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Generalizations of Geodesic Curvature and a Theorem of
Gauss Concerning Geodesic Triangles.”

By GiuerT AMEs BuLiss.

Introduction.

Many of the geometrical invariants of a curve on a surface can be defined
in terms of the integral which expresses the length of the curve. Their
geometrical invariance corresponds analytically to the fact that they remain
invariant under a transformation of the parameters in terms of which the
equations of the surface are expressed. In an earlier papert the author has
shown that there exists a function analogous to the angle between two given
curves in a plane or on a surface, and related to an integral of the form

u=faf(zy) Va’+y’dt (1)
as angle on a surface is related to length. The integral (1) is to be thought
of as taken along a curve in the form

z=uw(t), y=y(), (L St<t);

x' and y’ represent the derivatives of x and y with respect to ¢; and 7 is the
angle defined by the equations

ml . yl
W—W y ST = m .

For the length integral on a surface the function f has the special form

CoOsS T =

f=VEcos’r+2F cost sint + G sin® 7. (2)

In the present paper a similar generalization of the notion of the curvature
of a curve in the plane or the geodesic curvature of a curve on a surface is
exhibited. This generalization is called extremal curvature and is explained
in § 1. The possession of invariants corresponding to angle and geodesic

* The results in §1 of this paper were presented to the American Mathematical Society, April 28,
1906, under the title, “An Invariant of the Calculus of Variations Corresponding to Geodesic Curvature.”

T “A Generalization of the Notion of Angle,” Transactions of the American Mathematical Society,
Vol. VII (1906), p. 184.
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2 Buriss: Generalizations of Geodesic Curvature and a

curvature suggests at once the possibility of generalizing in a similar manner
the formula of Gauss for the sum of the angles of a geodesic triangle on a
surface. The situation is unfortunately not as simple as in the case of the
surface theory. In § 2 a notion called the area of a simply closed curve in a
field of extremals is explained, and in § 3 a generalization of Gauss’ theorem
is developed in which angle, extremal curvature and the area in a field are in-
volved. In § 4 the invariance under point transformation of the quantities
introduced in the preceding sections is discussed, and in § 5 the relation of the
results of the paper to the usual formulas of surface theory is elucidated.

§ 1. Extremal Curvature.

The geodesic curvature of a curve on a surface may be defined in a number
of different ways, to several of which there correspond by generalization in-
variants of thie integral (1). The most convenient definition for the purposes

Fie. 1.

of the present paper is the following, which depends upon the notion of angle.*
Suppose at a fixed point a, of a given curve C the geodesic E, tangent to C
is drawn. The geodesic tangent E at a movable neighboring point o will in
general meet E, at a point b. Let the angle between £, and E at b be denoted
by A3, and the length of the arc a,a by Au. Then the geodesic curvature of
the curve C at the point g, is equal to the limit

. AB
lm R (3)

This definition admits of a ready generalization when the function f in the
integral (1) is not restricted to have the special form (2). The geodesics E,, E

* See Darboux, Legons sur la Théorie Générale des Surfaces, Vol. III, p. 129.
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Theorem of Gauss Concerning Geodesic Triangles. 3

can be replaced by extremals of the integral (1); the angle AB has already
been generalized in the paper referred to above, and instead of the length of
arc the value of the integral (1) along a,a can be used.
The extremals for the integral (1) are the solutions of the differential
equation®
T (wy,7,%,) = f,sine —f, cos ¢ + f,, cosv + f,, sinw + (f + f.,) 7, = 0, (4)
which is of the second order. Through each point of the curve C there passes

one of these solutions in the direction of the positive tangent to C. The
equations of the one-parameter family so determined can be found in the form

z=¢ (s,a), y=1v(s a), (5)
where s is the length of arc of £ measured from the point of tangency with C,
and a is the parameter of the family. Then the curve C has the equations

