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ON HOMOMORPHISMS FROM A FIXED REPRESENTATION

TO A GENERAL REPRESENTATION OF A QUIVER

WILLIAM CRAWLEY-BOEVEY

Abstract. We study the dimension of the space of homomorphisms from a
given representation X of a quiver to a general representation of dimension
vector β. We prove a theorem about this number, and derive two corollaries
concerning its asymptotic behaviour as β increases. These results are related
to work of A. Schofield on homological epimorphisms from the path algebra to
a simple artinian ring.

In this paper we prove a number of results about hom(X,β), the dimension of
the space of homomorphisms from a fixed representation X of a quiver to a general
representation of dimension vector β. Our basic result relates this number to the
dimension of a subset of a Grassmannian of submodules of X . This result is in
the spirit of A. Schofield’s paper on general representations of quivers [S2], and
generalizes one of his results. We derive two corollaries concerning the asymptotic
behaviour of hom(X, rβ), of interest in themselves, and also because of their con-
nection with another theorem of Schofield, that the homological epimorphisms from
a path algebra to a simple artinian ring are in 1–1 correspondence with indivisible
Schur roots. (A homological epimorphism is a ring homomorphism R → S with

S ⊗R S ∼= S and TorRi (S, S) = 0 for i > 0. This correspondence was announced by
Schofield in a lecture in March 1995 in Krippen, Germany, but actually dates from
1991.) In fact our second corollary is already known, proved by Schofield and used
in the proof of the correspondence, but his proof of the corollary involves difficult
results about semi-invariants of quivers, whereas the proof here is quite elementary.

Let K be an algebraically closed field, Q a finite quiver with vertex set I, and
let 〈−,−〉 be the Ringel form on ZI . If β ∈ NI we write

RepKQ(β) =
∏
a:i→j

Hom(Kβ(i),Kβ(j))

for the configuration space of representations of Q of dimension vector β, and if
y ∈ RepKQ(β) we write Ky for the corresponding left KQ-module.

If X is a finitely generated left KQ-module and y ∈ RepKQ(β) then Hom(X,Ky)
is a finite dimensional vector space. Moreover the function y 7→ dim Hom(X,Ky) is
an upper semicontinuous function on RepKQ(β), and it follows that the minimum
value of this function, denoted hom(X,β), is also its general value. The rank of
a homomorphism X → Ky is the dimension vector of its image. For any α ∈ NI
the set of homomorphisms of rank at most α is a closed subset of Hom(X,Ky). It
follows that there is a unique maximal rank γX,y of homomorphisms from X to Ky,
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and that the set of homomorphisms of rank γX,y is an open subset of Hom(X,Ky).
The function y 7→ γX,y is constant on a non-empty open subset of RepKQ(β), and
its general value is denoted γX,β , the general rank of a homomorphism from X to a
representation of dimension β. (The general rank was introduced by Schofield [S2,
Lemma 5.1] in case X is a general representation of some dimension vector. His
argument adapts to prove that the function y 7→ γX,y is constant on a non-empty
open subset, as claimed above, using the setup of our §4 in case X is an infinite
dimensional finitely generated module.)

Our basic result is as follows. We hasten to say that its interest lies in its
corollaries.

Theorem. If X is a finite dimensional KQ-module and β ∈ NI then

hom(X,β) = 〈γX,β , β〉+ dimU

for some non-empty open subset U of GrKQ(X, γX,β).

Here, if α is a dimension vector, then GrKQ(X,α) is the variety of submodules
of X of codimension α (i.e. submodules Y ⊆ X with X/Y of dimension vector α).
In fact the theorem holds more generally for X a finitely generated module. The
main problem is to make sense of GrKQ(X,α). We discuss this in §4.

The theorem generalizes Theorem 5.2 of Schofield [S2] since for a sufficiently
general representation X of dimension α the variety GrKQ(X, γX,β) has all irre-
ducible components of dimension 〈α− γX,β , γX,β〉 (see the last line of [S2, p52]), so
any non-empty open subset of this variety also has this dimension.

