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Generalizations of Geodesic Curvature and a Theorem of 
Gauss Concerning Geodesic Triangles.* 

By GILBERT AMES BLISS. 

Introduction. 

Many of the geometrical invariants of a curve on a surface can be defined 
in terms of the integral which expresses the lengtlh of the curve. Their 
geometrical invariance corresponds analytically to the fact that they remain 
invariant under a transformation of the parameters in terms of which the 
equations of the surface are expressed. In an earlier paper t the author has 
shown that there exists a function analogous to the angle between two given 
curves in a plane or on a surface, and related to an integral of the form 

u fx- r) )V x f22+y12 dt (1) 

as angle on a surface is related to length. The integral (1) is to be thought 
of as takenl along a curve in the form 

S (t), 3S = (t), (to_ t_<tl 

x' and y' represent the derivatives of x and y with respect to t; and X is the 
angle defined by the equations 

Cosf ., . sinr= 
V 2 + yt2 V X2 + yI 

For the length integral on a surface the function f has the special form 

f/ = VEcos r+ 2Fcosr sinr + Gsin2r. (2) 

In the present paper a similar generalization of the notion of the curvature 
of a curve in the plane or the geodesic curvature of a curve on a surface is 
exhibited. Th'is generalization is called extremsial curvature and is explained 
in ? 1. The possession of invariants corresponding to angle and geodesic 

* The results in ? 1 of this paper were presented to the American Mathematical Society, April 28, 
1906, under the title, "An Invariant of the Calculiis of Variations Corresponding to Geodesic Curvature." 

t "A Generalization of the Notion of Angle," Transactions of the American Mathematical Society, 
Vol. VII (1906), p. 184. 

1 

This content downloaded from 129.215.149.99 on Mon, 13 May 2013 17:41:25 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


2 BLISS: Generalizations of Geodesic Curvature and a 

curvature suggests at once the possibility of generalizing in a similar manner 
the formula of Gauss for the sum of the angles of a geodesic triangle on a 
surface. The situation is unfortunately not as simple as in the case of the 
surface theory. In ? 2 a notion called the area of a simply closed curve in a 
field of extremals is explained, and in ? 3 a generalization of Gauss' theorem 
is developed in which angle, extremal curvature and the area in a field are in- 
volved. In ? 4 the invariance under point transformation of the quantities 
introduced in the preceding sections is discussed, and in ? 5 the relation of the 
results of the paper to the usual formulas of surface theory is elucidated. 

? 1. Extremal Curvature. 

The geodesic curvature of a curve o:n a surface may be defi:ned in a number 
of different ways, to several of which there correspond by generalization in- 
variants of the integral (1). The most convenient definition for the purposes 

FIG. 1. 

of the present paper is the following, whicll depends upon the notion of angle.* 
Suppose at a fixed point a0 of a given curve C the geodesic E0 tangent to C 
is drawn. The geodesic tangent E at a movable neighboring point a will in 
general meet Eo at a point b. Let the angle between E0 and E at b be denoted 
by A13, and the length of the arc a.a by Au. Then the geodesic curvature of 
the curve C at the point a0 is equal to the litmlit 

lim A. (3) 
Au o Au 

This definition admits of a ready generalization when the function f in the 
integral (1) is not restricted to have the special form (2). The geodesics E 0, E 

* See IParboux, Levons sutr la Th4orie Jnec6rale des Surfaces, Vol. III, p. 129. 
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Theorem of Gauss Concerning Geodesic Triangles. 3 

can be replaced by extremals of the integral (1); the angle Z,g has already 
been generalized irn the paper referred to above, and instead of the length of 
arc the value of the integral (1) along ao a can be used. 

