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Abstract. We prove the K -theoretic Farrell–Jones conjecture for hyper-
bolic groups with (twisted) coefficients in any associative ring with unit.

Introduction

The main result of this paper is the following theorem.

Main theorem. Let G be a hyperbolic group. Then G satisfies the K -theor-
etic Farrell–Jones conjecture with coefficients, i.e., if A is an additive cat-
egory with right G-action, then for every n ∈ Z the assembly map

HG
n (EVCycG; KA) → HG

n (pt; KA) ∼= Kn(A ∗G pt)(0.1)

is an isomorphism. This implies in particular that G satisfies the ordinary
Farrell–Jones conjecture with coefficients in an arbitrary coefficient ring R.

Some explanations are in order.

Basic notations and conventions. Hyperbolic group is to be understood in
the sense of Gromov (see for instance [12,14,33,34]).

K -theory is always non-connective K-theory, i.e., Kn (B) = πn(K
−∞B)

for an additive category B and the associated non-connective K -theory
spectrum as constructed for instance in [49].

Mathematics Subject Classification (2000): 19Dxx, 19A31, 19B28
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We denote by VCyc the family of virtually cyclic subgroups of G.
A family F of subgroups of G is a non-empty collection of subgroups
closed under conjugation and taking subgroups. We denote by EF G the
associated classifying space of the family F (see for instance [45]).

A ring is always understood to be a (not necessarily commutative) asso-
ciative ring with unit.

The K -theoretic Farrell–Jones conjecture with coefficients. Given an
additive category A with right G-action, a covariant functor

KA : OrG → Spectra, T �→ K
−∞(A ∗G T )

is defined in [7, Sect. 2], whereOrG is the orbit category of G and Spectra
is the category of spectra with (strict) maps of spectra as morphisms. To any
such functor one can associate a G-homology theory HG

n (−; KA) (see [19,
Sects. 4 and 7]). The assembly map for a family F and an additive cat-
egory A with right G-action

HG
n (EF G; KA) → HG

n (pt; KA) ∼= Kn(A ∗G pt)(0.2)

is induced by the projection EF G → pt onto the space pt consisting of one
point. The right hand side of the assembly map HG

n (pt; KA) can be identified
with Kn(A∗G pt), the K -theory of a certain additive category A∗G pt. We say
that the K -theoretic Farrell–Jones conjecture with coefficients for a group G
holds if the map (0.2) is bijective for F = VCyc, every n ∈ Z and every
additive category A with right G-action.

The original K -theoretic Farrell–Jones conjecture. If A is the cat-
egory of finitely generated free R-modules and is equipped with the trivial
G-action, then πn(KA(G/G)) ∼= Kn(RG) and the assembly map becomes

HG
n (EVCycG; KR) → HG

n (pt; KR) ∼= Kn(RG).(0.3)

This map can be identified with the one that appears in the original formu-
lation of the Farrell–Jones conjecture [28, 1.6 on p. 257], compare [37]. So
the main theorem implies that the K -theoretic version of the Farrell–Jones
conjecture is true for hyperbolic groups and any coefficient ring R.

The benefit of the K -theoretic Farrell–Jones conjecture is that it com-
putes Kn(RG) by a G-homology group which is given in terms of Kn(RV )
for all V ∈ VCyc. So it reduces the computation of Kn(RG) to the one of
Kn(RV ) for all V ∈ VCyc together with all functoriality properties coming
from inclusion and conjugation.

Let α : G → aut(R) be a homomorphism with the group of ring au-
tomorphisms of R as target. Let RαG be the associated twisted group
ring. Then one can define an additive category A(R, α) such that
Kn(A(R, α) ∗G G/H) ∼= Kn(Rα|H H), see [7, Example 2.6]. The assembly
map in the K -theoretic Farrell–Jones conjecture with coefficients in A(R, α)
has as target Kn(RαG).
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Farrell–Jones [28] formulate a fibered version of their conjecture which
has much better inheritance properties. It turns out that the version of the
Farrell–Jones conjecture with coefficients as formulated in the main theorem
is stronger than the fibered version and has even better inheritance properties
(see [7, Sect. 4]).

The case of a torsionfree hyperbolic group. Suppose that G is a subgroup
of a torsionfree hyperbolic group and R is a ring. Then the main theorem
implies for all n ∈ Z the existence of an isomorphism, natural in R,

Hn(BG; KR) ⊕
⊕

(C)

(NKn(R) ⊕ NKn(R))
∼=−→ Kn(RG),

where Hn(BG; KR) is the homology theory associated to the (non-
connective) K -theory spectrum KR of R evaluated at the classifying space
BG of G, (C) runs through the conjugacy classes of maximal infinite cyclic
subgroups of G and NKn(R) denotes the nth Bass–Nil-group of R. This
follows from [9, Theorem 1.3] and [45, Theorem 8.11]. If R is regular, then
NKn(R) = 0 for n ∈ Z and Kn(R) = πn(KR) = 0 for n ≤ −1.

Previous results. A lot of work about the Farrell–Jones conjecture has
been done during the last decade. Its original formulation is due to Farrell–
Jones [28, 1.6 on p. 257]. Celebrated results of Farrell and Jones prove
the pseudo-isotopy version of their conjecture for certain classes of groups,
e.g., for any subgroup G of a group Γ such that Γ is a cocompact discrete
subgroup of a Lie group with finitely many path components (see [28,
Theorem 2.1]). The pseudo-isotopy version implies the K -theoretic Farrell–
Jones conjecture for R = Z and n ≤ 1 and the rational K -theoretic version
for R = Z and all n ∈ Z. For more explanations, information about the
status and references concerning the Farrell–Jones conjecture we refer to
the survey article [46].

Most of the results about the K -theoretic version of the Farrell–Jones
conjecture deal with dimensions n ≤ 1 and R = Z. The first result deal-
ing with arbitrary coefficient rings R appear in Bartels–Farrell–Jones–
Reich [3], where the K -theoretic Farrell–Jones conjecture was proven in
dimension ≤ 1 for G the fundamental group of a negatively curved closed
Riemannian manifold. In Bartels–Reich [8] this result was extended to
all n ∈ Z. In this paper we replace the condition that G is the fundamen-
tal group of a negatively curved closed Riemannian manifold by the much
weaker condition that G is hyperbolic in the sense of Gromov, and also
allow twisted coefficients.

Further results. We mention that the main theorem implies that the
K -theoretic Farrell–Jones conjecture with coefficients in any ring R holds
not only for hyperbolic groups but for instance for any group which
occurs as a subgroup of a finite product of hyperbolic groups and for
any directed colimit of hyperbolic groups (with not necessarily injective
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structure maps). Such groups can be very wild and can have exotic proper-
ties (see Bridson [13] and Gromov [36]). This follows from some general
inheritance properties. All this will be explained in Bartels–Lück–Reich [6]
and Bartels–Echterhoff–Lück [4], where further classes of groups are dis-
cussed, for which certain versions or special cases of the K -theoretic Farrell–
Jones conjecture hold.

Applications. In order to illustrate the potential of the K -theoretic Farrell–
Jones conjecture we mention some conclusions. We will not try to state the
most general versions. For explanations, proofs and further applications in
a more general context we refer to [6].

In the sequel we suppose that G satisfies the K -theoretic Farrell–Jones
conjecture for any ring R, i.e., the assembly map (0.3) is bijective for every
n ∈ Z and every ring R. Examples for G are subgroups of finite products
of hyperbolic groups. Then the following conclusions hold:

• Induction from finite subgroups for the projective class group
If R is a regular ring and the order of any finite subgroup of G is invertible
in R, then the canonical map

colimH⊆G,|H|<∞ K0(RH) → K0(RG)

is bijective.
If R is a skew-field of prime characteristic p, then the canonical map

colimH⊆G,|H|<∞ K0(RH)[1/p] → K0(RG)[1/p]
is bijective.

• Bass conjectures
The Bass conjecture for commutative integral domains holds for G, i.e.,
for a commutative integral domain R and a finitely generated projective
RG-module P its Hattori–Stallings rank HS(P)(g) evaluated at g ∈ G
is trivial if g has infinite order or the order of g is finite and not invertible
in R.
The Bass conjecture for fields of characteristic zero holds for G, i.e., for
any field F of characteristic zero the Hattori-Stallings rank induces an
isomorphism

K0(FG) ⊗Z F
∼=−→ classF(G) f

to the F-vector space of functions G → F which vanish on elements
of infinite order, are constant on F-conjugacy classes and are non-trivial
only for finitely many F-conjugacy classes.

• Bass–Nil-groups and homotopy K-theory
If R is a regular ring and the order of any finite subgroup of G is invertible
in R, then the Bass–Nil-groups NKn(RG) are trivial and the canonical
map

Kn(RG)
∼=−→ KHn(RG)

to the homotopy K -theory of RG in the sense of Weibel [58] is bijective
for every n ∈ Z.
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• Kaplansky conjecture for prime characteristic
Suppose that R is a field of prime characteristic p or suppose that R is
a skew-field of prime characteristic p and G is sofic. (For the notion of
a sofic group we refer for instance to [21]. Every residually amenable
group is sofic.) Moreover, assume that every finite subgroup of G is a p-
group. Then RG satisfies the Kaplansky conjecture, i.e., 0 and 1 are the
only idempotents in RG.

Now suppose additionally that G is torsionfree. Then:

• Negative K-groups
Kn(RG) = 0 for any regular ring R and n ≤ −1.

• Projective class group
The change of rings map K0(R) → K0(RG) is bijective for a regular
ring R. In particular K̃0(ZG) = 0. Hence any finitely dominated con-
nected CW-complex with G as fundamental group is homotopy equiva-
lent to a finite CW-complex.

• Whitehead group
The Whitehead group Wh(G) is trivial. Hence any compact h-cobordism
of dimension ≥ 6 with G as fundamental group is trivial.

• Kaplansky conjecture for characteristic zero
If R is a field of characteristic zero or if R is a skew-field of characteristic
zero and G is sofic, then RG satisfies the Kaplansky conjecture.

Searching for counterexamples. There is no group known for which the
Farrell–Jones conjecture, the Farrell–Jones with coefficients or the Baum–
Connes conjecture is false. However, Higson, Lafforgue and Skandalis [39,
Sect. 7] construct counterexamples to the Baum–Connes conjecture with
coefficients, actually with a commutative C∗-algebra as coefficients. They
describe precisely what properties a group Γ must have so that it does
not satisfy the Baum–Connes conjecture with coefficients. Gromov [36]
constructs such a group Γ as a colimit over a directed system of groups
{Gi|i ∈ I} for which each Gi is hyperbolic. It will be shown in [4] that the
main theorem implies that the Farrell–Jones conjecture with coefficients in
any ring holds for Γ. It will also be shown that the Bost conjecture with
coefficients in a C∗-algebra holds for Γ.

Controlled topology. A prototype of a result involving controlled topology
and showing its potential is the α-approximation theorem of Chapman–
Ferry (see [18,31]). It says, roughly speaking, that a homotopy equivalence
f : M → N between closed manifolds is homotopic to a homeomorphism if
it is controlled enough over N, i.e., there is a homotopy inverse g : N → M
such that the compositions f ◦ g and g ◦ f are close to the identity and
homotopic to the identity via homotopies whose tracks are small. Here
“close” and “small” are understood to be measured in N considered as
a metric space. In particular it says that a homotopy equivalence which is
controlled enough represents the trivial element in the Whitehead group.
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Controlled topology and its variations have been important for a number
of further celebrated results in geometric topology. Some of these are con-
cerned with the Novikov conjecture [17,22,32,41,59], ends of maps [52,53],
controlled h-cobordisms [2,54], Whitehead groups and lower K -theory [23–
25,30,42], topological rigidity [26,27,29,30], homology manifolds [15],
parametrized Euler characteristics and higher torsion [20] and topological
similarity [38]. Of course this list is not complete.

A key theme in controlled topology is to associate a size to geometric
objects and then prove that objects of small size are trivial in an appropriate
sense. Such a result is sometimes called a stability or squeezing result.
A good example is the α-approximation theorem mentioned above. Related
is the reformulation of the assembly maps into a “forget control” version,
i.e., the domain of the assembly map is described by objects whose size is
very small while the target is described by bounded objects. This formulation
of forget-control is often referred to as the ε-version. Now it is clear what one
has to do to prove for instance surjectivity, one must be able to manipulate
a representative of an element in K -theory so that it becomes better and
better controlled without changing its K -theory class. This opens the door
to apply geometric methods. In their celebrated work Farrell–Jones used
three decisive ideas to carry out such manipulations: transfers, geodesic
flows and foliated control theory.

