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ABSTRACT. The Bryant-Ferry-Mio-Weinberger surgery exact sequence for com-
pact AN R homology manifolds of dimension > 6 is used to obtain transversal-
ity, splitting and bordism results for homology manifolds, generalizing previous
work of Johnston.

First, we establish homology manifold transversality for submanifolds of
dimension > 7: if f : M — P is a map from an m-dimensional homology
manifold M to a space P, and @ C P is a subspace with a topological g-block
bundle neighborhood, and m—gq > 7, then f is homology manifold s-cobordant
to a map which is transverse to Q, with f~1(Q) C M an (m — q)-dimensional
homology submanifold.

Second, we obtain a codimension g splitting obstruction s (f) € LSm—q(®)
in the Wall LS-group for a simple homotopy equivalence f : M — P from an
m-dimensional homology manifold M to an m-dimensional Poincaré space P
with a codimension ¢ Poincaré subspace Q@ C P with a topological normal
bundle, such that sg(f) = 0 if (and for m — ¢ > 7 only if) f splits at Q up to
homology manifold s-cobordism.

Third, we obtain the multiplicative structure of the homology manifold
bordism groups Qff == QTOP[Lq(Z)].
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INTRODUCTION

Homology manifolds are spaces with the local homology properties of topological
manifolds, but not necessarily their geometric properties such as transversality.
The results of Johnston [E] on the bordism and transversality properties of high-
dimensional homology manifolds are extended here using the methods of surgery
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theory. The extent to which transversality holds in a homology manifold is a
measure of how close it is to being a topological manifold. It is not possible to
investigate transversality in homology manifolds by direct geometric methods — as
in @ we employ bordism and surgery instead.

We start with a brief recollection of transversality for differentiable manifolds.
Suppose that P™ is an n-dimensional differentiable manifold and Q"¢ C P™ is a
codimension g submanifold with a g-plane normal bundle

vQcp Q— BO((]) .

A smooth map f: M — P from an m-dimensional differentiable manifold M™ is
transverse to ) C P if the inverse image of () is a codimension ¢ submanifold

Nt = Q) C M
with normal g-plane bundle the pullback of vgcp along g = f|: N — Q
vNem = §vgep : N — BO(q) .

The classical result of Thom is that every map f: M™ — P™ is homotopic (by a
small homotopy) to a smooth map which is transverse to @@ C P. This result was
proved by direct analytic methods.

Topological manifolds also have transversality, but the proof is very indirect,
relying heavily on surgery theory — see Kirby and Siebenmann [§] (II1,§1), Marin
[0 and Quinn [[[J]. Instead of vector bundles it is necessary to work with normal
microbundles, although we shall use the formulation in terms of the topological
block bundles of Rourke and Sanderson [[[7.

The essential aspect of transversality is that a submanifold has a nice normal
(vector or block) bundle, as formalized in the following definition.

Definition A codimension q bundle subspace (Q, R,€) (¢ > 1) of a space P is a
subspace @@ C P together with a topological ¢-block bundle

(D7, 8771) — (E(€),5(6) — Q
such that
P = E(f) Us(e) R

where R = P\E(§). When R and ¢ are clear we say that @ is a codimension ¢
bundle subspace of P.

Topological g-block bundles over a space ) are classified by the homotopy classes
of maps from @ to a classifying space Bfa?’(q), so we write such a bundle € as a
map
E:Q— be?’(q) .
If P is an n-dimensional topological manifold and Q C P is a triangulable locally

flat codimension ¢ submanifold with n — ¢ > 5 or ¢ < 2 then @ is a codimension ¢
bundle subspace of P with

§ = vgcp Q — BTOP(q)

a normal topological g-block bundle, by Theorem 4.9 of Rourke and Sanderson
7. (Hughes, Taylor and Williams [f] obtained a topological regular neighborhood
theorem for arbitrary locally flat submanifolds in a manifold of dimension > 5,
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in which the neighborhood is the mapping cylinder of a manifold approximate
fibration).

In the applications of codimension ¢ bundle subspaces (@, R,§) C P we shall
only be concerned with the case when P is a finite CW complex and @, R C P are
subcomplexes.

Definition (Submanifold transversality)

Let P be a space with a codimension ¢ bundle subspace (Q, R, §).

(i) Amap f: M — P from an m-dimensional manifold M is transverse to QQ C P
if the inverse image of @

N = Q) C M

is a locally flat codimension ¢ submanifold with the pullback normal bundle.
(ii) A map f: M — P is s-transverse to @) C P if it is s-cobordant to a transverse
map.

Of course, the submanifolds of the manifold M and bundles in the above defi-
nitions are understood to be in the same category as M itself. For simplicity, we
shall only be considering compact oriented manifolds.

An m-dimensional homology manifold M is a finite-dimensional AN R such that
for each x € M
Z ifr=m
H,(M,M\{z}) = {0 |
ifr#£m.

We shall say that an m-dimensional homology manifold M has codimension ¢
s-transversality if every map f : M — P is s-transverse to every codimension
g bundle subspace @ C P. (It is unknown if the analogue of the topological s-
cobordism theorem holds for homology manifolds).

An m-dimensional homology manifold M is resolvable if there exists a CE map
h : Mprop — M from an m-dimensional topological manifold Mrop. (Roughly
speaking, a C'E map is a map with contractible point inverses). Resolvable homol-
ogy manifolds have codimension ¢ s-transversality for all ¢ > 1 : if f: M — P is
a map from a resolvable m-dimensional homology manifold and @ C P is a codi-
mension g bundle subspace, then the mapping cylinder of h is a homology manifold
s-cobordism

(9 f, frop) « (W; M, Mrop) — P

from f to a map frop : Mrop — P which can be made (topologically) transverse
to @ C P.

Quinn [ used controlled surgery to prove that for m > 6 an m-dimensional
homology manifold M with codimension m s-transversality is resolvable. The res-
olution obstruction of Quinn [[L2]

i(M) € Hy(M; Lo(Z))

is such that i(M) = 0 if (and for m > 6 only if) M is resolvable; for connected
M the obstruction takes values in H,,(M; Lo(Z)) = Z. The invariant i(M) is the
obstruction to a degree 1 map f : M™ — S™ being s-transverse to some point
x € S™. Bryant, Ferry, Mio and Weinberger [EI] constructed exotic homology man-
ifolds M™ in dimensions m > 6 which are not resolvable, and initiated the surgery
classification theory for high-dimensional homology manifolds up to s-cobordism.
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In Chapter 1 we shall modify the construction of ] to obtain a connected homol-
ogy manifold M = N; with prescribed resolution obstruction I € Ly(Z), starting
with any connected m-dimensional topological manifold N (m > 6). This homol-
ogy manifold is not homotopy equivalent to N, but it is in a prescribed homology
manifold normal bordism class of N.

The first named author used the theory of [Eﬂ to prove that m-dimensional ho-
mology manifolds have codimension ¢ s-transversality and splitting in the following
cases.

Theorem (Homology manifold -7 s-transversality, Johnston [f])

Let f: M — P be a map from an m-dimensional homology manifold M to a space
P with a codimension q bundle subspace (Q, R, &), with m — q > 6.

(i) If ¢ = 1, € is trivial, and R = Ry U Ry is disconnected with m1(Q) = m1(Ry),
then f is s-transverse to QQ C P.

(ii) If ¢ > 3 then f is s-transverse to Q C P.

Definition (i) A codimension q Poincaré bundle subspace (Q, R, £) of an m-dimen-
sional Poincaré space P is a codimension ¢ bundle subspace such that @ is an
(m — ¢)-dimensional Poincaré space and (R, S(§)) is an m-dimensional Poincaré
pair, where S(£) is the total space of the S?~!-bundle of ¢ over P.

(ii) Let P,Q, R, ¢ be as in (i). A simple homotopy equivalence f : M — P from
an m-dimensional homology manifold M splits at Q C P if f is s-cobordant to a
simple homotopy equivalence (also denoted by f) which is transverse to @ C P
and such that the restrictions f| : f~4(Q) — @, f| : f~1(R) — R are also simple
homotopy equivalences.

Theorem (Homology manifold splitting, Johnston [f])

Let f : M — P be a simple homotopy equivalence from an m-dimensional homology
manifold M to an m-dimensional Poincaré space P with a codimension q Poincaré
bundle subspace (Q, R, &), with m —q > 6.

(i) (Codimension 1 m-m splitting) If ¢ = 1, £ is trivial, and R = Ry U Ry is
disconnected with m1(Q) = m1(R1), then f splits at Q C P.

(ii) (Browder splitting) If ¢ > 3 then f splits at Q C P if and only if the restriction
g=f|: Q) — Q has surgery obstruction o.(g) =0 € Ly,—q(Z[m1(Q)]).

In Chapters 2,3,4 we shall use the theory of [m] to obtain even stronger results
on homology manifold transversality and codimension ¢ splitting. The results of
this paper require a slightly higher dimension hypothesis m — g > 7. The extra
dimension is needed to apply codimension 1 7-7 splitting, (i) above, to a homology
manifold of dimension m — q. Thus we require m —qg—1>6 orm —q > 7.

Wall [[I§] (Chapter 11) obtained a codimension ¢ splitting obstruction so(f) €
LS,,—¢(®) for a simple homotopy equivalence f : M — P from an m-dimensional
topological manifold M to an m-dimensional Poincaré space P with a codimension
g > 1 Poincaré bundle subspace (Q, R, ), such that sq(f) = 0if (and form—qg > 5
only if) f splits at @ C P. Our first main result obtains the analogous obstruction
for the codimension ¢ splitting of homology manifolds. (The full statement will be
given in Theorem B.9.)

Theorem 0.1. A simple homotopy equivalence f : M — P = E(§)Ug ) R from an
m-dimensional homology manifold M to an m-dimensional Poincaré space P with
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a codimension q Poincaré bundle subspace (@, R, &) has a codimension q splitting
obstruction

5Q(f) € LSm—q(®)
such that sq(f) =0 if (and for m —q > 7 only if ) f splits at Q C P.

Our second main result establishes homology manifold s-transversality in the
case m — q > 7, generalizing the homology manifold -7 s-transversality theorem
of [H] This result appears as Theorem @ below.

Theorem 0.2. Let f: M — P = E(§) Uge) R be a map from an m-dimensional
homology manifold M to a space P with a codimension q bundle subspace (Q, R,§).
If m —q > 7 then f is s-transverse to QQ C P.

In Chapters 5,6 we consider s-transversality for a map f : M — P from a
homology manifold M to the polyhedron P = |K]| of a (finite) simplicial complex
K. Instead of seeking s-transversality to just one codimension ¢ bundle subspace
Q@ C P we consider s-transversality to all the dual cells |[D(0, K)| C P (0 € K) at
once, following the work of Cohen [H] on PL manifold transversality.

The dual cells of a simplicial complex K are the subcomplexes of K’
D(0,K) = {0001...0p e K'|c<o0o9p<01<---<o,} (c €EK).
The boundary of a dual cell is the subcomplex
0D(0,K) = U,», D(1,K)

= {0p01..0p e K'|lc<o9p<01<---<0,} CD(0,K) .

Definition (Dual transversality)
(i) Amap f: M — |K| from an m-dimensional manifold M (in some manifold
category) is dual transverse if the inverse images of the dual cells are codimension
|o| submanifolds
M(o)y™ 1l = f~(D(0, K)) € M™
with boundary
OM(o) = f 1 (0D(0,K)) = | M(r).
T>0
(ii) An m-dimensional manifold M has dual s-transversality if every map f: M —
| K| is s-cobordant to a dual transverse map.

Dual transversality implies submanifold transversality : if
f i M™ =P = |K| = E()Us¢) R

is dual transverse then f is transverse to every polyhedral codimension ¢ bundle
subspace ) C P. PL manifolds and PL homology manifolds M have dual transver-
sality, with every simplicial map f : M — K’ dual transverse — in this case each
inverse image f~}(D(0,K)) C M (0 € K) is automatically a PL submanifold of
codimension || (Cohen [f), so there is no need to use s-cobordisms. Topological
manifolds M have dual transversality by the work of Kirby-Siebenmann [§ and
Quinn [E], with every map f: M — |K| homotopic to a dual transverse map.

