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A THEORY OF CONCORDANCE
FOR NON-SPHERICAL 3-KNOTS

VINCENT BLANLŒIL AND OSAMU SAEKI

Abstract. Consider a closed connected oriented 3-manifold embedded in the
5-sphere, which is called a 3-knot in this paper. For two such knots, we say
that their Seifert forms are spin concordant, if they are algebraically concor-
dant with respect to a diffeomorphism between the 3-manifolds which preserves
their spin structures. Then we show that two simple fibered 3-knots are geo-
metrically concordant if and only if they have spin concordant Seifert forms,
provided that they have torsion free first homology groups. Some related re-
sults are also obtained.

1. Introduction

In this paper, a closed (n− 2)-connected oriented (2n− 1)-dimensional manifold
embedded in the (2n+ 1)-sphere S2n+1 will be called a (2n− 1)-knot, or simply a
knot. A (2n−1)-knot is spherical, if the embedded manifold is abstractly homeomor-
phic to S2n−1. Throughout the paper, we shall work in the smooth category. All
the homology and cohomology groups are understood to be with integer coefficients
unless otherwise specified.

In the 1960’s Kervaire [9] and Levine [11] gave a classification of concordance
classes of spherical (2n − 1)-knots with n ≥ 2. They have proved that there is a
bijective correspondence between the concordance classes of such spherical knots
and the Witt-equivalence classes of certain Seifert forms.

More recently, for simple fibered (2n − 1)-knots with n ≥ 3, which are not
necessarily spherical, a complete characterization of concordance has been given by
the first author and Michel in [1]. This has been done by using Seifert forms as in
the case of spherical knots: more precisely, two simple fibered (2n − 1)-knots are
concordant if and only if their Seifert forms with respect to the (n− 1)-connected
fibers are algebraically concordant (for details, see §2).

The case of 3-knots is much more difficult to study, since the dimension of the
Seifert manifold is equal to four and the standard higher dimensional techniques,
such as Whitney’s trick, are not available. In [17], the second author has developed
a theory of concordance for 3-knots which are homology 3-spheres. In fact, such a
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case is very similar to the case of spherical 3-knots, which had been done by Levine
[11].

In this paper, we shall try to develop a theory of concordance for 3-knots which
are not necessarily homology 3-spheres.

We shall first observe that each 3-knot carries a canonical spin structure induced
from a Seifert manifold. For two 3-knots, we say that their Seifert forms are spin
concordant, if they are algebraically concordant with respect to a diffemorphism
which preserves their spin structures. Then we shall prove that two simple fibered
3-knots with torsion free first homology groups are concordant if and only if they
have spin concordant Seifert forms (see Theorem 2.15).

The paper is organized as follows. In §2, we shall give more precise definitions
to the notions introduced above, and state our main theorem.

In §3, we shall show that spin concordance is a necessary condition for concor-
dance. This will follow from the results already known in other dimensions together
with a slight modification involving the spin structures. As corollaries, we give some
interesting results which relate the concordance of 3-knots to their (image) regular
homotopy classes, and to the isotopy classes of their punctured 3-knots.

In §4, we shall show that spin concordance is a sufficient condition for concor-
dance. In fact, we shall prove this fact for simple 3-knots in general (not necessarily
fibered). The main techniques used in the proof are mainly from 4-dimensional
topology. In order to perform appropriate embedded surgeries as in the higher
dimensional case, we shall have to find a set of embedded 2-spheres in a certain
4-manifold. The existence of such embedded spheres follows from Whitney’s trick
in higher dimensions, while in our dimension, the same argument fails. Thus we
shall use a different method: we shall first construct embedded 2-spheres and then
find a diffeomorphism which sends the embedded 2-spheres to others that represent
correct homology classes.

In §5, we shall extend the class of simple 3-knots for which our characterization
of concordance continues to be valid. We also show that a similar extention is valid
in higher dimensions as well.

In §6, we shall restrict ourselves to embeddings of specific 3-manifolds. For
example, we shall show that two embeddings of the connected sum of some copies
of S1×S2 into S5 as simple fibered knots are concordant if and only if their Seifert
forms are algebraically concordant; i.e., in this case, the spin strucutures are not
necessary.

Finally in §7, we shall give some examples of simple 3-knots which have inter-
esting properties.

The second author would like to thank the people at the Louis Pasteur University
of Strasbourg, France, for their hospitality during his visit there.

2. Preliminaries

In this section, we shall give necessary definitions and then state our main the-
orem of this paper.

Definition 2.1. We say that two (2n− 1)-knots K0 and K1, abstractly diffeomor-
phic to the same (2n − 1)-dimensional manifold K, are concordant, if there exists
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an embedding Φ : K × [0, 1]→ S2n+1 × [0, 1] such that

Φ(K × {0}) = K0 ⊂ S2n+1 × {0},
Φ(K × {1}) = −K1 ⊂ S2n+1 × {1},

where −K1 is the mirror image of the knot K1 with the orientation reversed (see
Fig. 1).

S2n+1×{0}

S2n+1×{1}

Φ(K×[0,1])

−K1

K0

Figure 1. Concordance between K0 and K1

It is well-known that, for every (2n− 1)-knot K, there exists a compact oriented
2n-dimensional submanifold F of S2n+1 having K as the boundary. Such a manifold
F is called a Seifert manifold for K.

Definition 2.2. Suppose that F is a compact oriented 2n-dimensional submanifold
of S2n+1, and let G be the quotient of Hn(F ) by its Z-torsion. The Seifert form
associated with F is the bilinear form A : G × G → Z defined as follows. For
(x, y) ∈ G × G, we define A(x, y) to be the linking number in S2n+1 of ξ and η+,
where ξ and η are n-cycles in F representing x and y respectively, and η+ is the
n-cycle η pushed off F into the positive normal direction to F in S2n+1.

By definition a Seifert form for a (2n− 1)-knot K is the Seifert form associated
with a Seifert manifold for K.