There is also a somewhat different approach to the assembly map as
a forget-control map, sometimes called the bounded or categorical version.
Here the emphasis is not on single objects and their sizes but on (the
category of) all bounded objects. Then the way boundedness is measured
can be varied, for instance on non-compact spaces very different metrics can
be considered. A good example is the description of the homology theory
associated to the K -theory spectrum of a ring in [50]. This formulation is
very elegant, but less concrete (and involves usually a dimension shift).

Controlled topology is the main ingredient in proofs of the Farrell–Jones
conjecture, whereas for the Baum–Connes conjecture the main strategy is
the Dirac-Dual-Dirac-method.

A rough outline of the proof. We will use the bounded (more precisely,
the continuous controlled) version of the forget-control assembly map. This
quickly leads to a description of the homotopy fiber of the assembly map
as the K -theory of a certain additive category, see Proposition 3.8. We call
this category the obstruction category. A somewhat artificial construction
makes the obstruction category a functor of metric spaces with G-action,
see Subsect. 3.4. In the simplest case the metric space in question is the
group G equipped with a word metric, but it will be important to vary the
metric space. This will be done in two steps. Firstly, we use a transfer to
replace G by G × X, where X is a compactification of the Rips complex
for G, see Theorem 6.1. The benefit of the G-space X is to have place
for certain equivariant constructions which cannot be carried out in G it-
self. In particular, in [5] we constructed certain G-invariant open covers,
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see Assumption 1.4. The existence of these covers can be viewed as an
equivariant version of the fact that hyperbolic groups have finite asymp-
totic dimension. Secondly, we apply contracting maps associated to open
covers of G × X, see Proposition 5.3. This map will only be contracting
with respect to the G-coordinate and will expand in the X coordinate. This
defect can be compensated, because the transfer produces arbitrary small
control with respect to the X-coordinate. Improving on an idea from [10] we
formulate and prove a kind of stability result for the obstruction category
in Theorem 7.2. This result is not formulated in terms of single elements,
but as a K -theory equivalence of certain categories. (However, for K1 it is
not hard to extract a more concrete statement along the lines of the above
stability statements, see [10, Corollary 4.6].) The general strategy of the
proof is worked out in Sect. 4, see in particular Diagram (4.4).

Our approach is very much influenced by the general strategy of Farrell–
Jones. However, our more general setting involves new ideas and techniques.
We prove the K -theoretic Farrell–Jones conjecture for arbitrary coefficient
rings and also for higher K -theory. We also would like to mention that our
proof unlike many other proofs treats the surjectivity and injectivity part
simultaneously. One main difficulty is that we cannot work with manifolds
and simplicial complexes anymore and do not have transversality or general
position arguments at hand, since in the world of hyperbolic groups we
can at best get metric spaces with very complicated compactifications.
This forces us to use open covers. A benefit of our approach is that we
avoid the hard foliated control theory. Other ingredients of the Farrell–
Jones strategy are still used. Namely, in order to show that hyperbolic
groups fulfill Assumption 1.4 we build in [5] on Mineyevs [48] replacement
of the geodesic flow and generalize the long and thin cells of Farrell–Jones
for manifolds to certain covers of metric spaces.

Open problems. There is an L-theoretic version of the Farrell–Jones con-
jecture. An obvious problem is to extend our methods for K -theory to
L-theory. The main difficulties concern the transfer and the fact that in
L-theory one needs to control the signature of the fiber and not – as in
K -theory – the Euler characteristic.

If both the K -theoretic and the L-theoretic Farrell–Jones conjecture
hold for R = Z as coefficients for a group G, then the Borel conjecture
is true for G, i.e., if M and N are closed aspherical topological manifolds
of dimension ≥ 5 whose fundamental groups are isomorphic to G, then M
and N are homeomorphic and every homotopy equivalence M → N is
homotopic to a homeomorphism.

Another problem is to prove the Farrell–Jones conjecture with coeffi-
cients for groups which act proper and cocompactly on a CAT(0)-space.

Acknowledgements. The authors are indebted to Tom Farrell for fruitful discussions and
sharing his ideas. The work was financially supported by the Sonderforschungsbereich 478
– Geometrische Strukturen in der Mathematik – and the Max-Planck-Forschungspreis of
the second author.
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1. Axiomatic formulation

Theorem 1.1 (Axiomatic formulation). Let G be a finitely generated
group. Let F be a family of subgroups of G. Let A be an additive cat-
egory with right G-action. Suppose

(i) There exists a G-space X such that the underlying space X is the
realization of an abstract simplicial complex;

(ii) There exists a G-space X which contains X as an open G-subspace
such that the underlying space of X is compact, metrizable and con-
tractible;

(iii) Assumption 1.2 holds;
(iv) Assumption 1.4 holds for F .

Then for every m ∈ Z the assembly map

HG
m (EF G; KA) → Km(A ∗G pt)

is an isomorphism.

Sections 3 to 7 are devoted to the proof of Theorem 1.1. The general
structure of the argument is described in Subsect. 4.4. We now formulate
the two assumptions that appear in Theorem 1.1.

Assumption 1.2 (Weak Z-set condition). There exists a homotopy H : X ×
[0, 1] → X, such that H0 = idX and Ht(X) ⊂ X for every t > 0.

In order to state the second assumption we introduce the notion of an
open F -cover.

Definition 1.3. Let Y be a G-space. Let F be a family of subgroups of G.
An open F -cover of Y is a collection U of open subsets of Y such that the
following conditions are satisfied:

(i) Y = ⋃
U∈U U;

(ii) For g ∈ G, U ∈ U the set g(U) := {gx | x ∈ U} belongs to U;
(iii) For g ∈ G and U ∈ U we have g(U) = U or U ∩ g(U) = ∅;
(iv) For every U ∈ U, the subgroup {g ∈ G | g(U) = U} lies in F .

Suppose U is an open F -cover. Then |U|, the realization of the nerve,
is a simplicial complex with cell preserving simplicial G-action and hence
a G-CW complex. (A G-action on a simplicial complex is called cell pre-
serving if for every simplex σ and element g ∈ G such that the intersection
of the interior σ◦ of σ with gσ◦ is non-empty we have gx = x for every
x ∈ σ . Notice that a simplicial action is not necessarily cell preserving, but
the induced simplicial action on the barycentric subdivision is cell preserv-
ing.) Moreover all its isotropy groups lie in F . Recall that by definition the
dimension dim U of an open cover is the dimension of the CW-complex |U|.

If G is a finitely generated discrete group, then dG denotes the word
metric with respect to some chosen finite set of generators. Recall that dG
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depends on the choice of the set of generators but its quasi-isometry class
is independent of it.

Assumption 1.4 (Wide open F -covers). There exists N ∈ N, which only
depends on the G-space X, such that for every β ≥ 1 there exists an open
F -cover U(β) of G × X with the following two properties:

(i) For every g ∈ G and x ∈ X there exists U ∈ U(β) such that

{g}β × {x} ⊂ U.

Here {g}β denotes the open β-ball around g in G with respect to the
word metric dG, i.e., the set {h ∈ G | dG(g, h) < β};

(ii) The dimension of the open cover U(β) is smaller than or equal to N.

We remark that if Assumption 1.4 holds, then it is possible to massage
the covers U(β) (using for example Lemma 5.1) in order to additionally
obtain the property that each U(β) is locally finite, i.e., every point in G ×X
has a neighborhood U that intersects only a finite number of members of U.
We will however not use this fact.

2. The case of a hyperbolic group

Lemma 2.1. Let G be a word-hyperbolic group. Then the assumptions
appearing in Theorem 1.1 are satisfied for the family F = VCyc of virtually
cyclic subgroups of G.

Proof. (i) Fix a set of generators S. Equip G with the corresponding word
metric. Choose δ such that G becomes a δ-hyperbolic space. Choose an
integer d > 4δ + 6. Let Pd(G) be the associated Rips complex. It is a finite-
dimensional contractible locally finite simplicial complex. The obvious
simplicial G-action on Pd(G) is proper and cocompact. In particular Pd(G)
is uniformly locally finite and connected. Its 1-skeleton is the Cayley graph
of G with respect to the set of generators consisting of non-trivial elements
in the ball of radius d about the identity in G. All these claims are proven
for instance in [14, pp. 468ff]. Since the quasi-isometry type of the Cayley
graph of a group is independent of the choice of the finite set of generators,
the 1-skeleton of Pd(G) with the word metric is a hyperbolic metric space.
Hence Pd(G) equipped with the word metric is a hyperbolic complex in the
sense of Mineyev [48, p. 438]. We take X = Pd(G).

We mention that Pd(G) is quasi-isometric to the Cayley graph of the
group. Moreover, the barycentric subdivision of Pd(G) is a G-CW-complex
which is for large enough d a model for the classifying space for proper
G-actions (see [47]), but we will not use this fact.

(ii) We take X = X ∪ ∂X to be the compactification of X in the sense of
Gromov (see [34], [14, III.H.3]).

(iii) According to [11, Theorem 1.2] the subspace ∂X ⊆ X satisfies
the Z-set condition. This implies our (weaker) Assumption 1.2 which is
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a consequence of Part (2) of the characterization of Z-sets before [11,
Theorem 1.2].

(iv) This assumption is proved in [5, Theorem 1.2]. ��
Because of Lemma 2.1 the main theorem follows from Theorem 1.1.

The remainder of this paper is devoted to the proof of Theorem 1.1.

3. Controlled algebra and the fiber of the assembly map

3.1. A quick review of controlled algebra. Let Y be a space and let A be
a small additive category. Define the additive category

C(Y ;A)

as follows. An object is a collection A = (Ax)x∈Y of objects in A which
is locally finite, i.e., its support supp(A) := {x ∈ Y | Ax �= 0} is a locally
finite subset of Y . Recall that a subset S ⊆ Y is called locally finite if each
point in Y has an open neighborhood U whose intersection with S is a finite
set. A morphism φ = (φx,y)x,y∈Y : A = (Ay)y∈Y → B = (Bx)x∈Y consists
of a collection of morphisms φx,y : Ay → Bx in A for x, y ∈ Y such that
the set {x |φx,y �= 0} is finite for every y ∈ Y and the set {y |φx,y �= 0} is
finite for every x ∈ Y . Composition is given by matrix multiplication, i.e.,

(ψ ◦ φ)x,z :=
∑

y∈Y

ψx,y ◦ φy,z.

The category C(Y ;A) inherits in the obvious way the structure of an additive
category from A. We will often drop A from the notation.

If Y and A come with a G-action, we get a G-action on C(Y ;A) by
(g∗ A)x := g∗(Agx) and (g∗φ)x,y := g∗(φgx,gy). Here the action on Y is a left
action, and the action on A is a right action, i.e., (g∗ ◦ h∗)(A) = (hg)∗ A.
The action on C(Y ;A) is again a right action.

Denote by

CG(Y ;A)

the fixed point category. This is an additive subcategory of C(Y ;A). An
object in CG(Y ;A) is given by a locally finite collection (Ax)x∈Y of objects
in A such that Ax = g∗(Agx) holds for all g ∈ G and x ∈ Y . A morphism
(φx,y)x,y∈Y in C(Y ;A) between two objects which belong to CG(Y ;A) is
a morphism in CG(Y ;A) if and only if g∗(φgx,gy) = φx,y holds for all g ∈ G
and x, y ∈ Y .

We are seeking certain additive subcategories of CG(Y,A), where sup-
port conditions are imposed on the objects and morphisms. This is formal-
ized by the notion of a coarse structure following [40]. For us it consists of
a set E of subsets of Y × Y and a set F of subsets of Y fulfilling certain
axioms stated as (i) to (iv) in [3, p. 167]. An object is called admissible
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if there exists F ∈ F which contains its support. A morphisms (φx,y) in
CG(Y ;A) is called admissible if there exists J ∈ E which contains its sup-
port supp(φ) := {(x, y) | x, y ∈ Y, φx,y �= 0}. The axioms are designed such
that the admissible objects together with the admissible morphisms form an
additive subcategory of CG(Y ;A) which we will denote by

CG(Y,E,F ;A).

Let f : Y → Z be a G-equivariant map. The formula ( f∗(A))z :=⊕
y∈ f −1(z) Ay defines a functor CG(Y,EY ,F Y ;A) → CG(Z,E Z ,F Z;A)

if f maps locally finite sets to locally finite sets and takes EY to E Z and
F Y to F Z , see [3, Subsect. 3.3]. If g : Y → Z is a second G-equivariant
map that induces a functor, then there is always a candidate for a natural
equivalence between the two functors, namely we can use the identity on
each Ay . Viewed over Z this candidate for a morphism will have a non-
trivial support. This yields indeed a natural equivalence if the following
holds.