The extreirmals for the integral (1) are the solutions of the differential 
equation* 

T (x,y,er',r) = fx sinfr-f, cosr + fx, costr + fz sin ' + (f + fr) = 0, (4) 

which is of the second order. Through each point of the curve C there passes 
one of these solutions in the direction of the positive tangent to C. The 
equations of the one-parameter family so determined can be found in the form 

x = p (s, c), y = A (s, c), (5) 

where s is the length of arc of E measured from the point of tangency with C, 
and a is the paranmeter of the family. Then the curve C has the equations 

X = o (OJ a-), y= - (O,a) (6) 
with ac as the variable parameter. If the function f (x, y, r) is of class C"' 
and the expression f + f, different from zero in a neighborhood of the values 
of (x, y, r) on the curve C, and if the curve C is of class C'", then from the 
known properties of solutions of the differential equation (4) it follows that 
the functions p, +, qp, is are of class C' for all values of a. defining points on 
the arc C and for I s j a, if a is properly chosen. From the results of a 
previous paper by the writer t it also follows, when C is not an extremnal, that 
for negative values of s sufficiently near to zero the arcs of the extremals, 
such as b a in the figure, touch the curve C only at a and simply cover a region 
of the plane which has the curve C as a part of its boundary. An arc of the 
fixed extremal E. extending from ao in the direction s > 0 can be taken short 
enough so that it also lies in this region, and consequently so that through each 
of its points there passes one and but one of the extremals (5). In other words, 
the equations 

(p (s, ac) = c (so, ao), 4Ss a) - (so ao), (7) 

where ao is the constant value of a, and so the length of arc for the extremal E0, 
have single-valued solutions for s, a (s < 0) in terms of so. By implicit func- 
tion theory these solutions s (s,), ax (se) will be of class C' in an interval 
0 < s ? e with the value so = 0 omitted. But at so = 0 they are continuous 
and approach the values 0 and ao respectively. 

*.See Bliss, loc. cit., p. 188, where the most general solutions of (5) are given and their properties 
stated. With the help of these properties the existence and character of the family (5) can be readily derived. 

t " Sufficient Conditions for a Minimum with Respect to One-Sided Variations," Transactions of the 
American Mathematical Society, Vol. V (1904), p. 480. See also Bolza, "An Existence Proof for a Field 
of Extremals Tangent to a Given Curve," the same Transactions, Vol. VIII (1907), p. 399. 
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4 BLISS: Generalizations of Geodesic Curvature and a 

Witlh the help of these prelim-inaries the value of the liinit (3) can be 
calculated. The generalized angle /. is given by the equation 

A/3 Toff +f fdgr (8) 
f2 

where, in the functions f (x, y, r) and f = f (x, y, ?), the values x, y are the 
coordinates pf the point b, r is the variable of integration, and 'f is the direc- 
tion transversal to i defined by the equations 

-fsinr-f, cos' . f _ f cos-f sin.r 
Vf2+f2 sin'r V/f2+f2 (9) 

The limits r and 'r are the values of r on the curves E and Eo, respectively, 
at the point b. The denominator of the fraction (3) of which the limiting value 
is desired, is 

Au = fa: f da, 
where the arguments of the function f are values of x, y, Xr on the curve C 
taken from equations (5), and a is the length of arc along C measured from a,. 

From the mean-value theorem for a definite integral it follows that 

f= [\/f2 e] (r-r ), Au=[fV] (c+ ), (10) 

where r' and a' are properly chosen values between r and r, ao and a, respect- 
ively. As s. approaches zero, the expressions in brackets approaclh the values 
they have when x and y are the coordinates of the point a0, and r the direction 
of the curve C at a0,. By Taylor's formula with a remainder term, 

-? To [a S] (s -sO) + 

where the arguments s', a" of the expressions in brackets are supposed to be 
properly chosena mean values between so and s, o, and a, respectively. In order 
to find the limit (3), it is necessary, therefore, to evaluate 

lim E S-so + [3r] 

But the limit of [z] is the curvature of the extremal E0 at the point a0. 

From the equations 
COS Ir (8 (S2 a.), sine - = i (s, a),(l 

a r- + a1 (Ao ^1. 

* Transactions, Vol. VII (1906), p. 192. 
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Theo-4-em of Gauss Concerning Geodesic Triangles. 5 

it follows that the limit of ii is the curvature d-,? of the curve C at the 
Lao ~ ~ ~ ~ d 

point ao multiplied by a factorV qPa + 'a 
The limit of the fraction s sO can be evaluated by differentiating 

numerator and denominator for so and taking the lim'it of the quotient of the 
two derivatives. From equations (7) , 

