,1,0,0) € Go & Go.

then the submodule My, generated by vq,vs,v3 and v4 is a metabolizer for
Ag @ —As.
But since 7z, the image of v in the quotient (Go @ GZ)/Ker gy 19 not

indivisible ; then My is not a pure submodule of Go@®G5. Hence the metabolizer
Moys give not the algebraic cobordism of Ay and As,.
This shows that to construct a metabolizer as in the proof of the Theo-
rem 5.13 the hypothesis of unimodularity of the forms is necessary.
Presumably, this example would show that the algebraic cobordism is not
an equivalence relation on the set of not necessary unimodular integral bilinear
forms defined on free Z-modules of finite rank.

Remark 6.9. For general forms which are not necessarily unimodular, we can
consider the equivalence relation generated by the algebraic cobordism, called
the weak algebraic cobordism. Then by using Theorem 6.6," we can show that

1Here, we also need the fact that every form in A can be realized as the Seifert form of a
simple (2n — 1)-knot.
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if two simple (2n — 1)-knots, n > 3, have weakly algebraically cobordant Seifert
forms with respect to (n — 1)-connected Seifert manifolds, then they are cobor-
dant.

Furthermore, we can prove the following. A simple (2n — 1)-knot is said
to be C-algebraically fibered if its Seifert form is algebraically cobordant to
a unimodular form (see [9]). Then, two simple C-algebraically fibered (2n —
1)-knots, n > 3, are cobordant if and only if their Seifert forms are weakly
algebraically cobordant. We do not know if this is true for all simple (2n — 1)-
knots, n > 3.

Let A; be Seifert forms associated with (n — 1)-connected Seifert manifolds
Vi of simple (2n — 1)-knots K;, i = 0,1, and S} the adjoint of the intersection
form of V;. Since we have the exact sequence

0= Hor1(Vi, ) = Ho(K;) — Ho(Vi) —5 Ho(Vi, K)
— Hn—l(Ki) — Hn_l(V;) =0

associated with the pair (V;, K;), where we identify H, (V;, K;) with the dual of
H,(V;) (see (1.1)), Ker S} and Coker S} are naturally identified with H, (K;)
and H,_1(K;) respectively.

As remarked before, in the case of a spherical knot K we have H,(K) =
H,_1(K) =0, and the intersection form is an isomorphism. Hence the algebraic
cobordism for Seifert forms associated with spherical simple knots is reduced
to the Witt equivalence, and Theorem 6.3 follows from the classical result of
Kervaire and Levine (see Theorem 3.8 and Proposition 4.10).

6.1 Classification of fibered knots up to cobordism

6.1.1 Algebraic cobordism a necessary condition for knot
cobordism

Let Ky = 0Fy and K; = OF} be two cobordant knots with Ay and A; the Seifert
forms associated with Fy and Fy respectively. Set S the product S?"*1 x [0, 1]
and by ¥ its oriented boundary. The definition of cobordism gives a submanifold
C = ®(K x [0,1]) of S such that

2NC =Ko [[(-K9).

Let N be FoUCU(—Fy) where F; is a Seifert manifold for K;. By construction
N is a closed, compact, oriented, 2n-submanifold of S. Then we have the
following Lemma

Lemma 6.10. There exists a smooth oriented, compact, submanifold W of S
such that N is the boundary of W.

Proof. When n > 3 a proof is written in [89] p. 183. As the existence of W is

fundamental to our purpose, we give a proof which works in any dimension.
Let C; for j = 1,...,k be the k connected components of C. As C has

a trivial normal bundle in S, it is possible to choose disjoint, closed, tubular
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neighborhoods U; of C; and a diffeomorphism

v:cxD* U= [] U;.

1<j<k
Now we have meridians m; on OU; defined by
m; = W(P; x S)
where P; is some point of C; and m; is oriented such that the linking number of

mj and C; (in §) is +1. Let X = S\ U, and v be the diffeomorphism induced
by the inclusion of X in U. If e is the excision isomorphism and 9* (resp. d%)
is the connectant homomorphism for the pair (S,U) (resp. (X,0X)), then we
have the following commutative diagram

% HY (X,0X) & HY (X)) % HY9X) % H*(X,0X) — 0

=t e 1 vt =t e

0 ~Aal
9 HY(S,U) — 0=HYS) — HYW) =% HXS,U) — 0
The commutativity of all the squares of the above diagram implies that the
homomorphism p is zero so o is injective and 9% is surjective for 0 < i < 2n—1.
We have the following direct sum decomposition

HY(0X) =o(H' (X)) ®v(H'(U)).

Any element of o(H'(X)) is represented by a differentiable map from 0X to
S, which is, up to homotopy, characterized by its degree on each meridian m;,
and which has a unique extension to X. Let

g: X = 8t

be the unique, up to homotopy, differentiable map which has degree +1 on
each meridian. Thanks to the Thom-Pontriagin construction there exists a
differentiable map

o\ (Ko []-K1) — S

which has Fy [[(— F1) as regular fiber and f has degree +1 on the meridians of
the connected components of Ky [[(—K7). So f and g have homotopic restric-
tions on X N3 and we can choose g such that its restriction on X N'Y coincides
with f. Then g has a regular fiber W such that WNY = (Fy [[ —F1) N X. The
union of W with a small collar in U is the manifold W such that N = 0W. O

Recall that Ag (resp. A;) is the Seifert form associated to a (n—1)-connected
Seifert surface Fy (resp. F1) for Ko (resp. Ki). Let

T Ky — K
P o @(®71(P) x {1})

where P is any point of K. The diffeomorphism 7 induces isomorphisms

Gj : H](Ko) — HJ(Kl)
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such that for any j-cycle = of K, (x,ﬁj(x)) is a boundary in the manifold
i = 0,1, be the homomorphisms induced by the inclusions K; C F; C N. The
Mayer-Vietoris exact sequence associated to the decomposition of IV in the union
of Fp UC and C U (—F}) gives

1

5 Ho(Ko) S Hy(Fp) @ Ha(F1) D Ha(N) S Hyo 1 (Ko) — (6.1)

where y = (X0, X1 0 0) and A = (g, A1)

Remark 6.11. Let m; be rk(Hn(Fi)), m be rk(Hn(N)) and r be rk(x(Hn(KO))).

By Poincaré duality m = mg+mq, 7 = rk( ( )) and r = rk(Ker S}) where
S is the adjoint of the intersection form S; on H,, (F;).

Now we will construct the isomorphism ¢ : Ker S5 — Ker ST and the iso-
morphism @ : Tors(Coker S§) — Tors(Coker SY).
Let
S t Hn(Fy) = Hp (F3, K;)

and
0 : Hy(F;, Ki) — Hpo1(K;)

be the homomorphisms given by the long exact sequence for the pair (F;, K;).
Let
U : H"(F;) — Homgz (H,(F;); Z)

be the universal coefficient isomorphism (recall that F; is (n — 1)-connected)
and let
P:H,(F,K;) = H"(F,)

be the Poincaré duality isomorphism. We have the following commutative dia-
gram:

0 - xi(Ho(K) — Hu(F) H,(F;, K % 9(Ha(Fi, Ki)) —0

[ I > UoP LA

0 =  KerS; — Hu(F) 2% Homz(H.(F):Z) %  CokerS;  —0

By definition A; : 6(Hn (F, K,)) — Coker S} is the quotient of the isomorphism
Uo P,so A; is an isomorphism.

Let us consider again the isomorphism 6; : H;(Ky) — H;(K;), which was
defined before thanks to the existence of the cobordism. Since F; is (n — 1)-
connected then 8(Hn(Fi,Ki)) = ﬁn_l(Ki) and 6,,(Ker xo) = Ker x1, so

Hn_l o a(Hn(FmKo)) = O(Hn(Fl,Kl))

Let 6 be the restriction of the isomorphism A;06,,_10 Aal on the Z-torsion
of Coker S§.

Let ¢ be the restriction of 6,, on xg (H,L(KO)). As x; (Hn(Kz)) = Ker S},
then ¢ is defined on Ker S§.
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We denote by A(y) the submodule

Ap) = {(x,gp(w)); r € Ker SS}

Remark 6.12. By construction ¢ fulfills ¢ o xg = x1 0 8, so we have A(p) =
X(HH(KO)) where x = (xo0, X1 © 6,) as above.

To prove the necessity of algebraic cobordism of Seifert forms associated
with cobordant simple fibered knots, we will first construct a submodule M of
H,, (Fo ][ —F1) which will be a metabolizer for A = Ag & —A;. Then we will
prove that this metabolizer M fulfills conditions c.1 and c.2 in Definition 5.3
of the algebraic cobordism, for the isomorphisms ¢ and 6 we have just defined
before.

To do that, we have to choose an oriented submanifold W of S with 9(W) =
N given by Lemma 6.10. Set

j: Hn(N) = Hn (W)
be the homomorphism induced by the inclusion of N in W.
Lemma 6.13. The form A = Ay ® —A; vanishes on A\~ (Ker j).

Proof. Tt is sufficient to prove that A vanishes on A\=!(Kerj). Let a = [x] and
b = [y] be two homology classes in A~!(Ker j). As X is induced by the inclusion
of Fy [[ —Fy in N there exist two (n+1)-chains @ and § in W such that da = x
and 08 = y. Let iy be the positively oriented normal vector field to W in S.
The intersection of « and i4 () is zero. Hence the linking number in ¥ of x
and iy (y) is zero. But this linking number is, by definition, equal to A(a,b), so
A(a,b) = 0 and the lemma is proved. O

Lemma 6.14. If m is the rank of H,(N), then the rank of Ker j is 3.

Proof. The long exact sequence in homology for the pair (W, N) gives the ex-
actness of

0— Hopi1 (W) = Hop 1 (W, N) = Hopy(N) = ... 5> Hpyy (W, N) > Kerj — 0

The alternating sum of the ranks in this exact sequence together with the
Poincaré duality give

rk(Ker j) = w = %

Lemma 6.15. There exists a direct summand decomposition
A (KerjN) =A(p) ® Ry ® R

where A(p) = {(m,go(m)); x € Ker S(’)‘}, Ry = M} (Kerj") NKer Sy, and R is
any direct summand complement of A\~ (Ker j*) N Ker S* in A\~ (Ker j").
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Proof. As the considered submodules of A~!(Ker j”\) are pure, the decomposi-
tion comes from the following equalities proved before

x(Hn(Ko)) = Ker A € A7!(Ker j7),

A(p) = x(Hn(Ko)),

Ker §* = x(H,(Ko)) @ Ker S5. O

Proposition 6.16. The submodule M = A(p) ® R of A~} (Ker j) is a metab-
olizer for A = Ao ® — A1, which fulfills M N Ker S* = A(y).

Proof. By Lemma 6.15 we have
M NKerS* = A(p).

By Remark 6.12, A vanishes on M, so we have to show that M is of rank % .
As remarked in 6.11, 7 = rk(é(Hn(N))>, so rk(§(Ker j*)) <r.

Let us consider the following exact sequence induced by Equation 6.1
-1 AN A A0, ‘A
0= Ap) 5 A H(Ker j) S Ker j" = §(Ker j) — 0.

This exact sequence and the equalities rk(Ker j*) = 2, and, rk(A(y)) =7 ;
give
rk(A7! (Ker j)) =7 + % — rk(d6(Ker j")).
So we get k(A1 (Ker j")) > 2.

We can remark that if A is non degenerated then we have tk(A~!(Ker j)) <
stk(H,, (Fo) @ Hy, (F1)) = 2, because A vanishes on A\™'(Ker j*). So, if A is
non degenerated, rk(A\~!(Kerj")) = 2, rk(6(Kerj")) = r, rk(Ry) = 0 and
M = \~Y(Ker j") is a metabolizer for A.

Come back to the general case. Let ry be the rank of Ry. By construction

we have

k(M) = k(A" (Ker j*)) —rg =7 + % —1k(5(Ker j™)) — ro.

Lemma 6.17. The rank | of 6(Hn(N))/5(KerjA) is greater or equal to rq.

Proof. Let {e;}, j = 1,...,70 be a basis of Ry. Let {e}} be in H,(N) ®z Q
such that Sy ()\(ej),e;f) = §;; where Sy is the intersection form defined on
H,(N)®zQ. The e;f exists because Sy is unimodular. Let R* be the submodule
of H,,(N)®z Q generated by {e}}. Since RyNKer A = {0}, then rk(\(Ry)) = ro.
As S vanishes on Ry, then Sy vanishes on A(Rp). It implies that rk(R*) =
rk(Ro) = ro, and Ker j N R* = {0}. Since Ry C Ker S, we have S(x,y) = 0 for
all z in Ry and all y in H,(Fy [[—F1). So R* N A(H,(Fo[[—F1)) = {0} and
T

rk(é(Hn(N))/(S(KerjA)) = 1> 1k(6(R*)) = tk(R*) = ro. 0

In order to end the proof of Proposition 6.16, we only have to show that

tk(R) = % — r. But rk(6(Kerj")) =r — [ ; so we have

tk(R) =rk(M) —r=— —(r—1) —ro.
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By lemma 6.17 we have [ —rg > 0, so
rk(R) > % -

But RN KerS* = {0} by construction, and the form S induced by S on
H,(Fo 1 _Fl)/Ker g Is non-degenerate of rank m — 2r. So

rk(R) < 2

5—7”

because S vanishes on R = R /(R N Ker %) Finally we have

rk(R) = % —r

O

Remark 6.18. With the last Proposition, we have found a metabolizer M =
A(p) ® R for A which fulfills condition c.1 of the algebraic cobordism without
any condition on A.

To prove condition ¢.2 and M is pure in G in order to prove the algebraic
cobordism we must restrict the study to a smaller class of knots. This is why
we will have to choose (n — 1)-connected Seifert surfaces F; for K; on which the
Seifert forms A; are unimodular. So the following Proposition together with
the previous results will prove that the algebraic cobordism of Seifert forms is
necessary for fibered knots.

Let 6,_1 be the isomorphism between H,,_;(Ky) and H,,_1(K7), and let
6 the isomorphism between Tors(Coker Sg) and Tors(Coker S7) defined before.
According to our previous notation, let A(#,_1) (resp. A(#)) be the group

{(x,@n_l(z)) NS Tors(Hn_l(Ko))} (resp. {(:1:,9(:17)) ; « € Tors(Coker SS‘)})

Proposition 6.19. If Ay and Ay are unimodular the metabolizer M = A(p)® R
of A= Ag& — Ay, fulfills d(S*(M)") = A(9) and M is pure in Hu(F) jcer 5+

Proof. Let us denote Fy [[—F1 by F, Ko[[ —K; by K, and S§ & —S; by S*.
We consider for F' the following commutative diagram already constructed for
F; fori=0,1

0 — KerS, — H,(F) 3 H,(F, K) 2 Y(H,(F,K)) —0
[ [ ZlUoP =L Ao DAy

0 — KerS* — Hy(F) 5 Homg(H.(F);Z) %  CokerS* —0
Lemma 6.20. The equality d(S*(M)") = A(6) is equivalent to the equality
(S (M) = A(b—1).

Proof. The lemma is a consequence of the two following statements
The restriction of Ay @ Ay on A(6,—_1) is an isomorphism to A(6) because
0 oAy = A 086, 1 by construction.
The restriction of Ag @ Ay on (S, (M)") is an isomorphism to d(S*(M)")
because the commutativity of the above diagram gives UoP(S* (M)/\) = S*(M)".
O
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Let
k:H,(N)— H,(N,C)
be the homomorphism which is defined in the long exact sequence for the pair
(N,C) and
p:H,(N,C) = N, (F,K)
be the inverse of the excision isomorphism induced by the inclusion of the pair
(F,K) C (N,C). Set
¢E=pok:H,(N)—H,(F,K)
and 3
0= (Id, Gn_l) : Hn—l(KO) — Hn—l(K)
With the previous notations used we have the following commutative diagram
- Ho(Ko) 5 Hy(F) S H,(N) 5 H,o (K, —

(*) [ L& (I Lo

- Ho(K) % o) 3 H(FEK) % H(K) —

The square (I) is commutative by functoriality, and (II) is commutative by
definition of £ and 6.

Lemma 6.21. If Ag and Ay are unimodular, then we have §(Ker ) = H,,_1(Kj).
Before giving the proof of Lemma 6.21 we finish the proof of Proposition 6.19.
First remark that the module M is pure in H,,(F) /Ker S* if and only if the

quotient H"(F)/(Ker S* + M) is torsion free.

Since A = Ay @& —A; is non-degenerate, then we have
M = 2" (Ker jM).
Furthermore because of the diagram (x) we get A(Ker S*) = Ker&. Let pr be the
projection of H,, (V) on H"<N)/(Kerj/\ + Kerg) 5 Ker (pro\) = M + Ker S*.

The quotient of pr o A induces an injective map

Hn(F)/(KeI‘S* +M) — Hn(N)/(Kerj/\ +Ker§)'

Moreover, there exists x;, ¢ = 1,...,r, in Kerj” such that

T

H,,—1(Ko) = @ (0(x:)) & Tors(H,,—1(Kp)).

=1

Let (yi)i=1,....r a basis of Ker & such that Sn(z;,y;) = d;;. By induction on r, we

can construct these bases such that H,, (N) = T &+ T+ where T = @(mz, Yi).
i=1
If we denote by D the module D = T+ NKer j" and by D* any direct summand
. n ~ . .
complement of D in T-, then we get H"(N)/(Kerf + Kerjt) = D* which is
torsion free. o
Finaly H"(F)/(Ker S* 4+ M) is torsion free and M is pure in H”(F)/(Ker §*)-
So if
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n =1, the knots K and K; have torsion free homology groups (K is a one di-
mensional compact manifold), so Tors(Coker S*) = {0} and the Proposi-
tion 6.19 is proved.

n > 2, thanks to Lemma 6.20, the equality A(f,—1) = 9(S«(M)") gives Propo-
sition 6.19. The above diagram (x) and Lemma 6.21 imply

?(anl(Ko)) = A(anl) C 8(5*(M)/\)

To show that the inclusion A(f,—1) C 9(S.(M)") is an equality, it is
enough to have (8(5*(M)/\) N 8(Hn(F0,KO)> = {0}.

Let us denote by L (resp. L;) the linking form on Tors (H,—1(K)) (resp.
Tors (Hn,l(Ki))). By definition such a form L = Lo @® —L; is non degen-
erated and vanishes on (S, (M)") because Sy & —S; vanishes on M. Let

(y,0n-1(y)) be in A(f,—1). Then L(:z:, (y,@n_l(y))) = Lo(z,y) = 0 for

all y € Tors (Hn,l(Ko)). The non degeneracy of Ly implies x = 0. This
ends the proof of Proposition 6.19.

O

Remark 6.22. The linking form L is defined as follows (see [L-L, 75] prop.
2.1): Let ,y be in Tors (H,,—1 (K)) such that p and ¢ are the smallest positive
integers with p.z = ¢.y = 0. Let T and g be in H,,(F') such that 9(S., (E)@%) =z
and 0(S(7) ® ) = y. Then: L(x,y) = p%; S(Z,y) mod Z.

q

Proof of lemma 6.21. As shown in (3.10), if Ao ® —A; is non degenerated,
M = X '(Kerj") has rank 2 and is the chosen metabolizer. So A induces
a monomorphism A on H, (F)/M to H"(N)/KerjA and we get the following
exact sequence:

0= Ha(F) 37 25 Ha(N) ey = Bt (Ko) f5(cer 1) = 0-

As ) is injective and M is pure in H, (F) there exists two Z-bases

and T
{Rjii=1} of HalN) i o

such that A(e;) = p;.k; with p; € Z\ {0}. Let E (resp. H) be a direct
summand complement of M (resp. Kerj*) in H, (F) (resp. H,(N)). Let also
{ej;j=1,..,2} (resp. {kj;j=1,..,2}) be a Z-basis of E (resp. H) such that

e;j =¢; mod M (resp. k; = k; mod Ker j")

By construction A(e;) — p;.k; = « € Kerj”. So there exists a (n + 1)-chain ~
in W and a positive integer a such that: 0y = aX(ej) — ap;.k;. Let p be a
(n+1)-chain of $?"*1 x [0, 1] with dp = k;. So ae; is the boundary of y+ap;.p
in §27+1 % [0,1].

We will now prove that for all m in M, p; divides A(e;, m).
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Let m be in M = A~}(Kerj") and A be a (n + 1)-chain in S?"*! x [0;1] such
that OA = iy (m). By definition A(ae;,m) is the intersection in S?"*1 x [0, 1]
of y+apj.p and A. But A(am) € Kerj so there exists a (n + 1)-chain p in W
such that Op = am. We have 9(i4 (1)) = ais(m). Since d(a A) = aiy(m), we
get YN (aA) =~vN(ix(n)) =0. But a > 0, so a(yNA) =0 implies y N A = 0.
Finaly A(ae;,m) =ap;.(pNA) and p; divides A(e;, m).