(3.1) For each object A ∈ CG(Y,EY ,F Y ;A) there is an element JA ∈ E Z

such that ( f(y), g(y)) ∈ JA for all y ∈ supp A.

3.2. Some control condition. Let Z be a space equipped with a quasi-
metric d. (We remind the reader that the difference between a metric and
a quasi-metric is that in the later case the distance ∞ is allowed.) Then
we define E Z

d to be the collection of all subsets J of Z × Z of the form
Jα = {(z, z′) | d(z, z′) ≤ α} with α < ∞. A morphism ϕ ∈ C(Z,E Z

d ) is
said to be δ-controlled if supp ϕ ⊆ Jδ. This terminology will be used in
Subsect. 6.3 and we will often be interested in small δ.

Let Y be a G-space. A subset C ⊂ Y is called G-compact if there exists
a compact subset C′ ⊆ Y satisfying C = G · C′. For a G-CW-complex Y
a subset C ⊆ Y is G-compact if and only if its image under the projection
Y → G\Y is a compact subset of the quotient G\Y . Denote by F Y

Gc the set
which consist of all G-compact subsets of Y .

Let Y be a G-space. We denote by Gx the isotropy group of a point
x ∈ Y . Equip Y × [1,∞) with the G-action given by g(y, t) := (gy, t).
As in [3, Definition 2.7] we define EY

Gcc to be the collection of subsets
J ⊆ (Y × [1,∞)) × (Y × [1,∞)) satisfying

(3.2) For every x ∈ Y , every Gx-invariant open neighborhood U of (x,∞)
in Y × [1,∞] there exists a Gx-invariant open neighborhood V ⊆ U
of (x,∞) in Y × [1,∞] such that

((Y×[1,∞] − U) × V ) ∩ J = ∅;
(3.3) The image of J under the projection (Y × [1,∞))×2 → [1,∞)×2

sends J to a member of E [1,∞)
d where d(t, s) = |t − s|;

(3.4) J is symmetric and invariant under the diagonal G-action.

EY
Gcc is called the equivariant continuous control condition.
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3.3. Controlled algebra and the assembly map. Let G be finitely gener-
ated group equipped with a word-metric dG . For a G-space Y let p : G ×
Y × [1,∞) → Y × [1,∞), q : G × Y × [1,∞) → G × Y and r : G × Y ×
[1,∞) → G be the canonical projections. We will abuse notation and set

p−1EY
Gcc ∩ r−1EG

dG
:= {

(p × p)−1(J) ∩ (r × r)−1(J ′)
∣∣ J ∈ EY

Gcc, J ′ ∈ EG
dG

};
q−1F G×Y

Gc := {
q−1(F)

∣∣ F ∈ F G×Y
Gc

}
.

We define

T G(Y ;A) := CG
(
G × Y,F G×Y

Gc ;A
);

OG(Y ;A) := CG
(
G × Y × [1,∞), p−1EY

Gcc ∩ r−1EG
dG

, q−1F Y×G
Gc ;A

);
DG(Y ;A) := CG

(
G × Y × [1,∞), p−1EY

Gcc ∩ r−1EG
dG

, q−1F Y×G
Gc ;A

)∞
.

We will often drop the A from the notation. Here the upper index ∞ in the
third line denotes germs at infinity. This means that the objects of DG(Y )
are the objects of OG(Y ) but morphisms are identified if their difference
can be factored over an object whose support is contained in G × Y × [1, t]
for some t ∈ [1,∞), compare [3, Subsect. 2.4].

We remark that in [3, Subsect. 3.2] a slightly different definition of
DG(Y ) is given, where the metric control condition EG

dG
does not appear.

Using Theorem 3.7 below it can be shown that this does not change the
K -theory of these categories. The metric control condition on G will be im-
portant in the construction of the transfer, see in particular Proposition 6.13.
The interested reader may compare this difference to different possible
definitions of cone and suspension rings. Often it is convenient to add
finiteness condition to obtain formulas such as (ΛR)G = Λ(RG), compare
[3, Remark 7.2].

The following is the so-called germs at infinity sequence.

T G(Y ) → OG(Y ) → DG(Y ).(3.5)

Here the first map is induced by {1} ⊂ [1,∞) and the second is the quotient
map. We will need the following facts.

Lemma 3.6
(i) The sequence (3.5) induces a long exact sequence in K-theory;
(ii) The K-theory of OG(pt) is trivial.

Proof. We can replace T G(Y ) by an equivalent category, namely by the
full subcategory of OG(Y ) on all objects that are isomorphic to an object
in T G(Y ). These are precisely the objects in OG(Y ) whose support is
contained in G × Y × [1, r] for some r ≥ 0. Then the first map in (3.5)
becomes a Karoubi filtration and DG(Y ) is its quotient. Now (i) follows
because Karoubi filtrations induce long exact sequences in K -theory, see
for example [16].
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To prove (ii) it suffices to observe that there is an Eilenberg-swindle
on DG(pt) induced by the map (g, t) �→ (g, t + 1), compare for example
[3, Proposition 4.4]. ��
Theorem 3.7. The assignment Y �→ K∗(DG(Y )) is a G-equivariant hom-
ology theory on G-CW-complexes. The projection EF G → pt induces the
assembly map (0.2).

Proof. This is proven in [3, Sect. 5, Corrollary 6.3], see also [7, The-
orem 7.3]. As mentioned above a slightly different definition is used in
these references, but this does not affect the proof and the arguments can be
carried over word for word. ��
The following is now an easy consequence, compare [37, Theorem 7.4].

Proposition 3.8. Suppose there exists an m0 ∈ Z such that for all A and
all m ≥ m0 we have

Km
(
OG(EF G;A)

) = 0.

Then the assembly map (0.2) is an isomorphism for all n ∈ Z and all A.

Proof. If the assembly map is an isomorphism for all m ≥ m0 and all A,
then it is an isomorphism for all n ∈ Z and all A by [7, Corollary 4.7].
If we apply Lemma 3.6 (i) to the map EF G → pt we obtain a map between
homotopy fibration sequences

K
−∞T G(EF G) ��

��

K
−∞OG(EF G) ��

��

K
−∞DG(EF G)

��

K
−∞T G(pt) �� K−∞OG(pt) �� K−∞DG(pt).

It is not hard to check that the left vertical map is induced by an equiva-
lence of categories and is therefore an equivalence of spectra. Because the
homotopy groups of the lower middle spectrum vanish by Lemma 3.6 (ii)
the claim follows by considering the long exact ladder of homotopy groups
associated to the diagram above. ��

3.4. The obstruction category as a functor of metric spaces. We will
now allow for (G, dG ) to be replaced by a metric space (Z, d) with a free
G-action by isometries in the definition of OG(Y ;A)G . We define

OG(Y, Z, d;A) := CG
(
Z × Y × [1,∞), p−1EY

Gcc ∩ r−1E Z
d , q−1F Z×Y

Gc ;A)
,

where p, q, r the same projections as before, but with G replaced by the
free G-space Z. As before we will often drop the A from the notation. The
construction is functorial for G-equivariant maps f : Z → Z ′ that satisfy
the following condition.
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(3.9) For every α > 0 there exists a β > 0 such that d(x, y) ≤ α implies
d′( f(x), f(y)) ≤ β.

Let (Zn, dn) be a sequence of metric spaces with free isometric G-action.
We define

OG(Y, (Zn, dn)n∈N) ⊆
∏

n∈N
OG(Y, Zn, dn)

as a subcategory of the indicated product category by requiring add-
itional conditions on the morphisms. A morphism ϕ = (ϕn)n∈N is al-
lowed if it is bounded with respect to the sequence of metrics, i.e., if
there exists a constant α = α(ϕ), such that for every n ∈ N and for every
((y, z, t), (y′, z′, t′)) ∈ supp ϕn ⊂ (Y ×Zn×[1,∞))×2 one has dn(z, z′) ≤ α.
The sum

⊕
n∈NOG(Y, Zn, dn) is in a canonical way a full subcategory of

OG(Y, (Zn, dn)n∈N).
Later on, in Sect. 7, we will allow the dn to be quasi-metrics rather than

metrics. The definitions are clearly meaningful in this case as well.
These constructions are functorial for sequences of G-equivariant maps

fn : Zn → Z ′
n that satisfy the following uniform growth condition.

(3.10) For every α > 0 there is β > 0 such that for all n ∈ N
dn(x, y) ≤ α �⇒ d′

n( fn(x), fn(y)) ≤ β.

4. The core of the proof

4.1. The map to the realization of the nerve. Let (Z, d) be a metric space.
Let U be a finite dimensional cover of Z by open sets. Recall that points
in the realization of the nerve |U| are formal sums x = ∑

U∈U xUU , with
xU ∈ [0, 1] such that

∑
U∈U xU = 1 and such that the intersection of all

the U with xU �= 0 is non-empty, i.e., {U | xU �= 0} is a simplex in the nerve
of U. There is a map

f = f U : Z → |U|, x �→
∑

U∈U

fU(x)U,(4.1)

where

fU(x) = aU(x)∑
V∈U aV (x)

with

aU (x) = d(x, Z − U) = inf{d(x, u) | u /∈ U}.
It is well-defined since U is finite dimensional. If Z is a G-space, d is
G-invariant and U is an open F -cover, compare Definition 1.3, then the
map f = f U is G-equivariant. In our application f U will be strongly
contracting with respect to the l1-metric on |U|, see Proposition 5.3.
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4.2. The l1-metric on a simplicial complex. Every simplicial complex and
in particular the realization of the nerve of an open cover can be equipped
with the l1-metric, i.e., the metric where the distance between points
x = ∑

U xUU and y = ∑
U yUU is given by d1(x, y) = ∑

U |xU − yU |.
We remark that this metric does not generate the weak topology, unless
the simplical complex is locally finite. We will never consider the weak
topology and only be interested in the l1-metric.

4.3. The metric dC on G × X. Let X be as in Theorem 1.1. We will now
define a G-invariant metric dC depending on a constant C > 0 on the
G-space G × X. Recall that X is assumed to be metrizable. We choose
some (not necessarily G-invariant) metric dX on X which generates the
topology. We fix now for the rest of this paper some choice of a word-metric
dG on G.

Definition 4.2. Let C > 0. For (g, x), (h, y) ∈ G × X set

dC((g, x), (h, y)) = inf
n∑

i=1

CdX

(
g−1

i xi−1, g−1
i xi

) + dG(gi−1, gi),

where the infimum is taken over all finite sequences (g0, x0), (g1, x1), . . . ,
(gn, xn) with (g0, x0) = (g, x) and (gn, xn) = (h, y).

Proposition 4.3

(i) dC defines a G-invariant metric on G × X, with respect to the diagonal
action;

(ii) dG(g, h) ≤ dC((g, x), (h, y)) for all g, h ∈ G and x, y ∈ X;
(iii) dG(g, h) = dC((g, x), (h, x)) for all g, h ∈ G and x ∈ X;

Proof. (i) It is immediate from the definition that dC is G-invariant, and
satisfies the triangle inequality. Because dG(g, h) ≥ 1 for all g �= h we have
dC((g, x), (h, y)) ≥ CdX(g−1x, g−1 y)} if g = h, and dC((g, x), (h, y)) ≥ 1
if g �= h, for all (g, x), (h, y) ∈ G × X. Hence dC is a metric.

(ii) and (iii) are obvious. ��
For C = 1 we will denote the restriction of d1 to {g} × X = X by dg.

Note that considered as a metric on X this metric varies with g. Often we will
be interested in de, where e denotes the unit element in G. (If the diameter
of dX is less than 2, then de will in fact coincide with dX , but this will not be
important for us.) Proposition 4.3 (i) implies that dg(x, y) = de(g−1x, g−1 y)
for g ∈ G and x, y ∈ X.

4.4. The diagram. Let X be the G-space appearing in Theorem 1.1. Choose
a G-CW complex E which is a model for EF G, the classifying space for
the family F . Fix an N ∈ N as it appears in Assumption 1.4 and for every
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n ∈ N choose an open F -cover U(n) of G × X satisfying the conditions
in Assumption 1.4 with β = n, i.e., the dimension of U(n) is smaller
than N and for every (g, x) ∈ G × X we can find U ∈ U(n) such that
{g}n × {x} ⊂ U . Here {g}n denotes the open ball with respect to the word-
metric dG in G of radius n around g. According to Lemma 5.1 below we
can choose for every n ∈ N a constant C(n) such that the open F -cover
U(n) satisfies the following condition:

For every (g, x) ∈ G × X there exists a U ∈ U(n) such that the
open ball of radius n with respect to the metric dC(n) around the point
(g, x) lies in U .