z=¢ (0,a), y=+4(0,a), (6)
with « as the variable parameter. If the function f (z,y,z) is of class C’”
and the expression f + f,, different from zero in a neighborhood of the values
of (x,y,7) on the curve C, and if the curve C is of class C”, then from the
known properties of solutions of the differential equation (4) it follows that
the functions ¢, ¢, ¢,, ¥, are of class C’ for all values of « defining points on
the arc C and for |s| <8, if & is properly chosen. From the results of a
previous paper by the writer 1 it also follows, when C is not an extremal, that
for negative values of s sufficiently near to.zero the arcs of the extremals,
such as ba in the figure, touch the curve C only at ¢ and simply cover a region
of the plane which has the curve C as a part of its boundary. An arc of the
fixed extremal E, extending from a, in the direction s > 0 can be taken short
enough so that it also lies in this region, and consequently so that through each
of its points there passes one and but one of the extremals (5). In other words,
the equations
P (s,a) =@ (s, %), WY(s,a)=9(s, %), (7)
where a, is the constant value of «, and s, the length of arc for the extremal £,
have single-valued solutions for s, a (s <0) in terms of s,. By implicit fune-
tion theory these solutions s (s,), « (s,) Wwill be of class ¢’ in an interval
0 < s,<¢& with the value s, =0 omitted. But at s, =0 they are continuous
and approach the values 0 and «, respectively.

* See Bliss, loc. cit., p. 188, where the most general solutions of (5) are given and their properties
stated. With the help of these properties the existence and character of the family (5) can be readily derived.

+ « Sufficient Conditions for a Minimum with Respect to One-Sided Variations,” Transactions of the
American Mathematical Society, Vol. V (1904), p. 480. See also Bolza, “ An Existence Proof for a Field
of Extremals Tangent to a Given Curve,” the same Transactions, Vol. VIII (1907), p. 399.
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4 Buiss: Generalizations of Geodesic Curvature and a

With the help of these preliminaries the value of the limit (3) can be
calculated. The generalized angle AB is given by the equation

ap=f"1 \/?.ffz.+. 12 da, 8)

where, in the functions f (x,y, ) and f=f (x, y, %), the values z, y are the
coordinates of the point b, = is the variable of integration, and # is the direc-
tion transversal to = defined by the equations

—fsine—f, cos _feosT— fsmfr
VE+1 Vi + 1
The limits # and 7, are the values of ¢ on the curves E and E,, respectively,

at the point b. The denominator of the fraction (3) of which the limiting value
is desired, is

COS T = , sin¥% =

(9)

Au= (i fdo,
where the arguments of the function f are values of z, y, ¢ on the curve C

taken from equations (5), and ¢ is the length of arc along C measured from g,.
From the mean-value theorem for a definite integral it follows that

88 =[VEFE]  —m), su=[rvarFw]_ ==, (0

where 7’ and o’ are properly chosen values between = and 7,, a, and a, respect-
ively. As s, approaches zero, the expressions in brackets approach the values
they have when « and y are the coordinates of the point a,, and = the direction
of the curve C at a¢,. By Taylor’s formula with a remainder term,

7—10__[ ](s SO)+[8¢](a %),

where the arguments s’, a” of the expressions in brackets are supposed to be
properly chosen mean values between s, and s, a, and a, respectively. In order
to find the limit (3), it is necessary, therefore, to evaluate

. ot ls—s o
im {[§7]2=2+[52]).

But the limit of [%;f] is the curvature of the extremal E, at the point a,.

r=T/

From the equations
cos v = ¢, (s,a), sinw =, (s, a), (11)

¢a "J’aa q’aa "La
371 P+ 4z’

* Transactions, Vol. VII (1906), p. 192.
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Theorem of Gauss Concerning Geodesic Triangles. 5

it follows that the limit of [%] is the curvature % of the curve C at the

point a, multiplied by a factor V/ ¢Z + 2.