Since A is unimodular then p; = £1 for all j = 1,...,%. So A is an
isomorphism and his cokernel is zero. As asked we have proved
§(Ker j*) = Hy_1(Ko).
This ends the proof of lemma (3.15). O

Remark 6.23. As above we can also prove that: for all m in M p; divides
A(m, € )

6.1.2 Algebraic cobordism a sufficient condition fot knot
cobordism

In this Section we will prove that algebraic cobordism of Seifert forms give
cobordism of simple fibered knots of dimension 2n — 1 with n > 3.

Let Ky and K; be two 2n — 1 dimensional simple knots, with n > 3. We
suppose that there exists (n — 1)-connected Seifert surfaces Fy and Fy, for Ky
and Kj, such that the associated Seifert forms Ay and A; are algebraically
cobordant. We consider Ky (resp. —K7) as embedded in the sphere S?" 1 x {0}
(resp. S?"T1 x {1}) which are oriented as the boundary of S?"*! x [0, 1].

Let x be in S?"*! x {0} such that (z x [0,1]) N (Fy [ —F1) is empty, and
let U be a "small" open ball around x in S?"*1 x {0}. The boundary S of the
disk D = (8?1 x [0,1]) \ (U x [0,1]) contains Fy [ —F;. Let G be the closure

of the connected sum, in S, of the interiors Fy and — F;. By construction
A= Ay ® —A; is the Seifert form of Ky [] —K7, associated to G.

We will do in D an embedded surgery on G, the result of which being a
manifold G diffeomorphic to K x [0, 1].

By Proposition 5.9 we can choose a good basis B = {(m;, m});i=1,....s+r} of
H,,(G). Thanks to J. Milnor ([M1, 61] lemma 6 p. 50), any cycle of G can be
represented by the image of an embedding of S™. Furthermore we have

Proposition 6.24. There exists s+ disjointed embeddings 1; : D" x D™ —
D such that for any i € {1,...,s+r} we have

1- [1hi(S™ x {0})] = ms,

2- (Y (D" x D)) NG = (D" x D) N S = 4;(S™ x D").

Proof. Let 1; : S — G be an embedding of S™ which represents m,. Let i # j,
bein {1,...,s + r}, then m; and m; are in the metabolizer M and we have
S(mia mj) = A(mivmj) + (_1)n A(mjvmi) =0.

Since n > 3, thanks to Whitney’s procedure [Wh, 44] we can choose the ); such
that ¥;(S™)N;(S™) = 0. Since n > 2, the Whitney obstruction to extend t; to
disjoint embeddings ; of D"*! in the (2n+ 2)-disk D, is the matrix A(m;, m;)
which is zero. Furthermore, A(m;, m;) = 0 is the classical obstruction to extend
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P to ; : D" x D™ — D. (see |Br, 72| and for details see [Bl, 94] proposition
5.1.2, p.58). We choose this extension 1; such that the restriction to S™ x D™
is a tubular neighborhood of v;(S™) in G. O

So thanks to the last Proposition we construct a submanifold G of D as
follows:

s+r s+r

G =[G\ ([T wits™ x p) v ([T w0t 577).

Lemma 6.25. The inclusion k, (resp. ki) of Ko (resp. K1) inNé, induces
isomorphisms ko ; (resp. ki ;) from H;(Ky) (resp. H;(K7)) to H;(G) for all 7,
and we have

H. (G, Ko) = H,(G, K1) = 0.
Recall the h-cobordism Theorem

Theorem 6.26 (h-cobordism Theorem [107]). Let M be a k-dimensional dif-
ferentiable compact manifold with OM = Mg ][ My such that M, My and M,
are simply connected. If H. (M, Mp) =0 and k > 6 then M is diffeomorphic
to Mgy x [0,1].

Hence with Lemma 6.25 we have that G is diffeomorphic to K x [0,1]. So
to prove that algebraic cobordism is a sufficient condition for knot cobordism it
is enough to prove Lemma 6.25.

Proof of Lemma 6.25. According to proposition (2.1), the intersection form on
H,,(F') splits in an orthogonal sum on the submodules (m;, m}),i=1,...,s+r.
So the proof when s + r = 1 implies the general case.

Let us suppose that rk(M) = 1 and let m be a generator of M, then H,,(G) =
(m,m*). We denote by ¢ : D" x D™ — D an embedding choosen as in
Proposition 6.24, by 1 : S — G an embedding such that [7(S™)] = m*, and by
Gt the manifold Gy = G\ ¢(S™x D™).

The Mayer-Vietoris sequence associated to the following decomposition of
the manifold: G = Gp U (S™ x D™) gives:

0 — H, (¢(S™ x §"7 1)) = H,(Gr) & H, (¥(S" x D)) —» H,(G)  (6.2)
L Hy g (9(S™ x §™7) = H,_1(Gr) = 0.

where ¢ is given by the intersection of cycles with m.
The Mayer-Vietoris sequence associated to the following decomposition of
the manifold: G = Gy Uyp(D"! x §771) gives:

0 — H,((S™ x S"71) % H,(Gr) — Ha(G) 5 Hooy (9(S™ x S"7Y) - (6.3)
BH, (D™ x SPY) @ H, 1 (Gr) — Hy 1 (G) = 0.
Remark that the homomorphism £ is injective into Hn_l(w(D”+1 X S"fl)),
hence v = 0 and the sequence (6.3) splits up into:

0 — H, (9(S™ x $"71)) % H,(Gr) — H,(G) — 0, (6.4)
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and

0 — Hyq ((S™ x §* 1)) B H, 4 (¢(D" x S"1)) @ H,,_1(Gr)

—H,_1(G) - 0. (6.5)

Since rk(M) = 1 = s+ r we have to consider the two following cases:
s=0,r=1and s=1,r=0.
x 1% case: s =0 and r = 1, then Ker $* = (m, m*).

In sequence (6.2) we have Ker § = (m, m*), then

Ha(Gr) = ([9(8" x {1)], [n(s™)] )

and

Hoo1(Gr) = ([0({1} x 5°7)])-

In sequence (6.4) we have Ima = <[1/)(S" X {1})]>, S0

H,(G) = ([n(S™))-

By construction of the good basis in Proposition 5.9 [n(S")] is a gener-

ator of Im (H,(Ko) — H,(G)). So the inclusion of Ky in G induces the
isomorphism

kO,n : Hn(KO) i Hn(é)

Since H,,_1(Gr) = <[1/)({1} X S"‘l)D in sequence (6.5), we have

H,o(6) = ([({1} x 5°7)).

Condition c.1 of the algebraic cobordism gives that there exists a in Ker S
such that m = (a, ¢(a)). If we denote by

Yo : Hn(Ko) — Hn(G)

the homomorphism induced by the inclusion, then we can choose b in
H,,_1(Ko) such that H,_;(Ko) = (b) and b is the dual of v;'(a) for the
intersection form of Kjy. There exists B in H, (G, Ky) such that 0B =
b and the intersection between B and m is +1. The boundary of the

n-chain (B — (BN a(S"x l;"))) is homologous to the (n — 1)-cycle
b— (¥({1} x S"71)), hence b and [¢({1} x S"~1)] are homologous in
H, 1(G) = <[w({1} X S"‘l)D. Thus the inclusion of K in G induces
the isomorphism

kO,nfl : anl(KO) i anl(G)~
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x 2™ case: s =1 and r = 0, then Ker S* = {0} and H,,(K,) = 0.

In sequence (6.2) we have Kerd = (m), then

and

Ha(Gr) = ([0(8" x {1})] )

o 1(Gr) = ([u({1} x 57 1] ).

In sequence (6.4) we have Ima = <[1/J(S" X {1})]> Since H,(Gr) =

<[¢(S” X {1})]> we have H,,(G) = 0 = H,(K)).

- if S, (m) is indivisible (i.e. H,—1(Kp) = 0), then § in (6.2) is surjec-

tive. Thus Hn—l(G) =0= Hn—l(KO)-
If a # 11is the greatest divisor of S, (m) (i.e. H,_1(Ko) = Z/a 7,) then

condition c.2 of algebraic cobordism together with Lemma 6.20 give
that there exists ¢ in Hy,_1(Kj) such that 0(% S, (m)) = (¢, 0,-1(c)).
Let b in H,,_1(Kj) be the dual of ¢ for the linking form of K. There
exists B in H, (G, Ky) such that B = b and the intersection between
B and m is +1. As before the boundary of the n-chain

B— (BNy(s"x D)
is the n-cycle b — ¢ ({1} x S"71), hence b and [¢({1} x S"1)] are
homologous in H,_1(G). Since H,,_1(Gr) = <[w({1} X S"_l)]> in
sequence (6.5) we have H,,_1(G) = <[1/J({1} X S"‘l)]>. Thus b and

[¥({1} x S"~1)] are homologous in H,,_; (G) and the inclusion of K,
in G induces the isomorphism: ko ,,—1 : Hy—1(Kp) = Hn,l(é).

Since G is obtained by surgery on n-cycles, this surgery only modifies
homology groups of dimensions n and n — 1. Hence for k # n,n — 1 we

ko, k ~

have Hy(G) = Hy(Ko) S Hy(G). By symmetry we also have the same
results with K. Finally ko ; and k; ; are some isomorphisms for all j.
This ends the proof of Lemma 6.25.

O

6.1.3 Comments

For the proof of sufficiency in Theorem 6.3 we have supposed that Ay and
A, were algebraically cobordant Seifert forms associated with fibers Fy and F
of two simple fibered knots Ky and K;. Then we have considered F; to be
embedded in S?"*t1 x {i}, i = 0,1, and we have denoted by F the connected
sum F = FyfF; embedded in S?"*! x [0,1]. Note that in that case we have
H,(F) = H,(Fy)® H, (F) because # 3. Then we showed that one can perform
embedded surgeries on F the connected sum of Seifert manifolds in $2"+1 x [0, 1]
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53

K x {0} K x {1}

Figure 6.1. The manifold F’

so that the result of these surgeries is a simply connected submanifold X of
S2ntl % [0, 1] with

9X = (KO x {0}) H(Iﬁ x {0})

and

H.(X,K;)=0for:=0,1.

According to Smale’s h-cobordism Theorem we got X = K, x [0,1], and thus
X gave a cobordism between Ky and K;.

The crucial point in this proof is to see that the technical conditions im-
posed on the metabolizer in Definition 5.3 give a strategy to perform the right
embedded surgeries.

In order to illustrate the idea, let us consider the case of a non-spherical
1-knot K which is the boundary of the disjoint union of two 2-disks embedded
in S3. Note that K is not fibered, nor of dimension > 5. We use this example
here just to explain the essential idea for the proof of Theorem 6.3. As a Seifert
manifold we can choose an annulus S! x [0, 1] trivially embedded in S®. The
knot K is cobordant to itself. Let us try to construct a cobordism by using the
same method as described in the proof of Theorem 6.3. First take two copies
of K, K x {0} and K x {1}, embedded in S* x [0,1], and let Ay and A; be
the Seifert forms associated with the Seifert manifolds as above. Let F' be the
connected sum of the Seifert manifolds associated with the knots.

It is easy to see that Ay @ (—A;) has a metabolizer M of rank 2, which
is generated by the homology classes represented by « and f as in Fig. 6.1.
There are two possible surgeries, as shown in Fig. 6.2, and one gives a desired
cobordism, while the other does not.

Note that the homology class represented by 3 belongs to Ker S* N M, while
the homology class represented by a does not.
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surgery on [ surgery on «

Figure 6.2. The results of the two surgeries on F'

6.2 Fox-Milnor type relation

In [44] Fox and Milnor showed that the Alexander polynomials of two cobordant
1-knots should satisfy a certain property. In this section, we explain this prop-
erty for n-knots and present an application to the cobordism classes of spherical
fibered n-knots.

In the following, for a polynomial f(t) € Z[t], we set

Fre)y=tfe ),

where d is the degree of f(t). We say that a polynomial f(t) € Z[t] is symmetric
it f*(t) = £t*f(t) for some a € Z.

Let K be either a spherical (2n — 1)-knot or a simple (2n — 1)-knot with
Seifert matrix A. As mentioned before, we still assume that A is associated
with an (n — 1)-connected Seifert manifold when K is simple. Then

Ag(t) = det(tA + (—1)""A)

the Alexander polynomial of K (see [2, 88]), is known to be an isotopy invariant
of K up to a multiple of +t*, a € Z. For fibered knots, we use (unimodular)
Seifert matrices with respect to fibers so that the Alexander polynomial is well-
defined up to a multiple of +1 and has leading coefficient +1.

The following relation is called the Foz-Milnor type relation (for proofs, see
[89, 8], for example).

Proposition 6.27. Let Ky and K7 be two (2n—1)-knots which are both spherical
or both simple. If they are cobordant, then there exists a polynomial f(t) € Z][t]
such that

Ak, (1) Ak, (t) = £t f () f7(t) (6.6)
for some a € Z.

This result is in fact very powerful, for example, in [35], Du Bois and Michel
showed that the algebraic knots constructed in [148] are in fact not cobordant
by exploiting the Fox-Milnor type relation.
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Let us illustrate again that the above relation, although very simple, gives
us a lot of information about knot cobordism.

Let us recall that C,, denotes the cobordism group of spherical n-knots.
Let us denote by F,, the subgroup of (), generated by the cobordism classes
of fibered knots. Note that Fj, coincides with the set of all cobordism classes
which contain a fibered knot.

Then we can prove the following proposition by using the Fox-Milnor type
relation, though it might be implicit in the works of Levine [89, 90], Kervaire
[73] and Stoltzfus [147] we give here a detailed proof.

Proposition 6.28. The group C,,/F,, is infinitely generated if n is odd.

Proof. Set n = 2k — 1. We only have to prove that (C,,/F,) ® Zs contains Z3°.
First we consider the case where k is odd. For each positive integer p, set
Ap(t) = pt> + (1 — 2p)t + p. Note that A,(t) is irreducible over Z. According
to Levine (see [89]), there exists a simple spherical (2k — 1)-knot K, in S2k+!
whose Alexander polynomial Ag, (t) is equal to A,(t). Let [K)] denotes the
class in
(Cn/Fn) ® Ly = (Cn/F)/2(Cr [ Fr) = Cr/ (Fy 4 2Cy)

represented by K,. In order to show that (C,/F,) ® Zs contains Z$°, it is
sufficient to show that {[K,]},>2 are linearly independent over Z,.

Suppose that K, 8K,,4---§K,, is cobordant to L{L§L’, where py,pa, ..., pe
are distinct positive integers with p; > 2, L is a spherical (2k — 1)-knot, and L’
is a spherical fibered (2k — 1)-knot. Then by Proposition 6.27 we have

Ak, (H)Ak,, () - Ak, (OAL)2AL(t) = £t f(£) £ ()

for some a € Z and f(t) € Z[t].

Since A, (t) are irreducible and symmetric, each A, (t) should appear an
even number of times in the irreducible decomposition of f(t)f*(t). Therefore,
Af,, (t) should divide A/(t), since Ay, (t), Ak, (t),...,Ak,, (1) are pairwise
relatively prime.

On the other hand, since L’ is fibered, its Seifert matrix is unimodular and
hence Ay, (t) has leading coefficient +-1. This is a contradiction, since the leading
coefficient of Ag, () is equal to p; > 2.

Therefore, {[K,]}p>2 C (Cn/F,) ® Zy are linearly independent over Zs.

When k is even, by considering the polynomial ﬁp(t) =pt* — (2p— 1)t +p,
p > 2, instead of A,(t) in the above argument, we get the desired conclusion.
This completes the proof. O

Remark 6.29. The above polynomials A,(t) and ﬁp(t) were used by Kervaire
in [72, Théoréme I11.12] for showing that Cax_1 is infinitely generated.

Remark 6.30. When £ is even, every degree two symmetric polynomial which
arises as the Alexander polynomial of a (2k — 1)-knot is reducible. In fact, in
[89], it is mentioned that such a polynomial should be of the form

ala+ 1)t* — (2a(a+1) + )t +ala+1) = (at — (a + 1))((a + 1)t — a).

The degree two symmetric polynomial constructed in [90, p. 109] for ¢ = 1 is
also reducible, and it seems that the proof of Theorem 3.11 (or [90, Theorem,
p. 108]) given there should appropriately be modified.
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6.3 Cobordism of Brieskorn knots
A Brieskorn polynomial is a polynomial of the form
P(z) = 20" +25° 4 4 20

with z = (21, 22, ..., 2n41), n > 1, where the integers a; > 2, j =1,2,...,n+1,
are called the exponents. The complex hypersurface in C"*! defined by P = 0
has an isolated singularity at the origin, which is called a Brieskorn singularity.

In this section, we will study Brieskorn singularities up to cobordism. We
prove that two Brieskorn singularities have cobordant algebraic knots if and
only if they have the same set of exponents, provided that no exponent is a
multiple of another for each of the two Brieskorn polynomials. Consequently,
for such Brieskorn polynomials the multiplicity is an invariant of the cobordism
class of the associated algebraic knot.

Definition 6.31. Two bilinear forms L; : G; x G; — Z, i = 0,1, defined on free
abelian groups G; of finite ranks are said to be Witt equivalent if there exists a
direct summand M of Go@® Gy such that (Lo® (—L1))(z,y) =0for all z,y € M
and twice the rank of M is equal to the rank of Gy @ G1. In this case, M is
called a metabolizer.

Furthermore, we say that Ly and L, are Witt equivalent over the real num-
bers if there exists a vector subspace Mg of (Go ® R) ® (G1 ® R) such that
(L& @ (—=LR))(z,y) = 0 for all z,y € Mg and 2dimgr Mg = dimr(Go ® R) +
dimgr (G; ® R), where LR : (G; ® R) x (G; ® R) — R is the real bilinear form
associated with L;, i =0, 1.

The following lemma is a consequence of Theorem 6.3.

Lemma 6.32. If two simple fibered (2n — 1)-knots are cobordant, then their
Seifert forms are Witt equivalent. In particular, they are Witt equivalent over
the real numbers as well.

Now, let f be a weighted homogeneous polynomial in C™**1 i.e., there exist
positive rational numbers (wq,wa, ..., wy4+1), called weights, such that for each

. ki k kn
monomial cz)" 25° -+~ 2,\1", ¢ # 0, of f, we have

n+1

Zﬁzl.

wa
j=1

We say that f is nondegenerate if it has an isolated critical point at the origin.
Saito [137] has shown that if f is nondegenerate, then by an analytic change
of coordinate, f can be transformed to a nondegenerate weighted homogeneous
polynomial such that all the weights are greater than or equal to 2. Furthermore,
under the assumption that the weights are all greater than or equal to 2, the
weights are analytic invariants of the polynomial.

Let f be a nondegenerate weighted homogeneous polynomial in C**! with
weights (w1, wa, ..., wp41) such that w; > 2 for all j. Set

il 41w,

Py(t) = Htl/wj—l.
1

j=
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Note that Pf(t) is a polynomial in t1/™ over Z for some positive integer m. It
is known that two nondegenerate weighted homogeneous polynomials f and g
in C"*! have the same weights if and only if Py(t) = P,(t) (see [145]).

We start with the following result.

Theorem 6.33. Let f and g be nondegenerate weighted homogeneous polynomi-
als in C™*1. Then, their Seifert forms are Witt equivalent over the real numbers
if and only if P¢(t) = Py(t) mod t + 1.

Proof. Let h: (C™*1,0) — (C,0) be a polynomial with an isolated critical point
at the origin. It is known that the Seifert form associated with the polynomial

h(z1,22, ., 2n+2) = h(z1,22, ..., Zny1) + sz_g

is naturally isomorphic to (—1)"** L, (for example, see [138] or [136, Lemma 2.1]).
Furthermore, we have P; (t) = t'/2P,(t). Hence, by considering f(z)+22,, and
g(2z) + 225 if necessary, we may assume that n is even.
Recall that
H"(Fp;C) = @ H" (Fy; C)a,

where Fj, is the Milnor fiber for A, A runs over all the roots of the character-
istic polynomial Ap(¢t), and H"(F};C), is the eigenspace of the monodromy
H"™(Fp; C) — H"(Fp; C) corresponding to the eigenvalue A (h = f or g). It is
easy to see that the intersection form Sy, = Ly + 'Ly, of Fy, on H"(F}y,; C) decom-
poses as the orthogonal direct sum of (Sp)|gn(r,;c),- Let n(h)Y (resp. p(h)y)
denote the number of positive (resp. negative) eigenvalues of (Sk)|mn(r,.c),-
The integer

ox(h) = p(h)f — u(h)y,

is called the equivariant signature of h with respect to A (for details, see [116,
139]). According to Steenbrink [146], putting Py (t) = > cat®, we have

ox(h) = Z Ca — Z Ca

A=exp(—2mia) A=exp(—2mia),
la]: even la]: odd

for A\ # 1, where i = v/—1, and |« is the largest integer not exceeding a.

Now, suppose that the Seifert forms L and L, are Witt equivalent over the
real numbers. Then, the equivariant signatures o, (f) and o (g) coincide for all
A (for example, see [34]. See also [89, 90| for the spherical knot case). Note that
by [136, Lemma 2.3], the equivariant signature for A = 1 is always equal to zero.