ds d a ds d az (.o I ao) ( 

By multiplying by q+ and 4s, respectively, and adding, it follows that 

ds 
d -a= (q A a ) Ip +4p (1++ a+s4'a), 

dc~~~~~~~~~~P 
d s, 

since fromii equations (12) 
d a )SS?o +Fi 

d SO (s'4-t$a ipa45 

and since jb2 + ~ = 1. With the help of equations (11), 

+ 38 + CC ro0 =cos (r -,ro), o - IV' 4S8 Sin er tor 

and since 
( er - ) -1- limn C0.tt)1 

sin (er- TO) 

it follows that 
d s 

iim IS-o = l'il d so =-[ (pa + -As -a 90=0 
80 -Oa~-O SO=L dao a=aO 

The curves Eo and C are tangent at ao, and consequently, for s 0, a =ao 

(P 'S Os= 
- -4pa 

V a a a~ a~,2 

so that 

lim -[vq+ Ac ?sa= . (13) 
8'o a0 a aO 

By dividing the expressions (10) and using the limit (13), 

A 3 tVf2 +?f2(der der 
li_ 

m 
$ l f. 
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6 BLISS: Generalizations of Geodesic Curvature and a 

where the argum-ents x, y, X in f and its derivatives are for the curve C at the 

point ao, d- is the curvature of C at a., and the curvature of Eo at the 

point ao. From (4) the value of d- can be found and substituted, giving 

T 'x dcvd> 
d'r d ( K'' 'i" da) 
do ds f +f 7 

The extremal curvature of a curve C at a poitt a0 (see Fig. 1) is definted 
as a limit 

1 - lim 
9 Ats-20 A u 

Here A13 is the generalized angle (8) between two extremals, Eo and E, at 
their point of intersectiont b; Eo is supposed to be fixed and tangent to C at a 
point aO; while E is a movable extremal tangent to C at a. T'he quantity Au 
is the value of the integral (1) taken along the curve C from aO to a. 

According to this definition the value of I in terms of the function f and 

its derivatives turns out to be 

1 _ Vf2+f p = f \ffi+ fTT (x, y, r, r) (14) 

where the arguments of f, fT, f. are the coordinates (c, y) and the direction 
angle r of the curve C at a0, while in f =/ f (x, y, ;r) the angle 7P is the angle 
transversal to x defined by the equations (9). The expression T (xc, y, , cvr) * 

is the first member of the Euler equation (4) taken at a point ao of the curve C. 

? 2. Area in a Field. 

If a region R on any surface is simply covered by a one-parameter family 
of curves, the surface area of the region can be calculated by finding the set of 
curves orthogonal to the original family, and taking the double integral of the 
product of the elements of length along the curves of the two systems over the 
entire region. The result is the well-known integral 

ff f VEG _ F2 dxcdy, (15) 

which is independent of the systems of curves used in the calculation because 
E, F and G are functions only of the parameters x and y of the surface. 

* Here s is used instead of of for the length of arc along C. 
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Theorem of Gauss Concerning Geodesic Triangles. 7 

Thoughlt of in the xy-plane the image of the region R is simply covered by two 
families of curves one of which is transversal to the other in the sense of the 
calculus of variations, transversality in the plane being equivalent to orthogo- 
nality on the surface. 

In a similar manner, for any field of curves a double integral related to the 
integral (1) can be derived defining what will be called area int the field. The 
result is not independent of the faimily of curves used in its derivation, for, 
unlike the integrand of the integral (15), the new integrand contains not only 
x and y, but the function ' (x, y) defining the directions of the curves of the 
family. The area with respect to the integral (1) is dependent, therefore, 
not only upon the form of the region but upon the field of curves which covers 
the region. 

Let the family of curves E have equations of the form (5). If r is the 
direction angle at a point (x, y) of a curve E of the family, then a curve 
cutting E transversally at (x, y) must have a direction angle X which satisfies 
the equations (9). The parameter s can be determined as a function s (a) of a, 
so that, at any point of the curve 

X = (s (a.), a), y _A(s (a), ), (16) 

the direction angle has the value X transversal to -'. For, on account of the 
properties of p, 4 and f, and with the further assumption that f does not 
vanish in the field, the equations 

PSSa + qal= k (f sin e + fT cos r), (17) 
+, S. + Aa = k (- f cos e- + f, sin x),J 

are solvable for sa and k as functions of class C' in s and continuous in a, the 
arguments x, y and r being here supposed replaced by their values in terms of 
s and a in the field. Fromn the existence theorems on differential equations it 
results from this that through each point of the field there passes one and but 
one transversal curve (16). 