§— 8,

The limit of the fraction

o °An be evaluated by differentiating
- %o

numerator and denominator for s, and iaking the limit of the quotient of the
two derivatives. From equations (7),

¢sg§)+¢ag—§=¢&, (805 %), «l«,g-s‘?;%-%g;:d«, (85, %) (12)
By multiplying by ¢, and ¥,, respectively, and adding, it follows that

4s_q

Do = (pda—gut) 2at b= (g0 14y,

¢e ‘l’so - ¢So "Ls

as,
since from equations (12)

do _ ¢, — PV,
d80—¢8‘\‘lj——¢—:’l_b:’

and since @2 + 42 =1. With the help of equations (11),
¢3¢3° + ‘IJ-?'\L&J = COos8 (T - 70) ’ ¢ ¢So - ¢so¢s = Sin (‘T - F“0) ’

and since

lim £°8 (r—m) —1 _ 0
sin (¢ — ,) ’
it follows that

as _ 4
. 8§—8 _ s dS, _
1;3 o-—o, },,15 da [¢'¢“ + \ps\L“] p
ds,
The curves E, and C are tangent at a,, and consequently, for s =0, a = «,,
_ @ i
P Verw YT Verw
so that
lim $=5 = — [ VeIFF|oms - (13)
8o =0 o — ao a=a,y

By dividing the expressions (10) and using the limit (13),
lim 28 _ VP T firds 2

Au=o U 13 do ds
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6 Briss: Generalizations of Geodesic Curvature and o

where the arguments z, y, 7 in f and its derivatives are for the curve C at the

point a,, Z—z is the curvature of C at a,, and % the curvature of E, at the
point a,. From (4) the value of g—:: can be found and substituted, giving
dv
(_lz_ﬂl_z_T(w’ Y, T, %)
do ds f+ f'r-r

The extremal curvature of a curve C at a point a, (see Fig. 1) 1s defined

as a limit

l pumand lim _é_é.

[Y au=0 AU
Here ARB is the generalized angle (8) between two ewtrewmals, E, and E, at
their point of intersection b; E, is supposed to be fixed and tangent to C at a
point a,; while E is a movable extremal tangent to C at a. The quantity Au

18 the value of the integral (1) taken along the curve C from a, to a.
According to this definition the value of % i terms of the function f and

1ts derivatives turns out to be

1L _IVFERy,

—=r L T (x,y,7,T, (14

P P+ frr) (%, y, 7, 7,), )
where the arguments of f, f,, f., are the coordinates (x,y) and the direction
angle v of the curve C al a,, while in f =f (x,y,T) the angle T is the angle
transversal to © defined by the equations (9). The expression T (z,y,T, )"
is the first member of the Euler equation (4) taken at a point a, of the curve C.

§ 2. Area in a Field.

If a region B on any surface is simply covered by a one-parameter family
of curves, the surface area of the region can be calculated by finding the set of
curves orthogonal to the original family, and taking the double integral of the
product of the elements of length along the curves of the two systems over the
entire region. The result is the well-known integral

ffVEG—F?dxdy, (15)

which is independent of the systems of curves used in the calculation because
E, F and G are functions only of the parameters x and y of the surface.

* Here s is used instead of ¢ for the length of arc along C.
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Theorem of Gauss Concerning Geodesic Triangles. 7

Thought of in the zy-plane the image of the region R is simply covered by two
families of curves one of which is transversal to the other in the sense of the
calculus of variations, transversality in the plane being equivalent to orthogo-
nality on the surface.

In a similar manner, for any field of curves a double integral related to the
integral (1) can be derived defining what will be called area in the field. The
result is not independent of the family of curves used in its derivation, for,
unlike the integrand of the integral (15), the new integrand contains not only
z and y, but the function 7 (#, y) defining the directions of the curves of the
family. The area with respect to the integral (1) is dependent, therefore,
not only upon the form of the region but upon the field of curves which covers
the region.

Let the family of curves I have equations of the form (5). If ¢ is the
direction angle at a point (z, y) of a curve E of the family, then a curve
cutting F transversally at (x, y) must have a direction angle ¥ which satisfies
the equations (9). The parameter s can be determined as a function s (&) of a,
so that, at any point of the curve

=9 (s(a), a), y=+v(s(a),a), (16)

the direction angle has the value ¥ transversal to =. For, on account of the
properties of ¢, ¢ and f, and with the further assumption that f does not
vanish in the field, the equations

PS8+ ¢a:k(f8in7+f10087)) }
V.S + Yo =k(—fcosT+ f,sin7),

are solvable for s, and & as functions of class C’ in s and continuous in a, the
arguments z, y and ¢ being here supposed replaced by their values in terms of
s and a in the field. From the existence theorems on differential equations it
results from this that through each point of the field there passes one and but
one transversal curve (16).

