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Chapter 1

Introduction

”... the theory of ”Cobordisme” which has,
within the few years of its existence,

led to the most penetrating insights into
the topology of differentiable manifolds.”

H. Hopf,
International Congress of Mathematics, 1958.

1.1 History

In the early fifties Rohlin [113] and Thom [129] studied the cobordism groups of
manifolds. At the 1958 International Congress of Mathematicians in Edinburgh,
René Thom received a Fields Medal for his development of cobordism theory.

Then, Fox and Milnor [37, 38] were the first to study cobordism of knots,
i.e., cobordism of embeddings of the circle S1 into the 3-sphere S3. Knot cobor-
dism is slightly different from the general cobordism, since its definition is more
restrictive. After Fox and Milnor, Kervaire [65] and Levine [80] studied em-
beddings of the n-sphere Sn (or homotopy n-spheres) into the (n + 2)-sphere
Sn+2, and gave classifications of such embeddings up to cobordism for n ≥ 2.
Moreover, Kervaire defined group structures on the set of cobordism classes of
n-spheres embedded in Sn+2, and on the set of concordance classes of embed-
dings of Sn into Sn+2. The structures of these groups for n ≥ 2 were clarified
by Kervaire [65], Levine [80, 81] and Stoltzfus [127].

Note that embeddings of spheres were studied only in the codimension two
case, since in the PL category Zeeman [146] proved that all such embeddings in
codimension greater than or equal to three are unknotted, and Stallings [126]
proved that it is also true in the topological category (here, one needs to assume
the locally flatness condition), provided that the ambient sphere has dimension
greater than or equal to five. In the smooth category Haefliger [46] proved that
a cobordism of spherical knots in codimension greater than or equal to three
implies isotopy.

Later people studied embeddings of manifolds, which are not necessary
homeomorphic to spheres, into codimension two spheres. One motivation comes
from the topology of complex hupersurfaces near isolated singular points. More
precisely, Milnor [100] showed that, in a neighborhood of an isolated singular
point, a complex hypersurface is homeomorphic to the cone over the algebraic
knot associated with the singularity. Hence, the embedded topology of a com-
plex hypersurface around an isolated singular point is given by the algebraic
knot, which is a special case of a fibered knot. After Milnor’s work, the class
of fibered knots has been recognized as an important class of knots to study.
Usually algebraic knots are not homeomorphic to spheres, and this motivated
the study of embeddings of general manifolds (not necessarily homeomorphic
to spheres) into spheres in codimension two. Moreover, in the beginning of
the seventies, Lê [76] proved that isotopy and cobordism are equivalent for 1-
dimensional algebraic knots. Lê proved this for the case of connected (or spher-
ical) algebraic 1-knots, and the generalization to arbitrary algebraic 1-knots
follows easily (for details, see §??).
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During Arcata’s symposium of pure mathematics in 1974, Durfee [33] listed
several unsolved problems about algebraic knots. After Le’s previous result, the
following question seems natural

Problem 5([33]): Are cobordant algebraic knots (with K homeomorphic to
a sphere) isotopic?

About twenty years later, Du Bois and Michel [30] gave the first examples
of algebraic spherical knots that are cobordant but are not isotopic. These
examples motivated the classification of fibered knots up to cobordism.

But we have to wait about twenty years for an answer when Du Bois and
Michel [30] gave the first examples of algebraic spherical knots that are cobor-
dant but are not isotopic. These examples motivated the classification of fibered
knots up to cobordism.

1.1.1 Contents

This book is organized as follows. In Chapter 1 we give several apropos def-
initions to the cobordism theory of knots. The Seifert form associted with a
knot is also introduced. In §?? we review the classifications of (simple) spher-
ical (2n − 1)-knots with n ≥ 2 up to isotopy and up to cobordism. In §?? we
review the properties of algebraic 1-knots and present the classification theorem
of algebraic 1-knots up to cobordism due to Lê [76]. In §?? we present the
classifications of simple fibered (2n− 1)-knots with n ≥ 3 up to isotopy and up
to cobordism. The classification up to cobordism is based on the notion of the
algebraic cobordism. In order to clarify the definition of algebraic cobordism,
we give several explicit examples. We also explain why this relation may not
be an equivalence relation on the set bilinear forms defined on free Z-modules
of finitge rank. The classification of 3-dimensional simple fibered knots up to
cobordism is given in §??. In §?? we recall the Fox-Milnor type relation on the
Alexander polynomials of cobordant knots. As an application, we show that
the usual spherical knot cobordism group modulo the subgroup generated by
the cobordism classes of fibered knots is infinitely generated for odd dimensions.
In §?? we present several examples of knots with interesting properties in view
of the cobordism theory of knots. In §?? we define the pull back relation for
knots which naturally arises from the viewpoint of the codimension two surgery
theory. We illustrate several results on pull back of fibered knot with examples.
Some results for even dimensional knots are given in §??, where we explain re-
cent results about embedded surfaces in S4 and embedded 4-manifolds in S6.
Finally in §??, we give several open problems related to the cobordism theory
of non-spherical knots, where a “non-spherical manifold” refers to a general
manifold which may not necessarily be a homotopy sphere.

With all the results collected in this paper, we have classifications of knots
up to cobordism in any dimensions. Only the classical case of one dimensional
knots, and the case of three dimensional knots remain not to have complete
classifications.

This book is made of a serie of lectures for graduate students in Louis Pasteur
university of Strasbourg during the academic year 2006-2007. The purpose of
these lectures was to give the opportunity to students to learn topology of high
dimensional manifolds while studying knot cobordism.

Many proofs and results in this book are comming from papers writen before
on the subject, and published in different journals. I want to thank here all my
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co-authors.

1.1.2 Notations

We will work in the smooth category, but sometimes manifolds might have
corners. When a manifold M has boundary we denote it by ∂M . Moreover, if
M is an oriented manifold with boundary we use the outward first convention
to orient its boundary ∂M . All the homology and cohomology theory used have
integer coefficients. The symbol ∼= denotes a diffeomorphism between manifolds
or an isomorphism between algebraic objects. An embedding of a manifold K
in a manifold M is denoted by K ↪→ M . The closure of X is denoted by X,
and its interior is denote by

◦
X or by IntX. We denote by tA the transpose of

a matrix A.

1.2 Definitions

In this section we introduce knot cobordism. We also present some dedtailled
constructions in order to give to the reader a precise idea of the subject.

Since our aim is to study cobordism and concordance of codimension two
embeddings of manifolds which are not necessarily homeomorphic to spheres,
we define knots as follows.

Definition 1.1. Let K be a closed n-dimensional manifold embedded in the
(n+ 2)-dimensional sphere Sn+2. We suppose that K is

(k − 2)-connected if n = 2k − 1 and k ≥ 2, or

(k − 1)-connected if n = 2k and k ≥ 1.

When K is orientable, we further assume that it is oriented. Then we call K or
its (oriented) isotopy class an n-knot, or simply a knot.

An n-knot K is spherical if K is

1. diffeomorphic to the n-dimensional standard sphere Sn for n ≤ 4, or

2. a homotopy n-sphere for n ≥ 5.

Remark 1.2. We use the above definition of a spherical knot for n ≤ 4 in order
to avoid the difficulty related to the smooth Poincaré conjecture in dimensions
three and four.

Remark 1.3. With our definition one dimensional knots may have several
connected components. But spherical 1-knots are connected and diffeomorphic
to S1, see Figure 1.1 and Figure 1.2.

We impose a connectivity condition in Definition 1.1, this is first motivated
by the usual definition of algebraic knot (see Definition ??), and second because
later we will need connectivity conditions to perform embedded surgeries.

In order to define, and compute, invariants of isotopy and cobordism classes
of knots, we will need some algebraic data associated with knots like Seifert
forms and Alexander polynomials. In the classical knot theory, i.e., the case
of spherical 1-knots, it is usual to make combinatorial computations associated
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Figure 1.1. The trefoil knot is a spherical 1-knot

Figure 1.2. The Hopf link is not a spherical 1-knot

with crossing of planar representations. We will have another approach, in
a sense may be more algebraic, since we will do computations using integral
bilinear forms.

The first step is to define Seifert manifolds associated with knots.

1.2.1 Seifert manifolds associated with knots

Proposition 1.4. For every oriented n-knot K with n ≥ 1, there exists a com-
pact oriented (n+1)-dimensional submanifold V of Sn+2 having K as boundary.
Such a manifold V is called a Seifert manifold associated with K. When K is
a one dimensional knot, the manifold V is usually called a Seifert surface.

Remark 1.5. Seifert manifolds are not unique. For a given Seifert manifold of
dimension k, one can construct a new one by doing its connected sum with a
compact closed k-manifold embedded in Sk+1.

Proof. The construction of Seifert surfaces associated with 1-knots is elemen-
tary.

Start by assigning an orientation to each component of the knot, and then
choose a regular projection into the plane. Around each crossing do the following
modification:



1.2 Definitions 9

@
@

@

@
@

@R�
�

�
�

�
��

becomes−→

Z
Z

Z
Z �

�
�

�>

�
�

�
� Z

Z
Z

Z~

Then the regular projection of K has become a disjoint collection of oriented
S1 embedded in the plane. Each one bounds a disk, and by pushing the interor
of these disks off the plane in the three sphere they can be made disjoint. The
orientations of the S1 induce orientations of disks. Hence we we can connect
these oriented disks at each crossing with half twisted strips in order to form an
embedded, 2-manifold in S3, whose boundary is K as depicted bellow:

@
@

@

@
@

@R�
�

�
�

�
�����

�
�

�
��

�
�

�

@
@
@
@

@

@
@
@

@
@

@

+
@

@

@
@�

�
�

�
�
�
�
�

�

@@@
@

@

gives−→

Z
Z

Z
Z

����
�

�
��

�
��

�
�

�

�
�

��

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
�>

�
�

�
�

ZZZ
Z

Z
Z

ZZ
Z

ZZ

Z
Z

Z

Z
Z

ZZ

Z
Z

Z
Z

Z
Z

Z
ZZ

Z
Z

Z
ZZ

Z
Z

Z
Z~

This construction gives the desired surface, embedded in S3, which has the
knot as boundary.

When K is not spherical it is moreover necessary to connect the components
with oriented connected sums.

For general dimensions, the existence of a Seifert manifold associated with
a n-knot K can be proved by using the obstruction theory as follows.

Let p : τK → K be the normal bundle of K ↪→ Sn+2, and let p0 : τ0
K → K

be the bundle p without the zero section, i.e., for all x ∈ K the fibers satisfy
p−1
0 (x) = p−1(x) \ {0}. A global orientation for τK means that we choosed a

prefered generator µ of H2(τK , τ0
K).

The zero section of the bundle τK is an embedding of K in τK , moreover K
is a deformation retract of τK and p∗ : H2(K)

∼=→ H2(τK) is an isomorphism.

Let us denote i the inclusion map of (τK ,∅) into (τK , τK \K), which induces
the morphism i∗ : H2(τK , τK \K) → H(τK) in cohomology.

Recall that the Euler class e(τK) = p∗
−1 ◦ i∗(µ) of the normal bundle is an

obstruction to having a nonzero normal section.1

Let TK
τ∼= K × D2 be an open tubular neighbourhood of K in Sn+2. The

2-disk bundle TK is diffeomorphic to τK and we have the following commutative
diagram

1Since K is a n-knot then we have e(τK) ∈ H2(K) = 0 as soon as K is 2-connected. Then
we already have that τK is trivial for n ≥ 5.
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H2(Sn+2, Sn+2 \K) ε∗−−−−→∼= H2(TK , TK \K)
ϕ∗−−−−→∼= H2(τK , τ0

K)

j∗
y y yi∗

0 = H2(Sn+2) ν∗−−−−→ H2(K)
p∗−−−−→∼= H2(τK)

Where H2(Sn+2, Sn+2 \K)
ε∗∼= H2(TK , TK \K) is given by the excision, and

the morphisms j∗ and ν∗ are induced by inclusions.
Since e(τK) = p∗

−1 ◦ i∗(µ), the commutativity of the diagram gives e(τK) =
p∗

−1 ◦ i∗(µ) = ν∗ ◦ j∗ ◦ ε∗−1 ◦ ϕ∗−1
(µ) = 0. So the normal bundle of K ↪→ Sn+2

is trivial.
Let NK

τ∼= K × D2, the closure of TK in Sn+2, be a closed tubular neigh-
borhood of K in Sn+2, and Φ : ∂NK

∼=→ K × S1 pr2→ S1 the composite of the
restriction of τ to the boundary of NK and the projection pr2 to the second
factor. Using the exact sequence

H1(Sn+2 \ TK) → H1(∂NK) → H2(Sn+2 \ TK , ∂NK),

associated with the pair (Sn+2 \ TK , ∂NK), we see that the obstruction to ex-
tending Φ to Φ̃ : Sn+2 \ TK → S1 lies in the cohomology group

H2(Sn+2 \ TK , ∂NK) ∼= Hn(Sn+2 \ TK).

By Alexander duality we have

Hn(Sn+2 \ TK) ∼= H1(K),

which vanishes if n ≥ 4, since K is simply connected for n ≥ 4. When n ≤ 3,
we can show that by choosing the trivialization τ appropriately, the obstruction
in question vanishes. Therefore, a desired extension Φ̃ always exists. Now, for
a regular value y of Φ̃, the manifold Φ̃−1(y) is a submanifold of Sn+2 with
boundary being identified with K×{y} in K×S1. The desired Seifert manifold
associated with K is obtained by gluing a small collar K × [0, 1] to Φ̃−1(y).

Let us now recall the classical definition of Seifert forms of odd dimensional
oriented knots, which were first introduced in [122] and play an important role
in the study of knots cobordism.

Definition 1.6. Suppose that V is a compact oriented 2n-dimensional subman-
ifold of S2n+1, and let G be the quotient of Hn(V ) by its Z-torsion. The Seifert
form associated with V is the bilinear form A : G×G→ Z defined as follows

A : G×G −→ Z
(x, y) 7→ A(x, y) = lS2n+1(ξ+, η).

where lS2n+1(., .) denotes the linking number of chains in S2n+1, the two n-
chains ξ and η are representing the cycles x and y respectively, and ξ+ is the
n-chain η pushed off V into the positive normal direction to V in S2n+1.

Recall that the linking number of two n-chains ξ and η in S2n+1 is given by
the algebraic intersection number in S2n+1 of a (n+1)-chain Θ, which bounds ξ
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in S2n+1, and η; or by the algebraic intersection number in D2n+2 of a (n+ 1)-
chain Θ, which bounds ξ D2n+2, and a (n + 1)-chain Ω, which bounds η in
D2n+2.

By definition a Seifert form associated with an oriented (2n − 1)-knot K
is the Seifert form associated with V , where V is a Seifert manifold associated
with K. A matrix representative of a Seifert form with respect to a basis of G
is called a Seifert matrix.

Remark 1.7. One can as well define the Seifert form A′(x, y) to be the linking
number of ξ and η+ instead of ξ+ and η, where ξ+ is the n-cycle ξ pushed off V
into the positive normal direction to V in S2n+1. There is no essential difference
between the two forms A and A′. However some formulas may take different
forms.

More precisely, for a given n-chain ξ in F we denote by ξ− the n-chain ξ
pushed off V into the negative normal direction to V in S2n+1. Then we have

lS2n+1(ξ, η+) = lS2n+1(ξ−, η),

and recall
lS2n+1(ξ, η) = (−1)n+1lS2n+1(η, ξ).

According to these formulas we get

A(x, y) = lS2n+1(ξ+, η)
A(x, y) = (−1)n+1lS2n+1(η, ξ+)
A(x, y) = (−1)n+1A′(y, x)

So if A a the Seifert matrix associated with A and A′ is the Seifert matrix
associated with A′ we have A′ = (−1)n+1AT

Let us illustrate the above definition in the case of the trefoil knot. First
consider the Seifert manifold F associated with the trefoil knot as depicted
in Fig. 1.3, where “+” indicates the positive normal direction. Note that
rankH1(V ) = 2. We denote by ξ and η the 1-cycles which represent the gener-
ators of H1(F ). Then, with the aid of Fig. 1.3, we see that the Seifert matrix
for the trefoil knot is given by

A =
(
−1 1

0 −1

)
.