The integrand of the integral (1) taken along a transversal (16) has the 
form 

f A/ (OsSa + Pa)2 + (sSa + 4a)2d a., 

where the arguments of f are op, 4 and X for the curve (16). From (17) this 
expression becomes 

fVf2+ V daf2 , (18) 

where A is the functional determinant of the equa:tions (5). Similarly, along 
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8 BLISS: Generalizations of Geodesic Curvature and a 

a curve E the integrand of (1) has tlle value f ds, and tlle area in the field 
is therefore 

f5 f Vf2 + f2 A d s d = ff V \f2 + f2 dx dy. 

The ar-ea of any closed curve C in a field of curves E may be defined as a 
dlouble integral over the region bounded by C, the integrand of which is the 
product of the element f ds of the integral (1) taken along one of the curves E 
at a point (x, y) of the field, by the value of the same element taken along the 
curve transversal to the field at (x, y). The double integral representitg area 
in the field is then 

5ff f ?f2 dxdy, 

where, inl f (x, y, r) and f f (x, y, -), the arguments r and F are the functions 
of x and y defining the directions of the curves of the field and the transversals 
r espectively. 

? 3. A Generalization of a lTheorem of Gauss Concernitng Geodesic Triangles. 

One of the most beautiful theorems of the surface theory is that which 
states that the excess of the sum of the angles of a geodesic triangle over two 
right angles, is equal to the area of the image of the geodesic triangle on the 
Gaussian sphere. * Darboux shows the truth of the tlheorem by applying 
Green's theorem to the second member of the formula 

f(d f-1?) =f(rdx?+ rdy) (19) 

integrated over the boundary of a region on the surface. t Here 
(a 

is the anrgle 
at any point of the bounding curve between the curve and one of the parameter 
lines; 1/p and u are the geodesic curvature and length of the bounding curve, 
respectively; and r, r1 are two functions of the parameters x, y of the surface. 
After an application of Green's theorem the second member becomes the double 
integral of the curvature multiplied by the element of area on the surface, 
which represents also the area of the imnage of the triangle on the Gaussian 
sphere. If the boundary of the triangle is composed of arcs of geodesics, the 
geodesic curvature vanishes identically along it, and the first member of equation 
(19) becomes the sum of the variations of the angle X along the sides of the 

* Gauss, "General Investigations of Curved Surfaces," translated by J. C. Morehead and A. M. 
Hiltebeitel, p. 30. 

t Darboux, Iegons, Vol. III, p. 113; see also Vol. II, p. 354. 
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Theorem of Gauss Concerning Geodesic Trianzgles. 9 

geodesic triangle; that is, the difference between the sum of the angles of the 
triangle and two right angles. 

The formula (19) has an analogue in terms of the invariants which have 
been discussed in the preceding sections. The generalized angle 

f T 
f v2 + f2 a (20) 

between the direction 'r = 0 and the tangent to a curve C, is related to the 
extremal curvature (14) of the curve C by the formula 

dd(a 1 ditU g (x y, y ) (21) 

where g has the value 

g (x, y, ) = za cos er + c sin.a _- - (fx sin e-fy cosr 

+ fxcoser?+fTsinr), (22) 

as is readily seen from the formulas (14) and (20). The last expression is 
unifortunately not always linear in cos r and sin ,* and the sum of the vari- 
ations of the angle ca along the sides of a triaiagle whose sides are extremals is 
therefore not always expressible at once as a double integral over the interior 
of tlle triangle. Darboux has remarked, however, for the analogous situation 
in the surface theory, t that for any triangle whose sides are solutions of the 
differential equation of the second order 

(axCoser+ ys'iner+) er= MLcos +Nsine, (23) 

where M and N are arbitrarily chosen functions of x and y, the sum of the 
variations of the angle on the sides of the triangle is expressible at once by 
means of Green's theorem as a double integral. lor the solutions of the 
equation (23) the following statements are true: 

If a soluti6n of the equation (23) is an extremal, it must also satisfy 
the equation 

g (x, y, e) _ M cos r + N sin r, (24) 

and conversely. Further, if the totality of solutions of equation (23) is 
identical with the totality of extremals, then the function g must be linear 
itn cos tr and sin tr with coefficients functions of x and y, and the functions 
M and N must be so chosen that equation (24) is an identity in x, y, xr. 