The s-transversality result of Theorem @ can be applied inductively to obtain
dual s-transversality for a map f : M™ — |K]| in the case when the inverse images
fY(D(0,K)) (¢ € K) are required to be homology manifolds of dimensions m —
o] > 7.
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Corollary 0.3. If f : M — |K| is a map from an m-dimensional homology mani-
fold M to the polyhedron of a k-dimensional simplicial complex K with m —k > 7
then f is dual s-transverse.

On the other hand, if m—k < 7, dual transversality may be obstructed. Consider
for example the case of f : M — | K| for m = k, with M connected. In this case the
resolution obstruction is easily shown to be an obstruction to dual transversality. If
f: M — |K| is dual transverse, then for some m-simplex ™ € K and a sequence
of faces 0 < ol < -+ < 0™ the inverse images M (c7)™ 7 = f~Y(D(07, K)) are
non-empty codimension j homology submanifolds of M with

M@ coMe™ Y cMe™ )Y c---c Me)™c M.
Quinn ([[id), 1.1) proved that the resolution obstruction i(X) is such that :

(i) i(U) = i(X) for any open subset U C X of a homology manifold X,
(ii) 4(X) = i(0X) for any connected homology manifold X with non-empty
boundary 0.X.

It follows that
i(M(am)O) = i(M(amfl)l) = ... = i(M(o'O)m) = (M) .

Now M(0™) is a 0-dimensional homology manifold, which is a (finite) union of
points, so that (M) = i(M(c™)) = 0 and M is resolvable. In Chapter 6 we use
the algebraic topology of homology manifold bordism to prove a strong general-
ization of this result. Although the resolution obstruction continues to play a key
role, the general form of the dual transversality obstruction is more complicated
algebraically.

For any space X let Q(X) be the bordism group of maps M — X from m-
dimensional homology manifolds. An m-dimensional topological manifold is an
m-dimensional homology manifold, so there are evident forgetful maps

QIor(x) - o (x) .

For any simplicial complex K, let Q2N (K) be the bordism group of dual trans-
verse maps M — |K| from m-dimensional homology manifolds. Forgetting dual
transversality gives maps

AR N R S QH(K) .

The extent to which dual transversality holds for homology manifolds up to bordism
is measured by the extent to which the maps A¥ are isomorphisms.

Our third main result relates the obstruction to homology manifold dual s-
transversality to the resolution obstruction, and identifies the fibre of A¥ with
a generalized homology theory. The full statement will be given in Theorem @,
including the following result :

Theorem 0.4. For m > 6 the K-transverse homology manifold bordism groups
QEMNK) are related to the homology manifold bordism groups QH(K) by an exact
sequence

= QN ) - QI(K) — Ho (K La) — Q0 (K) —
with Lo a spectrum such that wo(Le) = Z[Lo(Z)\{0}] and 7 (Le) =0 for m > 6.
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Ferry and Pedersen [[f] showed that the Spivak normal fibration vy of an m-
dimensional homology manifold M admits a canonical TOP reduction vy, so that
there is a canonical bordism class of normal maps Mprop — M from topological
manifolds. The surgery obstruction o.(Mrop — M) € Ly (Z[r1(M)]) is deter-
mined by the resolution obstruction i(M) € Hp,(M; Lo(Z)).

For any abelian group A let A[L¢(Z)] be the abelian group of finite linear com-

binations
> ali) (a; € A)
1€Lo(Z)
that is the direct sum of L (Z) copies of A

AlLy(Z)] = Z[Lo(Z) @z A = D A.
Lo(Z)

Theorem (The additive structure of homology manifold bordism, Johnston [f])
For any simplicial complex K the map of bordism groups

Q(K) = Q.07 (K)[Lo(2)] 5 (M, f) = (Mrop, frop)[i(M)]

is an isomorphism for m > 6, with
f
frop : Mrop — M = |K]| .

In Chapter 7 we shall analyze the multiplicative structure on QZOF (K)[Lo(Z)]
which corresponds to the cartesian product of homology manifolds under the iso-
morphism QX (K) = QTOP(K)[Lo(Z)].

We should like to thank the referee and Bruce Hughes for helpful comments on
the manuscript.

1. HOMOLOGY MANIFOLD SURGERY AND BORDISM
We review and extend the surgery theory of AN R homology manifolds.

An (oriented) simple m-dimensional Poincaré space X is a compact AN R with
a fundamental class [X] € Hp,(X) such that the chain map

[X]N— : C(X)™* = Homg, (x)(C(X), Z[m(X))™ " — C(X)

is a simple Z[71(X)]-module chain equivalence inducing isomorphisms

(X]N— : H"*(X) = H,(X),
with X the universal cover of X and H*(X) = H_,(C(X)™*). (A compact ANR
has a preferred simple homotopy type by the work of Chapman [B]) In particular,
an m-dimensional homology manifold is an m-dimensional Poincaré space.

The manifold structure set S(X) of a simple m-dimensional Poincaré space X is
the set of equivalence classes of pairs (M, h) with M an m-dimensional topological
manifold and h : M — X a simple homotopy equivalence, with (M7, hy) =~ (Ma, hs)
if there exists an s-cobordism (W; M7, M3) with a simple homotopy equivalence of
the type

(g5 ha,he) = (W5 My, Ma) — X x ([0,1]; {0}, {1}) .
The normal invariant set T (X) is the bordism set of degree 1 normal maps (f,b) :
M — X from topological manifolds, with b : v); — vx a bundle map from the
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normal bundle of M to a TOP reduction of the Spivak normal fibration of X. For
m > 5 the Browder-Novikov-Sullivan-Wall surgery theory for topological manifolds
gives the surgery exact sequence

0 0
o L (2 (X)) S S(X) B T(X) S L (2 (X))
(Wall [[L§], Chapter 10). In general, it is possible for 7(X) and S(X) to be empty:
the theory involves a primary topological K-theory obstruction for deciding if 7 (X)
is non-empty and a secondary algebraic L-theory obstruction for deciding if S(X)
is non-empty. More precisely, 7 (X) is non-empty if and only if the Spivak normal
fibration vx : X — BG(k) (k large) admits a TOP reduction vx : X — BTOP(k),
corresponding by the Browder-Novikov transversality construction on a degree 1
map p: S — T(Ux) to a normal map
(fb) = ol M = p'(X) = X

from a topological manifold. A choice of vx determines a bijection

T(X) = [X,G/TOP].
The algebraic surgery exact sequence of Ranicki [@

oo = L1 (Z[11(X)]) = St (X) — Hpn(X3La) 2 L (Z[r1(X)]) — ...
is defined for any space X, with A the assembly map on the generalized homology
group of the 1-connective quadratic L-theory spectrum Lo = Lo(1)(Z) of Z, with
Oth space

Ly ~ G/TOP

and homotopy groups the simply-connected surgery obstruction groups
Z ifm=0 (mod 4)
0 ifm=1 (mod4)
Zo ifm =2 (mod 4)
0 ifm=3(mod4).

Tm(Le) = Lim(Z) =

The total surgery obstruction s(X) € S, (X) of a simple m-dimensional geomet-
ric Poincaré complex is such that s(X) = 0 if (and for m > 5 only if) X is simple
homotopy equivalent to an m-dimensional topological manifold. The surgery exact
sequence of an m-dimensional topological manifold M is isomorphic to the corre-
sponding portion of the algebraic surgery exact sequence, with

SM) = Sm(M), T(M) = [M,G/TOP] = Hpu(M;Le) .
The surgery theory of topological manifolds was extended to homology manifolds

in Quinn [,[@] and Bryant, Ferry, Mio and Weinberger [, using the 4-periodic
algebraic surgery exact sequence of Ranicki [[[§] (Chapter 25)

= Lt (2 (X)]) = S (X) = Ho(XGLa) 2 Lo (Z[m (X)) — ... .

This sequence is defined for any space X, with A the assembly map on the gen-
eralized homology group of the 0-connective quadratic L-theory spectrum Lo =
L.(0)(Z) of Z, with Oth space

Lo ~ G/TOP x Ly(Z) .

The 4-periodic total surgery obstruction 5(X) € S, ) of a simple m-dimensional
geometric Poincaré complex X is such that 5(X) = 0 if (and for m > 6 only if)
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X is simple homotopy equivalent to an m-dimensional homology manifold, by [m]
The homology manifold structure set SH(X) of a simple m-dimensional Poincaré
space X is defined in the same way as S(X) but using homology manifolds. The
surgery exact sequence of an m-dimensional homology manifold M is isomorphic to
the corresponding portion of the 4-periodic algebraic surgery exact sequence, with

SHE(M) = S (M) .

The essential difference between surgery on homology manifolds and topological
manifolds is that there is no Browder-Novikov transversality allowing the construc-
tion of normal maps from homology manifolds. Thus, the surgery exact sequence of
[ does not follow Wall [[[§ in relating homology manifold structures and normal
invariants. Rather, the homology manifold surgery exact sequence of [El] follows the
stratified surgery exact sequence of Weinberger [@ in that it relates two purely
algebraically defined groups with the geometrically defined structure set. Despite
the fact that [Eﬂ does not define homology manifold normal invariants, one can
define homology manifold normal invariants, 7 (X) similar to normal invariants of
topological manifolds.

The homology normal invariant set TH (X) is the bordism set of degree 1 normal
maps (f,b) : M — X from connected homology manifolds, with b : 7y — Ux a
map from the canonical TOP reduction ([ff]) of the Spivak normal fibration of M
to a TOP reduction of the Spivak normal fibration of X. It is still the case that
TH(X) is non-empty if and only if vx is TOP reducible, but now it is necessary
to also keep track of the resolution obstruction, and the homology manifolds have
to be constructed using controlled topology. The following theorem allows us to
use the geometric interpretation 7 (X) in the homology manifold surgery exact
sequence of [fl].

Theorem 1.1. (Johnston [f])

Let m > 6. For a connected simple m-dimensional Poincaré space X the function
TH(X) = T(X) x Lo(Z) 5
((f,0): M — X) = ((frop,brop) : Mrop — M =" X,i(M))

is a natural bijection, with Mrop — M the topological degree 1 normal map deter-
mined by the canonical TOP reduction. A choice of vx determines a bijection

TH(X) = [X,G/TOP x Ly(Z)] .

(f:b)
—

Actually [fl] (5.2) is for m > 7, but we can improve to m > 6 by a slight variation
of the proof as described below.

Given the above theorem, the homology manifold surgery exact sequence of [@
c = L1 (Z[m (X)) & SH(X) 5 [X,G/TOP x Lo(Z)] % L (Z[m (X))
becomes:
Theorem 1.2. (Bryant, Mio, Ferry and Weinberger [fl])
The homology manifold structure set SH(X) fits into the evact sequence
7]
o Ly (I (X)]) 2 S7(X) 2 TH(X) % L (2l (X))

In particular, ST (X) is non-empty if and only if there exists a degree 1 normal
map (f,b) : M — X from a homology manifold M with surgery obstruction 0 €
Lin (Z[m1 (X))
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If M is an m-dimensional homology manifold the canonical bordism class of
topological normal maps Mrop — M determined by the canonical TO P reduction
var ([H]) of the Spivak normal fibration has surgery obstruction

U*(MTOP — M) = Z(—Z(M)) S Lm(Z[Tfl(M)])

the image (up to sign) of the resolution obstruction i(M) € H,,(M; Ly(Z)) under
the composite

Ho(M;; Lo(Z)) € H(M;Ta) 2 Lo (Z[mi (M) .

Remark 1.3. The algebraic surgery exact sequence has a geometric interpreta-
tion: the map 7 : S¥(X) — TH(X) is given by the forgetful map and the map
O ¢ Lit1(Z[m1(X)]) — SH(X) is given by “Wall Realization”, i.e. the homology
manifold analogue of the constructions of Chapters 5 and 6 of [B] realizing the
elements of the L-groups as the surgery obstructions of normal maps obtained by
non-simply connected plumbing.