Let K0(KQ) be the Grothendieck group of finitely presented left KQ-modules
modulo short exact sequences (or equivalently of finitely generated projective left
KQ-modules modulo direct sums). If β ∈ ZI there is a homomorphism K0(KQ)→
Z, also denoted β, defined by β(KQei) = β(i) where ei is the idempotent in the
path algebra KQ corresponding to the vertex i. If X is finite dimensional then
in fact β(X) = 〈dimX,β〉. A finitely presented KQ-module X is said to be β-
semistable if β(X) = 0, and β(Y ) ≥ 0 for all finitely presented submodules Y of X .
It is β-stable if in addition β(Y ) > 0 whenever Y 6= 0, X .

In §2 we prove the following corollaries in the special case when X is finite dimen-
sional. We deduce the general case in §3 using a universal localization argument
suggested by A. Schofield.

Corollary 1. If X is a finitely presented KQ-module and β ∈ NI then

lim
r→∞

1

r
hom(X, rβ) = max{β(X/Y ) | Y ⊆ X a finitely presented submodule}.

If β is an indivisible Schur root then there is a corresponding homological epi-
morphism from KQ to a simple artinian ring given by Schofield’s theorem, and
this has an associated Sylvester module rank function [S1, Theorem 7.12]. It can
be constructed as follows: if χβ is the function which sends a finitely presented
module X to the number given by either side of the equation in Corollary 1, then
the Sylvester module rank function is obtained by normalising χβ so as to have
value 1 at KQ.

Corollary 2. If X is a finitely presented KQ-module which is β-semistable with
β ∈ NI then hom(X, rβ) = 0 for some integer r > 0.

As an example, taking KQ to be a free algebra, Corollary 2 states that if A is
an n × n matrix with entries in K〈x1, . . . , xm〉 and which is full, meaning that it
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cannot be written as a product of an n× (n− 1) and an (n− 1)× n matrix, then
the xi can be specialized to r × r matrices over K in such a way that A becomes
an invertible (rn)× (rn) matrix.

Some of these results were presented in lectures I gave at the Krippen meeting
mentioned above, and I would like to thank the organizers, D. Happel, C. M. Ringel,
and L. Unger. I would also particularly like to thank A. Schofield.

1. Proof of the theorem

Let X be a finite dimensional left KQ-module and let α, β ∈ NI . If ei ∈ KQ
is the idempotent corresponding to a vertex i ∈ I, then X has a decomposition
X =

⊕
iXi where Xi = eiX . If V is a finite dimensional vector space we write

Gr(V, d) for the Grassmannian of subspaces of codimension d in V . The variety
GrKQ(X,α) of submodules of X of codimension α is the closed subset of∏

i

Gr(Xi, α(i))

consisting of the tuples (Yi) which are subrepresentations of X . We define a vector
space Hom(X,β) via

Hom(X,β) =
⊕
i

HomK(Xi,K
β(i)).

We write Hom(X,β)α for the locally closed subset consisting of those θ ∈ Hom(X,β)
with each θi of rank α(i). It is standard that the map

ρ : Hom(X,β)α −→
∏
i

Gr(Xi, α(i))

sending θ to (Ker θi) is a locally trivial bundle with fibre∏
i

Inj(Kα(i),Kβ(i)),

where Inj(U, V ) is the set of injective linear maps U → V . Let HomKQ(X,β)α be
the subset of Hom(X,β)α consisting of those θ with (Ker θi) a subrepresentation of
X . It is a closed subset of Hom(X,β)α since

HomKQ(X,β)α = ρ−1(GrKQ(X,β)).

The following lemma is immediate.

Lemma 1.1. The map κ : HomKQ(X,β)α → GrKQ(X,α) sending θ to (Ker θi) is

a locally trivial bundle with fibre
∏
i Inj(Kα(i),Kβ(i)).

We write RepHomKQ(X,β) for the closed subset of RepKQ(β) × Hom(X,β)
consisting of those pairs (y, θ) with θ aKQ-homomorphism fromX toKy. Similarly
we define RepHomKQ(X,β)α.