Definition 1.8. Let n ≥ 1. We say that an (2n− 1)-knot is simple if it admits
an (n− 1)-connected Seifert manifold.

Let K be a simple knot with an (n− 1)-connected Seifert manifold F . The
Universal coefficient Theorem states that the following short exact sequence is
exact

0 → Ext
(
Hk−1(F,K)

)
→ Hk(F,K) → Hom

(
Hk(F,K)

)
→ 0.

Since F is an (n − 1)-connected Seifert manifold, then Ext
(
Hn−1(F,K)

)
= 0

and the group Hn(F,K) is torsion free. But by Poincaré-Lefschetz duality we
have Hn(F,K) ∼= Hn(F ). Hence Hn(F ) is trosion free.
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F

Figure 1.3. Computing a Seifert matrix for the trefoil knot

In the following, when a (2n − 1)-knot is simple, we consider an (n − 1)-
connected Seifert manifold associated with this knot unless otherwise specified.

When n ≥ 2, the long exact sequence associated with a simple (2n−1)-knot
K and its (n − 1)-connected Seifert manifold F , induces the following short
exact sequence

0 → Hn(K) → Hn(F ) S∗→ Hn(F,K) → Hn−1(K) → 0 (1.1)

where the homomorphism S∗ is induced by the inclusion. Let P̃ : Hn(F,K)
∼=→

HomZ(Hn(F ),Z) be the composite of the Poincaré-Lefschetz duality isomor-
phism and the universal coefficient isomorphism.

If we denote by S the intersection pairing S : Hn(F ) × Hn(F ) → Z, then
for all (a, b) ∈ Hn(F )×Hn(F ) we have S(a, b) =

(
P̃ ◦ S∗(b)

)
(a).

Proposition 1.9. Let K be a simple (2n − 1)-knot with an (n − 1)-connected
Seifert manifold F . Let A be the Seifert form associated with F and S the
intersection pairing. If we denote by A the Seifert matrix and by S the matrix
representative of S, then S = A+ (−1)nAT .

Proof. Let 0 < ε << 1. For t ∈ [−ε, ε] we define diffeomorphisms it : F →
S2n+1 which is a translation, in the positive normal direction when t is positive
and in the negative normal direction when t is negative. Remark that for a
n-chain γ we have

γ+ = iε(γ). (1.2)

Let x and y be two n-cycle in Hn(F ), set x = [η] and y = [ξ] for two n-chains
η ξ.

As consequence of Equation 1.2 we get

lS2n+1(ξ, iε(η)) = lS2n+1(i−ε(ξ), η).

Let Λ =
⋃
t∈[−ε,ε] it(η) ∼= η × [−ε, ε] the oriented (n + 1)-chain in S2n+1

with ∂Λ =
(
iε(η) − i−ε(η)

)
since we use the outward first convention for the

orientation of the boundary of an oriented manifold. The intersection of ξ and
η in F is equal to the intersection of ξ and Λ in S2n+1, this implies the following
equalities

S(x, y) = lS2n+1(∂Λ, ξ)
S(x, y) = lS2n+1

(
iε(η), ξ

)
− lS2n+1

(
i−ε(η), ξ

)
S(x, y) = A(x, y)− (−1)n+1l

(
iε(ξ), η

)
S(x, y) = A(x, y) + (−1)nA(y, x)
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rrK0

Sn+2 × {0}

rrK1

Sn+2 × {1}

Sn+2 × [0, 1]

Figure 1.4. A cobordism between K0 and K1

rK0 rK1

Figure 1.5. A cobordism which is not an isotopy

This implies the desired relation between matrices.

Remark 1.10. Intersection forms S are (−1)n-symmetrical, contrary to Seifert
forms, which are not generally symmetrical. For example see the matrix of the
trefoil knot we computed with the aid of Fig. 1.3.

Let us now focus on cobordism and concordance classes of knots.

Definition 1.11. Two n-knots K0 and K1 in Sn+2 are said to be cobordant if
there exists a properly embedded (n+1)-dimensional manifold X of Sn+2×[0, 1]
such that

1. X is diffeomorphic to K0 × [0, 1], and

2. ∂X = (K0 × {0}) ∪ (K1 × {1}).

The manifold X is called a cobordism between K0 and K1. When the knots are
oriented, we say that K0 and K1 are oriented cobordant (or simply cobordant)
if there exists an oriented cobordism X between them such that ∂X = (−K0 ×
{0})∪ (K1×{1}), where −K0 is obtained from K0 by reversing the orientation.

Recal that a manifold with boundary Y embedded in a manifold X with
boundary is said to be properly embedded if ∂Y = ∂X ∩ Y and Y is transverse
to ∂X.

It is clear that isotopic knots are always cobordant. However, the converse
is not true in general (see Fig. 1.5). For explicit examples, see §??.

We also introduce the notion of concordance for embedding maps as follows.
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Definition 1.12. Let K be a closed n-dimensional manifold. We say that two
embeddings fi : K → Sn+2, i = 0, 1, are concordant if there exists a proper
embedding Φ : K × [0, 1] → Sn+2 × [0, 1] such that Φ|K×{i} = fi : K × {i} →
Sn+2 × {i}, i = 0, 1.

Where an embedding map ϕ : Y → X between manifolds with boundary is
said to be proper if ∂Y = ϕ−1(∂X) and Y is transverse to ∂X.

Remark 1.13. Concordant knots are cobordant, but the converse is not true in
general. See Theorem ?? for the spherical case and Remark ?? for non spherical
examples.

Cobordant knots are diffeomorphic. Hence, to have a cobordism between two
given knots, we need to have topological informations about the knots. Since a
simple fibered (2n − 1)-knot is the boundary of the closure of a fiber, which is
an (n− 1)-connected Seifert manifold associated with the knot, by considering
the above exact sequence (1.1) we can use the kernel and the cokernel of the
homomorphism S∗ to get topological data of the knot. Note that in the case
of spherical knots, these considerations are not necessary since S∗ and S∗ are
isomorphisms.

1.3 Fibered knots

Definition 1.14. We say that an oriented n-knot K is fibered if there exists a
smooth fibration φ : Sn+2 \K → S1 and a trivialization τ : NK → K ×D2 of a
closed tubular neighborhood NK of K in Sn+2 such that φ|NK\K coincides with
π ◦ τ |NK\K , where π : K × (D2 \ {0}) → S1 is the composition of the projection
to the second factor and the obvious projection D2 \ {0} → S1. Note that then
the closure of each fiber of φ in Sn+2 is a compact (n+ 1)-dimensional oriented
manifold whose boundary coincides with K. We shall often call the closure of
each fiber simply a fiber.

Furthermore, for n ≥ 1 we say that a fibered (2n − 1)-knot K is simple if
each fiber of φ is (n− 1)-connected.

Though the notion of fibered knot it is much more restrictive, this definition
will give additional data, like monodromy and variation map see Chapter 4,
which are very usefull.

When K is a fibered knot, the closure of a fiber is always a Seifert manifold
associated with K.

In the following, for a fibered (2n−1)-knot, we use the Seifert form associated
with a fiber unless otherwise specified.

Moreover the definition of fibered knots gives a topological framework for
algebraic knots associated with isolated singularities.

1.4 Complex hypersurfaces isolated singularities

One motivation for Definition 1.1 is the study of the topology of isolated singu-
larities of complex hypersurfaces.

Let f : Cn+1, 0 → C, 0 be a holomorphic function germ with an isolated
singularity at the origin. If ε > 0 is sufficiently small, then Kf = f−1(0)∩S2n+1

ε
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is a (2n − 1)-dimensional manifold which is naturally oriented, where S2n+1
ε is

the sphere in Cn+1 of radius ε centered at the origin. Furthermore, its (oriented)
isotopy class in S2n+1

ε = S2n+1 does not depend on the choice of ε (see [100]).

Definition 1.15. We call Kf the algebraic knot associated with f .

Since the pair (D2n+2
ε , f−1(0)∩D2n+2

ε ) is homeomorphic to the cone over the
pair (S2n+1

ε ,Kf ), the algebraic knot completely determines the local embedded
topological type of f−1(0) near the origin, where D2n+2

ε is the disk in Cn+1 of
radius ε centered at the origin.

Milnor [100] considers only polynomial functions. However, it is known
that a holomorphic function germ with an isolated critical point is topologically
equivalent to a polynomial function germ.

In [100], Milnor proved that, when n ≥ 2, algebraic knots associated with
isolated singularities of holomorphic function germs f : Cn+1, 0 → C, 0 are
(2n−1)-dimensional closed, oriented and (n−2)-connected submanifolds of the
sphere S2n+1. This means that algebraic knots are some knots in the sense
of Definition 1.1. Moreover, the complement of an algebraic knot Kf in the
sphere S2n+1 admits a fibration over the circle S1, and the closure of each fiber
is a compact 2n-dimensional oriented (n − 1)-connected submanifold of S2n+1

which has Kf as boundary. Note that an algebraic knot is always a simple
fibered knot.

1.5 Alexander polynomial

The Alexander polynomial associated with a knot K was initially defined for
spherical 1-knots, and was computed with a combinatorial presentation of 1-
knots, i.e., crossings. But, with the aid of a Seifert form associated with a knot
it is possible to define Alexander polynomials for knots of every dimension.

Let K a (2n− 1)-knot, with n ≥ 1. Set A be a Seifert form for K associated
with a Seifert manifold F . The polynomial

∆A(t) = det(tA+ (−1)n tA)

of Z[t, t−1], is well defined up to units of Z[t, t−1], and is called the Alexander
polynomial of K.

Remark that the Alexander polynomial is defined up to units of Z[t, t−1]
since the Seifert manifold associated with the knot is not unique.



Chapter 2

h-cobordism Theorem and surgeries on

manifolds

Macbeth ...— What is the night?
Lady Macbeth Almost at odds

with morning, which is which.
Macbeth Act III, sc IV

The goal of this Chapter is to prove the h-cobordism Theorem. In fact we
will prove a slightly more general theorem, which is called s-cobordism Theorem.
We choose to give the proof of the s-cobordism theorem because of the similarity
of the proofs, though we need to consider Whitehead torsions to prove the s-
cobordism Theorem. The first step is to introduce Morse theory and handlebody
decomposition for manifolds. In conclusion of this Chapter we will describe
modifications of manifolds called surgeries.

2.1 Morse functions and handle decompositions of
manifolds

In this section we recall briefly some classical results on Morse theory, we refer
to [97] and [89] for detailed proofs.

We will consider functions defined on manifolds. LetMn be a n-dimensionnal
manifold with n ∈ N∗, recall that we only consider smooth manifolds. A func-
tion f : M → R is smooth if there exists a local coordinate system (x1, . . . , xn)
around each point p of M in which f is C∞. By opposition we define

Definition 2.1. A point p0 ∈M is a critical point of the function f : M → R

if
∂f

∂xi
(p0) = 0, i = 1, . . . , n.

It is easy to check that this definition does not depend on the choice of a
coordinate system.

Definition 2.2. We say that a critical point p0 of f is non-degenerate if the
determinant

Hf (p0) = det


∂2f
∂x2

1
(p0) . . . ∂2f

∂x1∂xn
(p0)

...
...

∂2f
∂xn∂x1

(p0) . . . ∂2f
∂x2

n
(p0)


is not zero, and it is degenerate if Hf (p0) = 0. We call Hf (p0) the Hessian of f
at the critical point p0.
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Let (x1, . . . , xn) and (y1, . . . , yn) be two coordinate systems, and set

J(p0) =


∂x1
∂y1

(p0) . . . ∂x1
∂yn

(p0)
...

...
∂xn

∂y1
(p0) . . . ∂xn

∂yn
(p0)

 ,

which is usually called the Jacobian matrix of the coordinate transformation
evaluated at p0.

If we denote by Hx
f (p0) the Hessian of f in the coordinate system x =

(x1, . . . , xn), then by direct computation we get

Hy
f (p0) = tJ(p0)Hx

f (p0)J(p0).

Definition 2.3. A real number c is called a critical value of a f : M → R if
there exists a critical point p0 ∈M such that f(p0) = c.

Since the Jacobian of the coordinate transformation at a point p0 has a
non-zero determinant, then we have

detHy
f (p0) = det

(
tJ(p0)

)
det

(
Hx
f (p0)

)
det

(
J(p0)

)
.

But the determinant of the Jacobian of any coordinate transformation at a
point p0 has a non-zero determinant. Hence detHy

f (p0) 6= 0 if and only if
detHx

f (p0) 6= 0, and the property of a critical point of a function being non-
degenerate or degenerate does not depend on the choice of a coordinate system
at p0.

Definition 2.4. A function f : M → R is called a Morse function if every
critical point of f is non-degenerate.

Theorem 2.5 (Morse Lemma). Let p0 be a non-degenerate critical point of
f : M → R. Then there exists a local coordinate system (x1, . . . , xn) at p0 such
that with respect to these cooordinates f has the form

−x2
1 − . . .− x2

λ + x2
λ+1 + . . .+ x2

n + f(p0)

Sylvester’s law implies that 0 ≤ λ ≤ n is well defined and do not depend
on the choice of the coordinate system. Since λ depends only on the function f
and the critical point p0, then we define

Definition 2.6. The integer λ is called the index of the non-degenerate critical
point p0 of the function f .

Proof of Morse Lemma. Without loss of generality one can assume that f(p0) =
0, and let (x1, . . . , xn) be a local coordinate system around the origin p0. Since
f(p0) = 0, then according to the fundamental Theorem of calculus one can find

n smooth functions hi(x) =
∫ 1

0

∂f

∂xi
(tx)dt, i = 1, . . . , n such that

f(x1, . . . , xn) =
n∑
i=1

xi hi(x1, . . . , xn).
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With this decomposition we get
∂f

∂xi
(0, . . . , 0) = hi(0, . . . , 0) for i = 1, . . . , n.

Now, since the origin p0 in the local coordinate system (x1, . . . , xn) is a
critical point for the function f , then we have hi(0, . . . , 0) = 0 for i = 1, . . . , n.
As made before for f , for each hi, i = 1, . . . , n one can find n smooth functions
hi,j , j = 1, . . . , n such that

hi(x1, . . . , xn) =
n∑
j=1

xj hi,j(x1, . . . , xn).

Putting these decompositions all together, we get

f(x1, . . . , xn) =
n∑

i,j=1

xixj hi,j(x1, . . . , xn),

setting Hi,j = hi,j+hj,i

2 gives Hi,j = Hj,i and the following quadratic represen-
tation of f

f(x1, . . . , xn) =
n∑

i,j=1

xixj Hi,j(x1, . . . , xn). (2.1)

We will now reduce this representation to the wanted one using the Gauss
algorithm on quadratic forms.

The computation of the second order partial derivative of 2.1 gives

∂2f

∂xi∂xj
(0, . . . , 0) = 2Hi,j(0, . . . , 0).

Since p0 is a non-degenerate critical point of the function f , then we have
detHf (p0) = detHx

f (0, . . . , 0) = det
(
Hi,j(0, . . . , 0)

)
i,j
6= 0. Moreover, up to a

change of local coordinates, we can assume that

∂2f

∂x2
1

(0, . . . , 0) 6= 0,

hence since the functions Hi,j are continuous this gives H1,1 6= 0 (eventually on
a smaller neighborhood of p0 than the one of the local coordinate system).

Now for an appropriate choice of local coordinate (X1, x2, . . . , xn) the func-
tion f is of the form

f(X1, x2, . . . , xn) = ±X2
1 + ϕ(x2, . . . , xn) (2.2)

with ϕ(x2, . . . , xn) a quadratic form with n−1 variables x2, . . . , xn. By induction
on the number of variables one can reduce the function f to the desired form.

Corollary 2.7. Let f : M → R be a Morse function. Any non-degenerate
critical point of f is isolated, and when M is a compact n-manifold f admits
finitely many critical points.

Proof. According to Morse Lemma, in a small coordinate neighbourhood of a
critical point p0, the function f is of the form −x2

1 − . . . − x2
λ + x2

λ+1 + . . . +
x2
n + f(p0). So the origin, i.e., the point p0, is the only critical point in the
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coordinate neighbourhood of p0. Recall that for a Morse function any critical
point is non-degenerate.