To see that 7 is the forgetful map take f : ¥ — X and compare n(f) with
(f : Y - X) € TH(X). By [L.] above we may consider instead their images in
T(X) x Lo(Z). By definition of the canonical 0O P-reduction of the Spivak normal
fibration vy (Ferry and Pedersen [[l]), n(f) is given by fo frop : Yrop — Y —
X, I(Y), i.e. it agrees with the image of f : Y — X.

“Wall Realization” does not (yet) have an obvious geometric interpretation for
homology manifolds. There are no homology manifold “handles” with nice attach-
ing maps. Nevertheless, one can obtain the following theorem.

Theorem 1.4. (Johnston [f])

Let m > 6. For an m-dimensional Poincaré space P with a specified homotopy
equivalence h : X — P, with X a homology manifold, and for any element o €
L1 (Z[m1(P))), the image 8(c) € SE(P) under the map O : Lyyy1(Z[m1(P)]) —
SH (P) in the surgery exact sequence of [ has a representative g 1 Y — P such that
there exists a homology manifold bordism r : W — P x [0, 1] with r|0OW = g1I h.

This theorem follows from [L.1] and the surgery exact sequence of [[] for S (P x
[0, 1], P x {0, 1}) relative to the given structures (g, h) € S¥(P x {0,1}).

Theorem E is a corollary of the construction below. This construction is almost
identical to that in [ff], except that we have removed the use of codimension 1 -7
splitting to gain an extra dimension m > 6. Nonetheless, we describe the proof in
detail here, because we shall need to refer to the details later as we prove a transverse
variation. A transverse variation of Theorem [L.1 follows from a transverse variation

of [L3.

Proposition 1.5. Let m > 6. Given a connected m-dimensional topological man-
ifold N and an element I € Lo(Z) there exists a degree 1 normal map (fr,br) :
N; — N from a connected homology manifold N1 such that :

(i) The resolution obstruction of Ny in Lo(Z) is
i(Ny) = ITe€Lo(Z).
(ii) The composite

o p,b b
(N[)TOP (frop,brop) N, (fr,br) N
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is normally bordant to the identity map.
(iii) If M is a connected m-dimensional homology manifold with resolution ob-
struction i(M) = I € Lo(Z), then the composite

b o p,b
(MTOP)[ (fr,b1) Mrop (frop,brop) M

is normally bordant to the identity map M — M.

Proof of Theorem [l.1; Denote the given function by ® : 7H(X) — T(X) x
Ly(Z). Define a function

VT (X) x Lo(Z) — TH(X) ;
(f,b): N = X,I) = (f1,b1) : N — N L2 x)

where (f7,br) : N; — N is the result of applying proposition E to the pair N, 1.
The composition ® o ¥ is the identity by E (ii), and the composition ¥ o ® is

the identity by [L] (iii). O

Proof of Proposition @:

The construction of (f;,b;): Ny — N.

The construction of Ny is a variation on a construction found in [fi] (Section 7)
which is in turn a variation on the main construction of that paper. In [Jlfj (Section
7) the construction is performed on a torus, resulting in a homology manifold not
homotopy equivalent to any manifold. We perform the construction on an arbitrary

topological manifold with (i), (ii) and (iii) above as the result.

Let o denote the element of H,,(N;L,) which corresponds to the canonical TOP
reduction of the Spivak normal fibration of N, with the desired index I. Given a
sequence 7 > 0 so that limg_,.o nx = 0.

Step I: Construct a Poincaré space Xy with a map pg : Xg — IV so that

(i) Xo is no-Poincaré over N.

(ii) po is UV
(iii) po has controlled surgery obstruction o € H,,(N;L,).

Slice N open along the boundary of a manifold two skeleton, D. So N = BUpC.
We first apply Lemma 4.4 from [ﬂ] This will allow us to perform a small homotopy
onidy : N — N to get a new map qg : N — N which restricts to a UV' map on
B, C and D. Because qg|p is a UV! map, the controlled surgery obstruction group

of D x [0, 1] “25 N is

Dx[0,1] —
LC< ]{[ ) >~ H,(N;L,) = Hy,(N;Ley) ® Hpn(N; Lo(Z)) .

Now by Wall realization we construct a normal invariant ¢ : K — D x [0, 1]
with controlled surgery obstruction o, which is given by a controlled homotopy
equivalence k : D’ — D on one end and by the identity on the other.

Gluing B and C back onto K by the identity and by k respectively results in Xg
a Poincaré complex. We define a map pg : Xg — N by po|suc = id and polx = 0.
By applying [[]] (4.4) we may assume po is UV, By taking sufficiently fine control
we may assume that Xg is an 7;-Poincaré space over N.

The Poincaré space Xy has 4-periodic total surgery obstruction
5(Xo) = 0€Sn(Xo) ,
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NO N
K | K|C g0 po
L[ P=-CEpD =

FIGURE 1. The construction of the spaces Ny and Xy and the

maps gg and pg.
No Xo
f
R CEIPE D

FIGURE 2. By construction one can surger the composition of
maps X} EL No % X, to a homotopy equivalence py : X1 — Xo.

X'l

so that Xy is homotopy equivalent to the desired homology manifold N; as given
by [l] (6.1). In this variation of the main construction of [fl] the next steps use the
Poincaré space Xy and the degree 1 normal map gg : Ny — Xg representing the
controlled surgery obstruction —o as described below.

Below is a brief summary of the rest of the construction in this case. It is
a limiting process in which the cut and paste type construction from Step I is
performed on finer and finer manifold two skeleta of manifolds Nj.

Step II: Construct a Poincaré space X; and a map p; : X7 — Xy so that
(i) The map p; is UV
(ii) X is an n;-Poincaré space over Xj.
(iii) The map p; : X7 — X is an €;-homotopy equivalence over N.
(iv) For Wy a regular neighborhood of X, there exists an embedding X; — Wy
and a retraction r; : Wy — X5 so that d(rg,r1) < €1.

Let Ny be given by BUp K Up, —K Up C. Define a map
go : No— Xo = BUDKUDDX[O,l]UDC

by the identity on B, K and C and by —o on —K. By [[i] (4.4) we may assume that
go is UV, Let Ny = By Up, C1 be a decomposition of Ny by a finer manifold two
skeleton than that of N. Let g9 denote the map homotopic to gg which restricts to
amap UV! on B, C; and D;.

Since the map pg is UV it induces an isomorphism
(pO)* : Hm(Xo,E.) = Hm(N,Eo) .

Let 01 : K1 — D; x [0, 1] denote a Wall realization of the element of H,,(Xo;Ls)
which corresponds to . Define X|; = B; U K7 U C; with a map f; : X| — Ny
defined as for py consider the composition of maps X; — Ny — X and notice
that it has vanishing surgery obstruction and can therefore be surgered to a small
homotopy equivalence over N. (This type of surgery on a Poincaré space is in the
tradition of Lowell Jones [f.) Denote the result of this surgery by p1 : X — Xj.
We may assume that p; is UV,
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Ni Xi

FIGURE 3. By construction one can surger the composition of

maps X/ Tt N; % X, toa homotopy equivalence p; 1 : X;41 —
X;.

By choosing a sufficiently well-controlled surgery obstruction, we may assume
that X; is n1-Poincaré over Xy. By choosing 7o sufficiently small we may verify
conditions (iii) and (iv).

Step III: Construct a Poincaré space X;;; and a map p;+1 : X;41 — X; so that

(i) piy1 is UV,

(ii) X1 is n-Poincaré over X;,
(iii) pi41 s an ¢; equivalence over X;_1,
(iv) there is an embedding X,;11 — W; C Wy and a retraction r; : Wy — X;41 so
that d(’l"l', Tl'+1) < €;.

Let ¢g; : N; — X, be a degree 1 normal map with surgery obstruction —o €
H,(Xi—1;La) = H,,(N;L,). By [[l] (4.4) we may assume that f; is UV Let
N; = B; Up, C; be a decomposition of N; by a finer manifold two skeleton than
that of V;_;. Let ¢; denote the map homotopic to g; which restricts to a map UV'!
on Bi, Cl and Dl

Since the map p; is UV it induces an isomorphism
Hm(Xi;Eo) = Hm(Xifl;Eo) = Hm(N;Eo> .

Let 0; : N; — D; x [0,1] denote a Wall realization of the element of H,,(X;; L)
which corresponds to . Define X/ | = B; U K; UC; with a map fiy1: Xj | — N;
defined as for po consider the composition of maps Xj, ; — N; — X; and notice
that it has vanishing surgery obstruction and can therefore be surgered to a small
homotopy equivalence over X;_;. Denote the result of this surgery by p;+1 : Xi11 —
X;. We may assume that p; 1 is UV,

By choosing a sufficiently well-controlled surgery obstruction, we may assume
that X411 is n;41-Poincaré over X;. By choosing 7;_1 sufficiently small we may
verify conditions (iii) and (iv).

Step IV: Let N; = N7, W;. This is the desired homology manifold and let the
map N; — N be defined by Ny eIy Xo B2 N.

Ny is an ANR, because the limit of the retractions r; defines a retraction r :
Wy — Np. To see that Ny is a homology manifold, we first use condition (iv)
to improve the retractions ;. Then this together with the fact that each X; is
an 1;-Poincaré space over X;_; can be used to show that there is a retraction
p: Wy — Ny so that p| : 9Wy — Nj is an approximate fibration, which shows that
N7 is a homology manifold.

This concludes the construction of (fr,b;) : Ny — N. It remains to show that
the construction has produced the desired result.
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Proof of (i): Consider the controlled surgery obstruction of Ny — X — Ny
controlled over N by the identity map N; — Nj. Since the map p : X — Ny
can be assumed to be UV this is the same as the controlled surgery obstruction
of g : N, — X where Xj has control map p : X — Ny. By the argument given
in ] the control maps p : Xy — Ny and

p P
Xk —k>Xk71—>NI

are homotopic by a small homotopy. Thus the controlled surgery obstruction of g
with one control map p is the same as that with control map py, but by construction
this surgery obstruction was —o, i.e. the resolution obstruction of Ny is I. (]

Proof of (ii): Let frop : (N;)rop — N; denote the degree 1 normal map induced
by the TOP reduction of N; given by the map

Ny &N BTOP .
By construction this map is normally bordant to idy : N — N. O

Proof of (iii): The proofis the same as injectivity of ® in Theorem 5.2 of @, except
that we now restrict our attention to showing that the composition (frop)rofrop :
(Mrop)r — Mrop — M is homology manifold normal bordant to the identity map
idpy : M — M. Since any map f; : Ny — N is an isomorphism on fundamental
groups, we can avoid Lemma 5.4 of [E] and its requirement that m > 7. The
map f7 is an isomorphism on fundamental groups, because it splits as a homotopy
equivalence h : Ny — X, and the original map py : Xg — N. The fact that pg
is an isomorphism on fundamental groups follows from the fact that the normal
invariant o : K — D x [0, 1] is a Wall realization and therefore an isomorphism on
fundamental groups.

A homology manifold normal bordism between (frop)r o frop : (Mrop)r —
Mrop — M and idp; : M — M is constructed as follows. First, a Poincaré bordism
k : W — M is constructed between the two maps. Then using the fact that we may
assume that (W, (Mrop)r) is a (7, 7) pair we put a homology manifold structure
on W relative to M. See [[f] (5.2) for details. O

For any topological block bundle v : X — Bfa?’(k) define the homology mani-
fold bordism groups QX (X, v) of normal maps (f,b) : M — X from m-dimensional
homology manifolds, with b: vy — v.