The integrand of the integral (1) taken along a transversal (16) has the
form

(17)

FV (@, 80+ Pa)E + (¥, 82+ Vo) d o,

where the arguments of f are ¢, 4 and 7 for the curve (16). From (17) this
expression becomes

IVETT f%%da, (18)

where A is the functional determinant of the equations (5). Similarly, along
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8 Buiss: Generalizations of Geodesic Curvature and a

a curve E the integrand of (1) has the value fds, and the area in the field
is therefore

JSSIVPFFiadsda=fffVPFFidady.

The area of any closed curve C in a field of curves E may be defined as a
double integral over the region bounded by C, the integrand of which is the
product of the element f ds of the integral (1) taken along one of the curves E
at a point (w,y) of the field, by the value of the same element taken along the
curve transversal to the field at (x,y). The double integral representing area
i the field is then

SSIVEFRdady,

where, in { (x,y,%) and f = f (x,y,T), the arguments = and ¥ are the functions
of x and y defining the directions of the curves of the field and the transversals
respectively.

§ 3. 4 Generalization of a Theorem of Gauss Concerning Geodesic Triangles.

One of the most beautiful theorems of the surface theory is that which
states that the excess of the sum of the angles of a geodesic triangle over two
right angles, is equal to the area of the image of the geodesic triangle on the
Gaussian sphere.™ Darboux shows the truth of the theorem by applying
Green’s theorem to the second member of the formula

f(dm—%’_‘>:f(mx+rldy) (19)
integrated over the boundary of a region on the surface.t Here o is the angle
at any point of the bounding curve between the curve and one of the parameter
lines; 1/p and u are the geodesic curvature and length of the bounding curve,
respectively; and r, r, are two functions of the parameters «, y of the surface.
After an application of Green’s theorem the second member becomes the double
integral of the curvature multiplied by the element of area on the surface,
which represents also the area of the image of the triangle on the Gaussian
sphere. If the boundary of the triangle is composed of arcs of geodesics, the
geodesic curvature vanishes identically along it, and the first member of equation
(19) becomes the sum of the variations of the angle o along the sides of the

* (Gauss, “General Investigations of Curved Surfaces,” translated by J. C. Morehead and A. M.
Hiltebeitel, p. 30.
+ Darboux, Legons, Vol. III, p. 113; see also Vol. II, p. 354.
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Theorem of Gauss Concerning Geodesic Triangles. 9

geodesic triangle; that is, the difference between the sum of the angles of the
triangle and two right angles.

The formula (19) has an analogue in terms of the invariants which have
been discussed in the preceding sections. The generalized angle

_ (TIVPET
0= j; Td'r (20)
between the direction # =0 and the tangent to a curve C, is related to the
extremal curvature (14) of the curve C by the formula

d 1d
s pds =9 @w), (21)
where g has the value
9 (%,y,7) = 0,087 + , sinf:—f—‘i"f— (f,sinT—f, cose

—!—]cm.r 0087+fy7 Sinq")’ (22)

as is readily seen from the formulas (14) and (20). The last expression is
unfortunately not always linear in cos + and sin 7,* and the sum of the vari-
ations of the angle » along the sides of a triangle whose sides are extremals is
therefore not always expressible at once as a double integral over the interior
of the triangle. Darboux has remarked, however, for the analogous situation
in the surface theory,+ that for any triangle whose sides are solutions of the
differential equation of the second order

0, Co8T + o, 8inT 4 0, 7, = M cos7 4 N sinv, (23)

where M and N are arbitrarily chosen functions of x and y, the sum of the
variations of the angle on the sides of the triangle is expressible at once by
means of Green’s theorem as a double integral. For the solutions of the
equation (23) the following statements are true:

If a solutidn of the equation (23) is an extremal, it must also satisfy
the equation
9 (x,y,t) = M cost + N sinw, (24)
and conversely. Further, if the totality of solutions of equation (23) is
identical with the totality of extremals, then the [unction g must be linear
n cos T and sin T with coefficients functions of x and y, and the functions
M and N wmust be so chosen that equation (24) is an identity in x, y, T.