Definition 2.3. A (2n− 1)-knot K is fibered, if there exists a fibration φ : S2n+1 \
K → S1 with φ being trivial on U\K, where U is a small open tubular neighborhood
of K, such that the closure of each fiber is a Seifert manifold for K. We shall often
call the closure of each fiber simply a fiber. The Seifert form defined on a fiber is
always unimodular (for example, see [6]). In the following, for a fibered (2n− 1)-
knot, we use the Seifert form defined on a fiber unless otherwise specified.

Definition 2.4. A (2n−1)-knot is simple, if it admits an (n−1)-connected Seifert
manifold. Furthermore, a fibered (2n − 1)-knot is simple, if its fiber is (n − 1)-
connected.

Recall that for higher-dimensional simple fibered knots we have a complete char-
acterization of concordance using their Seifert forms as follows (see [1]).

Theorem 2.5. For n ≥ 3, two simple fibered (2n− 1)-knots are concordant if and
only if their Seifert forms with respect to the (n−1)-connected fibers are algebraically
concordant.
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Here, algebraic concordance is defined as follows.

Definition 2.6. Let A be the set of all bilinear forms defined on free Z-modules
G of finite rank. Set ε = (−1)n. For A ∈ A, let us denote by AT the transpose of
A, by S the ε-symmetric form A + εAT associated with A, by S∗ : G → G∗ the
adjoint of S with G∗ being the dual HomZ(G,Z) of G, and by S : G×G→ Z the
ε-symmetric nondegenerate form induced by S on G = G/KerS∗. A submodule
M of G is said to be pure, if G/M is torsion free, or equivalently if M is a direct
summand of G. For a submodule M of G, let us denote by M∧ the smallest pure
submodule of G which contains M . We denote by M the image of M in G by the
natural projection map.

Definition 2.7. Let A : G×G→ Z be a bilinear form in A. The form A is Witt
associated to 0, if the rank m of G is even and there exists a pure submodule M
of rank m/2 in G such that A vanishes on M . Such a submodule M is called a
metabolizer for A.

Definition 2.8. Let Ai : Gi × Gi → Z, i = 0, 1, be two bilinear forms in A. Set
G = G0⊕G1 and A = A0⊕−A1. The form A0 is said to be algebraically concordant
to A1, if there exist a metabolizerM for A such that M is pure in G, an isomorphism
ψ : KerS∗0 → KerS∗1 , and an isomorphism θ : Tors(CokerS∗0 ) → Tors(CokerS∗1 )
which satisfy the following two conditions:

M ∩KerS∗ = {(x, ψ(x));x ∈ KerS∗0} ⊂ KerS∗0 ⊕KerS∗1 = KerS∗,(c1)

d(S∗(M)∧) = {(y, θ(y)); y ∈ Tors(CokerS∗0 )}(c2)

⊂ Tors(CokerS∗0 )⊕ Tors(CokerS∗1 ) = Tors(CokerS∗),

where d is the quotient mapG∗ → CokerS∗ and “Tors” means the torsion subgroup.
In the above situation, we also say that A0 and A1 are algebraically concordant with
respect to ψ and θ. Note that algebraic concordance is an equivalence relation, as
has been shown in [1, Theorem 1].

Remark 2.9. In the above definition, if Ai are Seifert forms associated with (n−1)-
connected Seifert manifolds Fi of simple (2n − 1)-knots Ki, i = 0, 1, then KerS∗i
and CokerS∗i are naturally identified with Hn(Ki) and Hn−1(Ki) respectively, since
we have the exact sequence

0 = Hn+1(Fi,Ki)→ Hn(Ki)→ Hn(Fi)
S∗i−→ Hn(Fi,Ki)

→ Hn−1(Ki)→ Hn−1(Fi) = 0,

where we identify Hn(Fi,Ki) with the dual of Hn(Fi) by Poincaré-Lefschetz duality.

We know that algebraic concordance is necessary for concordance of simple
fibered knots in any dimension (see [1]). In the case of 3-knots, we have to define
a new equivalence relation for Seifert forms in order to characterize concordance
classes of simple fibered 3-knots.

In the following, a spin structure on a manifold X means the homotopy class of
a trivialization of its tangent bundle over the 2-skeleton X(2). Note that X admits
a spin structure if and only if its second Stiefel-Whitney class w2(X) vanishes,
and that if it admits one, then the set of all spin structures on X is in one-to-one
correspondence with H1(X ; Z2).
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Let K be a 3-knot with Seifert manifold F . Recall that everything is oriented.
Then K has a natural normal 2-framing ν = (ν1, ν1) in S5 such that the first nor-
mal vector field ν1 is obtained as the inward normal vector field of K = ∂F in F .
It is easy to show that the homotopy class of this 2-framing does not depend on
the choice of the Seifert manifold F . Then K carries a tangent 3-framing on its
2-skeletonK(2) such that the juxtaposition with the above 2-framing gives the stan-
dard framing of S5 restricted to K(2) up to homotopy. This means that K carries a
natural spin structure, which is determined uniquely up to homotopy. Furthermore,
this spin structure coincides with that induced from the Seifert manifold F , which
is endowed with the natural spin structure induced from S5.

Definition 2.10. A 3-knot K is said to be free, if H1(K) is torsion free over Z.

Note that since CokerS∗ is torsion free for free knots, we do not need to consider
condition (c2) in the definition of algebraic concordance (see Definition 2.8).

Definition 2.11. Consider two simple 3-knots K0 and K1. Let A0 and A1 be
the Seifert forms of K0 and K1 respectively with respect to 1-connected Seifert
manifolds. We say that A0 and A1 are spin concordant, if there exists an orientation
preserving diffeomorphism h : K0 → K1 such that

(1) h preserves their spin structures, and
(2) A0 and A1 are algebraically concordant with respect to h∗ : H2(K0) →

H2(K1) and h∗|TorsH1(K0) : TorsH1(K0) → TorsH1(K1), where we iden-
tify H2(Ki) and H1(Ki) with KerS∗i and CokerS∗i respectively for i = 0, 1
(see Remark 2.9).