Assume that the Morse function f admits infinitely many distinct critical
points (pi)i∈I where I is an infinite set. Since non-degenerated critical points
are isolated there exists disjoint open sets (Ui)i∈I such that Ui ⊂ M contains
only one critical point pi. First construct U ⊂ M an open set such that for all
i in I the point pi is not in U , then the infinite cover

M ⊂ U
⋃
i∈I

Ui

can’t be reduced to a finite one. This is in contradiction with the hypothesis of
compactness for M .

Finally the Morse function f admits only finitely many critical points.

Now we will see that every function f : M → R on a compact manifold can
be approximate by a Morse function.

Definition 2.8. Let M be a compact manifold, and let ε > 0 be a real. A
function f : M → R is a C2

ε -approximation of a function ϕ : M → R if there
exists a compact covering M ⊂

⋃
i=1,...,m Yi and on each compact Yi ⊂ M ,

i = 1, . . . ,m the following hold

1. ∀y ∈ Yi |f(y)− g(y)| < ε,

2. ∀y ∈ Yi |∂f(y)∂xj
− ∂g(y)

∂xj
| < ε, j = 1, . . . , n,

3. ∀y ∈ Yi | ∂
2f(y)

∂xj∂xk
− ∂2g(y)

∂xj∂xk
| < ε, j, k = 1, . . . , n.

Theorem 2.9 (Existence of Morse functions). Let M be a compact manifold
without boundary, and f : M → R a smooth function. Then for each real
ε > 0 there exists a Morse function ψ on M which is a C2

ε -approximation of
f . Moreover one can assume that the critical values associated with distincts
critical points of ψ are distincts.

We refer to [89] for a detailed proof of this Theorem.

Using Morse functions defined on a manifold M , we will explain now how to
construct some particular tangent vector fields on M . These vector fields make
easier to understand the behaviour of the manifold around the critical points of
the Morse functions.

Before, recall, that for a given vector v ∈ TpM the directional derivative of a
function f : M → R can be defined as follows. Let c(τ) =

(
x1(τ), . . . , xn(τ)

)
be

a curve in M such that c(0) = p and
dc
dt

(0) = v. Then the directional derivative
of f in the direction v at p is the real function defined on M

v.f =
n∑
i=1

dxi
dt

(0)
∂f

∂xi
.

When X is a tangent vector field on M , i.e., to each point p in M we associate
a tangent vector X(p) in Tp(M), we extend this definition. We compute the
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JĴ

AU

�9
��

��

�
�


�)



�

���

�+



�

��

XyHY
AK

BBM

Pi
JJ]

CCO

Qk
JJ]

AK

Figure 2.1. The gradient vector field of x2
1 − . . .− x2

λ + x2
λ+1 + . . . + x2

n

directional derivative of f in the direction X(p) at p. Then we can differentiate
f with respect to X as well. A tangent vector field is defined by

X(p) =
n∑
i=1

ξi(p)
( ∂

∂xi

)
p
,

where ξi(p) are smooth functions defined on a coordinate system at p for i =
1, . . . , n. Then set

(
X.f

)
(p) =

( n∑
i=1

ξi(p)
( ∂

∂xi

)
p
.f

)
(p)

Now let us consider the gradient vector field of a Morse function f : M → R
in a small neighborhood of a critical point for f . We saw that in an appropriate
local coordinate system (x1, . . . , xn) the function f has the form

−x2
1 − . . .− x2

λ + x2
λ+1 + . . .+ x2

n.

Its gradient vector field is

∇f = −2x1
∂

∂x1
− . . .− 2xλ

∂

∂xλ
+ 2xλ+1

∂

∂xλ+1
+ . . .+ 2xn

∂

∂xn

Remark that ∇f .f =
n∑
i=1

(
∂f

∂xi
)2 ≥ 0, and

(
∇f .f

)
(p) > 0 when p is not a

critical point of the Morse function f . This inequality means that locally the
gradient vector field of f follows a direction into which f is increasing.

This induces the following definition.

Definition 2.10. We say that a vector field X on M is a gradient like vector
field for the Morse function f : M → R if

1.
(
X.f

)
(p) > 0 for any non-critical point p ∈M ,

2. around any critical point of f there exists an appropriate coordinate sys-
tem such that X = ∇f .

Theorem 2.11. Let f : M → R be a Morse function on a compact manifold.
Then there exists a gradient like vector field on M .
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A way to prove this Theorem is to glue all together gradient vector fields of
f defined on a finite number of coordinate neighbourhoods. We refer to [89] for
a detailed proof.

We illustrate the utility of gradient like vector fields with the two following
Propositions.

Proposition 2.12. Let f : M → R be a Morse function. If the function f
has no critical value in a real interval [α, β], then the manifold M[α,β] = {p ∈
M |α ≤ f(p) ≤ β} is diffeomorphic to the product f−1(α) × [α, β], and Mα is
diffeomorphic to Mβ.

Proof. Let X be a gradient like vector field of f . Since f has no critical point

on M[α,β], then
(
X.f

)
(p) > 0 for all p ∈ M[α,β]. Set Y =

1
X.f

X a vector field

on M[α,β], and let γx(τ) the integral curve of Y which start at x ∈ f−1(α).

Since
d

dt
f
(
γx(τ)

)
= Y.f = 1, then the integral curve γx(τ) starts at x ∈Mα

when τ = 0 and is reaching Mβ when τ = β − α. We know that the integral
curves γx(τ) depend smoothly on both x and τ and two distinct integral curves
never meet, hence the map

h : Mα × [0, β − α] → M[α,β]

(x, τ) 7→ h(x, τ) = γx(τ)

is a diffeomorphism.

γx(τ)r
r
x

Mα = f−1(α)

Mβ = f−1(β)

6

Proposition 2.13 (Existence of collar neighbourhood). Let M be a manifold
with compact boundary ∂M . Then there exists a neighbourhood V of ∂M in M ,
which is diffeomorphic to ∂M × [0, 1).

Proof. First glue two copies of M along their boundary ∂M to get a smooth
closed manifold W = M ∪∂ M . Then if f : W → R is a Morse function on W ,
up to change one can suppose that f has no critical value in a neighbourhood
of 0 and f(∂M) = 0. Then we have M = Wf≥0 = {p ∈ W |0 ≤ f(p)}. Hence
we may assume that there exists a Morse function f : M → R+ on M such
that f−1(0) = ∂M and 0 is not a critical value. As in the previous Proposition,
one can construct a gradient like vector field, for which integral curves give the
desired diffeomorphism.
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∂M

M

V =



2.1.1 Handle decompositions of manifolds

In this subsection we will use Morse functions to describe handle decompositions
of compact manifolds.

Let f : M → R be a Morse function on a compact n-manifold M with a
critical point at p0 ∈M of index λ, and set M≤τ = {p ∈M |f(p) ≤ τ}. We will
describe the changes of M≤τ when τ ∈]c − ε, c + ε[ where ε > 0 is a real such
that c = f(p0) is the only critical value of f in ]c− ε, c+ ε[.

As seen before, in a local coordinate system around p0, the function f is of
the form −x2

1− . . .−x2
λ+x2

λ+1 + . . .+x2
n. In the following picture we illustrated

the behaviour of f on M in a small coordinate neighbourhood of the critical
point p0, we made a normal projection of a small neighbourhood of the critical
point p0 of the manifold M onto Rn. The shaded area correspond to the set
points of M for which the value of f is greater or equal to τ + ε, the doted area
correspond to the set of points of M for which the value of f is lower or equal
to τ − ε.
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Definition 2.14. The product manifold Dλ ×Dn−λ is called a λ-handle, and
the λ-disk Dλ × {0} ⊂ Dλ ×Dn−λ is called the core of the handle.

In the following picture we glued a λ-handle Dλ×Dn−λ, along Dλ−1×Dn−λ,
to the boundary of the set of points of M for which f takes value lower or equal
to τ − ε.
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With the gradient like vector field depicted by the arrows on the picture, one
can see that, after smoothing, the manifold M≤τ−ε∪Dλ×Dn−λ is diffeomorphic
to M≤τ+ε.

Remark 2.15. Let c1, . . . , ck the distinct critical values of a Morse function
f : M → R defined on a compact manifold M without boundary. Let ε > 0 a
real small enough, then the following hold

1. M≤c1−ε = ∅,

2. M≤c1+ε = Dn, is a 0-handle,

3. M≤ck+ε = M .

LetX be a n-manifold with non-empty boundary, and let ϕ : Sλ−1×Dn−λ →
∂M be an embedding. Using ϕ we can attach a λ-handle to X. Set Y =
X ∪ϕ (Dλ × Dn−λ), which is the manifold obtained from X by gluing the λ-
handle Dλ ×Dn−λ to ∂X along ϕ(Sλ−1 ×Dn−λ). After smoothing corners if
necessary we can assume that Y is smooth.

Definition 2.16. We say that Y is obtained by attaching a λ-handle to X,
and ϕ is called the attaching map of the λ-handle. We will use the notation
Y = X ∪ (ϕλ). The disk Dλ × {0} is called the core of the λ-handle, and the
sphere {0} × Sn−λ−1 is called the transverse sphere of the λ-handle.
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q q
q

X

∂X

ϕ(Sλ−1 ×Dn−λ)

* :

the core
Dλ × {0}�

the transverse sphere
{0} × Sn−λ−1 -

Remark 2.17. Sometimes, the transverse sphere to a handle is called a belt
sphere.

When we attach several handles to X, we use the same notation, e.g. Y =
X ∪ (ϕλ)∪ (ψµ). But beware of the meaning of this description. When we write
Y = X ∪ (ϕλ)∪ (ψµ), this means that the λ-handle is attached to ∂X and then
the µ-handle is attached to ∂(X ∪ (ϕλ)).

Definition 2.18. A manifold obtained from Dn by attaching handles of various
indices is called a handlebody.

When the boundary of a compact manifold X is of the form X0

∐
X1, then

it is sometimes more convenient to give a handle decomposition in which we
attach the first handles to a collar neighbourhood of the component X0 ⊂ ∂X
of the boundary.

To do that, it is enough to start with a Morse function f : X → R which
maps X0 to f(X0) = 0, X1 to f(X1) = 1 and such that all the critical values
λ1, . . . , λk of f

|
◦
X

are in ]0, 1[. Then the first handle, corresponding to the first

critical value λ1 of f , must be attach to a collar neighbourhood of X0 (see the
following picture).

�
�

�
�

�	

��
���

���
����

ϕ1(Sλ−1 ×Dn−λ)

X0

X0 × [0, 1]

(ϕλ1
1 )

Then using this Morse function we have a handle decomposition for X as
stated in the following Proposition



2.1 Morse functions and handle decompositions of manifolds 25

Proposition 2.19 (Handle decomposition of boundary manifolds). Let X be a
compact manifold with boundary ∂X = X0

∐
X1. Then X possesses a handle-

body decomposition up to diffeomorphism

X = X0 × [0, 1]
⋃

i=1,...,m

(ϕλi
i ).

Remark 2.20. When ∂X = ∅ the statement remains valid since in that case
the first handle must be of index 0 and the last one must be of index n. The
process strat with a collection of n-disks, the 0-handles, then handles of index
greater or equal to one are glued on these disks.

The decomposition given in Theorem 2.19 is not unique. So we will try to find
good decompositions for our purpose. First we have to describe modifications
of handlebody decompositions which do not change the diffeomorphism type.
The goal is to find decompositions with less handles, and as few as possible
of distinct indexes of handles. Note that all the following lemmas are due to
Smale [124], see [64] and [85] as well for proofs.

Lemma 2.21 (Isotopy lemma). Let X be a manifold of dimension n such that
its boundary ∂X is X0

∐
X1. Let ϕ,ψ : Sλ−1 × Dn−λ → X1 be two isotopic

embbedings. Then there exists a diffeomorphism between X ∪ (ϕ) and X ∪ (ψ)
which is the identity on X0.

Proof. The idea of the proof is to find an ambiant isotopy on X which is identity
on X0. It induces a diffeomorphism h on X with h ◦ ϕ = ψ, and then a
diffeomorphism between X ∪ (ϕ) and X ∪ (ψ).

Remark 2.22. We sometimes call isotopy between attaching map of handles
sliding of handles. This terminology comes from the fact that we can illustrate
this isotopy by the moving of one handle to the other by the sliding of the gluing
set.

In the following, for two handle decompositions

X = X0 × [0, 1]
⋃

i=1,...,m

(ϕλi
i ),

X = X0 × [0, 1]
⋃

i=1,...,m

(ψλi
i ),

of X, we will construct diffeormorphism of X which is the identity on X0×{0}.

Definition 2.23. We say that the two handle decompositions

X = X0 × [0, 1]
⋃

i=1,...,m

(ϕλi
i ),

X = X0 × [0, 1]
⋃

i=1,...,m

(ψλi
i ),

of X, are diffeormorphic together relatively to X0 when the diffeomorphism is
the identity on X0 × {0}.
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Lemma 2.24. Let X be a manifold of dimension n such that its boundary ∂X
is X0

∐
X1. If λ ≤ µ are some positive integers, then X0 × [0, 1] ∪ (ψµ) ∪ (ϕλ)

is diffeomorphic to X0 × [0, 1] ∪ (ϕλ?) ∪ (ψµ) relatively to X0 for an appropriate
attaching map ϕ?.

Proof. The inequality of dimensions (λ−1)+(n−µ−1) < n−1 holds, so up to
an isotopy ϕ(Sλ−1 × {0}) does not meet the transverse sphere of the µ-handle.
Hence one can find an embedding ϕ? : Sλ−1 × Dn−λ → ∂(X ∪

(
ψµ)

)
which

does not meet the image of ψ in ∂X, namely ψ(Sµ−1×Dn−µ). By Lemma 2.21
X0 × [0, 1] ∪ (ψµ) ∪ (ϕλ) is diffeomorphic to X0 × [0, 1] ∪ (ϕλ?) ∪ (ψµ).

Remark 2.25. Let λ ≤ µ, and let X0 × [0, 1] ∪ (ϕλ) ∪ (ψµ) the manifold
obtained by attaching two handles. Note that the attaching map of the µ-
handle ψ : Sµ−1 ×Dn−µ → ∂

(
X ∪ (ϕλ)

)
may not be isotopic to an embedding

ψ? : Sµ−1 ×Dn−µ → ∂
(
X \

(
ϕ(Sλ−1 ×Dn−λ)

))
. This means that the formula

X0 × [0, 1] ∪ (ψµ) ∪ (ϕλ) may be meaningless (up to diffeomorphism as well) in
this situation, since the attaching map ψ may not be defined (up to isotopy)
on X0 × {1}. Hence the order in which handles appear is very important and
changing this order must be done carefully.

Let us consider the manifold Y obtained from X0 × [0, 1] by adding two
handles of consecutive index, say λ and λ + 1. If ϕ and ψ are the attaching
maps one can write Y = X0 × [0, 1] ∪ (ϕλ) ∪ (ψλ+1). Assume that ψ(Sλ × {0})
meets the transverse sphere of the λ-handle, namely {0}×Sn−λ−1, transversaly
in exactly one point κ. Let U be a small neighbourhood of the transverse sphere
{0} × Sn−λ−1 in the λ-handle (ϕλ). Then one can find an isotopy between
Dn−λ × U and the λ-handle. Then we have ψ

(
Sλ × {0}

)
∩ (ϕλ) = Dλ × {κ}.

Then it is technical, but not difficult, to check that the n-manifold Dλ ×
Dn−λ ∪ψ Dλ+1 ×Dn−λ−1, which is the gluing of the λ-handle and the (λ+ 1)-
handle along ψ(Sλ×Dn−λ)∩Dλ×Dn−λ, is homeomorphic to the contractible
manifold Dn. This implies that X and Y are diffeomorphic. The following
picture illustrate this cancellation phenomenon.

r
κ

X0 × [0, 1]

X0 × {1}

{0} × Sn−λ−1

@
@
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@

@@

@
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@@

@
@

@
@

@
@
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We proved
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Lemma 2.26 (Cancellation Lemma). Let X0 be a manifold without boundary,
and let Y = X0×[0, 1]∪(ϕλ)∪(ψλ+1) such that ψ(Sλ×{0}) meets the transverse
sphere of the λ-handle transversaly in exactly one point. Then X0 × [0, 1] and
Y are diffeomorphic.