* This is shown by the example f =cT, or f ax cos2 T. 

t Darboux, "Sur une serie des lignes analogues aux lignes glod&siques," Annales de l'EcoP e Normale, 
Vol. VII (1870); see also his Lecons, Vol. IlI, p. 137. 
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10 BLISS Generalizations of Geodesic Curvatur e and a 

Since the extremals are the curves along which the curvature i/p vanishes, 
the first part of the theorem is evident from (21) and (23). If f is different from 
zero for all values of r, the same will be true of ,T? and the equation (23) will 
have a solution through an arbitrarily chosen element (x, y, '). Hence, when the 
totality of extremals is the same as the totality of solutions of (23), the equation 
(24) must be an identity in x, y, r. This is the case which occurs in the surface 
theory when the function f has the form (2), as, will be shown later. It is also 
possible to have an identity of the form (24) for other values of f, for example 
when f does not contain x and y, but it is difficult to determine the most,general 
function f for which such an identity holds. 

If the equation (23) has among its solutions a one-parameter family of 
extremals forming a field, the functions M and N are expressible in the formn 

M - g' cosr' -g7 stn ' -H sin'r', N -g' sin er' + g' cost' + H cosir'. (25) 

Here H is a suitably chosen functinnt of x and y, and the arguments of g' and g' 
are x, y and the function T' (x, y) which represents the angle at the point (x, y) 
between the x-axis and the tangent to an extremal of the field. 

For the equation (24) must be an identity in the field when er' (x, y) is 
substituted for , and the expressions (25) with H - 0 are solutions of this 
equation. It follows readily that any functions Mll and N for which the equation 
is satisfied are expressible in the form (25). When H is identically zero, the 
following theorem holds: 

The sum of the variations of the angle o along the sides of a triangle A 
whose sides are solutions of the equation 

ds' = (g' cosr' -g' sin.,r') cos t + (g' sint' + g' cosT') sin'er, (26) 

where e' (x, y) is the angle function for an arbitrarily chosen field of curves, 
is expressible in the form 

ffA T(g') dxdy. 

The expression in the second member of (26) is exactly g (x, y, et) when g is 
linear in cos et and sin -r with coefficients functions of x and y. 

For, if both sides of equation (26) are integrated around the boundary 
of A, the result on the left is the sum of the variations of the angle C. on the 
sides of the triangle, while on the right Green's theorem gives 

sf4a3{ (g' ssint' + g' cost') - (g' cosr'-g'gsint')J dxdy, 

and it is readily seen that the expression under the integral sign is exactly T (g'). 
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Theoremn of Gauss Concerning Geodesic Triangles. 11 

If the angle function r (x, y) (used for convenience instead of the r' (x, y) 
in the last theorem) belongs to a field of extreinals, the value of T(g) is 

T(g) = (K+ -V djF fVf2+f2, (27) 

where K anid V are given by for-mulas (29) and (30) below. 

The function K is an invariant associated with Jacobi's equation which 
reduces to the curvature of a surface when f is the element of length on a sur- 

face, in which case also the value of V is unity. It has been shown in the 

preceding section that the expression f Vf2 + f2 dx dy may be regarded as an 
element of area in the field. For the case of the surface theory it reduces to 

the elenment of area on the surface. 
When the function f involves the curvature r, as well as the variables 

X, y, It, the value of T (f) will be defined to be 

T (f ) =tfx)siner-f 8 cos z + r5 (f-t r~,f, + d fIr-d- f 're 

The operator T has the following properties for arbitrary functions f and g: 

T -s f (X,Y,y,rr)]0, T (f+g) - T (+ (g) 1 

T1(fg) = f T (g) + g T (f) - f g er,s (28) 
+ (rd s d s+g d d-fd s __d df> 

The relation (21) may be written 

ds 9 (X,Y,') w ds-Wl (f) 

where 

f2 +f1 W- r f A/f f 

On account of the relations (28) it follows, for the function g just discussed, that 

T (g) =-WT [T (f) ]+d s dW)- [T (W)-WrS] T (f)-Wr d s (f) 