Set Pr(t) = PP(t) + P}(t), where PP(t) (vesp. Pf(t)) is the sum of those
terms c,t® with [of = 0 (mod 2) (resp. ] =1 (mod 2)). We define P_(t)
and P, (t) similarly. Since the equivariant signatures of f and g coincide, we
have

tP}(t) — Pf(t) = tP)(t) — P} (t) mod t* — 1

and
tP;(t) — P}(t) = tP,(t) — P)(t) mod t* —1

(for details, see [115, 136]). Adding up these two congruences, we have

(t —1)Pp(t) = (t — 1)Py(t) mod ¢* — 1, (6.7)
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which implies that
Ps(t) = Py(t) mod t+ 1. (6.8)

Conversely, suppose that (6.8) holds. Then, we have (6.7), which implies
that the Seifert forms Ly and L, have the same equivariant signatures. Then,
we see that they are Witt equivalent over the real numbers by virtue of [136,
§4]. This completes the proof. O

Remark 6.34. The above theorem should be compared with the result, ob-
tained in [136], which states that the Seifert forms associated with nondegen-
erate weighted homogeneous polynomials f and g are isomorphic over the real
numbers if and only if Pf(t) = P,(t) mod t* — 1.

Let us now consider the case of Brieskorn polynomials. Note that a Brieskorn
polynomial is always a nondegenerate weighted homogeneous polynomial and
its weights coincide with its exponents.

Proposition 6.35. Let

n+1 n+1

a; b;

f(z)= g z;7 and g(z) = E z;
j=1 j=1

be Brieskorn polynomials. Then, their Seifert forms are Witt equivalent over
the real numbers if and only if

n+1 .y n+1 .y
H cot % = H cot E (69)
Jj=1 Jj=1

holds for all odd integer .

Proof. Note that Py(t) and P,(t) are polynomials in s = ¢*/™ for some m. Let
us put Qf(s) = Pf(t) and Qg4(s) = Py(t). Then, it is easy to see that (6.8) holds
if and only if Qf(&) = Q4(&) for all £ with £™ = —1. Note that ¢ is of the form
exp(my/—1¢/m) with ¢ odd and that

—1 - exp(ﬁ\/jw/aj) _ \/leOt Lg
exp(my/—10/a;) — 1 20

Then, we immediately get Proposition 6.35. O

By considering those odd integers ¢ which give zero in (6.9), we get the
following.

Proposition 6.36. Let f and g be the Brieskorn polynomials

n+1 n+1
f(z)= Z zy' and g(z) = Z z;”
j=1 j=1
If their Seifert forms are Witt equivalent over the real numbers, then we have

{¢ € Z|? is odd and is a multiple of some a;}
= {¢e€Z|!¢is odd and is a multiple of some b, }.

In particular, if a; is odd for some j, then by, is odd for some k, and the minimal
odd exponent for f coincides with that for g.
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Remark 6.37. For nondegenerate weighted homogeneous polynomials, we also
have results similar to Propositions 6.35 or 6.36. However, the statement be-
comes complicated, so we omit them here (compare this with [136, Proposi-
tion 2.6]).

To each polynomial Q(t) = H?:l(t — ), with a1, a9,...,a5 in C*, the

multiplicative group of nonzero complex numbers, set
divisor Q(t) = (1) + (a2) + - - + (),

which is regarded as an element of the integral group ring ZC* and is called the
divisor of Q. For a positive integer a, set A, = divisor (t* —1). For the notation
and some properties of A,, we refer the reader to [110].

Let f be a nondegenerate weighted homogeneous polynomial in C**! with
weights (w1, wa, ..., wn41) such that w; > 2 for all j. Let Af(t) be the charac-
teristic polynomial of the monodromy of f (see [105]). Then, by Milnor—Orlik
[110], we have

n+1 1
divisor Af(t) = H (%’Auj - 1) , (6.10)
Jj=1
where w; = u;/v;, and u; and v; are relatively prime positive integers, j =
1,2,...,n+1. In the case of a Brieskorn polynomial, by virtue of the Brieskorn—
Pham theorem (for example, see [105]), we have

n+1
divisor Af(t) = H (Mg, — 1),

j=1
which can also be deduced from the Milnor—Orlik theorem mentioned above.

Proposition 6.38. (1) Let f and g be nondegenerate weighted homogeneous
polynomials in C*T1 with weights

(ul/v17u2/v27 B 7un+1/vn+1) and (ull/vllvué/véa s 7u;z+1/v'ln+1)

respectively, where uj and v; (resp. v} and v}) are relatively prime positive
integers, j = 1,2,...,n+ 1. If their Seifert forms are Witt equivalent over the

real numbers, then we have
n+1 1 n+1 1
11 (U_Auj - 1) =11 <MAu; - 1) (mod 2).
j=1 > j=1 \J

(2) Let f and g be Brieskorn polynomials as in Proposition 6.35. If their
Seifert forms are Witt equivalent over the real numbers, then we have

n+l n+1
H(Aaj -1)= H(Abj —1) (mod 2).

Proposition 6.38 is a consequence of the Milnor—Orlik and Brieskorn-Pham
theorems on the characteristic polynomials [105, 110] together with the Fox—
Milnor type relation. Here, a Fox—Milnor type relation for two polynomials
f and g with Witt equivalent Seifert forms means that there exists a polyno-
mial y(¢) such that Af(t) Ay(t) = £t y(t) y(t71) (for details, see [12], for
example). Here we give another proof, using Theorem 13.9, as follows.
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Proof of Proposition 6.38. Since Py(t) = Py(t) mod ¢+ 1, there exists a poly-
nomial R(t) € Z[t'/™] for some m such that

Py(t) = By(t) = (t+ DR(E) = (t — DR(t) + 2R(1).

Therefore, for each A € S!, the multiplicities of A in the characteristic polyno-
mials Af(t) and Ay(t) are congruent modulo 2 to each other (for details, see
[115, 136], for example). Then, the result follows in view of the Milnor-Orlik
formula (6.10) for the characteristic polynomial. O

Then we have the following Theorem.

Theorem 6.39. Suppose that for each of the Brieskorn polynomials

n+1 n+1

f(z):Zz;’ and g(z Zz

J=1

no exponent is a multiple of another one. Then, the knots Ky and K, are
cobordant if and only if a; =b;, j=1,2,...,n+1, up to order.

For the proof of Theorem 6.39, we need the following.

Lemma 6.40. For integers 2 < ay <as <---<ap and 2 < by <by <--- < by,

we have , .
ZA%, = ZA;,J (mod 2) (6.11)

[

<.
—
<

if and only if p=q and a; = b; for all j.

Proof. Suppose that a, < b;. Then the coefficient of (exp(2w+/—1/b;)) on the
right hand side of (6.11) is equal to 1, while the corresponding coefficient on the
left hand side is equal to 0. This is a contradiction. So, we must have a, = b,.

Then we have

1 -1

Aaj = Abj
1 j=1

p

2

(mod 2).

<.
Il

Therefore, by induction, we get the desired conclusion. O

Proof of Theorem 6.39. Suppose that the algebraic knots Ky and K, are cobor-
dant. We may assume a1 < ag < --+ < apy1 and by < bg < -+ < byy1. By
Proposition 6.38 (2), we have

Tﬁ(A% —1) — (=)t = ﬁ Ap, — 1) = (=)™ (mod 2). (6.12)

Recall that for positive integers a and b, we have
AaAb = (au b)A[a,b]7

where (a,b) is the greatest common divisor of a and b, and [a,b] denotes the
least common multiple of a and b.

By considering the term of the form Ay with the smallest d on both sides of
(6.12), we see that a3 = b; by Lemma 6.40. By subtracting A,, from the both
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sides of (6.12), we see az = ba, since ag (or by) is not a multiple of a; (resp. by).
Then, by further subtracting Aq, + (a1, a2)A, 4, from (6.12), we see a3 = bs,
since ag (or b3) is not a multiple of a; or as (resp. by or be). Repeating this
procedure, we see that a; = b; for all j.

Conversely, if f and g have the same set of exponents, then Ky and K, are
isotopic and hence cobordant. This completes the proof. O

Recall that the multiplicity of a Brieskorn polynomial coincides with the
smallest exponent, then we have the following Proposition.

Proposition 6.41. Suppose that for each of the Brieskorn polynomials

n+1 n+1
f(z)= Z zj’ and g(z) = Z z;”
j=1 j=1

the exponents are pairwise distinct. If Ky and K4 are cobordant, then the mul-
tiplicities of f and g coincide.

Proof. In the proof of Theorem 6.39, we proved that the smallest exponents of
f and g are equal, provided that there is only one smallest exponent for each of
f and g. Since we assume that the exponents of f (or g) are pairwise distinct,
the same argument works. O

Remark 6.42. Theorem 6.39 implies that two algebraic knots Ky and K|
associated with certain Brieskorn polynomials are isotopic if and only if they
are cobordant. Recall that according to Yoshinaga—Suzuki [164], two algebraic
knots associated with Brieskorn polynomials in general are isotopic if and only if
they have the same set of exponents. In fact, they showed that the characteristic
polynomials coincide if and only if the Brieskorn polynomials have the same set
of exponents.

Remark 6.43. For the case where n = 2 and the knots are homology spheres,
Theorem 6.39 has been obtained in [133] by using the Fox—Milnor type relation.

Example 6.44. For all integers p1,p2,...,pn_3 > 2, n > 3, the product of the
characteristic polynomials of the algebraic knots associated with

) — & 4 4
fR) =+ 282+ + 200+ 28 o+ 2+t

and
g2y =2+ 2P 2] a2l 2l 20,

is a square. This means that the characteristic polynomials A;(t) and Ay(t)
of the algebraic knots Ky and K, respectively, satisfy the Fox-Milnor type
relation, although their exponents are distinct. Thus the assumptions in Theo-
rem 9.9 and Proposition 6.41 are necessary, as long as the proof depends only
on the Fox—Milnor type relation.

6.3.1 Further results

In this section, we give some more precise results for the case of two or three
variables. We refer to next Chapters for the study of cobordism of Brieskorn
knots of dimension 1 and 3.
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Proposition 6.45. Let f and g be nondegenerate weighted homogeneous poly-
nomials of two variables with weights (w1, ws) and (w},w}), respectively, with
wj,w§ > 2. If their Seifert forms are Witt equivalent over the real numbers,
then wj = wj, j = 1,2, up to order.

Proof. Set w; = uj/v; and wj = u/v}, j = 1,2, where u; and v; (resp. u; and
v}) are relatively prime positive integers. Let m be a common multiple of u,
ug, uy and uh. Then, by the same argument as in the proof of {136, Lemma 3.1],

we see that the polynomial

F(U) _ _nm/w1+7n/w2+m/u/1 _nm/w1+m/w2+m/wé
_i_nm/wl-i-m/wi-i-nL/w; _’_nm/wg-i-m/wi-i-'rn/wé

+nm/w1 + nm/wg 7 nm/wi 7 nm/w;

in 7 is divisible by n™ 4 1. Note that F'(n) corresponds to F'(z) in the notation
of [136].
Since
T T T
cot ﬂ cot % = cot m cot m,
we may assume that wy > w] > w) > we. Furthermore, if w; = wf, then we
have wq = w}. Therefore, we may assume

wy > wh > wh > wa(> 2).

Note that then the highest degree of F is equal to m/ws +m/w] +m/wh, while
the lowest one is equal to m/wy. Set V(n) = n~™/"“1 F(n), which is a polynomial
in 7 of degree
m m m m
w W T
and which is divisible by ™ + 1. Note that V(n) corresponds to V(z) in the
notation of [136].
If we have deg V' < m, then by the same argument as in the proof of [136,
Lemma 3.1], we have the desired conclusion.
If deg V' > m, then we have the congruence
V(U) — _,r]m/wngm/wi _ nm/w2+m/wé + nm/w'ﬁ»m/w; (613)

_nm/wg—s—m/w;—&-m/wé—m/wl—m +1 _|_,'7m/w2—m/w1

_nm/wll—m/wl _ nm/w’z—m/wl mod nm +1.
Note that all the terms appearing on the right hand side of (6.13) have nonneg-
ative degrees strictly less than m.

Let us consider the monomial —p™/w2tm/witm/wy=m/wi=m of V/(p) with
negative sign. In order that V(n) be divisible by ™ + 1, a term with positive
sign must cancels with —ym/w2tm/witm/wy—m/wi—m  Therefore, three cases
arise

1. 1/wy + 1/w) + 1/wh — 1/wy — 1 = 1/w] + 1/wh,

this does not occur, since wy > wy > 2.
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2. Tjwa+1/wi +1/wh —1/wy —1=0,

then we have

V(U) = _nm/wg-‘rm/wi _ nm/wg-‘rm/w'z + nm/wi-i—m/w;
+77m/w27m/w1 _ nm/wllfm/wl _ nm/w'zfm/wl mod nm +1

m/w'lfm/wl(_ m/wi+m/ws m/wi+m/wat+m/wh—m/w]

= n n -n

_~_nm/w1+m/w; + nm/wg—m/wll 11— nm/w’z—m/w;)

Note that the difference of the highest and the lowest degrees of the last
polynomial is equal to m/wy + m/wy + m/wh — m/wy, which is strictly

positive and is strictly smaller than m, since 1/we + 1/why = 1/wy —
1/w} + 1. This means that V(1) cannot be divisible by n™ + 1. This is a
contradiction.

3. Tjwa + 1/w) + 1/wh — 1/wy — 1 = 1/we — 1/wy In this case we have
1/w}+1/wh = 1, which implies that w] = w) = 2. This is a contradiction,
since wh > wq > 2.

Therefore, we must have wy = w} and we = w). This completes the proof. [

By using exactly the same argument as in [136, Lemma 3.1], we have the
following.

Proposition 6.46. Let f and g be nondegenerate weighted homogeneous poly-
nomials in C" ™1 with weights (wi,ws, ..., wpy1) and (Wi, wh,... W, ), re-
spectively, such that w; > 2 and w; > 2 for all j. Suppose that the Seifert forms
of f and g are Witt equivalent over the real numbers. If

1 1 11 1
I B T
— w w; w1 Wp4+1 Wy

Wy, 41
then we have w; = w;, i=12....,n+1, up to order.

Remark 6.47. By Proposition 6.45, we see that if the algebraic knots associated
with two weighted homogeneous polynomials of two variables are cobordant,
then the polynomials have the same set of weights. In fact, this fact itself is a
consequence of already known results as follows.

If two algebraic knots in 52 are cobordant, then they are in fact isotopic
by virtue of the results of Lé [85] and Zariski [166] (for details, see [12, §4]).
Then, by Yoshinaga—Suzuki [165] (see also [63, 117]), they have the same set of
weights.



Chapter 7

Cobordism of low dimensional knots

"La mathématique est I’art de donner
le méme nom a des choses différentes."
Henri Poincaré

7.1 Cobordism of algebraic 1-knots

The classification of 1-knots up to cobordism is still unsolved. However
algebraic 1-knots have particular behavior. Let us be more precise.

Consider K, an algebraic 1-knot associated with a holomorphic function
germ f : C2,0 — C,0 of two variables with an isolated critical point at the
origin. Let us further assume that K is spherical. Then it is known that K is
an iterated torus knot [17]. Where an iterated torus knot is a knot obtained from
a torus knot by an iteration of the cabling operation (for example, see [129]), on
top of that note that in the case of algebraic 1-knots the cablings have always
positive self-linking.

For a knot, the fundamental group of its complement in the ambient sphere
is called the knot group. In [166] Zariski explicitly gave generators and relations
of the knot group of a spherical algebraic 1-knot. When two spherical algebraic
1-knots are isotopic, they have isomorphic knot groups. Although the converse
is not true for general spherical (not necessarily algebraic) 1-knots, it was proved
that two spherical algebraic 1-knots with isomorphic knot groups are isotopic
(see [21, 166, 126, 85]). Furthermore, Burau [21] proved that two spherical alge-
braic 1-knots with the same Alexander polynomial are isotopic. For a definition
of the Alexander polynomial, see §6.2. It is known that the Alexander poly-
nomial of a spherical 1-knot is determined by its knot group (see, for example,
[30]).

For general algebraic 1-knots which are not necessarily spherical, the follow-
ing is known. Let K = K1UKyU---UK ;and L = L ULy U---UL; be algebraic
1-knots, where K;, 1 <14 < s, and L, 1 < j <t, are components of K and L
respectively. Then K and L are isotopic if and only if s = ¢, K; is isotopic to
L;, 1 <1 < s, and the linking number of K; and K; coincides with that of L;
and L, for i # j, after renumbering the indices if necessary (for example, see
[126]). It is also known that the multi-variable Alexander polynomial classifies
algebraic 1-knots [22, 126, 163].

As to the classification of algebraic 1-knots up to cobordism, we have the
following result due to Lé [85]. Let K and L be two cobordant spherical alge-
braic 1-knots. Let us denote their Alexander polynomials by Ak (¢) and Ay (t)
respectively, after normalization so that their degree 0 terms are positive. In
[44], Fox and Milnor proved that then there exists a polynomial f(t) € Z[¢t] such
that Ag(t)AL(t) = tif(t)f(1/t), where d is the degree of f(t) (for details, see
§6.2 of the present survey). Using this, one can conclude that the product of the
Alexander polynomials of two cobordant spherical algebraic 1-knots is a square
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in Z[t]. In fact, Lé [85] proved that two cobordant spherical algebraic 1-knots
have the same Alexander polynomial, and hence the following holds.

Theorem 7.1 ([85]). Two cobordant spherical algebraic 1-knots are isotopic.

For general (not necessarily spherical) algebraic 1-knots, since the linking
numbers between the components are cobordism invariants, we see that the same
conclusion as in Theorem 7.1 holds also for the general case of not necessary
spherical algebraic 1-knots.

As mentioned before in the introduction, isotopy of knots implies cobordism.
Then we have the following Theorem.

Theorem 7.2. Two algebraic 1-knots are cobordant if and only if they are
1sotopic.

Remark 7.3. It has been shown that the images of the cobordism classes of
spherical algebraic 1-knots by ®; : C; — C~!(Z) are not independent. An
explicit example is given in [92].

7.2 Brieskorn 1-knots

The following Proposition gives a characterization of cobordism class of Brieskorn
1-knots.

Proposition 7.4. Let f(z) = 2{* + 252 and g(z) = 20 + 25 be Brieskorn
polynomials of two variables. If the Seifert forms L¢ and L, are Witt equivalent
over the real numbers, then a; =b;, j = 1,2, up to order.

Proof. If ay or as is odd, then by Proposition 6.36 we may assume that a; = by
is odd. Then by Proposition 6.35, we have

Tl Tl
cot — = cot —,
2(12 2b2

which implies that as = bs.
Therefore, we may assume that all the exponents for f and g are even. Then
by Proposition 6.38 (2), we have

(Aa1 - 1)(Aa2 - 1) = (Abl - 1)(Ab2 - 1) (mOd 2)7
which implies that
Aal + Aa2 = Ab1 + Ab2 (mod 2).

If a1 # ag, then we see that by # by, and a; = b;, j = 1,2, up to order
by Lemma 6.40. If a; = as, then we must have by = bs. In this case, by
Proposition 6.35, we have

T ™
cot? — = cot? —,
2a1 2b1

which implies that a; = b;. This completes the proof. O



Chapter 8

Knots of dimension three

"It would be better for the true physics
if there were no mathematicians on earth."
Daniel Bernoulli

In this Chapter, we deal with 3-dimensional knots and all of them will be
oriented. This case is much more difficult than that of higher dimensional knots,
since the dimension of the Seifert manifolds associated with a 3-knot is equal
to four. The topology of 4-dimensional manifolds is exceptional, and the usual
technics like the Whitney trick [162] used in the case of higher dimensional
manifolds are not available any more.

The algebraic cobordism of Seifert forms is a necessary condition for the
existence of a cobordism between two simple fibered (2n — 1)-knots for all n > 1
(see Theorem 6.5). Furthermore, two isotopic simple fibered (2n — 1)-knots have
isomorphic Seifert forms for all n > 1 (for example, see [36, 65, 131]). How-
ever, it is known that there exist 3-dimensional simple fibered knots which are
abstractly diffeomorphic and have isomorphic Seifert forms but which are not
isotopic (see Example 10.7 below). This shows that the one-to-one correspon-
dence between isotopy classes of knots and isomorphy classes of Seifert forms
stated in Theorem 6.1 does not hold for n = 2. In fact, these fibered 3-knots
are even not cobordant (see Remark 8.16). Hence, for 3-dimensional knots, iso-
topy classes and cobordism classes must be characterized by new equivalence
relations. Isotopy classes of 3-knots were studied in [131, 132, 135] (see also
[54]). For cobordism classes we will define a new equivalence relation. For this
we need to use Spin structures on manifolds.