Using this Lemma, if needed, one can change a handle decomposition and
add two handles with consecutive indexes. First choose an embedded n-diskD in
X0×{0}. Then construct an embedding ϕ : Sλ×Dn−λ → D and an embedding
ψ : Sλ+1×Dn−λ−1 → ∂

(
X ∪ (ϕλ)

)
such that ψ(Sλ×{0}) meets the transverse

sphere of the λ-handle transversally in exactly one point. According to the
Cancellation Lemma 2.26 the manifolds X0×[0, 1] and X0×[0, 1]∪(ϕλ)∪(ψλ+1)
are diffeomorphic relatively to X0.

Let us to describe how to remove a λ-handle. The first step is to construct
a (λ+ 1)-handle with a transversality condition with the λ-handle which allows
cancellation. Then construct a handle of indexe λ+2 such that the two handles
of indexes λ+ 1 and λ2 are cancelling together.

Now, up to technical assumptions we are ready to eliminate a λ-handle and
replace it by a (λ+ 2)-handle as stated in the following Lemma.

First we have to fix some notations. Suppose that we have a handle decom-

position of a manifold Y = X0 × [0, 1]
p1⋃
i=1

(ϕ1
i ) . . .

pn⋃
i=1

(ϕni ), then we denote

• Y q = X0× [0, 1]
p1⋃
i=1

(ϕ1
i ) . . .

pq⋃
i=1

(ϕqi ), the manifold obtained from X0× [0, 1]

after the gluing of handles of index less or equal to q,

• ∂̂Y q = ∂Y q \
pq+1∐
i=1

ϕq+1
i (Sq×

◦
Dn−1−q)

Lemma 2.27. Let X0 be a (n−1)-manifold without boundary and 1 ≤ λ ≤ n−3.

Fix a handle decomposition of Y = X0 × [0, 1]
pλ⋃
i=1

(ϕλi )
pλ+1⋃
i=1

(ϕλ+1
i ) . . .

pn⋃
i=1

(ϕni ),

with no handle of index strictly less than λ.
Let 1 ≤ k ≤ pλ be a fixed integer. Suppose that there exists an embedding

ψλ+1 : Sλ ×Dn−1−λ → ∂̂Y λ such that

1. ψλ+1

|Sλ × {0} is isotopic in ∂Y λ to an embedding ξλ+1 : Sλ×{0} → ∂Y λ

which meets the transverse sphere of the handle (ϕλk) and is disjoint from
the transverse spheres of the handles (ϕλi ) i = 1, . . . , pλ

i 6= k

2. ψλ+1

|Sλ × {0} is isotopic in ∂Y λ+1 to an embedding of Sλ into a (n−1)-

disk Dn−1 ⊂ ∂Y λ+1.

Then Y is diffeomorphic, relatively to X0, to a manifold of the shape

X0 × [0, 1]
⋃

i = 1, . . . , pλ
i 6= k

(ϕλi )
pλ+1⋃
i=1

(ϕλ+1
i ) ∪ (ψλ+2)

pλ+2⋃
i=1

(ϕλ+2
i ) . . .

pn⋃
i=1

(ϕni )
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Proof. All the technical asumptions made in this Lemma allow to add first a new
(λ+ 1)-handle (ψλ+1) which cancel with the handle (ϕλk), second to glue a new
(λ+ 2)-handle (ψλ+2) which cancel with (ψλ+1). With the second assumption
made in the statment, the gluing of the two handles (ψλ+1) and (ψλ+2) can be
made in a (n− 1)-disk embedded in ∂̂Y λ+2.

Then according to the Isotopy and Cancellation Lemmas (2.21 and 2.26) we
can find the appropriate embeddings {ϕikik |k = λ+ 1, . . . , n ; ik = 1, . . . , pk} to
give the desired handle decomposition of a manifold which is diffeomorphic to
Y relatively to X0.

This Lemma will be very useful to prove the h-cobordism Theorem. But first
we have to introduce a CW-complex associated with handle decompositions of
manifolds. This CW-complex will allow us to compute the Whitehead torsion
that appears in the s-cobordism Theorem.

2.1.2 CW-complex and handlebodies

In this subsection, we briefly recall some elementary properties of relative CW-
complexes, and then we will construct a CW-complex which is associated with
the handlebody decomposition of a manifold.

Let us denote by X(0) a set of discrete points. Let n ≥ 1 be an integer.
If the set X(n−1) has been defined, then consider {ψα}α∈An

a set of maps
fα : Sn−1 → X(n−1). Set X(n) = X(n−1) ∪

(⋃
ψα
Dn
α

)
α∈An

be the gluing of

X(n−1) and some n-dimensional disks along their boundaries ∂Dn
α
∼= Sn−1 with

the maps ψα.
This induces a filtration

X(0) ⊂ X(1) ⊂ . . . ⊂ X(n) ⊂ . . . ,

the path components of X(n) \X(n−1) are called open n-cells, the maps ψα
are called attaching maps, and the maps Ψα : Dn → X(n) induced by ψα are
called characteristic maps.

The set X =
⋃
n∈N X(n) is called a CW-complex. When N is not finite, then

a set is open in X if its intersection with each X(n) is open in X(n). The letter
“C” stands for “closure finite” and the letter “W” stands for “weak topology”.
A set is open if its intersection with each X(n) is open in X(n).

Remark 2.28. An open n-cell is open in X(n), but usually is not an open set
in X.

The image of a characteristic map is a compact subset of X, which is some-
times called a closed cell, but usually is not homeomorphic to Dn.

A relative CW-complex (X,A) consists of a pair of topological spaces A ⊂ X,
such that X is obtained from A by gluing λ-cells, with λ ≥ 1, as we did for CW-
complexes. The associated filtration is A = X(λ−1) ⊂ X(λ) ⊂ . . . ⊂ X(n) ⊂ . . ..

Let (X,A) be a relative CW-complex. Assume that X is arcwise connected1

and set π = π1(X). Let ρ : X̃ → X be the universal covering of X, and set

1This assumption is only made in order to avoid considerations about base points and
simplify the argument.
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X̃(q) = ρ−1
(
X(q)

)
and Ã = ρ−1(A). Then (X̃, Ã) is a relative CW-complex

with the filtration Ã ⊂ X̃(1) ⊂ . . . ⊂ X̃(n) ⊂ . . ..
Recall that the homology of the relative CW-complex (X̃, Ã) can be com-

puted using a Z[π]-chain complex C∗(X̃, Ã). The qth Z[π]-chain module is the
singular homology Hq(X̃(q), X̃(q−1)) and the π-action is coming from the cover-
ing transformations, the qth differential is then given by the composite map

Hq(X̃(q), X̃(q−1))
∂q→ Hq−1(X̃(q−1))

iq→ Hq−1(X̃(q−1), X̃(q−2)),

where ∂q is the qth boundary map associate with the homology long exact se-
quence of the pair (X̃(q), X̃(q−1)) and iq is induced by the inclusion.

One can see that if we denote by βi the image of a generator of Hq(Dq, Sq−1) ∼=
Z under the map (Ψq

i , ψ
q
i )q : Hq(Dq, Sq−1) → Cq(X̃, Ã) = Hq(X̃(q), X̃(q−1)),

then the set {βi}i∈Aq is a Z[π]-basis for Cq(X̃, Ã). We call this basis the cellu-
lar basis.

Recal that the homology of a relative CW-complex is given by the homology
of the Z[π]-chain complex we just defined, i.e.,

H∗(X,A) ∼= H∗
(
C∗(X,A)

)
.

Let M be a closed (n− 1)-manifold. Now suppose we have a handle decom-
position of a manifold

Y = M × [0, 1]
pλ⋃
i=1

(ϕλi )
pλ+1⋃
i=1

(ϕλ+1
i ) . . .

pn⋃
i=1

(ϕni ),

where the λ-handles are attached on M × {0}. We denote by Y q the manifold

Y q = M × [0, 1]
pλ⋃
i=1

(ϕλi )
pλ+1⋃
i=1

(ϕλ+1
i ) . . .

pq⋃
i=1

(ϕqi )

obtained from M × [0, 1] by adding handles of index less or equal to q.
Let us denote M × {0} by M0. Then we construct by induction over q =

λ, . . . , n a sequence of spaces X(q) with a filtration M0 ⊂ X(λ) ⊂ . . . ⊂ X(n) = X
such that (X,M0) is a relative CW-complex. We define the attaching maps of the
relative CW-complex (X,M ×{0}) using the attaching maps of the handlebody
decomposition of Y .

More precisely set fλ−1 : Y λ−1 = M × [0, 1] → X(λ−1) = M0 the projection,
which is a homotopy equivalence.

Assume that, for q ≥ λ, the set X(q−1) is constructed and there exists
a homotopy equivalence fq−1 : Y q−1 → X(q−1). Then define the attaching
maps fq−1 ◦ ϕqi |Sq−1 × {0} for i = 1, . . . , pq to construct Y q. Now consider the

relative CW-complex (Yq, Y q), where Yq is constructed from Y q by adding q-
cells with the attaching maps

{
ϕqi |Sq−1 × {0}

}
i=1,...,pq

. One can see that both

X(q) and Y q are homotopically equivalent to Yq, hence there exists a homotopy
equivalence fq : Y q → X(q) such that fq|Y q−1 = fq−1.

Denote by ρ : Ỹ → Y the universal covering of Y with π = π1(Y ) as
covering transformations group. Set Ỹ q = ρ−1(Y q). As done before in the gen-
eral context of relative CW-complexex, one can associate a Z[π]-chain complex
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C∗(Ỹ , M̃0). The qth Z[π]-chain module is the singular homology Hq(Ỹ (q), Ỹ (q−1))
and the qth differential is then given by the composite map

Hq(Ỹ (q), Ỹ (q−1))
∂q→ Hq−1(Ỹ (q−1))

iq→ Hq−1(Ỹ (q−1), Ỹ (q−2)),

where ∂q is the qth boundary map associated with the homology long exact
sequence of the pair (Ỹ (q), Ỹ (q−1)) and iq is induced by the inclusion.

Since the maps fq : Y q → X(q) constructed before are homotopy equival-
cences, then we get an isomorphism of Z[π]-chain complexes

C∗(Ỹ , M̃0)
Θ∼= C∗(X̃, M̃0).

Moreover each handle of index q with attaching map ϕqi for i = 1, . . . , pq deter-
mines an element [ϕqi ] ∈ Cq(Ỹ , M̃0). And the basis {[ϕqi ]}i=1,...,pq

of Cq(Ỹ , M̃0)
maps to the cellular basis of C∗(X̃, M̃0) under Θ.

Now we are ready to prove the h-cobordism Theorem.

2.2 h-cobordism Theorem

First let us state the h-cobordism Theorem due to Smale.

Theorem 2.29 (h-cobordism [124]). Let M1 and M2 be two closed oriented
and simply connected manifolds of dimension n ≥ 5. If there exists an oriented
compact manifold W with ∂W diffeomorphic to the disjoint union of M1 and
−M2, and each component of ∂W is a deformation retract of W then W is
diffeomorphic to M1 × [0, 1].

The manifold −M2 is the manifold M2 with the reversed orientation.

Remark 2.30. As an important consequence we have that the two manifolds
M1 and M2 are diffeomorphic to each other.

Remark that the inclusions Mi ↪→ W , for i = 1, 2, are homotopy equiva-
lences. And the letter “h” in “h-cobordism” is for homotopy equivalence.

The h-cobordism Theorem can be reformulated a follows.

Theorem 2.31 (h-cobordism). Let M1 and M2 be two closed oriented and
simply connected manifolds of dimension n ≥ 5. If there exists an oriented
compact manifold W with ∂W diffeomorphic to the disjoint union of M1 and
−M2, and H∗(W,M1) = 0 then W is diffeomorphic to M1 × [0, 1].

Remark 2.32. In the second statment of the h-cobordism Theorem it is equiv-
alent to replace H∗(W,M1) = 0 by H∗(W,M2) = 0.

More precisely, when H∗(W,M1) = 0 the universal coefficient Theorem im-
plies H∗(W,M1) ∼= Hom

(
H∗(W,M1)

)
= 0, and by Poincaré duality we get

H∗(W,M2) = 0. Similarly H∗(W,M2) = 0 implies H∗(W,M1) = 0

Proof of Theorem 2.31. First remark that if M1 and M2 are both deformation
retracts of W then we have H∗(W,M1) = 0, and H∗(W,M2) = 0 as well.

Second when π1(M1) = 0, π1(W,M1) = 0 and H∗(W,M1) = 0 then, ac-
cording to the relative Hurewicz isomorphism Theorem (see [13]), we have
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πi(W,M1) = 0 for i ∈ N. Then one can construct a deformation retraction
from W to M1. As explained in Remark 2.31 the nullity of H∗(W,M1) implies
H∗(W,M2) = 0, and M2 is, by the same argument, a deformation retract of
W .

The h-cobordism Theorem is crucial for the study of cobordism classes of
high dimensional knots. It concerns simply connected manifolds, but this con-
nectivity condition is automatic for knots of dimension greater or equal to 2.

In the subsection 2.2.1 we will prove an extension to non-simply connected
manifolds called s-cobordism theorem. Though we will not need this extension
for the study of knot cobordism, we choose to give this proof since the core of
the proof is the same of the proof of the h-cobordism Theorem and is essentially
made of Smale’s lemmas .

The s-cobordism Theorem was proved by Barden in [4], by Mazur in [90]
and by Stallings (who never published his proof). For additional details we refer
to Kervaire’s paper [64] devoted to a detailed proof of this Theorem.

2.2.1 s-cobordism Theorem

Theorem 2.33 (s-cobordism Theorem). Let M1 and M2 be two closed oriented
and connected manifolds of dimension n ≥ 5, and let π = π1(M1) the funda-
mental group of M1. If there exists an oriented compact manifold W with ∂W
diffeomorphic to the disjoint union of M1 and −M2, and each component of
∂W is a deformation retract of W then W is diffeomorphic to M1× [0, 1] if and
only if the Whitehead torsion τ(W,M1) ∈ Wh(π) vanishes.

To make this statement understandable we have to define briefly Whitehead
groups and Whitehead torsion, see [131] for details.

Whitehead groups. Let π be a group, and let GL(n,Z[π]) the group of
invertible matrices of order n on the group ring Z[π]. We denote by GL(Z[π])
the set of disjoint union

⋃
n∈Z

GL(n,Z[π]), it is the set of invertible matrices of

arbitrary size with entries in Z[π].
Let us denote by Eni,j a n× n matrix with all entries 0 except for a 1 in the

(i, j) spot; and by ∆n
i (γ) a n× n diagonal matrix with entries on the diagonal

equal to 1 except for γ in the (i, i) spot. If In denotes the identity matrix
of rank n, then an elementary matrix is a matrix of the form (In + aEni,j),
with a ∈ Z[π]; and let E(Z[π]) be the subgroup of GL(Z[π]) generated by the
elementary matrices.

It is not difficult to show that E(Z[π]) is the commutator subgroup of
GL(Z[π]), and any subgroup of GL(Z[π]) which contains E(Z[π]) is a normal
subgroup of GL(Z[π]).

Let us consider the subgroup ±π of Z[π] of trivial units, namely

{p|p ∈ π} ∪ {−p|p ∈ π} = ±π < Z[π].

Then we define I±π to be the set

I±π =
{
M ∈ GL(Z[π]) | M = ∆n

i (γ) with γ ∈ ±π, or M ∈ E(Z[π]
}
.
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In I±π we collected the matrices of E(Z[π]) and the matrices of the formIi 0 0
0 γ 0
0 0 Ij


with γ ∈ ±π.

Hence the group Eπ, which is generated by the matrices of I±π, is a normal
subgroup of GL(Z[π]).

Definition 2.34. The whitehead group Wh(π) is the abelian quotient group
GL(Z[π])/Eπ .

In the following we will use another definition of Wh(π), which is more
complicated but more convenient for our purpose. On GL(Z[π]) we define an
equivalence relation, denoted by R, generated by the elementary operations
listed below.

Let A be a matrix in GL(Z[π]),

1. multiply the i-th row of A from left by ±γ with γ ∈ π;

2. add the i-th row to j-th row of A;

3. change the matrix A ∈ GL(n,Z[π]) to
(
A 0
0 1

)
;

4. change the matrix
(
A 0
0 1

)
∈ GL(n+ 1,Z[π]) to A (this is the inverse of

the previous item).