We will use the following sequences of metric spaces with free isometric
G-action

(G × X, dC(n))n∈N,
(
G × |U(n)|, d1

n

)
n∈N.

Here the metric d1
n is a product metric of the l1-metric on the simplicial

complex |U(n)| scaled by the factor n and the word-metric dG on G, i.e.,

d1
n((g, x), (h, y)) = dG(g, h) + nd1(x, y).

The map G × X → G × |U(n)| defined by (g, x) �→ (g, f U(n)(g, x))
satisfies Condition (3.9) and yields the functor

FU(n) : OG(E, G × X, dC(n)) → OG
(
E, G × |U(n)|, d1

n

)
.

We will construct the following diagram of additive categories around which
the proof is organized. Here the arrows labelled inc are the obvious inclu-
sions. The functors pk and qk are defined by first projecting onto the k-th fac-
tor and then applying the projection map G ×X → G and G ×|U(k)| → G
respectively. Both projections clearly satisfy Condition (3.9).

⊕
n∈NOG

(
E, G × |U(n)|, d1

n

)

��
(3)

OG(E, (G × X, dC(n))n∈N) ��(2) ������

��
inc

OG
(
E,

(
G × |U(n)|, d1

n

)
n∈N

)

��
inc

∏
n∈NOG(E, G × X, dC(n)) ��

∏
n∈N FU(n)

��

pk

∏
n∈NOG

(
E, G × |U(n)|, d1

n

)

��

qk

OG(E) ��id

��

(1)

TS
RP

L
F
�
�
�
x
r

nl
k

OG(E)

(4.4)

The lower square commutes. In the remaining sections we will establish the
following facts.
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(4.5) After applying Km(−) for m ≥ 1 to the diagram the dotted arrow (1)
exists and has the property that Km(pk ◦ inc) ◦ (1) is the identity on
Km(OG(E)) for all k ∈ N. This will be proven in Theorem 6.1;

(4.6) The dotted horizontal functor (2) defined as the restriction of∏
n∈N FU(n) to the indicated subcategories is well defined. This is

the content of Corollary 5.6;
(4.7) The inclusion (3) from Subsect. 3.4 gives an isomorphism on K -the-

ory. This follows from Theorem 7.2.

Proof of Theorem 1.1. According to Proposition 3.8 it suffices to show that
the group Km(OG(E)) vanishes for all m ≥ 1. So for m ≥ 1 apply Km to
Diagram (4.4). Pick an element

ξ ∈ Km(OG(E))

at the lower left corner of the diagram. A quick diagram chase following
the arrows (1), (2) and (3) and using Properties (4.5), (4.6) and (4.7) shows
that there is

η ∈ Km
( ⊕

n∈N
OG

(
E, G × |U(n)|, d1

n

))

whose image under the map induced by qk ◦ inc ◦ (3) is ξ for all k ∈ N.
Since K -theory commutes with colimits (see Quillen [51, (12) on p. 20])
we have the canonical isomorphism
⊕

n∈N
Km

(
OG

(
E, G × |U(n)|, d1

n

)) ∼=−→ Km
(⊕

n∈N
OG

(
E, G × |U(n)|, d1

n

))
.

Hence there exists a k = k(η) ∈ N such that for the projection prk onto the
k-th factor we get Km(prk)(η) = 0. This implies that the image of η under
the map induced by qk ◦ inc ◦ (3) is trivial as well. This implies ξ = 0. ��

5. Contracting maps induced by wide covers

In this section we will use Assumption 1.4 to prove (4.6).

Lemma 5.1. Let β ≥ 1. Suppose that U(β) is an open F -cover of G × X
as it appears in Assumption 1.4, i.e., for every (g, x) ∈ G×X there exists
U ∈ U(β) such that {g}β × {x} ⊂ U. Then there exists a constant C =
C(U(β)) > 1 such that the following holds:

For every (g, x) ∈ G × X there exists U ∈ U(β) such that the open
β-ball with respect to the metric dC around (g, x) lies in U.

Proof. For every z ∈ X we can find by assumption Uz ∈ U(β) with
{e}β × {z} ⊆ Uz, where e ∈ G is the unit element. Choose for g ∈ {e}β
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an open neighborhood Vg,z of z ∈ X such that {g} × Vg,z ⊆ Uz. Put
Vz := ⋂

g∈{e}β Vg,z. Then {Vz | z ∈ X} is an open cover of the compact

metric space (X, dX). Let ε > 0 be a Lebesgue number for this open cover,
i.e., for x ∈ X the ball xε lies in Vz(x) for an appropriate z(x) ∈ X.

Since X is compact, the map X → X, x �→ gx is uniformly continuous.
Hence we can find δ(ε, g) > 0 such that dX(gx, gy) < ε

β
holds for all

x, y ∈ X with dX(x, y) < δ(ε, g). Since there are only finitely many elements
in {e}β, we can choose a constant C such that β

C < δ(ε, g) holds for all
g ∈ {e}β. Thus we get

dX(gx, gy) <
ε

β
for x, y ∈ X with dX(x, y) <

β

C
and g ∈ {e}β.(5.2)

Because dC and the cover U are G-invariant, it suffices to prove the
claim for an element of the shape (e, x) ∈ G × X. Let (h, y) be an element
in the ball of radius β around (e, x) with respect to the metric dC . We want to
show (h, y) ∈ Uz(x). By definition of dC we can find a sequence of elements
(e, x) = (g0, x0), (g1, x1), . . . , (gn−1, xn−1), (gn, xn) = (h, y) in G × X
such that

n∑

i=1

dG(gi−1, gi) +
n∑

i=1

C · dX

(
g−1

i xi−1, g−1
i xi

)
< β.

We can arrange gi−1 �= gi , otherwise delete the element (gi, xi) from the se-
quence, the inequality above remains true because of the triangle inequality
for dX . Since dG(gi−1, gi) ≥ 1, we conclude

n ≤ β.

By the triangle inequality dG(e, gi) ≤ β for i = 1, 2, . . . , n. In other words
gi ∈ {e}β for i = 1, 2, . . ., n.

We have dX(g−1
i xi−1, g−1

i xi) <
β

C for i = 1, 2, . . . , n. We conclude
from (5.2) that

dX(xi−1, xi) <
ε

β

holds for i = 1, 2, . . . , n. The triangle inequality implies together with
n ≤ β

dX(x, y) < ε.

Hence y ∈ Vz(x). Since h ∈ {e}β holds, we conclude y ∈ Vz(x) ⊆ Vh,z(x).
This implies (h, y) ∈ Uz(x). ��

The following proposition yields contracting properties of the map from
a metric space to the nerve of an open cover of the space. Similar ideas
appear already in [35, Sect. 1].
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Proposition 5.3. Let X = (X, d) be a metric space and let β ≥ 1. Sup-
pose U is an open cover of X of dimension less than or equal to N with the
following property:

For every x ∈ X there exists U ∈ U such that the β-ball around x
lies in U.

Then the map f U : X → |U| (defined in Subsect. 4.1) has the following
contracting property. If d(x, y) ≤ β

4N then

d1( f U(x), f U(y)) ≤ 16N2

β
d(x, y).

Note that if β gets bigger, the estimate applies more often and f U

contracts stronger.

Proof. Recall that f U(x) = ∑
U fU(x)U , where fU(x) = aU (x)∑

V aV (x) with
aU(x) = d(x, X − U) = inf{d(x, u) | u /∈ U}. For every V ∈ U we set
bV (x, y) = aV (x)−aV (y). Since d is a metric we have |bV (x, y)| ≤ d(x, y).
Since the covering dimension is smaller than N there are at most 2N covering
sets V for which bV (x, y) �= 0. Hence we have

∑

V

|bV (x, y)| ≤ 2Nd(x, y) ≤ β

2
.(5.4)

For every x there exists by assumption U ∈ U such that the β-ball around x
is contained in U . For this U we have

∑

V

aV (x) ≥ aU (x) ≥ β.(5.5)

We compute

fU(y) − fU(x) = aU(x)
∑

V bV (x, y) − bU(x, y)
∑

V aV (x)( ∑
V aV (x)

)( ∑
V aV (x) − bV (x, y)

) .

Now one can estimate using (5.4) for the third, (5.4) and (5.5) for the fourth
inequality and (5.4) for the last inequality.

∑

U

| fU(x) − fU(y)| ≤
∑

U

∣∣∣∣

∑
V bV (x, y)∑

V aV (x) − bV (x, y)

∣∣∣∣

+
∑

U

∣∣∣∣
bU (x, y)∑

V aV (x) − bV (x, y)

∣∣∣∣

≤ 4N

∑
V |bV (x, y)|∣∣ ∑

V aV (x) − bV (x, y)
∣∣

≤ 4N
2Nd(x, y)∣∣ ∑

V aV (x) − bV (x, y)
∣∣
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≤ 8N2d(x, y)∑
V aV (x) − ∑ |bV (x, y)|

≤ 8N2d(x, y)

β − 2Nd(x, y)
≤ 8N2d(x, y)

β − β

2

= 16N2d(x, y)

β
.

��
Combining these two statements we can now establish (4.6).

Corollary 5.6. The map (2) in diagram (4.4) is well defined.

Proof. Let ϕ = (ϕn) be a morphism in the source, then there exists a constant
K = K(ϕ) such that for every n ∈ Nwe have that ((g, x, e, t), (g′, x ′, e′, t′))
∈ supp ϕn ⊂ (G × X × E × [1,∞))×2 implies dC(n)((g, x), (g′, x ′)) ≤ K .
By Proposition 4.3(ii) it suffices to show that there exists a constant L such
that

nd1( f U(n)((g, x)), f U(n)((g′, x ′))) ≤ L,

compare (3.10). By the construction of the sequence (C(n))n∈N the assump-
tions in Proposition 5.3 are satisfied for the cover U(n) of G×X with β = n
for every n ∈ N. We conclude for n ≥ 4KN and ((g, x, e, t), (g′, x ′, e′, t′)) ∈
supp ϕn that

nd1( f U(n)((g, x)), f U(n)((g′, x ′))) ≤ 16N2dC(n)((g, x), (g′, x ′))
≤ 16N2 K =: L.

The distance of two points of a simplicial complex with respect to the
l1-metric is at most 2. Because (4KN) · 2 ≤ L this implies that the above
estimate holds in fact for all n. ��

6. The transfer

In this section we will use Assumption 1.2 to deal with the dotted arrow (1)
in Diagram (4.4). The following result establishes (4.5).

Theorem 6.1. Let m ≥ 1. There exists a map

trans : KmOG(E) → KmOG(E, (G × X, dC(n))n∈N)

that is for all k ∈ N a right inverse for the map induced by prk := pk ◦ inc,
compare (4.4).

This will be proven as follows. For an additive category O of the type ap-
pearing above we define Waldhausen categories chhfd O and c̃hhfdO together
with natural inclusions

O
inc−−→ chhfd O

inc−−→ c̃hhfdO
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that induce isomorphisms on Km for every m ≥ 1, compare Lemma 6.5.
We then construct the functor trans in Subsect. 6.4 (see in particular
Proposition 6.13) in order to obtain for every k ∈ N the following dia-
gram of Waldhausen categories and exact functors

c̃hhfdOG(E, (G × X, dC(n))n∈N)

��
c̃hhfd(prk)

OG(E)

��
trans

jjjjjjjjjjjjjjjj
��inc
c̃hhfdO

G(E).

(6.2)

In Lemma 6.16 we show that this diagram commutes after applying
K -theory. From this Theorem 6.1 follows.

6.1. Review of the classical transfer. As a motivation for the forthcoming
construction we briefly review the transfer for the Whitehead group associ-
ated to a fibration F → E

p−→B of connected finite CW-complexes. Recall
that the fiber transport gives a homomorphism t : π1(B) → [F, F]. Under
mild conditions on t one can define geometrically a transfer homomorphism
trans : Wh(B) → Wh(E) by sending the Whitehead torsion of a homotopy
equivalence f : B′ → B of finite CW-complexes to the Whitehead torsion
of the pull back f : p∗ E → E (see [1], [43, Sect. 5]). An algebraic descrip-
tion in terms of chain complexes is given in [43, Sect. 4] and is identified
with the geometric construction. It involves the chain complex of an ap-
propriate cover of F and the action up to homotopy of π1(B) coming from
the fiber transport. The map trans : Wh(B) → Wh(E) is bijective if F is
contractible.