* This is shown by the example f—=x7, or f—uw cos? r.
+ Darboux, “Sur une série des lignes analogues aux lignes géodésiques,” Annales de I’ Ecole Normale,
Vol. VII (1870) ; sce also his Lecons, Vol. I1I, p. 137.

2
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10 Briss: Generalizations of Geodesic Curvature and a

Since the extremals are the curves along which the curvature 1/p vanishes,
the first part of the theorem is evident from (21) and (23). If fis different from
zero for all values of 7, the same will be true of v,, and the equation (23) will
have a solution through an arbitrarily chosen element (x, y, ). Hence, when the
totality of extremals is the same as the totality of solutions of (23), the equation
(24) must be an identity in «, y, *. This is the case which occurs in the surface
theory when the function f has the form (2), as will be shown later. It is also
possible to have an identity of the form (24) for other values of f, for example
when f does not contain « and y, but it is difficult to determine the most general
function f for which such an identity holds.

If the equation (23) has among its solutions a one-parameter family of
extremals forming a field, the functions M and N are expressible in the formn

M =g cosv —g,sint —H sint’, N =g sint' + g,cosz’ + H cosz'. (25)
Here H is a suitably chosen functinn of x and y, and the arguments of g’ and g.

are x,y and the function 7 (x,y) which represents the angle at the point (x,y)
between the x-axis and the tangent to an extremal of the field.

For the equation (24) must be an identity in the field when ¢’ (%, y) is
substituted for =, and the expressions (25) with H = 0 are solutions of this
equation. It follows readily that any functions M and N for which the equation
is satisfied are expressible in the form (25). When H is identically zero, the
following theorem holds:

The sum of the variations of the angle o along the sides of a triangle A
whose sides are solutions of the equation

do _

ds
where ¥ (x,y) s the angle function for an arbitrarily chosen field of curves,
is expressible in the form

(9’ cosz’ — g, sing’) cost + (g’ sine’ + g, cosz’) sinw,  (26)

ST (9') dxdy.

The expression in the second member of (26) is exactly g (x,y,v) when g is
linear in cos® and sinT with coefficients functions of x and y.

For, if both sides of equation (26) are integrated around the boundary
of A, the result on the left is the sum of the variations of the angle o on the
sides of the triangle, while on the right Green’s theorem gives

Sfa {5% (¢’ sin’ + g, cos’) ——3% (g9’ cosv’ — g~ sinr’)} dz dy,

and it is readily seen that the expression under the integral sign is exactly T'(g’).

This content downloaded from 129.215.149.99 on Mon, 13 May 2013 17:41:25 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

Theorem of Gauss Concerning Geodesic Triangles. 11

If the angle function T (x, y) (used for convenience instead of the 7’ (z, y)
in the last theorem) belongs to a field of extremals, the value of T (g) is

r9) = (K +5 S FVFFE, (27)

where K and V are given by formulas (29) and (30) below.

The function K is an invariant associated with Jacobi’s equation which
reduces to the curvature of a surface when f is the element of length on a sur-
face, in which case also the value of V' is unity. It has been shown in the

preceding section that the expression f V2 + fZdx dy may be regarded as an
element of area in the field. For the case of the surface theory it reduces to
the element of area on the surface.

‘When the function f involves the curvature =, as well as the variables
z, y, T, the value of 7' (f) will be defined to be

T (fy = f, 805 —f,co87 + 7, (f —7, 1) + o (f,— L 1.).

The operator T has the following properties for arbitrary functions f and g:
[ f @y =0, T(U+9) =11 +T(9),
T(fg)=fT(g)+gT(f)—fg'r - (28)
+<fr ds )§g+(gr 0, ds (72, +grsds)

The relation (21) may be written

d ®

9 @ y,7) == —WI(),
where _
oo _IVEET
fl 1

On account of the relations (28) it follows, for the function ¢ just discussed, that
aw arT
T(g) =—wr T+ (%W aZid),

ds
In a field of extremals of the functlon f the last two terms vanish, while

iz =2L0 50

—[TW) =W IT(f) =W,

sing — cost—fri=1F,.1

* See Radon, “ Uber das Minimum des Integrals f F (z,y, 0, k) ds,” Sitzungsberichte der Kaiser-
lichen Akademie der Wissenschaften zu Wien, Vol. CXIX (1910), Abtheilung ITa, p. 1257.