Remark 2.35. We do not use column operations in our definition, i.e., right
product with elementary matrices. Because if two matrices A and B are re-
lated together with column and row operations, then there exist two matri-
ces E1 and E2, which are product of elementary matrices, such that In =

E1

(
A 0
0 Iq

)
B−1E2. But this means that E−1

2 = E1

(
A 0
0 Iq

)
B−1, and then

In = E2E1

(
A 0
0 Iq

)
B−1. This implies that A and B are related together only

using row operations.

One can define a product on classes of matrices in GL(Z[π])/R. We denote
by [A] ∈ GL(Z[π])/R the class of a matrix A ∈ GL(Z[π]). Let [A] and [B] be
in GL(Z[π])/R, then there exist two integers i and j (may be equal to 0) such
that the two matrices A ⊕ Ii and B ⊕ Ij are invertible matrices of same rank.
We define [A].[B] =

[
(A⊕ Ii).(B⊕ Ij)

]
. The neutral element is given by [In] for

any positive integer n. The inverse of [A] is given by [A−1]. One can prove that
(GL(Z[π])/R, .) is an abelian group, and Wh(π) is the quotient GL(Z[π])/R.

Proposition 2.36. These two definitions of Whitehead groups are equivalent
together.

See [25] for this equivalence.
In the following we will denote by A both a matrix in GL(Z[π]) and its class

in Wh(π).



2.2 h-cobordism Theorem 33

Whitehead torsion. We will define the Whitehead torsion of a pair (X,Y )
when both X and Y are CW-complexes such that Y is a deformation retract
of X. But Whitehead torsion may be defined algebraically for acyclic chain
complexes over a ring R under some assumptions for R, we refer to [131] and
[99] for detailed expositions on Whitehead torsion.

Since the inclusion Y ↪→ X is a homotopy equivalence, then it induces an
isomorphism of fundamental groups π1(Y ) ∼= π1(X) = π, provided we choose
a base point in Y . Let us consider again the universal covering ρ̃ : X̃ → X,
it induces the covering ρ̃|Ỹ : Ỹ → Y and the subcomplex Ỹ is a deformation

retract of X̃. Therefore the Z[π]-chain complex C∗(X̃, Ỹ ) of length n is acyclic.
Recall that π acts on C∗(X̃, Ỹ ), and this makes it a free chain complex over
Z[π]; each Z[π]-module Cq(X̃, Ỹ ) equiped with the cellular basis Bq = {βi}i∈Aq

see § 2.1.2.

1. First assume that for all integer 0 ≤ q ≤ n the Z[π]-module Im dq is free.
Since the complex is acyclic, then we have the short exact sequences

0 → Im dq → Cq(X̃, Ỹ )
dq→ Im dq−1 → 0.

By exactness of the last short sequences we get sections sq of dq, then
set I?q−1 = sq(Iq) the image of the basis Iq−1 of Im dq−1 under sq. Note
that, since for any distinct integers i and j the two Z[π]-modules Z[π]i

and Z[π]j are not isomorphic, then the juxtaposition of the two basis Iq
and I?q−1 is a basis of Cq(X̃, Ỹ ). Set TIqI?

q−1→Bq
the transition matrix

from IqI?q−1 to Bq.
The following product matrix

τ =
n∏
i=0

T
(−1)i+1

IqI?
q−1→Bq

is invertible.

Moreover one can prove that its class in Wh(π) does not depend on the
choices of the basis and is invariant under cellular subdivisions. According
to these facts when for all integer 0 ≤ q ≤ n the Z[π]-module Im dq are
free, then we define the torsion of the complex C∗(X̃, Ỹ ) to be the class
of τ in Wh(π).

2. When the Z[π]-module Im dq are not free we have the following Lemma

Lemma 2.37. For all integers 0 ≤ q ≤ n there exists a free Z[π]-module
Fq such that the Z[π]-module Im dq ⊕ Fq is free.

Proof. Note that Im d0 = C0(X̃, Ỹ ) is free.

We will prove the property by induction on q. Assume there exists an
integer k ≥ 0 for which there exists a free Z[π]-module Fk such that the
Z[π]-module Im dk ⊕ Fk is free.

Since the Z[π]-chain complex C∗(X̃, Ỹ ) of length n is acyclic, then we have
the following short exact sequence

0 → Im dk+1 → Ck(X̃, Ỹ )⊕ Fk
dk⊕Id−→ Im dk ⊕ Fk → 0.
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The last Z[π]-module is free, hence there exists a section σk for dk ⊕ Id.
The Z[π]-module σq(Im dk ⊕ Fk) is free, and Im dk+1 ⊕ σq(Im dk ⊕ Fk) =
Ck(X̃, Ỹ )⊕ Fk as well.

Let us denote by Cq∗(F ) the free based acyclic Z[π]-chain complex associ-
ated with a free based Z[π]-module F , which has dq : F → F as the only
non-trivial differential

. . .→ 0 → F
dq→ F → 0 → . . . .

Define a new Z[π]-chain complex C∗(X̃, Ỹ )
⊕n

k=0 C
k
∗ (Fk). Since in this

free acyclic Z[π]-chain complex the image of the differential are some free
Z[π]-modules, then we can compute its torsion as just made before. One
can prove that the torsion of this complex does not depend on the choices
made on the free Z[π]-modules Fq for q = 0, . . . , n.

We define the torsion τ(X,Y ) to be the torsion of the Z[π]-chain complex
C∗(X̃, Ỹ )

⊕n
k=0 C

k
∗ (Fk).

Come back to the statement of the s-cobordism Theorem. Assume that W is
an oriented compact manifold with boundary ∂W ∼= M1

∐
−M2, such that both

M1 and M2 are deformation retracts of W . To a handlebody decomposition

W = M1 × [0, 1]
p0⋃
i=1

(ϕ0
i ) . . .

pλ⋃
i=1

(ϕλi ) . . .
pn⋃
i=1

(ϕni ),

one can associate first a Z[π]-chain complex C∗(W̃ , M̃1) and second a relative
CW-complex (X̃, M̃1) such that the Z[π]-chain complex C∗(X̃, M̃1) is isomorphic
to C∗(W̃ , M̃1).

Since M1 is a deformation retract of W , in the relative CW complex (X̃, M̃1)
we have that M̃1 is a deformation retract of X̃ as well. Hence τ(X̃, M̃1) is well
defined, and the torsion τ(W,M1) is by definition equal to the torsion τ(X̃, M̃1).

Simple homotopy equivalences. When the map f : E → F is a homotopy
equivalence between CW-complexes, then F is a deformation retract of the
mapping cylinder

Mf =
(
X × [0, 1]

) ∐
Y/(x, 1) ∼ f(x)

of f .
We define the Whitehead torsion of f , denoted by τ(f) ∈ Wh

(
π1(Y )

)
, to

be the image of the torsion τ(Mf , Y ) ∈ Wh
(
π1(Mf )

)
in Wh

(
π1(Y )

)
under the

isomorphism between Wh
(
π1(Mf )

) ∼=→ Wh
(
π1(Y )

)
induced by the isomorphism

π1(Mf )
∼=→ π1(Y ).

This torsion is well defined, and when two cellular homotopy equivalences
between two CW-complexes are homotopic the torsion are equal.

Definition 2.38. We say that a homotopy equivalence f : X → Y of finite
CW-complexes is simple if the torsion τ(f) vanishes in Wh

(
π1(Y )

)
.

This definition extend to homotopy equivalences between smooth manifolds.
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Remark 2.39. In the statement of the s-cobordism Theorem the inclusions
Mi ↪→ W are simple homotopy equivalences. The letter “s” in ”s-cobordism”
refer to simple homotopy equivalence.

Proof of the s-cobordism Theorem. To prove the s-cobordism Theorem
we need some technical Lemmas. There exists many written proofs of these
crucial Lemmas in the literature, see Lück [85] and Kervaire [64].

Let us fix some notations. In the following we will consider handle decom-
positions of a manifold W which has M1

∐
M2 has boundary.

W = M1 × [0, 1]
p0⋃
i=1

(ϕ0
i ) . . .

pλ⋃
i=1

(ϕλi ) . . .
pn⋃
i=1

(ϕni ).

Then we will denote

Wλ = M1 × [0, 1]
p0⋃
i=1

(ϕ0
i ) . . .

pλ⋃
i=1

(ϕλi )

the manifold obtained from M1× [0, 1] after the gluing of handles of indexes
less or equal to λ, and

∂̂Wλ
+ = ∂Wλ \

(pλ+1∐
i=1

ϕλ+1
i (Sλ×

◦
Dn−1−λ)

∐
M × {0}

)
the upper boundary of Wλ without the gluing sets of handles of index λ+ 1.

Lemma 2.40. Let W be an oriented compact n-manifold with n ≥ 6 and ∂W
is diffeomorphic to the disjoint union of two compact (n− 1)-manifolds M1 and
M2. Suppose that each component of ∂W is a deformation retract of W , then
W is diffeomorphic to M1 × [0, 1]

⋃p2
i=1(ϕ

2
i ) . . .

⋃pn

i=1(ϕ
n
i ) relatively to M1.

Proof. Let M1 × [0, 1]
⋃p0
i=1(ϕ

0
i ) . . .

⋃pn

i=1(ϕ
n
i ) be a handle decomposition of W .

To prove this Lemma we have to show that we can remove the handle of indexes
0 and 1.

Recall that to add a 0-handle we make the disjoint union with a n-disk.
But since W is connected there exists almost one 1-handle joining M1 × [0, 1]
to this n-disk. Up to isotopy all the gluing sets of 1-handles, which are not in
the 0-handles, are in M1 × {1}, hence the order of attaching 1-handles is not
important. So if (ϕ0

1) is the first 0-handle, one can assume that the 1-handle (ϕ1
1)

is joining M1× [0, 1] to (ϕ0
1). But the gluing of (ϕ1

1) with (ϕ0
1) is homeomorphic

to a n-disk since we only attach one connected component of the boundary of
the 1-handle to the 0-handle. These two handles (ϕ1

1) and (ϕ0
1) are cancelling

together, so we can remove the 0-handle (ϕ0
1) and the 1-handle (ϕ1

1). Finally
one may assume that there is no 0-handle.

The handle decomposition of W became M1×[0, 1]
⋃p1−p0
i=1 (ϕ1

i ) . . .
⋃pn

i=1(ϕ
n
i ).

Since ∂̂W 0
+ consists only in M × {1} with 2 p1 disks of dimension (n − 1)

removed, then π1(∂̂W 0
+) = π1(M × {1}). Moreover M1 × {1} is a deformation

retract of W , so π1(∂̂W 0
+) maps surjectively onto π1(W ). Let φ1

1 : D1×Dn−1 →
W 1 the embedding of the 1-handle (ϕ1

1) . Consider now [σ] ∈ π1(W 1) given by
the homotopy class of σ = φ1

1

(
D1 × {0}

)
∪ γϕ1

1(S
0×{0}) the gluing , along their
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boundary of the core the 1-handle and a path γ, which join in ∂̂W 0
+ the two

points of ϕ1
1(S

0 × {0}). By construction [σ] is in not equal to 0 in π1(W 1); but
since π1(W ) ∼= π1(M1), then [σ] must be 0 in π1(W ). This means that σ is
nullhomotopic in W . Because of the dimensions, one can find some attaching
maps {ϕ′2i }i=1,...,p2 isotopic to {ϕ2

i }i=1,...,p2 such that for all i = 1, . . . , p2 the
images of ϕ′2i do not meet the loop σ. Hence one can construct an embedding
φ : S1 → ∂̂W 1 such that

[
φ(S1)

]
= [σ] and φ(S1) meets the transverse sphere

of (ϕ1
1) transversally in exactly one point. Since σ is nullhomotopic in W , then

φ is nullhomotopic in W and in ∂W 2 as well. This means that the image of φ
bounds an immersed 2-disk, and twice the dimension of this disk is strictly less
than the dimension of ∂W 2, which is 5. According to Whintney’s embedding
Theorem, this homotopy can be realized with an embedding of a 2-disk in ∂W 2.
This means that one can extend φ to an embedding Φ : S1 × Dn−1 → ∂W 2

which is isotopic to a trivial embedding in ∂W 2. By construction Φ fullfils
the hypothesis of Lemma 2.27, so we can eliminate the first 1-handle in the
decomposition of W . By induction we get the desired decomposition

W ∼= M1 × [0, 1]
p2⋃
i=1

(ϕ2
i )

p′3⋃
i=1

(ϕ3
i ) . . .

pn⋃
i=1

(ϕni )

Remark 2.41. In the proof we strongly used the assumption n ≥ 6 to smooth
immersed disks to embedded disks.

As a consequence of this Lemma one can give a description of the Z[π]-chain
complex C∗(W̃ , M̃1) in term of homotopy groups, see § 2.1.2 for the definition
of this complex, where we have identified M1 × {0} to M1, the manifold W̃ is
the universal covering of W and π = π1(W ).

First we fix a base point in M1 × {0} and a lift of that point in ρ−1(W ), all
the homotopy groups will be considered with respect to these base points. Now
we define the Z[π]-chain complex

π∗(W ∗,W ∗−1) =
{

0 if q ≤ 1,
πq(W q,W q−1) if q ≥ 2.

The differentials are given by the composite maps

πq(W q,W q−1)
∂q→ πq−1(W q−1)

iq−1→ πq−1(W q−1,W q−2)

where ∂q is a boundary operator, and iq−1 is induced by the inclusion.
For all q ≥ 1 the group π1(W̃ q−1) is trivial, then the relative Hurewicz

homeomorphism πq(W̃ q, W̃ q−1) → Hq(W̃ q, W̃ q−1) is an isomorphism. Moreover
the covering maps ρ̃q : W̃ q → W q induce the isomorphisms πq(W̃ q, W̃ q−1) ∼=
πq(W q,W q−1). Finally we get an isomorphism of Z[π]-chain complexes

C∗(W̃ , M̃1) ∼= π∗(W ∗,W ∗−1).

Each basis element [ϕqi ] ∈ Cq(W̃ , M̃1), associate with the attaching maps of
the handles, can be considered as an element of πq(W q,W q−1) with this iso-
morphism. It corresponds to the element given by the homotopy class of the
mapping

(
Dq × {0}, ϕq(Sq−1 × {0}

)
↪→ (W q,W q−1).
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In the following Lemma we give conditions which ensure that the embedding
of a sphere meets suitably the transverse spheres of a handle decomposition.

Lemma 2.42. Let W be a compact n-manifold with n ≥ 6 and ∂W is diffeo-
morphic to the disjoint union of two compact (n − 1)-manifolds M1 and M2.
Suppose that W is diffeomorphic to M1 × [0, 1]

⋃p2
i=1(ϕ

2
i ) . . .

⋃pn

i=1(ϕ
n
i ) relatively

M1.
Fix λ ∈ {1, . . . , n − 3} and k ∈ {1, . . . , pλ}. Let f : Sλ → ∂̂Wλ

+ be an
embedding. Then the following are equivalent

1. There exists an embedding g : Sλ → ∂̂Wλ
+ isotopic to f which meets the

transverse spheres of the λ-handle (ϕλk) transversally in exactly one point
and is disjoint from the transverse spheres of the λ-handles

{
(ϕλi )

}
i 6=k,

2. For any lift f̃ : Sλ → W̃λ of f under ρ̃|W̃λ ; if [f̃ ] denotes the image of f

under the composite map πλ(W̃λ) → πλ(W̃λ, W̃λ−1) → Hλ(W̃λ, W̃λ−1),
then there exists γ ∈ π such that [f̃ ] = ±γ[ϕλk ].

Proof. When the transversality conditions of the first statement are fulfilled,
the second follows easily.

Let us explain the converse. Because of dimensions the image of f meets the
set of transverse spheres of the λ-handles only in a finite number of points, set

Im f
⋂{

{0} × Sn−λ−1
i

}
i=1,...,pλ

=
{
xi,1, . . . , xi,ni

}
i=1,...,pλ

.

Fix ∗ ∈ Im f a base point in W , and in each transverse sphere {0}×Sn−λ−1
i

fix a base point ∗i, for i = 1, . . . , pλ, such that ∗i 6∈
{
xi,1, . . . , xi,ni

}
i=1,...,pλ

.