Recall that a Spin structure on a manifold X means the homotopy class of
a trivialization of TX @ eV over the 2-skeleton X of X, where TX denotes
the tangent bundle and £V is a trivial vector bundle of dimension N sufficiently
large. Note that X admits a Spin structure if and only if its second Stiefel-
Whitney class we(X) € H?(X; Z2) vanishes and that if it admits, then the set
of all Spin structures on X is in one-to-one correspondence with H'(X;Zs).

Let K be an oriented 3-knot, with a Seifert manifold V, embedded in S°.
Then K has a natural normal 2-framing v = (v1,v2) in S® such that the first
normal vector field 17 is obtained as the inward normal vector field of K = 9V
in V. The homotopy class of this 2-framing does not depend on the choice of the
Seifert manifold V. Then K carries a tangent 3-framing on its 2-skeleton K (?)
such that the juxtaposition with the above 2-framing gives the standard framing
of S° restricted to K? up to homotopy. This means that K carries a natural
Spin structure, which is determined uniquely up to homotopy. Furthermore,
this Spin structure coincides with that induced from the Seifert manifold V/,
which is endowed with the natural Spin structure induced from S°.

Recall that for high dimensional knots (c.f. [36] and [65]) congruence classes
gives isotopy classes of knots. But, in the case of 3-knots, Spin structures must
be considered as the following example shows.
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Example 8.1. Let Ky and K; be the simple fibered 3-knots which are ab-
stractly diffeomorphic to S! x Y4, constructed in [135, Proposition 3.8], where
¥, is the closed connected orientable surface of genus g > 2. They have the
property that their Seifert forms are isomorphic, but that there exists no dif-
feomorphism between Ky and K; which preserves their Spin structures. Con-
sequently they are not isotopic.

In order to study cobordisms of 3-knots, we will use some results valid only
for 3-dimensional manifolds without torsion on the first homology group. Hence,
we define

Definition 8.2 ([9]). We say that a 3-knot K is free if Hy(K) is torsion free
over Z.

Moreover, for free knots we do not need to consider condition (c2) in the
definition of the algebraic cobordism (see Definition 5.3), which simplifies the
argument.

Definition 8.3 (|9]). Consider two simple 3-knots Ky and K7. Let Ay and A; be
the Seifert forms of Ky and K respectively with respect to 1-connected Seifert
manifolds. We say that the pairs (Ko, Ap) and (K7, A1) are Spin cobordant,
and shorter we also say that the Seifert forms Ay and A; are Spin cobordant, if
there exists an orientation preserving diffeomorphism h : Ky — K; such that

(1) h preserves their Spin structures,

(2) Ap and A; are algebraically cobordant with respect to

hy : HQ(K()) — HQ(Kl) and h*|TorsH1(Kg) : TOI'SHl(Ko) — TOI'SHl(Kl),
where we identify Ho(K;) and Hy(K;) with Ker S} and Coker S} respec-
tively (see the exact sequence (1.1)) and S; = A; + '4;, i =0, 1.

Note that if Ky and K; are free 3-knots, then we do not need to consider
condition (¢2) of Definition 5.3 and hence the isomorphism .| o H,(K,) in the
above definition.

8.1 Spin cobordism as a sufficient condition for knot
cobordism

In this section, we shall prove the following, which is valid for simple free 3-knots
in general, which may not be fibered.

Theorem 8.4. Consider two simple free 3-knots. If their Seifert forms with
respect to 1-connected Seifert manifolds are spin cobordant, then the 3-knots are
cobordant.

Proof. Let Ky and K3 be simple free 3-knots such that the Seifert forms Ay and
Ay with respect to their 1-connected Seifert manifolds Fy and F7i, respectively,
are spin cobordant. Let M be the metabolizer and h : Ky — K; the diffeo-
morphism as in Definitions 5.3 and 8.3 respectively. Set F' = Fpli(—F;) and
V = (Ko \ Int D3) x [0, 1], where the symbol “§" means a boundary connected
sum. Note that 0F = Kof(—K1) and 0V = Ko#(—Ky), where the symbol “f"
means a usual connected sum (see Fig. 8.1 and Fig. 8.2).
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Fy Fy

Figure 8.1. F = Folj(—F1)

R
A,

(Ko \ IntD?) x {0} (Ko \ IntD?) x {1}

Figure 8.2. V = (Ko \ IntD?) x [0,1]

Note also that the compact 4-manifold V is spin, where the spin structure
is induced from K,. In the following, a spin surgery along a simple closed
curve ¢ in a spin 4-manifold is a process of taking off the tubular neighborhood
N(c) =2 S' x D3 of ¢ and replacing it with D? x S? by gluing it along the
boundary so that the resulting 4-manifold is spin and that the spin structure
on the exterior of ¢ coincides with that of the original one.

Lemma 8.5. For some integer k > 0, there exists a compact 4-manifold V and
a diffeomorphism h : Fik(S% x S?) — V such that

(1) V is obtained from V' by spin surgeries along simple closed curves, and
(2) hlO(Fik(S? x S2)) = idg,th™" : Kot(— K1) — Kofi(—Ko).

Proof. Step 1. Since Hy (V) = H(K)) is a finitely generated free abelian group,
we can obtain a 4-manifold V; with Hy(V7) = 0 from V by spin surgeries along
a finite set of simple closed curves ¢;, 1 < i < r = rank H;(Kj), representing a
basis of Hy (V).

Step 2. Since 71(V7) is finitely generated, we can obtain a simply connected
4-manifold V5 from Vi by some spin surgeries.
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Step 3. Since we have assumed that H;(K;) is a free abelian group, the
intersection forms of F' and V5 are direct sums of a unimodular form and a
zero form, where the dimensions of the null spaces are equal to the rank of
Hy(Kot(—K1)) & Hi(Ko#(—Kp)). Furthermore, since they are spin, their in-
tersection forms are of even type. Finally, since the Seifert forms of Fy and F}
are algebraically cobordant, the signature of F' = Fylj(—F}) vanishes, and that
of V5 is equal to that of V', which is zero. Thus, by the algebraic classification
of unimodular forms (see, for example, [111]), by repeating some spin surgeries
along trivial simple closed curves in V5 if necessary, we may assume that there
exists an isometry A : Hg(F(k)) — Hy(V3) for some integer k > 0 such that the
diagram

0 —— Hy(0F®)) ——— Hy(FR)) ——— Hy(F®) gF®)

l(idxgﬁh—l)* JA TA*
0 —— Hy(0Va) —— Hy(Va) ——  Hy(Va,0Vs)
— H(0F*®) —— 0

l(idxgﬁh’l)*
s H(0Vh) —— 0

is commutative, where F(®) = Fk(S? x S2), we use Poincaré-Lefschetz duality
to identify Hy(F*) F®)) and Hy(Va,0Ve) with the duals of Ho(F®)) and
H, (V) respectively, and A* is the adjoint of A.

Step 4. Note that the spin structures of Kof(—K;) and Kof(—Kjp) coincide
with those induced from F*) and V; respectively. Thus F*) Uid e, th—1 (=Va)
is a closed spin 4-manifold, since idj,fh ' preserves the spin structures by our
hypothesis. Furthermore, Kot(—K7) and Kof(—K)p) are connected. Then by an
argument of Boyer [15, p. 347], we see that there exists a smooth h-cobordism
relative to boundary between F*) and V5 such that the induced diffeomorphism
between the boundaries of F(*) and V, coincides with idg, #h~!, and that the
induced isomorphism between Ho(F*)) and Hy(V3) coincides with A above.

Step 5. Finally, by the 5-dimensional stable h-cobordism theorem due to
Lawson [84] and Quinn [123], we see that there exists a diffeomorphism between
FOHE) — pgE/ (82 x §2) and V = Vollk/(S2 x $2) extending idg,fh~" :
OF®) s 9V,. Since V can be obtained from Vs by repeating k' times the spin
surgeries along trivial simple closed curves, we get the result. This completes
the proof of Lemma 8.5. O

Remark 8.6. In Step 1, we can choose the curves ¢;, 1 < i < 7, inside
(Ko \ Int D3) x {1/2}. After the surgeries, the embedded 2-sphere ¥; in V;
corresponding to the center sphere {0} x S? of the piece D? x S? replacing
N(c;) is homologous to the boundary of a meridian 3-disk of ¢; in V. Let ~7,
1 < i < r, be a basis of Hy(Kp \ Int D?) 2 Hy(Kp) which is Poincaré dual
to the basis [¢;], 1 < i < r, of Hi(Kp), where [*] denotes the homology class
represented by *. Then, by the above observation, we have [X;] = io.7y) — 1.7,
where ig : Ko — Ko x {0} € V] and i1 : Ky — Ko x {1} C V; denote the
inclusions.
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Fy

Figure 8.3. F = Fof(—F1)

Lemma 8.7. For some integer k > 0, there exist a compact 4-manifold V' and
a diffeomorphism I : Fot(—Fy)tk(S? x §%) — V'’ such that

(1) V' is obtained from V' = Kq x [0,1] by spin surgeries along simple closed
curves, and

(2) WIO(Fob(~F1)2k(S? x 52)) = idue, [T < Ko [1(~ K1) — Ko [1(~Ko)-

Proof. Just glue D3x[0, 1] to Fk(S%xS2?) and V in Lemma 8.5 along D3 x[0, 1]
to obtain Fo#(—F)1k(S?x S?) and V'’ respectively (see Fig. 8.1 and Fig. 8.3). [

Let V7 be as in the above lemma, which is obtained from K x [0, 1] by some
spin surgeries. Let 31, Yo, ..., %, be the embedded 2-spheres in V'’ which have
been created in the course of the surgeries in Step 1 of the proof of Lemma 8.5
(for details, see Remark 8.6). Furthermore, let ¥,1,%,49,...,3,4s be the 2-
spheres in V' created in Steps 2-5 in the proof of Lemma 8.5. For the latter
spheres, since the surgery curves are all null homologous, we see that there exist
homology classes 07, 1,07 ,5,...,07,, € Hy(V’) such that

« L, 1=y,
e _{ 0. i#3
for r+1 <4,j <r+s. Modifying o}, r +1 < ¢ < r + s, appropriately, we may
further assume that the s submodules ([¥;],0}) are orthogonal to each other
with respect to the intersection form S of V'’ and that the intersection matrix
of ([¥;],07) is equal to
0 1
(o)

where for a subset X of a module, (X) denotes the submodule generated by X.
Note also that

N " r+s
Hy (V') =Ker S* & < @H[Ei],(ﬁ)) ;
i=r+1

where the symbol “@1" denotes an orthogonal direct sum.
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By taking the connected sum of k copies of S? x S§? with Fy inside S°, we
may assume that A is the Seifert form with respect to Fytk(S? x S?). Let A;
be the Seifert form with respect to Fj. Furthermore, let S be the symmetric
form associated with Ag @ (—A;). Note that S can be naturally identified with

the intersection form of Fof(—F)ik(S? x S2) and hence with that of V7. In
the following, we shall identify Fyf#(—F;)fk(S? x S?) with V/ by using A’ in
Lemma 8.7.

Lemma 8.8. There exists an isometry ® of Ha(Fof(—F1)ik(S? x S?)) with
respect to S such that

(1) ®|KerS* =1id,
(2) Du[X1], Pu[Z2], ..., Pu[E,1s] are generators of the metabolizer M.

Proof. First recall that [34],[Z2], ..., [2,] lie in Ker S* by Remark 8.6.
As has been shown in [8, Proposition 2.1], there exists a basis

{m;,mi;i=1,2,...,r+s}
of G = Hy(Fot(—F1)fk(S? x S?)) such that
(a) {m;;i=1,2,...,7 + s} is a basis of M,

(b) {mi,mf;i=1,2,...,r} is a basis of Ker S* and {m};i=1,2,...,r}isa
basis of Ker S, where S is the symmetric form associated with Ay,

(c) the submodules (m;,m}), i =1,2,...,r + s, are orthogonal for S; i.e.,

r+s

G =P (mi,m;).
i=1

We may further assume that
S(m;,m;) =0, S(m;,m})=1, S(m;,mi)=0

forr+1<1i<r+s, since Coker S* is torsion free. Then define the isometry
®: G — G by ®|Ker S* =id, ®([X;]) = m; and ®(of) =m} fori=r+1,r+
2,...,7 4+ s. This completes the proof of Lemma 8.8. O

Lemma 8.9. For some integer k > 0, there exists an orientation preserving self-
diffeomorphism o of the 4-manifold Fofi(—Fy)tk(S? x S?) which is the identity
on the boundary such that p, = ® on the second homology group.

Proof. Let J be the submodule of G = Hy(Fpfi(—F;)ik(S? x S?)) generated by
[2;] and ¢f with r 4+ 1 < i < r+s. Note that G = Ker S* @ J and that the
intersection matrix with respect to this decomposition is of the form 0 & Q,
where @ is a unimodular symmetric matrix of even type and zero signature.
Then it is not difficult to see that an arbitrary isometry of (Ker S*@®J;00Q)
which is the identity on Ker §* is a composition of the following isometries:

(a) id @ A, where A is an isometry of (J; @),
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(b) an isometry represented by the matrix of the form

id =
0 id
with respect to the decomposition Ker S* & J.

We can easily realize isometries of type (a) by diffeomorphisms which are the
identity on the boundary, by using Wall’s argument [155|, since we may assume
k>1.

In order to realize isometries of type (b), we need the following lemma.

Lemma 8.10. Increasing k if necessary, we may assume that Fof(—Fy)tk(S? x
S2)\ ¥; is simply connected for 1 <i <r+s.

Proof. Since Fofi(—F)#k(S?xS?) is simply connected, 71 (Fofi(—F1)#k(S? x S2)\
3;) is normally generated by a meridian p; of ¥;, where u; is the boundary of
a fiber of the 2-disk bundle neighborhood of ¥;. Then, performing the spin
surgeries along p;, we get a desired situation. O

Now let us go back to the proof of Lemma 8.9. By Lemma 8.10, the spin
surgery creating each ¥; corresponds to the connected sum operation with S2 x
S2. Thus by [155, Theorem 1], we get a diffeomorphism realizing an isometry
of type (b) corresponding to a matrix of the form

id F

0 id /)’
where FE is a matrix having one entry equal to 1 and all the others equal to
zero. Using this type of diffeomorphisms (sometimes, we have to interchange

the two factors of S? x S2, or use the inverse diffeomorphism), we get a desired
diffeomorphism. This completes the proof of Lemma 8.9. [

Thus we have proved that the embedded 2-spheres ©(21), ©(32), ..., ©(Zrts)
in Foff(—Fp)ik(S? x S?) constitute a set of generators for the metabolizer M.

Recall that Fyf(—F;)ik(S? x S?) is embedded in S = S° x [0,1]. Then we
can perform appropriate surgeries along these embedded 2-spheres inside S as in
[8, 8§4]. Since each surgery process is exactly the inverse operation of each spin
surgery performed in the construction of v’ (modified by the diffeomorphism
), the resulting 4-manifold is diffeomorphic to Ky x [0, 1], which is embedded
in §. Thus Ky and K; are cobordant. This completes the proof of Theorem 8.4
and hence Theorem 8.13. O

Remark 8.11. As shown in Example 10.7, algebraic cobordism does not nec-
essarily imply spin cobordism. Hence, Theorem 8.4 does not hold if we replace
the spin cobordism with the algebraic cobordism, even if we add the assumption
that the 3-knots are abstractly diffeomorphic.



8.2 Cobordism of Brieskorn 3-knots 115

8.2 Cobordism of Brieskorn 3-knots

Proposition 8.12. Let f(z) = 2* + 252 4 25% and g(z) = 25 4 252 + 25 be
Brieskorn polynomials of three variables. If the Seifert forms Ly and L, are
Witt equivalent over the real numbers, then a; =b;, j =1,2,3, up to order.

Proof. First suppose that ai, as and a3 are all even. Then by Proposition 6.36,
b1, by and by are all even. In this case, by Proposition 6.38 (2), we have

Aoy + Aoy + Aoy = Ap, + Ap, + Ap,  (mod 2).

Thus, we may assume that a; = b; by Lemma 6.40. Then by Proposition 6.35,
we have

T wl l 94
cot E cot % = cot % cot 2—1)3
for all odd integers £. Then, by Proposition 7.4, we see that a; = b;, 7 = 1,2, 3,
up to order.
Now suppose that aj, as or as is odd. Then, by Proposition 6.36, we may
assume that a; = by is odd and as < a3 and by < bs.
Then by Proposition 6.35, we have

14
cotQ—ﬂ-cot— = cot — cot — (8.1)

for all odd integers £ that are not a multiple of a; = by. If as = bo, then putting
£ =1, we get azg = bs. So, suppose that as < by. Then by (8.1) with £ =1, we
have as < by < b3 < as.

Let us consider the characteristic polynomials Af(t) and Ay(t). We have

divisor Af(f) = (Aa, — 1)(Au, — 1)(Auy — 1)
= (ala a2)([a17 a'2]a a3)A[a1,a27a3] - (CLl, CLQ)A[al,az] - (ah a3)A[a1,a3]
_(a27 a3)A[a2,a3] + Aal + Aaz + Aaa -1

and

divisor Ag(t) = (b1,b2)([b1,b2],03)Ab, bs,65) — (b1,02) A, p,) — (b1, 03) A, by
—(b2,03)Afby by) + Aby + Apy + Apy — 1.

Since [al, as, a3]7 [al, ag}, [(1,27 (13], as, [bl, b27 b{g], [bl, bg], [bh b3], [bg, bd], b2 and bg
are all strictly greater than as, by Proposition 6.38 (2) together with a; = by, we
must have [a1,as] = az. Thus ag is a multiple of a;. Then by Proposition 6.38
(2) again, we have

Maya) +Aay = ([b1, 2], b3)A[b1,b2,b3] + Ay bo] + Aoy ]
+(b2,03) A, by] + Aby + Ay, (mod 2),

since a; = by is odd.

If by < b3, then we must have [by, by] = bg, i.e., by is a multiple of b;. Then,
we see that [a1,a3] = ag and [by,bs] = bs. Therefore, ag, as, b and bs are all
multiples of a; = by. Since a; is odd and aq > 3, there exists an odd integer /¢
(= a2 + 1 or ag + 2) which is not a multiple of a; such that ay < ¢ < by. Then
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for this ¢, the left hand side of (8.1) is negative, while the right hand side is
positive. This is a contradiction.
If b, = b3, then we have

Aoy ,a5) + Nay = b2, p,) + b2Ap,  (mod 2).

Thus, [a1,a3] = a3, and as is a multiple of a;. Then, using an odd integer ¢
(= az +1 or az +2) which is not a multiple of a; such that az < £ < ag in (8.1),
we again get a contradiction, since by = bs.

Therefore, we must have as = by and ag = bz. This completes the proof. [

8.3 Classification

In this section, we give the classification of 3-knots up to cobordism. proved in
[9].

Theorem 8.13. Two simple fibered free 3-knots are cobordant if and only if
their Seifert forms with respect to 1-connected fibers are Spin cobordant.

Remark 8.14. Note that in the case of homology 3-spheres embedded in S,
the corresponding result had been obtained in [133].

Since the cobordism for knots is an equivalence relation, the Spin cobordism
is an equivalence relation on the set of Seifert forms of simple fibered free 3-knots
with respect to 1-connected Seifert manifolds.

Let us show that the Spin cobordism is a necessary condition for the existence
of a knot cobordism between given two simple fibered 3-knots. Let Ky and K; be
two cobordant simple fibered 3-knots with fibers Fjy and Fj respectively. Denote
by X = Ky x [0, 1] a submanifold of S° x [0, 1] which gives a cobordism between
Ky and K7, and set N = Fy U X U (—F}). By classical obstruction theory we
see that the closed oriented 4-manifold N C S° x [0,1] is the boundary of a
compact oriented 5-dimensional submanifold W of S° x [0,1]. Using a normal
2-framing of X in S5 x [0, 1] induced from the inward normal vector field along
N = 0W in W, we see that the diffeomorphism h between Ky and K7 induced
by X preserves their Spin structures.

Moreover, in [8], it has been shown that the two forms Ay and A;, associated
with the fibers, are algebraically cobordant with respect to

h* : HQ(Ko) — HQ(K1>

and
h*|TorsH1(Kg) : TOI‘SHl(Ko) — TOI‘SH1<K1).

Finally we get the following result, in which the knots may not necessarily
be free.

Proposition 8.15 ([9]). If two simple fibered 3-knots are cobordant, then their
Seifert forms with respect to 1-connected fibers are Spin cobordant.

Remark 8.16. In Example 10.7 and 10.8, the Seifert forms of two ”-knots K
and K; are algebraically cobordant, but are not Spin cobordant. Hence they
cannot be cobordant by Proposition 8.15 (or Theorem 8.13). These examples
show that Spin structures are essential in the theory of cobordisms of 3-knots
as well.
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Using the 5-dimensional stable h-cobordism theorem due to Lawson [84] and
Quinn [123] together with Boyer’s work [15], we also have the following theorem,
in which the 3-knots are simple and free, but may not be fibered.

Finally Proposition 8.15 and Theorem 8.4 imply Theorem 8.13.