Corollary 1.6. For m > 6 the m-dimensional homology manifold bordism groups
of (X,v) are such that

QX v) = QRO7(X,v)[Lo(2)] -
Proof. Use the construction of Proposition E to define inverse isomorphisms

1/) : Qg(XvV)—)QEOP(XvV)[LO(Z)];

((f.b): M — X) — (Mrop — M 2 X)) |
Wl QTOP(X, 1) [Lo(Z)] — QHE (X, ) ;
((g:¢): N — X)[I] — (N; — N 9 x) .
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Thus
QUr(X,v) = QOT(X,0)[Lo(Z)) = Tk (T())[Lo(Z)]
with T'(v) the Thom space. In particular, for any space K and
v = proj. : X = KxBTOP — BTOP
we have
Qu(K) = Q0 (K)[Lo(Z)] = Hum(K; Q"7 ({pt.}))[Lo(Z)] -

If X is an m-dimensional Poincaré space with TOP reducible Spivak normal fibra-
tion then for each TOP reduction v : X — BTOP (k)

Q(X,v) = Tmirn(TW)Lo(Z)] = [X,G)[Lo(Z)] .
For connected X this is another way to see that
TH(X) = TT9P(X) x Ly(Z) = [X,G/TOP] x Lo(Z)
as in Theorem .

2. HOMOLOGY SUBMANIFOLD TRANSVERSALITY UP TO BORDISM

Fix a space P with a codimension ¢ bundle subspace (@, R, &) as in the Intro-
duction.

We now investigate the transversality to @ C P of a map f: M™ — P from an
m-dimensional homology manifold. In the first instance, we show that if m —qg > 7
then f is bordant to a transverse map.

Definition 2.1. The Q-transverse homology manifold bordism group Q21.Q=0(pP)
is the abelian group of bordism classes of maps M™ — P from m-dimensional
homology manifolds which are transverse to Q C P.

There are evident forgetful maps Q2-@="(P) — QH(p).

Theorem 2.2. (i) The Q-transverse homology manifold bordism groups fit into an
exact sequence

= Qi (R) = QueTN(P) — Q1 (Q) = Q1 (R) — ...
with
QH(R) — QHQ-NP) . (M, f: M — R)— (M,M L R — P),
QEeN(P) = Qf_(Q); (M,g: M — P)— (971(Q),g : ¢ 1(Q) = Q) ,
Qn_(@Q) = QF_(R); (N,h: N — Q) (S(h*€), S(h*¢) — S(€) = R) .
(i) Form —q > 6
QEe=N(P) = QI(P) = QLCP(P)[Lo(Z)] .

In particular, the forgetful maps QEC="(P) — QH(P) are isomorphisms, and
every map M™ — P is bordant to a Q-transverse map.
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Proof. (i) This is a formality.
(ii) Define the Q-transverse topological bordism groups QLOPQ=M(P) by analogy
with QZ.@=M(P), for which there is an exact sequence

N ngop(R) - QZlOP,Qth(P) N Qﬁ?{;(@) — QTQIE(R) — ...

m

The forgetful maps QLOPC=N(P) — QTOP(P) are isomorphisms, by topological
transversality. Applying the 5-lemma to the map of exact sequences

Qi (R) QRON(P) ———= (@) — -

F

== QLOP (R)[Lo(Z)] — Q009 (P)[Lo(2)] — Q25 (Q)[Lo(2)] —

we have that the morphisms
QL= N(P) — QIO NP)[Lo(Z)] 5 (M, f: M — P)— (Mrop, frop)[i(M)]
are isomorphisms for m — ¢ > 6, exactly as in the case Q = (). O

We wish to improve this homology manifold transversality result from “up to
bordism” to “up to normal cobordism”, using surgery theory.

We shall need the following variation of E:

Proposition 2.3. Let m — q¢ > 7. Given a connected m-dimensional topological
manifold N, a Q-transverse map g : N — P, and an element I € Lo(Z) there exists
a degree 1 normal map (fr,b;) : N — N from a connected homology manifold N
such that :

(i) The resolution obstruction of Ny in Lo(Z) is
i(Ny) = ITeLo(Z).
(ii) The composite

rop b b
(N[)TOP (frop,brop) N, (fr,br) N

is normally bordant to the identity map by a normal bordism. (By a Q-
transverse normal bordism, since we are in the topological category.)
(iii) If M is a connected m-dimensional homology manifold with resolution ob-
struction i(M) = I € Lo(Z), then the composite
b ToPsb
(MTOP)[ (fr,br) Mrop (frop,brop) M
is normally bordant to the identity map M — M.
(iv) The map (fr,br) is Q-transverse.

Proof. This result follows from the following two lemmas, whose proofs we defer.

Lemma 2.4. Given an m-dimensional topological manifold M form > 7, such that
M is the union of two manifolds along a boundary component, M = My Uy, M_.
We may perfarm the construction of@ so that the result is a homology manifold

= Moy, (M) so that My and (M;); for i = 0,4, — all satisfy the
concluswn of Iﬁ



HOMOLOGY MANIFOLD BORDISM 17

Lemma 2.5. Given an (m — q)-dimensional manifold X for m —q > 7 and a D9-
bundle & over X, whose total space is E(§) we may construct a homology manifold
Er with a map

fr: Er — E(§)
which satisfies the properties of @ In particular f;l(X) = X1 is a homology
manifold such that Et is the total space of the bundle f;& and

f[| : X[ — X
also satisfies the properties of.

Denote g~ (Q) by Ng and g~ (R) by Ng, so that (Ng, Ng, g*¢) is a codimension
g bundle subspace of N with

N = E(g"¢) UNg.
By applying Lemma P.5 to E(g*¢), we get
(fi)E : Er — E(g%¢)
satisfying the above conditions. Applying E to Np results in

(fI)R . R[ — NR.

By Lemma P.4 we may apply the construction to Nr and E(g*¢) simultaneously
so that the resulting homology manifolds Ry and E; and maps agree on their
boundaries. O

Proof of Lemma @: Take a manifold two-skeleton of M which is the union
of manifold two skeletons for My and M_ along a manifold two skeleton for M.
Denote this two skeleton and its boundary by

B =B, Ug, B_and D =D, Up, D_.

We shall perform the construction of E simultaneously on M, and M_. What
was one controlled surgery obstruction in the original construction

o=(0,I) € Hy,(M;L,)

is now two controlled surgery obstructions

or = (0,I) € Hp(My;Ls) , o— = (0,1) € Hy,(M_;L,) .

In Step I, we apply [El] (4.4) to get a map qo : M — M which restricts to
UV! maps D; — M;, i = 0,+, — and is itself UV'. Thus the controlled surgery
obstruction groups are given by

Di X [0,1] _

L ( ) ) > H,(Mi:La) & Ho(MiiLa) & Hy(Mo: Lo(2)) -
+

Since My are manifolds with boundary, m > 7 is required. Take a Wall realization

Ky of (0,1). Glue this into M4 to create the first Poincaré space of the construction,

which comes with a map py : X9 — M and a Poincaré decomposition Xg =

(X0)+ U (Xo)— which is respected by po.

We must exercise some care to get the Wall realizations to agree on their bound-
aries.
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DO D

FI1GURE 4. The Wall realization K .

[\(K+)o (K-)o Dox1 /|

-

FIGURE 5. The trace of surgery on (K)o U (K_)o — Dg x [0,1]
can be used to “match up” the boundaries of the Wall realizations.

Denote 0K+ = (K1 )o. The images of (K1) — Dy x [0, 1] agree in

c DQX[O,I] _
L ! ~ Hyy(My:L) .
Mo

Each is again (0, I'), the image of (0, I) under the boundary maps

Hm(Mi,E.) - mfl(MO;Eo) .
Since the surgery obstructions of 0K, = (K)o and 0K_ = (K_)o agree we may
glue them together along their common boundary Dj to get a normal invariant
with vanishing controlled surgery obstruction, i.e. we may surger the map

8K+ UOK_ — DO X [0, 1]

to a controlled homotopy equivalence. Let W denote the trace of this surgery.
Denote K’ = K_ U(g_), W, and extend the map K_ — D_ x [0, 1] in the obvious
way. It is a Wall realization of (0, I), which agrees with K on its boundary.

If we perform the construction with two Wall realizations which agree on their
boundaries, then we may glue them together to get Xo = (Xo)+ U (Xp)—. Further-
more since the boundary of the Wall realizations is itself a Wall realization, the
intersection

(Xo)+ N (Xo)-
is itself the first stage of the given construction on Mjy. Similarly the union X,
which is the result of gluing in the union of the Wall realizations is the first stage
of the construction on M.

To preserve this decomposition throughout the construction requires only that
we repeat the above type of construction in later steps. O

Proof of Lemma P.5: Let Bx denote a manifold two skeleton of X. Since E(&)
and X are of the same homotopy type we could easily construct a manifold two
skeleton of F(§) by thickening a manifold two skeleton of X, i.e. E(c*§) where
c¢: Bx — X. Recall that the construction requires a fine manifold two skeleton.
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Let Ex denote the manifold two skeleton of an e neighborhood of X in E(£). We
may extend this to a fine manifold two skeleton of E(§) by

B = Ex UBg
where Bg is a manifold two skeleton of the complement of the given € neighborhood
of X.

Here Ex N By is the manifold two skeleton of S(§) for the given e-sphere bundle.
We shall now perform the construction of @ on this decomposition of E(§), but
with the added requirement that the result of the construction on the small neigh-
borhood of X is itself a bundle over the desired X;. This is done by preserving the
bundle throughout the construction. Take a Wall realization of

(0,1) € Hn—q(X;La)
denoted by
ox : Nx — Dx x [0,1].

Let o denote the bundle map on the pullback

NE = O'}f/
where £ is the bundle induced on Dx x [0,1] by &. The result is

OF NE i E(§|DX X [0, 1]) s
the image of ox under the transfer map. The corresponding surgery obstruction is
thus the image of (0, I) under the transfer map
Hyp—g(X5La) — Hu(E(€); La) -

One need only check that this map takes (0, I) to (0, I) to see that we may preserve
the bundle throughout the construction. O

Given X a simple m-dimensional Poincaré space with a map g : X — P to a
space P with a codimension ¢ bundle subspace Q@ C P. Let 772-"(X) be the set
of bordism classes of normal maps (f,b) : M — X from m-dimensional homology
manifolds such that gf : M — P is transverse to () C P.

Theorem 2.6. Given X, g: X — P and Q C P as above such that m —q > 7.
(i) The forgetful function THR~N(X) — TH(X) is a bijection.
(ii) Every map f : M — P from an m-dimensional homology manifold is bordant

to a map transverse to QQ C P.
Proof. (i) The functions

TH(X) = TTOP(X) x Lo(Z); ((f,b) : M — X) = ((frop, brop),i(M)),

THO=M(X) — TTOP™N(X) x Lo(Z); ((f,b) : M — X) = ((fror. brop),i(M))
are bijections by Theorem DI and its @-transverse variation E The forgetful
function

TTOP,erh(X) N TTOP (X)
is a bijection by topological transversality, so that
THOMN(X) = TTOPON(X) x Lo(Z) = TTOP(X) x Lo(Z) = TH(X).

(ii) Unfortunately (i) does not apply to an arbitrary map. We may get around this
by factoring any map f : M — P through a homotopy equivalence f : M — P.
Any map f is homotopic to f o f such that f: P — P is a Serre fibration and f is
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a homotopy equivalence. Now by (i), f is normally cobordant to a transverse map,
and hence f is bordant to a transverse map. O

Given X a simple m-dimensional Poincaré duality space with a map g: X — P,
as above, we may also study the Q-transverse homology manifold structure set.
Denoted by, S#:2=M(X), this is the set of equivalence classes of pairs (M, h) with
M an m-dimensional homology manifold and A : M — X a simple homotopy
equivalence such that gh : M — P is transverse to @ C P, with (M7, h1) = (Ma, hs)
if there exists an s-cobordism (W; M7, M3) with a simple homotopy equivalence of
the type

(f;h1,h2) = (W3 My, M2) — X x ([0,1]; {0}, {1})

such that the composite
whxxpy"¥xLp
is transverse to QQ C P.
Remark 2.7. The isomorphism
SHR-M(x) ~ SH(X)

will follow from s-transversality for homology submanifolds, Theorem @, just as
Theorem .6 followed from P.3|

Before dealing with transversality up to s-cobordism, we turn our attention to
some splitting theorems. These theorems follow directly from transversality up to
normal bordism and are useful in the proof of transversality up to s-cobordism.