Now let ci,j : [0, 1] → Sλ be a path such that for all (i, j) ∈ {1, . . . , pλ} ×
{1, . . . , ni} we have f◦ci,j(0) = ∗ and f◦ci,j(1) = xi,j . Let bi,j : [0, 1] →Wλ be a
path such that for all (i, j) ∈ {1, . . . , pλ}×{1, . . . , ni} we have bi,j(0) = xi,j and
bi,j(1) = ∗i. And let ai : [0, 1] →Wλ be a path such that for all i ∈ {1, . . . , pλ}
we have ai(0) = ∗i and ai(1) = ∗.

Now let li,j a loop base in ∗, which is the composite path of f(ci,j), bi,j and
ai. if we denote by γi,j the homotopy class of li,j in π = π1(W, ∗), then we have

[f̃ ] =
pλ∑
i=1

ni∑
j=1

εi,j γi,j [ϕλi ]

where εi,j = ±1.
We assume that there exists γ ∈ Z[π] such that [f̃ ] = ±γ[ϕλk ], but since the

set
{
[ϕλi ]

}
i=1,...,pλ

is a basis of Hλ(W̃λ, W̃λ−1) then, for i 6= k, we can associate
the elements of

{
xi,1, . . . , xi,ni

}
i=1,...,pλ

by pairs such that for each pair, say
(xi,j1 , xi,j2), we have εi,j1 εi,j2 = −1. This means that the loop, which is the
composite path of f(ci,j1), bi,j1 , the inverse of bi,j2 and the inverse of f(ci,j2) is
nullhomotopic in ∂̂Wλ

+.
Now, since n ≥ 6, then one can apply the Whitney trick (see [141]) to modify

f with an isotopy, and get new embedding of Sλ in ∂̂Wλ
+ with the two inter-

section points xi,j1 and xi,j2 removed and no change to the other intersection
points with the transverse spheres.
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By induction we get the first statement with γ = ±
nk∑
j=1

εk,j γk,j .

Lemma 2.43. Let f : Sλ → ∂̂Wλ
+ be an embedding , and let {xj}j=1,...,pλ+1 be

a set of elements of Z[π].
An embedding g : Sλ → ∂̂Wλ

+ is isotopic to f if and only if to each lift
f̃ : Sλ → W̃λ of f under ρ̃|W̃λ one can find a lift g̃ : Sλ → W̃λ of g such that

in Hλ(W̃λ,Wλ−1) we have

[g̃] = [f̃ ] +
pλ+1∑
j=1

xj dλ+1[ϕλ+1
j ]

where dλ+1 is the (λ+ 1)-differential of the complex C∗(W̃ , M̃1).

This Lemma is more or less proved in Smale’s work [124], for a proof see [64]
or [85].

Lemma 2.44. Let W be an oriented compact n-manifold with n ≥ 6 and ∂W
is diffeomorphic to the disjoint union of two compact (n− 1)-manifolds M1 and
M2. Suppose that each component of ∂W is a deformation retract of W , then
for any λ ∈ {2, . . . , n− 3} there exists a handlebody decomposition of W of the
form

M1 × [0, 1]
pλ⋃
i=1

(ϕλi )
pλ+1⋃
i=1

(ϕλ+1
i ).

Proof. We saw that handles of indexes 0 and 1 can be removed so we start with
a handle decomposition for W of the form

W ∼= M1 × [0, 1]
p2⋃
i=1

(ϕ2
i ) . . .

pn⋃
i=1

(ϕni ).

Now we will show that we can decrease pq by one provided that pr = 0 for
r ≤ q − 1 and q ≤ n− 3.

Start with a decomposition W ∼= M1× [0, 1]
⋃pq

i=1(ϕ
q
i ) . . .

⋃pn

i=1(ϕ
n
i ). As done

before the trick is to attach a new (q+1)-handle, which cancel with (ϕq1), and a
new (q + 2)-handle such that the two new handles cancel together. To do that
we will use Lemma 2.27.

Let Ψq+1 : Sq+1 ×Dn−q−1 → ∂̂W q
+ be an embedding such that its image is

included in a n-disk Dn ⊂ ∂̂W q
+.

Since the inclusion M1 ↪→ W is a homotopy equivalence, then the Z[π]-
chain complex C∗(W̃ , M̃1) is acyclic. But we assume that there is no k-handle
with k ≤ q − 1 in the handle decomposition for W , hence the the Z[π]-module
Cq−1(W̃ , M̃1) = Hq−1(W̃ q−1, W̃ q−2) is trivial. So the (q + 1)-differential of the
complex C∗(W̃ , M̃1), namely dq+1 : Cq+1(W̃ , M̃1) → Cq(W̃ , M̃1), is surjective.
This implies that there exists a set {xk}i=1,...,pq+1 of elements in Z[π], such that

Hq(W̃ q, W̃ q−1) 3 [ϕq1] =
pq+1∑
i=1

xi dq+1

(
[ϕq+1
i ]

)
.
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According to Lemma 2.43, one can find an embedding ψq+1 : Sq+1×Dn−q−1 →
∂̂W q+1

+ , which is isotopic to Ψq+1 in ∂̂W q+1
+ , such that

[ψq+1
|Sq×{0}] = [Ψq+1

|Sq×{0}] +
pq+1∑
i=1

xi dq+1

(
[ϕq+1
i ]

)
.

But [ψq+1
|Sq×{0}] = [ϕq1] since [Ψq+1

|Sq×{0}] is nullhomotopic in ∂̂W q+1
+ . Moreover,

according to Lemma 2.42 the embedding ψq+1
|Sq×{0} is isotopic in ∂̂W q+1

+ to an

embbeding Sq → ∂̂W q+1
+ which meets the transverse sphere of (ϕq1) transversally

exactly in one point and do not meet the transverse spheres of the other q-
handles.

We can apply Lemma 2.27 to find a new handle decomposition

W ∼= M1 × [0, 1]
pq⋃
i=2

(ϕqi )
pq+1⋃
i=2

(ϕq+1
i ) ∪ (ψq+2)

pq+2⋃
i=2

(ϕq+2
i ) . . .

pn⋃
i=1

(ϕni ),

and the number of q-handle decreased by one. By induction we can remove all
q-handles.

Now using the dual handle decomposition for W , i.e., the handle decom-
position associated with the Morse function −f instead of f which start with
M2 × [0, 1]; we have the following decomposition

W ∼= M2 × [0, 1]
p0⋃
i=1

(φni ) . . .
pλ⋃
i=1

(φn−λi ) . . .
pn⋃
i=1

(φ0
i ).

As just explained before one can remove handles of indexes less or equal to
n− λ− 2 in this decomposition, and

W ∼= M2 × [0, 1]
p0⋃
i=1

(φni ) . . .
pλ+1⋃
i=1

(φn−λ−1
i ).

If we take again the dual handle decomposition of the last one, then one can
find a handle decomposition for W of the form

W ∼= M1 × [0, 1]
p0⋃
i=1

(Φ0
i ) . . .

pλ+1⋃
i=1

(Φλ+1
i ).

Now we remove all handles of indexes less or equal to λ − 1 in the last
decomposition and we get the desired result

W ∼= M1 × [0, 1]
pλ⋃
i=1

(ϕλi )
pλ+1⋃
i=1

(ϕλ+1
i ).

We are ready to finish the proof of the s-cobordism Theorem.

Proof of s-cobordism Theorem. With the previous Lemma 2.44 we can assume
that the manifold W admits a handle decomposition of the form

W ∼= M1 × [0, 1]
p⋃
i=1

(ϕλi )
p⋃
i=1

(ϕλ+1
i ).
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The number of handle is the same since we assume that both M1 and M2 are
deformation retracts of W .

The acyclic Z[π]-chain complex C∗(W̃ , M̃1) has only one differential which
is non zero, namely dλ+1 : Hλ+1(W̃λ+1, W̃λ) → Hλ(W̃λ, W̃λ−1). Let D be the
matrix of the isomorphism dλ+1 with respect to the basis {[ϕλ+1

i ]}i=1,...,p of
Cλ+1(W̃ , M̃1) = Hλ+1(W̃λ+1, W̃λ) and the basis {[ϕλi ]}i=1,...,p of Cλ(W̃ , M̃1) =
Hλ(W̃λ, W̃λ−1). The entries di,j ∈ Z[π] of the matrix D, for i, j = 1, . . . , p, are
defined by the equations

dλ+1

(
[ϕλ+1
i ]

)
=

p∑
j=1

di,j [ϕλj ].

By definition, the Whitehead torsion τ(W,M1) is given by the class of the
matrix D in Wh(π).

Let us give the geometrical interpretation of the four elementary operations
which generate the Whitehead group described in Definition 2.34 and Proposi-
tion 2.36, when these operations are made on the matrix D we just defined.

1. The multiplication of the k-th row of D by ±γ with γ ∈ Z[π] correspond to
the modification of the lift in W̃λ+1 of ϕλk . But according to Lemma 2.43
this corresponds to the gluing of a new λ-handle (ϕ′λk ) instead of (ϕλk).
The resulting manifold is diffeomorphic to W .

2. Similarly to the previous item, the addition to the k-th row of the j-th
row of D can be realized by the gluing of a new λ-handle which is isotopic
to (ϕλk).

3. This operation corresponds to the gluing of a new λ-handle (ψλ) and a
new (λ+ 1)-handle (ψλ+1) in a n-disk of ∂̂Wλ+1

+ , such that these handles
are cancelling together.

4. This operation is the converse of the previous one, when we do it we
just remove to handles, which are cancelling together, from the handle
decomposition of W .

Since all of the modifications on the matrix D correspond to modifications of
the handle decomposition of W which do not change W up to diffeomorphism,
then we see that the Whitehead torsion τ(W,M1) vanishes if and only if W
admits a handle decomposition in which all handles can be removed, and then
W ∼= M1 × [0, 1].

Proposition 2.45. The s-cobordism Theorem implies the h-cobordism Theo-
rem.

Proof. Recall that any invertible matrix over the integers can be reduced by
elementary operations to the identity matrix. So all the matrices in GL(Z)
are equivalent in Wh(Z) which is trivial. When the manifolds M1 and M2 are
simply connected, then Wh(π) = {0} and the s-cobordism Theorem implies the
h-cobordism Theorem.
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2.2.2 The relative case

The notion of relative h-cobordism was introduced by Heafliger [45].

Definition 2.46. Two pairs (M1, V1) and (M2, V2) of manifolds with Vi ⊂Mi

for i = 1, 2 are h-cobordant if there exist a pair of manifold (M,V ) with V ⊂M
such that ∂M = M1 −M2, ∂V = V1 − V2 and the inclusion Mi ↪→M , Vi ↪→ V
are homotopy equivalences for i = 1, 2.

Then the h-cobordism and s-cobordism theorems can be extended to the
relative case.

2.3 Surgery on manifolds

In this section we describe modifications on manifolds called surgeries. We in-
troduce them now since they are very similar to handle gluing. In handlebody
decompositions of manifolds, we attach handles in order to give some descrip-
tions of the manifolds.

Start with a n-manifold X, and let ψ : Sk ×Dn−k → X be an embedding
for 0 < k < n. Set Y be the manifold obtained from X as follows

Y = X \
(
ψ(Sk ×Dn−k) ∪∂ (

Dk+1 × Sn−k−1
)
,

where the gluing is given by the identification of boundaries.

Definition 2.47. We say that Y is obtained from X after a surgery on ψ(Sk).
When the manifold X is embedded in a manifold W , if there exist an embed-

ding φ : Dk+1 × Sn−k−1 → W \
(
ψ(Sk×

◦
Dn−k)

)
such that ψ(Sk × Sn−k−1) =

ψ(Sk × Sn−k−1), then we say that the manifold

Y = X \
(
ψ(Sk ×Dn−k) ∪∂ φ(Dk+1 × Sn−k−1),

is obtained from X after an embedded surgery on ψ(Sk).

In fact surgeries can be described with handles gluing. The manifold Y
constructed by surgery on ψ(Sk) can be viewed as the upper boundary of

X × [0, 1] ∪ (ψk+1),

as depicted bellow

�
�

�
�

�	

��
���

���
����

ψ(Sk ×Dn−k)

X

Y

X × [0, 1]

(ψk+1)
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Modifications of manifolds with surgeries change homology groups. More
precisely a suregry on ψ(Sk) in a manifold X gives a manifold Y in which the
homology class of ψ(Sk) is zero. So if ψ(Sk) is a n-dimensional chain wich
represent a non trivial homology class in X, then the rank of the kth homology
group of Y may not be equal to those ofX. Moreover if ψ(Sk) is a n-dimensional
chain wich represent a trivial homology class in X then a surgery on ψ(Sk) must
add some homology class of dimension not equal to n.

Anyway, using Mayer-Vietoris exact sequences associated with decomposi-
tion of manifolds like

X \
(
ψ(Sk ×Dn−k) ∪∂ (

Dk+1 × Sn−k−1
)
,

one can compute exactly how a surgery modifies the homology of X.
We will combine surgeries and h-cobordism Theorem to construct cobordism

of knots. More precisley, to prove that two knots K0 and K1 are cobordant, we
need to find a manifold X such that ∂X = K0

∐
K1 and X ∼= K0 × [0, 1]. A

way to do that is to start with a manifold Z such that ∂Z = K0

∐
K1 and do

some surgeries on Z to get a manifold X with H∗(X,K0) = 0 and then apply
the h-cobordism Theorem to get X ∼= K0 × [0, 1].



Chapter 3

Spherical knots

”Die Mathematiker sind eine Art Franzosen:
Redet man zu ihnen, so bersetzen sie es in ihre

Sprache, und dann ist es alsbald etwas anderes.”
J.W. von Goethe,

- Maximen und Reflexionen

In this chapter, we consider the case of spherical knots. In the sixties,
Kervaire and Levine gave classifications of spherical knots up to cobordism, we
will recall some of their results in the following.

Unless specified all knots in this chapter are simple spherical (2n−1)-knots.

3.1 Alexander polynomial

3.2 S-equivalence

The Seifert form is the main tool to study cobordisms of odd dimensional spher-
ical knots. Since spherical knots are not in general fibered, then there exists
many distinct Seifert manifolds for a given spherical knot. Before going futher,
the first step is to know what happen on Seifert forms when we change the
Seifert manifolds associated with a spherical knot. In [82] Levine described the
possible modifications on Seifert forms of a spherical simple knot corresponding
to alterations of Seifert manifolds.

For a given (2n− 1)-knot K embedded in S2n+1 let us consider two Seifert
manifolds V1 and V2 associated with K. One can suppose that Vi × {i} is
embedded in S2n+1 × {i} ↪→ S2n+1 × [0, 1] for i = 0, 1. We denote by Ai the
Seifert form associated with Vi, and by Si = Ai+(−1)nAi the intersection form
associated with Vi for i = 0, 1.

With similar arguments as those used to proved that every knot bounds an
embedded Seifert manifold, ons can see that there is no obstruction to construct
an embedded submanifoldW of S2n+1×[0, 1] such that ∂W = V0∪K×[0, 1]∪V1.
Then the handle decomposition associated with a Morse function f : W → [0, 1]
show that V0 and V1 are related each other by embedded surgeries.

Remark 3.1. The manifold W is very usefull to construct submodules on
which the Seiferts forms vanishe. More precisely, when two n-cycle α and β in
H(V0)⊕H(V1) are null-homologous in Hn(W ) then A0 ⊕−A1(x, y) = 0.

To prove the last equality, remark that the positive direction of the normal
bundle of V0

∐
V1 in S2n+1 extend to a positive direction of the normal bundle

of W in S2n+1× [0, 1]. Set ξ and η some (n+1)-chains in W such that [∂ξ] = x
and [∂η] = y and ξ+W

the chain ξ pushed out W in the positive normal direction
in S2n+1× [0, 1]. Since the two chains ξ+W

and η do not intersect together, then

A0 ⊕−A1(x, y) = lS2n+1

(
(∂ξ)+, (∂η)

)
,

A0 ⊕−A1(x, y) = IS2n+1×[0,1](ξ+W
, η),

A0 ⊕−A1(x, y) = 0.



44 3 Spherical knots

When the critical points of f are not of index n nor n+1 then the associated
surgeries do not modify the homolgy groups Hn(V0) and Hn(V1); hence these
modifications do not affect the Seifert forms associated with V0 and V1.