Chapter 9

Pull back relation for knots

"Nihil est sine ratione."
Gottfried Wilhelm Leibniz

9.1 Pull back relation for knots

For cobordisms of non-spherical knots, Yukio Matsumoto asked the following
question.

(Q) If two non-spherical knots (of sufficiently high dimension) are simple ho-
motopy equivalent as abstract manifolds, then are they cobordant after taking
connected sums with some spherical knots? In other words, consider the action
of the spherical knot cobordism group on the set of cobordism classes of codi-
mension two embeddings of manifolds of a fixed simple homotopy type into a
sphere. Then, is the action transitive?

According to the codimension two surgery theory [96], the answer to the
above question is affirmative provided that the material knots satisfy some con-
nectivity conditions and that one of them is obtained as the inverse image of
the other one by a certain degree one map between the ambient spheres. This
motivates the following definition

Definition 9.1 ([7]). Let Ko and K; be oriented m-knots in S™*2. We say that
Ky is a pull back of K, if there exists a degree one smooth map g : S™*+2 — gm+2
with the following properties:

1. g is transverse to K1,
2. g_l(Kl) = Ko,
3. g|k, : Ko — K is an orientation preserving simple homotopy equivalence.

In this case, we write Ky > K;. We say that two m-knots are pull back equivalent
if they are equivalent with respect to the equivalence relation generated by the
pull back relation.

Remark 9.2. Here are some direct consequences of the definition.

1. K > K for any m-knot K.
2. Koy > K; and Ky > K5 imply Ky = K5 for any m-knots Ky, K1 and K.

3. Ko = K; and K|, > K| imply Kot K| > K14K] for any m-knots Ky, K,
K, and Kj.

Furthermore, if we restrict ourselves to spherical m-knots, then it is not difficult
to show that the trivial m-knot (or the m-dimensional unknot) Ky is the mini-
mal element, i.e. K > Ky for every spherical m-knot K, where Kj; is defined to
be the isotopy class of the boundary of an (m + 1)-dimensional disk embedded
in §m+2,
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Remark 9.3. In the terminology of [93], the map ¢ in Definition 9.1 is weakly
h-regular along Ki. In fact, the above definition is motivated by the following
consequence of the codimension two surgery theory.

For an m-knot K, let N(K) be a tubular neighborhood of K in S™*2 and
set B(K) = S™"2\ Int N(K). We say that K is exterior 2-connected if

m(E(K),0E(K)) =0, Vi<2.

(This implies, in particular, that K is simply connected.) The codimension two
surgery theory [96] implies that if two exterior 2-connected m-knots Ky and K
with m > 5 are related by the pull back relation, then they are cobordant after
taking connected sums with some spherical knots.

Remark 9.4. In Definition 9.1, if the knots Ky and K7 are simply connected,
then it is enough that g|k, : Ko — K is just an orientation preserving homotopy
equivalence for item (3).

Definition 9.5. An m-knot K is fibered if there exist a trivialization 7 :
N(K) — K x D? of the tubular neighborhood N(K) of K in S™*? and a
smooth fibration ¢ : S™*+2\ K — S! such that the following diagram is com-
mutative:

N(K)\ K—"——K x (D?\ {0})

elv oK) p p
St
where p denotes the obvious projection. In this case, for each t € S!, the
closure F in S™*2 of p~1(t) is called a fiber of K. Note that F' = o~ () U K
is a compact (m + 1)-dimensional manifold with boundary 0F = K.
We say that a fibered (2n — 1)-knot K in S?"*! is simple if K is (n — 2)-
connected and its fiber is (n — 1)-connected (see [36]).

Let us first assume that Ky = K, where Ky and K, are simple fibered
(2n — 1)-knots in S?"*! with n > 3. Then, there exists a degree one smooth
map g : St — §27HL a5 in Definition 9.1. By items (1) and (2), we see
that there exist trivializations N(K;) = K; x D? of sufficiently small tubular
neighborhoods N (K;) of K; in §?"*1 i = 0,1, such that

9~ (N(K1)) = N(Ko)
and
9ln(ro) : Ko x D* = N(Ko) = N(K;) = Ky x D

is identified with (g|k,) x idp2. Note that g|x, : Ko — K is an orientation
preserving homotopy equivalence.

We see that the trivializations N (Ky) = Ko x D? and N(K;) = K; x D? are
essentially unique, since both H'(Ky) and H'(K;) vanish. Therefore, we may
further assume that

9N (koK) N (Ko) \ Ko = N(K1) \ K1

is compatible with the fibrations $?"*1\ Ky — S! and $?"*1\ K; — S
Set E(K;) = S?"*1\Int N(K;), i = 0,1. Note that g induces a smooth map

gg = g|E(K0) : E(K()) — E(Kl) (91)
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whose restriction to OE(Kj) is a homotopy equivalence onto dE(K7).

Let E(K;) be the universal cover of E(K;), i = 0,1. Note that E(K;) =
F; x R. Since the smooth map gg in (9.1) induces an isomorphism between
the fundamental groups, it lifts to a smooth map §g : E(Ky) — E(K}), whose
restriction to the boundary is a homotopy equivalence and respects the product
structures OE(K;) = 0F; x R, i = 0,1. Hence, there exists a continuous map
Y @ (Fo,0Fy) — (F1,0F) such that ¢|gp, : 0Fy — OF) is an orientation
preserving homotopy equivalence. (For example, v is the composition

Fo=Fyx {0} C Fo x R= E(Ko)—2 S E(K,) 2 F, xR — F,

where the last map is the projection to the first factor.)
Note that 1 induces an isomorphism between Ha,, (Fy, 0Fy) and Ha, (Fy, 0F1),
since the boundary homomorphism induces an isomorphism

Hy, (F;,0F;) = Hap—1(K;), i=0,1.

By the universal coeflicient theorem, it also induces an isomorphism between
the cohomology groups H?"(Fy,dF;) and H*"(Fy,0Fp).

Let 7; : F; — F; be the monodromy diffeomorphism of the fibered knot
K;, i = 0,1. Note that 7;|oF, is the identity. Since gg is compatible with the
covering translations, we see that i o 79 and 71 o ¢ are homotopic relative to
boundary.

Lemma 9.6. The homomorphisms
w* : Hn(Fl) — Hn(Fo) and ¢* : H"(F1,8F1) — H"(F0,8F0)

are injective and their images are direct summands of H"(Fy) and H™(Fy, 0F))
respectively.

Proof. Let us consider the following commutative diagram:

HTL(F1)®HH(F178F1) ;) H2"L(F1,8F1)
lw*c@w* lw*

~—

H"(Fo)®H"(F0,3FO) —_— ]JQn(Fb,an)7

where “—" denotes the cup product. Let £ € H™(F}) be an arbitrary primitive
element. Then, there exists an element ( € H™(Fy,dF}) such that £ — ( is a
generator of H?"(Fy,0F;) = Z. Since

V* H*™(Fy, 0F)) — H*"(Fy, 0F,)

is an isomorphism, we see that (*¢) — (10*() is also a generator of H?"(Fy, 0Fp).
This means that *¢ is a primitive element of H™(Fp). This shows that

¢* : Hn(Fl) — Hn(Fo)

is an injection and that its image is a direct summand of H™(Fp). A similar ar-
gument shows the corresponding assertion for ¢* : H"(Fy,0F,) — H™(Fy, 0F)).
This completes the proof of Lemma 9.6. O
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The above lemma together with the universal coefficient theorem implies
that the homomorphisms

w* : Hn(Fo,aFo) — Hn(Fl,E)Fl) and 1/)* : Hn(Fo) — Hn(Fl) (92)

are surjections.

Let A; : H,(F;,0F;) — H,(F;) be the variation map of the fibered knot K;,
i = 0,1. Recall that for an n-cycle ¢ of (F;,0F;), A;([c]) is defined to be the
homology class represented by ¢—7;(c), where [¢] € H, (F;, OF;) is the homology
class represented by c. Note that this is a well-defined homomorphism, since
7:|or, is the identity and the isotopy class of 7; relative to boundary is uniquely
determined. Note also that the variation maps are isomorphisms (see [66]).
Then, we see easily that the following diagram is commutative:

H,(Fp,0F)) —2—  H,(F)

w*l M’* (9.3)
H,(F,0F) —2— Hi(F),

since 1 o 1y and 7 o 9 are homotopic relative to boundary.

Theorem 9.7. Let Koy and K, be simple fibered (2n — 1)-knots in S*"+1 with
fibers Fy and Fy respectively, wheren > 3. Suppose rank H,, (Fy) = rank H, (F}).
If Ky = Ky, then Ky and K,y are orientation preservingly isotopic.

Proof. If rank H,,(Fy) = rank H,,(F}), then Lemma 9.6 implies that the homo-
morphisms (9.2) are isomorphisms. Then the commutative diagram (9.3) implies
that Ky and K; are orientation preservingly isotopic, since the variation map
determines and is determined by the Seifert form, which in turn determines the
oriented isotopy class of a simple fibered knot (for details see [66, 36, 65]). O

Corollary 9.8. Let Ky and K be simple fibered (2n — 1)-knots in S*"H1 with
n>3. If Ko = Ky and K1 = Ky, then Kq is orientation preservingly isotopic
to K1. In other words, the relation “>" defines a partial order for simple fibered
(2n — 1)-knots in S*"*1 forn > 3.

Proof. By Lemma 9.6, we see that rank H,,(Fy) = rank H,,(F7). Then the result
follows from Theorem 9.7. O

Theorem 9.9. Let Ko and K be simple fibered (2n — 1)-knots in S*" 1 with
n > 3. Then Ky = Ki if and only if there exists a spherical simple fibered
(2n — 1)-knot ¥ in S*"*+1 such that Ky is orientation preservingly isotopic to
the connected sum KifX.

Proof. First, suppose that there exists a spherical simple fibered (2n — 1)-knot
¥ in §2"*! such that K is isotopic to the connected sum K #Y. Then by
Remark 9.2, we have ¥ > Ky and K143 = K Ky, and hence Ky > K;.

For the converse, let G and G’ be the kernels of the homomorphisms ), :
H, (Fy,0Fy) — Hy,(F1,0F1) and ¢, : Hy(Fy) — Hy,(F1) respectively. Then we
have the following commutative diagram with exact rows:

0 - G — Hy(F,0F) —Y— H(F,0F) — 0
Aole J{Ao Ay

0 - G —  H,(F) — " H.(FR) - 0.
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Since H,,(F1,0F1) and H, (F}) are free, the exact sequences split. This means
that the variation map Ay of K is isomorphic to the direct sum of the variation
map A; of K; and the isomorphism Aglg : G — G.

Recall that with respect to certain bases, the matrix associated with the
variation map is the inverse of the Seifert matrix (for details see [66]). Since
n > 3, every unimodular matrix is realized as the Seifert matrix of a simple
fibered (2n — 1)-knot (see [36, 65]). So we see that there exists a simple fibered
(2n — 1)-knot ¥ which realizes Ag|¢ : G — G’ as its variation map.

Then, we see that the Seifert matrices for Ky and K43 are congruent.
Consequently, they are orientation preservingly isotopic to each other by [36, 65].

Furthermore, since K is homotopy equivalent to both K7 and K143, we see
that 3 should be homeomorphic to a sphere. This completes the proof. O

Remark 9.10. For n = 1, Theorem 9.9 does not hold!. Let K be a non-trivial
spherical prime fibered 1-knot in S® and Kj a spherical prime satellite fibered 1-
knot with companion K7, where their fibering structures are compatible. Then
we can show that Ky > K;. However, Kj is not isotopic to the connected sum
K483 for any non-trivial 1-knot . Note that such a construction does not give
a counter example to Theorem 9.9 for n > 3, since such a satellite knot in higher
dimensions is always a connected sum by virtue of Theorem 6.1.
We do not know if the above results are valid for n = 2.

Remark 9.11. Theorem 9.9 implies in particular that the fiber of Ky is dif-
feomorphic to the boundary connected sum of the fiber of K7 and a certain
(n — 1)-connected 2n-dimensional manifold with spherical boundary. When Ky
and K are spherical, this is also a consequence of [39, Theorem B].

Definition 9.12. Let us consider the equivalence relation generated by the pull
back relation defined in Definition 9.1. When two m-knots Ky and K; in S™+?2
are equivalent with respect to this equivalence relation, we say that Ky and Ky
are pull back equivalent.

The above definition together with Theorem 9.9 implies the following, whose
proof is easy and is left to the reader.

Corollary 9.13. Two simple fibered (2n — 1)-knots Ko and Ky in S*" 1 with
n > 3 are pull back equivalent if and only if there exist spherical simple fibered
(2n — 1)-knots By and L1 in S*"T1 such that Ko#X is orientation preservingly
isotopic to K183 .

9.2 Special knots

In this section, we show that for a certain class of simple fibered knots, the pull
back equivalence relation is equivalent to the relation generated by connected
sums with spherical fibered knots together with the cobordism. For a theory of
cobordism of simple fibered knots, refer to [8, 152, 153].

Definition 9.14. Let K be a simple fibered (2n — 1)-knot with fiber F. Let
us denote by I(K) the image of the homomorphism H,(K) — H, (F') induced
by the inclusion (or equivalently, the kernel of the homomorphism H,(F) —

1This remark is due to an observation from Shicheng Wang
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H, (F,0F)). The fibered knot K is said to be special if its Seifert form restricted
to I(K) is unimodular (for a definition of a Seifert form, see [36]).

Lemma 9.15. A simple fibered (2n — 1)-knot K is special if and only if there
exist two simple fibered (2n—1)-knots K and K with the following properties:

1. K is orientation preservingly isotopic to KptKr,
2. the intersection form of the fiber of Kr is the zero form,
3. H,_1(Kr) is a torsion group (or equivalently, H, (Kr) = 0).

Proof. If there exist simple fibered (2n — 1)-knots Kp and K7 with properties
(1)—(3), then the Seifert form of K restricted to I(K) coincides with the Seifert
form of K. Since K is fibered, its Seifert form must be unimodular. Hence,
K is special.

Conversely, suppose that the simple fibered knot K is special. Let us consider
a basis e1,...,€y, utl, ..., eyuty of Hy(F), where eg,..., e, constitute a basis
of I(K). This is possible, since I(K) is a direct summand of H,(F). Then, the
Seifert matrix L of K with respect to this basis is of the form

Lp A
(% e)
for some u X w matrix Lg, u X v matrix A, v X v matrix B, and v X v matrix C.
Note that Lp+(—1)"(*Lr) = 0 and A+(—1)"(*B) = 0, since the homomorphism
H,(F) — H,(F,0F) = Hom(H,(F), Z) can be identified with the intersection
form of F' and the intersection matrix of F' is given by L+(—1)"(’L) (for example,
see [36]). Since L is unimodular by our hypothesis and Lr = (—=1)"T('LF),
we see that L is congruent to a matrix of the form

L 0

/ F

L= ( 0 Ly )

for some v x v matrix Ly. Since L' is unimodular, so is Ly. Furthermore,
Lt + (=1)"(*Lr) is a nonsingular matrix, since the kernel of the intersection
form is generated by eq,...,e,. Let Kr and K be the simple fibered (2n —1)-

knots realizing Ly and L as their Seifert matrices respectively. Then, we can
check that conditions (1)—(3) are satisfied. This completes the proof. O

Remark 9.16. In the above lemma, if H,_1(K) is torsion free, then the knot
K is spherical.

Let us prove the following.

Theorem 9.17. Let Ky and Ky be simple fibered (2n — 1)-knots with n > 3.
Suppose that K is special and that H,,_1(Ky) is torsion free. Then the following
conditions are all equivalent to each other.

1. Ko#>g is cobordant to K143 for some spherical knots ¥g and X7 .

2. KotXy, is orientation preservingly isotopic to K1#%| for some spherical
simple fibered knots L, and 3.

3. Ky s pull back equivalent to K.
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For the proof, we need the following lemma, which is a direct consequence of
[8, Theorem 4] (see also [152, 153]). Recall that a (2n — 1)-knot is simple if it is
(n — 2)-connected and it bounds an (n — 1)-connected 2n-dimensional compact
manifold in S?7+1,

Lemma 9.18. Let Ky and K; be simple fibered (2n — 1)-knots with n > 3.
If Ko#3o and K143 are cobordant for some spherical simple knots X9 and 31,
then the Seifert forms of Ko and K restricted to I(Ky) and I(K7), respectively,
are tsomorphic to each other.

Proof of Theorem 9.17. The equivalence of (2) and (3) follows from Corollary 9.13.
Condition (2) clearly implies condition (1). Thus, we have only to show that
(1) implies (2).

Suppose that (1) holds. Since every spherical (2n — 1)-knot is cobordant to
a spherical simple (2n — 1)-knot by [91], we may assume that ¥y and X are
simple. Then by Lemma 9.18, the Seifert forms of Ky and K7 restricted to I(Kp)
and I(K), respectively, are isomorphic to each other. By our assumption, these
forms are unimodular, and hence K; is also special. Therefore, by Lemma 9.15,
there exist simple fibered (2n — 1)-knots K;% Kj(f), 1 =20, 1, such that

1. K is orientation preservingly isotopic to K?ﬁlﬂ}i),
2. the intersection form of the fiber of Kg) is the zero form,

3. Hn,l(KrE,f)) is a torsion group,
for ¢ = 0,1. Note that Kl(mo) is orientation preservingly isotopic to Kg), since
their Seifert forms are isomorphic.

Recall that H,,_1(Kj) is torsion free by our assumption. Therefore, K(Ti ) are

spherical knots for ¢ = 0, 1. Since KoﬁKq(}) is orientation preservingly isotopic to
Kg)ﬁKéO)ﬁKél), it is also orientation preservingly isotopic to K; th(«O). Hence
condition (2) holds. This completes the proof. O

Remark 9.19. Let K be the simple fibered (2n — 1)-knot as in Lemma 9.15.
Then its Seifert form is skew-symmetric for n even, and is symmetric for n
odd. Note that unimodular skew-symmetric matrices have even ranks and the
congruence class of such a matrix is uniquely determined by its rank. Therefore,
when n is even, the oriented isotopy class of K is determined by its rank, which
is even. On the other hand, when n is odd, unimodular symmetric matrices are
not determined by its rank. For details, refer to [111], for example.

Proposition 9.20. For every odd integer n > 3, there exists a pair (Ko, K1)
of simple fibered (2n — 1)-knots with the following properties.

1. The knots Ky and K1 are cobordant.
2. The knots Ky and K1 are not pull back equivalent.

Proof. Let us consider the following two matrices:

9 1 25 1
L0—<_1 0) and L1—<_1 0)
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Note that they are both unimodular and that

SQZLo—tLozslle—tL1:<02 3)

Let us show that Ly and Ly are algebraically cobordant for ¢ = (—1)" = —1.

Set m = (5,0,3,0) and m’ = (0,3,0,5). Then it is easy to see that the
submodule M of Z* generated by m and m’ constitutes a metabolizer for L =
Lo @ (—Ly). Furthermore, M is pure in Z*: in other words, M is a direct
summand of Z*. Since Sy = S; are non-degenerate, we have only to verify the
condition c.2 of the definition of algebraic cobordism.

Set S = So® (=S1) = L—1'L. Let S* : Z* — Z* S : Z? — Z? and
St 1 Z? — Z? be the adjoints of S, Sy and S; respectively. It is easy to see that
Coker S§ = Coker S7 is naturally identified with Zy & Z5. Furthermore, we have

S*(m) = 'mS = (0,10,0,—6) and S*(m') ='m'S = (-6,0,10,0).

Therefore, S*(M)", the smallest direct summand of Z* containing S*(M), is
the submodule of Z* generated by (0, 5,0, —3) and (—3,0,5,0). Hence, for the
natural quotient map d : Z* — Coker S* = (Zo ® Zo) @ (Za ® Zs), we have

d(S*(M)") = {(z,x) : x € Coker S§ = Zo ® Zso},

since Im S} is generated by (2,0) and (0,2), ¢ =0, 1, and Im S* is generated by
(2,0,0,0), (0,2,0,0), (0,0,2,0) and (0,0,0,2). Therefore, we conclude that the
unimodular matrices Ly and L; are algebraically cobordant.

Now, there exists a simple fibered (2n — 1)-knot K; which realizes L; as its
Seifert form with respect to the fiber, i = 0,1 (see [36, 65]). By [8, Theorem 3],
Ky and K are cobordant.

Let us now show that Ky and K; are not pull back equivalent. By Corol-
lary 9.13, we have only to show that for any spherical simple fibered (2n — 1)-
knots ¥y and ¥ in S?"*!, Kyfi¥, is never orientation preservingly isotopic to
K%,

Since K;#Y; is a fibered knot, we can consider the monodromy on the n-th
homology group of the fiber, i = 0,1. Let us denote by H; the monodromy
matrix of K;#Y; and by L; its Seifert matrix with respect to the same basis.
Here, we choose a basis which is the union of a basis of the homology of the fiber
for K; and that for ;. It is known that H; = (—1)"*'L; *('L;) (for example,
see [36]). Therefore, we have

-1 0 -1 0
H0:< g _1>®H6 and H1=( 0 _1)®H{,

where H/ is the monodromy matrix of ¥;, ¢ = 0, 1.