In a field of extremals of the function f the last two terms vanish, while 

T [T(f)]= aTf() sine- aT(f) cose- f,,2= 

* See Radon, "UlJber das Minimum des Integrals 5PF (X, y, 0, K) d s," Sitzungsberichte der Kaiser- 

lichen Akademie der Wissenschaf ten zu Wien, Vol. CXIX (1910), Abtheilung IIa, p. 1257. 

f See Bliss, "A New Form of the Simplest Problem of the Calculus of Variations," Transactions of 
the American Mathematical Society, Vol. VIII (1907), p. 40-5. 
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12 BLISS: Generalizations of Geodesic Curvature and a 

Let K and V be defined by the formulas * 

K= _ f2 1 d2 
fl f2 a--uV f f1j (29) 

17 = A/ -+- f f W= /Z t;7(30) 

in which the sign under the radical may be so chosen that the radical Is real 
Furthermnore, let the differentiations with respect to s be transformed into 
differentiations with respect to u, where 

du - 
ds- 

f (X, y',r) 

Then, after some calculation, it is found that the value of T (g) is exactly that 
given in the formula (27). For convenience in notation the prime has been 
dropped throughout these calculations. 

In any field of extremals there exists a two-parameter famnily of curves, 
defined by the equation (26), to wvhich the extremals of the field themselves 
belong, and which have the property that in any polygon whose sides consist 
of these curves the sum of the variattions of the generalized angle Xa along the 
sides of the polygon is equal to the double integral 

ff(K + ld2V) dA 

taken over the interior of the polygon. Here K is a known invariant (29) con- 
nected with Jacobi's equtation, dA is the element of area in the field, and the func- 
tiont V is given by the equation (30). The derivative d2V/d U2 is takent with 
respect to the variable 

u f f f (x, y, er) d s, 
in which the integral is taken along an extremal of the field. 

? 5. Invariantive Properties. 

The expressions which enter into the results of the preceding sections are 
either relative or absolute invariants under point transformations. Let the 
variables x, y, X be transformed by the transformation 

ax - X; (n y, = {; Ml7 nq (31 

* Compare the formula given for K with that given by Underhill for KE in his paper, "Invariants 
of the Function F (x, y, x', y') in the Calculus of Variations," Transactions of the American Mathematical 
Society, Vol, IX (1908), p. 334, formula (35). For the relation of K0 to the second variation, see p. 336. 
The value of the function K in the text above is the negative of Underhill's K, 
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Theorem of Gauss Con0cernting Geodesic Triangles. 13 

into a new set {, , 0. The relation between tr and 0 is determined by the 
equations 

R cos -- = cos 0 + X, sin 0, R sin -_ Yt cos 0 + Yw sinO, (32) 

where 

R_ V(X cos0?X sin0)2+YtCos0+Y,sin0)2 
= coser (X, cos0 + X,7 sin 0) - sinr (Yt cos0 + Y, sin0). (33) 

By differentiating (32), it is found that 

RK - cos er (- Xt sin 0 + X, cos 0) + sin r (- Yt sin 0 + Y',, cos 0 ), 

Rer=-sinr (-Xe sinO + X, cos0) + cosT(-Yf sin0 + Y, cos 0) = D 

Rf =costr d-X6 + sin X d Y' (34) 

dX ~ d YE R t=-sin er +cosr dar 

with similar expressions for the derivatives with respect to a. The symbol D 
stands for the functional determinant of the transformation (31), and a is the 
length of arc along a curve in the { -plane. 

The integral (1) becomes 

fh (x, y, 0) Vd '2+ 2t, (35) 
where 

h =fR 
=-(fcosr-f , siner)(XScos 0+ xn7sin0) + (f sinr+ f,COS-) ( Ytcos 0+ ,l sno), 

ho=f Ro + fRr 
= (fcos'r-fTsin'r)(-Xtsin0+X,lcos0)+ (fsiner+fTcosr) (-Y sin0+Y,cos 0), (36) 

h =R(fxXt+fYY~)fR +f7Reri 
=R (f,XX + f,Y) + (f cosr-fT siner) dX + (f siner + f COST) d4a(,2 

with a similar expression for the derivative of h with respect to 2. 

It follows readily that 

h cos0-ho sin0 = X (f coser-T siner) + YI (f sinr + fTc osr), (3) 
hsin0+h0cos0 = X,J(fcosr-f,sine) + Yj (fsinr+ feosr). 