Note that if K0 and K1 are free 3-knots, then we do not need to consider condition
(c2) of Definition 2.8 and hence the isomorphism h∗|TorsH1(K0) in the above
definition.

Remark 2.12. Spin concordance of Seifert forms with respect to 1-connected Seifert
manifolds is an equivalence relation. More precisely, it defines an equivalence re-
lation on the set of pairs of a Seifert manifold of a simple 3-knot and its Seifert
form. This fact can be shown by using [1, Theorem 1] together with an additional
argument concerning spin structures.

Remark 2.13. Algebraic concordance of Seifert forms does not necessarily imply
spin concordance. See Examples 7.1 and 7.2 in §7.

Remark 2.14. It is essential that we use 1-connected Seifert manifolds in Defini-
tion 2.11. See Example 7.5.

The main theorem of this paper is the following.

Theorem 2.15. Two simple fibered free 3-knots are concordant if and only if their
Seifert forms with respect to 1-connected fibers are spin concordant.

We shall restrict ourselves to free 3-knots for two reasons. The first one is that
algebraic concordance of Seifert forms is easier for free knots, since condition (c2)
is not necessary in the definition of algebraic concordance. The second, and the
most important one, is the dimension of the fiber. We shall use some results from
4-dimensional topology which require that the boundary 3-manifolds should have
torsion free first homology groups.
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3. Spin concordance as a necessary condition for knot concordance

In this section, we shall prove the following, which is valid for simple fibered
3-knots in general (not necessarily free).

Proposition 3.1. If two simple fibered 3-knots are concordant, then their Seifert
forms with respect to 1-connected fibers are spin concordant.

Proof. Let K0 and K1 be two concordant simple fibered 3-knots. We denote by
F0 and F1 their 1-connected fibers, and by A0 and A1 the associated Seifert forms,
respectively. By [1], we know that A0 and A1 are algebraically concordant, and the
metabolizer M for A0 ⊕−A1 is constructed as follows.

Let us denote by S the product S5 × [0, 1]. The definition of concordance (see
Definition 2.1) gives a submanifold C = Φ(K×[0, 1]) of S such that C∩(S5×{0}) =
K0 and C ∩ (S5 × {1}) = −K1. Set N = F0 ∪ C ∪ (−F1). By construction N is
a closed oriented 4-dimensional submanifold of S. By classical obstruction theory,
we see that there exists a compact oriented 5-dimensional submanifold W of S such
that N = ∂W . Let λi : H2(Fi)→ H2(N), i = 0, 1, be the homomorphisms induced
by the inclusions Fi ↪→ N , and let j : H2(N) → H2(W ) be the homomorphism
induced by the inclusion N ↪→ W . Then the submodule M = λ−1(Ker j∧) is a
metabolizer for A0⊕−A1, where Ker j∧ is the smallest pure submodule containing
Ker j and λ = λ0 − λ1 : G = H2(F0)⊕H2(F1)→ H2(N). In [1], it has been shown
that M is pure in G.

Using a normal 2-framing of C in S induced from the inward normal vector
field along N = ∂W in W , we see that the diffeomorphism h between K0 and K1

induced by C preserves their spin structures.
Moreover, in [1], it has been shown that A0 and A1 are algebraically concordant

with respect to h∗ : H2(K0) → H2(K1) and h∗|TorsH1(K0) : TorsH1(K0) →
TorsH1(K1) by using the fact that A0 and A1 are unimodular.

Thus spin concordance is a necessary condition for concordance in the case of
simple fibered 3-knots.

Remark 3.2. For a 3-knot K, a Seifert manifold is called an almost fiber of K, if its
Seifert form is unimodular. A simple 3-knot is called a simple almost fibered 3-knot,
if it admits a 1-connected almost fiber as a Seifert manifold (see [18, Remark 2.8
(1)], [4]). From the above proof, we easily see that Proposition 3.1 holds for simple
almost fibered 3-knots in general.

As a corollary to Proposition 3.1, we have the following.

Corollary 3.3. Let K be a simple almost fibered 3-knot. Then the spin concordance
class of a Seifert form with respect to a 1-connected almost fiber does not depend
on the choice of the almost fiber of K.

Note that a 1-connected (almost) fiber is not necessarily unique for a simple
3-knot (see [18, §5]).

As a corollary to the proof of Proposition 3.1, we have the following.

Corollary 3.4. If two 3-knots (which may not necessarily be fibered or almost
fibered) are concordant, then they are (image) regularly homotopic as immersed
manifolds in S5.

Compare the above corollary with [13, Theorem 7].
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Proof of Corollary 3.4. By [20], the regular homotopy class of an embedding of an
oriented 3-manifold into S5 is completely determined by two invariants: the Wu
invariant and the signature of a Seifert manifold. If two 3-knots are concordant,
then by using the argument in the proof of Proposition 3.1, we can show that their
spin structures coincide with each other and that their Seifert manifolds have the
same signature. Since the Wu invariant is determined by the spin structure, the
two embeddings have the same Wu invariant. Hence they are (image) regularly
homotopic as immersions into S5.

Note that the converse of the above corollary does not hold, since there exist a lot
of pairs of forms with the same signature but with distinct algebraic concordance
class. For example, consider the simple spherical 3-knots with Seifert forms Ak,
k ≥ 1, defined in [11, p. 243]. Then they are all (image) regularly homotopic, but
are pairwise nonconcordant.

Let K be a 3-knot. We shall denote by K◦ the punctured 3-manifold K \
IntD3 embedded in S5. Then we have the following corollary to the proof of
Proposition 3.1 as well.

Corollary 3.5. If two free 3-knots K0 and K1 are concordant, then K◦0 and K◦1
are isotopic in S5.