Let us consider Ker ((I 4+ H;)?), where I is the unit matrix, i = 0,1. Since
Y, are spherical knots, the monodromy matrices H} cannot have the eigenvalue
—1. Therefore, Ker ((I + H;)?) corresponds exactly to the homology of the fiber
of K1

Suppose that KopfX is orientation preservingly isotopic to Ki#¥;. Then
the Seifert form of Kot%g restricted to Ker ((I + Hp)?) should be isomorphic
to that of K1#¥; restricted to Ker ((I + H;)?). This means that Ly should be
congruent to Li. However, this is a contradiction, since there exists an element
x € Z? such that ‘wLox = 9, while such an element does not exist for L;.

Thus, we conclude that K, and K; are not pull back equivalent. O
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Note that the simple fibered knots Ky and K7 constructed above are special;
however, H,,_1(K;), i = 0,1, are not torsion free.

Remark 9.21. In fact, we can find infinitely many examples as in the above
proposition. For example, we could use the matrices

2 2
p* 1 q“ 1
(50) @ (%)

for arbitrary relatively prime odd integers p and ¢q. Or we could also use KoK’
and K #K’, instead of K and K7, for any simple fibered (2n—1)-knot K’ whose
monodromy does not have the eigenvalue —1.

As has been remarked in Remark 9.3, under a certain connectivity condition,
if two m-knots Ky and K; with m > 5 are pull back equivalent, then they are
cobordant after taking connected sums with some spherical knots. The above
example shows that the converse is not true in general.

Let us now give some examples of pairs of knots which are diffeomorphic but
not cobordant even after taking connected sums with (not necessarily simple or
fibered) spherical knots. For this, we use the following proposition, which is
a slight modification of Lemma 9.18 and is implicitly proved in the proof of
Theorem 9.17.

Proposition 9.22. Let Ky and K1 be simple fibered (2n — 1)-knots with n > 3.
If Koo and K111 are cobordant for some spherical knots X and X1, then
the Seifert forms of Ko and K, restricted to I(Kg) and I(K7), respectively, are
isomorphic to each other.

Remark 9.23. In fact, the above proposition is implicitly proved also in [153].
Based on this, Vogt proves the following. The usual (2n — 1)-dimensional spher-
ical knot cobordism group Cs,_1 acts on the cobordism semi-group of simple
(2n — 1)-knots with torsion free homologies by connected sum. The orbit space
of the action inherits a natural semi-group structure. Then this orbit space
contains infinitely many free generators as a commutative semi-group for n > 3.

Vogt [153] also proves that the action of Cs,_1 on the cobordism semi-
group of simple (2n — 1)-knots is fixed point free for n > 3. This can also be
proved by using [8, (5.1) Proposition|. In fact, for an arbitrary spherical simple
(2n — 1)-knot ¥ whose Alexander polynomial is nontrivial and irreducible, K%
is never cobordant to K for any simple (2n — 1)-knot K, since the Alexander
polynomials of K43 and K do not satisfy a Fox-Milnor type relation necessary
to be cobordant (see [8, (5.1) Proposition]).
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Examples

"An expert is a man who has made all the mistakes,
which can be made, in a very narrow field."
Niels Henrik David Bohr

In this Chapter, we review some examples constructed in [5, 7, 9].

Non-spherical simple fibered (2n — 1)-knots with n > 3 which are
cobordant but are not isotopic.

Example 10.1 ([5]). Let K;, with ¢ = 0, 1, be the spherical algebraic (2n — 1)-
knots, n > 3, associated with the isolated singularity at 0 of the polynomial
functions h; : (C"1,0) — (C,0) defined by

n
hi(zo,z1,. .., xn) = gi(xo, 1) + 2b + zd + in
k=4

with

3)2 5+6

go(zo, 1) = (20 — wﬂ(@% — 2 (s+9)/2)

-z —4xizg
2 512 +10 (r415)/2
((ffo —x7)” — ] —dwoxy )
and

2 3)2 _ $6+14

g1(xo, 1) = (g — x1)<(m1 —xp - 4x1x(()r+17)/2)

((x% —a3)? — it — 4x0xgs+7)/2)7

where s > 11, s # r+8, s and r are odd, and p and ¢ are distinct prime numbers
which do not divide the product 330(30 + r)(22 + s) (see [35, p. 166]). Note
that the algebraic knots K; associated with h; are spherical for i = 0,1. It has
been shown in [35] that the algebraic knots Ky and K are cobordant but are
not isotopic.

Now let L be the algebraic (2n — 1)-knot associated with the isolated singu-
larity at 0 of the polynomial function f : (C"*1 0) — (C,0) defined by

f(w();xla"'vxn) = Zx%

according to [36] (prop. 2.2 p.50) this algebraic knot has A = ((—1)”(”+1)/2),
defined on a free Z-module of rank one H, as Seifert matrix. Note that L is not
spherical.
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Let us consider the connected sums L; = K #L, i = 0,1, which are simple
fibered (2n — 1)-knots.

We construct L; the connected sum of L and K; for ¢ = 0,1. The Seifert
form for L; is the integral bilinear form A @ A; defined on a free Z-module
H; = G ® H; of finite rank. The knots L; are simple fibered since A & A; is
unimodular.

The knots Ly and L; are cobordant by Theorem 6.3 (see [5]), let us see that
they cannot be isotopic.

Let 73, i = 0,1 be the monodromy associated with the fibered knots L;, i =
0,1. If there exists an integer e such that (7f — 1) G; = 0 then e; is called an
exponent for L.

Recall that for ¢ = 0,1 the ¢;-twist group for K; is defined as follows: assum-
ing (¢t — 1)2 H; = 0 where t; is the monodromy associated with K;, if ¢; is an
exponent for K; then the ¢;-twist group associated to K; is the group denoted
by GT*< (h;) (or GT(K;)) which is the Z-torsion subgroup of the quotient

According to the monodromy theorem (Brieskorn-Grothendieck), the e-twist
group is well defined for one dimensional algebraic knots, and P. Du Bois and
F. Michel [35] showed:

1- € is an even exponent for the algebraic knots associated to gy and g¢; ;
and for all multiples k of ¢ the finite abelian groups GT*(go) and GT*(g;)
have distinct orders,

2- all multiples k of € are even exponents for the algebraic knots associated
with go and ¢;, the k-twist group for hg and h; are well defined and

(- 1)(g-1)
GT’“(hi):(GT’“(giDp T fori=0,1.

Let k be a multiple of ¢ = 330(30 + r)(22 + s). For a fibered knot L, if
we denote by A the matrix of the Seifert form and by 7 the matrix of the
monodromy; then these matrices are related together by 7 = (—1)" A=1!A.
Hence for i = 0,1 we have 7; = (£1d) @ t; thus GT*(L;) is well defined and we
have GTk(Li) = GTk(hl)

Finally GT*(Lo) and GT*(L;) have distinct order and as Z[t,t~1]-module
H,(Go) and H,(Gy) are not isomorphic. Hence the knots Ly and L; are not
isotopic.

Note that according to [1, Theorem 4, p. 117], the knots Ly and L;, which
are connected sums of two algebraic knots, are not algebraic.

Let K be a knot. A stabilization of K is the operation of taking the connected
sum K{Kg for some null-cobordant spherical knot Kg. As the above examples
show, stabilization is a natural way to construct knots that are cobordant but
are not isotopic. We have other types of constructions as follows.

Example 10.2. The matrices given in Example 5.2 (2) give two spherical simple
(2n — 1)-knots with n > 3 odd which are cobordant but are not isotopic. Simi-
larly, the matrices given in Example 5.2 (3) give two simple fibered non-spherical
(2n — 1)-knots with n > 3 odd which are cobordant but are not isotopic.



129

Non-spherical 3-knots which are cobordant but are not isotopic

Example 10.3 ([9]). A stabilizer is a simple fibered spherical 3-knot whose

fiber F is diffeomorphic to (52 x S?)#(S? x S2)\ D*. Such a stabilizer does exist
(see [132, §4]). Moreover, we denote by Kg a stabilizer with Seifert matrix

0 1 0 1
0 0 1 0
A= 0 -1 0 0
-1 0 1 0

with respect to a basis of Ho(F') denoted by a1, as,as,as (see [131, p. 600] or
[135, §10]).

Since A is not congruent to the zero form, K is a non-trivial 3-knot.

Moreover, the submodule generated by a; and as is a metabolizer for A,
and one can do embedded surgeries on the two cycles a; and as, represented by
two embedded 2-spheres in F. The result of this embedded surgery in D is a
4-dimensional disk properly embedded in D® with Kg as boundary. Thus Kg
is null-cobordant, i.e., it is cobordant to the trivial spherical 3-knot.

Example 10.4. We can construct cobordant, but not isotopic non-spherical
3-knots as follows. Let Kg be a null cobordant stabilizer as in Example 10.3
Note that Kg is a non-trivial 3-knot which is cobordant to the trivial 3-knot.
Then consider any simple fibered 3-knot K which is not spherical. Then the
two simple fibered 3-knots KK g and K are not isotopic, since the ranks of the
second homology groups of their fibers are distinct. However, these knots are
cobordant.

Examples related to Pull back In the following two examples we give a pair
of diffeomorphic knots for which their connected sums with any spherical knots
are never cobordant. This answers question (Q) mentioned at the beginning of
this section negatively.

Example 10.5 ([7]). Let us consider the following unimodular matrices:
0

0 1 0

AO - < (_1)n+1 0 ) and Al - (_1)n+1

0 (_1)n+1

0
0
0

OO O
O = = O

Then, for every integer n > 3, there exist simple fibered (2n — 1)-knots K in
S527+1 whose Seifert matrices are given by A;, i = 0,1. Note that if we denote
their fibers by F;, ¢ = 0,1, then F} is orientation preservingly diffeomorphic to
Fof(S™ x S™). In particular, K, and K are orientation preservingly diffeomor-
phic to each other.

It is easy to verify that the Seifert form restricted to I(K) is the zero form,
while it is not zero for K. Hence, by Proposition 9.22, Ky, is never cobordant
to K14%; for any spherical (not necessarily simple or fibered) knots 3¢, ;.

Note that for this example, we have H,,_1(K;) X Z® Z,i=0,1.

Let us give another kind of an example together with an argument using the
Alexander polynomial.



130 10 Examples

Example 10.6 ([7]). Let us consider the unimodular matrices

1111
11 0 100
Ao(o 1) and Ar=11 g 01
100 0

and their associated simple fibered (2n — 1)-knots K, i = 0,1, with n > 4
even. As in Example 10.5 we see that Ky and K; are orientation preservingly
diffeomorphic to each other.

Now, suppose that for some spherical (2n — 1)-knots X;, ¢ = 0,1, KoY is
cobordant to K1£%;. We may assume that >g and 3y are simple. The Alexander
polynomials of Ky and K7 are given by

Ag,(t) = det(tAg + ‘Ag) =t* +t+ 1

and
Ak, (t) =det(tA; + ‘A) = —(t* + 3 =2+t +1)

respectively. Both of these polynomials are irreducible over Z. If Kyf¥g is
cobordant to K13, then by Proposition 6.38, we must have a Fox-Milnor type
relation

AKO (t)AZO (t)AK1 (t)AE1 (t) = itaf(t)f* (t) (101)
for some a € Z and f(t) € Z[t], where Ay, (t) denotes the Alexander polynomial
of 3;,i=0,1.

Note that we have |Ag,(1)] = |Ak, (1)] = 3 and |Ax,(1)] = |Ag, (1)] = 1.
Since Ag,(t) is irreducible of degree 2, and Ak, (¢) is irreducible of degree 4,
the relation (10.1) leads to a contradiction.

Hence, Kof¥g is not cobordant to K343 for any spherical (not necessarily
simple or fibered) (2n — 1)-knots Xg, ¥;. In this example we have H,_1(K;) &
Zs, for i =0, 1.

3-knots and Spin cobordism

Example 10.7. Set M = S! x X, where %, is the closed connected orientable
surface of genus g > 2. Note that H;(M) is torsion free. Let Ky and K; be
the simple fibered M-knots constructed in [135, Proposition 3.8]. They have
the property that their Seifert forms are isomorphic, but that there exists no
diffeomorphism between K and K which preserves their spin structures. Thus,
the Seifert forms of Ky and K; are algebraically cobordant, but are not spin
cobordant. Hence they are not cobordant by Proposition 8.15.

This example shows that the spin structure plays an essential role in the
theory of cobordism for 3-knots.

Example 10.8. Let M be a nontrivial orientable S'-bundle over the closed
connected orientable surface of genus g > 2. Note that H; (M) is not torsion
free in general. Let Ky, Ko,..., K, be the simple fibered M-knots constructed
in [135, Theorem 3.1]. They have the property that their Seifert forms are
isomorphic to each other, but that any such isomorphism restricted to Hs(K;)
cannot be realized by a diffeomorphism. Thus, the Seifert forms of K; are
algebraically cobordant to each other, but are not spin cobordant. Hence they
are not cobordant by Proposition 8.15, which is valid also for non-free simple
fibered 3-knots.
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Example 10.9. We can construct simple 3-knots which are C-algebraically
fibered, but are not fibered, as follows. Let K be a simple fibered 3-knot. It
is easy to see that there are a lot of simple algebraically non-fibered spherical
3-knots K’ which are null cobordant. For example, consider the boundary of
52 x §% — Int D* embedded in S® so that its Seifert form is isomorphic to

0 k
(005

Then the simple 3-knot KK’ is C-algebraically fibered, since its Seifert form
is algebraically cobordant to that of K. However, KK’ is not (algebraically)
fibered.

Example 10.10. For a simple 3-knot, the algebraic cobordism class of a Seifert
form depends on the choice of the Seifert manifold in general. For example, let
K be the trivially embedded S! x S? in S°; i.e., S* is trivially embedded in
S° and S* decomposes into Fy = D? x S% and F; = S' x D? along K. Note
that Fp is a 1-connected Seifert manifold of K, while F} is a Seifert manifold
which is not 1-connected. Then the Seifert forms with respect to Fy and F} are
not algebraically cobordant, since the ranks of Ho(F;), ¢ = 0,1, do not have the
same parity.

Example 10.11. Let P be a non-trivial orientable S'-bundle over the closed
connected orientable surface of genus g > 2. Note that H;(P) is not torsion free
in general. For every positive integer n, let K1, Ko, ..., K, be the simple fibered
3-knots constructed in [135, Theorem 3.1] which are all abstractly diffeomorphic
to P. They have the property that their fibers are all diffeomorphic and their
Seifert forms are isomorphic to each other, but any such isomorphism restricted
to Ha(K;) cannot be realized by a diffeomorphism. Thus, the Seifert forms of K;
are algebraically cobordant to each other, but are not Spin cobordant. Hence
they are not cobordant by Proposition 8.15, which is valid also for non-free
simple fibered 3-knots.



Chapter 11

Cobordism and concordance of surfaces in S*

Hamlet — ... this was sometime a paradox, but now the time gives it proof.

In [72] Kervaire proved that a 2n-sphere embedded in S?"*2 = 9(D?*"+3) is
the boundary of a (2n+ 1)-disk properly embedded in D?"*3. This implies that
(5, is trivial.

Although there is no group structure on the set of cobordism classes of
non-spherical 2-knots, we have a similar result. In fact we show that any con-
nected, closed and orientable surface embedded in S* is the boundary of an
orientable handlebody properly embedded in the disk D°. When the surface
is non-orientable, it is the boundary of a non-orientable handlebody properly
embedded in D® if and only if the Euler number of the normal bundle vanishes.

Recall that the normal Euler number of an orientable surface embedded
in S* always vanishes (see [112]). Let us recall the definition of the normal
Euler number of a closed non-orientable surface M embedded in S*, where S*
is considered to be oriented. Throughout this section, we use the letter “M" for
2n-knots rather than “ K", since the letter “ K" will be used for another purpose.
The tubular neighborhood N of M may be regarded as a normal disk bundle
over M. Let p: M — M be the orientation double cover of M. Consider the
induced bundle N over M so that we have the commutative diagram

N ‘24 N

M —2 5 M.
We orient N so that the induced map p : N = N preserves the orientations.
The normal Euler number e(M) of the surface M is then defined by e(M) =
(M - M)/2, where M - M denotes the self-intersection number of M in N, which
is always even.

Let us denote by N, the closed connected non-orientable surface of non-
orientable genus g. For a closed connected non-orientable surface M = N,
embedded in S*, it is known that e(M) € {—2g,4 — 29,8 — 2g,...,2g}. Fur-
thermore, all the values in the set can be realized as the normal Euler number
of some N, embedded in S* (see [161, 104, 62]).

In [10] we characterized those closed connected surfaces embedded in S*
which are the boundary of a handlebody properly embedded in D®. For this
purpose, we need to use Pin~ structures on manifolds.

A Pin~ structure on a manifold X is the homotopy class of a trivialization
of TX @ det TX @ £V over the 2-skeleton X2 of X, where TX denotes the
tangent bundle, det TX denotes the orientation line bundle, and £V is a trivial

vector bundle of dimension N sufficiently large. A Pin~ structure is equivalent
to a Spin structure when X is orientable.
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When M is a closed surface embedded in S*, there is a canonical Pin~
structure defined on M. More precisely, since M is characteristic,i.e., as a
submanifold of S* it represents the Zs homology class dual to the second Stiefel-
Whitney class of S%, there exists a unique Spin structure on S*\ M which cannot
be extended to any normal 2-disk of M. This Spin structure on S*\ M induces
a unique Pin~ structure on M (see [77]).

We denote by H, the orientable handlebody of dimension three which is
obtained by gluing g orientable 1-handles to a 0-handle. The boundary of H, is
the closed connected orientable surface of genus g, denoted by X,. Furthermore,
we denote by I, the non-orientable handlebody of dimension three which is
obtained by gluing g non-orientable 1-handles to a 0-handle. Then the boundary
of I, is identified with Ny4. In the following we will denote by K, the handlebody
H, or 1.

Definition 11.1. Let M be a closed connected surface embedded in S*. Sup-
pose that M has genus g if M is orientable and 2g if M is non-orientable. Let
Y 1 0Ky — M be a diffeomorphism. We say that ¢ is Pin™ compatible if the
Pin™ structure on 0K induced by v extends through K,.

When M is oriented, there always exists a compact oriented 3-dimensional
submanifold V of S* such that 9V = M as oriented manifolds (see, for example,
[40]). Such a manifold V is called a Seifert manifold associated with M (see
§1.2.1). When M is non-orientable, a compact 3-dimensional submanifold V'
of $* with 9V = M is also called a Seifert manifold. Such a (non-orientable)
Seifert manifold exists for M if and only if e(M) = 0 (see [46, 62]). When a
surface M admits a Seifert manifold V, the unique Spin structure on S* induces
a Pin~ structure on V' and this induces a Pin™ structure on M, which coincides
with the Pin™ structure described above (see [41]).

In [10] we proved the following theorem.

Theorem 11.2. Let M be a closed connected surface embedded in S* = 0D,
and ¢ : 0Ky, — M a diffeomorphism, where K, denotes the 3-dimensional

handlebody with g 1-handles. Then, there exists an embedding 1[ Ky — D>
with Y|ax, = ¥ if and only if e(M) =0 and ¢ is Pin~ compatible.

Remark 11.3. Since every closed connected 3-dimensional manifold admits a
Heegaard splitting of genus g > 0, as a consequence of Theorem 11.2 we have
a new proof of Rohlin’s theorem [128] on the existence of an embedding of an
arbitrary closed 3-dimensional manifold into R® (see also [157, 159] and [49,
p. 90]). For details, see [10].

Let us give a sketch of a proof of Theorem 11.2. First, it is easy to see that
the vanishing of e(M) and the Pin™ compatibility of ¢ are necessary conditions.
The proof of the sufficiency is based on embedded surgeries inside the disk D
on a Seifert manifold V of M. To do that we start with the abstract closed 3-
manifold V' = V Uy K, obtained by attaching V and K, along their boundaries
by using 1. Since the 3-dimensional cobordism group Qgpin (or Q¥ of Spin
(resp. Pin™ ) manifolds is trivial (see [105], [72, Lemme IIL.7, p. 265], [49, p. 91],
[101] or [76] for Q3P and [3, 77, 78] for Q57 ), there exists a compact (oriented
if sois M) Pin~ 4-manifold W such that W = V' as (oriented) Pin™ manifolds.
Let f be a Morse function f : W — [0,1] which extends the projection to the
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second factor OW = (V x {0}) Uy (0K, x [0,1]) U (K4 x {1}) — [0,1]. Note
that f can be chosen so that all its critical values lie in the interval (e,1 — ¢)
for € > 0 small enough. Moreover, we may assume that the critical points have
index 1,2 or 3.