3. CODIMENSION q SPLITTING OF HOMOLOGY MANIFOLDS

Fix a space P with a codimension ¢ bundle subspace (@, R, ), as in Section 2.

Wall [@] (Chapter 11) defined the codimension ¢ splitting obstruction groups
LS. (®) to fit into an exact sequence

2 L (Z[m(R)] — Z[m(P)]) = LSm—q(®)
= Lo (21 (Q)]) & L (Zlmi (R)] — Z[mi(P)]) — ...
with ¢' the transfer maps induced by &.

From now on, we assume that P is an m-dimensional Poincaré space and that
Q@ C P is an (m — ¢)-dimensional Poincaré subspace, with (R, S(§)) an m-dimen-
sional Poincaré pair.

Definition 3.1. (i) A simple homotopy equivalence f : M — P from an m-
dimensional homology manifold splits along QQ C P if f is s-cobordant to a simple
homotopy equivalence (also denoted by f) which is transverse to Q C P

[ = E(@Us@gh : M = E(g°§) Us(g¢) Z = P = E(§) Us) R
and such that the restrictions
g=1f:N=7'Q—-Q,h=1fl:2Z=f'R—R
are simple homotopy equivalences.

(ii) The split structure set S¥(P,Q, &) is the set of homology manifold structures
on P which split along @ C P.



HOMOLOGY MANIFOLD BORDISM 21

For any simple homotopy equivalence f : M — P from an m-dimensional topo-
logical manifold M there is defined a codimension ¢ splitting obstruction

5Q(f) € LSm—q(®)

such that sg(f) = 0if (and for m—¢ > 5 only if) f splits in the topological manifold
category. The image of s (f) in Ly,—q(Z[m1(Q)]) is the surgery obstruction o, (g) of
the normal map g = f| : N = f~1(Q) — Q obtained by topological transversality.
See Wall [[§] (Chapter 11) and Ranicki [[[5] (pp.572-577) for details.

Theorem 3.2. Letm —q > 1.

(i) A simple homotopy equivalence f : M — P from an m-dimensional homology
manifold with a codimension q bundle subspace (Q, R, &) splits along Q C P if and
only if an obstruction sq(f) € LSn—q(P) vanishes.

(ii) The split homology manifold structure set S¥ (P, Q, €) fits into an exact sequence

o= LSy g1 (®) — S*(P,Q, &) — S*(P) — LS,_,(®) .
Proof. Define LS _ (®) to be the group of obstructions in the exact sequence
SH(P,Q,€) = NITO™M(X) — LS}, (®) .

Consider the homology manifold normal invariant given by f : M — P, by E
f is normally bordant, say via W — P x I to a map g : M’ — P such that g is
transverse to @. In particular g71(Q) = Y is a homology manifold with a normal
neighborhood N(Y) = g*(§).

Thus, this transverse normal invariant defines a splitting obstruction which lives
in LSH_ (®). Since we do not a priori have an understanding of LSH _ (®) we must
study it by comparing to the obstruction groups Ly, 41 (m1(R) — m1(P)), Lm—q(Q)
and the surgery exact sequences for S¥ (P x [0, 1], R x 0) and S7(Q).

There is clearly a commutative diagram with vertical maps given by restriction
as follows:

SH(PXI,Rx0) —— NI#H(PxI,Rx0) —— Ly41(R— P)

l | l

SH(Pa Qa 5) — NIH,Q*I’h (P) - Lsfnlfq(q))

l | l

S7(Q) — NIF(Q) — Ln4(@Q)

The splitting obstruction o(f) € LS _,(®) can be understood as a two stage
obstruction as follows. First the normal invariant g| : ¥ — @ defines an obstruction
00(f) € Lm—q(Q). If this obstruction vanishes, then by the surgery exact sequence
of [EI] gl : Y — @ is normally cobordant to a simple homotopy equivalence. Let
V — @ x [0, 1] denote this normal cobordism, and N (V) — E(§) x [0, 1] denote the
corresponding pullback of £&. We can define a homology manifold normal invariant
of P x [0,1] relP x 0, E(§) x 1 by gluing N(V') to W. There is now defined an ob-
struction og(f) € L1 (m1(R) — m1(P)) to this normal invariant being equivalent
to a simple homotopy equivalence of P x [0, 1], i.e. an s-cobordism from f: M — P
to some map h: N — P.



22 HEATHER JOHNSTON AND ANDREW RANICKI

— | Px 1|

FIGURE 6. A homology manifold normal invariant of (P X
[0,1], R x 0).

If o(f) € LSy,—q(®) vanishes, then both o (f) and or(f) are defined and vanish,
so that f is s-cobordant to a split map. Conversely if f is s-cobordant to a split
map, then both of oo (f) and or(f) are defined and vanish. O

Example 3.3. (i) If ¢ = 1, £ is trivial, and R = Ry U Ry is disconnected with
71(Q) = 71 (Ry), then LS, (®) = 0, there is no obstruction in Theorem B.4, and

sH(p) = " (P,Q,¢) .

This is the homology manifold -7 codimension 1 splitting theorem already ob-
tained by Johnston [fj.
(ii) If ¢ > 3 the codimension ¢ splitting obstruction is just the ordinary surgery
obstruction

so(f) = 0.(9) € LSu—g(®) = Lun-y(ZIm(Q)])

of the restriction g = f| : f71(Q) — Q, with an exact sequence
++ = Lin—q1(Z[m(Q))) — ST (P, Q, &) — S"(P) = Li—g(Z[m(Q))]) -
This is the homology manifold Browder splitting theorem already obtained by John-

ston [{.

O

4. HOMOLOGY SUBMANIFOLD TRANSVERSALITY UP TO S-COBORDISM

We proceed to prove homology manifold transversality up to s-cobordism, using
the above results.

Theorem 4.1. Let f: M — P = E(§) Ug(e) R be a map from an m-dimensional
homology manifold M to a space P with a codimension q bundle subspace (Q, R,&).
If m —q > 7 then f is s-transverse to QQ C P.

Proof. For Q C P of codimension ¢ > 3 this was proved in [ﬂ]

We prove the theorem here for codimension ¢ = 1,2. First we may assume that
the map f : M — P is a homotopy equivalence by factoring the original map
through a Serre fibration. This results in

MLP L p,
homotopic to the original f so that f is a homotopy equivalence, fisa Serre
fibration, and P has a codimension ¢ subset ) so that the normal bundle of ¢ in
P is the pullback of the normal bundle of @ in P. To achieve Q-transversality for

f clearly it would suffice to achieve @) transversality for f. Thus we may assume
that f : M — P is a homotopy equivalence. By theorem P.q (ii) we have that f is
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bordant to a @-transverse map. From here the proof proceeds in two steps, given
by the following lemma.

Lemma 4.2. If f : M — P is a homotopy equivalence as above and
F : W-— Px|[0,1]

is a homology manifold bordism from f to g: M’ — P, then

(i) The map f is homotopy equivalent to a map g : M — P, which factors through
a homotopy equivalence to a Poincaré space X, h: M — X with g"" : X — P such
that g = g"” o h, and ¢’ is Poincaré transverse to Q, i.e. the inverse image of Q is
a Poincaré space with normal bundle the pullback of the normal bundle of Q.

(ii) The map g is s-cobordant to a Q-transverse map.

O

Proof of Lemma (i): The key idea of this proof is to use a patch space
structure on W to achieve the desired result. Because W is a homology manifold,
it has a patch space structure with only two patches. Let

H : W -W
be such a structure, where
W' = Wi Uy, W_
gives W as a union of manifolds glued along a homotopy equivalence
hw : Wy — Wy .
Furthermore we may assume that
ow' = X1x’
is such that
H| : oW - MU M’
restricts to two patch space structures
X = X, UX_
and
X = X, ux’
with gluing maps
hx : Xog— Xy
and
hx: Xé — Xé
on each of M and M’.

We construct a patch space structure for M’ as follows: First construct a patch
space structure
H Q'@
for the homology manifold Q' = ¢g~!(Q). Thicken this patch space structure to
a patch space structure for v(Q’) the pullback of the normal bundle of . Then
construct a patch space structure for

M\ v(Q)
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FIGURE 7. We would like to extend Poincaré transversality for the
map G from X’ to all of W’.

relative to the structure for dv(Q’). Finally construct a patch space structure for
W relative to this structure for M’. In this manner a patch space structure for W
is constructed so that the map

goH| : X' — Px{1}
is Poincaré transverse to Q.

Consider the map
G =FoH : W —->W-—=Px][0,1].

We shall show that G is homotopic rel X’ to a map which is Poincaré transverse
to Q. First consider G|W,. We may use manifold transversality to make this map
transverse to

Qx[0,1]c Px[0,1],
which inherits a codimension-g structure from @ C P. If the homotopy equivalence

hW : Wo — Wo

splits along

Qo = (Glw+) 1@ x [0,1)) N Wo ,
then G|W_ is @ x [0, 1]-transverse along its boundary Wy and we may use manifold
transversality to homotope G|W_ rel Wy to a Q-transverse map. Unfortunately
there is no guarantee that the homotopy equivalence hy splits along Q9. There
is a priori a splitting obstruction o € LSp,—q(®) where ® is defined by the pair
Qo C Wo.

We shall show that by changing to a different patch space structure H : W — W,
we may assume that this obstruction vanishes. First we need to change the patch
space structure slightly so that LS,,—4(®) acts on the set of possible patch space
structures. Our action will be by LS, (¥) where ¥ is defined by the pair Q" C X'.

The first step is to show that we may assume
LS;—¢(®) = LS,—4(0) .

This is achieved by performing Poincaré surgery to fix the fundamental groups of
Qo and Wy, but these are the boundaries of the manifold two skeletons of

Q" = (Glw,) (@ x[0,1])
and W’. Therefore the fundamental groups of Q' C W' agree with ® and we may

view the problem of changing ® to agree with ¥ as a problem about @’ C W’. This
is just fundamental group Poincaré surgery on

G: W —=Px[01],
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Xll

Xl

FIGURE 8. The action of o on X’ by K, produces a new space X"’
and adds the above to W’. In particular it adds —K, to Wp.

or rather manifold surgery on the manifold two skeleton of W’

Gl : Wy - W, .

Now we can assume that both Q” C X’ and Q¢ C W, define the same group
LS,,—¢(®). This group acts on the patch space structures of X’ by acting on hx-
as follows: Lp,—4(Q") acts on the patch space structures

e Q -
for Q" = Q' UQ"” by acting on the gluing homotopy equivalence
har QY — Q)

Given an element ¢ € L,,_4(Q") denote its Wall realization by o : K — Qg %[0, 1],
where 0K = Qg 11 @0. The new patch space structure is given by C/Q\” = é’\jr uQ’
where @’\J’r =QL Uid%, K. The new gluing map is now h@, = O'|C/2\”. A Poincaré
bordism from Q" to C/Q\” is given by /’\J’r x [0,1] U, Q" x [0,1]. where o is viewed
as amap o : K x 0 — Qf x [0,1]. The group L,,,(X’' \ Q") acts similarly on the
structure
hx| @ Xo\ Q0 — Xo\ Qg -

The fact that we really had an element of LS,,_,(®) insures that the Wall real-

izations will glue together to a composite we denote K, and that the patch spaces
will glue together to give a new patch space structure, X"'.

Claim: The action of

0 € LSp—q(T)
results in a new patch space structure whose transversality obstruction differs by
—o from the previous one, i.e. with the correct choice of o the transversality
obstruction vanishes.

Proof of claim: If we consider the addition of K, x [0, 1] as in the diagram, it
becomes clear that we have changed Wy by —K,.