+ See Bliss, “A New Form of the Simplest Problem of the Calculus of Variations,” T'ransactions of
the American Mathematical Society, Vol. VIIT (1907), p. 405.
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12 Buriss: Generalizations of Geodesic Curvature and a

Let K and V be defined by the formulas *
fo 1 d

B=Trr T vimae Vi =
W= I VPEF

V=V=ffiw="_L T, 30
V= ff Y (30)

in which the sign under the radical may be so chosen that the radical is real
Furthermore, let the differentiations with respect to s be transformed into
differentiations with respect to u, where

du :
ds f (%, y,7).
Then, after some calculation, it is found that the value of 7' (g) is exactly that

given in the formula (27). For convenience in notation the prime has been
dropped throughout these calculations.

In any field of extremals there exists a two-parameter family of curves,
defined by the equation (26), to which the extremals of the field themselves
belong, and which have the property that in any polygon whose sides consist
of these curves the sum of the variations of the generalized angle o along the
sides of the polygon is equal to the double integral

1axv

55 (K + 5 0a) 44
taken over the interior of the polygon. Here K is a known invariant (29) con-
nected with Jacobi’s equation, dA is the element of area in the field, and the func-
tion V is given by the equation (30). The derivative d?V /du? is taken with
respect to the variable

u=ff(x,y,7)ds,

in which the integral is taken along an extremal of the field.

§ 5. Invariantive Properties.

The expressions which enter into the results of the preceding sections are
either relative or absolute invariants under point transformations. Let the
variables z, y, T be transformed by the transformation

v=X(&n) y=Y(n) (31)

* Compare the formula given for K with that given by Underhill for K, in his paper, “Invariants
of the Function I (x, y, #', ¥’) in the Calculus of Variations,” Transactions of the American Mathematical
Society, Vol, IX (1908), p. 334, formula (35). For the relation of K, to the second variation, see p. 336.
The value of the function K in the text above is the negative of Underhill’s K,.
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Theorem of Gauss Concerning Geodesic Triangles. 13

into a new set £, %, 0. The relation between = and 6 is determined by the
equations

B cost = X;cos6 + X, sin, Rsint=1Y,cos0+ ¥, sinb, (32)

where

R =V (X,cos6+ X,sin0)?+ Y, cos0 + Y, sin )
= cos7 (X, cos 0 + X, sin0) + sinz (¥, cosb 4 ¥, sin6). (33)
By differentiating (32), it is found that
R,=cos7 (— X, sin0 + X, cos0) + sinv (— Y, sinf + ¥, cos0),
Ry = —sine (—X,sin6 4 X, cos 0) 4 cosv(— Y, sin6 + ¥, cos 0) =§,

. aX, ay, r (34)
R, = cosv ——* io + sin e To

o una0X ay,
R7e= —sine s do’

with similar expressions for the derivatives with respect to ». The symbol D
stands for the functional determinant of the transformation (31), and ¢ is the
length of arc along a curve in the £x-plane.

The integral (1) becomes

fh(z,y,0) VE2+n2dt, (35)
where
h=fR )
= (feosv—f,s8inT)(X,cos0+ X, sinb)+(f sinv+f, cost) (¥ cos0+ 1 ,sinb),
hy=fRy+ [, Rz,
= (feosT—f,sin7) (—X,sinb+X,co0s0)+ (fsinw+f,cos7) (—¥ ;sinf+¥ ,cos0), ( (36)
hs =R (mee + fy z) ng + ffRTg

= R (LX+1,¥0) + (f oosw — f,sinm) L2+ (7 sinw + £, cos ) 4T,

with a similar expression for the derivative of i with respect to #.
It follows readily that

hcos® —h,sinf = X, (f cosT —f, sinv) + ¥, (f sinw + f, cos7), 37
hsin0+hacos0:X,,(fcoser—f,sinfr)+Y,,(fsinfr-l—f,coser).} (37)

From equations (9), therefore,

- - 2 2
X, co80+ X, sinf = D \/-}{2——}% cos 7T,

Y.cos0+ Y, sinf = D\/£2+%§ sin @,

(38)
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14 Buriss: Generalizations of Geodesic Curvature and a

showing that the direction T transversal to v at a point in the xy-plane is
transformed by equations (32) into the direction 0 transversal to 0 at the
corresponding point of the £x-plane.