Proof. By using the manifold C in the proof of Proposition 3.1, we can show that
the Seifert forms of K◦0 and K◦1 with respect to their normal framings determined
by their Seifert manifolds coincide with each other (see [19]). Then by [19], we see
that the punctured 3-manifolds are isotopic.

4. Spin concordance as a sufficient condition for knot concordance

In this section, we shall prove the following, which is valid for simple free 3-knots
in general, which may not be fibered.

Theorem 4.1. Consider two simple free 3-knots. If their Seifert forms with re-
spect to 1-connected Seifert manifolds are spin concordant, then the 3-knots are
concordant.

Proof. Let K0 and K1 be simple free 3-knots such that the Seifert forms A0 and
A1 with respect to their 1-connected Seifert manifolds F0 and F1, respectively, are
spin concordant. Let M be the metabolizer and h : K0 → K1 the diffeomorphism
as in Definitions 2.8 and 2.11 respectively. Set F = F0\(−F1) and V = (K0 \
IntD3) × [0, 1], where the symbol “\” means a boundary connected sum. Note
that ∂F = K0](−K1) and ∂V = K0](−K0), where the symbol “]” means a usual
connected sum (see Fig. 2 and Fig. 3).

−F1F0

Figure 2. F = F0\(−F1)
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(K0 \ IntD3) × {0}
(K0 \ IntD3) × {1}

Figure 3. V = (K0 \ IntD3)× [0, 1]

Note also that the compact 4-manifold V is spin, where the spin structure is
induced from K0. In the following, a spin surgery along a simple closed curve c in a
spin 4-manifold is a process of taking off the tubular neighborhood N(c) ∼= S1×D3

of c and replacing it with D2 × S2 by gluing it along the boundary so that the
resulting 4-manifold is spin and so that the spin structure on the exterior of c
coincides with the original one.

Lemma 4.2. For some integer k ≥ 0, there exist a compact 4-manifold Ṽ and a
diffeomorphism h̃ : F]k(S2 × S2)→ Ṽ such that

(1) Ṽ is obtained from V by spin surgeries along simple closed curves, and
(2) h̃|∂(F]k(S2 × S2)) = idK0 ]h

−1 : K0](−K1)→ K0](−K0).

Proof. Step 1. Since H1(V ) ∼= H1(K0) is a finitely generated free abelian group,
we can obtain a 4-manifold V1 with H1(V1) = 0 from V by spin surgeries along a
finite set of simple closed curves ci, 1 ≤ i ≤ r = rankH1(K0), representing a basis
of H1(V ).

Step 2. Since π1(V1) is finitely generated, we can obtain a simply connected
4-manifold V2 from V1 by some spin surgeries.

Step 3. Since we have assumed that H1(Ki) is a free abelian group, the inter-
section forms of F and V2 are direct sums of a unimodular form and a zero form,
where the dimensions of the null spaces are equal to the rank of H1(K0](−K1)) ∼=
H1(K0](−K0)). Furthermore, since they are spin, their intersection forms are of
even type. Finally, since the Seifert forms of F0 and F1 are algebraically concordant,
the signature of F = F0\(−F1) vanishes, and that of V2 is equal to that of V , which
is zero. Thus, by the algebraic classification of unimodular forms (see, for example,
[12]), by repeating some spin surgeries along trivial simple closed curves in V2 if
necessary, we may assume that there exists an isometry Λ : H2(F (k))→ H2(V2) for
some integer k ≥ 0 such that the diagram

0 −−−−→ H2(∂F (k)) −−−−→ H2(F (k)) −−−−→ H2(F (k), ∂F (k))y(idK0 ]h
−1)∗

yΛ

xΛ∗

0 −−−−→ H2(∂V2) −−−−→ H2(V2) −−−−→ H2(V2, ∂V2)

−−−−→ H1(∂F (k)) −−−−→ 0y(idK0 ]h
−1)∗

−−−−→ H1(∂V2) −−−−→ 0
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−F1F0

Figure 4. F = F0](−F1)

is commutative, where F (k) = F]k(S2 × S2), we use Poincaré-Lefschetz duality to
identify H2(F (k), ∂F (k)) and H2(V2, ∂V2) with the duals of H2(F (k)) and H2(V2)
respectively, and Λ∗ is the adjoint of Λ.

Step 4. Note that the spin structures of K0](−K1) and K0](−K0) coincide with
those induced from F (k) and V2 respectively. Thus F (k) ∪idK0 ]h

−1 (−V2) is a closed
spin 4-manifold, since idK0 ]h

−1 preserves the spin structures by our hypothesis.
Furthermore, K0](−K1) and K0](−K0) are connected. Then by an argument of
Boyer [2, p. 347], we see that there exists a smooth h-cobordism relative to the
boundary between F (k) and V2 such that the induced diffeomorphism between the
boundaries of F (k) and V2 coincides with idK0 ]h

−1, and such that the induced
isomorphism between H2(F (k)) and H2(V2) coincides with Λ above.

Step 5. Finally, by the 5-dimensional stable h-cobordism theorem due to Lawson
[10] and Quinn [14], we see that there exists a diffeomorphism between F (k+k′) =
F (k)]k′(S2×S2) and Ṽ = V2]k

′(S2×S2) extending idK0 ]h
−1 : ∂F (k) → ∂V2. Since

Ṽ can be obtained from V2 by repeating k′ times the spin surgeries along trivial
simple closed curves, we get the result. This completes the proof of Lemma 4.2.

Remark 4.3. In Step 1, we can choose the curves ci, 1 ≤ i ≤ r, inside (K0\IntD3)×
{1/2}. After the surgeries, the embedded 2-sphere Σi in V1 corresponding to the
center sphere {0} × S2 of the piece D2 × S2 replacing N(ci) is homologous to
the boundary of a meridian 3-disk of ci in V . Let γ∗i , 1 ≤ i ≤ r, be a basis of
H2(K0 \ IntD3) ∼= H2(K0) which is Poincaré dual to the basis [ci], 1 ≤ i ≤ r,
of H1(K0), where [∗] denotes the homology class represented by ∗. Then, by the
above observation, we have [Σi] = i0∗γ

∗
i − i1∗γ∗i , where i0 : K0 → K0 × {0} ⊂ V1

and i1 : K0 → K0 × {1} ⊂ V1 denote the inclusions.