The map G is now homotopic to a Poincaré transverse map, and G|x is the
desired map ¢"” Poincaré transverse to Q. The original map f is homotopic to
g o h where h : M — X is the homotopy inverse of H|: X — M. O

Proof of 4.9 (ii): Suppose given
g=4g"oh: M—P,

for the homotopy equivalence h : M — X and the Poincaré transverse map ¢” :
X — P. Let Q' denote (¢"")~1(Q), so that by assumption Q’ is a Poincaré space. If
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h is s-cobordant to a homotopy equivalence h: M — X which is split over " then
g'o his homology manifold transverse to (). There is an obstruction o to splitting
h which lives in LS,,_4(®) where ® is defined by the pair Q' C X. Let o denote
this obstruction.

Because Q' was constructed by the method of @ (i), it has a two patch structure
Q = Q,uQlLand Q) = QL NQL

which agrees with the two patch space structure of X, ie. Q' C X, Q. C X_

and Qf C Xo. If ¥ is defined by the pair Q) C X, there is a natural isomorphism

LSp—_q() = LSy,_,(®) .

LS,,—4(T) acts on the possible patch space structures h : M — X on M as follows.
Recall that by construction, the gluing map

hX : X0—>X0

splits along @ C Xo. We can change the patch space structure on X, if we make
sure that it has a map to the original X which is Poincaré transverse to Q’. In
particular the new map
hy : Yo —Yo

must split along the inverse image of @)’. Take hx and act on it by LS, (®), by
acting on

ho!| = Qo — Q0
by Lm—q(Qf) and by acting on

hx| @ Xo\ Qo — Xo\ Qp
by L (Xo \ Qp). The result fits together along 0v(Q’) by definition of LS,,_4(T).
By construction, there is a map k : Y — X which is a homotopy equivalence, and
which is Poincaré transverse to Q’.

We claim that, if £ : X — Y is the homotopy inverse of k, then the new splitting
obstruction of
koh:M— X =Y
vanishes. Clearly the splitting obstruction of ko k o h is the same as that of h, but
by construction this splitting obstruction differs from that of koh by the o splitting
obstruction of k.

Thus our new map k o h is s-cobordant to a homology manifold split map.
Composing this homology manifold split map with the Poincaré transverse map
9" o k we see that our original f is in fact s-cobordant to a homology manifold
transverse map. O

5. DUAL TRANSVERSALITY FOR HOMOLOGY MANIFOLDS

We now extend the results of Chapter 3 on transversality to a codimension ¢
bundle subspace Q C P for a map f: M™ — P from an m-dimensional homology
manifold with m — ¢ > 7, and obtain dual transversality for a map f: M™ — |K|
to the polyhedron of a k-dimensional simplicial complex K with m — k > 7. In
Chapter 6 we shall formulate an obstruction for a map f : M™ — | K| to be bordant
to a dual transverse map — the obstruction is 0 for m — k > 7.

Let X be a simple m-dimensional Poincaré duality space with a map g : X — |K]|
to the polyhedron of a k-dimensional simplicial complex K.
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The dual transverse homology manifold structure set ST-5="(X) is the set of
equivalence classes of pairs (M, h) with M an m-dimensional homology manifold
and h : M — X a simple homotopy equivalence such that gh : M — |K| is dual
transverse, with (M, h1) ~ (Ma, ho) if there exists an s-cobordism (W; My, Ma)
with a simple homotopy equivalence of the type

(fshi,ha) = (W5 My, Ma) — X x ([0, 1]; {0}, {1})
such that the composite
w4 X x01"Y X% |K|
is dual transverse.

Let 7HK=M(X) be the set of bordism classes of normal maps (f,b) : M — X
from m-dimensional homology manifolds such that gf : X — |K]| is dual transverse.

Theorem 5.1. Letm —k > 7.
(i) The dual transverse homology manifold structure set fits into the surgery exact
sequence

- Lot (2 (X)]) & §59-0(X) B 7K@-0(X) L L, (Z[m (X)]) -

(ii) The forgetful function THQ=N(X) — TK(X) is a bijection.

(iii) The forgetful function S¥-@=N(X) — SK(X) is a bijection. In particular,
SKQ=M(X) is non-empty if and only if SK(X) is non-empty.

(iv) Every map f : M — |K| from an m-dimensional homology manifold is dual
s-transverse.

Proof. Exactly as above. O

6. THE DUAL TRANSVERSALITY OBSTRUCTION

For any simplicial complex K let QX (K) (resp. Q" (K)) be the bordism group
of maps f : M — |K]| from m-dimensional homology manifolds (resp. dual trans-
verse maps f). We now formulate the bordism obstruction to dual transversality
for homology manifolds, as the failure of the forgetful map Q2" (K) — QZ(K) to
be an isomorphism.

We refer to Chapters 11,12 of Ranicki [@] for an exposition of A-sets, generalized
homology theories, bordism spectra and assembly maps. The topological manifold
bordism groups and the Q7P ({x})-coefficient generalized homology groups are the
homotopy groups of spectra of Kan A-sets QIOF(K), Ho(K; QTP ({x}))

QTOP(K) = m.(QIOP(K))
H.(K;Q797 ({#})) = m(Ho (K5 Q797 ({#}))) -
Moreover, there is defined a topological assembly map
ATOP - HL (K 107 ({+))) — Q1OP (K)

which is a homotopy equivalence by topological manifold transversality, inducing
the Pontrjagin-Thom isomorphisms

ATOP - HL(K; Q07 ({+))) = QTOF(K)
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The combinatorial construction of QI9F(K) and AT will now be extended to

the homology manifold bordism spectra QZ (K), Qflm(K ) with an assembly map
AT QINE) = Ha (KG9 ({+)) - Q4 (K)

The homology assembly map A is only a homotopy equivalence to the extent
to which homology manifolds have transversality.

The homology manifold bordism spectrum of a simplicial complex K
QJ(K) = {8 (K)m |m > 0}
is the Q-spectrum with QX (K),, the Kan A-set defined by
Q?(K)gg) = { (m + n)-dimensional homology manifold n-ads

(M;00M,01 M, ..., 0,M) such that
doMNoMN---NI,M =0, with amap f: M — |K| }

with base simplex the empty manifold n-ad #. The homotopy groups
T (Q(K)) = T r (A (E)r) = Qp(K) (m >k >0)

are the bordism groups of maps f : M — | K| from closed m-dimensional homology
manifolds. Similarly for the dual transverse bordism spectrum Qflm(K ), with the
additional requirement that f : M — |K| be dual transverse.

Proposition 6.1. The dual transverse bordism spectrum Qfm(K) coincides with
the generalized QE ({x})-homology spectrum of K

QN (K) = H(K; 90 ({+}) ,
so that on the level of homotopy groups
QEN(K) = Hn(K: QI ({+}) (m>0) .

Proof. Define the generalized homology spectrum H,q (K; QF ({*})) as in [I§] (12.3),
with an m-dimensional Q& ({*})-coefficient cycle ([[L§],12.17)

z = {M(@)" s € K}
essentially the same as a dual transverse map

flx) - M™ = | M(o) — |K|
occK

from a closed m-dimensional homology manifold, with inverse images the (m —|o|)-
dimensional homology manifolds with

f(x)"Y(D(0,K),0D(0,K)) = (M(c),0M(0)) (0 € K) .
The homotopy group
o (He (B QJ ({5))) = Hu (K3 Q5 ({%}))

is the cobordism group of such cycles, and is the bordism group of dual transverse
maps f : M — |K| from m-dimensional homology manifolds. O
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The homology assembly map of spectra
AT QINE) = Ha(KG Q) ({+)) — @ (K)

is defined as in [[L] (12.18), inducing on the level of homotopy groups the assembly
maps of bordism groups

AT QEN(K) = HL(K;QF ({+)) — O (K)

which forget dual transversality.

Definition 6.2. Given an m-dimensional homology manifold
M =M,
with M, the components of M, set
I(M) = ) [Mo]i(Ma) € Hu(M)[Lo(Z)] ,

with [My] € Hp, (M) the image of the fundamental class [My] € Hp,(M,).
The augmentation map
Hpy(M)[Lo(Z)] = Hpn(M; Lo(Z)) = Hp(M) @z Lo(Z) ; x[y] —z®y
sends Z(M) to the resolution obstruction of M

(M) = > i(Ma) € Hy(M; Lo(Z)) = Lo(Z) .

We shall now verify that Z(M, f) and Z(M, f) are bordism invariants:

Proposition 6.3. Let f : M — |K| be a map from an m-dimensional homology
manifold M to a polyhedron, and let M = |J My be the decomposition of M into
[e3

components with fo = f|: My — |K].
(i) The element

I(M, f) = Y (fa)«[Mal[i(Ma)] € Hp(K)[Lo(Z)]

[e3

is a homology manifold bordism invariant.
(i) If f is a dual transverse map then

I(M, f) = 0€ Hp(K)[Lo(Z)] .

(iii) If f« : Hn(M) — Hp(K) is an isomorphism and f is homology manifold
bordant to a dual transverse map then

(M) = 0€ H,(M; Lo(Z)) .
Proof. (i) Given a bordism
(g: £, ) + WM, M') — |K]|.
Denote the connected components by
(Gas for 1)+ (Wa; Mo, M) — |K].
We have

(fa)«[Ma] = (fo)«[M,] € Hin(K)
as usual.
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Furthermore
i(Ma) = i(Wa) = i(M,,)

follows from the fact that i(X) = i(0X) for any connected homology manifold with
non-empty boundary (Quinn [@ 1.1). Thus we have

M £) = 2(fa)s[Ma]li(Ma)]
= 2 (fa)[i(Mar)] = T(M', ') € Hpn(K)[Lo(Z)] -

(ii) The augmentation map
Hp (K)[Lo(Z)] = Hm(K; Lo(Z)) = Hn(K) @z Lo(Z) 5 zlyl =z @y
sends Z(M, f) to f.i(M) € Hy,,(K;Lo(Z)), for any map f : M — |K|. If M is
connected then i(M) € Lo(Z) and
I(M, f) = fIM][i(M)] € Hnp(K)[i(M)] C Hp(K)[Lo(Z)] ,
so that f.i(M) = 0 implies Z(M, f) = 0. If f: M — | K] is dual transverse
fi(M) = Y i(f7 D(ov K)o € Hu(K; Lo(Z)) -
oceK(m)

Each f~!D(o, K) is a 0-dimensional homology manifold, which is a disjoint union of
points, with resolution obstruction i(f~!D(o, K)) = 0, so that f.i(M) = 0. Thus
if M is connected and f: M — |K]| is dual transverse then f,i(M) = 0, and hence
Z(M, f) = 0. Apply this to each component of M.

(iii) Combine (i) and (ii). O

Definition 6.4. (i) For any space X define a morphism
T : Qu(X) = Hn(X)[Lo(Z)] 5 (M, f) = Z(M, f) = £.I(M)

such that
i 0 QX)L Ho(X)[Lo(Z)] = Hin(X; Lo(Z)) 3 (M, f) = foi(M)
and
O (X) L Ho(X)[Lo(Z)] =25 Ho(X) 5 (M, f) — fu[M] .
(ii) Let
Lo(Z) = Lo(Z)\{0},
and let

T+ QX)) 5 Ha(X)[Lo(Z)) = Hn(X)[Lo(Z)]
For any Q-spectrum X, = {X,, |n > 0} of A-sets there is defined an Q-spectrum
of A-sets
Xe[Lo(Z)] = {XulLo(Z)]|n = 0}
with
T(X[Lo(Z))) = mu(X)[Lo(Z)] (m > 0) .
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Proposition 6.5. Let K be a k-dimensional simplicial complex.
(i) The map of Q-spectra
QJ(K) = QU (K)[Lo(Z)] 5 M — Mropli(M))]
induces maps
T (R (K)) = Qi (K) — mn (797 (K)[Lo(2)]) = Q.77 (K)[Lo(2))]
which are isomorphisms for m > 6.