The desired transfer

trans : OG(E) → c̃hhfdO
G(E, (G × X, dC(n))n∈N)

is a controlled version on the category level of the algebraic description of
the classical transfer above in the situation G × E × X → G × E which
one may consider after dividing out the diagonal G-action as a flat bundle
with the contractible space X as fiber and (G × E)/G ∼= E as base space.
The group G plays the role of π1(B) and the fiber transport comes from
the honest G-action on X. Having this in mind it becomes clear why in the
sequel we will have to deal with categories of chain complexes.

6.2. Some preparations. Fix an infinite cardinal κ. Let F κ(Z) be a small
model for the category of all free Z-modules which admit a basis B with
card(B) ≤ κ. Let F f (Z) be the full subcategory of F κ(Z) that consists of
finitely generated freeZ-modules. These categories will always be equipped
with the trivial G-action. Let A be an additive category with G-action.
According to [7, Lemma 9.2] there exist additive categories with G-action
A f and Aκ together with G-equivariant inclusion functors

A → A f → Aκ.
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In Aκ there exist direct sums with indexing sets of cardinality than or equal
to κ and A → A f is an equivalence of categories. There exists a “tensor
product”, i.e., a bilinear functor

− ⊗ −: Aκ × F κ(Z) → Aκ(6.3)

which is compatible with the G-action on Aκ, i.e., g∗(A ⊗ M) = g∗ A ⊗ M
and restricts to

− ⊗ −: A f × F f (Z) → A f .

For all practical purposes we can and will identify A with A f .
For a G-space Y and a metric space (Z, d) with a free action of G by

isometries we define the category

OG(Y, Z, d;Aκ)

in the same way as before but we replace A by Aκ and drop the assumption
that the support of objects is locally finite. Moreover, instead of defining
a morphism ϕ to be a family of morphisms ϕy,x and requiring that for fixed x,
respectively y, the sets {y |ϕy,x �= 0}, respectively {x |ϕy,x �= 0}, are finite
we define a morphism ϕ : A = (Ax) → B = (By) to be a morphism⊕

x Ax → ⊕
y By in the category Aκ. Note that for suitably chosen κ

these direct sums exist in Aκ, compare [7, Lemma 9.2]. For a sequence
(Zn, dn)n∈N of metric spaces with G-action by isometries we define

OG
(
Y, (Zn, dn)n∈N;Aκ

) ⊂
∏

n∈N
OG

(
Y, Zn, dn;Aκ

)

by requiring conditions on the morphisms precisely as in Subsect. 3.4. One
should think of the inclusions

OG(Y ;A) ⊂ OG(Y ;Aκ),(6.4)

OG(Y, (Zn, dn)n∈N;A) ⊂ OG
(
Y, (Zn, dn)n∈N;Aκ

)
, etc.

as inclusions of full subcategories on objects satisfying finiteness conditions
into large categories which give room for constructions. The prototype of
such a situation is the inclusion F f (Z) ⊂ F κ(Z).

Let O be an additive category. We write Idem(O) for its idempotent
completion. We define chf O to be the category of chain complexes in O
that are bounded above and below and ch≥ O to be the category of chain
complexes that are bounded below. For these categories the notion of chain
homotopy leads to a notion of weak equivalence, and we define cofibrations
to be those chain maps which are degreewise the inclusion of a direct
summand.

Now let O be an additive category and let O ⊂ O be the inclusion of
a full additive subcategory. We write

chhf(Idem(O) ⊂ Idem(O))
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for the full subcategory of ch≥ Idem(O) consisting of chain complexes that
are chain homotopy equivalent to a chain complex in chf Idem(O). We write

chhfd(O ⊂ Idem(O))

for the full subcategory of ch≥ Idem(O) consisting of objects C which are
homotopy retracts of objects in chf O, i.e., there exists a diagram C

i−→ D
r−→C with D in chf O such that the composition r ◦ i is chain homotopic to

the identity on C.

Lemma 6.5. We have an equality

chhf(Idem(O) ⊂ Idem(O)) = chhfd(O ⊂ Idem(O))

and the inclusions

O ��

��

chf O ��

��

chhfd(O ⊂ Idem(O))

Idem(O) �� chf Idem(O) �� chhf(Idem(O) ⊂ Idem(O))

induce equivalences on Km for all m ≥ 1.

Proof. Suppose C is a chain complex in chf Idem(O). Then by adding
elementary chain complexes of the form

· · · → 0 → 0 → P
id−→ P → 0 → 0 → . . .

one can produce a chain homotopy equivalent chain complex C′ in Idem(O)
such that all C ′

i except the one in the top-non-vanishing dimension n lie in O
instead of Idem(O). By adding a complement to C′

n one can easily produce
a chain complex in chf O which contains C ′ as an (honest) retract. Since the
homotopy relation is transitive this proves the inclusion “⊂”.

Suppose we have C
i−→D

r−→C with r ◦ i � id, where C belongs to
ch≥ Idem(O) and D to chf O. Then the proof of Proposition 11.11 in [44]
yields a chain complex D′ in ch≥ O which is chain homotopic to C and of
a special form. Namely, there exists an n ∈ Z and an object D′∞ such that
D′

m = D′∞ for all m ≥ n. Moreover there exists a map p : D′∞ → D′∞ with
p◦ p = p such that the chain complex is 2-periodic above n and of the form

. . .
1−p−−→ D′

∞
p−→ D′

∞
1−p−−→ D′

∞
p−→ D′

∞ = D′
n → D′

n−1 → D′
n−2 → . . . .

In ch≥ Idem(O) this chain complex is homotopic to

. . . → 0 → 0 → (D′
∞, p)

p−→(D′
n, id) → (D′

n−1, id) → (D′
n−2, id) → . . . .

This proves the other inclusion. The two horizontal inclusions on the left are
well known to induce isomorphisms on Km , for m ≥ 0, compare [56,16].
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The lower horizontal inclusion on the right induces an isomorphism on Km ,
for m ≥ 0 by an application of the Approximation Theorem 1.6.7 in [57].
The vertical inclusion on the left induces an isomorphism on Km for m ≥ 1
by the cofinality theorem, compare Theorem 2.1 in [55]. ��
Notation 6.6. In the following we will use the abbreviation

chhfd O = chhfd(O ⊂ Idem(O))

because O will be clear from the context. In fact we will always be in the
situation described in (6.4).

We recall from [8, Subsect. 8.2] that for a given Waldhausen category W
there exists a Waldhausen category W̃ whose objects are sequences

C0
c0−→ C1

c1−→ C2
c2−→ . . . ,

where the cn are morphisms in W that are simultaneously cofibrations and
weak equivalences. A morphism f in W̃ is represented by a sequence of
morphisms ( fm, fm+1, fm+2, . . . ) which makes the diagram

Cm
��cm

��
fm

Cm+1 ��
cm+1

��
fm+1

Cm+2 ��
cm+2

��
fm+2

. . .

Dm+k
��

dm+k Dm+k+1 ��
dm+k+1

Dm+k+2 ��
dm+k+2 . . .

commutative. Here m and k are non-negative integers. If we enlarge m
or k the resulting diagrams represent the same morphism, i.e., we identify
( fm, fm+1, fm+2, . . .) with ( fm+1, fm+2, fm+3, . . .) but also with (dm+k ◦ fm,
dm+k+1 ◦ fm+1, dm+k+2 ◦ fm+2, . . .). Sending an object to the constant se-
quence defines an inclusion

W → W̃ .

According to [8, Proposition 8.2] the inclusion induces an isomorphism on
Km for m ≥ 0 under some mild conditions about W . These conditions will
be satisfied in all our examples.

6.3. The singular chain complex of X. In the next subsection we will
construct the functor denoted trans in Diagram (6.2). It will essentially
replace objects A ∈ A by A⊗Csing,δ

∗ (X, de). Here we use a chain subcomplex
of the singular chain complex and consider it as a chain complex over X.
We now collect some facts about the singular chain complex of a metric
space that will be needed in the construction of the transfer.

Let X = (X, d) be a metric space. As before we denote the singular
chain complex of X by Csing

∗ (X). For δ > 0 we define

Csing,δ
∗ (X, d) ⊂ Csing

∗ (X)
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as the chain subcomplex generated by all singular simplices σ : ∆ → X for
which the diameter of σ(∆) is less or equal to δ, i.e., for all y, z ∈ ∆ we
have d(σ(y), σ(z)) ≤ δ.

This chain complex can be considered as a chain complex over X via
the barycenter map, i.e., for x ∈ X the module Csing,δ

n (X, d)x is generated
by all singular n-simplices which satisfy the condition above and map the
barycenter to x. A map f : C∗ → D∗ of chain complexes over X is called
a δ-controlled homotopy equivalence if there exists a chain homotopy in-
verse g and chain homotopies h : f ◦ g � id and h ′ : g ◦ f � id such that
f , g, h and h ′ are all δ-controlled when considered as morphisms over X,
see Subsect. 3.2.

Lemma 6.7. Let X = (X, d) be a metric space.

(i) For δ′ > δ > 0 the inclusion

i : Csing,δ
∗ (X, d) → Csing,δ′

∗ (X, d)

is a δ′-controlled chain homotopy equivalence;
(ii) For every δ > 0 the inclusion

i : Csing,δ
∗ (X, d) → Csing

∗ (X)

is a chain homotopy equivalence;
(iii) Suppose X = |T | is a simplicial complex, i.e., the realization of an

abstract simplicial complex T . Let C∗(T ) denote the simplicial chain
complex considered as a chain complex over X = |T | via the barycen-
ters. Suppose all simplices of |T | have diameter smaller than δ. Then
realization defines a map

C∗(T ) → Csing,δ
∗ (X, d)

which is a δ-controlled chain homotopy equivalence.

Proof. (i) Let C denote the category whose objects are the closed subsets
of X and whose morphisms are the inclusions. We can consider

X ⊃ A �→ Csing,δ
∗ (A) = Csing,δ

∗ (A, d|A)

as a functor from C to the category of chain complexes, i.e., as a ZC-chain
complex. (For basic definitions and facts of ZC-modules we refer to [44,
Sect. 9].) We claim that the inclusion Csing,δ

∗ (?) → Csing,δ′
∗ (?) is a chain

homotopy equivalence of ZC-chain complexes. Note that for every n ∈ Z
Csing,δ

n (?) =
⊕

σ

ZmorC(σ(∆), ?)

is a free ZC-chain complex, here the sum runs over all singular simplices
in X whose image have a diameter less or equal to δ. Because of the
fundamental theorem for homological algebra in the setting of RC-chain



A. Bartels et al.

complexes (see [44, Lemma 11.7 on p. 220]), it suffices to prove that for
every closed subset A ⊂ X the inclusion

Csing,δ
∗ (A) → Csing,δ′

∗ (A)(6.8)

induces a homology isomorphism. In order to see this one uses that the
usual subdivision chain selfmap sd of the singular chain complex restricts
to a selfmap of Csing,δ′

(A) and so does the chain homotopy proving that
sd is homotopic to the identity. Moreover for each individual singular sim-
plex σ in Csing,δ′

∗ (A) there exists an N, such that sdN σ lies in Csing,δ(A) by
a Lebesgue-number argument.

We now have a homotopy inverse p and homotopies h and h ′ as maps of
ZC-chain complexes. Evaluating p at X yields a chain homotopy inverse pX
of ordinary chain complexes that restricts to every closed subset of X. In
particular for every singular simplex σ : ∆ → X in Csing,δ′

∗ (X, d) the image
under pX lies in Csing,δ

∗ (σ(∆), d). Hence pX considered as a morphism
over X is bounded by δ′ because σ(∆) lies within a δ′ -ball around σ(bary(∆))
and the same argument works for the homotopies h X and h ′

X .
(ii) It suffices to prove that the inclusion induces a homology isomorph-

ism. This is a less careful version of the argument used above for the
map (6.8).

(iii) The proof starts similar to the proof of Assertion (i). Instead of the
category C of closed subsets and inclusions one works with the category
of simplicial subcomplexes of T and inclusions. Let S ⊂ T be a simplicial
subcomplex then the composition in the sequence

C∗(S) → Csing,δ
∗ (|S|) → Csing

∗ (|S|)
is well known to be a homology isomorphism and the second map is a hom-
ology isomorphism by Assertion (ii). If we evaluate at S = T we see that the
map in question is a homotopy equivalence and that the homotopy inverse
and the homotopies can be chosen in such a way that they restrict to every
simplex. Since the simplices have diameter at most δ we see that these maps
are δ-controlled. ��

Next we prove for X as in Theorem 1.1 and the metric de from Sub-
sect. 4.3 that Csing,δ

∗ (X, de) is homotopy finitely dominated in a controlled
sense. We will make use of Assumption 1.2, i.e., we assume the following.