Lemma 4.4. For some integer k ≥ 0, there exist a compact 4-manifold Ṽ ′ and a
diffeomorphism h̃′ : F0](−F1)]k(S2 × S2)→ Ṽ ′ such that

(1) Ṽ ′ is obtained from V ′ = K0 × [0, 1] by spin surgeries along simple closed
curves, and

(2) h̃′|∂(F0](−F1)]k(S2 × S2)) = idK0

∐
h−1 : K0

∐
(−K1)→ K0

∐
(−K0).

Proof. Just glue D3× [0, 1] to F]k(S2×S2) and Ṽ in Lemma 4.2 along ∂D3× [0, 1]
to obtain F0](−F1)]k(S2 × S2) and Ṽ ′ respectively (see Fig. 2 and Fig. 4).

Let Ṽ ′ be as in the above lemma, i.e., obtained from K0 × [0, 1] by some spin
surgeries. Let Σ1,Σ2, . . . ,Σr be the embedded 2-spheres in Ṽ ′ which have been
created in the course of the surgeries in Step 1 of the proof of Lemma 4.2 (for
details, see Remark 4.3). Furthermore, let Σr+1,Σr+2, . . . ,Σr+s be the 2-spheres
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in Ṽ ′ created in Steps 2–5 in the proof of Lemma 4.2. For the latter spheres, since
the surgery curves are all null homologous, we see that there exist homology classes
σ∗r+1, σ

∗
r+2, . . . , σ

∗
r+s ∈ H2(Ṽ ′) such that

[Σi] · σ∗j =
{

1, i = j,
0, i 6= j,

for r + 1 ≤ i, j ≤ r + s. Modifying σ∗i , r + 1 ≤ i ≤ r + s, appropriately, we
may further assume that the s submodules 〈[Σi], σ∗i 〉 are orthogonal to each other
with respect to the intersection form S̃ of Ṽ ′, and that the intersection matrix of
〈[Σi], σ∗i 〉 is equal to (

0 1
1 0

)
,

where for a subset X of a module, 〈X〉 denotes the submodule generated by X .
Note also that

H2(Ṽ ′) = Ker S̃∗ ⊕
(

r+s⊕
i=r+1

⊥〈[Σi], σ∗i 〉
)
,

where the symbol “
⊕⊥” denotes an orthogonal direct sum.

By taking the connected sum of k copies of S2 × S2 with F0 inside S5, we may
assume that A0 is the Seifert form with respect to F0]k(S2 × S2). Let A1 be
the Seifert form with respect to F1. Furthermore, let S be the symmetric form
associated with A0 ⊕ (−A1) (see Definition 2.6). Note that S can be naturally
identified with the intersection form of F0](−F1)]k(S2 × S2) and hence with that
of Ṽ ′. In the following, we shall identify F0](−F1)]k(S2 × S2) with Ṽ ′ by using h̃′
in Lemma 4.4.

Lemma 4.5. There exists an isometry Φ of H2(F0](−F1)]k(S2×S2)) with respect
to S such that

(1) Φ|KerS∗ = id, and
(2) Φ∗[Σ1],Φ∗[Σ2], . . . ,Φ∗[Σr+s] are generators of the metabolizer M .

Proof. First recall that [Σ1], [Σ2], . . . , [Σr] lie in KerS∗ by Remark 4.3.
As has been shown in [1, Proposition 2.1], there exist a basis {mi,m

∗
i ; i =

1, 2, . . . , r + s} of G = H2(F0](−F1)]k(S2 × S2)) such that
(a) {mi; i = 1, 2, . . . , r + s} is a basis of M ,
(b) {mi,m

∗
i ; i = 1, 2, . . . , r} is a basis of KerS∗ and {m∗i ; i = 1, 2, . . . , r} is a

basis of KerS∗0 , where S0 is the symmetric form associated with A0, and
(c) the submodules 〈mi,m

∗
i 〉, i = 1, 2, . . . , r + s, are orthogonal for S; i.e.,

G =
r+s⊕
i=1

⊥〈mi,m
∗
i 〉.

We may further assume that

S(mi,mi) = 0, S(mi,m
∗
i ) = 1, S(m∗i ,m

∗
i ) = 0

for r+1 ≤ i ≤ r+s, since CokerS∗ is torsion free. Then define the isometry Φ : G→
G by Φ|KerS∗ = id, Φ([Σi]) = mi and Φ(σ∗i ) = m∗i for i = r + 1, r + 2, . . . , r + s.
This completes the proof of Lemma 4.5.
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Lemma 4.6. For some integer k ≥ 0, there exists an orientation preserving self-
diffeomorphism ϕ of the 4-manifold F0](−F1)]k(S2 × S2), which is the identity on
the boundary, such that ϕ∗ = Φ on the second homology group.

Proof. Let J be the submodule of G = H2(F0](−F1)]k(S2 × S2)) generated by
[Σi] and σ∗i with r + 1 ≤ i ≤ r + s. Note that G = KerS∗ ⊕ J and that the
intersection matrix with respect to this decomposition is of the form 0⊕Q, where
Q is a unimodular symmetric matrix of even type and zero signature.

Then it is not difficult to see that an arbitrary isometry of (KerS∗ ⊕ J ; 0 ⊕Q)
which is the identity on KerS∗ is a composition of the following isometries:

(a) id⊕Λ, where Λ is an isometry of (J ;Q), and
(b) an isometry represented by the matrix of the form(

id ∗
0 id

)
with respect to the decomposition KerS∗ ⊕ J .