From equations (9), therefore, 

Xf cosO + X., sinO = D ]4J cosr, } (38) 

Y cosO + Y sinO - D \Ir2+.h sinf, j 
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14 BLISS: Generalizations of Geodesic Curvature anxd a 

showing that the direction X transversal to r at a point in the xy-plane is 
transformed by equations (32) into the direction 0 transversal to 0 at the 
corresponding point of the f 2n-plane. 

The relation between the Euler expressions, T (f) and I (g), for the 
integrals (1) and (35) can be calculated from the relations (36) and (37). 
From (31), 

ds da d dI da d 
d t dt' da dt/ dt d 

It follows then that 

d sinOT(h) =he-dd(hcos0--h&,sin0) = DsinOTl(f), 

-cosOT(h) = h,,d (hsin0+ h. cos0) =-Dcos0T(f). 

Hence, the Euler expression T (f) for the integral (1) an(d the corre- 
sponding quantity T(h) for (35) are related by the formula 

T (h) =D T (f). (39) 
From equations (33) and (38), 

R (?,,0) = D h2+ ' (40) 

so that, with the help of the second of equations (34) and the first of (36), 

&J fhVh2 + hh dO = f fV\/ fj+fr dr, (41) 

where er' corresponds to 0', and r to 0, by means of the transformation (32). 
lThe generalized angle with respect to the integral (1) between two direc- 

tions Xr and 'r' at a point of the wy-plane, is equal to the generalized angle with 
respect to the integral (35) between the corresponding directions at the corre- 
sponding point of the {q-plane. 

By differentiating equations (37) for 0 and making use of (32) and the 
value of r, from the second of equations (34), it follows that 

D2~ ~ ~ ~~~~~(2 h + hoo = R 3 (f + fTT7) (42) 

From the first of the relations (36), with (40), (42) and (39), it can be shown 
that the extremal curvature 

lJV/f2 +f21f 
f 3 

f 
2+ 

f 2T 

* See Transactions, Vol. VITI (1907), p. 407. 
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Theorem of Gauss Concerning Geodesic Triangles. 15 

with respect to the integral (1), is the same as the extremal curvature with 
respect to the integral (35) at corresponding points of curves which are 
equivalent under the transformation (31). 

Similarly, from the first of the relations (36), with (40), 

ff* h A/h h2+ h 2w d i d = fIS f \/f 
2 

+ D d f d y7 = ff f -\ f2+ 2 d x d y 

so that the area enclosed by a curve C in a field of curves in the xy-plane, 
is equal to the area enclosed by the imiage of C in the tn-plane taken with 
respect to the image of the original field defined by the transformation (31). 

It remains to show that the two integrals which occur in the generalization 
of Gauss' theorem have also invariantive properties. From the behavior of 
6), p and h it follows that 

g (h) Rg (f), 
where g (h) and g (f) are the valnes of the function (22) formed for h and f, 
respectively. From this it follows also that the integral 

fg (x,y, ) ds 

is invariant under the transformation (31). Equations (37) show that the 
expression 

(g cos- gT sine) d x + (g sinr + gT cose) dy 

is equal to the expression formed in a similar way for the integral (35). The 
Euler expression T (g) is multiplied by the factor D when the transformation 

(31) is applied. Co-nsequently, t-he function T (g)/ (f Vf2 + f2) is an absolute 
invariant. From equation (27), the value of this fraction in a field consisting 
of extremals is 

T T`(g) = K + 1 d2 V (43) 
fV-\f2?+f2 +VdU2~ 

and it follows at once that the value of the second mnember of the equation, 
taken in a field of extremals, is an absolute invariant. But from equations 
(30), (36), (40) and (42) it is seen that V has the same property. Further- 
more, the derivative of any invariant with respect to t is always invariant, 
and the same is therefore true of the derivatives of V with respect to u, since 
u is an invariant and 

dV dV /du 
du dt / dt- 

It follows then that the three integrals 

g (x, y, T) d s, ff K + V d V dA, 

f [ (g costr- g sinr) d x + (g sint r+ g cose) d y], 
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16 BLISs: Generalizationts of Geodesic Curvature and a 

where g is the functions defined by equation (22), are all intvariant untder the 
transformation (31). In the integranid of the second of these the function V 
and its derivative d2 V/d u2 are invariants for all values of the arguments 
Xi y, 'r: r, q ,r,, while K Its invarilant at least when the argunents r, 'r,, rs are 
the functions of x and y defining the direction, curvature and derivative of 
curvature for an extremal of a field. 