Lemma 1.2. If α ≤ β then the map φ : RepHomKQ(X,β)α → HomKQ(X,β)α
sending (y, θ) to θ is a locally trivial bundle with fibre∏

a:i→j
Hom(Kβ(i)−α(i),Kβ(j)).
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Proof. HomKQ(X,β)α has a covering by open subsets of the form

Uεπ = {θ ∈ HomKQ(X,β)α |
∏
i

det(πiθiεi) 6= 0}

where εi : Kα(i) → X are injective linear maps and πi : Kβ(i) → Kα(i) are surjective
linear maps. We show that

φ−1(Uεπ) −→ Uεπ

is a trivial bundle. Observe that the map sending θ to (πiθiεi)
−1 is a regular map of

varieties from Uεπ to the set of β(i)× β(i) matrices. One can choose a complement
to Ker(πi) in Kβ(i), and using this one can find maps

µi : Kβ(i)−α(i) → Kβ(i) and λi : Kβ(i) → Kβ(i)−α(i)

with λiµi the identity on Kβ(i)−α(i) and Im(µi) = Ker(πi). If a : i→ j is an arrow,
write xa for the linear map Xi → Xj induced by multiplication by a. We show that
the constructions

(1) za = yaµi, and
(2) ya = zaλi + (θjxa − zaλiθi)εi(πiθiεi)−1πi

define a 1–1 correspondence between

(y, θ) ∈ φ−1(Uεπ) and (θ, z) ∈ Uεπ ×
∏
a:i→j

Hom(Kβ(i)−α(i),Kβ(j)).

This gives an isomorphism of varieties over Uεπ, so proves that φ−1(Uεπ)→ Uεπ is
a trivial bundle, and the lemma follows.

First, given (θ, z), the element (y, θ) constructed according to (2) belongs to
RepHomKQ(X,β), and hence to φ−1(Uεπ). To see this, we need to prove that yaθi
and θjxa are equal. We have a decomposition Xi = Im εi⊕Ker θi since θi has rank
α(i). Now yaθi and θjxa both vanish on Ker θi, for the fact that θ ∈ HomKQ(X,β)
means that the spaces Ker θi form a subrepresentation of X , so xa(Ker θi) ⊆ Ker θj .
Also yaθi and θjxa agree on Im εi since they have the same composition with εi.

Next if (θ, z) is given, one constructs (y, θ) using (2) and (θ, z′) using (1), then

z′a = zaλiµi + (θjxa − zaλiθi)εi(πiθiεi)−1πiµi = za.

Finally if (y, θ) is given, one constructs (θ, z) using (1) and (y′, θ) using (2), then
the fact that θjxa = yaθi implies that

y′a = (yaµi)λi + (yaθi − (yaµi)λiθi)εi(πiθiεi)
−1πi

= ya(µiλi + ξi − µiλiξi)

where ξi is the idempotent endomorphism θiεi(πiθiεi)
−1πi of Kβ(i). Now ξiµi = 0

so Kβ(i) = Im ξi ⊕ Imµi by dimensions, and by checking compositions with ξi and
µi we obtain

µiλi + ξi − µiλiξi = 1Kβ(i) .

Thus y′a = ya.

Lemma 1.3. Suppose that θ : Y → Z is a locally trivial map of varieties with fibre
F , an irreducible variety. If U is an open subset of Y , then θ(U) is open in Z and
dim θ(U) = dimU − dimF .
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Proof. We may assume that θ is trivial, so Y = Z × F and θ is the projection.
Then

θ(U) =
⋃
f∈F

i−1
f (U)

where if is the map Z → Z ×F , z 7→ (z, f), so θ(U) is open in Z. Now every fibre
of the map U → θ(U) is a non-empty open subset of F , so has dimension dimF .
The claim follows.

Proof of the theorem. Let α = γX,β. There is a non-empty open subset R of
RepKQ(β) with dim Hom(X,Ky) = hom(X,β) and γX,y = α for all y ∈ R. Let

V = {(y, θ) ∈ RepHomKQ(X,β)α | y ∈ R},

an open subset of RepHomKQ(X,β)α. Now all fibres of the projection V → R
have dimension hom(X,β), so

dimV = dimR+ hom(X,β) = dim RepKQ(β) + hom(X,β).