Consider the handlebody decomposition of W associated with this Morse
function. We can remove handles of index 1 and 3 using modifications described
by Wallace in [158], respecting the Pin™~ structure. Then we get a new (oriented)
Pin~ manifold W’ such that OW = 0W’. Since the handlebody decomposition
of the manifold W’ has only handles of index 2, we can attach the handles to
V x [0,1] inside D5 to get an embedding of W’ into D°. Finally we have a
proper embedding of K, = (0K, x [0,1]) U (K, x {1}) C W’ into the disk D°
such that 0K, = M.

As a corollary to Theorem 11.2 we have

Corollary 11.4 ([10]). Let M be a closed connected surface embedded in S° =
OD®. Then there exists a 3-dimensional handlebody embedded in D® such that
its boundary coincides with M if and only if e(M) = 0.

Using Theorem 11.2, we can characterize cobordism classes of closed con-
nected surfaces embedded in S* as follows.

Theorem 11.5 ([10]). Let My and M; be two closed connected surfaces em-
bedded in S*. Then they are cobordant if and only if they are diffeomorphic as
abstract manifolds and have the same normal Euler number.

Remark 11.6. The above theorem in the orientable case is proved by Ogasa
[118], although his proof is slightly different from ours explained below.

When two closed connected surfaces embedded in S* are cobordant, it is clear
that they are diffeomorphic as abstract manifolds and have the same normal
Euler number (for details, see [10]). Thus we have the necessity in Theorem 11.5.

For the sufficiency, start with two closed connected surfaces My and M; in
S* which are diffeomorphic as abstract manifolds and have the same normal
Euler number. In the following, we consider the case where My and M; are
non-orientable of non-orientable genus g. (For the orientable case, the proof is
similar. For details, see [10].)

By changing My and M; by isotopies, we may assume that for a 4-disk D*
in S4, we have My N D* = M; N D* = D? and (D*, D?) is the standard disk

pair. Set A = (S*\ D*) x [0,1] = D® and

M = (Mp\ D*) U (8D* x [0,1]) U (My\ D?) = MotM; C DA,

where M}, denotes the mirror image of M. Since e(My) = e(M;), we have
e(M) = 0. Furthermore, one can prove that there exists a Pin~ compatible
diffeomorphism between d((N,\ D?)x [0,1]) 2 I, and M which sends (N,\ D>

) x {i} diffeomorphically onto M;\ D?.
According to Theorem 11.2 we can embed I, in A so that MM, = 9I,.
The cobordism between My and M; is then obtained by gluing back D* x [0, 1]

to A and by replacing I, = (N,\ D?) x [0,1] by N, x [0, 1].
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As a consequence of Theorem 11.5 we have that two closed connected ori-
entable surfaces embedded in S* are cobordant if and only if they have the same
genus. Hence, the monoide of cobordism classes of closed connected orientable
surfaces embedded in S* is isomorphic to the monoide of non-negative integers
Z>.

Let us consider non-orientable surfaces. First note that by adding the cobor-
dism class of an embedding of 52 into S* to the associative magma' of cobor-
dism classes of closed connected non-orientable surfaces embedded in S*, we
get a monoide denoted by 991. We can also describe the monoide structure of
9 as follows. Let RP? (or RP?) be the projective plane standardly embed-
ded in S* with normal Euler number being equal to +2 (resp. —2) (see [59]).
For a pair of non-negative integers (k,!) such that k +1 > 1, let My ; be the
non-orientable surface embedded in S* obtained by taking the connected sum
of k copies of RP} and [ copies of RP2. Then we have e(Mj,;) = 2(k — 1) and
the genus of M} is equal to kK +[. Hence, the set of non-orientable surfaces
{My,; : k,l€Z, k,1>0, k+]> 1} constitutes a complete set of representatives
of the cobordism classes of closed connected non-orientable surfaces embedded
in S4. Therefore, M is isomorphic to the monoid of pairs of non-negative inte-
gers Z>o X Z>g. If we denote by [M] the cobordism class of a closed connected
non-orientable surface M embedded in S*, and by g(M) the genus of M, then
the isomorphism 9 — Z>q X Zx>( is given by

m — ZZO X ZZO
M) (2g<M):e<M) 7 2g<M>4—e<M))

11.0.1 Concordance of embeddings of a surface

In this subsection, we consider the concordance classification of embeddings of
closed connected surfaces into S%. For the definition of the concordance, see
Definition 1.11.

Examining the proof of Theorem 11.5 carefully, we see that the following
characterization of concordant embeddings of surfaces into S4 holds.

Theorem 11.7 ([10]). Let ¥ be a closed connected surface. Two embeddings
of ¥ into S* are concordant if and only if the Pin~ structures induced by these
embeddings coincide and the normal Fuler numbers of these embeddings coin-
cide.

Remark 11.8. When the knots are spherical of dimension two, the notions
of cobordism and concordance coincide with each other, since every diffeomor-
phism of S? which preserves the orientation is isotopic to the identity [141].
However, when g > 1, for an arbitrary embedding f : ¥, — S there exists
an orientation preserving diffeomorphism A : ¥, — 3, which does not preserve
the Pin~ structure induced by f. Therefore, the embeddings f o h and f are
not concordant. This means that contrary to the spherical case, the notions of
cobordism and concordance differ for orientable surfaces of genus g > 1.

The group of orientation preserving diffeomorphisms of a closed connected
oriented surface acts transitively on the set of Pin~ structures with trivial Brown

Lor semigroup
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] 8 H g: odd \ g: even ‘
0 0 2(9*2)/2(2(9*2)/2 +1)
1 || 209=3)/2(2(e=1)/2 4 1) 0
2 0 2972
3 2(9—3)/2(2(9—1)/2 —1) 0
4 0 2(9*2)/2(2(9*2)/2 —1)
5 2(9*3)/2(2(971)/2 —1) 0
6 0 2972
7 || 209=3)/2(209-1)/2 4 1) 0

Table 11.1. Number of Pin™ structures on N, with Brown invariant 8 € Zg

invariant (see, for example, [10]). This set is naturally identified with the set
of Spin structures with trivial Arf invariant, since the surface is assumed to be
orientable. This implies that the number of concordance classes of embeddings
of a closed connected oriented surface is equal to the number of Pin™ structures
with trivial Brown invariant on this surface. According to [61] this number
is equal to 2971(29 + 1), where g is the genus of the surface. If we denote
by wy the number of concordance classes of embeddings of 3, then we have
wy = 297129 4+ 1).

Let us denote by v, the number of concordance classes of embeddings of the
closed connected non-orientable surface IV, of non-orientable genus g. According
to [104, 62], the set of possible normal Euler numbers for such embeddings
coincides with {—2g,4 — 29,8 — 2g, ..., 2g}. Hence, we have

g
Vg = E :Vg,—2g+4ia
i=0

where vy _2444; denotes the number of concordance classes of embeddings of
N, into S* with normal Euler number equal to —2g + 4i. Moreover, according
to [77, Theorem 6.3, vy, _24+4; is equal to the number of Pin™ structures with
Brown invariant equal to —g 4 2¢ modulo 8. Such numbers can be calculated as
in Table 11.0.1 (see [31]).

Using the values given in Table 11.0.1, we get

[ 2972%(g+1) if g is odd,
Yo = 2972(g+1) +200-2/2 if g is even.



Chapter 12

Cobordism and concordance of 4-knots

"In mathematics you don’t understand things.
You just get used to them."
John von Neumann

In the study of cobordism of embeddings of even dimensional manifolds, the
only case which remains to be studied is the case of 4-dimensional manifolds
embedded in S°. In [11] we proved the following

Theorem 12.1. Let M be a closed simply connected 4-dimensional manifold.
Then all the embeddings of M into S® are concordant.

In particular, two 4-knots in S% i.e., two closed simply connected 4-dimensional
manifolds embedded in S®, are (oriented) cobordant if and only if they are ab-
stractly (orientation preservingly) diffeomorphic to each other.

One will prove Theorem 12.1 by imitating the proofs of Theorems 11.2 and
11.5, and the proof is based essentially on Kervaire’s original idea [72].

Let fi : M — S%x{i}, i = 0,1, be two embeddings. We denote K; = f(M;)
the oriented submanifolds of S® x {i} such that f; preserve orientations.

Set V; some connected, compact and oriented submanifolds of dimension 5
of S6 x {i} such that 9V; = K; (see § 1 Introduction). Up to ambient isotopy
of S¢ x {i} one can assume that there exists a 6-disk A in S® such that

i) Ax{0}nKy=2=Ax{1}NnKj,

(i)

(iii) A x {i} NV; is diffeomorphic to the 5-disk for i = 0,1,
)

(iv) V = (VO \ Int(A x {0})) Us (8(A x {0}) ﬂVO) x [0,1]Us (V1 \ Int(A x {1}))
is diffeomorphic to the oriented connected sum of V and V7,

A x{0}NV; coincide to A x {1}NV; if SO x {0} is identified with S x {1},

(v) V is embedded in the boundary of (5 x [0,1]) \ (Int(A) x [0, 1]) which is
diffeomorphic to the 7-disk.

Set W the closed and oriented 5-manifold obtained by gluing the manifolds
V and M x [0,1] along their boundaries using the maps fy and f;. Moreover
M is simply connected and since the natural spin structure of S® induces spin
structures for Vy and V; then the oriented manifold W admit a spin structure
compatible with those of V and V.

Recall that the cobordism group' of 5-manifolds is trivial, hence there exists
a spin compact 6-manifold X such that 0X = W as spin manifolds. Since
O(M x [0,1]) = M x {0,1} then we have

0X =W = ((V x {0}) Upvxqoy (OV x [0,1])) | J ((M x [0,1]) x {1}),
foll fr

n the weak sense, see [105]
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where f; : (M x {i}) x {1} — K; x {1} C 0V x {1}, i = 0,1, are gluing
diffeomorphisms.
Now let
m:0X — [0,1]

the projection on the second factor associated to the this decomposition of 9.X.
Then there exists a Morse function

f: X —10,1]

extending 7 without critical points of index 0 and 6, and such that all the critical
values of f are in the interval Je, 1 — ¢[ for € > 0 a sufficiently small real.

With the Morse function f one can give a handle decomposition of X with
gluing of handles on V x [0, 1] along V' x {1} which do not have handles of index
0 or 6.

Now will show that one can modify this decomposition in order to have only
handles of index 0,1 and 3. First remark that a 5-handle is dual to a 1-handle.
Moreover using Wallace’s reduction (see [158] § 6) one can replace these dual
1-handles by some 4-handles. Hence one can replace all the 5-handles by some
2-handles, these 2-handles are dual of those 4-handles we just add. Since all
the manifolds are orientable and M x [0,1] is connected, then all these handle
modifications can be made by doing spin surgeries on X with no modification
onoX.

Now we have a handle decomposition of X without handle of index 5. Con-
sider a 4-handle in this decomposition, it is dual to a 2-handle and since M x [0, 1]
is simply connected this 2-handle is trivially attached. It is the same to do the
connected sum, along the boundary, with S? x D* Then using again Wal-
lace’s reduction, we can replace this dual 2-handle by a dual 3-handle wich is a
3-handle.

Finally one can assume that X has a handle decomposition with no handle
of index 4 and 5. Moreover since the manifold V' x [0, 1] is stably paralelizable
and X is a spin manifold, then after the attachment of handles of indexes 1
and 2 we get a stably paralelizable manifold ; and with the nullity of the group
m2(S0O) implies that after attachment of 3-handles the manifold is still stably
paralelizable.

Now to get the result we have to realize this handle decomposition as an
embedded manifold in S x [0, 1]. But this can easily be done since V' is embed-
ded in the boundary of a 7-disk, then we attach handles of indexes 1,2 and 3
to V x [0,1] in the 7-disk. The restriction of this embedding to S x [0, 1] gives
the concordance. (]

Remark 12.2. It is known that a closed connected orientable 4-dimensional
manifold M can be embedded in S° if and only if it is Spin and its signature
vanishes (see [25]). If in addition M is simply connected, then it can be embed-
ded in S% if and only if it is homeomorphic to a connected sum of some copies
of 8?2 x S? by the homeomorphism classification of closed simply connected
4-dimensional manifolds due to Freedman [45].

Remark 12.3. By Park [120], for any sufficiently large odd integer m, there
exist infinitely many smooth manifolds which are all homeomorphic to the con-
nected sum of m copies of S? x S? but which are not diffeomorphic to each other.
Let us denote by 94 the monoid of (oriented) cobordism classes of closed simply
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connected 4-manifolds embedded in S¢, and by Z > the monoid of non-negative
integers. Then the homomorphism ¢ : O4 — Z>( which associates to a 4-knot
one half of its second Betti number is an epimorphism. The above result of
Park shows that this homomorphism is far from being an isomorphism. Com-
pare this with the result of Vogt [152, 153]: the corresponding homomorphism
Oap — Zxo for n > 3 is an isomorphism, where Os,, denotes the monoid of
(oriented) cobordism classes of 2n-knots in S?"+2.

Remark 12.4. When n # 2, for an arbitrary 2n-knot M, its orientation reversal
—M is oriented cobordant to M. For n = 2, there exists a closed 4-dimensional
manifold N homeomorphic to a connected sum of some copies of $% x S? such
that N is not oriented diffeomorphic to —N. In fact, by Kotschick [81], every
simply connected compact complex surface of general type which is Spin and
has vanishing signature gives such an example. Such a complex surface has
been constructed by Moishezon and Teicher [113, 114, 80]. Hence, there exists a
closed simply connected oriented 4-dimensional manifold embedded in S which
is not oriented cobordant to its orientation reversal.



Chapter 13

Annexe

"En mathématiques, nous sommes davantage
les serviteurs que les maitres."
Charles Hermite

In this Chapter we first present some results (cf [14]) concerning more general
knots than simple fibered knots. In the previous Chapters we strongly used all
the good properties of simple fibered knots, here we present generalizations of
some results proved before.

Then we extend the result about 3-knots to a larger class.

13.1 Exact knots

Definition 13.1. Suppose n > 2. A Seifert surface F of a (2n — 1)-knot K is
said to be exact if the sequence

0 — Hyn(K) = Hy(F)/ Tors Hy(F) — H,(F, K)/ Tors H,(F, K) = H,_1(K) — 0,

derived from the homology exact sequence for the pair (F, K), is well defined
and exact. Note that the homomorphism

H,(F,K)/Tors H,(F,K) — H,_,(K)

may not be well defined in general. Here, we impose the condition that this
map should be well defined. A (2n — 1)-knot is said to be ezact if it admits an
exact Seifert surface.

Example 13.2. Consider K = S"~! x 8™ embedded trivially in $?" C §27+!,
n > 2. Then K is a (2n—1)-knot and it bounds two Seifert surfaces Fy = D™ x.S™
and F; = S? ! x D"t both of which are embedded in S?”. Then Fy is
exact, while Fy is not, since H,(S""! x S*) — H,(S""! x D"*!) is not a
monomorphism.

Lemma 13.3. For n > 2, we have the following.

(1) A simple (2n — 1)-knot is always exact. In fact, every (n — 1)-connected
Seifert surface is exact.

(2) A fibered (2n — 1)-knot is always exact. In fact, every fiber is exact.
(3) A (2n — 1)-knot is always exact. In fact, every Seifert surface is exact.

Proof. In the following, let K be a (2n—1)-knot and F' a relevant Seifert surface.
(1) Let us consider the exact sequence

Hyi1(FK) = Hy(K) = Hy(F) = Hy(F, K) = Hy_1(K) — H,_,(F).
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Then we have the desired result, since H,, 41 (F, K) = H" Y(F) =0, H,_1(F) =
0, and H,(F') and H,(F, K) are torsion free.

(2) If F is a fiber of a fibered knot, then it is easy to see that S*" 1\ F is
homotopy equivalent to F. Hence, by Alexander duality, we have

H;(F) = H> {(F)

for all 4, where H, and H* denote reduced homology and cohomology groups,
respectively. Consider the exact sequence

0 — Hy(F) — Hyn(FK) —
H,(K) — Hy,(F) — Hy(FK) —
Hn_l(K) — Hn_l(F) — Hn_l(F, K) — 0.

(Recall that K is (n — 2)-connected.) Since

H,_1(F)= H""(F) =~ H,_,(F,K)

and H,_1(F) — H,_1(F,K) is an epimorphism, it must be an isomorphism.

Hence H,, (F, K) — H,_1(K) is an epimorphism. Furthermore, since H,, 1 (F) =

H" " Y(F) & H,,1(F,K), Hyi1(F) — H,41(F,K) is a monomorphism, and
H,(K) is torsion free, the homomorphism H,,1(F) — Hp4+1(F, K) must be
an isomorphism. Thus H,(K) — H,(F') is a monomorphism. Since H,(K) is

torsion free, the map
H,(K) — H,(F)/ Tors H, (F)

is also a monomorphism. Finally, since H,(F) = H"(F) = H, (F, K), we have
Tors H,, (F) = Tors H,(F, K). Then we see easily that the sequence

0 — H,(K) — H,(F)/Tors H,(F) — H,(F, K)/ Tors Hy,(F, K) — H,_1(K) =0

is well defined and exact. B
(3) If K is a homotopy sphere, then H,(K) =0= H,_1(K), and hence

0— H,(F) = H,(F,K) =0
is exact. Thus the result is obvious. This completes the proof. O

The following can be regarded as a correction of [5, Proposition 2.1].

Proposition 13.4. Let K be an exact (2n — 1)-knot, n > 2, and A its Seifert
form associated with an exact Seifert surface. Then, there exists a simple (2n —
1)-knot K' cobordant to K such that the Seifert form of K' associated with an
(n — 1)-connected Seifert surface is algebraically cobordant to A.

Remark 13.5. Note that when n = 1, every 1-knot admits a connected Seifert
surface, and hence is simple.

Proof of Proposition 13.4. Let F' be an exact Seifert surface of K. By exactly
the same method as in [5, 89], with the help of an engulfing theorem, we can
perform embedded surgeries on F inside the disk D?"*2 along spheres a of
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dimensions < n—1 embedded in F so that we obtain a simple knot K’ cobordant
to K and an (n — 1)-connected Seifert surface F’ for K'.

Let us examine the relationship between the Seifert forms with respect to F
and F’. If the sphere a along which the surgery is performed is of dimension less
than or equal to n—2, then it does not affect the n-th homology of F'. We again
denote by F' the result of such surgeries: in particular, F' is (n — 2)-connected.
Let us now consider the case where a is of dimension n — 1. In the following,
[a] will denote the homology class in H,,_1(F) represented by a, where we fix
its orientation once and for all.

Case 1. When [a] has infinite order in H,,_1(F).
Since K is exact, the boundary homomorphism 0, : H,(F,K) — H,_1(K)
is surjective. By the exact sequence

Hy(F K)—2—H, (K)——H,_(F)——H,_(F,K),

wherei : K — Fand j : F — (F, K) are the inclusions, we see that j. is injective
and hence j,.[a] has infinite order in H,,_1(F, K) = H"T}(F). Therefore, there
exists an (n + 1)-cycle @ of F such that the intersection number a - @ does not
vanish. We choose @ so that m = |a - @|(> 0) is the smallest possible.

Let ¢ : D™ x D™t — D?7%2 be the n-handle used by the surgery in question
such that (8"~ ! x {0}) = a. As in [5], let us put

Fr = F\Int((S" ' x D"™)), F* = Fpuy(D™ x S™).

Let us consider the Mayer-Vietoris exact sequence associated with the decom-
position F = Fr U(S"~1 x D+

Hp1(F)—>-—H,((S"* x S™)) = H,(Fr) — H,(F)
—t>Hn71(w(Sn_1 X Sn))#anl(FT) (o) Hn,l(d)(S”_l X Dn+1)),

Since the map s is given by the intersection number with «, its image coincides
with mZ C Z = H,((S""! x S™)). Furthermore, since u is an injection, ¢ is
the zero map. Therefore, we have the exact sequence

0— 2, - H,(Fr) — H,(F) — 0.
Therefore, the inclusion F;r — F' induces an isomorphism

H,(Fr)/Tors H,(Fr) — H,(F)/ Tors H,(F).

Similarly we also have the following exact sequence obtained from the Mayer-
Vietoris exact sequence associated with the decomposition

F*=FrUy(D" x S™)
0 — H,((S" ! x 8™)) = H,(Fr) ® H,(¢(D™ x S™)) — H,(F*)
- Hn—l(w(sn_l X Sn))#Hn—l(FT)
Note that the map u’ is injective, since the image of the composition

Hy oy (0(S™ 1 x S™)— s H,y_y (Fpr)—2—H,,_1(F)
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is generated by [a] which is of infinite order, where v is the homomorphism
induced by the inclusion. Therefore, we see that the inclusion induces an iso-
morphism H, (Fr) — H,(F*).

Summarizing, we have the isomorphisms

H,(F)/ Tors H, (F)«——H,,(Fr)/ Tors H, (Fr)——H, (F*)/ Tors H,, (F*)

induced by the inclusions.

Case 2. When [a] has finite order in H,,_1(F).

Let us denote the order of [a] by p > 0. There exists an n-chain ¢ in F such
that do = pa. We may assume that o does not intersect with a outside of its
boundary. Then, we have an n-chain o’ in Fr such that [90’] = p[¢ (5"~ x {x})]
in H,_1(x(S"1 x S™)).