We can easily realize isometries of type (a) by diffeomorphisms which are the
identity on the boundary, by using Wall’s argument [21], since we may assume
k ≥ 1.

In order to realize isometries of type (b), we need the following lemma.

Lemma 4.7. Increasing k if necessary, we may assume that

F0](−F1)]k(S2 × S2) \ Σi
is simply connected for 1 ≤ i ≤ r + s.

Proof. Since F0](−F1)]k(S2×S2) is simply connected, π1(F0](−F1)]k(S2×S2)\Σi)
is normally generated by a meridian µi of Σi, where µi is the boundary of a fiber
of the 2-disk bundle neighborhood of Σi. Then, performing spin surgeries along µi,
we get the desired situation.

Now let us go back to the proof of Lemma 4.6. By Lemma 4.7, the spin surgery
creating each Σi corresponds to the connected sum operation with S2 × S2. Thus
by [21, Theorem 1], we get a diffeomorphism realizing an isometry of type (b)
corresponding to a matrix of the form(

id E
0 id

)
,

where E is a matrix having one entry equal to 1 and all the others equal to zero. Us-
ing this type of diffeomorphisms (sometimes we have to interchange the two factors
of S2 × S2, or use the inverse diffeomorphism), we get the desired diffeomorphism.
This completes the proof of Lemma 4.6.

Thus we have proved that the embedded 2-spheres ϕ(Σ1), ϕ(Σ2), . . . , ϕ(Σr+s)
in F0](−F1)]k(S2 × S2) constitute a set of generators for the metabolizer M .

Recall that F0](−F1)]k(S2 × S2) is embedded in S = S5 × [0, 1]. Then we
can perform appropriate surgeries along these embedded 2-spheres inside S as in
[1, §4]. Since each surgery process is exactly the inverse operation of each spin
surgery performed in the construction of Ṽ ′ (modified by the diffeomorphism ϕ),
the resulting 4-manifold is diffeomorphic to K0 × [0, 1], which is embedded in S.
Thus K0 and K1 are concordant. This completes the proof of Theorem 4.1 and
hence Theorem 2.15.
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Remark 4.8. As has been noted in Remark 2.13, algebraic concordance does not
necessarily imply spin concordance. Hence, Theorem 4.1 does not hold if we replace
spin concordance by algebraic concordance, even if we add the assumption that the
3-knots are abstractly diffeomorphic.

5. Extension to a larger class of 3-knots

As the arguments of §4 show, the sufficiency of Theorem 2.15 holds for simple
free 3-knots: i.e., the 3-knots in question need not be fibered. However, for the
proof of necessity in §2, we have used the hypothesis that the 3-knots are fibered.
In this section, we shall try to extend the class of simple fibered free 3-knots in such
a way that the necessity continues to hold for a larger class of 3-knots.

First we give a definition which is valid for any dimension.

Definition 5.1. We say that a simple (2n − 1)-knot K is C-algebraically fibered,
if the Seifert form of K with respect to an (n − 1)-connected Seifert manifold is
algebraically concordant to a unimodular form, where the zero form is also consid-
ered to be unimodular. In the following, for a C-algebraically fibered (2n−1)-knot,
we use the Seifert form defined on an (n − 1)-connected Seifert manifold which is
algebraically concordant to a unimodular form, unless otherwise specified. Note
that simple fibered knots are always C-algebraically fibered.

Remark 5.2. A simple (2n− 1)-knot is said to be algebraically fibered, if the Seifert
form with respect to an (n − 1)-connected Seifert manifold is S-equivalent to a
unimodular matrix (see [7], [16, §4]). Then we see easily that for a simple (2n− 1)-
knot, we have

simple fibered =⇒ algebraically fibered =⇒ C-algebraically fibered.

Note that the reverse implications do not hold in general. See [7] and Example 7.3.

Now, let us consider the case of 3-knots. Recall that a stabilizer KS is a simple
fibered spherical 3-knot whose fiber is diffeomorphic to (S2×S2)](S2×S2)\IntD4.
Such a stabilizer does exist. For details, see [16, §4]. Furthermore, there also exists
a stabilizer which is null cobordant (see [15, p. 600] or [18, §10]). In the following,
KS will denote such a null cobordant stabilizer.

Proposition 5.3. Let K be a simple free 3-knot. If K is C-algebraically fibered,
then there exists a simple fibered free 3-knot K ′ such that

(1) K and K ′ are concordant, and
(2) the Seifert form of K with respect to a 1-connected Seifert manifold and that

of K ′ with respect to a 1-connected fiber are spin concordant.

Compare the above proposition with [16, Proposition 4.4].

Proof of Proposition 5.3. Let F be a 1-connected Seifert manifold of K and A the
Seifert form for F . Note that A is algebraically concordant to a unimodular form
L by our assumption. Let ψ : H2(K) = Ker(A + AT ) → Ker(L + LT ) be the
isomorphism with respect to which A and L are algebraically concordant.

Let us first show that there exists a compact 1-connected oriented spin 4-manifold
F ′ with boundary diffeomorphic to K such that the spin structures induced from
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F and F ′ on K coincide with each other, and such that the intersection form of F ′

is isomorphic to

(L + LT )⊕ 2k
(

0 1
1 0

)
(5.1)

for some k ≥ 0. We can construct such a 4-manifold F ′ as follows.
We first construct a 4-dimensional special handlebody F1 consisting of one 0-

handle and some 2-handles attached to the 0-handle simultaneously such that ∂F1

is diffeomorphic to K, F1 is spin, and the spin structure induced from F1 coincides
with the given spin structure on K (for details, see [5]). Then by Rohlin’s theorem
together with Novikov additivity for signature, the difference of the signatures of F
and F1 must be divisible by 16. Hence, by using some copies of a spin 4-dimensional
special handlebody with boundary S3 and with signature ±16 (see [5]), we may
assume that F and F1 have the same signature. Note that the signature of F is
equal to that of L+LT . Then by the classification of symmetric unimodular forms,
we see that the intersection form of F ′ = F1]k

′(S2 × S2) is isomorphic to the form
(5.1) for some k, k′ ≥ 0. Here, we need the assumption that H1(K) is free.

