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On the Farrell–Jones Conjecture and its applications

Arthur Bartels, Wolfgang Lück and Holger Reich

Abstract

We present the status of the Farrell–Jones Conjecture for algebraic K-theory for a group G and
arbitrary coefficient rings R. We add new groups for which the conjecture is known to be true, and
we study inheritance properties. We discuss new applications, focussing on the Bass Conjecture,
the Kaplansky Conjecture, and conjectures generalizing Moody’s Induction Theorem. Thus, we
considerably extend the class of groups for which these conjectures are known.

1. Introduction and statements of results

1.1. Background

The Farrell–Jones Conjecture for algebraic K-theory predicts the structure of Kn (RG) for a
group G and a ring R. There is also an L-theory version. For applications in topology and
geometry, the case R = Z is the most important one, since many topological invariants of
manifolds and CW -complexes such as the finiteness obstruction, the Whitehead torsion and
the surgery obstruction take values in the algebraic K- or L-theory of the integral group ring
Zπ of the fundamental group π. The Farrell–Jones Conjecture for R = Z implies several famous
conjectures, for example, the Novikov Conjecture, (in high dimensions) the Borel Conjecture,
and the triviality of compact h-cobordisms with torsionfree fundamental group. On the other
hand, proofs of the Farrell–Jones Conjecture for certain groups often rely on working with
integral coefficients since they are based on these geometric connections. This is the reason
why more is known about the algebraic K- and L-theory of ZG than of CG which is in some
sense surprising, since CG has better ring-theoretic properties than ZG. For the status of the
Farrell–Jones Conjecture with coefficient in Z, we refer for instance to [45, Sections 5.2 and 5.3].

Recently, the geometric approaches have been generalized so far that they also apply to other
coefficient rings than Z (see, for instance, [6, 7, 32, 54]). This is interesting for algebraic and
ring-theoretic applications, where one would like to consider, for example, fields, rings of inte-
gers in algebraic number fields, and integral domains. The purpose of this article is to describe
the status of the Farrell–Jones Conjecture for algebraic K-theory for arbitrary coefficient rings
and to discuss applications, for instance to the Bass Conjectures, the Kaplansky Conjecture,
generalizations of Moody’s Induction Theorem, Nil-groups, and Fuglede–Kadison determinants.

1.2. Status of the Farrell–Jones Conjecture for algebraic K-theory

There is a stronger version of the Farrell–Jones Conjecture, the so-called Fibered Farrell–
Jones Conjecture. The Fibered Farrell–Jones Conjecture does imply the Farrell–Jones Con-
jecture, and has better inheritance properties than the Farrell–Jones Conjecture. We will give
the precise technical formulations of these conjectures in Section 3. The original source for
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the (Fibered) Farrell–Jones Conjecture is the paper [28] from 1993; see in particular [28, 1.6,
p. 257 and 1.7, p. 262].

‘Ring’ will always mean an associative ring with unit. It is not necessarily commutative.
Fields are understood to be commutative unless they are called skew-fields.

One of the main results of this article is the next theorem, the proof of which will be given
in Subsection 3.1.

Theorem 1.1. Let R be a ring. Let FJ (R) be the class of groups which satisfy the Fibered
Farrell–Jones Conjecture for algebraic K-theory with coefficients in R. Then:

(i) Every word-hyperbolic group and every virtually nilpotent group belongs to FJ (R).
(ii) If G1 and G2 belong to FJ (R), then G1 × G2 belongs to FJ (R).
(iii) Let {Gi | i ∈ I} be a directed system of groups (with not necessarily injective structure

maps), such that Gi ∈ FJ (R) for i ∈ I. Then colimi∈I Gi belongs to FJ (R).
(iv) If H is a subgroup of G and G ∈ FJ (R), then H ∈ FJ (R).

If one restricts to lower and middle K-theory for torsionfree groups and regular rings R, the
Farrell–Jones Conjecture for algebraic K-theory reduces to the following, easier to understand,
conclusions, which are already very interesting in their own right.

Let R be a ring and let G be a group. Denote by i : R→RG the obvious inclusion. Sending
(g, [P ])∈G × K0(R) to the class of the RG-automorphism

R[G] ⊗R P → R[G] ⊗R P, u ⊗ x �→ ug−1 ⊗ x

defines a map Φ: G/[G,G] ⊗Z K0(R)→K1(RG). Define the homomorphism

A := Φ ⊕ K1(i) : (G/[G,G] ⊗Z K0(R)) ⊕ K1(R) → K1(RG). (1.1)

Define WhR (G) to be the cokernel of A. If K̃0(R)= 0 and the obvious map R× →K1(R)
is surjective, then WhR (G) coincides with K1(RG)/〈(r · g) | r ∈ R×, g ∈ G〉. If R = Z, then
WhZ(G) is the classical Whitehead group Wh(G) which appears for instance in the s-cobordism
theorem.

Theorem 1.2. Let R be a regular ring. Suppose that G is torsionfree and that the Farrell–
Jones Conjecture for algebraic K-theory with coefficients in R holds for G. Then:

(i) Kn (RG) = 0 for n � − 1.
(ii) The change of rings map K0(R)→K0(RG) is bijective. In particular, K̃0(RG) is trivial

if and only if K̃0(R) is trivial.
(iii) The Whitehead group WhR (G) is trivial.

The proof of Theorem 1.2 can be found in [45, Conjecture 1.1, p. 652, Conjecture 1.1, p. 657
and Corollary 2.3, p. 685].

In particular, we see for R = Z that Wh(G) = 0, K̃0(ZG) = 0 and Kn (ZG) = 0 for n � −1
hold if the torsionfree group G satisfies the Farrell–Jones Conjecture with coefficients in Z.

These vanishing results have important geometric consequences. Namely, let G be a finitely
presented group. Then Wh(G) vanishes if and only if every compact h-cobordism of dimension
at least 6 with G as fundamental group is trivial, and K̃0(ZG) vanishes if and only if every
finitely dominated CW -complex with G as fundamental group is homotopy equivalent to a
compact CW -complex. The vanishing of K̃0(ZG) implies that the group G is already of type
FF (which is sometimes also called ‘type FL’ in the literature) if it is of type FP (see [16,
Chapter 8; Section 6]).

The conclusions appearing in Theorem 1.2 are known to be true for a torsionfree group G,
provided that G belongs to the class FJ (R) appearing in Theorem 1.1. Examples are torsionfree
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subgroups of a finite product
∏r

i=1 Gi , where each group Gi is word-hyperbolic. Subgroups of
products of word-hyperbolic groups are studied, for instance, in [15].

More information about torsionfree groups G for which Theorem 1.2 is true in the case R = Z

can be found in [45, Theorem 5.5, p. 722]. There, results due to Aravinda, Farrell, Hu, Jones,
Linnell, and Roushon are listed.

1.3. Homotopy K-theory and rings with finite characteristic

Sometimes one wants to consider special rings, or one is interested in rational information
only. Then the Fibered Farrell–Jones Conjecture is known to be true for more groups. This is
illustrated by Theorem 1.3.

For the definition and basic properties of homotopy K-theory, we refer to Weibel [67]. For
a positive integer N , let Z[1/N ] be the subring of Q consisting of rational numbers m/n with
m,n ∈ Z for which each prime dividing n divides N . For an abelian group A, let A[1/N ]
be A ⊗Z Z[1/N ]. A ring R is said to be of finite characteristic if there is an integer N � 2
such that N · 1R = 0. In this case, the minimal positive integer with this property is called the
characteristic of R.

The proof of the next theorem will be given in Subsection 3.3. The differences between the
conclusions appearing in Theorem 1.1 and the following theorem are that now ‘virtually nilpo-
tent’ is replaced by ‘elementary amenable’ in assertion (i), and that there are new assertions
about extensions and actions on trees, namely assertions (v) and (vi). The extension result
is intriguing since elementary amenable groups and word-hyperbolic groups form separate
branches in Bridson’s universe of groups (see [14]).

Theorem 1.3. Let R be a ring. Consider the following assertions for a group G.

(KH) The group G satisfies the Fibered Farrell–Jones Conjecture for homotopy K-theory
with coefficients in R.

(FC) The ring R has finite characteristic N . The Fibered Farrell–Jones Conjecture for
algebraic K-theory for G with coefficients in R for both the families F in and VCyc is
true after applying −⊗ZZ[1/N ] to the assembly map.

Let FJKH(R) be the class of groups for which assertion (KH) holds. If R has finite charac-
teristic, then let FJF C (R) be the class of groups for which assertion (FC) is true. Let F be
FJF C (R) or FJKH(R). Then:

(i) Every word-hyperbolic and every elementary amenable group belongs to F .
(ii) If G1 and G2 belong to F , then G1 × G2 belongs to F .
(iii) Let {Gi | i ∈ I} be a directed system of groups (with not necessarily injective structure

maps), such that Gi ∈ F for i ∈ I. Then colimi∈I Gi belongs to F .
(iv) If H is a subgroup of G and G ∈ F , then H ∈ F .
(v) Let 1 → H → G → Q → 1 be an extension of groups, such that H is either elementary

amenable or word-hyperbolic and Q belongs to F . Then G belongs to F .
(vi) Suppose that G acts on a tree T . Assume that for each x ∈ T the isotropy group Gx

belongs to F . Then G belongs to F .

Moreover, if R has finite characteristic, then we have FJKH(R) ⊆ FJF C (R).

Corollary 1.4. Let R be a regular ring of finite characteristic N . Let G be torsionfree.
Suppose that G belongs to the class FJF C (R) defined in Theorem 1.3. Then:

(i) Kn (RG)[1/N ] = 0 for n � −1.
(ii) The change of rings map induces a bijection K0(R)[1/N ]→K0(RG)[1/N ]. In particular,

K̃0(RG)[1/N ] is trivial if and only if K̃0(R)[1/N ] is trivial.
(iii) WhR (G)[1/N ] is trivial.
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The proof of Corollary 1.4 is analogous to that of Theorem 1.2. Corollary 1.4, together with
Theorem 1.3, substantially extends Theorem 1.1 of Farrell–Linnell [32], where WhF (G)⊗ZQ = 0
is proven for G a torsionfree elementary amenable group and F , a field of prime characteristic.

The vanishing of WhFp (G)⊗Z Q is needed in the definition of a p-adic logarithmic Fuglede–
Kadison determinant for G, due to Deninger [22].

1.4. Induction from finite subgroups

The next result will be explained and proven in Section 4.

Theorem 1.5. Let G be a group. Then:

(i) Let R be a regular ring such that the order of any finite subgroup of G is invertible
in R, for example, a field of characteristic zero. Suppose that G satisfies the Farrell–Jones
Conjecture with coefficients in R. Then the map given by induction from finite subgroups of
G (see equation (4.1)),

I(G,R) : colim
OrFin(G)

K0(RH) → K0(RG),

is an isomorphism.
(ii) Let D be a skew-field of characteristic p for a prime number p. Suppose that G satisfies

the Farrell–Jones Conjecture with coefficients in D after applying −⊗ZZ[1/p].
Then the map

I(G,D)[1/p] : colim
OrFin(G)

K0(DH)[1/p] → K0(DG)[1/p]

is an isomorphism.