? 6. Application to the Case of the Surface Theory. 

It is interesting to note how the invariants found above are related to the 
well-known invariants of the surface theory when the function f has the value 
(2). With the help of the notations 

X= E coser + F siner, t = F cos r + G sin'r, 

it follows, as in a preceding paper,* that 
XOSt + y SiBt 

f __X S'ler + y COS e 
t 

~~f f 
- 

f2 _ f2+f2 f2 f+fTT=72 

V \EG-F VX2 + j2 f2?f f2f2)fTT+ f 

so that the integral (41) giving the generalized angle takes the form 

rt' +/E'VEG -F 2 

E COS2r + 2F cos rsinr + G sin2 rd. 

The Euler expression T(f) has often been calculated. It has the value 
f3T T (f) - (E G -F2) 'r 

+ (E cos r + F sin e) [(F.,- 1E) cos2 
e 

+ G cos r sinr + t Gy sin2 r] 
(F cos e + G'sinri ) I E, COS2er + E coser sin e + (F - G 2 

which, substituted in (14), gives the well-known formula for the geodesic 
curvature t 

1 T(f) 

p-\ VEG-F 2 

The integral of g (x, y, r) from equation (22), which occurs in the proof of 
Gauss' theorem, can be found after some calculation. It has the value 

e 
(X r) -2EV + EEY + ExF OS+ Ey F-E G- sin e. (44) 

2 E 8E /-L 22E V\IEG F2 

Since g is linear in cos r and sin 'r, the value of T (g) is independent of the 

* Transactions, Vol. VII (1906), p. 193. 
t See, for example. Bolza. "Vorlesungen tuber Variationsrechnung," p. 210. 
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Theorem of Gauss Concerning Geodesic T'riangles. 17 

direction angle r and consequently entirely independent of the particular field 
in which it is taken. 

The value of V is found to be unity, so that the invariant K in a field of 
extremals is exactly the expression T (g) /(f Vf2 + f2) in equation (43). The 
numerator of the latter, calculated directly fronm (44), is given by the equation 

4 (EG-F 2)3/2T (g)-E (G2 + E -2F G 
+-F (ExGy + 4Fx F- 2EyFy - 2FxG- EyG) 
+ G (E2 22E$ +E G 
-2 (EG-F2) (Eyy -2F Fy + Gx) 

which, taken with the expression 

f Vf2 + f2 V G _F2, 

shows that K is the Gaussian curvature. 

These results were found by direct calculations which were somewhat long. 
It would be still more difficult to identify K with the curvature- by substituting 
in the expression (43), without a special choice of coordinates, the value of f 
from (2) and the values of zr. and r,, derived from Euler's equation. But 
the calculation becomes very simple when a transformation has been made 
which takes the transversals of the field into tlle lines x = a, and the extremals 
of the field into the lines y = b, and which furthermore makes the new x-coor- 
dinate of any point equal to the value of the integral (1) taken along the 
extremal -are joining the point in question to some fixed initial transversal. 
When such a transformation has been made, the function f (x, y, tr) will have 
special values for Mt 0. Since 

x-J ox f (x, y, 0) d x, 
it follows that 

f (x,y,O) 1. (45) 

The direction X = x/2 is everywhere transversal to r = 0, and consequently, 
from equations (9), 

fT (x,y,O) 0. (46) 

In the field the values of r and r, are zero, and it is easy to see from the formula 
just preceding (29), with (45) and (46), that /2=0. Consequently, from (29), 

I d2 (47) 
Vff3dX 
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18 BLISS: Generalizations of Geodesic Curvature, etc. 

For the length integral on a surface the conditions (45) and (46) mean that 

f (X$ y, e) = Vcos2r + m2 sin2E, 

where G has been put equal to in2. Then, in the field, f - 1 and f, = m2; and 
it follows, by substituting in equation (47), that 

K - d2M 

This is the well-known formula for the curvature of a surface when geodesic 
coordinates are used.* 

THE UNIVERSITY OF CMICAGO, Chicago, Ut. 

* Gauss, loc. cit., p. 28. 
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