(ii) The composite

QI (K) A5 O (K) L H,(K)[Lo(2)]

(fiig The homology assembly map
AT QENK) = Ho(K; Q0 ({#)) — Q1K)
is an isomorphism for m — k > 6.
Proof. (i) See Johnston [f] (cf. Corollary [L.6).
(ii) By Proposition
m(ZA" - Q" (K) — Hyn(K)[Lo(Z)]) € Hin(K)[0] € Hun(K)[Lo(Z)] ,
so that ZA# = 0.
(iii) By (i) we have that the maps of Kan A-sets
QU ({£})n — QTP ({+})alLo(Z)] ; M > Mrop[i(M)]
are homotopy equivalences for n > 6. It follows that for m > k+ 6
H(E Q ({#1)m = B QT ({#1))im[Lo(Z)]
and hence that
Ho (K Q0 ({#})) = mo(H(K; QJ ({+}))m)
= 7o(H(E; Q7 ({#})m[Lo
Ho (K Q797 ({}))[Lo(Z)
= QOP(K)[Lo(Z)] = QI(K) .

(2)))
]

Theorem 6.6. (i) The composite

QLK) — O (K) L Hyp(K)[Lo(Z)]

31

is 0. Thus if f: M — |K| is homology manifold bordant to a dual transverse map

then
I(M, f) € Hn(K)[0] C Hp(K)[Lo(Z)]

and either f.[M] =0 € H,(K) ori(M)=0¢€ Hy,(M;Lo(Z)), but in any case

Fui(M) =0 € Hy(K; Lo(Z)) .

(ii) There exists a spectrum Lo whose homotopy groups fit into an exact sequence

with
Tm(Le) = {Z[Eo(Z)] ifm =0
m(Le 0 ifm>1and m#4,5
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and

QH (K) — QTP (K)[Lo(Z)] 5 Hpn(K; L4)
s Hy(K;mo(£4)) = Hon(K)[Lo(2)] ;

—~—

(M, f: M — |K]) = fo[M][i(M)] .

(iii) For m > 6 there is defined an exact sequence
) A (k) Dom, (K L)) — QF () — L
The proof of p.g (i) is given by Proposition .3 The remainder of this Chapter
is devoted to the proofs of .4 (i) and (iii). The spectrum L, in (ii) is given by :
Definition 6.7. Let
Lo = cofibre(Q ({+}) — Q77 ({+})[Lo(2))) ,
an ()-spectrum whose homotopy groups fit into an exact sequence

= Qu({x) = QT ({(DILo(Z)] = mm(La) = Q1 ({4}) — ...

It is now immediate from the identities
Qr({*}) = 10 ifm=1,2
QLOP({+})[Lo(Z)] itm >6,
QTOoP _

that B
Z[Lo(Z)] iftm=
t(Le) = [Lo(Z)] ifm =0
0 ifm>1and m#4,5

as claimed in the statement of Theorem p.§ (ii).
The exact sequence in the statement of Theorem [.q (iii) is given by:

Proposition 6.8. For m > 6 there is defined an exact sequence
S QBN ) A QE (Y D H (K L)) — Q0 (K
Proof. This is just the exact sequence
v Hon (K Q3 ({5})) = Hin (K Q097 ({#})[Lo(2)])
= Hpn(K;La) = Hpa (K3 Q0 ({#}) — -
induced by the cofibration sequence of spectra
QJ({x}) = QP ({+D[Lo(Z)] — L.,

using [L.6, to identify

QEMNK) = Hu(K;Q ({*})) ,

QIK) = Hau(K;Q7°7 ({+}))[Lo(2)] -
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This completes the proof of Theorem @

In the special case K = S™ we have:

Corollary 6.9. (i) A map f: M™ — 8™ from an m-dimensional homology man-
ifold M determines the element

I(M, f) = degree(f)[i(M)] € Z[Lo(Z)] ,
which vanishes if (and for m > 6 only if) f is bordant to a dual transverse map.

(ii) For connected M Z(M,f) = 0 if and only if either degree(f) = 0 € Z or
(M) =0¢€ H,(M;Ly(Z)) = Lo(Z).

Proof. This follows from the sequence of f.¢ (i)
Hin(5™5 98 ({+}) 25 0(5™) > Z[Lo(2)
whose composite is 0, and which is exact for m > 6. By a simple calculation
Hn (8™ Q7 ({%) = Qff ({x}) @ Q@ ({*}) -
Since any zero-dimensional homology manifold is a disjoint union of points
O ({x}) = A7+ = 2.

By [L.4
Qi {+}) = QPP ({+)[Lo(Z)] (m >6) ,
so that
Hpn(S™ 00 ({}) = Q597 ({x}) @ Q.27 ({+})[Lo(2)] -
Also

Qu(s™) = Q.27 (S™)[Lo(2)] (m = 6) ,
and by topological transversality
QTOP(S™) = Hy(S™5QIOP({+})) = QIOP({x}) & QLOP({x}) |
so that
QL (™) = QIO ({+})[Lo(Z)] & LT ({+}[Lo(Z)] (m > 6) .
The components of the assembly map
A = Al o A .
Qff ({+}) & QL ({+}) — QFOF ({x}) [Lo(Z)] & QLOP ({+})[Lo(Z)]
are given by the inclusion
AEQE({x)) = Z— QEOP({+)[Lo(2)] = ZILo(Z)] ; t — t[0]
and the isomorphism
AL QE({x)) = QIOP({})[Lo()] -

The cokernel of A is thus given by the cokernel of AZ as Z[Lo(Z)]. In particular,
if m > 6 and ¥™ is one of the m-dimensional homology spheres with

i(5™) £ 0 € Ho(S™; Lo(Z)) = Lo(Z)

constructed in [[]] there exists a homotopy equivalence f: ¥™ — S™ with

(™, f) = i(E™) #0 € Z[Lo(Z)] ,

so that f is not bordant to a dual transverse map. O
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Every compact ANR X is simple homotopy equivalent to a polyhedron | K|, by
the result of West [ However, if X is an m-dimensional homology manifold then
| K| may not be a homology manifold.

Theorem (Levitt and Ranicki [f, Ranicki [[L6] (19.6))

Let X be a compact ANR which is a simple m-dimensional Poincaré space, and
let f: X — |K| be a simple homotopy equivalence to a polyhedron. The map f is
simple Poincaré bordant to a dual Poincaré transverse map f': X' — |K| if (and
form > 6 only if ) X is simple homotopy equivalent to a topological manifold.

Theorem @ will now be used to obtain an analogous characterization of resolv-
able homology manifolds.

Proposition 6.10. Let M be an m-dimensional homology manifold, and let f :
M — |K| be a simple homotopy equivalence to a polyhedron. The map f is s-
cobordant to a dual transverse homotopy equivalence ' : M' — |K| if (and for
m > 6 only if ) M is resolvable.

Proof. If M is resolvable the mapping cylinder of a resolution Mrop — M is an
s-cobordism (W; M, Mpop) with a bordism

(g: f, frop) : (W;M,Mrop) — |K|

to a homotopy equivalence frop : Mrop — |K| which is topologically dual trans-
verse.

Conversely, suppose that f : M — |K| is a dual transverse homotopy equiv-
alence. Without loss of generality, it may be assumed that M is connected, so
that

I(M) = [i(M)] € Z[i(M)] C Hu(M)[Lo(Z)] = Z{Lo(Z)] .

The composite

O (K) L Ho(K; Lo) — Ho(K)[Lo(2)]

m

sends (M, f) to
= _ JlM)] € Z[i(M)] € Z[Lo(Z)] it i(M) # 0
T00.§) = {o € Z[Lo(Z)] if i(M)=0.
Since f : M — | K| is dual transverse, i(M) = 0 € Lo(Z) by .4 (ii). O

7. THE MULTIPLICATIVE STRUCTURE OF HOMOLOGY MANIFOLD BORDISM

The product of an m-dimensional Poincaré space X and an n-dimensional Poincaré
space Y is an (m + n)-dimensional Poincaré space X X Y, with Spivak normal fi-
bration

Uxxy = VUx Xvy : X XY — BG.
If X is an m-dimensional homology manifold and Y is an n-dimensional homol-
ogy manifold then X x Y is an (m + n)-dimensional homology manifold, with the
resolution obstructions satisfying the index product formula of Quinn @]

14+8i(X xY) = (148i(X))(1+8i(Y)) € 1+8%Z.

In general, the canonical TOP reductions of the Spivak normal fibrations of XY,
X XY are such that

;XXY 75 ;XX};Y : X xY — BTOP .
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We shall now analyze the difference
;XXY_;X X fl;y X X Y—>G/TOP

using the multiplicative properties of the algebraic L-spectra of [@ This analysis
will be used to obtain the product structure on Q79 (K)[Lo(Z)] which corresponds
to the product structure on Q7

Q) e oK) - o

m—+n

(JXxK); XY —» X xY
under the isomorphism of abelian groups given by E

Qf () 5 QTP (K)[Lo(2)] ; X = Xropli(X)] .

The Spivak normal fibration vy : X — BG(k) (k large) of an m-dimensional
Poincaré space X is equipped with a degree 1 map p : S™™* — T(vx). If vy is
TOP reducible then for any TO P reduction vx : X — BTOP the Browder-Novikov
transversality construction gives a degree 1 normal map

F=ol: M= p(X) =X

~ =~

with M an m-dimensional topological manifold. If v,v' : X — BTOP are two
TOP reductions of vx the difference is classified by an element

t(v,v') € Hp(X;Le) = [X,G/TOP]
and the corresponding degree 1 normal maps f : M — X, f' : M’ — X can be
chosen to be such that f* = fg for a degree 1 normal map g : M’ — M classified
by an element
[9lL € Hn(M;Le) = [M,G/TOP]
such that f.[g]L = ¢(7,7’). The surgery obstruction of g is the assembly of [g]L,
0.(9) = AllglL) € Lm(Z[m1(M)])

and the surgery obstructions of f, f’ differ by
ou(f) = ou(f) = A(flgl) = AQR@, V") € Lin(Z[m (X)]) .
See Chapter 16 of [m for the L-theory orientation of topology.

Let L*® be the O-connective symmetric ring L-spectrum of Z, with homotopy
groups

Z ifm=0 (mod 4)
Zo ifm=1 d4
wn7) = @) = {22 EmEmedd
0 ifm=2 (mod4)
0 ifm=3(mod4).

Theorem 7.1. (Ranicki [[Lg], 25.7)

An m-dimensional homology manifold X has a canonical L®-orientation
[X]L € Hn(X;L®)
with assembly the symmetric signature of X
A([XL) = o"(X) € L™(Z[m(X))) ,
and such that there are defined LL®-coefficient Poincaré duality isomorphisms
[(Xlen— H'(X;L®) = Hp o (X5 L°)

as well as with coefficients in any L*-module spectrum (e.g. L, Ls).
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Proof. See [[Lg] (16.16) for the canonical L*-orientation of an m-dimensional topo-
logical manifold. Let f : M = Xprop — X be the normal map from a topological
manifold determined (up to normal bordism) by the canonical TOP reduction vx
of vx, with surgery obstruction

o.(f) = A(lflu) = A(=i(X)) € L (Z[m1(X)])
the assembly of

[flL = (=i(X),0) € Hn(X;La) = Hin(X;Lo(Z)) ® Hin(X;La) -
The canonical L®-theory orientation of X is given by
XL = flM]L— (A +D)[fle = fo[M]L+ (8i(X),0)
€ Hp(X;L®) = H,(X;L%(Z)) ® Hp(X;1L%(1)) .
O

Let IL* (1) be the 1-connective cover of L*, so that for any space X there is defined
an exact sequence

= Hin (X510 (1) = Hin(X5L%) — Hin (X3 L(Z)) — Hipe1 (X5 L(1)) —

The Oth spaces of L® and L*(1) are related by

L = L%z) x L°(1) ,
so that for an m-dimensional homology manifold X

H,(X;L*) = HYX;L*)

(X, L] = [X,L%(Z) x L%(1)]
HO(X; L%(Z)) & H°(X;1L*(1))
Hopn (X5 LY(Z)) & Hp(X310(1))

12

1%

1%

For a connected X
X = (1+8i(X),[X]) € Hn(X:L*) = Hn(X:L0(2)) & Ha(X:L*(1))
writing the ordinary fundamental class as [X] =1 € H,,,(X; L°(Z)) = Z.
Corollary 7.2. Given an m-dimensional homology manifold X let f : M = Xrop
— X be a normal map from a topological manifold in the canonical class. The
canonical L®-orientation of M is such that
(ML = (1,[M]) € Hn(M;L*) = Hp(M; L%(Z)) & Hpn(M;L5(1))

with
fo ML = =8i(X) + [X]L € Hn(X;L*) ,

My, = [X]p € Hn(X;L5(1)) .