Theorem 1.5 is an example of a result of the type that certain K-groups of a group ring are
given by induction over finite subgroups. A prominent example is Moody’s Induction Theorem
(see [19, 49, 50]) which deals with the surjectivity of a corresponding map to G0(RG) instead
of K0(RG) for virtually poly-Z groups G and Noetherian rings R. If R is regular and the
order of any finite subgroup in the virtually poly-Z group G is invertible in R, then RG is
regular and there is no difference between the G-theoretic and the K-theoretic statement.
Thus, Theorem 1.5(i) is linked to Moody’s Induction Theorem.

Every group in the family FJ (R) appearing in Theorem 1.1 satisfies the assumptions of
Theorem 1.5(i).

Theorem 1.5(ii) applies to every group G which belongs to the family FJF C (D) appearing
in Theorem 1.3. Thus, we have substantially generalized Theorem 1.2 of Farrell–Linnell [32],
where the surjectivity of the map

I(G,F ) ⊗Z Q : colim
OrFin(G)

K0(FH) ⊗Z Q → K0(FG) ⊗Z Q

is proven for elementary amenable groups G and fields F of prime characteristic.

1.5. Bass conjectures

The following conjecture is due to Bass [11, 4.5].

Conjecture 1.6 (Bass Conjecture for commutative integral domains). Let R be a com-
mutative integral domain, and let G be a group. Let g ∈ G. Suppose that either the order |g|
is infinite or that the order |g| is finite and not invertible in R.

Then for every finitely generated projective RG-module, the value of its Hattori–Stallings
rank HSRG (P ) at (g) (see equation (5.3)) is zero.
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The Bass Conjecture 1.6 can be interpreted topologically. Namely, the Bass Conjecture 1.6
is true for a finitely presented group G in the case R = Z, if and only if every homotopy
idempotent selfmap of an oriented smooth closed manifold whose dimension is greater than 2
and whose fundamental group is isomorphic to G is homotopic to one that has precisely one
fixed point (see [13]). The Bass Conjecture 1.6 for G in the case R = Z (or R = C) also implies,
for a finitely dominated CW -complex with fundamental group G, that its Euler characteristic
agrees with the L2-Euler characteristic of its universal covering (see [24]).

The next results follows from the argument in [32, Section 5].

Theorem 1.7. Let G be a group. Suppose that

I(G,F ) ⊗Z Q : colim
OrFin(G)

K0(FH) ⊗Z Q → K0(FG) ⊗Z Q

is surjective for all fields F of prime characteristic.
Then the Bass Conjecture 1.6 is satisfied for every commutative integral domain R.

Hence, by Theorem 1.5, the Bass Conjecture for commutative integral domains (Conjec-
ture 1.6) is true for every group G which lies in the class FJF C (F ) for all fields F of prime
characteristic. The case of elementary amenable groups has already been treated in [32,
Theorem 1.6]. The Bass Conjecture 1.6 has been proved by Bass [11, Proposition 6.2 and
Theorem 6.3] for R = C and G a linear group, by Linnell [38, Lemma 4.1] for |g|<∞ and R = Z,
and by Eckmann [23, Theorem 3.3] for R = Q, provided that G has at most cohomological
dimension 2 over Q. Further results have been proved by Emmanouil [27].

Here is another version of the Bass Conjecture.

Conjecture 1.8 (Bass Conjecture for fields of characteristic zero as coefficients). Let F
be a field of characteristic zero, and let G be a group. The Hattori–Stallings homomorphism
(see equation (5.3)) induces an isomorphism

HSF G : K0(FG) ⊗Z F → classF (G)f .

For a field F of characteristic zero, Conjecture 1.8 obviously implies Conjecture 1.6. The
proof of the next result will be given in Section 5.

Theorem 1.9. Let F be a field of characteristic zero, and let G be a group. If G satisfies
the Farrell–Jones Conjecture with coefficients in F , then G satisfies the Bass Conjecture 1.8
for F .

In particular, the Bass Conjecture for a field F of characteristic zero as coefficients (Conjec-
ture 1.8) is true for all groups in the class FJ (F ) by Theorem 1.1.

Berrick–Chatterji–Mislin [12] prove that a group G satisfies the Bass Conjecture 1.8 for
F = C and the Bass Conjecture 1.6 for integral domains for R = Z, if G satisfies the Bost
Conjecture. Because the Bost Conjecture is known for many groups, this is also true for the
Bass Conjecture for F = C. Since the Bost Conjecture deals with l2-spaces, this strategy can
only work for subrings of C.

The following result describes another conclusion of the Farrell–Jones Conjecture, which is
in the spirit of the Bass Conjecture. It is hence true for all groups in the family FJ (R).

Theorem 1.10. Let G be a group. Let R be a commutative integral domain with field of
fractions F such that no prime divisor of the order of a finite subgroup of G is invertible in R.
(An example is R = Z and F = Q.) Suppose that G satisfies the Farrell–Jones Conjecture for
algebraic K-theory with coefficients in R.
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Then the change of rings homomorphisms

K0(RG) ⊗Z Q → K0(FG) ⊗Z Q

agrees with the composite

K0(RG) ⊗Z Q → K0(R) ⊗Z Q → K0(F ) ⊗Z Q → K0(FG) ⊗Z Q,

where the three maps come from the change of ring homomorphisms associated to the aug-
mentation RG → R, the inclusion R→F , and the inclusion F →FG. In particular, the
homomorphism

K̃0(RG) ⊗Z Q → K̃0(FG) ⊗Z Q

is trivial.

(We remind the reader that K̃0(RG) and K̃0(FG) are, respectively, the cokernel of the
canonical map K0(Z)→K0(RG) and that of the canonical map K0(Z)→K0(FG).)

If G is finite, G satisfies the Farrell–Jones Conjecture for algebraic K-theory with coeffi-
cients in R for trivial reasons; hence Theorem 1.10 reduces to a Theorem of Swan (see [63,
Theorem 8.1; 11, Corollary 4.2]).

The conclusion of Theorem 1.10 is related to the theorem that for every group G, the change
of rings homomorphism K̃0(ZG)→ K̃0(N (G)) is trivial, where N (G) is the group von Neumann
algebra (see [41, Theorem 9.62, p. 363; 60]).

1.6. The Kaplansky Conjecture

Conjecture 1.11 (Kaplansky Conjecture). Let R be an integral domain, and let G be a
torsionfree group. Then all idempotents of RG are trivial, that is, equal to 0 or 1.

In the next theorem, we will use the notion of a sofic group that was introduced by Gromov
and originally called a subamenable group. Every residually amenable group is sofic but the
converse is not true. The class of sofic groups is closed under taking subgroups, direct products,
free amalgamated products, colimits, and inverse limits, and, if H is a sofic normal subgroup
of G with amenable quotient G/H, then G is sofic. For more information about the notion of
a sofic group, we refer to [26].

The proof and further explanations of the next theorem will be given in Section 6.

Theorem 1.12. Let G be a group. Let R be a ring whose idempotents are all trivial.
Suppose that

K0(R) ⊗Z Q → K0(RG) ⊗Z Q

is an isomorphism.
Then the Kaplansky Conjecture holds for R and G if one of the following conditions is

satisfied:

(i) RG is stably finite.
(ii) R is a field of characteristic zero.
(iii) R is a skew-field and G is sofic.

Next, we discuss some special cases of Theorem 1.12. Notice that we get assertions also for
skew-fields, and not only for fields as coefficients.

Theorems 1.2 and 1.12 imply that for a skew-field D of characteristic zero and a torsionfree
group G belonging to the class of groups FJ (D) defined in Theorem 1.1, the Kaplansky
Conjecture 1.11 is true for DG, provided that D is commutative or that G is sofic.
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Suppose that D is a skew-field of prime characteristic p, all finite subgroups of G are p-groups
and G belongs to the class FJF C (D) defined in Theorem 1.3. Then K0(D)⊗ZQ

∼=→K0(DG)⊗ZQ

is an isomorphism by Theorem 1.5(ii), since for a finite p-group H, the group ring DH is a
local ring and hence K̃0(DH)= 0. If we furthermore assume that G is sofic, then Theorem 1.12
implies that all idempotents in DG are trivial. This has already been proved by Farrell–Linnell
[32, Theorem 1.7] in the case where G is elementary amenable and D is commutative.

To the authors’ knowledge, there is no example in the literature of a group which is not sofic
and of a group which is word-hyperbolic and not residually finite. So it is conceivable that all
word-hyperbolic groups are sofic.

Next we mention some results of others.
Let F be a field of characteristic zero, and let u =

∑
g∈G xg ·g ∈KG be an idempotent. Let K

be the finitely generated field extension of Q given by K = Q(xg | g ∈G). Obviously, u ∈ KG is
an idempotent. There exists an embedding of K in C. Hence all idempotents in FG are trivial
if all idempotents in CG are trivial.

The Kadison Conjecture says that all idempotents in the reduced group C∗-algebra C∗
r (G) of

a torsionfree group are trivial. Hence, the Kadison Conjecture implies the Kaplansky Conjecture
for all fields of characteristic zero. The Kadison Conjecture follows from the Baum–Connes
Conjecture (as explained, for instance, in [42, 45, 1.8.1 and 1.8.2]). Hence, a torsionfree group
G satisfies the Kaplansky Conjecture for all fields of characteristic zero, if it satisfies the
Baum–Connes Conjecture. For a survey of groups satisfying the Baum–Connes Conjecture,
we refer to [45, Sections 5.1 and 5.3]. We mention that subgroups of word-hyperbolic groups
satisfy the Baum–Connes Conjecture by a result of Mineyev–Yu [48, Theorem 20] based on
the work of Lafforgue [37] (see also [61]). A proof of the Kadison Conjecture for a torsionfree
word-hyperbolic group using cyclic homology is given by Puschnigg [52]. Notice that all these
analytic methods work only for fields of characteristic zero and cannot be extended to skew-
fields or fields of prime characteristic.

Formanek [30] (see also [17, Lemma 4.1 and Proposition 4.2]) has shown that all idempotents
of FG are trivial, provided that F is a field of prime characteristic p, the group G contains no
p-torsion and there do not exist an element g ∈G, g 
= 1, and an integer k � 1 such that g and
gpk

are conjugate, or provided that F is a field of characteristic zero and there are infinitely
many primes p for which there do not exist an element g ∈G, g 
= 1, and an integer k � 1
such that g and gpk

are conjugate. Torsionfree word-hyperbolic groups satisfy these conditions.
Hence, Formanek’s results imply that all idempotents in FG are trivial if G is torsionfree
word-hyperbolic and F is a field.

Delzant [21] has proven the Kaplansky Conjecture 1.11 for all integral domains R for a
torsionfree word-hyperbolic group G, provided that G admits an appropriate action with large
enough injectivity radius. Delzant actually deals with zero-divisors and units as well.

1.7. Homotopy invariance of L2-torsion

The following conjecture for a group G is stated and explained in Lück [41, Conjecture 3.94
(1), p. 163].