The relation between the Euler expressions, 7 (f) and T (g), for the
integrals (1) and (35) can be calculated from the relations (36) and (37).
From (31),

ds _pdo d _d jdo_ . d
71=R70 de=dail qt=R1s
It follows then that
sinOT(h):hg—g‘%,(hcoso-—hasine)z Dsin6 T (f),

—cosO T (h) = h,,—ad_a (hsinf + h, cos0) = —D cos§ T (f).*
Hence, the Euler expression T (f) for the integral (1) and the corre-
sponding quantity T (h) for (35) are related by the formula
T (h) =DT(f). (39)
From equations (33) and (38),

— 2 2
B (60, 0) = Dy 45, (40)
so that, with the help of the second of equations (34) and the first of (36),
o7, 2
o= f h———”;;*‘hﬂde_f f\/f2+f’d7, (41)

where 7’ corresponds to ¢, and = to 6, by means of the transformation (32).

The generalized angle with respect to the integral (1) between two direc-
tions ¢ and v’ at a point of the wy-plane, is equal to the generalized angle with
respect to the integral (35) between the corresponding directions at the corre-
sponding point of the Exn-plane.

By differentiating equations (37) for 6 and making use of (32) and the
value of 7, from the second of equations (34), it follows that

Bt Tp =05 (F 4 fr.). (42)

From the first of the relations (36), with (40), (42) and (39), it can be shown
that the extremal curvature

_IVFET,
p =FGFfa L0

* See Transactions, Vol. VITI (1907), p. 407.
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Theorem of Gauss Concerning Geodesic Triangles. 15

with respect to the integral (1), is the same as the extremal curvature with
respect to the integral (35) at corresponding points of curves which are
equivalent under the transformation (31).

Similarly, from the first of the relations (36), with (40),
SSRVEFIdEdn = (ffVEFiDdEdn = [fI VP +idady,

so that the area enclosed by a curve C in a field of curves in the xy-plane,
is equal to the area enclosed by the image of C in the &n-plane taken with
respect to the image of the original field defined by the transformation (31).
It remains to show that the two integrals which occur in the generalization
of Gauss’ theorem have also invariantive properties. From the behavior of
o, p and & it follows that
g (k) = R g (f),

where g (k) and g (f) are the valnes of the function (22) formed for A and f,
respectively. From this it follows also that the integral

S9 (% y,7)ds
is invariant under the transformation (31). KEquations (37) show that the
expression
(g cosT—g,sinT)dx + (g9 sinT + g, cos7) dy

is equal to the expression formed in a similar way for the integral (35). The
Euler expression 7' (g) is multiplied by the factor D when the transformation
(31) is applied. Consequently, the function 7' (g)/( f V2 + f2) is an absolute
invariant. From equation (27), the value of this fraction in a field consisting

of extremals is
T (g9) 1 42V

f\/f2_|_f2_ K+ V du®’
and it follows at once that the value of the second member of the equation,
taken in a field of extremals, is an absolute invariant. But from equations
(30), (36), (40) and (42) it is seen that V has the same property. Further-
more, the derivative of any invariant with respect to ¢ is always invariant,
and the same is therefore true of the derivatives of V' with respect to u, since
u is an invariant and

(43)

dv _dv jdu
duw ~— dt/ dt’
It follows then that the three integrals
1d*v
fo @y ds, §f(E+55.5)d4,

fI[(gcost—g,sinz)dx + (g smfr—l— g.co087) dy],
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16 Briss: Generalizations of Geodesic Curvature and o

where g is the function defined by equation (22), are all invariant under the
transformation (31). In the integrand of the second of these the function V
and its derivative d*V/du® are invariants for all values of the arguments
Ty Y, Ty T,y Ty, While K is invariant at least when the arguments <, =, T, are
the functions of x and y defining the direction, curvature and derivative of
curvature for an extremal of a field.