As before, we have the following exact sequence:
H,((S" ! x §"))—*—H,(Fr) — H,(F) — 0.

Since [({*} x S™)] € H,(Fr) has non-zero intersection number with the ho-
mology class in H, (Fr,0Fr) represented by o', we see that the map w above is
injective. Note that then (Imw)” is infinite cyclic. Let a generator of (Im w)"
be denoted by £ € H, (Fr). Then, we have the following exact sequence:

0 — Z{¢{) - H,(Fr)/ Tors H,(Fr) — H,(F)/ Tors H,(F) — 0,
where Z{¢) denotes the infinite cyclic group generated by ¢. This implies that
H,(Fr)/ Tors H,(Fr) & (H,(F)/ Tors H,(F)) & Z(¢).
Similarly, we have the exact sequence

0 = Hy((S" ! x 8™)) = Hy(Fr) @ Ha((D" x S™)) = Hy(F*)

— S H, 1 ((S" X 8™)) —“—H,_1(Fr) = H,_1(F*) — 0.
The image of p times the generator of H, 1(¥(S" ! x S™)) by u’ vanishes,
since it bounds ¢’ in Fr. On the other hand, if p’ times the generator belongs
to Keru for some p’ with 0 < p’ < p, then the order of [a] is strictly less
than p, which is a contradiction. Therefore, the image of s’ is generated by
z = p[p(S™~! x {x})]. Hence, we have the exact sequence

0 — Hy(Fr) — Ho(F*)—Y57(2) — 0,

where Z(z) is the infinite cyclic group generated by z € H,,_1(¢(S"~1 x S™)).
Let n* be the n-cycle in F* obtained by the union of p times ¢ (D™ x {*}) and
o'. Set ¢* = [n*] € H,(F*). Then the image of ¢* by ¢ coincides with +z.
Therefore, we see that

H,(F*)/ Tors H,(F*) = (H,(Fr)/ Tors H,(Fr)) ® Z{{*).
Summarizing, we have

H,(F*)/ Tors H, (F*) = (H,(F)/ Tors H,(F)) & Z{£) & Z{¢*).
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So, in this case, the rank of the n-th homology group increases by two as a result
of the surgery.

In the following, we denote by F' the original Seifert surface for K and by F’
the (n—1)-connected Seifert surface for K’ obtained as a result of the surgeries.
Set G = H,(F)/ Tors H,(F). Note that

G’ = H,(F')/ Tors Hy(F') = G @ (Bier (Z{;) @ Z(L1)), (13.1)

where the indices in Z correspond to the surgeries necessary to kill the torsion
of the (n — 1)-th homology, and ¢; (or £}) corresponds to the generator ¢ (resp.
£*) above (see Case 2).

Let A (or A’) be the Seifert form for F' (resp. F’) defined on H,, (F')/ Tors H, (F)
(vesp. H,(F")/ Tors H,(F")). Furthermore, let S (or S’) be the intersection form
of F (resp. F'). Note that Ker S* = H,,(K) corresponds to Ker (S")* = H,, (K')
under the isomorphism (13.1).

Set B=(—A)® A’ and Sp = (—S) @ 5’, which are bilinear forms defined
on G ® G'. Note that G can be identified with a submodule of G’ under the
isomorphism (13.1). Let M be the submodule of G & G’ generated by the
elements of the form (z,z) with € G and by ¢;, i € Z.

As in [5], we see easily that M is a metabolizer for B. Furthermore, M is
pure in G & G’ and we can easily check that

M NKer Sy ={(z,2) € GG |z € Ker S*}.

Let y be an arbitrary nonzero element of Tors (Coker S*). We denote the
order of y by q. Let

d.:G"=H,(F,K)/Tors H,(F,K) = H,_1(K)

be the homomorphism induced by the boundary homomorphism, which is well
defined and surjective, since F' is an exact Seifert surface. Furthermore, the
map

H,(F)/Tors H,(F) — H,(F,K)/ Tors H,(F, K)

induced by the inclusion is identified with S* by virtue of the Poincaré duality,
and its image coincides with Ker 9,. (We also have similar statements for (S’)*
as well.)

Thus, there exists a § € G* such that 9,y = y under the identification
Coker S* = H,,_1(K). Then, ¢(y,y) € G* & (G')* lies in S;(M), which implies
that (y,7) € G* @ (G")* lies in S (M)". Therefore, we have

d(SE(M)"™) > {(y,y) |y € Tors (Coker S*)} (13.2)
under the natural identification
Coker S* = H,,_1(K) = H,,_1(K") = Coker (5)*.
Lemma 13.6. The order of d(S5(M)") coincides with that of Tors (Coker S*).
Proof. Since S%(M) is of finite index in S{(M)", we can write

Sp(M)"/S5(M) = @, Za,,
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where a; are positive integers such that a; divides a;4; foralli =1,2,...,k—1,
and k = rank S5 (M)". (Here, we do not exclude the case where a; = --- =
a, =1 for some r with 1 <r < k.)
Since M is pure in G & G’, we have S5(G & G') N Sy(M)" = SE(M) by
[8, §2]. Therefore, the quotient map d : G* & (G')* — Coker S restricted to
S (M)” can be identified with the quotient map Sk (M) — S5 (M) /S5 (M).
Let us consider

Sp:GaG xGaoG — 17,
the e-symmetric non-degenerate bilinear form induced from Sp on the module
GdG = (GaG")/Ker Sp. Since M is pure in G & G’, we have a submodule N
of G® G’ such that G® G’ = M & N. Note that Sk (M)"/S%(M) is naturally
isomorphic to Sg (M)N /Q* (M). Therefore, by taking appropriate bases of M
and N, we may assume that a matrix representative of Sz is of the form

0 D
eth « )’

where D is the k x k diagonal matrix with diagonal entries a1, as,...,ar. In
particular, the order of

Tors (Coker §3) = Coker S =G & G /Sp (Ga &)

is equal to (ajas - --ay)?.
Note that

Sp" (M)"/Sp" (M) = S5(M)"/S5(M) = &}, Zq,
Therefore, the order of
Coker S = Coker S & Coker S

coincides with the square of the order of Sg" (M)"/Sg" (M). Therefore, we have
the lemma. ]

Combining the above lemma with (13.2), we have
d(Sp(M)") = {(y,y) |y € Tors (Coker S*)}.

Therefore, we conclude that A and A’ are algebraically cobordant. This
completes the proof of Proposition 13.4. O

Proposition 13.7. Let K be an exact (2n — 1)-knot, n > 3, and A its Seifert
form associated with an exact Seifert surface. Then, there exists a simple (2n —
1)-knot K' cobordant to K such that the Seifert form of K' associated with an
(n — 1)-connected Seifert surface coincides with A.

Proof. By Proposition 13.4, there exists a simple (2n — 1)-knot K" cobordant
to K such that the Seifert form A” of K" associated with an (n — 1)-connected
Seifert surface is algebraically cobordant to A. On the other hand, it is known
that there exists a simple (2n — 1)-knot K’ whose Seifert form associated with
an (n — 1)-connected Seifert surface coincides with A. Since A and A” are
algebraically cobordant, we see that K’ and K" are cobordant by [8]. Then, K
and K’ are cobordant, and the desired result follows. O]
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Remark 13.8. We do not know if the above proposition holds also for n = 2
or not.

Theorem 13.9. Let K and K' be exact (2n — 1)-knots, n > 3. If their Seifert
forms with respect to exact Seifert surfaces are algebraically cobordant, then K
and K' are cobordant.

Proof. By Proposition 13.7, there exists a simple (2n—1)-knot K (or K’) cobor-
dant to K (resp. K') such that the Seifert form of K (resp. K’) with respect to
an (n — 1)-connected Seifert surface coincides with the Seifert form of K (resp.
K') with respect to an exact Seifert surface. By our assumption, the Seifert
forms of K and K’ are algebraically cobordant. Then, by [8], we see that K
and K’ are cobordant. Therefore, K and K’ are cobordant. O]

13.2 Cobordism of fibered knots

Theorem 13.10. Let K and K’ be two fibered (2n — 1)-knots, n > 3. Then,
K and K' are cobordant if and only if their Seifert forms with respect to their
fibers are algebraically cobordant.

Proof. By Lemma 13.3, a fiber of a fibered knot is always exact. Thus, by
Theorem 13.9, if the Seifert forms with respect to the fibers are algebraically
cobordant, then K and K’ are cobordant.

Conversely, suppose that K and K’ are cobordant. Let A (or A’) be the
Seifert form of K (resp. K') with respect to a fiber. By Proposition 13.7 and
Lemma 13.3, there exists a simple (2n—1)-knot K (or K') cobordant to K (resp.
K') such that the Seifert form with respect to an (n—1)-connected Seifert surface
coincides with A (resp. A’). Since A and A’ are unimodular, we see that K and
K’ are fibered (for example, see [36, 65]). Since K and K’ are cobordant, we
see that K and K’ are also cobordant. Then, by [8], we see that A and A’ are
algebraically cobordant. This completes the proof. O

13.3 Extension to a larger class of 3-knots

As the arguments of §8.1 show, the sufficiency of Theorem 8.13 holds for simple
free 3-knots: i.e., the 3-knots in question may not be fibered. However, for the
proof of necessity of the Spin cobordism we have used the hypothesis that the
3-knots are fibered. In this section, we shall try to extend the class of simple
fibered free 3-knots in such a way that the necessity continues to hold for a
larger class of 3-knots.

First we give a definition which is valid for any dimension.

Definition 13.11. We say that a simple (2n — 1)-knot K is C-algebraically
fibered, if the Seifert form of K with respect to an (n — 1)-connected Seifert
manifold is algebraically cobordant to a unimodular form, where the zero form
is also considered to be unimodular. In the following, for a C-algebraically
fibered (2n — 1)-knot, we use the Seifert form defined on an (n — 1)-connected
Seifert manifold which is algebraically cobordant to a unimodular form, unless
otherwise specified. Note that simple fibered knots are always C-algebraically
fibered.
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Remark 13.12. A simple (2n — 1)-knot is said to be algebraically fibered, if the
Seifert form with respect to an (n—1)-connected Seifert manifold is S-equivalent
to a unimodular matrix (see [68], [132, §4]). Then we see easily that for a simple
(2n — 1)-knot, we have

simple fibered = algebraically fibered = C-algebraically fibered.

Note that the reverse implications do not hold in general. See [68] and Exam-
ple 10.9.

Now, let us consider the case of 3-knots. Recall that a stabilizer Kg is a
simple fibered spherical 3-knot whose fiber is diffeomorphic to (S? x S?)#(S? x
S$?)\Int D*. Such a stabilizer does exist. For details, see [132, §4]. Furthermore,
there also exists a stabilizer which is null cobordant (see [131, p. 600] or [135,
§10]). In the following, K¢ will denote such a null cobordant stabilizer.

Proposition 13.13. Let K be a simple free 3-knot. If K is C-algebraically
fibered, then there exists a simple fibered free 3-knot K' such that

(1) K and K’ are cobordant,

(2) the Seifert form of K with respect to a 1-connected Seifert manifold and
that of K’ with respect to a 1-connected fiber are spin cobordant.

Compare the above proposition with [132, Proposition 4.4].

Proof of Proposition 13.13. Let I be a 1-connected Seifert manifold of K and A
the Seifert form for F'. Note that A is algebraically cobordant to a unimodular
form L by our assumption. Let ¢ : Ha(K) = Ker (A + ‘A) — Ker (L + L) be
the isomorphism with respect to which A and L are algebraically cobordant.

Let us first show that there exists a compact 1-connected oriented spin 4-
manifold F’ with boundary diffeomorphic to K such that the spin structures
induced from F and F’ on K coincide with each other and that the intersection
form of F’ is isomorphic to

(L + 'L) @2k< D ) (13.3)

for some k > 0. We can construct such a 4-manifold F’ as follows.

We first construct a 4-dimensional special handlebody F} consisting of one
0-handle and some 2-handles attached to the 0-handle simultaneously such that
O0F is diffeomorphic to K, that Fj is spin, and that the spin structure induced
from Fj coincides with the given spin structure on K (for details, see [64]).
Then by Rohlin’s theorem together with Novikov additivity for signature, the
difference of the signatures of F' and F} must be divisible by 16. Hence, by
using some copies of a spin 4-dimensional special handlebody with boundary S
and with signature £16 (see [64]), we may assume that F' and F; have the same
signature. Note that the signature of F is equal to that of L + L. Then by
the classification of symmetric unimodular forms, we see that the intersection
form of F’ = Fy#k’(S? x S?) is isomorphic to the form (13.3) for some k, k" > 0.
Here, we need the assumption that H;(K) is free.

Note that the above isomorphism between the intersection form of F’ and
the form (13.3) induces an isomorphism Hs(K) = Ker (A+ *A) — Ker (L + 'L).
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Changing the isomorphism between the intersection form of F’ and (13.3) if
necessary, we may assume that the induced isomorphism coincides with .

Recall that F’ has a handlebody decomposition consisting of one 0-handle
and some 2-handles. Thus, by using Kervaire’s argument [72, pp. 255-257], we
can embed F” into S° so that its Seifert form is given by L&kLg, where Lg is the
Seifert form of a null cobordant stabilizer Kg with respect to the 1-connected
fiber. Set K' = OF"'.

Since L is unimodular, by using the stabilization technique developed in [132,
§4], we may assume that K’ is a simple fibered 3-knot, increasing k if necessary.

Note that the Seifert form L & kLg for K’ is algebraically cobordant to L,
which is algebraically cobordant to the Seifert form A for K by our assumption.
Furthermore, by the above construction, we see easily that L & kLg and A are
spin cobordant. Thus we have proved the item (2) in the proposition. The
item (1) then follows from Theorem 8.4. This completes the proof of Proposi-
tion 13.13. O

Corollary 13.14. If two C-algebraically fibered simple free 3-knots are cobor-
dant, then their Seifert forms with respect to 1-connected Seifert manifolds are
spin cobordant.

Proof. Let Ky and K; be the simple free 3-knots as above. Then by Propo-
sition 13.13, Ky and K; are cobordant to simple fibered free 3-knots K{, and
K{ with spin cobordant Seifert forms respectively. Then, since K} and K| are
cobordant, they have spin cobordant Seifert forms by Proposition 8.15. Thus
Ky and K; have spin cobordant Seifert forms, since spin cobordism is an equiv-
alence relation. This completes the proof. O

Combining the above corollary with Theorem 8.4, we get the following.

Theorem 13.15. Two C-algebraically fibered simple free 3-knots are cobordant
if and only if their Seifert forms with respect to 1-connected Seifert manifolds
are spin cobordant.

Note that there are a lot of C-algebraically fibered simple free 3-knots which
are not fibered (see Example 10.9).
We can prove a similar theorem for higher dimensions as well as follows.

Theorem 13.16. For n > 3, two C-algebraically fibered simple (2n — 1)-knots
are cobordant if and only if their Seifert forms with respect to (n — 1)-connected
Seifert manifolds are algebraically cobordant.

Proof. Replacing Proposition 8.15 in the argument for the 3-dimensional case
with [8, Theorem 2’|, we see that we have only to show the following: if a simple
(2n — 1)-knot K with n > 3 is C-algebraically fibered, then K is cobordant to
a simple fibered (2n — 1)-knot K’ such that the Seifert form A of an (n — 1)-
connected Seifert manifold for K is algebraically cobordant to the Seifert form
of an (n — 1)-connected fiber of K.

Since K is C-algebraically fibered, A is algebraically cobordant to a uni-
modular form L. By Durfee [36], such a form is realized as the Seifert form of
a simple fibered (2n — 1)-knot K’. Then by [8, Theorem 3|, K is cobordant to
K'. This completes the proof. O
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13.4 Special cases

So far, we had to consider spin cobordism of Seifert forms instead of the usual
algebraic cobordism for 3-knots. In this section, we shall show that in some
special cases, the algebraic cobordism is sufficient.

Let us begin by the following definition.

Definition 13.17. Let M be a closed connected oriented 3-manifold. A 3-
knot K is called an M-knot, if K is abstractly diffeomorphic to M, orientation
preservingly.

For a closed connected oriented 3-manifold M, let us consider the following
conditions.

(6.1) For any isomorphism @ : Hy(M) — Hz(M), there exists an orientation
preserving diffeomorphism hy : M — M such that hy, = 1.

(6.2) For any two spin structures of M, there exists an orientation preserving
diffeomorphism hs : M — M which sends one spin structure to the other
such that ho, : Hy(M) — Ha(M) is the identity.

Then we have the following.

Proposition 13.18. Let M be a closed connected oriented 3-manifold with
torsion free first homology group. Suppose that the above conditions (6.1) and
(6.2) are satisfied for M. Then two C-algebraically fibered simple M-knots are
cobordant if and only if their Seifert forms with respect to 1-connected Seifert
manifolds are algebraically cobordant.

Proof. The necessity follows from Corollary 13.14.

Now, suppose that Ky and K; are C-algebraically fibered simple M-knots
whose Seifert forms Ag and A; with respect to 1-connected Seifert manifolds
Fy and Fi, respectively, are algebraically cobordant. We suppose that Ay and
A; are algebraically cobordant with respect to the isomorphism v : Ho(Ky) —
Hy(K4). By the conditions (6.1) and (6.2), we see that there exists an orienta-
tion preserving diffeomorphism h : Ky — K; such that h, = ¢ and h sends the
spin structure of Ky to that of Ky. Hence, Ay and A; are spin cobordant with
respect to h. Thus by Theorem 8.4, Ky and K; are cobordant. This completes
the proof. O

For example, if M is a Z-homology 3-sphere, i.e., if Hj(M) = 0, then
Hy(M) = 0 and M admits a unique spin structure. Thus the conditions
(6.1) and (6.2) are automatically satisfied. As another example, consider M =
£#(S* x S?), the connected sum of k copies of S' x S? with k& > 1. Then it
is well known that the conditions (6.1) and (6.2) are satisfied also in this case.
Thus we have the following.

Corollary 13.19. Suppose M is a Z-homology 3-sphere, or M = #*(S! x
S?), k > 1. Then two C-algebraically fibered simple M-knots are cobordant if
and only if their Seifert forms with respect to 1-connected Seifert manifolds are
algebraically cobordant.

In fact, when M is a Z-homology 3-sphere, a stronger result has been known.
For details, see [133].
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Open problems

"On résout les problémes qu’on se pose
et non les problémes qui se posent."
Henri Poincaré

To conclude this book we list some open problems.

Problem 14.1. In Definition 1.1, if we remove the connectivity condition on
the embedded manifolds, is it possible to characterize isotopy and cobordism
classes of such knots?

Problem 14.2. Construct efficient invariants of algebraic cobordism.

Problem 14.3. Is it true that two simple (2n—1)-knots, n > 3, are cobordant if
and only if their Seifert forms associated with (n—1)-connected Seifert manifolds
are weakly algebraically cobordant? In particular, is there a pair of two simple
(2n — 1)-knots, n > 3, which are cobordant, but whose Seifert forms are not
(weakly) algebraically cobordant?

Note that for C-algebraically fibered simple knots, the above equivalence is
true (see Remark 6.9).

Problem 14.4. Is the Spin cobordism of Seifert forms associated with non-free
3-knots a sufficient condition of cobordism?

Problem 14.5. Does Theorem 9.9 (a characterization of the pull back relation
for simple fibered (2n — 1)-knots) hold for n = 2%

As noted in Remark 9.10, the above characterization does not hold for n = 1.

Problem 14.6. Let us fiz an oriented simple homotopy type (or an oriented
diffeomorphism type) of manifolds, and consider the set of all embeddings of such
manifolds into a sphere in codimension two. Then, does there exist a minimal
element with respect to the pull back relation?

As mentioned in §9.1, for spheres, the trivial knot is such a minimal element.

Problem 14.7. Is C,,/F,, isomorphic to ZS° @ ZP SZ> for odd n? Determine
the group structure of F,, for odd n. Is F,, a direct summand of Cy, ?

Problem 14.8. Is the multiplicity of a complex holomorphic function germ at
an isolated singular point a cobordism invariant of the associated algebraic knot?

This is known to be true for the case of algebraic 1-knots. See also [168].
Problem 14.9. Let us consider Brieskorn type polynomials of the form
At

If two algebraic knots associated with Brieskorn type polynomials are cobordant,
then do their exponents coincide?
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A related result is obtained in [133]. Note that the associated Seifert matrix
has been explicitly determined (for example, see [138]). It is also known that
two algebraic (2n — 1)-knots associated with Brieskorn polynomials with the
same Alexander polynomial have the same exponents [164].

Problem 14.10. Two fibered n-knots in S 2 are said to be fibered cobordant
if there exists a cobordism X C S™*? x [0,1] between them whose complement
S™t2\ X fibers over the circle in a sense similar to Definition 1.14. Is there a
pair of two fibered knots which are cobordant but are not fibered cobordant?

Problem 14.11. Does there exist a knot which is not exact?
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