Conjecture 1.13. Define the homomorphism

Φ = ΦG : Wh(G) → R

by sending the class [A] of an invertible matrix A ∈ GLn (ZG) to ln(det(r(2)
A )), where det(r(2)

A )
is the Fuglede–Kadison determinant of the G-equivariant bounded operator l2(G)n → l2(G)n

given by right multiplication with A.
Then Φ is trivial.
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It is important because of the following conclusion, explained in [41, Theorem 3.94 (1),
p. 161]: If X and Y are det-L2-acyclic finite G-CW -complexes, which are G-homotopy equiv-
alent, then their L2-torsions agree:

ρ(2)(X;N (G)) = ρ(2)(Y ;N (G)).

Theorem 1.14. Suppose that G satisfies the Farrell–Jones Conjecture for algebraic K-
theory with coefficients in Z. Then G satisfies Conjecture 1.13.

We will omit the proof of Theorem 1.14 since it is similar to that of Theorem 1.10 using the
fact that for a finite group H, we have K̃0(ZH)⊗Z Q = 0 and Conjecture 1.13 is true for finite
groups for elementary reasons.

Let G be a torsionfree word-hyperbolic group. Suppose that its L2-Betti numbers b
(2)
p (G)

are trivial for all p � 0 and that G is of det � 1-class. (If G is residually finite, it is of det � 1-
class.) Choose a cocompact model for EG. Then we can define the L2-torsion of G:

ρ(2)(G) := ρ(2)(EG;N (G)) ∈ R.

This is indeed independent of the choice of a cocompact model for EG, and hence depends
only on G, by Theorems 1.1 and 1.14. If M is a compact hyperbolic manifold of dimension
2n + 1 whose interior admits a complete hyperbolic Riemannian metric of finite volume, then
π = π1(M) satisfies all these assumptions and there exists a number Cn > 0 depending only on
n such that Cn · (−1)n · ρ(2)(π) is the volume of the interior of M [47, Theorem 0.5]. Hence,
ρ(2)(G) can be viewed as a kind of volume of a word-hyperbolic group G, provided that G
satisfies the above assumptions.

1.8. Searching for counterexamples

There is no group known for which the Farrell–Jones Conjecture, the Fibered Farrell–
Jones Conjecture or the Baum–Connes Conjecture is false. However, Higson, Lafforgue, and
Skandalis [35, Section 7] construct counterexamples to the Baum–Connes Conjecture with
coefficients, actually with a commutative C∗-algebra as coefficients. They describe precisely
what properties a group Γ must have so that it does not satisfy the Baum–Connes Conjecture
with coefficients. Gromov [33] describes the construction of such a group Γ as a colimit over a
directed system of groups {Gi | i∈ I} such that each Gi is word-hyperbolic. We conclude from
Bartels–Echterhoff–Lück [3] and Theorem 1.1 that the Fibered Farrell–Jones Conjecture and
the Bost Conjecture do hold for Γ.

1.9. Nil-groups

In Section 7, we discuss some consequences for Nil-groups in the sense of Bass and Wald-
hausen, and for the passage from algebraic K-theory to homotopy K-theory. There we will
prove the following application of Theorem 1.1(i) to Waldhausen’s Nil-groups.

Theorem 1.15. Let G, H, and K be finite groups. Let C := Z[K].
(i) Let α : K → G and β : K → H be injective group homeomorphisms. Consider the C

bimodules A′ := Z[G − α(K)] and B′ := Z[H − β(K)]. Then

Niln (C;A′, B′) ⊗Z Q = 0;

(ii) Let α : K → G and β : K → G be injective group homeomorphisms. Let A′ :=
Z[G − α(K)], A′′ := Z[H − K] and A := Z[G]. Then

Niln (C; αA′
α , β A′′

β , β Aα , αAβ ) ⊗Z Q = 0,

where we use the lower indices to indicate the relevant C-bimodule structures.
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1.10. The Farrell–Jones Conjecture for L-theory

In Section 8, we briefly explain some results about the L-theoretic version of the Farrell–Jones
Conjecture.

2. Inheritance properties of the (Fibered) Isomorphism Conjecture

In this section, we formulate a (Fibered) Isomorphism Conjecture for a given equivariant
homology theory and a family of groups. In this general setting, we study the behavior of this
Fibered Isomorphism Conjecture under directed colimits and extensions. The Farrell–Jones
Conjecture is a special case; one has to choose a specific equivariant homology theory and a
specific family of subgroups. The payoff of this general setting is that some of the proofs become
easier and more transparent, and that it applies to other related Isomorphism Conjectures
such as the Farrell–Jones Conjecture for L-theory, the Baum–Connes Conjecture, the Bost
Conjecture, and other types of Isomorphism Conjectures predicting the bijectivity of certain
assembly maps.

For this section, we fix the following data:
(1) a discrete group G;
(2) an equivariant homology theory H?

∗ with values in Λ-modules;
(3) a class of groups C closed under isomorphisms, taking subgroups and taking quotients,

for example, the family F in of finite groups and the family VCyc of virtually cyclic
groups. For a group G, we denote by C(G) the family of subgroups of G which belong
to C.

Here, equivariant homology theory with values in Λ-modules for a commutative ring Λ
satisfying the disjoint union axiom is understood in the sense of [40, Section 1] with one
important modification: we require that for every group homomorphism α : H →K, we get a
natural transformation

indα : HH
∗ (X) → HK

n (indαX)

satisfying the obvious variations of the axioms.
(1) Compatibility with the boundary operator.
(2) Naturality.
(3) Compatibility with conjugation, but the map indα is only required to be an isomorphism

in the case, where X = pt and α is injective. This implies that indα is bijective for a
G-CW -complex X, if the kernel of α acts freely on X (see [3, Lemma 1.5]). Every
Groupoids-spectrum gives an equivariant homology theory with values in Z-modules
in the sense above (see [45, 6.5]). In particular, we get an equivariant homology theory
with values in Z-modules in the sense above for algebraic K-theory (see [20, Section 2;
45, Theorem 6.1]). If H?

∗ is an equivariant homology theory with values in Z-modules,
then H?

∗⊗Z Λ is an equivariant homology theory with values in Λ-modules for Z⊆Λ⊆Q.
Notice that this is one of the key differences between the Farrell–Jones Conjecture for

algebraic K- and L-theory and the Baum–Connes Conjecture for topological K-theory of
reduced group C∗-algebras. In the latter case, induction is only defined if the kernel of the
group homomorphism acts freely because the corresponding spectrum lives over Groupoidsinj

and not over Groupoids as in the Farrell–Jones setting (see [45, 6.5]).

2.1. The Fibered Isomorphism Conjecture for equivariant homology theories

A family of subgroups of G is a collection of subgroups of G which is closed under conjugation
and taking subgroups. Let EF (G) be the classifying space associated to F . It is uniquely
characterized up to G-homotopy by the properties that it is a G-CW -complex, and that
EF (G)H is contractible if H ∈ F and is empty if H /∈ F . For more information about these
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spaces EF (G), we refer to the survey article [44]. Given a group homomorphism φ : K → G
and a family F of subgroups of G, define the family φ∗F of subgroups of K by

φ∗F = {H ⊆ K | φ(H) ∈ F}. (2.1)

If φ is an inclusion of a subgroup, we also write F|K instead of φ∗F .

Definition 2.1 ((Fibered) Isomorphism Conjecture for H?
∗). A group G together with

a family of subgroups F satisfies the Isomorphism Conjecture for H?
∗ if the projection pr :

EF (G)→ pt to the one-point-space pt induces an isomorphism

HG
n (pr) : HG

n (EF (G))
∼=→ HG

n (pt)

for n ∈ Z.
The pair (G,F) satisfies the Fibered Isomorphism Conjecture for H?

∗ if for every group
homomorphism φ : K →G, the pair (K,φ∗F) satisfies the Isomorphism Conjecture.

We mostly work with a fixed equivariant homology theory H?
∗ and hence we will often omit

it in the statements.
The following results are proven in [4, Lemma 1.6; 5, Lemma 1.2 and Theorem 2.4].

Lemma 2.2. Let G be a group, and let F ⊂ G be families of subgroups of G. Suppose that
(G,F) satisfies the Fibered Isomorphism Conjecture.

Then (G,G) satisfies the Fibered Isomorphism Conjecture.

Lemma 2.3. Let φ : K →G be a group homomorphism, and let F be a family of subgroups.
If (G,F) satisfies the Fibered Isomorphism Conjecture, then (K,φ∗F) satisfies the Fibered
Isomorphism Conjecture.

Theorem 2.4 (Transitivity Principle). Let F ⊆G be two families of subgroups of G.
Assume that for every element H ∈G, the group H satisfies the (Fibered) Isomorphism Con-
jecture for F|H .

Then (G,G) satisfies the (Fibered) Isomorphism Conjecture if and only if (G,F) satisfies the
(Fibered) Isomorphism Conjecture.

The next lemma follows from Lemma 2.3 applied to the inclusion H→G, since C(H)=C(G)|H .

Lemma 2.5. Suppose that the Fibered Isomorphism Conjecture holds for (G, C(G)). Let
H ⊆ G be a subgroup.

Then the Fibered Isomorphism Conjecture holds for (H, C(H)).

2.2. Colimits over directed systems of groups

We collect some basic facts about the behavior of the Fibered Isomorphism Conjecture under
directed colimits.

We consider a directed set I and a directed system of groups {Gi | i∈ I}. The structure
maps φi,j : Gi →Gj for i, j ∈ I with i � j are not required to be injective. Let colimi∈I Gi be
the colimit. Denote by ψi : Gi →G the structure maps of the colimit for i∈ I.

We say that G is the directed union of the subgroups {Gi | i ∈ I} if I is a directed set and
{Gi | i ∈ I} is a directed system of subgroups, directed by inclusion, such that G=

⋃
i∈I Gi .

This is essentially the same as a directed system of groups such that all structure maps φi,j

are inclusions of groups and G= colimi∈I Gi . For a group homomorphism ψ : G′ →G, define
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the Λ-map

αn (ψ) : HG ′

n (pt) → HG
n (pt)

as the composition of indψ with the map induced by the projection ψ∗pt → pt of G-spaces.
The next definition is an extension of [4, Definition 3.1].

Definition 2.6 ((Strongly) Continuous equivariant homology theory). An equivariant
homology theory H?

∗ is called continuous if for each group G which is the directed union
of subgroups {Gi | i∈ I}, the Λ-map

colim
i∈I

αn (Gi → G) : colim
i∈I

HGi
n (pt) → HG

n (pt)

is an isomorphism for every n∈Z.
An equivariant homology theory H?

∗ is called strongly continuous if for each directed system
of groups {Gi | i∈ I} with G= colimi∈I Gi , the Λ-map

colim
i∈I

αn (ψi) : colim
i∈I

HGi
n (pt) → HG

n (pt)

is an isomorphism for every n∈Z.

The next theorem generalizes the result of Farrell–Linnell [31, Theorem 7.1] to a more general
setting about equivariant homology theories as developed in Bartels–Lück [4]. Its proof can be
found in [3, Theorems 3.4 and 4.6].