Note that the above isomorphism between the intersection form of F ′ and the
form (5.1) induces an isomorphism H2(K) = Ker(A+AT )→ Ker(L+LT ). Chang-
ing the isomorphism between the intersection form of F ′ and (5.1) if necessary, we
may assume that the induced isomorphism coincides with ψ.

Recall that F ′ has a handlebody decomposition consisting of one 0-handle and
some 2-handles. Thus, by using Kervaire’s argument [8, pp. 255–257], we can embed
F ′ into S5 so that its Seifert form is given by L⊕kLS, where LS is the Seifert form of
a null cobordant stabilizer KS with respect to the 1-connected fiber. Set K ′ = ∂F ′.

Since L is unimodular, by using the stabilization technique developed in [16, §4],
we may assume that K ′ is a simple fibered 3-knot, increasing k if necessary.

Note that the Seifert form L ⊕ kLS for K ′ is algebraically concordant to L,
which is algebraically concordant to the Seifert form A for K by our assumption.
Furthermore, by the above construction, we see easily that L⊕ kLS and A are spin
concordant. Thus we have proved item (2) in the proposition. Item (1) then follows
from Theorem 4.1. This completes the proof of Proposition 5.3.

Corollary 5.4. If two C-algebraically fibered simple free 3-knots are concordant,
then their Seifert forms with respect to 1-connected Seifert manifolds are spin con-
cordant.

Proof. Let K0 and K1 be the simple free 3-knots as above. Then by Proposition 5.3,
K0 and K1 are concordant to simple fibered free 3-knots K ′0 and K ′1 with spin
concordant Seifert forms respectively. Then, since K ′0 and K ′1 are concordant, they
have spin concordant Seifert forms by Proposition 3.1. Thus K0 and K1 have spin
concordant Seifert forms, since spin concordance is an equivalence relation (see
Remark 2.12). This completes the proof.

Combining the above corollary with Theorem 4.1, we get the following.

Theorem 5.5. Two C-algebraically fibered simple free 3-knots are concordant if
and only if their Seifert forms with respect to 1-connected Seifert manifolds are
spin concordant.

Note that there are a lot of C-algebraically fibered simple free 3-knots which are
not fibered (see Example 7.3 of §7).
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We can prove a similar theorem for higher dimensions as well, as follows.

Theorem 5.6. For n ≥ 3, two C-algebraically fibered simple (2n − 1)-knots are
concordant if and only if their Seifert forms with respect to (n−1)-connected Seifert
manifolds are algebraically concordant.

Proof. Replacing Proposition 3.1 in the argument for the 3-dimensional case by [1,
Theorem 2′], we see that we have only to show the following: if a simple (2n− 1)-
knot K with n ≥ 3 is C-algebraically fibered, then K is concordant to a simple
fibered (2n−1)-knot K ′ such that the Seifert form A of an (n−1)-connected Seifert
manifold forK is algebraically concordant to the Seifert form of an (n−1)-connected
fiber of K ′.

Since K is C-algebraically fibered, A is algebraically concordant to a unimodular
form L. By Durfee [3], such a form is realized as the Seifert form of a simple fibered
(2n− 1)-knot K ′. Then by [1, Theorem 3], K is concordant to K ′. This completes
the proof.

6. Special cases

So far, we had to consider spin concordance of Seifert forms instead of the usual
algebraic concordance for 3-knots. In this section, we shall show that in some
special cases, algebraic concordance is sufficient.

Let us begin with the following definition.

Definition 6.1. Let M be a closed connected oriented 3-manifold. A 3-knot K is
called an M-knot, if K is abstractly diffeomorphic to M, orientation preservingly.

For a closed connected oriented 3-manifold M, let us consider the following
conditions.

(6.1) For any isomorphism ψ : H2(M) → H2(M), there exists an orientation
preserving diffeomorphism h1 :M→M such that h1∗ = ψ.

(6.2) For any two spin structures of M, there exists an orientation preserving dif-
feomorphism h2 : M→M which sends one spin structure to the other and
is such that h2∗ : H2(M)→ H2(M) is the identity.

Then we have the following.

Proposition 6.2. Let M be a closed connected oriented 3-manifold with torsion
free first homology group. Suppose that the above conditions (6.1) and (6.2) are
satisfied for M. Then two C-algebraically fibered simple M-knots are concordant
if and only if their Seifert forms with respect to 1-connected Seifert manifolds are
algebraically concordant.

Proof. The necessity follows from Corollary 5.4.
Now, suppose that K0 and K1 are C-algebraically fibered simpleM-knots whose

Seifert forms A0 and A1 with respect to 1-connected Seifert manifolds F0 and
F1, respectively, are algebraically concordant. We suppose that A0 and A1 are
algebraically concordant with respect to the isomorphism ψ : H2(K0) → H2(K1).
By the conditions (6.1) and (6.2), we see that there exists an orientation preserving
diffeomorphism h : K0 → K1 such that h∗ = ψ and h sends the spin structure of
K0 to that of K1. Hence, A0 and A1 are spin concordant with respect to h. Thus
by Theorem 4.1, K0 and K1 are concordant. This completes the proof.
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For example, ifM is a Z-homology 3-sphere, i.e., if H1(M) = 0, then H2(M) =
0 and M admits a unique spin structure. Thus the conditions (6.1) and (6.2)
are automatically satisfied. As another example, consider M = ]k(S1 × S2), the
connected sum of k copies of S1 × S2 with k ≥ 1. Then it is well known that the
conditions (6.1) and (6.2) are satisfied also in this case. Thus we have the following.