Since the critical points of f are isolated, then it suffices to consider the
case where f has only one critical point. First, suppose that the critical point
is of index n. The corresponding surgery means that we attach a n-handle
to V0. More precisely, remove Dn+1 × Sn−1 and glue Sn × Dn along the
new boundary. Elementary computation with Mayer-Vietoris sequences give
Hn(W,V0) ∼= Hn+1(W,V1) ∼= Z and Hn(W,V1) ∼= H(W,V0) = 0. Let a be the
image in H(V1) of the generator of H(W,V1). If a has a finite order, then Seifert
forms associated with V0 and V1 are isomorphic since they are defined modulo
torsion.

If a has infinte order, then it is a multiple of a primitive element a0 of H(V1).
Moreover there exists b0 in H(V1) such that S1(a0, b0) = 1. Since rk

(
H(V1)

)
=

rk
(
H(V0)

)
+2 one can take (c1, . . . , ck) in H(V1) such that (a0, b0, c1, . . . , ck) is a

basis of H(V1) and (c1, . . . , ck) are homologous to a basis (d1, . . . , dk) of H(V0).
There exist a (n+1)-chain Γi in W such that ∂Γ is a n-chain which represent

the cycle di−ci for i = 1, . . . , k. Then for all i, j in {1, . . . , k} we have A0(di, dj)−
A1(ci, cj) is the intersection number of Γj and the translate of Γi off W in the
positive normal direction of W in S2n+1× [0, 1]. Since this intersection number
is zero then for all i, j in {1, . . . , k} we have A0(di, dj) = A1(ci, cj). By definition
a is null-homologous in W , hence we get A1(a, ci) = A1(ci, a) = A1(a, a) = 0
for i = 1, . . . , k. Thus we have A1(a0, ci) = A1(ci, a0) = A1(a0, a0) = 0. If A0

(resp. A1) is the matrix of A0 (resp. A1) with respect to the basis (d1, . . . , dk)
(resp. (c1, . . . , ck, a0, b0)), then

A1 =

A0 O ν
OT 0 w
µT z v

 ,

where O is a column vector whose entries are all 0, and ν, µ are column vector
of integers.

Since S1(a0, b0) = 1 then we have w+(−1)nz = 1. Recall that the Alexander
polynomial of K is well defined up to a unit in Z[t, t−1]. If we denote by ∆Ai

(t)
the Alexdander polynomial associated with Ai for i = 0, 1, then ∆A1(t) =
(tw+(−1)nz)(tz+(−1)nw)∆A0(t). So w or z must be 0, if w = 0 then one can
modify the vectors of the basis (c1, . . . , ck, a0, b0) to get

A1 =

A0 O O
µ′
T 0 0

OT 1 0

 .

Hence we define the enlargement A′ of a square integral matrix A as follows:

A′ =

 A O O
αT 0 0
OT 1 0

 or

 A β O
OT 0 1
OT 0 0

 ,

where O is a column vector whose entries are all 0, and, α and β are column
vectors of integers. In this case, we also call A a reduction of A′.
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Definition 3.2. Two square integral matrices are said to be S-equivalent if
they are related each other by enlargement and reduction operations together
with the congruence. We also say that two integral bilinear forms defined on free
Z-modules of finite rank are S-equivalent if so are their matrix representatives.

This equivalence relation characterize isotopy classes of spherical simple
(2n − 1)-knots with n ≥ 2 as stated in the following Theorem proved by
Levine [82].

Theorem 3.3 ([82]). For n ≥ 2, two spherical simple (2n−1)-knots are isotopic
if and only if they have S-equivalent Seifert forms.

We will need the two following Lemmas for the proof.

Lemma 3.4. Let K be a simple spherical (2n− 1)-knot, and let A be a Seifert
matrix associated with a (n − 1)-connected Seifert manifold for K. If Bis an
enlargement of A then B is a Seifert matrix associated with a (n− 1)-connected
Seifert manifold for K as well.

Proof. By Alexander duality

Lemma 3.5. If n ≥ 2, then two simple spherical (2n − 1)-knots admitting
identical Seifert matrices, associated with (n − 1)-connected Seifert manifolds
for K, are isotopic.

We refer to [82] p.191 for a proof of this Lemma, which is based on handle
decompositions for Seifert manifolds. Though the result is valid for all n ≥ 2,
we have to mention that special arguments must be used when n = 2.

When K is a spherical (2n− 1)-knot with Seifert manifold F , then the long
exact sequence in homology of (F,K) induces the exact short sequence

0 → Hn(F ) S∗→ Hn(F,K) → 0.

Morever when K is simple then Hn(F,K) is isomorphic to HomZ(Hn(F ),Z);
and if we equip Hn(F,K) with the dual basis of the one choosed for Hn(F ) then
the matrix of S∗ is A+ (−1)n tA, where A is the Seifert matrix associated with
F . So in that case we have det

(
A+ (−1)n tA

)
= ±1. The converse is also true

as stated bellow.

Proposition 3.6 ([82]). Let n be an integer greater or equal to 2, and let A be
an integral square matrix such that A+ (−1)n tA is unimodular. If n 6= 2, there
exists a simple spherical (2n − 1)-knot with Seifert matrix A; if n = 2, there
exists a simple spherical 3-knot with Seifert matrix S-equivalent to A.

Proof of Theorem 3.3. First suppose that two simple spherical (2n − 1)-knots
K0 and K1 are isotopic, then using the same argument to compute modifications
on Seifert forms corresponding to alterations of Seifert manifolds, we see that
their Seifert forms are S-equivalent.

For the converse, star with two simple spherical (2n− 1)-knots, denoted by
K and K ′, with S-equivalent Seifert forms. Then there exist a finite sequence
of matrices A1, . . . , Ak such that A1 = A is a Seifert matrix for K, Ak = A′

is a Seifert matrix for K ′ and for all i = 1, . . . , k − 1 the matrix Ai+1 is an
enlargement or a reduction of Ai up to congruence.
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Figure 3.1. The connected sum of trefoil knot and its inverse in C1

3.3 Cobordism of spherical knots

Let us denote by Cn the set of cobordism classes of spherical n-knots, and by
C̃n the set of concordance classes of spherical n-knots. These two sets have a
natural group structure. The group operation is given by the connected sum
see [65] Chapter III for details.

We say that an n-knot K ⊂ Sn+2 is null-cobordant if it is cobordant to the
trivial knot, i.e., if there exists an (n+ 1)-disk Dn+1 properly embedded in the
(n+3)-disk Dn+3 such that ∂Dn+1 = K ⊂ Sn+2 = ∂Dn+3. Similarly we define
the notion of null-concordant knot.

The neutral element of Cn is the class of null-cobordant n-knots, and the
neutral element of C̃n is the class of null-concordant n-knot.

To construct the inverse of a n-knot K one can suppose that K is embedded
in the upper hemisphere Sn+2

+ of the unit (n + 2)-sphere ∂Dn+3 = Sn+2 ↪→
Rn+3. Let ρ be the reflection in the equatorial hyperplane E of Dn+3, and
π : Rn+3 → E the projection onto E .

Then we construct the connected sum K ′ = K#ρ(K) of K and ρ(K) in
S2n+1; we illustrate this construction in Fig. 3.1 when K is the trefoil knot
embedded in S3. Moreover, one can suppose that this connected sum is made
in order to have π(K ′) = π(K ′ ∩ S2n+1

+ ), where S2n+1
+ is the upper hemisphere

of S2n+1 which contains K.
Then, set D =

(
π(K ′)× [0, 1]

)
∩Dn+3, remark that since π(K ′) is a (2n−1)-

disk, then D is homeomorphic to a (n+1)-disk; moreover ∂D = K ′ = K#ρ(K).
Since K ′#ρ(K ′) bounds a (n + 1)-disk embedded in Dn+3 then K#ρ(K)

is null cobordant and ρ(K) is the inverse of K. We have just proved that the
inverse of K is given by its mirror image with reversed orientation, which we
denote by −K !.

Similarly we can construct the inverse of a knot class in the concordance
groups C̃n.

First, let us focus on the case of spherical (2n − 1)-knots. Kervaire and
Levine used the notion of Witt eqiuvalence for integral bilinear forms.

Witt equivalence of integral bilinear forms

Definition 3.7. Let A : G × G → Z be an integral bilinear form defined on a
free Z-module G of finite rank. The form A is said to be Witt associated to 0 if
the rank m of G is even and there exists a submodule M of rank m/2 in G such
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that M is a direct summand of G and A vanishes on M . Such a submodule M
is called a metabolizer for A.

The following theorem was proved by Levine [80] and Kervaire [66].

Theorem 3.8. For n ≥ 2, a spherical (2n − 1)-knot is null-cobordant if and
only if its Seifert form is Witt associated to 0.

Proof.

For two spherical (2n − 1)-knots K0 and K1 with Seifert forms A0 and
A1 respectively, the oriented connected sum K = K0](−K !

1) has A = A0 ⊕
(−A1) as the Seifert form associated with the oriented connected sum along
the boundaries of the Seifert manifolds associated with K0 and −K !

1, where
−K !

1 denotes the mirror image of K1 with reversed orientation. Hence, as a
consequence of Theorem 3.8, we have that two spherical knots K0 and K1 are
cobordant if and only if the form A = A0 ⊕ (−A1) is Witt associated to 0. In
this case we sometimes say that A0 and A1 are Witt equivalent.

Proposition 3.9.

Remark 3.10. Witt equivalence is not an equivalence relation on the set of
integral bilinear forms of finite rank. Let A and B be two integral bilinear forms
of rank r such that A⊕−B is not Witt associated to 0. If we denote by Or the
zero form of rank r, then both A and B are Witt equivalent to 0r but A and B
are not Witt equivalent.

For ε = ±1, let Cε(Z) be the set of all Witt equivalence classes of integral
bilinear forms A defined on free Z-modules of finite rank such that A + εAT is
unimodular (for the notation, we follow [66]).

Proposition 3.11.

It can be shown that Cε(Z) has a natural abelian group structure, where
the addition is defined by the direct sum. Then we have the following.

Theorem 3.12 (Levine [80]). Let Φn : C2n−1 → C(−1)n

(Z) be the (well-
defined) homomorphism induced by the Seifert form. Then Φn is an isomor-
phism for n ≥ 3. But Φ2 is only a monomorphism whose image C+1(Z)0 is a
specified subgroup of C+1(Z) of index 2; and Φ1 : C1 → C−1(Z) is merely an
epimorphism.

Furthermore, Levine [81] showed the following (see also Remark ??).

Theorem 3.13. For ε = ±1, we have

Cε(Z) ∼= Z∞2 ⊕ Z∞4 ⊕ Z∞, (3.1)

where the right hand side is the direct sum of countably many (but infinite)
copies of the cyclic groups Z, Z2 and Z4.

Note that the right hand side of (3.1) is not an unrestricted direct sum,
i.e., each element of the group is a linear combination of finitely many elements
corresponding to the generators of the factors.
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Remark 3.14. Michel [93] showed that for n ≥ 1, spherical algebraic (2n− 1)-
knots have infinite order in C2n−1 as soon as we assume that the associated
holomorphic function germ has an isolated singularity at the origin and is not
non-singular. Note, however, that they are not independent. See Remark ??.

For n = 1, Φ1 : C1 → C−1(Z) is far from being an isomorphism. The non-
triviality of the kernel of this epimorphism was first shown by Casson-Gordon
[22]. The classification of spherical 1-knots up to cobordism is still an open
problem. Moreover, for spherical 1-knots, there is also the important notion of
a ribbon knot (see, for example, [115]). Ribbon knots are null-cobordant. It is
still an open problem whether the converse is true or not.

For even dimensions, we have the following vanishing theorem.

Theorem 3.15 (Kervaire [65]). For all n ≥ 1, C2n vanishes.

Let C̃n be the group of concordance classes of embeddings into Sn+2 of

1. the n-dimensional standard sphere Sn for n ≤ 4, or

2. homotopy n-spheres for n ≥ 5.

In [65] Kervaire showed that the natural surjection i : C̃n → Cn is a group
homomorphism.

Let us denote by Θn the group of h-cobordism classes of smooth oriented
homotopy n-spheres, and by bPn+1 the subgroup of Θn consisting of the h-
cobordism classes represented by homotopy n-spheres which bound compact
parallelizable manifolds [67]. Then we have the following

Theorem 3.16 (Kervaire [65]). For n ≤ 5 we have C̃n ∼= Cn, and for n > 6 we
have the short exact sequence

0 → Θn+1/bPn+2 → C̃n
i→ Cn → 0.

Note that for n ≥ 4, Θn+1/bPn+2 is a finite abelian group. For details, see
[67].



Chapter 4

Fibered knots and algebraic knots

”Ce chemin qui débouche sur la route de Chinon, bien au-delà de Ballan,
longe une plaine ondulée sans accidents remarquables, jusqu’au pays d’Artanne.
Là se découvre une vallée qui commence à Montbazon, finit à la Loire, et semble

bondir sous les châteaux posés sur ces doubles collines; une magnifique coupe
d’émeraudes au fond de laquelle l’Indre se roule par des mouvements de serpent.”

Honoré de Balzac,
- Le lys dans la vallée

In this chapter we will work only with odd dimensional knots. We first
define the notion of fibered knot and prove that Seifert forms of fibered knots are
unimodular, then we define algebraic knots associated with isolated singularities
of complex hypersurfaces.

4.1 Fibered knots

As explained in the introduction the set of fibered knots is much more smaller
than the set of knots. But using the fibration of the complementary of the
knot over S1 we will be able to construct many usefull data for the study of
cobordsim classes of fibered knots.

Recall (c.f. Definition 1.14) that a (2n − 1)-knot K is fibered when there
exist a trivialization τ : NK → K ×D2 of a closed tubular neighborhood NK of
K in S2n+1 and a smooth fibration φ : S2n+1 \K → S1 such that the following
diagram is commutative:

NK \K τ−−−−−−−→ K × (D2 \ {0})
φ|(NK\K)

↘ ↙p

S1

where p denotes the obvious projection. In this case, for each t ∈ S1, the closure
F in S(2n+1) of φ−1(t) is also called a fiber of K. Note that F = φ−1(t) ∪K is
a compact 2n-dimensional manifold with boundary ∂F = K.

4.1.1 Monodromy and variation map

Any C∞ locally trivial fibration φ, as in Definition 1.14, over S1 with fiber
F such that ∂F 6= ∅, is given up to isomorphism by a map called geometric
monodromy.

Definition 4.1. The geometric monodromy m : (F, ∂F ) → (F, ∂F ) is defined
up to isotopy such that φ identifies with

(F, ∂F )× [0, 1]
/(x, 0) ∼

(
m(x), 1

) → [0, 1]/0 ∼ 1,

and the restriction m|∂F is the identity.

The geometric monodromy induces two algebraic monodromies.
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Definition 4.2. LetK be a fibered knot with fiber F and geometric monodromy
m : (F, ∂F ) → (F, ∂F ).

The algebraic monodromy is the homomorphism h : Hn(F ) → Hn(F ) in-
duced by the geometrical monodromy m, and the characteristic polynomial of
the algebraic monodromy is denoted by ∆(t).

The relative algebraic monodromy is the homomorphism in relative homology
h̃ : Hn(F, ∂F ) → Hn(F, ∂F ) induced by m.

Using the geometrical monodromy one can define another operator, called
variation map. More precisely, let K be a fibered (2n − 1)-knot with fiber
F . For any relative n-chain a with ∂a ∈ ∂F = K, we have ∂

(
a − m(a)

)
=

∂(a)−m(∂a) = 0. Hence a−m(a) is an absolute chain. In the following, if a is
a chain, then we denote by [a] its homology class.

Definition 4.3. The following map V is called variation map.

V : Hn(F, ∂F ) → Hn(F )
[a] 7→ [a−m(a)]

Let a fibered (2n− 1)-knot K with fiber F , the Wang exact sequence asso-

ciated with the fibration S2n+1\
◦

N(K)→ S1 with fiber F provides

0 → Hn+1

(
S2n+1\

◦
N(K)

)
→ Hn(F ) Id−h→ Hn(F ) → Hn

(
S2n+1\

◦
N(K)

)
→ 0

by Alexander Duality (see [13]) we get Hk

(
S2n+1\

◦
N(K)

)∼= H2n−k(K), and
by Poincaré Duality we have H2n−k(K) ∼= Hk−1(K). Hence the previous Wang
exact sequence becomes

0 → Hn+1

(
K

)
→ Hn(F ) Id−h→ Hn(F ) → Hn

(
K

)
→ 0 (4.1)

Using the variation map, the exact sequences 1.1 and 4.1 can be related
together as follows.