Theorem 2.7. (i) Let G be the directed union G=
⋃

i∈I Gi of subgroups Gi Suppose that
H?

∗ is continuous and that the (Fibered) Isomorphism Conjecture is true for (Gi, C(Gi)) for all
i ∈ I. Then the (Fibered) Isomorphism Conjecture is true for (G, C(G));

(ii) Let {Gi | i ∈ I} be a directed system of groups. Put G= colimi∈I Gi . Suppose that H?
∗

is strongly continuous and that the Fibered Isomorphism Conjecture is true for (Gi, C(Gi)) for
all i ∈ I. Then the Fibered Isomorphism Conjecture is true for (G, C(G)).

2.3. Extensions

For the remainder of this section, fix the following data:
(1) a discrete group G;
(2) an equivariant homology theory H?

∗ with values in Λ-modules;
(3) a class of groups C closed under isomorphisms, taking subgroups and taking quotients,

for example, F in or VCyc;
(4) an exact sequence of groups 1 → K

i→ G
p→ Q→ 1.

We want to investigate the inheritance properties of the (Fibered) Isomorphism Conjec-
ture 2.1 under exact sequences.

Lemma 2.8. Suppose that the Fibered Isomorphism Conjecture holds for (Q, C(Q)), and
for every H ∈ p∗C(Q) the Isomorphism Conjecture is true for (H, C(H)).

Then the Isomorphism Conjecture is true for (G, C(G)).

Proof. Since the Fibered Isomorphism Conjecture holds for (Q, C(Q)) by assumption, the
Isomorphism Conjecture holds for (G, p∗C(Q)). We have to show that the Isomorphism Con-
jecture holds for (G, C(G)). But this follows from the Transitivity Principle (Theorem 2.4).
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Lemma 2.9. Suppose that the Fibered Isomorphism Conjecture holds for (Q, C(Q)). Then
the following assertions are equivalent.

(i) The Fibered Isomorphism Conjecture is true for (p−1(H), C(p−1(H))) for every H ∈
C(Q).

(ii) The Fibered Isomorphism Conjecture is true for (G, C(G)).

Proof. (ii) ⇒(i) This follows from Lemma 2.3 applied to the inclusion p−1(H) → G.
(i) ⇒(ii) Let q : L → G be a group homomorphism. We have to show that (L, q∗C(G))

satisfies the Isomorphism Conjecture. Since (Q, C(Q)) satisfies the Fibered Isomorphism Con-
jecture, we conclude that (L, q∗p∗C(Q)) satisfies the Isomorphism Conjecture. Because of the
Transitivity Principle 2.4, it remains to show, for any H ⊆L for which there exists V ∈C(Q)
with q(H)⊆ p−1(V ), that (H, (q∗C(G))|H ) satisfies the Isomorphism Conjecture. This follows
from the assumption that (p−1(V ), C(p−1(V ))) satisfies the Fibered Isomorphism Conjecture
since the families (q∗C(G))|H and (q|H )∗C(p−1(V )) coincide.

Lemma 2.10. Suppose that p−1(H) belongs to C(G) if H ∈ C(Q). Then (G, C(G)) sat-
isfies the Fibered Isomorphism Conjecture, if (Q, C(Q)) satisfies the Fibered Isomorphism
Conjecture.

Proof. This follows from Lemma 2.3, since p∗C(Q)= C(G).

Lemma 2.10 is interesting in the case where C is F in or VCyc and K is finite.

Lemma 2.11. (i) Suppose that H1 ×H2 belongs to C if H1 and H2 belong to C. Then (G1 ×
G2 , C(G1 × G2)) satisfies the Fibered Isomorphism Conjecture if and only if both (G1 , C(G1))
and (G2 , C(G2)) satisfy the Fibered Isomorphism Conjecture.

(ii) Suppose that (D∞ ×D∞,VCyc(D∞ ×D∞)) satisfies the Fibered Isomorphism Conjec-
ture, where D∞ = Z�Z/2 is the infinite dihedral group. Then (G1×G2 ,VCyc(G1×G2)) satisfies
the Fibered Isomorphism Conjecture if and only if both (G1 ,VCyc(G1)) and (G1 ,VCyc(G1))
satisfy the Fibered Isomorphism Conjecture.

Proof. (i) If the Fibered Isomorphism Conjecture holds for (G1 × G2 , C(G1) × C(G2)), it
also holds, by Lemma 2.5, for (Gi, C(Gi)) since C(G1 × G2)|Gi

= C(Gi).
Suppose that the Fibered Isomorphism Conjecture holds for both (G1 , C(G1)) and (G2 ,

C(G2)). In view of Lemma 2.9, we can assume without loss of generality that G2 belongs to
C. Applying this argument again, we can assume without loss of generality that G1 and G2
belong to C. This case is obviously true since G1 ×G2 ∈C. (cf. [58, Lemma 5.1] for a similar
argument.)

(ii) Analogously to the proof of assertion 2.11, one reduces the claim to the assertion that
(G1×G2 ,VCyc(G1×G2)) satisfy the Fibered Isomorphism Conjecture if G1 and G2 are virtually
cyclic. Since every virtually cyclic group admits an epimorphism to Z or D∞ with finite kernel
and Z ⊆ D∞, the product G1 × G2 admits a group homomorphism to D∞ × D∞ with finite
kernel. Now apply Lemma 2.5 and Lemma 2.10.

Assertion 2.11 appearing in Lemma 2.11 is interesting in the case C =F in.

Lemma 2.12. Suppose that H?
∗ is continuous. Suppose that any virtually finitely generated

abelian group satisfies the Fibered Isomorphism Conjecture for F in. Then every elementary
amenable group satisfies the Fibered Isomorphism Conjecture for F in.
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Proof. Using the same transfinite induction strategy and the same notation as in the proof
of [32, Corollary 3.9], one reduces the claim to the following assertion. The group G satisfies the
Fibered Isomorphism Conjecture for F in provided that there exists an extension 1→H →G

p→
A→ 1 such that A is virtually finitely generated abelian, H belongs to LXα−1 and the Fibered
Isomorphism Conjecture for F in holds for every group in the class of groups Xα−1 . Here
LXα−1 is the class of groups for which every finitely generated subgroup occurs as a subgroup
of some group in Xα−1 . Theorem 2.72.7 and Lemma 2.5 imply that the Fibered Isomorphism
Conjecture holds for every group in LXα−1 . Because of Lemma 2.9, it remains to prove, for any
finite subgroup K ⊆ A, that the Fibered Isomorphism Conjecture for F in holds for p−1(K).
We conclude from the short exact sequence 1→H → p−1(K)→K → 1 and [32, Lemma 2.1(iii)]
that p−1(K) is a member of LXα−1 , and therefore satisfies the Fibered Isomorphism Conjecture
for F in.

Lemma 2.13. Suppose that H?
∗ is continuous. Suppose that any virtually finitely generated

abelian group satisfies the Fibered Isomorphism Conjecture for VCyc.
Then every virtually nilpotent group satisfies the Fibered Isomorphism Conjecture for VCyc.

Proof. Any finitely generated subgroup of a virtually abelian group is virtually finitely
generated abelian. The assumptions and Theorem 2.72.7 imply that any virtually abelian
group satisfies the Fibered Isomorphism Conjecture for VCyc.

For a group H, we denote by cent(H) its center. Recall that a group N is called
nilpotent if we can find a sequence of epimorphisms N = N0

p0→ N1
p1→ · · · pr→ Nr such that

ker(pi)= cent(Ni−1) for i= 1, 2, . . . , r and Nr = {1}. The class of N is the smallest nonnegative
integer r for which such a sequence of epimorphisms exists. Let G be virtually nilpotent. Hence,
we can find a normal subgroup N ⊆ G such that N is nilpotent and G/N is finite. We show
by induction over the class of N that G satisfies the Fibered Isomorphism Conjecture for
(G,VCyc). The induction beginning where the class is at most 1, and hence G is virtually
abelian, has already been taken care of.

We can arrange that r is the class of N . Since N is normal in G and cent(N) is a char-
acteristic subgroup of N , cent(N) is a normal subgroup of G. We obtain the exact sequence
1→N/cent(N)→G/cent(N)→G/N → 1. Since the class of N/cent(N) is smaller than the
class of N , the Fibered Isomorphism Conjecture holds for (G/cent(N),VCyc) by the induc-
tion hypothesis. Because of Theorem 2.9, it remains to show for any virtually cyclic sub-
group V ⊆G/cent(N) that (q−1(V ),VCyc) satisfies the Fibered Isomorphism Conjecture, where
q : G→G/cent(N) is the canonical projection.

Let φ : G→ aut(N) be the group homomorphism sending g ∈ G to the automorphism of
N given by conjugation with g. Since cent(N) is a characteristic subgroup of N , it induces a
homomorphism φ′ : G→ aut(cent(N)). Since the conjugation action of N on itself is the identity
on cent(N), the homomorphism φ′ factorizes through the finite group G/N and hence has finite
image. Hence, we can find g ∈ G such that q(g) generates an infinite cyclic subgroup C in V
whose index in V is finite and φ′(g) = idcent(N ) . Hence q−1(C) is isomorphic to cent(N)×C and
has finite index in q−1(V ). Therefore, q−1(V ) is virtually abelian and (q−1(V ),VCyc) satisfies
the Fibered Isomorphism Conjecture.

3. The Farrell–Jones Conjecture for algebraic K-theory

Recall that the (Fibered) Farrell–Jones Conjecture for algebraic K-theory with coefficients
in R for the group G is the (Fibered) Isomorphism Conjecture 2.1 in the special case where
the family F consists of all virtually cyclic subgroups of G and H?

∗ is the equivariant homology
theory H?

∗(−;KR ) associated to the Groupoids-spectrum given by algebraic K-theory and R
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as coefficient ring (see [45, Section 6]). So the Farrell–Jones Conjecture for algebraic K-theory
with coefficients in R for the group G predicts that the map

HG
n (EVCyc(G),KR )→Kn (RG)

is bijective for all n ∈ Z. The original source for the (Fibered) Farrell–Jones Conjecture is [28,
1.6, p. 257 and 1.7, p. 262].

Recall that the (Fibered) Farrell–Jones Conjecture for homotopy K-theory with coefficients
in R for the group G is the (Fibered) Isomorphism Conjecture 2.1 in the special case where
the family F consists of all finite subgroups of G and H?

∗ is the equivariant homology theory
H?

∗(−;KHR ) associated to the Groupoids-spectrum given by homotopy K-theory and R as
coefficient ring (see [5, Section 7]). So the Farrell–Jones Conjecture for homotopy K-theory
with coefficients in R for the group G predicts that the map

HG
n (EF in (G),KHR )→KHn (RG)

is bijective for all n∈Z.
The following theorem follows from the main result of Bartels–Lück–Reich [6] together

with [8, Corollary 4.3].

Theorem 3.1. The Fibered Farrell–Jones Conjecture for algebraic K-theory is true for
every word-hyperbolic group and every coefficient ring.