Applying Lemma 1.3 to the locally trivial map of Lemma 1.2 and the open subset
V we have

dimφ(V ) = dimV − dim
∏
a:i→j

Hom(Kβ(i)−α(i),Kβ(j)).

Now applying Lemma 1.3 to the locally trivial map of Lemma 1.1 and the open
subset φ(V ) we have

dimκ(φ(V )) = dimφ(V )− dim
∏
i

Inj(Kα(i),Kβ(i)).

Combining these formulae we see that κ(φ(V )) is an open subset of GrKQ(X,α) of
dimension

hom(X,β) +
∑
a:i→j

β(i)β(j) −
∑
a:i→j

(β(i) − α(i))β(j) −
∑
i

α(i)β(i)

This simplifies to hom(X,β)− 〈α, β〉, which proves the theorem.

2. Proofs of the corollaries in the finite dimensional case

Proof of Corollary 1 (for X finite dimensional). For any vectors ρ, σ ∈ NI we have
hom(X, ρ + σ) ≤ hom(X, ρ) + hom(X,σ). Now if 1

d hom(X, dβ) = λ and we write
r = ad+ b with a, b ∈ N and b < d, then

1

r
hom(X, rβ) ≤ 1

ad
hom(X, (ad+ b)β)

≤ 1

ad

(
a hom(X, dβ) + b hom(X,β)

)
≤ λ+

1

a
hom(X,β)

and this tends to λ as r →∞. It follows that the sequence 1
r hom(X, rβ) converges

to its infimum µ.
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If Y ⊆ X then hom(X, rβ) = dim Hom(X,M) for some M of dimension rβ, so

1

r
hom(X, rβ) =

1

r
dim Hom(X,M)

≥ 1

r
dim Hom(X/Y,M)

≥ 1

r
dim Hom(X/Y,M)− 1

r
dim Ext(X/Y,M)

=
1

r
〈dimX/Y, rβ〉 = 〈dimX/Y, β〉 = β(X/Y ).

Thus µ ≥ max{β(X/Y ) | Y is a submodule of X}. As r increases the vector γX,rβ
is bounded by the dimension vector of X , so some dimension vector α arises in-
finitely often; say for r = r1, r2, . . . . By assumption there are maps from X to
representations of dimension riβ of rank α, so there must be a subrepresentation
Y of X of codimension α. By the theorem we have

1

ri
hom(X, riβ) ≤ 〈α, β〉+

1

ri
dim GrKQ(X,α).

Thus µ ≤ 〈α, β〉 = 〈dimX/Y, β〉 = β(X/Y ). This proves the corollary.

Proof of Corollary 2 (for X finite dimensional). Any β-semistable representation
has a filtration with β-stable quotients, so we may assume that X is β-stable. By
Corollary 1 we have limr→∞

1
r hom(X, rβ) = 0.

As in the previous corollary let α = γX,rβ for r = r1, r2, . . . and let Y be a
submodule of X of codimension α. By the theorem

1

ri
hom(X, riβ) = 〈α, β〉 +

1

ri
dimUi

with Ui open in GrKQ(X,α). Letting ri → ∞ we must have 〈α, β〉 = 0. Thus
β(Y ) = 0, which contradicts the β-stability of X unless α = 0 or α = dimX .
In either case GrKQ(X,α) is reduced to a point, so that dimUi = 0, and hence
hom(X, riβ) = 0, as required.

3. Passage to finitely presented modules

In this section we extend the corollaries from the case when X is finite dimen-
sional to X being finitely presented (in case the quiver has oriented cycles, so that
there are infinite dimensional finitely presented modules). The idea of using uni-
versal localization here was suggested to the author by A. Schofield.

We define a new quiver Q′ as follows. If I = {1, . . . , n} then Q′ has vertex set
I ′ = {1′, . . . , n′, 1′′, . . . , n′′}. For each vertex i ∈ I there is an arrow vi : i′ → i′′ in
Q′, and for each arrow a : i→ j in Q there is an arrow a′ : i′ → j′′ in Q′. Observe
that the vertices 1′, . . . , n′ are sources while 1′′, . . . , n′′ are sinks. Thus KQ′ is finite
dimensional.