There exists a homotopy H : X × [0, 1] → X, such that H0 = idX

and Ht(X) ⊂ X for every t > 0.

Lemma 6.9. Let δ > 0 be given. There exists a finite chain complex Dδ∗ in
chf C(X) all whose differentials are δ-controlled with respect to de together
with maps

Csing,δ
∗ (X)

i−→Dδ
∗

r−→Csing,δ
∗ (X)
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and a chain homotopy h : r ◦ i � id such that i, r and h are bounded by 6δ

as morphisms over X = (X, de).

Proof. Let H be a homotopy as in Assumption 1.2. For t > 0 let Kt be the
union of all simplices of X that meet Ht(X) ⊂ X. Since Ht(X) is compact
this is a finite simplicial subcomplex of X. Since X × I is compact H is
uniformly continuous. Since H0 is the identity, we can find for a given δ > 0
an ε = ε(δ) > 0 such that H({x}ε×[0, ε]) ⊂ {x}δ/2 holds for all x ∈ X. We
conclude that H({x}δ × [0, ε]) ⊆ {x}2δ holds for x ∈ X. In particular Hε

maps δ-balls to 2δ-balls. Let inc : Kε → X be the inclusion. Then

Csing,δ
∗ (X)

(Hε)∗−−→ Csing,2δ
∗ (Kε)

inc∗−→ Csing,2δ
∗ (X)

is well defined and the composition is homotopic to the inclusion

Csing,δ
∗ (X)

inc∗−→ Csing,2δ
∗ (X)

via a homotopy that is 2δ-controlled. The latter inclusion is a 2δ-controlled
homotopy equivalence by Lemma 6.7(i). After a suitable subdivision we
can assume that in the simplicial complex Kε = |Tε| all simplices have
diameter smaller than δ. Lemma 6.7(iii) says that there exists a 2δ-controlled
homotopy equivalence C(Tε) → Csing,2δ

∗ (Kε). Now set Dδ∗ = C(Tε). ��

6.4. The controlled transfer. Fix an infinite cardinal κ large enough such
that the following constructions make sense. For δ > 0 we define a chain
complex over G × X, more precisely a chain complex

C∗(δ) ∈ ch≥ C
G
(G × X;F κ(Z))

as follows. The n-th module Cn(δ) is as a module over G × X given by

Cn(δ)(g,x) = Csing,δ
n (X, de)g−1x.(6.10)

(Note that Cn(δ) is indeed an object in the subcategory that is fixed under G.)
Here de is the (non-invariant) metric on X from Subsect. 4.3. The differential
∂ : Cn(δ) → Cn−1(δ) is given by

∂(g′,x′),(g,x) =
{

∂g−1x′,g−1x if g′ = g

0 otherwise
,

where ∂g−1x′,g−1x are the components of the differential

∂ : Csing,δ
n (X, de) → Csing,δ

n−1 (X, de),

considered as a map over X. Note that differentials have non-diagonal
support only in the X-direction.
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Similarly using the chain complexes Dδ∗ appearing in Lemma 6.9 we
define a chain complex D∗(δ) over G × X by

D∗(δ)(g,x) = (Dδ
∗)g−1x.

Lemma 6.11. Let δ > 0 and C > 1. The chain complex C∗(δ) is a homotopy
retract of the chain complex D∗(δ). The differentials of C∗(δ) and D∗(δ) and
the maps and homotopies proving that C∗(δ) is a homotopy retract satisfy
the following control condition. If ((g′, x ′), (g, x)) lies in the support of one
of these maps, then g′ = g and dC((g, x ′), (g, x)) ≤ 6Cδ.

Proof. Note that C∗(δ) is the unique G-invariant chain complex whose
restriction to {e} × X ⊂ G × X coincides with Csing,δ

∗ (X, de) considered as
a chain complex over {e} × X via the identification {e} × X ∼= X. Similarly
one can extend all the maps and homotopies from Lemma 6.9 to maps over
G × X. The statement about the support of these maps follows immediately
from the definitions. ��

Now let (C(n))n∈N be the sequence of numbers C(n) > 1 that we have
chosen towards the beginning of Subsect. 4.4. Assume that (δ(n))n∈N is
a sequence of positive numbers which satisfies the following condition.

(6.12) There exists a constant α > 1 such that δ(n) ≤ α
C(n)

for all n ∈ N.

Depending on the sequence (δ(n))n∈N we now would like to define the
transfer functor

trans : OG(E) → chhfd OG(E, (G × X, dC(n))n∈N).

However, we will see soon that we have to modify the target category in
order to get a well defined functor. In order to motivate this modification
we describe the naive attempt to define the functor and explain where the
problem occurs. On objects the functor should be given by

A �→ (A ⊗ C∗(δ(n)))n∈N,

where A ⊗ Ck(δ(n)) is an object over G×X × E × [1,∞) via

(A ⊗ Ck(δ(n)))(g,x,e,t) = A(g,e,t) ⊗ Ck(δ(n))(g,x,t)

= A(g,e,t) ⊗ Csing,δ(n)

k (X, de)g−1x,

and the differentials are given by

(id ⊗∂(n))(g′,x′,e′,t ′),(g,x,e,t) =
{

id ⊗∂(g′,x′),(g,x) if (g′, e′, t′) = (g, e, t);
0 otherwise.
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Again off-diagonal support for the differentials occurs only in the X-dir-
ection. Lemma 6.11 and (6.12) imply that (A⊗C∗(δ(n)))n∈N is a well defined
object in chhfd OG(E, (G × X, dC(n))n∈N).

On morphisms a problem occurs. We would like to map the morph-
ism ϕ : A → B with components ϕ(g′,e′,t ′),(g,e,t) : A(g,e,t) → B(g′,e′,t ′) to the
morphism (ϕ ⊗ l(n))n∈N whose components are given by

(ϕ ⊗ l(n))(g′,x′,e′,t ′),(g,x,e,t) = ϕ(g′,e′,t ′),(g,e,t) ⊗ l(n)(g′,x′),(g,x),

with

l(n)(g′,x′),(g,x) =
{

l(n)g′−1g if x ′ = x;
0 if x ′ �= x,

where l(n)g′−1g is the map

(lg′−1g)∗ : Csing,δ(n)

k (X, de)g−1x → Csing,δ(n)

k (X, de)g′−1x

which is induced by left multiplication with g′−1g, i.e., a singular simplex
σ : ∆ → X is mapped to lg′−1g ◦ σ , where lg′−1g : X → X is the map
x �→ g′−1gx. However the map l(n)g′−1g is not well defined, its target is not
as stated. One only has a well defined map (in fact an isomorphism)

(lg′−1g)∗ : Csing,δ(n)

k (X, de)g−1x → Csing,δ(n)

k (X, dg′−1g)g′−1x,

where in the target we work with the metric dg′−1g instead of de. We will
compose this map with the inclusion

Csing,δ(n)

k (X, dg′−1g)g′−1x ⊂ Csing,̃δ(n)

k (X, de)g′−1x

for a suitable chosen (̃δ(n))n∈N with δ̃(n) ≥ δ(n) in order to at least obtain
a well defined morphism

(ϕ ⊗ l(n))n∈N : (A ⊗ C∗(δ(n)))n∈N → (B ⊗ C∗(̃δ(n)))n∈N.

Now the ˜ -construction that was reviewed at the end of Subsect. 6.2 comes
into play.

Proposition 6.13. Choose a collection of numbers δk(n), k ∈ N, n ∈ N as
in Lemma 6.14. Then there exists a functor depending on that choice

trans : OG(E) → c̃hhfdO
G(E, (G × X, dC(n))n∈N)

which sends a morphism ϕ : A → B to the morphism whose n-th component
is represented by

A ⊗ C∗(δα(n)) ��id ⊗ inc

��
ϕ⊗l(n)

A ⊗ C∗(δα+1(n)) ��id ⊗ inc

��
ϕ⊗l(n)

A ⊗ C∗(δα+2(n)) ��id ⊗ inc

��
ϕ⊗l(n)

. . .

B ⊗ C∗(δα+1(n)) ��id ⊗ inc
B ⊗ C∗(δα+2(n)) ��id ⊗ inc

B ⊗ C∗(δα+3(n)) ��id ⊗ inc . . . .
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Here α = α(ϕ) ∈ N is chosen such that for every ((g′, e′, t′), (g, e, t)) ⊂
supp ϕ we have dG(g, g′) ≤ α.

It is here that we use the metric control condition on G in the definition
of OG(E): it ensures the existence of α in the above statement.

Proof. The boundedness condition with respect to the sequence of metrics
(dC(n))n∈N for the differentials follows because of Lemma 6.14(ii). That we
have a homotopy finitely dominated object follows from Lemma 6.11.
Hence (A ⊗ C∗(δk(n)))n∈N is indeed a well defined object. Lemma 6.14(i)
assures that one has the horizontal inclusions. The vertical maps exist be-
cause of Lemma 6.14(iii). Because the E-coordinate is left unchanged in this
construction, the equivariant continuous control condition is preserved. ��
Lemma 6.14. Let (C(n))n∈N be a monotone increasing sequence of num-
bers. There exists a collection of numbers δk(n) > 0 with n, k ∈ N, such
that the following conditions are satisfied.

(i) For every fixed n ∈ N the sequence (δk(n))k∈N is increasing, i.e.,

δ1(n) ≤ δ2(n) ≤ δ3(n) ≤ . . . ;
(ii) For every k ∈ N there exists α(k) ≥ 0 such that

δk(n) ≤ α(k)

C(n)

for all n ∈ N;
(iii) Consider g, h ∈ G, x, y ∈ X and k, n ∈ N. If dG(g, h) ≤ k and

dg(x, y) ≤ δk(n), then

dh(x, y) ≤ δk+1(n).

Proof. For L ∈ N and δ ≥ 0 put

R̃L(δ) := sup{dg(x, y) | (g, x, y) ∈ G × X × X
with dG(g, e) ≤ L, de(x, y) ≤ δ};

RL(δ) := max{δ, R̃L(δ)}.
Since X is compact and there are only finitely many g with dG(g, e) ≤ L , this
defines a monotone increasing map RL : [0,∞) → [0,∞) with RL(δ) ≥ δ.
In particular RL(δ) > 0 for δ > 0. Moreover RL is continous at 0 because
the identity yields a uniformly continous map (X, de) → (X, dg). Note that
RL(δ) ≤ RL+1(δ). Using dg(x, y) = de(g−1x, g−1 y) we can conclude that

dG(g, h) ≤ L and dg(x, y) ≤ δ implies dh(x, y) ≤ RL(δ).(6.15)

Define R−1
L (δ) = min{δ, sup{α ∈ [0,∞)|RL(2α) ≤ δ}}. Here by abuse of

notation R−1
L stands for some function but need not be the inverse of RL .
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The function R−1
L is monotone increasing and satisfies 0 < R−1

L (δ) ≤ δ for
δ > 0. We claim that RL(R−1

L (δ)) ≤ δ. In fact for s < R−1
L (δ) we have

RL(2s) ≤ δ. Hence for s = 3
4 R−1

L (δ) we have by monotony RL(R−1
L (δ)) ≤

RL(23
4 R−1

L (δ)) ≤ δ. For n ∈ N define

δn(n) = 1

C(n)
.

For k = n + l with l ≥ 1 put

δk(n) = Rn+l−1 ◦ · · · ◦ Rn+1 ◦ Rn(δ
n(n))

and for k = n − l, with l = 1, 2, . . . , n − 1 set

δk(n) = R−1
n−l ◦ · · · ◦ R−1

n−2 ◦ R−1
n−1(δ

n(n)).

It remains to check that the numbers δk(n) have the desired properties.

(i) This follows since RL(δ) ≥ δ and R−1
L (δ) ≤ δ.

(ii) For n ≥ k we have δk(n) ≤ δn(n) = 1
C(n)

by (i) Now we can choose
α(k) to be max{1, C(n)δk(1), . . . , C(n)δk(k − 1)}.

(iii) Since Rk(R−1
k (δ)) ≤ δ we conclude

Rk(δ
k(n)) ≤ δk+1(n).

We derive from (6.15)

dh(x, y) ≤ Rk(δ
k(n)) ≤ δk+1(n). ��

Lemma 6.16. After applying K-theory Diagram (6.2) is commutative.