Corollary 6.3. Suppose M is a Z-homology 3-sphere, or M = ]k(S1 × S2), k ≥
1. Then two C-algebraically fibered simple M-knots are concordant if and only if
their Seifert forms with respect to 1-connected Seifert manifolds are algebraically
concordant.

In fact, when M is a Z-homology 3-sphere, a stronger result is known. For
details, see [17].

7. Examples

In this section, we give various examples with interesting properties.

Example 7.1. SetM = S1×Σg, where Σg is the closed connected orientable sur-
face of genus g ≥ 2. Note that H1(M) is torsion free. Let K0 and K1 be the simple
fiberedM-knots constructed in [18, Proposition 3.8]. They have the property that
their Seifert forms are isomorphic, but that there exists no diffeomorphism between
K0 and K1 which preserves their spin structures. Thus, the Seifert forms of K0

and K1 are algebraically concordant, but are not spin concordant. Hence they are
not concordant by Proposition 3.1.

This example shows that the spin structure plays an essential role in the theory
of concordance for 3-knots.

Example 7.2. Let M be a nontrivial orientable S1-bundle over the closed con-
nected orientable surface of genus g ≥ 2. Note that H1(M) is not torsion free
in general. Let K1,K2, . . . ,Kn be the simple fibered M-knots constructed in [18,
Theorem 3.1]. They have the property that their Seifert forms are isomorphic to
each other, but that any such isomorphism restricted to H2(Ki) cannot be realized
by a diffeomorphism. Thus, the Seifert forms of Ki are algebraically concordant
to each other, but are not spin concordant. Hence they are not concordant by
Proposition 3.1, which is valid also for non-free simple fibered 3-knots.

Example 7.3. We can construct simple 3-knots which are C-algebraically fibered,
but are not fibered, as follows. Let K be a simple fibered 3-knot. It is easy to
see that there are a lot of simple algebraically non-fibered spherical 3-knots K ′

which are null cobordant. For example, consider the boundary of S2× S2− IntD4

embedded in S5 so that its Seifert form is isomorphic to(
0 k

1− k 0

)
, k ≥ 1.

Then the simple 3-knot K]K ′ is C-algebraically fibered, since its Seifert form is
algebraically concordant to that ofK. However, K]K ′ is not (algebraically) fibered.

Example 7.4. We can construct concordant, but not isotopic, non-spherical 3-
knots as follows. Let KS be a null cobordant stabilizer as in §5. Note that KS is
a non-trivial 3-knot which is concordant to the trivial 3-knot. Then consider any
simple fibered 3-knot K which is not spherical. Then the two simple fibered 3-knots
K]KS and K are not isotopic, since the ranks of the second homology groups of
their fibers are distinct. However, these knots are concordant.
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Example 7.5. For a simple 3-knot, the algebraic concordance class of a Seifert
form depends on the choice of the Seifert manifold in general. For example, let
K be the trivially embedded S1 × S2 in S5; i.e., S4 is trivially embedded in S5

and S4 decomposes into F0 = D2 × S2 and F1 = S1 ×D3 along K. Note that F0

is a 1-connected Seifert manifold of K, while F1 is a Seifert manifold which is not
1-connected. Then the Seifert forms with respect to F0 and F1 are not algebraically
concordant, since the ranks of H2(Fi), i = 0, 1, do not have the same parity.

References

1. V. Blanlœil and F. Michel, A theory of cobordism for non-spherical links, Comment. Math.
Helv. 72 (1997), 30–51. MR 98h:57049

2. S. Boyer, Simply-connected 4-manifolds with a given boundary, Trans. Amer. Math. Soc. 298
(1986), 331–357. MR 88b:57023

3. A. Durfee, Fibered knots and algebraic singularities, Topology 13 (1974), 47–59. MR 49:1523
4. J. A. Hillman, Simple locally flat 3-knots, Bull. London Math. Soc. 16 (1984), 599–602. MR

86a:57019
5. S. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans.

Amer. Math. Soc. 254 (1979), 237–263. MR 82h:57015
6. L. Kauffman, Branched coverings, open books and knot periodicity, Topology 13 (1974), 143–

160. MR 51:11532
7. C. Kearton, Some non-fibred 3-knots, Bull. London Math. Soc. 15 (1983), 365–367. MR

84m:57014
8. M. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225–

271. MR 32:6479
9. M. Kervaire, Knot cobordism in codimension two, Manifolds–Amsterdam 1970 (Proc. Nuffic

Summer School), Lecture Notes in Math. 197 (1971), Springer, Berlin, pp. 83–105. MR
44:1016

10. T. Lawson, Trivializing 5-dimensional h-cobordisms by stabilization, Manuscripta Math. 29
(1979), 305–321. MR 80i:57024

11. J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969),
229–244. MR 39:7618

12. J. Milnor and D. Husemoller, Symmetric bilinear forms, Ergebnisse Math., Band 73, Springer,
Berlin, Heidelberg, New York, 1973. MR 58:22129

13. U. Pinkall, Regular homotopy classes of immersed surfaces, Topology 24 (1985), 421–434.
MR 87e:57028

14. F. Quinn, The stable topology of 4-manifolds, Topology Appl. 15 (1983), 71–77. MR
84b:37023

15. O. Saeki, On simple fibered 3-knots in S5 and the existence of decomposable algebraic 3-knots,
Comment. Math. Helv. 62 (1987), 587–601. MR 88k:57030

16. O. Saeki, Knotted homology 3-spheres in S5, J. Math. Soc. Japan 40 (1988), 65–75. MR
89g:57032

17. O. Saeki, Cobordism classification of knotted homology 3-spheres in S5, Osaka J. Math. 25
(1988), 213–222. MR 89g:57033

18. O. Saeki, Theory of fibered 3-knots in S5 and its applications, J. Math. Sci. Univ. Tokyo 6
(1999), 691–756. MR 2001b:57058

19. O. Saeki, On punctured 3-manifolds in 5-sphere, Hiroshima Math. J. 29 (1999), 255–272. MR
2000h:57045
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