Let A = KQ′ and B = M2(KQ). There is an equivalence KQ-Mod→ B-Mod
sending a KQ-module M to the vector space X = M2 with B acting as a matrix
on a column vector. In what follows we usually make no distinction between a
KQ-module and the corresponding B-module. (This is perfectly acceptable for
categorical notions like Hom and Ext, but care is needed for traditional notions like
the elements of a module.)
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Let φ : A→ B be the homomorphism defined by

φ(ei′) =

(
ei 0
0 0

)
, φ(ei′′) =

(
0 0
0 ei

)
, φ(vi) =

(
0 0
ei 0

)
, φ(a′) =

(
0 0
a 0

)
.

We write B⊗− for B⊗A−, and we write AX for the restriction of a B-module via
φ. Restriction by φ sends a representation M of Q to the representation Z of Q′

with Zi′ = Zi′′ = Mi, with vi the identity map Zi′ → Zi′′ , and with the linear map
corresponding to an arrow a′ the same as the linear map for M corresponding to a.
Thus restriction by φ induces an equivalence from B-Mod to the full subcategory
of KQ′-Mod consisting of those representations in which the vi are isomorphisms.
This observation implies that φ : A→ B is the universal localization of KQ′ with
respect to the maps KQ′ei′′ → KQ′ei′ corresponding to the vi. The next lemma
collects some properties of universal localization, see [S1, Theorems 4.5, 4.7, 4.8].

Lemma 3.1. (1) Any finitely presented B-module is induced from a finitely pre-
sented (hence finite dimensional) A-module.

(2) HomB(X,Y ) ∼= HomA(X,Y ) and Ext1
B(X,Y ) ∼= Ext1

A(X,Y ) for any B-
modules X and Y .

(3) B ⊗A X ∼= X and TorA1 (B,X) = 0 for any B-module X.

If β ∈ ZI we define β′ ∈ ZI′ by β′(i′) = β′(i′′) = β(i). Clearly if X is a B-module
of dimension vector β then AX has dimension vector β′.

Lemma 3.2. If Z is a finite dimensional A-module and β ∈ NI , then
(1) hom(B ⊗ Z, β) = hom(Z, β′), and

(2) β(B ⊗A Z) ≥ β′(Z), with equality if TorA1 (B,Z) = 0.

Proof. (1) Since HomA(Z,A Y ) ∼= HomB(B ⊗ Z, Y ) we certainly have the relation
hom(Z, β′) ≤ hom(B ⊗ Z, β). On the other hand, in a general representation of
Q′ of dimension β′ the arrows vi are isomorphisms, so the representation is the
restriction of a B-module. Thus there is a B-module Y of dimension β with

hom(Z, β′) = dim HomA(Z,A Y )

= dim HomB(B ⊗ Z, Y ) ≥ hom(B ⊗ Z, β).

(2) If Z is projective we have equality β(B ⊗A Z) = β′(Z) since

B ⊗Aei′ ∼= B ⊗Aei′′
corresponds to the KQ′-module KQ′ei. In general if 0 → P ′ → P → Z → 0 is a
projective resolution then there is an exact sequence

0→ TorA1 (B,Z)→ B ⊗ P ′ → B ⊗ P → B ⊗ Z → 0,

and the kernel TorA1 (B,Z) must be a projective B-module since it embeds in B⊗P ′.
Thus β(TorA1 (B,Z)) ≥ 0, and the result follows by additivity.

Lemma 3.3. If Z is an A-module and Z is the image of Z under the natural map
Z → B ⊗ Z, then B ⊗ Z ∼= B ⊗ Z and TorA1 (B,Z) = 0.