Next, we extend a result of Quinn [54, Theorem 1.2.2] for virtually abelian groups to virtually
nilpotent groups.

Theorem 3.2. The Fibered Farrell–Jones Conjecture for algebraic K-theory is true for
every virtually nilpotent group and every coefficient ring.

Proof. The Fibered Farrell–Jones Conjecture for algebraic K-theory is true for every vir-
tually abelian group and every coefficient ring, by a result of Quinn [54, Theorem 1.2.2].
(Quinn deals only with commutative coefficient rings but this assumption is not needed in his
argument.) Now apply Lemma 2.13.

For more information about groups satisfying the Farrell–Jones Conjecture for algebraic
K-theory with coefficients in Z and the Farrell–Jones Conjecture for homotopy K-theory
KH∗(RG), we refer to [45, Sections 5.2 and 5.3; 5, Theorem 0.5].

Lemma 3.3. The equivariant homology theories H?
∗(−;KR ) and H?

∗(−;KHR ) are strongly
continuous.

Proof. We have to show for every directed system of groups {Gi | i∈ I} with G= colimi∈I Gi

that the canonical maps

colim
i∈I

Kn (RGi) → Kn (RG),

colim
i∈I

KHn (RGi) → KHn (RG),

are bijective for all n∈Z. Obviously, RG is the colimit of rings colimi∈I RGi . Now the claim
follows for Kn (RG) for n � 0 from [53, (12), p. 20]. Using the Bass–Heller–Swan decomposition,
one gets the results for Kn (RG) and also for the Nil-groups NpKn (RG) defined by Bass [10,
XII] for all n∈Z and p � 1. The claim for KHn (RG) follows from the spectral sequence [67,
Theorem 1.3].
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We conclude from Theorem 2.7 and Lemma 3.3 that the (Fibered) Farrell–Jones Conjecture
is inherited under directed colimits.

3.1. Extensions

Lemma 3.4. Let 1→K →G→Q→ 1 be an extension of groups. Suppose that K is virtu-
ally cyclic and Q satisfies the Fibered Farrell–Jones Conjecture with coefficients in R.

Then G satisfies the Fibered Farrell–Jones Conjecture with coefficients in R.

Proof. Because of Lemma 2.9, it suffices to prove that (G;VCyc(G)) satisfies the Fibered
Farrell–Jones Conjecture in the case that Q is virtually cyclic. Choose an infinite cyclic
subgroup C of Q. Let φ : K →K be the automorphism given by conjugation with an element
in G which is mapped to a generator of C under the epimorphism G→Q. Then p−1(C) is a
subgroup of G which has finite index and is isomorphic to the semidirect product K �φ C.
Since K is virtually cyclic, its automorphism group has finite order. Hence, by replacing C by
a subgroup of the order of this automorphism group as index, we can arrange that p−1(C) is a
subgroup of finite index in G and p−1(C)∼= K×C. Since K is virtually cyclic, we conclude that
G contains a subgroup of finite index which is isomorphic to Z2 . In particular, G is virtually
abelian. Hence, (G,VCyc(G)) satisfies the Fibered Farrell–Jones Conjecture, by Theorem 3.2.

Lemma 3.5. Let G1 and G2 be groups. Then G1 × G2 satisfies the Fibered Farrell–Jones
Conjecture with coefficients in R if and only if both G1 and G2 satisfy the Fibered Farrell–Jones
Conjecture with coefficients in R.

Proof. Because of Lemma 2.11(ii), it suffices to show that D∞ × D∞ satisfies the Fibered
Farrell–Jones Conjecture. This follows from Theorem 3.2.

Next we give the proof of Theorem 1.1.

Proof. (i) This follows from Theorems 3.1 and 3.2.
(ii) This follows from Lemma 3.5.

(iii) This follows from Theorem 2.7(ii) and Lemma 3.3.
(iv) This follows from Lemma 2.5.

A ring R is called regular coherent if every finitely presented R-module possesses a finite
resolution by finitely generated projective R-modules. A ring R is regular if and only if it is
regular coherent and Noetherian. A group G is called regular or regular coherent, respectively,
if for any regular ring R, the group ring RG is regular or, respectively, regular coherent. Poly-
Z-groups and free groups are regular coherent (see [64, p. 247]. For more information about
these notions, we refer to [64, Theorem 19.1].

Theorem 3.6. Suppose that Q is torsionfree and that the Fibered Farrell–Jones Conjecture
holds for Q. Suppose that K is a regular coherent group. Suppose that R is regular. Let

1→K
i→ G

p→ Q→ 1 be an extension of groups.
Then the assembly map

Hn (BG;KR )
∼=→ Kn (RG)

is an isomorphism for n ∈ Z.
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Proof. Let Γ be a torsionfree group. The relative assembly map Hn (BΓ;KR )
∼=→

HΓ
n (EVCyc(Γ);KR ) is bijective (see [45, Proposition 2.6, p. 686]) since R is regular and Γ is

torsionfree. Hence, the Farrell–Jones Conjecture for Γ and R boils down to the claim that the
assembly map Hn (BΓ;KR )

∼=→Kn (RΓ) is bijective for all n ∈ Z. This implies that Theorem 3.6
follows directly from Lemma 2.8 if we can show that the second assumption appearing in
Lemma 2.8 is satisfied.

Let CL be the class of groups introduced in [64, Definion 19.2, p. 248] or [5, Definition 0.10].
Let V ⊆Q be virtually cyclic. Since K is regular coherent and Q is torsionfree, and hence V
is isomorphic to Z, p−1(V ) belongs to the class CL. Since by [64, Proposition 19.3, p. 249]
CL is closed under taking subgroups, every element in p∗VCyc(Q) belongs to CL. One of the
main results in Waldhausen’s article [64] is that for a regular ring R the K-theoretic assembly
map Hn (BG′;KR )→Kn (RG′) is an isomorphism for G′ ∈CL. Hence, the second assumption
appearing in Lemma 2.8 is satisfied.

3.2. Passage from F in to VCyc

Lemma 3.7. Let G be a group. Let R be a regular ring such that the order of any finite
subgroup of G is invertible in R.

Then the relative assembly map

HG
n (EF in(G);KR ) → HG

n (EVCyc(G);KR )

(induced by the up to G-homotopy unique G-map EF in(G)→EVCyc(G)) is an isomorphism for
all n ∈ Z.

Proof. This is proved, for instance, in [45, Proposition 2.6, p. 686].

Lemma 3.8. Let G be a group. Then the relative assembly map induces, for all n ∈ Z,
isomorphisms

HG
n (EF in(G);KZ) ⊗Z Q → HG

n (EVCyc(G);KZ) ⊗Z Q.

Proof. This is proved in [34, Theorem 5.6].

Notice that the two Lemmas 3.7 and 3.8 above do not deal with the Fibered version. A
discussion of the Fibered version of Lemma 3.7 can be found in Subsection 7.3. The fibered
version of Lemma 3.8 is definitely false. For homotopy K-theory, one can prove in the fibered
situation that the passage from F in to VCyc does not matter. For Λ = Z, the next lemma
is proven in [5, Remark 7.4]. The following, more general, statement follows by the same
argument.

Lemma 3.9. Let R be a ring. A group G satisfies the (Fibered) Isomorphism Conjecture
for homotopy K-theory with coefficients in R for the family F in after applying − ⊗Z Λ for
Z⊆Λ⊆Q to the assembly map, if and only if G satisfies the (Fibered) Isomorphism Conjecture
for homotopy K-theory with coefficients in R for the family VCyc after applying − ⊗Z Λ for
Z⊆Λ⊆Q to the assembly map.

3.3. Homotopy K-theory and rings with finite characteristic

Lemma 3.10. Let R be a ring of finite characteristic N . Let NKn (R) be the Nil-group of
Bass. Then we get, for n∈Z,

NKn (R)[1/N ] = 0.
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Proof. The proof can be found in [66, Corollary 3.2]. We give a brief outline for the reader’s
convenience.

Put Λ = Z/N . Then R is a Λ-algebra. Let W (Λ) be the ring of big Witt vectors over Λ. The
underlying additive group is the multiplicative group 1 + tΛ[[t]] of formal power series with
leading term 1. We do not need the explicit multiplicative structure, but do need to know
that the identity element is 1 − t. Let End(Λ) be the Grothendieck group of endomorphisms
f : P →P of finitely generated projective Λ-modules. We get an injective homomorphism
K0(Λ)→End(Λ) by sending [P ] to [0 : P →P ]. Its cokernel is denoted by End0(Λ). The tensor
product induces the structure of a commutative ring on End(Λ) for which K0(Λ) becomes an
ideal. Hence, End0(Λ) is a commutative ring. There is an End0(Λ)-module structure on NKn (R)
for all n ∈ Z. Almkvist [1] shows that the characteristic polynomial defines an injective ring
homomorphism

χ : End0(Λ) → W (Λ), [f : P → P ] �→ det(idP − t · f).

For a positive integer N , let IN be the ideal in End0(Λ)

IN = {[f : P → P ] | χ([f ]) ≡ 1 mod tN }.
Stienstra [62] (see also Theorem 1.3 and the following paragraph in [66]) has proven that
for every element x∈NKn (R), there exists N(x) such that the ideal IN (x) annihilates x. Now
choose a sufficiently large positive integer k such that (N k

j ) is a multiple of N for 1 � j <N(x).
Then we conclude that

χ(Nk · [idΛ ]) = (1 − t)N k

=
N k∑
j=0

(
Nk

j

)
(−t)j = 1 +

N k∑
j=N (x)

(
Nk

j

)
(−t)j ≡ 1 mod tN (x) .

This shows that Nk · [idΛ ]∈ IN (x) . We compute

Nk · x = Nk · ([idΛ ] · x) = (Nk · [idΛ ]) · x = 0.

This implies that NKn (R)[1/N ] = 0.

Lemma 3.11. (i) Let R be a ring of finite characteristic N . Then the canonical map from
algebraic K-theory to homotopy K-theory induces an isomorphism

Kn (R)[1/N ]
∼=→ KHn (R)[1/N ]

for all n∈Z.
(ii) Let H be a finite group. Then the canonical map from algebraic K-theory to homotopy

K-theory induces an isomorphism

Kn (Z[H]) ⊗Z Q
∼=→ KHn (Z[H]) ⊗Z Q

for all n∈Z.

Proof. (i) We conclude from Lemma 3.10 that NKn (R)[1/N ] = 0. This implies that
NpKn (R)[1/N ] = 0 for n∈Z and p � 1. Now apply the spectral sequence from [67, Theo-
rem 1.3].

(ii) By [66, Corollary] and [5, Remark 8.3] NKn (Z[H]) ⊗Z Q = 0. Now proceed as in 3.11.

Lemma 3.12. Let (X,A) be a pair of G-CW -complexes.
(i) Let R be a ring of finite characteristic N . Then the natural map

HG
n (X,A;KR )[1/N ] → HG

n (X,A;KHR )[1/N ]

is bijective for every n∈Z.
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(ii) Assume that X is a G-F in-CW -complex; that is, the isotropy groups of X are finite.
Then the natural map

HG
n (X,A;KZ) ⊗Z Q → HG

n (X,A;KHZ) ⊗Z Q

is bijective for every n∈Z.