First for k = n, n+1, let us define Gysin isomorphisms gk : Hk

(
S2n+1\K

)
→

Hk−1(K) by g
(
[a]

)
= [b ∩K] where b is a boundary chain of dimension (k + 1)

which meets K transversaly in S2n+1 and with boundary the k-chain [a].
Then the following diagram is commutative

0 → Hn+1

`
S2n+1 \K

´
→ Hn(F )

Id−h→ Hn(F )
i→ Hn

`
S2n+1 \K

´
→ 0

↓gn+1 || ↑V ↓gn

0 → Hn(K) → Hn(F )
S∗→ Hn(F, K) → Hn−1(K) → 0

The first square is commutative since gn+1 is an isomorphism, the second
square is commutative because of the definition of V (recall that S∗ is induced
by the inclusion). We only have to check the commutativity for the last square.
Start with a relative cycle in Hn(F,K) given by the homology class [c] of a
relative chain c of dimension n. Then V([c]) = [c−m(c)], and if b is a (n+ 1)-
chain with boundary c−m(c) = ∂b then gn

(
i([c−m(c)])

)
= [b∩K] = [∂c]. This

proves the commutativity, and as a consequence the five Lemma implies that V
is an isomorphism. We proved

Proposition 4.4. The variation map V : Hn(F, ∂F ) → Hn(F ) is an isomor-
phism.
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4.1.2 Seifert form

We already defined Seifert forms associated with simple knots, but in the case of
simple fibered knot one can define the Seifert form associated with a fiber using
the geometrical monodromy. Let us be more precise, and consider a fibered
(2n − 1)-knot K with fibration φ and fiber F . Write Fθ = φ−1(eiθ) for any

θ ∈ [0, 2π], then Fθ is homeomorphic to
◦
F . Moreover let h be a continuous

map h : [0, 1]× F0 → S2n+1 \K such that hθ maps F0 homeomorphically onto
Fθ, θ ∈ [0, 2π[ , when θ = 0 h0 = IdF0

and h2π is the geometrical monodromy
(which is defined up to isotopy).

Since φ is a locally trivial fibration, then distinct fibers never meet together.
This elementary fact implies that for two cycles [x] and [y] in Hn(F ), and for
θ ∈]0, 2π[ we have

lS2n+1

(
i+(x), y)

)
= lS2n+1

(
hθ(x), y

)
,

where lS2n+1 denotes the linking number of chains in S2n+1.
Then the Seifert form A is defined as follows

A : Hn(F )×Hn(F ) → Z
([x], [y]) 7→ lS2n+1

(
hπ(x), y

)
For ξ in Hn(F,K) and ζ in Hn(F ) we denote by < ξ, ζ > the intersection

number which is defined by

< ξ, ζ >= P̃
(
ξ
)
(ζ)

where P̃ : Hn(F,K)
∼=→ HomZ(Hn(F ),Z) is the composite of the Poincaré-

Lefschetz duality isomorphism and the universal coefficient isomorphism.
With the last definition of the Seifert form we easily get the following propo-

sition

Proposition 4.5. Let (α, β) ∈ Hn(F )×Hn(F,K) then A
(
α,V(β)

)
=< β,α >.

Proof. Start with ([a], [b]) ∈ Hn(F ) × Hn(F,K) then the following equalities
hold

A
(
[a],V([b])

)
= lS2n+1

(
hπ(a), b−m(b)

)
= lS2n+1

(
hπ(a), ∂

(
∪θ∈[0,2π]hθ(b)

))
= ID2n+2

(
hπ(a),∪θ∈[0,2π]hθ(b)

)
= < [hπ(b)], [hπ(a)] >Fπ

= < [b], [a] >

As a corollary of the previous proposition we have

Proposition 4.6. The Seifert form associated with a fibered knot is unimodular.

Proof. Let K be a fibered knot with fiber F . As before A and V are the Seifert
form and the variation map associated with F . We first fix a basis B = (βi)i∈I
for Hn(F ), and then we take the basis B∗ = (β∗i )i∈I for Hn(F,K) which is the
dual basis of B. By dual we mean that for all (i, j) in I2 we have

P̃
(
βi

)
(βj) = δij ,
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where δij = 1 if i = j and δij = 0 if i 6= j. With these choices, when β is a relative
chain in Hn(F,K) and α is a n-chain in Hn(F ) have the two column vectors b
and a respectively as matricial representations, then < β,α >= P̃

(
β
)
(α) = tb a.

Let us denote by A the matrix of the Seifert form A, and by V the ma-
trix of the variation map V relatively to the basis B and B∗. According to
Proposition 4.5, for all (β, α) in Hn(F,K)×Hn(F ) we have

A
(
α,V(β)

)
=< β,α > .

If we denote by a and b the two column vectors which represent α and β relatively
to the basis B and B∗ then the previous equality becomes taAV b = tb a. Hence
we have tb( tV tA)a = tba. Since this equality holds for any column vectors a
and b we have A = V −1. We already proved that V is an isomorphism so
detV = detA = ±1 and A is unimodular.

Proposition 4.7. Let K be a simple fibered (2n − 1)-knot with fiber F . Set
A be the matrix of the Seifert form, S the matrix of the intersection form and
H be the matrix of the monodromy associated with F . If I if the matrix of the
identity, then the following holds

S = A(I −H), H = (−1)n+1 tAA−1.

Proof. Let α and β be two n-cycles in Hn(F ), set α = [x] and β = [y] for two
n-chains x and y.

Set Z =
2π⋃
θ=0

hθ(y) the (n+1)-chain in S2n+1 with boundary ∂Z = y−m(y).

And set A and B two (n + 1)-chains in S2n+1 such that ∂A = y and ∂B =
m(y). Then Z + B − A is a (n + 1)-chain without boundary wich represent
the homology class of a (n+ 1)-cycle in S2n+1. Hence the intersection number
between Z +B −A and hπ(x) in S2n+1 must be zero.

If we denote by
〈
X,Y

〉
the intersection number between two chains in S2n+1,

then the following equalities hold〈
hπ(x), Z +B −A

〉
=

〈
hπ(x), Z

〉
+

〈
hπ(x), B

〉
−

〈
hπ(x), A

〉
= IFπ

(hπ(x), hπ(y)) +
〈
hπ(x),m(y)

〉
+l

〈
hπ(x), y

〉
= S(x, y) + A

(
x, h(y)

)
− A(x, y)

= S(x, y) + A
(
x, h(y)− y

)
.

The nullity of
〈
hπ(x), Z +B −A

〉
gives S = A(I −H).

Since S = A+ (−1)n tA and A is invertible, then we have

I −H = A−1(A+ (−1)n tA) = I + (−1)nA−1 tA.

Finally H = (−1)n+1 tAA−1 as desired.

With the unimodularity of Seifert forms associated with fibers of fibered
knots Durfee and Kato independently generalized the work of Levine.

Theorem 4.8 ([31],[58]). Let n ≥ 3. There is a one-to-one correspondance
of isotopy classes of simple fibered knots in S2n+1 and equivalence classes of
integral unimodular bilinear forms. The correspondance associates to each knot
its Seifert form.
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Proof. Let K0 and K1 be two simple fibered (2n− 1)-knots which are isotopic.
Using the same proof that we give for spherical knots, we can see that the
Seifert forms associated with the fibers of K0 and K1 are S-equivalent. But S-
equivalence of unimodular forms reduces to congruence of matrices, hence the
associated Seifert forms are equivalent.

Conversely, given an integral matrix A, to realize A as the matrix of an
integral bilinear form A, we can construct a simple knot with Seifert form A.
This is done as Kervaire did in [65] for spherical knots1, by gluing n-handles on
a the boundary of a (2n−1)-disk. The knot is the boundary of this handlebody,
and the handlebody itself is a Seifert manifold F for this knot K. The core of
the handles are the generators of the nth homology group Hn(F ), so we glued
such that the linking numbers between the handles correspond to the coefficients
of the matrix A. By construction the knot K is simple, we will prove that K is
fibered using the h-cobordism Theorem.

First let us fix some notations. Set X be the complementary in S2n+1 of
an open tubular neighbourhood of K in S2n+1, and let W = F ∩ X. Set N
a normal tubular neighbourhood of W in X, hence if M is a normal tubular
neighbourhood ot F in S2n+1 then N = M ∩ X. Moreover, it makes sense to
follow notations of Definition 1.6 and set N ∼= W+ × [0, 1] where W+ = F+ ∩X
correspond to W pushed in the positive normal direction in S2n+1.

Set Y = X \N , then the exact long homology sequence of the pair (Y,W+)
gives

. . .→ Hk(W+) → Hk(Y ) → Hk(Y,W+) → . . . (4.2)

Moreover the manifold W+ is (n − 1)-connected; and because of Alexander
duality Hk(Y ) ∼= H2n−k(F ), so Hk(Y ) = 0 for k ≥ n + 1. Hence the relative
homology groups Hk(Y,W+) vanishe for k ≥ n+1, by Poincare-Lefshetz duality
we also have Hk(Y,W+) vanishe for k ≤ n − 1. Then the long exact sequence
(4.2) reduces to

0 → Hn(W+) → Hn(Y ) → Hn(Y,W+) → 0.

But since the matrix A is unimodular, then the inclusion W+ ↪→ Y induces the
isomorphism Hn(W+)

∼=→ Hn(Y ). Remark that the injectivity also comes from
the fact that the image of a non trival homology class x of Hn(W+) in Hn(Y )
can’t be null homologous otherwise A will be degenerated because A(x, y) = 0
for any y in Hn(F ).

The surjectivity is a consequence of the unimodularity of A. To see that,
first remark that according to Alexander duality the free Z-modules Hn(Y ) and
Hn(W+) have same rank. Second, since the inclusion is injective, then if it is
not surjective there exists an indivisible element, namely x, in Hn(W+) wich is
homologous to an element α y of Hn(Y ) where α 6= −1, 0, 1 and y lies in Hn(Y ).
But this implies that α divides detA, which contredicts the unimodularity of
A.

Finally we get Hn(Y,W+) = 0 and Y is homeomorphic to W+ × [0, 1] ac-
cording to the h-cobordism Theorem.

Now it not difficult to see that the knot K constructed is fibered. This
comes from the decomposition of X in two pieces, namely N ∼= W × [0, 1] and

1The same technic works since Kervaire additional conditions were only used to insure that
the knot is spherical.
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Y ∼= W+ × [0, 1]. The identification of N and Y along their boundaries induces
an homeomorphism m : W →W such that X is homeomorphic to the quotient
W × [0, 1] by the equivalence relation (x, 0) ∼

(
m(x), 1

)
. Since all these maps

extend to S2n+1 \K, then the knot K is simple fibered.

Remark 4.9. For spherical simple (2n − 1)-knots, we have another algebraic
invariant, called the Blanchfield pairing, which is closely related to the Seifert
form (see [62, 130]). In fact, it is known that giving an S-equivalence class
of a Seifert form is equivalent to giving an isomorphism class of a Blanchfield
pairing.

We just saw that fibered knots have unimodular Seifert forms, moreover
fibered knots have a nice topological behaviour as stated in the following propo-
sition.

Proposition 4.10. Let n ≥ 1. Let K be a fiber knot of dimension 2n− 1 and
let F be a fiber of the fibration, then we have the following short exact sequence

0 → Hn(K)→Hn(F ) S∗→ Hn(F,K) → Hn−1(K)→0.

Proof. Recall that F is a Seifert surface associated with K. Moreover we know
that S2n+1 \K is homeomorphic to

◦
F ×[0, 1]/(x, 0) ∼ (m(x), 1) where m is the

geometrical monodromy. Hence S2n+1 \ F has the same homotopy type as F .
Now by Alexander duality we have

Hk(F ) ∼= H2n−k(S2n+1 \ F ) ∼= H2n−k(F ) for k > 0.

Moreover by Poincaré duality we have

Hk(F,K) ∼= H2n−k(F ),

and this implies
Hk(F,K) ∼= Hk(F ) for k > 0. (4.3)

Since K is (n− 2)-connected, then the long exact sequence

. . .→ Hn(K)→Hn(F ) S∗→ Hn(F,K) → . . .

gives the following short exact sequence

0 → Hn+1(F ) α→ Hn+1(F,K) → Hn(K) → Hn(F ) →

Hn(F,K) → Hn−1(K) → Hn−1(F )
β→ Hn−1(F,K) → 0

According to (4.2) the monomorphism α is an isomorphism, and the epimor-
phism β as well. Finally we get the desired short exact sequence

0 → Hn(K)→Hn(F ) S∗→ Hn(F,K) → Hn−1(K)→0

According to this proposition we see that the topological data about the
knot K are coming from the Kernel and the Cokernel of the intersection form
of F .

Moreover, as a consequence of the short exact sequence of Proposition 4.10
we see that the middle homology group of the fiber is a free abelian group.
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4.1.3 Alexander polynomials of fibered knots

Let K be a (2n − 1)-fibered knot with fiber F . As before, set X be the com-
plementary in S2n+1 of an open tubular neighbourhood of K in S2n+1, and let
W = F ∩X the intersection of the fiber with X.

Then we take the quotient of W × R by the equivalence ralation (x, α) ∼
(mk, α+ k) for any k ∈ Z. This quotient is homeomorphic to X and W ×R is
the infinite cyclic covering of X. Let τ be the generator of the Galois group of
the covering W ×R → X, which is the infinite cyclic covering of X. The action
of τ is given by the map which maps (x, α) to

(
m(x), α + 1

)
. If τ induces an

action, denoted by t on H∗(W × R) which acts as the monodromy h acts on
H∗(W ).

The homology group Hn(W × R) is a free abelian group which is finitely
generated because it has the homotopy type of a compact CW-complex. The
generator of the first elementary ideal of the Z[t, t−1]-module Hn(W ×R), i.e.,
the ideal generated by minor of maximal rank, is the caracteristic polynomial of
t. Moreover this polynomial is the Alexander polynomial of Hn(W ×R). Since
the action of t reduce to the action of h on Hn(W ), then we get the folklore
Theorem

Theorem 4.11. Let K be a fiber (2n − 1)-knot with fiber F . The Alexander
polynomial of Hn(F ×R) is the caracteristic polynomial of the algebraic mon-
odromy h : Hn(F ) → Hn(F ).

This result is compatible with the definition the previous Definition of the
Alexander polynomial of a (2n− 1)-knot K to be

∆K(X) = det(tA+ (−1)n tA)

since when K is a fibered knot, then the Seifert form A is unimodular and the
monodromy has H = (−1)n+1 tAA−1 as matrix. This gives

∆K(X) = det(tA+ (−1)n tA) = det(tId−H).

Since the Alexander Polynomial of a fibered knot K is ∆K(X) = det(X Id−
h), then as a consequence of the exact sequence (4.1) the fibered knot K is an in-
teger homological sphere if and only if ∆K(1) = ±1. this is also a consequence of
the short exact sequence of Proposition 4.10 since the matrix of the intersection
form S∗ is equal to A+ (−1)n tA and ∆K(1) = det(A+ (−1)n tA) = detS = ±1
if and only if the knot K is an integral homology sphere.

When K is a fibered knot ∆K is a characteristic polynomial so its leading
coefficient must be 1, and its last coeffcient is equal to ±detH which ±1, so we
get the following Proposition.

Proposition 4.12. A necessary condition for a knot to fiber is that the extremal
coefficients of the Alexander polynomial should be ±1.

4.2 Algebraic knots

As said in the introduction, algebraic knots are one motivation to the study of
fibered knots. In this section we will review some classical definition and result
about algebraic knots, we refer to [29, 100, 106] for details and proofs.



56 4 Fibered knots and algebraic knots

Let f : Cn+1, 0 → C, 0 be a holomorphic function germ with an iso-
lated singularity at the origin. Recall that for ε > 0 sufficiently small the
set Kf = f−1(0) ∩ S2n+1

ε is a (2n− 1)-dimensional manifold which is naturally
oriented, where S2n+1

ε is the sphere in Cn+1 of radius ε centered at the origin.
Furthermore, its (oriented) isotopy class in S2n+1

ε = S2n+1 does not depend on
the choice of ε, and we call it the algebraic knot associated with the isolated
singularity of f .
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