Proof. Tensoring the maps Z � Z ↪→ B ⊗ Z with B we have

B ⊗ Z � B ⊗ Z → B ⊗ (B ⊗ Z) ∼= B ⊗ Z
so B ⊗Z ∼= B ⊗Z. Also TorA1 (B,Z) ↪→ TorA1 (B,B ⊗Z) since A is hereditary, and
this last space is zero by Lemma 3.1.
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Proof of Corollary 1 (for X finitely presented). As in the finite dimensional case
1
r hom(X, rβ) converges to its infimum µ and

µ ≥ max{β(X/Y ) | Y a finitely presented submodule of X}.
It only remains to find a finitely presented submodule Y of X with β(X/Y ) ≥ µ.
Now X is induced from a finite dimensional A-module W . By the finite dimensional
case of Corollary 1 we have

inf{1

r
hom(W, rβ′) | r ≥ 1} = β′(Z)

for some quotient Z of W . By Lemma 3.2 this becomes

inf{1

r
hom(X, rβ) | r ≥ 1} ≤ β(B ⊗ Z)

and since B⊗Z is isomorphic to the quotient of X by a finitely presented submodule
(using that path algebras are left coherent), we have the result.

Proof of Corollary 2 (for X finitely presented). By Lemma 3.1, the module X is
induced from a finite dimensional A-module Z, and by Lemma 3.3 we may suppose
that TorA1 (B,Z) = 0. By assumption X is β-semistable. Now β′(Z) = β(X) = 0
by Lemma 3.2, and if Z has a quotient W with β′(W ) > 0 then X has a quotient
B⊗W with β(B ⊗W ) > 0, contradicting the fact that X is β-semistable. Thus Z
is β′-semistable. By the finite dimensional case of Corollary 2 there is some r > 0
with hom(Z, rβ′) = 0, and then hom(X, rβ) = 0, as required.

4. Extension of the theorem to finitely generated modules

In this section we extend the theorem to the case when X is a finitely generated
module (assuming that Q has oriented cycles, so that not all finitely generated
modules are finite dimensional). In order even to state the theorem, we need to
define a variety GrKQ(X,α) of submodules of X of codimension α. It is convenient
to use the functorial language of Demazure and Gabriel [DG] in which a scheme
(over K) is a certain type of functor from commutative K-algebras to sets. Recall
that a module for a commutative ring has rank r if it is finitely generated and at
each prime it is free of rank r. It is then automatically projective by [B, II, §5,
no. 2]. If X is a finitely generated KQ-module and α is a dimension vector, we
write GrKQ(X,α) for the functor sending a commutative K-algebra R to the set of
R⊗KKQ-submodules Y of R⊗KX with the property that for each vertex i the R-
module ei((R⊗K X)/Y ) has rank α(i). We prove that GrKQ(X,α) is a separated
algebraic scheme. Its reduced induced structure is then the variety GrKQ(X,α).

Theorem. If X is a finitely generated KQ-module and β ∈ NI then

hom(X,β) = 〈γX,β , β〉+ dimU

for some non-empty open subset U of GrKQ(X, γX,β).

In order to prove the theorem (and indeed to prove that GrKQ(X,α) is an
algebraic scheme), we construct schemes RepHomKQ(X,β)α and HomKQ(X,β)α
and others corresponding to constructions in §1. The theorem then follows by the
same argument as §1. We skip the details. (Note that an algebraic scheme has the
same dimension as its reduced induced structure.)

We work in slightly greater generality. Let K be any field, let V be a vector space
over K, possibly infinite dimensional, let A be a finitely generated K-algebra, and
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let X be a finitely generated A-module. Fix a complete set of (not necessarily
primitive) orthogonal idempotents ei (i ∈ I, a finite set), so eiej = δijei and∑
i∈I ei = 1. Any A-module M has a decomposition M =

⊕
iMi where Mi = eiM .

We define functors as follows:

• Gr(V, r) is the functor which sends a commutative K-algebra R to the set of
R-submodules W of R ⊗K V with (R ⊗K V )/W of rank r.
• Hom(V,m) is the functor sending R to HomR(R⊗K V,Rm).
• Hom(V,m)r is the subfunctor of Hom(V,m) sending R to the set of θ with

Im(θ) a direct summand of Rm of rank r.