Proof. This follows from Lemma 3.11 and a spectral sequence argument based on the
equivariant Atiyah–Hirzebruch spectral sequence (see for instance, [20, Theorem 4.7]).

Lemma 3.13. Let R be a ring, and let G be a group. Let N � 2 be an integer.

(i) If G satisfies the (Fibered) Farrell–Jones Conjecture for algebraic K-theory with coeffi-
cients in R[x1 , x2 , . . . , xk ] for all k � 0, then G satisfies the (Fibered) Farrell–Jones Conjecture
for homotopy K-theory with coefficients in R.

(ii) Suppose that N · 1R = 0 and that G satisfies the (Fibered) Farrell–Jones Conjecture for
homotopy K-theory with coefficients in R after applying − ⊗Z Z[1/N ]. Then G satisfies the
(Fibered) Farrell–Jones Conjecture for algebraic K-theory with coefficients in R after applying
−⊗Z Z[1/N ] for both the family F in and VCyc.

Proof. (i) This is proven in [5, Theorem 8.4].
(ii) Consider for any family F of subgroups of G, the following commutative diagram

HG
n (EF (G);KR )[1/N ] ��

∼=
��

Hn (pt;KR )[1/N ] = Kn (RG))[1/N ]

∼=
��

HG
n (EF (G);KHR )[1/N ] �� Hn (pt;KHR )[1/N ] = KHn (RG)[1/N ]

where the horizontal maps are the assembly maps induced by the projection EF (G)→ pt and
the vertical maps are induced by the passage from algebraic K-theory to homotopy K-theory.
Lemma 3.12(i) implies that the vertical maps are bijective. Now apply Lemma 3.9.

Next we can give the proof of Theorem 1.3.

Proof. (i) Word-hyperbolic groups and virtually abelian groups satisfy the Farrell–Jones
Conjecture for algebraic K-theory with coefficients in any ring R by Theorem 3.1 and Theo-
rem 3.2. We conclude from Lemma 3.13(i) that word-hyperbolic groups and virtually abelian
groups belong to FJKH(R) for all rings R. We conclude from Lemma 2.12 that all elementary
amenable groups belong to FJKH(R) for all rings R. Lemma 3.13(ii) implies that all word-
hyperbolic groups and all elementary amenable groups belong to FJF C (R).

In particular, every virtually cyclic group belongs to FJF C (R). We conclude from The-
orem 2.4 that for a ring R of characteristic N , a group satisfies the Fibered Farrell–Jones
Conjecture for algebraic K-theory for G with coefficients in R after applying −⊗Z Z[1/N ] to
the assembly map for the family F in if and only if it does for the family VCyc. Hence in the
sequel we only have to consider the family F in when dealing with FJF C (R).

(ii) This follows from Lemma 2.11(i).
(iii) This follows from Theorem 2.7(ii) and Lemma 3.3.
(iv) This follows from Lemma 2.5.
(v) This follows from Lemma 2.9 since a group which is commensurable to a word-hyperbolic

group is again word-hyperbolic, and the same is true for elementary amenable groups.
(vi) This is proven for FJKH in Bartels–Lück [4, Theorem 0.5]. The same proof applies

to FJF C if we can show that H?
∗(−;KR )[1/N ] has the tree property (see [4, Definition 4.1
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and Theorem 4.2]). This follows from Lemma 3.12(i), since the equivariant homology theory
H?

∗(−;KHR ) has the tree property by [4, Theorem 11.1].
The claim FJKH(R) ⊆ FJF C (R) follows from Lemma 3.13(ii).

3.4. Coefficient rings with operation

In the setup developed so far, we have not dealt with the more general version developed in
Bartels–Reich [8], where one fixes a group and considers an additive category with G-action.
This setup can deal with crossed products R � G and not only with group rings RG. However,
a slight modification of the proofs above allows us to carry over the result above to this setting.
This is explained in Bartels–Echterhoff–Lück [3].

4. The projective class group and induction from finite subgroups

Let OrF in(G) be the category whose objects are homogeneous spaces G/H with finite H
and whose morphisms are G-maps. We obtain a functor from OrF in(G) to abelian groups
by sending G/H to K0(RH). It sends a morphism G/H →G/K, gH �→ gg0K to the map
K0(RH)→K0(RK) coming from the group homomorphism H →K, h �→ g0hg−1

0 . This is well
defined since inner automorphisms of H induce the identity on K0(RH). The various inclusions
of finite subgroups of G yield a homomorphism

I(G;R) : colim
OrF i n (G)

K0(RH) → K0(RG). (4.1)

Notice for the sequel that the canonical map of Λ-modules(
colim

OrF i n (G)
K0(RH)

)
⊗Z Λ

∼=→ colim
OrF in (G)

(K0(RH) ⊗Z Λ)

is bijective for every ring Λ.
The next lemma is proven in [32, Lemma 2.9] for fields, and carries over directly to skew-

fields.

Lemma 4.1. Let D be a skew-field (of arbitrary characteristic), and let H be a finite group.
Then Kn (DH) = 0 for n � −1.

Now we can give the proof of Theorem 1.5.

Proof. (i) This is proved in [45, p. 691]:
(ii) This follows analogously to the proof of assertion (i) using Lemma 3.10 and Lemma 4.1.

If G satisfies the Farrell–Jones Conjecture for algebraic K-theory with coefficients in Z, then
the following maps are injective (see [45, p. 692]):

colim
OrF i n (G)

Kn (ZH) ⊗Z Q → Kn (ZG) ⊗Z Q for n ∈ Z;

colim
OrF i n (G)

Wh(H) ⊗Z Q → Wh(G) ⊗Z Q.

The injectivity for the map involving the Whitehead group is proven for groups G satisfying
mild homological finiteness conditions in a forthcoming paper by Lück, Reich, Rognes and
Varisco. In general, these maps are not surjective. In particular,

colim
OrF i n (G)

K0(ZH) ⊗Z Q → K0(ZG) ⊗Z Q

is in general not surjective.



76 ARTHUR BARTELS, WOLFGANG LÜCK AND HOLGER REICH

5. Bass Conjectures

In this section, we explain the relationship between the Farrell–Jones Conjecture for algebraic
K-theory and the Bass Conjecture.

Let G be a group. Let con(G) be the set of conjugacy classes (g) of elements g ∈ G. Denote
by con(G)f the subset of con(G) consisting of those conjugacy classes (g) for which each
representative g has finite order. Let R be a commutative ring. Let classR (G) and classR (G)f

be the free R-module with the set con(G) and con(G)f as basis. This is the same as the R-
module of R-valued functions on con(G) and con(G)f with finite support. Define the universal
R-trace

tru
RG : RG → classR (G),

∑
g∈G

rg · g �→
∑
g∈G

rg · (g). (5.1)

It extends to a function tru
RG : Mn (RG)→ classR (G) on (n, n)-matrices over RG by taking the

sum of the traces of the diagonal entries. Let P be a finitely generated projective RG-module.
Choose a matrix A ∈ Mn (RG) such that A2 = A and the image of the RG-map rA : RGn →RGn

given by right multiplication with A is RG-isomorphic to P . Define the Hattori–Stallings rank
of P as

HSRG (P ) = tru
RG (A) ∈ classR (G). (5.2)

The Hattori–Stallings rank depends only on the isomorphism class of the RG-module P . It
induces an R-homomorphism, the Hattori–Stallings homomorphism,

HSRG : K0(RG) ⊗Z R → classR (G), [P ] ⊗ r �→ r · HSRG (P ). (5.3)

Let F be a field of characteristic zero. Fix an integer m � 1. Let F (ζm )⊃F be the Galois
extension given by adjoining the primitive mth root of unity ζm to F . Denote by Γ(m,F ) the
Galois group of this extension of fields, that is, the group of automorphisms σ : F (ζm )→F (ζm )
which induce the identity on F . It can be identified with a subgroup of Z/m∗ by sending σ to
the unique element u(σ)∈Z/m∗ for which σ(ζm )= ζ

u(σ )
m holds. Let g1 and g2 be two elements

of G of finite order. We call them F -conjugate if for some (and hence all) positive integers m
with gm

1 = gm
2 = 1, there exists an element σ in the Galois group Γ(m,F ) with the property

that g
u(σ )
1 and g2 are conjugate. Two elements g1 and g2 are F -conjugate for F equal to Q, R

or C respectively, if the cyclic subgroups 〈g1〉 and 〈g2〉 are conjugate, if g1 and g2 or g1 and
g−1

2 are conjugate, or if g1 and g2 are conjugate, respectively.
Denote by conF (G)f the set of F -conjugacy classes (g)F of elements g ∈G of finite order.

Let classF (G)f be the F -vector space with the set conF (G)f as basis, or, equivalently, the
F -vector space of functions conF (G)f →F with finite support. There are obvious inclusions of
F -modules classF (G)f ⊆ classF (G).

Lemma 5.1. Suppose that F is a field of characteristic zero and H is a finite group. Then
the Hattori–Stallings homomorphism (see equation (5.3)) induces an isomorphism

HSF H : K0(FH) ⊗Z F
∼=→ classF (H) = classF (H)f .

Proof. Since H is finite, an FH-module is a finitely generated projective FH-module if
and only if it is a (finite-dimensional) H-representation with coefficients in F and K0(FH)
is the same as the representation ring RF (H). The Hattori–Stallings rank HSF H (V ) and the
character χV of a G-representation V with coefficients in F are related by the formula

χV (h) = |ZG 〈h〉| · HSF H (V )(h)
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for h∈H, where ZG 〈h〉 is the centralizer of h in G. Hence, Lemma 5.1 follows from represen-
tation theory; see for instance [60, Corollary 1, p. 96].

Notice that the Bass Conjecture for fields of characteristic zero as coefficients (Conjecture
1.8) is the obvious generalization of Lemma 5.1 to infinite groups.

Lemma 5.2. Suppose that F is a field of characteristic zero and G is a group. Then the
composite

colim
G/H∈OrFin(G)

K0(FH) ⊗Z F
I (G,F )⊗ZidF−−−−−−−−→ K0(FG) ⊗Z F

HSF G−−−−→ classF (G)

is injective and has as image classF (G)f .

Proof. This follows from the following commutative diagram; compare [39, Lemma 2.15,
p. 220].

colimH∈OrF i n (G)K0(FH) ⊗Z F

colimH ∈OrF i n (G ) HSF H ∼=
��

I (G,F )⊗ZidF
�� K0(FG) ⊗Z F

HSF G

��

colimH∈OrF i n (G)classF (H)f
j

∼=
�� classF (G)f

i
�� classF (G)

Here the isomorphism j is the colimit over the obvious maps classF (H)f → classF (G)f given
by extending a class function in the trivial way, and the map i is the natural inclusion and in
particular injective.

Lemma 5.3. Let F be a field (of arbitrary characteristic). Then there is a natural commu-
tative diagram

colimOrFin(G)K0(FH)
edge−−−−→∼=

H0(EF in(G);KF )

I (G,F )

⏐⏐	 ⏐⏐	
K0(FG)

∼=−−−−→ H0(pt;KF )

whose horizontal maps are bijective and whose right vertical arrow is the assembly map, that
is, the map induced by the projection EF in(G)→ pt.