Proof. Because of [57, Proposition 1.3.1] it suffices to construct a natural
transformation T of functors OG(E) → c̃hhfdO

G(E) between c̃hhfd(prk) ◦
trans and the obvious inclusion such that T(A) is a weak homotopy equiva-
lence in c̃hhfdO

G(E) for every object A in OG(E).
Consider a ZG-chain complex C∗ such that after forgetting the G-action

C∗ ∈ chhfd F f (Z) = chhfd(F
f(Z) ⊂ F κ(Z)).

Examples are Csing
∗ (X) and Csing,δ

∗ (X) by Lemma 6.7(ii) and the (easier)
uncontrolled version of Lemma 6.9. We define a functor

lC∗ : OG(E) → chhfd OG(E)

as follows. Let

A = (A(g,y,t))(g,y,t)∈G×E×[1,∞) and B = (B(g′,y′,t ′))(g′,y′,t ′)∈G×E×[1,∞)
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be objects in OG(E) and let ϕ : A → B be a morphism in OG(E) with
components ϕ(g′,y′,t ′),(g,y,t) : A(g,y,t) → B(g′,y′,t ′). Define A �→ A ⊗ C∗ and
ϕ �→ ϕ ⊗ l, where for (g, y, t), (g′, y′, t′) ∈ G × E × [1,∞) we put

(A ⊗ C∗)(g,y,t) = A(g,y,t) ⊗ C∗

with differential

∂(g′,y′,t ′),(g,y,t) = id(g′,y′,t ′),(g,y,t) ⊗∂

and

(ϕ ⊗ l)(g′,y′,t ′),(g,y,t) = ϕ(g′,y′,t ′),(g,y,t) ⊗ lg′−1g,

where lg′−1g is left multiplication with g′−1g.
Let C∗ and D∗ be ZG-chain complexes belonging to chhfd F f (Z) and

f∗ : C∗ → D∗ be a Z-chain map. Then for every object A in OG(E), we
have an induced chain map idA ⊗ f∗ : lC∗(A) → lD∗(A). If f∗ is more-
over a ZG-chain map, then this construction is compatible with lC∗ and
lD∗ on morphisms and defines a natural transformation l f∗ : lC∗ → lD∗ of
functors. If f∗ is a chain homology equivalence (after forgetting the group
action), then l f∗(A) : lC∗(A) → lD∗(A) is a chain homotopy equivalence in
chhfd OG(E): since C∗ and D∗ are free as Z-chain complexes, we can choose
a (not necessarily G-equivariant) Z-chain homotopy inverse u∗ : D∗ → C∗
for f∗. Then idA ⊗u∗ is a homotopy inverse for idA ⊗ f∗ = l f∗(A).

Let 0(Z)∗ be the ZG-chain complex concentrated in dimension zero
and given there by Z with the trivial G-operation. Let ε∗ : Csing

∗ (X) →
0(Z)∗ be the ZG-chain complex map given by augmentation. Denote
by ε(δn

k )∗ : Csing,δn(k)
∗ (X) → 0(Z)∗ its composition with the inclusion

Csing,δn(k)
∗ (X) → Csing

∗ (X). We obtain the following commutative diagram
in chhfd OG(E).

lC
sing,δ1 (k)∗ (X)(A) ��linc

��

l
ε(δ1

k)∗

lC
sing,δ2(k)∗ (X)(A) ��linc

��

l
ε(δ2

k)∗

lC
sing,δ3(k)∗ (X)(A) ��linc

��

l
ε(δ3

k)∗

. . .

l0(Z)∗(A) ��id l0(Z)∗(A) ��id l0(Z)∗(A) ��id

Here inc denotes the obvious inclusions. All arrows are homotopy equiva-
lences in chhfd OG(E) by the argument above since ε∗ : Csing

∗ (X) → 0(Z)∗
and each inclusion Csing,δn(k)

∗ (X) → Csing
∗ (X) are chain homology equiva-

lences by the contractibility of X and Lemma 6.7(ii). One easily checks that
the upper row is an element in c̃hhfdO

G(E), namely c̃hhfd(prk)◦trans(A), and
that the lower row is an element in c̃hhfdO

G(E), namely, the one given by
A

id−→ A
id−→ A

id−→ . . . . Hence we obtain the desired natural transformation T
whose evaluation at an object A is a weak equivalence in c̃hhfdO

G(E). ��
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7. Stability

In this section we will prove a stability result that implies (4.7).

Notation 7.1. Let E be a model for the classifying space EF G. Let
(Xn, dn)n∈N be a sequence of quasi-metric spaces equipped with an iso-
metric G-action. Denote by d̃n the product quasi-metric on G × Xn defined
by d̃n((g, x), (g′, x ′)) = dG(g, g′) + dn(x, x ′). We abbreviate

LG
⊕((Xn, dn)n∈N) =

⊕

n∈N
OG(E, (G × Xn, d̃n));

LG((Xn, dn)n∈N) = OG(E, (G × Xn, d̃n)n∈N).

The inclusion LG⊕((Xn, dn)n∈N) → LG((Xn, dn)n∈N) is a Karoubi filtration
and we denote the quotient by LG⊕((Xn, dn)n∈N)>⊕, its objects are the same
as the objects of LG((Xn, dn)n∈N) but morphism are identified if they factor
over an object in LG⊕((Xn, dn)n∈N).

Theorem 7.2. Let Xn, n ∈ N be a sequence of simplicial complexes with
a cell preserving simplicial G-action. Suppose that there exists an N ∈ N
such that dim Xn ≤ N for all n ∈ N. For every n ∈ N let dn be a quasi-metric
on Xn satisfying

dn(x, y) ≥ nd1(x, y) ∀x, y ∈ Xn

with equality if x and y are contained in a common simplex of Xn. (Recall
that d1 denotes the l1-metric on simplicial complexes.) Assume that all
isotropy groups of the action of G on Xn are contained in F . Then the
inclusion

LG
⊕((Xn, dn)n∈N) → LG((Xn, dn)n∈N)

induces an equivalence on the level of K-theory.

Note that (4.7) is a consequence of this Theorem. In this application to
the inclusion (3) in Diagram (4.4) the quasi-metrics dn are equal to nd1, the
l1-metrics scaled by n, but for the proof it will be convenient to also allow
disjoint unions of simplicial complexes which carry a scaled l1-metric, but
where different components are infinitely far apart. We start by introducing
some notation. Next we will state a special case and an excision result. The
proof of Theorem 7.2 will then be an easy induction.

Notation 7.3. Retain the assumptions of Theorem 7.2. Recall that dim Xn
≤ N. Let Yn = ∐

∆N be the disjoint union of the N-simplices of Xn . Equip
Yn with the quasi-metric d∞

n for which d∞
n (x, y) = nd1(x, y) if x and y

are contained in a common N-simplex and d∞
n (x, y) = ∞ otherwise. Let

∂Yn = ∐
∂∆N be the disjoint union of the boundaries of the N-simplices



A. Bartels et al.

of Yn and equip ∂Yn with the subspace quasi-metric. Let X(N−1)
n be the

(N − 1)-skeleton of Xn equipped with the subspace quasi-metric.

Proposition 7.4. Retain Notation 7.3. Then the K-theory of
LG((Yn, d∞

n )n∈N)>⊕ is trivial.

Proposition 7.5. Retain Notation 7.3. Then diagram induced from the
pushout-diagram that describes the attaching of the N-simplices

LG
((

∂Yn, d∞
n

)
n∈N

)>⊕
��

��

LG
((

Yn, d∞
n

)
n∈N

)>⊕

��

LG
((

X(N−1)
n , dn

)
n∈N

)>⊕
�� LG((Xn, dn)n∈N)>⊕

(7.6)

becomes homotopy cartesian after applying K-theory.

Proof of Theorem 7.2. Karoubi filtrations induce fibration sequences in
K -theory, [16]. Therefore

LG
⊕((Xn, dn)n∈N) → LG((Xn, dn)n∈N) → LG((Xn, dn)n∈N)>⊕

induces a fibration sequence in K -theory. Hence the statement of the theorem
is equivalent to showing that the K -theory of LG((Xn, dn)n∈N)>⊕ vanishes.
We proceed by induction on N. If N = −1, then there is nothing to prove.
Consider (7.6). By the induction hypothesis the K -theory of the categories
on the left both are trivial. By Proposition 7.4 the K -theory of the upper right
category of (7.6) vanishes. Proposition 7.5 implies now that the K -theory
of LG((Xn, dn)n∈N)>⊕ has to vanish as well. ��

It remains to prove Propositions 7.4 and 7.5.

Proof of Proposition 7.4. This proof will be similar to the proof that hom-
ology theories constructed using controlled algebra satisfy homotopy in-
variance and uses an Eilenberg swindle.

We will construct for each n an Eilenberg-swindle on
OG(E, G × Yn, d̃∞

n ). Since the construction leaves the G × Yn-direction
untouched it will be clear that these Eilenberg-swindles can be combined to
an Eilenberg-swindle on LG((Yn, d∞

n )n∈N)>⊕. If E = pt, then we can define
this swindle by pushing along the [1,∞)-direction, compare Lemma 3.6(ii).
In the general case, we will also need to use contractions in E towards fixed
points for isotropy groups.

Fix n ∈ N.
Let Rn be the set of N-simplices of Yn. The isotropy groups of Rn agree

with the isotropy groups of Yn and are thus all contained in F . By the
universal property of E there exists a G-equivariant map ι : Rn → E and
a G-equivariant homotopy h : Rn × E × [0, 1] → E with h0(r, e) = e and
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h1(r, e) = ι(r). Denote by p : Yn → Rn the canonical projection map that
collapses each N-simplex to a point. For k ∈ N0 the map

(g, y, e, t) �→ (g, y, hk/(k+t)(p(y), e), t + k)

where g ∈ G, y ∈ Yn, e ∈ E, t ∈ [1,∞) induces a functor Sk from
OG(E, G×Yn, d̃∞

n ) to itself. Our first claim is that
⊕∞

k=0 Sk also yields a well
defined functor. There is a canonical natural transformation τk between Sk
and Sk+1, see (3.1). Our second claim is that

⊕∞
k=0 τk yields a natural

equivalence from
⊕∞

k=0 Sk to
⊕∞

k=1 Sk. Since S0 = id this gives the desired
Eilenberg-swindle.

It remains to prove the two claims above. In both cases the only nontrivial
claim is that the continuous control condition (3.2) is preserved.

We start with the first claim. Let ϕ be a morphism in OG(E, G×Yn, d̃∞
n ).

The support of (
⊕∞

k=0 Sk)(ϕ) is given by all pairs of points in G ×Yn × E ×
[1,∞) of the form

((g, y, hk/(k+t)(p(y), e), t + k), (g′, y′, hk/(k+t)(p(y′), e′), t′ + k)),

where k ∈ N0 and ((g, y, e, t), (g′, y′, e′, t′)) ∈ supp ϕ. Let U be an
Gē-invariant open neighborhood of ē ∈ E and κ > 0. We need to show
that there is an Gē-invariant neighborhood V of ē and σ > κ such that
if ((g, y, e, t), (g′, y′, e′, t′)) ∈ supp ϕ, k ∈ N0, hk/(k+t)(p(y), e) ∈ V and
t > σ , then hk/(k+t ′)(p(y′), e′) ∈ U and t′ > κ. By [3, Proposition 3.4]
there is a sequence V 1 ⊃ V 2 ⊃ · · · of open Gē-invariant neighborhoods
of ē ∈ E such that

⋂∞
l=1 GV l = Gē and gV l ∩ V l = ∅ if g ∈ G − Gē.

We proceed now by contradiction and assume that for every l there is
Pl = ((gl, yl, el, tl), (g′

l, y′
l, e′

l, t′l )) ∈ supp ϕ and kl ∈ N0 such that

(hkl/(kl+tl )(p(yl), el), tl + kl) ∈ V l × (κ + l,∞)

but (hkl/(kl+t ′l )(p(y′
l ), e′

l), t′l + kl) �∈ U × (κ,∞).