• GrA(X,α) is the subfunctor of
∏
iGr(Xi, α(i)) consisting of those tuples

Yi ⊆ R⊗K Xi with
⊕

i Yi an R⊗K A-submodule Y of R⊗K X .
• HomA(X,β)α is the subfunctor of

∏
i Hom(Xi, β(i))α(i) sending R to the

set of tuples (θi) with
⊕

i(Ker θi) an R⊗K A-submodule of R⊗K X .
• RepA(β) sends R to the set of R⊗KA-module structures M on the R-module⊕

iR
β(i), with ei acting as the projection onto Rβ(i).

• RepHomA(X,β) is the subfunctor of RepA(β)×
∏
i Hom(Xi, β(i)) sending

R to the pairs (M, (θi)) with the θi defining anR⊗KA-module homomorphism
R⊗K X →M .
• RepHomA(X,β)α is the subfunctor of RepHomA(X,β) defined by also

demanding that θi ∈ Hom(Xi, β(i))α(i)(R).

The first lemma is presumably already known, but I couldn’t find a suitable
reference. Of course it is all standard in case V is finite dimensional.

Lemma 4.1. (1) Hom(V,m) is an affine scheme.
(2) Gr(V, r) is a separated scheme.
(3) Hom(V,m)r is a locally closed subscheme of Hom(V,m).
(4) The natural transformation κ : Hom(V,m)r → Gr(V, r), which sends a

homomorphism R ⊗K V → Rm to its kernel, is a locally trivial bundle with fibre
Hom(Kr,m)r.

Proof. (1) If V has basis vλ (λ ∈ Λ) then

HomR(R ⊗K V,Rm) ∼= HomK-alg(K[xλ,i | λ ∈ Λ, 1 ≤ i ≤ m], R).

(2) We show that G = Gr(V, r) is a local functor by modifying the argument of
[DG, I, §1, 3.13]. Suppose that R is a commutative K-algebra, (fi, xi) is a partition
of unity, and Yi ∈G(Rfi) are compatible in the sense that Yi and Yj have the same
image in G(Rfifj ) for all i and j. We need to show that there is some Y ∈ G(R)
inducing Yi in each G(Rfi). Let B =

∏
iRfi . By the argument of [DG], the B-

module
∏
i Yi is induced from an R-submodule Y of R ⊗K V . It remains to show

that the R-module M = (R⊗KV )/Y has rank r. Now the induced module B⊗RM
is isomorphic to

∏
i(Rfi⊗K V )/Yi, so it has rank r, and it follows that M is finitely

generated projective by [B, I, §3, no. 6, Proposition 12]. By faithful flatness any
prime q of R comes from a prime p of B, and Bp ⊗Rq

Mq
∼= (B ⊗RM)p is a free

Bp-module of rank r, so Mq is free of rank r. Thus M does have rank r.
Next we find a covering of G by affine open subfunctors. Let Q be an r-

dimensional subspace of V , and define

UQ(R) = {Y ∈ G(R) | Y ⊕ (R ⊗K Q) = R⊗K V }.
The argument of [DG, I, §1, Example 3.9] shows that UQ is an open subfunctor of
G. Let P be a complement to Q in V , and let pλ (λ ∈ Λ) be a basis of P . The
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submodules Y of R ⊗K V complementary to R ⊗K Q are in 1–1 correspondence
with homomorphisms from R⊗K P to R⊗K Q, so

UQ(R) ∼= HomR(R⊗K P,R ⊗K Q)

∼= HomK(P,R ⊗K Q)

∼= HomK-alg(K[xλ,i | λ ∈ Λ, 1 ≤ i ≤ r], R).

Thus UQ is an affine scheme.
For any extension field F of K and any Y ∈ G(F ) there is some Q such that

Y ∈ UQ(F ). Thus the UQ cover G. It follows that G is a scheme.
Suppose R is a commutative K-algebra and Y, Y ′ ∈ G(R). If φ : R → S is a

homomorphism of commutative K-algebras then S ⊗R Y ⊆ S ⊗R Y ′ if and only if
φ(ψ(Y ′+y)) = 0 for all y ∈ Y and ψ : (R⊗KV )/Y ′ → R. Thus S⊗RY = S⊗RY ′ if
and only if φ(I) = 0 where I is the ideal ofR generated by the elements ψ(Y ′+y) and
ψ′(Y + y′) with y ∈ Y , y′ ∈ Y ′, ψ : (R⊗K V )/Y ′ → R and ψ′ : (R⊗K V )/Y → R.
This implies that G is separated.