Proof. This follows from Lemma 4.1, the equivariant Atiyah–Hirzebruch spectral sequence,
which converges to Hp+q (EF in (G);KF ) in the strong sense and whose E2-term E2

p,q is given
by the Bredon homology

HOrF i n (G)
p (EF in (G),Kq (F?)),

and the natural identification

colim
OrF i n (G)

K0(FH) ∼= H
OrF in (G)
0 (EF in (G),K0(F?)).

Theorem 1.9 follows now from Lemma 3.7, Lemma 5.2, and Lemma 5.3.

Lemma 5.4. Let R be a commutative integral domain. Let F be its field of fractions. Let
G be a group.
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(i) Then we obtain a commutative diagram

colimOrFin(G)K0(RH) −−−−→ colimOrFin(G)K0(FH)

edge(G,R)

⏐⏐	 edge(G,F )

⏐⏐	
H0(EF in(G);KR ) −−−−→ H0(EF in(G);KF )⏐⏐	 ⏐⏐	
H0(EVCyc(G);KR ) −−−−→ H0(EVCyc(G);KF )⏐⏐	 ⏐⏐	

K0(RG) −−−−→ K0(FG)

where all horizontal maps are change of rings homomorphisms for the inclusion R→F , the
maps edge(G,R) and edge(G,F ) are edge homomorphisms appearing in the equivariant Atiyah–
Hirzebruch spectral sequence and the other vertical maps come from the obvious maps
EF in(G)→EVCyc(G) and EVCyc(G)→ pt.

(ii) The image of the composite

α : H0(EVCyc(G);KR ) ⊗Z Q → H0(EVCyc(G);KF ) ⊗Z Q → K0(FG) ⊗Z Q

is the same as the image of the composite

β :
⊕

C∈FCyc(G)

K0(RC) ⊗Z Q →
⊕

C∈FCyc(G)

K0(FC) ⊗Z Q → K0(FG) ⊗Z Q,

where FCyc is the family all finite cyclic subgroups of G.

Proof. (i) This follows from the naturality of the constructions.
(ii) For every group G, every ring R, and every n∈Z, the relative assembly map

HG
n (EF in (G);KR ) → HG

n (EVCyc(G);KR )

is split-injective [9]. This map and the splitting are natural with respect to change of rings
homomorphisms. Hence, Lemma 3.7 implies that the image of

HG
n (EVCyc(G);KR ) ⊗Z Q → HG

n (EVCyc(G);KF ) ⊗Z Q

and the image of the composite

HG
n (EF in (G);KR ) ⊗Z Q → HG

n (EF in (G);KF ) ⊗Z Q → HG
n (EVCyc(G);KF ) ⊗Z Q

agree. By [46, Theorem 2.13], a variation of the Chern character in [40], we have, for every
ring R and group G, an isomorphism, natural in R,

chernG,R
n :

⊕
p+q=n

⊕
(C )

C∈FCyc(G)

Hp(BZGC; Q) ⊗Q[WG C ] θC · (Kq (RC) ⊗Z Q)

→ HG
n (EF in (G);KR ) ⊗Z Q, (5.4)

where WGC is the quotient of the normalizer by the centralizer ZGC of the finite cyclic subgroup
C in G, and θC is an idempotent in A(C)⊗Z Q for A(C) the Burnside ring of C which singles
out a direct summand θC ·(Kq (RC) ⊗Z Q) in Kq (RC)⊗Z Q by the A(C)⊗Z Q-module structure
on Kq (RC) ⊗Z Q. This isomorphism is natural under change of rings homomorphisms. Recall
from Lemma 4.1 that Kq (FC) is trivial for q � − 1. Hence the image of

HG
0 (EF in (G);KR ) ⊗Z Q → HG

0 (EF in (G);KF ) ⊗Z Q
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agrees with the image of the composition⊕
(C )∈FCyc(G)

H0(BZGC; Q) ⊗Q[WG C ] θC · (K0(RC) ⊗Z Q)

→
⊕

(C )∈FCyc(G)

H0(BZGC; Q) ⊗Q[WG C ] θC · (K0(FC) ⊗Z Q)

=
⊕

p+q=0

⊕
(C )∈FCyc(G)

Hp(BZGC; Q) ⊗Q[WG C ] θC · (Kq (FC) ⊗Z Q)

chernG , F
0−−−−−−→ HG

0 (EF in(G);KF ) ⊗Z Q.

Since H0(BZGC; Q) is Q with the trivial WGC-action, H0(BZGC; Q)⊗Q[WG C ]θC ·
(K0(RC)⊗ZQ) is a quotient of θC ·(K0(RC)⊗ZQ), which is a direct summand in K0(RC)⊗ZQ.
Hence, im(α)⊆ im(β). We get im(β)⊆ im(α) from the commutative diagram appearing in
assertion (i). This finishes the proof of Lemma 5.4

Finally, we can give the proof of Theorem 1.10.

Proof. For any finite group of H ⊆G such that its order is not invertible in R, the map
K̃0(RH)→ K̃0(FH) is trivial by a result of Swan [63, Theorem 8.1] (see also [11, Corol-
lary 4.2]). Lemma 5.4(ii) implies that the composite

H0(EVCyc(G);KR ) ⊗Z Q → H0(EVCyc(G);KF ) ⊗Z Q → K0(FG) ⊗Z Q → K̃0(FG) ⊗Z Q

is trivial. Since G satisfies the Farrell–Jones Conjecture for algebraic K-theory with coefficients
in R by assumption, the map H0(EVCyc(G);KR ) ⊗Z Q→K0(RG) ⊗Z Q is surjective. Because
of the commutative diagram appearing in Lemma 5.4(i), the map

K0(RG) ⊗Z Q → K0(FG) ⊗Z Q → K̃0(FG) ⊗Z Q

is trivial. Now Theorem 1.10 follows.

6. The Kaplansky Conjecture

We need the following definition.

Definition 6.1. An R-module M is called directly finite if every R-module N satisfying
M ∼=R M ⊕ N is trivial. A ring R is called directly finite (or von Neumann finite) if it is
directly finite as a module over itself; that is, if r, s∈R satisfy rs = 1, then sr = 1. A ring is
called stably finite if the matrix algebra M(n, n,R) is directly finite for all n � 1.

Remark 6.2. Stable finiteness for a ring R is equivalent to the following statement. Every
finitely generated projective R-module P whose class in K0(R) is zero is already the trivial
module; that is, 0= [P ]∈K0(R) implies P ∼=0.

Theorem 6.3. (i) If F is a field of characteristic zero, then FG is stably finite for every
group G.

(ii) If R is a skew-field and G is a sofic group, then RG is stably finite.

Proof. (i) This is proved by Kaplansky [36] (see also Passman [51, Corollary 1.9, p. 38]).
(ii) This is proved for free-by-amenable groups by Ara–Meara–Perera [2] and extended to

sofic groups by Elek–Szabo [25, Corollary 4.7].
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Lemma 6.4. Let R be a ring whose idempotents are all trivial. Let G be a group such that
the map induced by the inclusion i : R→RG

i∗ : K0(R) ⊗Z Q −→ K0(RG) ⊗Z Q

is bijective and RG is stably finite.
Then all idempotents in RG are trivial.

Proof. Let p be an idempotent in RG. We want to show that p∈{0, 1}. Denote by ε : RG→R
the augmentation homomorphism sending

∑
g∈G rg · g to

∑
g∈G rg . Since ε(p)∈R is 0 or 1 by

assumption, it suffices to show that p = 0 under the assumption that ε(p) = 0. Let (p)⊆RG be
the ideal generated by p which is a finitely generated projective RG-module. Since i∗ : K0(R)⊗Z

Q→K0(RG) ⊗Z Q is surjective by assumption, we can find a finitely generated projective R-
module P and integers k,m, n � 0 satisfying

(p)k ⊕ RGm ∼=RG i∗(P ) ⊕ RGn.

If we now apply i∗ ◦ ε∗ and use ε ◦ i= id, i∗ ◦ ε∗(RGl)∼= RGl and ε(p)= 0, we obtain

RGm ∼= i∗(P ) ⊕ RGn.

Inserting this in the first equation yields

(p)k ⊕ i∗(P ) ⊕ RGn ∼= i∗(P ) ⊕ RGn

and therefore, 0= [(p)k ] ∈ K0(RG). Using Remark 6.2, we conclude that (p)k = 0 and hence
that p = 0.

Now Theorem 1.12 follows from Theorem 6.3 and Lemma 6.4.

7. Nil-groups

In this section, we give a brief discussion about Waldhausen’s Nil-groups.

7.1. Applications of homotopy K-theory to Waldhausen’s Nil-groups

The Nil-groups due to Bass NKn (R) have been generalized to Waldhausen’s Nil-groups as
follows. These groups were defined by Waldhausen (see [64, 65]) for n � 0, and their extension
to n∈Z is explained in [4, Section 9]. For more details, we refer to these papers. There are
two kinds of Nil-groups, the first one taking care of amalgamated products, and the second of
generalized Laurent extensions.

We begin with a discussion of the one for amalgamated products. Let α : C →A and β : C →B
be pure and free, and write A= α(C) ⊕ A′ and B = β(C) ⊕ B′ and put R =A ∗C B. Then the
Nil-groups of the first kind are denoted by Niln (C;A′, B′). The group Niln (C;A′, B′) is a direct
summand in Kn+1(R) and there is a long exact sequence

· · · → Kn+1(RC) → Kn+1(A) ⊕ Kn+1(B) → Kn+1(R)/Niln (C;A′, B′)
→ Kn (C) → Kn (A) ⊕ Kn (B) → · · · . (7.1)

There is an analogous long exact sequence for homotopy K-theory which does not involve
Nil-terms (see [4, Section 9]):

· · · → KHn+1(RC) → KHn+1(A) ⊕ KHn+1(B)
→ KHn+1(R) → KHn (C) → KHn (A) ⊕ KHn (B) → · · · . (7.2)

The natural transformation from algebraic K-theory to homotopy K-theory induces a map
between the long exact sequences given in equations (7.1) and (7.2). Now suppose that for
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Z⊆Λ⊆Q the maps

Kn (A) ⊗Z Λ → KHn (A) ⊗Z Λ,

Kn (B) ⊗Z Λ → KHn (B) ⊗Z Λ,

Kn (C) ⊗Z Λ → KHn (C) ⊗Z Λ,

Kn (R) ⊗Z Λ → KHn (R) ⊗Z Λ,

are bijective for all n ∈ Z. Then a Five-Lemma argument implies that

Nil(A;B′, C ′) ⊗Z Λ = 0 for all n ∈ Z.

Recall from the spectral sequence of [67, Theorem 1.3] that Kn (A) ⊗Z Λ→KHn (A) ⊗Z Λ
is bijective if we have NKn (A[x1 , x2 , . . . , xk ]) ⊗Z Λ = 0 for all n∈Z and k∈Z, k � 0, and
analogously for B, C, and R instead of A.