The metric control with respect to d̃∞
n for the morphism ϕ implies that

p(yl) = p(y′
l ) for all sufficiently large l. From the metric control con-

dition with respect to the projection to [1,∞), see (3.3), we conclude that
|tl − t′l | ≤ α for some α > 0 independent of l. Since tl + kl > κ + l this
implies t′l + kl > κ for sufficiently large l. Therefore we may assume that

hkl/(kl+t ′l )(p(y′
l ), e′

l) �∈ U ∀l.(7.7)

Passing to a subsequence, if necessary, we can assume that kl/(kl + tl) and
kl/(kl + t′l ) both converge for l → ∞. Since tl + kl > κ + l we conclude
from

∣∣∣∣
kl

kl + tl
− kl

kl + t′l

∣∣∣∣ =
∣∣∣∣

kl · (t′l − tl)

(kl + tl) · (kl + t′l )

∣∣∣∣ ≤ α

kl + tl
≤ α

κ + l



A. Bartels et al.

that both sequences have the same limit s ∈ [0, 1]. Because the morphism ϕ
has G-compact support with respect to the projection to G × Yn × E, we
can assume that there are al ∈ G and (g̃, ỹ, ẽ) such that

al(gl, yl, el) → (g̃, ỹ, ẽ) as l → ∞.

Now alhkl/(kl+tl )(p(yl), el) = hkl/(kl+tl )(p(al yl), alel) converges to
hs(p(ỹ), ẽ). Since hkl/(kl+tl )(p(yl), el) ∈ V l we conclude hs(p(ỹ), ẽ) = aẽ
for some a ∈ G and a−1al ∈ Gē for sufficiently large l from the properties
of the V l. Because U and the V l are Gē invariant and supp ϕ is G-invariant,
we can replace Pl by a−1al Pl . Therefore we may now assume that

(gl, yl, el) → (g̃, ỹ, ẽ) as l → ∞.

Because Rl is discrete we can also assume that p(yl) = p(y′
l ) = p(ỹ) for

all l. Let Ũ ⊂ E be the preimage of U ⊂ E under the G-equivariant map
e �→ hs(p(y), e). Now we use that supp ϕ satisfies the continuous control
condition (3.2) to conclude that there exists an open Ge-invariant neighbor-
hood W of e ∈ E and σ > 0 such that if ((g, y, e, t), (g′, y′, e′, t′)) ∈ supp ϕ,
e ∈ W , t > σ and t′ > κ then e′ ∈ Ũ . Since el → ẽ we can apply this
to Pl ∈ supp ϕ and conclude that e′

l ∈ Ũ for sufficiently large l. Thus
hs(p(y), e′

l) ∈ U for sufficiently large l. But this contradicts (7.7) since
kl/(kl + tl) → s as l → ∞ and p(y) = p(y′

l) for all l. This finishes the
proof of the first claim.

For the second claim will use a similar argument. Let A be an object of
OG(E, G × Yn, d̃∞

n ). Then the support of the isomorphism

( ∞⊕

k=0

τk
)
(A) :

∞⊕

k=0

Sk(A) →
∞⊕

k=1

Sk(A)

is the set of all pairs of points in G × Yn × E × [1,∞) of the form

((g, y, hk/(k+t)(p(y), e), t + k), (g, y, hk+1/(k+1+t)(p(y), e), t + k + 1))

where k ∈ N0 and (g, y, e, t) ∈ supp A, compare (3.1). We need to show
that this set satisfies the continuous control condition (3.2). Let U be an
Gē-invariant open neighborhood of ē ∈ E and κ > 0. Let V l be a sequence
of open neighborhoods as used in the proof of the first claim. We proceed as
before by contradiction and assume that for every l there is (gl, yl, el, tl) ∈
supp A and kl ∈ N0 such that

(hkl/(kl+tl )(p(yl), el), tl + kl) ∈ V l × (κ + l,∞)

but (hkl+1/(kl+1+tl )(p(yl), el), tl + kl + 1) �∈ U × (κ,∞).

(Strictly speaking we also need to consider the case where we interchange
kl and kl + 1 because of (3.4), but this case can be treated by essentially the
same argument.) From tl + kl + 1 > κ we conclude

hkl+1/(kl+1+tl )(p(yl), el) �∈ U ∀l.(7.8)
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Passing to a subsequence, if necessary, we can assume that kl/(kl + tl) and
kl +1/(kl +1+tl) both converge. As above we conclude that both sequences
have the same limit s ∈ [0, 1]. Because the object A has G-compact support
with respect to the projection to G × Yn × E, we can assume that there are
al ∈ G such that

al(gl, yl, el) → (g̃, ỹ, ẽ) as l → ∞.

By a similar argument as above we can in fact assume that al is trivial. Since

ē = lim
l→∞

hkl/(kl+tl )(p(yl), el) = lim
l→∞

hkl+1/(kl+1+tl )(p(yl), el)

we obtain a contradiction to (7.8). ��
Before we can prove Proposition 7.5 we will need to unravel the defin-

ition of the categories appearing in (7.6) and introduce some more notation.

Notation 7.9. Retain Notation 7.3. Let

B :=
∐

n∈N
G × ∂Yn × E × [1,∞), Y :=

∐

n∈N
G × Yn × E × [1,∞),

A :=
∐

n∈N
G × X(N−1)

n × E × [1,∞), X :=
∐

n∈N
G × Xn × E × [1,∞).

Let F B⊕ be the collection of subsets of B of the form
∐n̄

n=1 G × ∂Yn ×
E × [1,∞) for some n̄ ∈ N. Similar we have collections F A⊕ , F Y⊕ and F X⊕
respectively of subsets of A, Y and X respectively. Let F B

cs be the collection
of subsets of B of the form

∐
n∈N Kn , where each Kn is the preimage of

a G-compact subset under the projection G × ∂Yn × E × [1,∞) → G ×
∂Yn × E. Similar we have collections F A

cs , F Y
cs and F X

cs respectively of
subsets of A, Y and X respectively. Let E B be the collection of subsets
J ⊂ B × B satisfying the following conditions:

(7.10) J ⊆ ∐
n∈N Jn with respect to the canonical inclusion

∐

n∈N

(
(G × ∂Yn × E × [1,∞))×2) → B × B,

where for every n ∈ N the set Jn ⊂ (G × ∂Yn × E × [1,∞))×2 is
such that Jn is the preimage of some J ′

n ∈ E E
Gcc with respect to the

canonical projection G ×∂Yn × E ×[1,∞) → E ×[1,∞), compare
Sect. 3.2;

(7.11) There is α > 0 such that ((g, y, e, t), (g′, y′, e′, t′)) ∈ J with g, g′ ∈
G, y, y′ ∈ ∂Yn, e, e′ ∈ E and t, t′ ∈ [0,∞) implies d∞

n (y, y′) ≤ α
and dG(g, g′) ≤ α.
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Similar we have collections E A, EY and E X respectively of subsets of A×2,
Y×2 and X×2 respectively. Of course we use the quasi-metrics dn in the
definition of E A and E X .

With this notation Diagram (7.6) becomes

CG
(
B,E B,F B

cs ;A
)>F B⊕ ��

��

CG
(
Y,EY ,F Y

cs ;A
)>F Y⊕

��

CG
(

A,E A,F A
cs ;A

)>F A⊕ �� CG
(
X,E X ,F X

cs ;A
)>F X⊕

(7.12)

where we used a more general germ notation to denote Karoubi quotients,
see for instance [8, Sect. 2.1.6]. For example, for the upper left category
this just means that morphisms are identified if their difference factors over
an object whose support lies in some F ∈ F B⊕ . We will drop A from the
notation.

For α > 0 and F ∈ F A
cs let Fα be the subset of X consisting of all points

(g, x, e, t) ∈ X with the property that if x ∈ Xn then there is x ′ ∈ X(N−1)
n

with (g, x ′, e, t) ∈ F and dn(x, x ′) ≤ α. Define F X
A as the collection of all

subsets of X of the form Fα for all α > 0, F ∈ F A
cs and F ′ ∈ F X

cs . We
will follow [8, Sect. 8.4] and abuse notation to denote by F X

cs ∩ F X
A the

collection of all subsets of the form F ∩ F ′ with F ∈ F X
cs F ′ ∈ F X

A Similar
definitions yield F Y

B , a collection of subsets of Y and F Y
cs ∩ F Y

B .

Lemma 7.13. Retain Notation 7.9. The inclusions

CG
(
B,E B,F B

cs

)>F B⊕ → CG
(
Y,EY ,F Y

cs ∩ F Y
B

)>F Y⊕ ,

CG
(

A,E A,F A
cs

)>F A⊕ → CG
(
X,E X ,F X

cs ∩ F X
A

)>F X⊕

are equivalences of categories.

Proof. It is a formal consequence of the definitions that both functors yield
isomorphisms on morphism groups. It remains to show that every object
in the target category is isomorphic to an object in the image of the func-
tor. We consider the second functor. Let M be an object in CG(X,E X ,

F X
cs ∩ F X

A )>F X⊕ . By definition supp M is a locally finite subset of Fα ∩ F ′
for some α > 0, F ∈ F A

cs , F ′ ∈ F X
cs . Therefore there is a G-equivariant map

f : supp M → F with the property that if f(g, x, e, t) = (g′, x ′, e′, t′) with
x ∈ Xn then g′ = g, e′ = e, t′ = t, x ′ ∈ Xn and dn(x, x ′) ≤ α. (The map is
not canonical; we have to choose x ′ for every x in a G-equivariant way.) It
is not hard to see that f is finite-to-one and has a locally finite image. Thus
we can apply f to M to obtain an object f∗(M) of CG(A,E A,F A

cs )>F A⊕ .
Clearly, {(s, f(s)) | s ∈ supp M} ∈ E X . Thus M and f∗(M) are isomorphic.

The first functor can be treated similarly. ��
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Proof of Proposition 7.5. Retain Notation 7.9. Because of (7.12) and
Lemma 7.13 it suffices to prove that

CG
(
Y,EY ,F Y

cs ∩ F Y
B

)>F Y⊕ ��

��

CG
(
Y,EY ,F Y

cs

)>F Y⊕

��

CG
(
X,E X ,F X

cs ∩ F X
A

)>F X⊕ �� CG
(
X,E X ,F X

cs

)>F X⊕

yields a homotopy cartesian diagram in K -theory.
The two rows of this diagram are now Karoubi filtrations and on the

quotients we obtain an induced functor

CG
(
Y,EY ,F Y

cs

)>F Y⊕ ∪F Y
B → CG

(
X,E X ,F X

cs

)>F X⊕ ∪F X
A .(7.14)

(Here we are again abusing notation following [8, Sect. 8.4]: F Y⊕ ∪ F Y
B is

the collection of all sets of the form F ∪ F ′ with F ∈ F Y⊕ and F ′ ∈ F Y
B and

the definition of F X⊕ ∪ F X
A is similar.)

Because Karoubi filtrations induce fibration sequences in K -theory [16],
it suffices to show that (7.14) is an equivalence of categories. Because
the canonical map Yn → Xn induces a homeomorphism Yn − ∂Yn →
Xn − X(N−1)

n every object in the target category is isomorphic to an object
in the image. Hence it suffices to show that (7.14) is full and faithful.

Every morphism in the category CG(X,E X ,F X
cs ;A) can be written as

the sum of two morphisms ϕ + ψ, where ϕ does not connect different
k-simplices of

∐
n∈N X(k)n and ψ has no component that connects two

points on the same simplex. Clearly, ϕ can be lifted to CG(Y,EY ,F Y
cs ).

It follows from Lemma 7.15 below that ψ can be factored over an object
whose support is contained in some F ∈ F X

A . The definition of the Karoubi
quotient implies that ψ is trivial in CG(X,E X ,F X

cs )>F X⊕ ∪F X
A . Therefore

(7.14) is surjective on morphism sets. The injectivity on morphism sets
follows from the fact that the preimage of an F ∈ F X

A is contained in some
F ′ ∈ F Y

B . ��
Lemma 7.15. Let Z be an n-dimensional simplicial complex. If ∆ is an
n-simplex in Z, x ∈ ∆, y ∈ Z − ∆ then there is z ∈ ∂∆ such that
d1(x, z) ≤ 2d1(x, y). (Here d1 denotes the l1-metric on Z).

Proof. Let ∆′ be the simplex uniquely determined by the property that y
lies in its interior. Then ∆ ∩ ∆′ �= ∆′. Let xi , i ∈ I be the barycentric
coordinates of x and yi′ , i ′ ∈ I ′ be the barycentric coordinates of y, where I
and I ′ respectively are the vertices of ∆ and ∆′. We can assume x /∈ ∂∆,
because otherwise we simply set z = x. Therefore xi �= 0 for all i ∈ I .
Since ∆ ∩ ∆′ �= ∆′ there exists an i0 ∈ I with i0 /∈ I ′. We have xi0 �= 0 and
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xi0 ≤ d1(x, y). Now let z ∈ ∂∆ be the point with coordinates zi = xi
1−xi0

if

i �= i0 and zi0 = 0. Then d1(x, z) = 2xi0 and hence d1(x, z) ≤ 2d1(x, y).
��
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