(3) Let θ : R ⊗K V → Rm be a homomorphism and write Id for the ideal in R
generated by all d × d minors of θ (after choosing a basis of V ). If φ : R→ S is a
homomorphism of commutative K-algebras then S ⊗R Im(θ) is a summand of Sm

of rank r if and only if S ⊗R Coker(θ) has rank m − r. By the theory of Fitting
ideals (see for example [E, §20.2], but this only deals with noetherian rings) this
holds if and only if Sφ(Ir) = S and φ(Ir−1) = 0. The claim follows.

(4) κ−1(UQ)(R) = {θ ∈ Hom(V,m)r(R) | Ker(θ) ⊕ (R ⊗K Q) = R ⊗K V }
and the map to Hom(Q,m)r(R) × Gr(V, r)(R) sending θ to (θ|R⊗Q,Ker θ) is a
bijection. Thus κ−1(UQ)→ UQ is a trivial bundle with fibre Hom(Q,m)r.

Lemma 4.2. RepA(β) and RepHomA(X,β) are affine algebraic schemes.

Proof. For RepA(β) this is fairly standard, see for example [P, Chapter 4]. To
study RepHomA(X,β), write X as a quotient of Ak, for then RepHomA(X,β) is
a closed subfunctor of RepHomA(Ak, β). Now a homomorphism from R⊗KAk to
an R⊗KA-module M is given by a k-tuple of elements of M , so RepHomA(Ak, β)
is isomorphic to the product of RepA(β) with k×

∑
i β(i)-dimensional affine space.

Thus it is an affine algebraic scheme.

Lemma 4.3. GrA(X,α), HomA(X,β)α and RepHomA(X,β)α are separated al-
gebraic schemes and the natural transformation HomA(X,β)α → GrA(X,α) is a
locally trivial bundle with fibre

∏
iHom(Kα(i), β(i))α(i).

Proof. RepHomA(X,β)α is a locally closed subscheme of RepHomA(X,β), so it
is separated and algebraic.

Let R be a commutative K-algebra and let Yi ∈ Gr(Xi, α(i))(R). Write Y =⊕
i Yi. If φ : R→ S is a homomorphism of commutative K-algebras, then S ⊗R Y

is an S ⊗K A-submodule of S ⊗K X if and only if φ(ψ(Y + ay)) = 0 for all y ∈ Y ,
all a ∈ A, and all ψ : (R ⊗K X)/Y → R. This implies that GrA(X,α) is a closed
subscheme of

∏
iGr(Xi, α(i)).

Now HomA(X,β)α is the pullback of GrA(X,α) along∏
i

Hom(Xi, β(i))α(i) −→
∏
i

Gr(Xi, α(i)),
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so it is a closed subscheme of the product
∏
i Hom(Xi, β(i))α(i) and also the natural

transformation HomA(X,β)α → GrA(X,α) is a locally trivial bundle with fibre∏
iHom(Kα(i), β(i))α(i).

Now we have RepHomA(X,α)α ∼= HomA(X,α)α since if θi : R⊗KXi → Rα(i)

are surjective maps and
⊕

i Ker θi is an R⊗K A-submodule of R⊗K X , then there

is a unique R ⊗K A-module structure on
⊕

iR
α(i) such that (θi) is an R ⊗K A-

module homomorphism R⊗K X →
⊕

iR
α(i). Thus HomA(X,α)α is algebraic, so

the bundle HomA(X,α)α → GrA(X,α) implies that GrA(X,α) is algebraic. Now
for general β the bundle HomA(X,β)α → GrA(X,α) implies that HomA(X,β)α
is algebraic.
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[B] N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1961–83.
[DG] M. Demazure and P. Gabriel, Groupes Algébriques, Tome 1, Masson, Paris, 1970. MR
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