§ 6. Application to the Case of the Surface Theory.

It is interesting to note how the invariants found above are related to the
well-known invariants of the surface theory when the function f has the value
(2). With the help of the notations

A =UFEcost + Fsinw, u=2Fcosv+ Gsinv,

it follows, as in a preceding paper,* that

f_zcos'r—husinf f _ —XsinT + ucosw
N f ’ T f ’
. ___ 224 . _EG—F"
f:-\/EG_Fz.\/——————_?L_ZTFz’ f2+f£_ fzﬂ’ f+f-rr= fs ’
so that the integral (41) giving the generalized angle takes the form
(T VEG—F*

r Fcos?v 4+ 2F costsine + G sin2e d
The Euler expression 7'(f) has often been calculated. It has the value
rIr() =(EG—F)«,
+ (E cos7 + F sinv) [ (F,— } E,) cos’v + G, cos T sinz + § G, sin’7]
— (F cosv 4 G'sinT) [§ E, cos’T + E cosTsint + (F — } G,) sin%7],
which, substituted in (14), gives the well-known formula for the geodesic
curvature t
i__1(h
¢ VEG—F?
The integral of ¢ (=, y, ) from equation (22), which occurs in the proof of
Gauss’ theorem, can be found after some calculation. It has the value
—2EF,+EE,+ E’“’Fcos'r—|— E,F—EQG,
2EVEG—F? 2EVEG—F?

Since g is linear in cos 7 and sin v, the value of 7' (g) is independent of the

gz, y,7) =

sinw, (44)

* T'ransactions, Vol. VII (1906), p. 193.
1 See, for example. Bolza. “ Vorlesungen iiber Variationsrechnung,” p. 210.
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Theorem of Gauss Concerning Geodesic Triangles. 17

direction angle  and consequently entirely independent of the particular field
in which it is taken.

The value of V is found to be unity, so that the invariant K in a field of
extremals is exactly the expression 7 (g)/(f V 2+ f2) in equation (43). The
numerator of the latter, calculated directly from (44), is given by the equation

4(EG—F*)°"T (9)=E(&+E,G,—2F,G)
+F(E,G,+4F,F,—2E,F,—2F,G,—E,G)
+ G (B —2E,F, + E,G,)
—2(EG—F*)(E,—2F,, + G,),

which, taken with the expression
FVPF = VEG—T,
shows that K is the Gaussian curvature.

These results were found by direct calculations which were somewhat long.
It would be still more difficult to identify K with the curvature by substituting
in the expression (43), without a special choice of coordinates, the value of f
from (2) and the values of 7, and 7, derived from Kuler’s equation. But
the calculation becomes very simple when a transformation has been made
which takes the transversals of the field into the lines = a, and the extremals
of the field into the lines y = b, and which furthermore makes the new z-coor-
dinate of any point equal to the value of the integral (1) taken along the
extremal -arc - joining the point in question to some fixed initial transversal.
‘When such a transformation has been made, the function f (z, y, ¥) will have
special values for # =0. Since

T = f(;&f (%,9,0) duw,
it follows that
f (2, y, 0) = 1. (45)

The direction ¥ = n/2 is everywhere transversal to = = 0, and consequently,
from equations (9),

fr(%,9,0) =0. (46)

In the field the values of ¢ and <, are zero,and it is easy to see from the formula
just preceding (29), with (45) and (46), that f,—=0. Consequently, from (29),
1 a2

Kz..———~vf_fld-w—2\/ﬁ. (47)
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18 Buiss: Generalizations of Geodesic Curvature, etc.

For the length integral on a surface the conditions (45) and (46) mean that

f (2, y,7) = Vcos’r + m?sinte,
where G has been put equal to m?. Then, in the field, f=1 and f,= m?; and
it follows, by substituting in equation (47), that
_1dm
m dx?’
This is the well-known formula for the curvature of a surface when geodesic
coordinates are used.*

K =

TaE UNIVERSITY OF Cuicaco, Chicago, I1L.

* Gauss, loc. cit., p. 28.
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