Next we deal with generalized Laurent extensions. Let R be the generalized Laurent extension
of pure and free ring maps α, β : C →A. Associated to it is the Nil-term Niln (C; αA′

α , β A′′
β , β Aα ,

αAβ ) which is a direct summand in Kn+1(R). We obtain long exact sequences

· · · → Kn+1(C)
α∗−β∗−−−−→ Kn+1(A) → Kn+1(R)/Niln (C; αA′

α , β A′′
β , β Aα , αAβ )

→ Kn (C)
α∗−β∗−−−−→ Kn (A) → · · · (7.3)

and

· · · → KHn+1(C)
α∗−β∗−−−−→ KHn+1(A) → KHn+1(R)

→ KHn (C)
α∗−β∗−−−−→ KHn (A) → · · · . (7.4)

If, for Z ⊆ Λ ⊆ Q, the maps

Kn (A) ⊗Z Λ → KHn (A) ⊗Z Λ,

Kn (C) ⊗Z Λ → KHn (C) ⊗Z Λ,

Kn (R) ⊗Z Λ → KHn (R) ⊗Z Λ,

are bijective for all n ∈ Z, then we conclude as above that

Niln (C; αA′
α , β A′′

β , β Aα , αAβ ) ⊗Z Λ = 0 for all n ∈ Z

holds.
We can now prove Theorem 1.15.

Proof. (i) Because G, H, and K are finite, we conclude from Lemma 3.11(ii) that the maps

Kn (ZG) ⊗Z Q → KHn (ZG) ⊗Z Q,

Kn (ZH) ⊗Z Q → KHn (ZH) ⊗Z Q,

Kn (ZK) ⊗Z Q → KHn (ZK) ⊗Z Q,

are bijective. Let Γ := G ∗K H be the amalgamated product. Then Γ acts properly and cocom-
pactly on a tree and is therefore, word-hyperbolic. Theorems 1.1(i) and 1.3(i) imply Γ ∈ FJ (Z)
and Γ ∈ FJKH(Z). Consider the following commutative diagram

HΓ
n (EF in (Γ);KZ) ⊗Z Q ��

��

Hn (pt;KZ) ⊗Z Q = Kn (RΓ) ⊗Z Q

��

HΓ
n (EF in (Γ);KHZ) ⊗Z Q �� Hn (pt;KHZ) ⊗Z Q = KHn (RΓ) ⊗Z Q



82 ARTHUR BARTELS, WOLFGANG LÜCK AND HOLGER REICH

where the horizontal maps are the assembly maps induced by the projection EF in(Γ)→ pt and
the vertical maps are induced by the passage from algebraic K-theory to homotopy K-theory.
The lower horizontal map is an isomorphism since Γ ∈ FJKH(Z), and the upper horizontal map
is an isomorphism by Lemma 3.8 since Γ ∈ FJ (Z). The left vertical map is an isomorphism by
Lemma 3.12(ii). Therefore, Kn (ZΓ) ⊗Z Q ∼= KHn (ZΓ) ⊗Z Q. The Five-Lemma argument from
above now implies the rational vanishing of the Nil-groups, as claimed.

(ii) Here we can argue as in (i), but now using the HNN-extension associated to the inclusions
α and β instead of the amalgamated product.

7.2. Nil-groups and rings with finite characteristic

For this subsection, fix an integer N � 2 and a ring A of characteristic N . In Lemma 3.10,
we have shown that we get NKn (A)[1/N ] = 0 for every n∈Z. This implies, by the above Five-
Lemma argument for all n∈Z, and all pure and free maps α : C →A and β : C →B, and all
pure and free maps α, β : C →A, respectively

Niln (C;A′, B′) ⊗Z [1/N ] = 0;
Niln (C; αA′

α , β A′′
β , β Aα , αAβ ) ⊗Z [1/N ] = 0.

7.3. Nil-groups and regular rings R with Q ⊂ R

Conjecture 7.1. Let R be a regular ring with Q ⊆ R. Then we get, for all groups G and
all n ∈ Z,

NKn (RG) = 0,

and the canonical map
Kn (RG) → KHn (RG)

is bijective.

By the following discussion, Conjecture 7.1 is true if G belongs to the class FJ (R) appearing
in Theorem 1.1, but we do not know it for all groups G.

If R is regular, then the polynomial ring R[t] is regular as well. Thus, if NKn (RG)= 0 holds
for a fixed group G and all regular rings R with Q⊆R, then Kn (RG)→KHn (RG) is bijective
for this fixed group G and all regular rings R with Q⊆R. This follows from the spectral
sequence appearing in [67, Theorem 1.3]. Using the Bass–Heller–Swan decomposition, it is not
hard to see that, similarly, if NKn (RG)= 0 holds for all groups G and a fixed regular ring R
with Q⊆R, then Kn (RG)→KHn (RG) is bijective for all groups G and this fixed regular ring
R with Q⊆R.

If Conjecture 7.1 is true, then also Waldhausen’s Nil-groups associated to a free amalgamated
product of groups G= G1 ∗G0 G1 or to an HNN-extension with coefficients in a regular ring R
with Q ⊆ R vanish by the general argument from Section 7.1.

Let FJFin(R) be the class of those groups for which the Fibered Farrell–Jones Conjecture for
algebraic K-theory with coefficients in R is true for the family F in. We get FJFin(R)⊆FJ (R)
from Lemma 2.2 for all rings R but FJFin(Z) 
=FJ (Z).

If Conjecture 7.1 holds and R is a regular ring with Q⊆R, then the map HG
n (X;KR )→

HG
n (X;KHR ) induced by the transition from K-theory to homotopy K-theory is an isomor-

phism for any G-CW -complex X and the assembly maps for K-theory and homotopy K-
theory can be identified. Thus, Conjecture 7.1 implies that FJFin(R)=FJKH(R). In particular,
if Conjecture 7.1 holds, then by Theorem 1.3 (vi), every virtually cyclic group satisfies the
Fibered Farrell–Jones Conjecture for algebraic K-theory with coefficients in R for the family
F in. We omit the proof (based on the Bass–Heller–Swan formula) that Conjecture 7.1 is in
fact, equivalent to the statement that Z∈FJFin(R) for any regular ring R with Q ⊆ R.
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If Conjecture 7.1 is true and R is a regular ring with Q⊆R, then the Transitivity Principle
(see Theorem 2.4) implies that FJ (R)=FJFin(R), the conclusions appearing in Theorem 1.3
are true for each group in FJ (R)=FJFin(R), and assertion (i) of Theorem 1.5 is true for all
groups in FJFin(R), and in particular for all elementary amenable groups.

Let R be any ring. Recall that FJ (R) contains, for instance, word-hyperbolic groups and
virtually nilpotent groups by Theorem 1.1, but we do not know whether elementary amenable
groups belong to FJ (R) and whether they satisfy assertion (i) of Theorem 1.5. Our methods
do not give this conclusion since we know only that G∈FJ (R) implies G × Z ∈ FJ (R), but
we would at least need G �α Z∈FJ (R) for any automorphism α : G→G. More generally, it
would be interesting to solve the question of whether, for any extensions 1→G→Γ→V → 1
for virtually cyclic V and G∈FJ (R), we have Γ ∈ FJ (R) because a positive answer would
imply that FJ (R) is closed under extensions.

8. The Farrell–Jones Conjecture for L-theory

In this section, ‘ring R’ will always mean an associative ring with unit and involution.
Recall that the (Fibered) Farrell–Jones Conjecture for algebraic L-theory with coefficients in

R for the group G is the (Fibered) Isomorphism Conjecture 2.1 in the special case, where the
family F consists of all virtually cyclic subgroups of G, and H?

∗ is the equivariant homology
theory H?

∗(−;L〈−∞〉
R ) associated to the Groupoids-spectrum given by algebraic L-theory and

R as coefficient ring (see [45, Section 6]). So the Farrell–Jones Conjecture for algebraic L-theory
with coefficients in R for the group G predicts that the map

HG
n

(
EVCyc(G),L〈−∞〉

R

)
→ L〈−∞〉

n (RG)

is bijective for all n∈Z. The original source for (Fibered) Farrell–Jones Conjecture is [28]. The
corresponding conjecture is false if one replaces the decoration 〈−∞〉 with the decoration p, h
or s (see [29]). For the status of the Farrell–Jones Conjecture with coefficients in Z, we refer
for instance to [45, Sections 5.2 and 5.3].

The next result is proved in [3, Lemma 5.2].

Lemma 8.1. Let R be a ring. Then the equivariant homology theory H?
∗(−;L〈−∞〉

R ) is
strongly continuous.

Theorem 2.72.7 and Lemma 8.2 imply that for any ring R and any direct system of groups
{Gi | i ∈ I} (with not necessarily injective structure maps), G= colimi∈I Gi satisfies the Fibered
Farrell–Jones Conjecture for algebraic L-theory with coefficients in R if each group Gi does.

In algebraic L-theory, the situation simplifies if one inverts 2.

Lemma 8.2. Let R be a ring, and let G be a group. Then the Fibered Farrell–Jones
Conjecture with coefficients in R after applying − ⊗Z Z[1/2] to the assembly map holds for
(G,VCyc), if and only if the same holds for (G,F in).

Proof. Because of Lemma 2.10 and the fact that every virtually cyclic group maps surjec-
tively onto Z or Z/2 ∗ Z/2, it suffices to show the claim for G= Z and G= Z/2 ∗ Z/2. These
cases follow from the exact sequence involving UNil-terms and the proof that UNil-groups are
2-torsion, due to Cappell [18] in the case Z/2 ∗Z/2. In the case Z, there are no UNil-terms for
infinite virtually cyclic groups of the first kind. This follows essentially from [55] and [56] as
carried out in [43, Lemma 4.2].



84 ARTHUR BARTELS, WOLFGANG LÜCK AND HOLGER REICH

The Transitivity Principle (see Theorem 2.4) implies that for a ring R and a group G, the
Farrell–Jones Conjecture for algebraic L-theory with coefficients in R is true after applying
−⊗Z Z[1/2] to the assembly map for the family VCyc if and only if this is true for the family
F in. This implies that assertions (ii), (iii), (iv), and (vi) appearing in Theorem 1.3 are true
for the family FJL [1/2](R) of those groups for which the Farrell–Jones Conjecture for algebraic
L-theory with coefficients in R is true after applying −⊗Z Z[1/2]. We do not know whether all
word-hyperbolic groups belong to FJL [1/2](R). Farrell and Jones claim in [28, Remark 2.1.3]
without giving details that the L-theory version of their celebrated [28, Theorem 1.2] is true.
This, together with [57, 3.6.4], implies that all virtually finitely generated abelian groups belong
to FJL [1/2](R) for R = Z, Q. Hence, all elementary amenable groups belong to FJL [1/2](R) for
R = Z, Q, by Lemma 2.12. This has already been proved in [31, Section 5].
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61. G. Skandalis, ‘Progrès récents sur la conjecture de Baum–Connes. Contribution de Vincent Lafforgue’,
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