Definition 7.3. Let X be an m-dimensional homology manifold, and let vx : X —
BTOP be the canonical Ferry-Pedersen [@ TOP reduction of the Spivak normal
fibration vy : X — BG, with stable inverse —vx : X — BTOP.

(i) The (rational) Pontrjagin classes of X are the Pontrjagin classes of —vx

pie(X) = pu(~vx) € H*(X;Q) (k2 0) .



HOMOLOGY MANIFOLD BORDISM 37

(ii) The L-genus of X is the L-genus of —vx
L(X) = L(-vx) € H"(X;Q) .
(iii) The £ -genus of X is
LA(X) = 8i(X) +L(X) € H*(X;Q) ,
with components

) 1+8i(X) € HY(X;Q) ifk=0
T ) k() € BHU(X:Q) itk >

The L-genus has the same expression in terms of the Pontrjagin classes of a
homology manifold X as for a topological manifold, with components

Lo(X) = po(X) = 1€ H(X;Q),

LX) = 3n(X) € H'(XQ),

LX) = 5 (Ta(X) ~ (X)) € HY(X;Q) et

The Hirzebruch signature theorem also applies to homology manifolds:

Corollary 7.4. (i) If X is an m-dimensional homology manifold and f : M =
Xrop — X is the canonical normal map then

LM) = fLX)eH"(M;Q) .

(ii) The canonical L®-orientation of an m-dimensional homology manifold X is
given rationally by (the Poincaré dual of) the L -genus

Xe®l = LX) e Hpo(X5L)®Q = Hpse(X;Q) = H¥(X;Q) .
(iii) The signature of a 4k-dimensional homology manifold X is given by
o*(X) = (Lu(X),[X]) e L'™(Z) = Z.

Proof. (i) Immediate from f*(—vx) = mps (stably).
(ii) The canonical L*-orientation of a topological manifold M is given rationally by
the ordinary £-genus

My ®1 = L(M) € Hp(M;L*)@Q = Hypau(M;Q) = H*(M;Q),

with L2 (M) = L(M), i(M) = 0. If f: M = Xrop — X is the canonical normal
map

XL®l = fiML®1+8i(X)
= £ LIM)+8i(X) = L(X)+8i(X) = LH(X) e H*(M;Q) .

(iii) Tmmediate from (ii), the identity o*(X) = A([X]L) of Theorem .1}, and the
fact that the simply-connected assembly map

A . H4k(X;]L.) = H4k(X;LO(Z))@H4k(X;]L.<1>)

O Hag (el L) = LY(2)

sends 84(X) € Har(X; LY(Z)) to 0, with p: X — {} the unique map. O
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Corollary 7.5. Let X = M; be the m-dimensional homology manifold with pre-
scribed resolution obstruction i(X) =i given by the construction of IE applied to
an m-dimensional topological manifold M (m > 6), with normal map f: X — M.
(i) The canonical L®-orientation [ XL € Hp,(X;1L°) is such that

XL = 8i+ [M]L € Hpn(M;L®) .
(i) The LH -genus LH (X) € H*(X;Q) = Hyy—44(X; Q) is such that

fLE(X) = 8i+ L(M) e H*(M;Q)
Proof. (i) For any normal map F' : X — Y of m-dimensional homology manifolds

Fi XL = A+ D[FlL+[Y]L € Hn(Y;L®) .
ForF=f: X—->Y=M
[Fl = i€ Hy(M;L,)

and (14 T)[F]L = 8.
(ii) Immediate from (i) and [.4] O

We shall now analyze the difference
;Xxy—;xx;y : XXY—>G/TOP
for homology manifolds X, Y using the canonical L*-orientation of homology man-

ifolds and the surgery composition and product formulae:

(i) (Ranicki [[[4] (4.3)) The composite of normal maps f : X - Y, g:Y — Z
of n-dimensional Poincaré spaces is a normal map gf : X — Z with surgery
obstruction

0:(9f) = ou(f) ®0ou(g) € Ln(Z[m(2)]) .

(ii) ([4] (8.1)) The product of a normal map f : M — X of m-dimensional
Poincaré spaces and a normal map g : N — Y of n-dimensional Poincaré
spaces is a normal map f x g : M x N — X x Y of (m + n)-dimensional
geometric Poincaré spaces with surgery obstruction

ox(f xg) = 0u(f) ®0u(g) +07(X) ® 0u(g) + 0 (f) ® ™ (Y)
— (M) 80.(9) +0u(f) © (V) € Linyn(Zm(X x V)] .
The formulae are proved on the chain level, using the Eilenberg-Zilber theorem.
Theorem 7.6. Let X be an m-dimensional homology manifold, and let Y be an
n-dimensional homology manifold.

(i) The product (m + n)-dimensional homology manifold X XY has canonical IL®-
orientation the product of the canonical L®-orientations of X and Y

X XYL = X]L®[Y]L € Hngn(X xXY;L®) .
(ii) Let f : Xrop — X, g: Yrop — Y be normal maps from topological manifolds
in the normal bordism classes determined by the canonical TOP reductions Ux,Vy
of vx,vy, and let
h o (X xY)rop — Xrop X Yrop
be the normal map of topological manifolds classified by

(W = i(X) ® [Yropl, + [Xrorl, ®i(Y)
€ Hpin(Xrop X Yrop;Le) = [Xrop x Yrop, G/TOP] .
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The composite normal map

(X X Y)Top L XTOP X YTOP j_><g> X xY

is in the normal bordism class determined by the canonical TOP reduction Uxxy

Of VXxY-
(iii) The canonical TOP reduction

Vxxy : X XY — BTOP
of the Spivak normal fibration of X XY
Uxxy = VUx Xvy : X XY — BG
differs from the product TOP reduction
vx Xvy : XxY — BTOP

by the element

ey, Ux x y) = i(X) ® [V], + [X], ®i(Y)

€ Hpin(X xY;L,) = [X xY,G/TOP].

Proof. (i) This is just the Eilenberg-Zilber theorem on the level of symmetric

Poincaré cycles.
(ii) By construction, f and g are classified by

[flL = —i(X) € Hu(X;La) , [gl = —i(Y) € Ha(Y3La)

By the surgery product formula (on the level of quadratic Poincaré cycles) the
product normal map f X g : Xpop X Yrop — X X Y is classified by
[fx gl = [X]L® gl + [flL ® g« [Yropr|L

= XL ®@i(Y) —i(X)® (1 + [V]) € Hnin(X x V3LL) .

By the surgery composition formula (on the level of quadratic Poincaré cycles)

[(f x @)hJ. = (f x g)«[hlL+ [f x gL
= i(X)® [V, + [X], ®i(Y)
—[XlL ®i(Y) —i(X) @ g«[Yror]L
— LX) i(Y) = —i(X xY)
€ Hypin(X X Y3 Lo(Z)) C Hppyn (X x VL)

so that (f x g)h is in the canonical normal bordism class.
(iii) Immediate from (ii), noting that

(Al = (t(Wxxy,Vx X Vy),0)
S Hern(XTOP X YTOP; Lo) = m+n(X X Y, ]Lo) ¥ Kern
with K4, the (m + n)-dimensional homology kernel of f X g. O

Definition 7.7. For any integers i, j € Z let
txj = 1+j+8ij €L,
so that
(14+8i)(1+8j) = 1+8ixj€cZ.
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Corollary 7.8. Let X,Y be homology manifolds.
(i) The LH -genus of X x Y is
LAXxY) = LYX)oL"(Y) e H¥(X xY;Q) ,
with
LEX xY) = 3 (Li(X)RLj(Y))+ Li(X) @8i(Y) +8i(X) @ Li(Y)

i+j=k
€ H*(X xY;Q) (k>1) .

(ii) (Quinn [[[J)) The resolution obstruction of X x Y is
(X xY) = i(X)*i(Y)eZ.

Proof. (i) This is just the rationalization of the product formula of Theorem [.6|
().

(ii) This is just the 0-dimensional component of the identity of (i). O

As is well-known, the £-genus determines the Pontrjagin classes, so the formula
in Corollary E can be used to determine the Pontrjagin classes of a product ho-
mology manifold X x Y

(X xY) e H¥(X xY;Q) (k> 1)

in terms of the Pontrjagin classes p.(X), p«(Y) and the resolution obstructions
i(X), i(Y).

Example 7.9. If X, Y are 4-dimensional homology manifolds, then the Pontrjagin
classes of the product 8-dimensional homology manifold X x Y are given by

pi(X xY) = pi(X) @ (1+8i(Y)) + (1 +8i(X)) @p:(Y) € H(X xY;Q) ,

P(X X Y) = (L4 2 i(X) iV Dpr(X) © pi(Y) € HY(X x V50)

Corollary 7.10. The homology manifold bordism product for m > 6,n > 6
QTN (K) -, (JxK); X@Y —XxY

m—+n

corresponds under the isomorphisms of@ to the topological manifold bordism prod-
uct

Q507 () [Lo(2)] ® Q0T (K)[Lo(2)] — Q7,25 (J x K)[Lo(Z)] 5

m—+n
M[i] @ N[j] — (M; x Nj)ropli*j] -
Here, i =1(X), j=1(Y), and M = Xpop — X, N =Yrop — Y are the normal
maps from topological manifolds determined by the canonical TOP reductions of
vx, vy, and M; — M, N; — N are the normal maps from homology manifolds
with resolution obstructions I1(M;) =i, I(N;) = j given by Proposition [ The
normal map h: (X X Y)pop — M x N of Theorem [1.4 (ii) classified by

(Bl = i @[N]+ [Mly ®j € Hypyn (M x N;Ly)
is bordant to the composite normal map

F (MiXNj)TOPHMiXNjHMXN.
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Proof The normal maps M; — M, N; — N are classified by
[M; — M, = i€ Hy,(M;L,), [Nj — NJp = j € H,(N;L,) .

Apply the surgery composition and product formulae to compute the classifying
invariant of the composite (M; x N;)rop — M; x N; — M x N

[(M; x Nj)rop — M x N]L
= [(M; x Nj)rop — M; x N;] 4+ [M; x Nj — M x N]
= —i*xj+8ij+iQ[N|L+ [M]L®j

=1Q® [N]I[,+ [M]IL@.] € Hm+n(M X N;]LO) C Hern(M X N;Eo> )
so that (M; x Nj)rop — M x N, (X xY)rop — M x N are normal bordant. O

Remark 7.11. Given an m-dimensional topological manifold M, an n-dimensional
topological manifold N, and i,j € Z let

P = (Ml X Nj)Top

be the (m + n)-dimensional topological manifold appearing in Corollary [.10, and
let F': P — M x N be the degree 1 normal map. The £-genus of P has components

Li(P) = F*((L(M)®L(N))x +8i® Li(N) + Li(M)®8j) € H*(P;Q) (k> 1) .
O

Example 7.12. Take m = n = 4, J = K = {pt.} in [.10. The signature defines
an isomorphism

1 *
wy 2 QO —Z; M §<p1(M)a[M]> = 0" (M)
such that
wy(CP?) = 1.
Linear combinations of Pontrjagin numbers define an isomorphism

ws : BOTRQL-QOQ;
P (5 (502(P) = 291 (P, [P]), 2 {-202(P) + p1 (P, [P])

such that

wg(CP?2 x CP?) = (1,0), wsg(CPY) = (0,1),
with the signature given by
o 0P 0% QeQ 'Y 5(2)2Q = Q;

P a*(P) = $(5p2(P) = 2p1(P), [P]) + = (~2p2(P) + p1(P)*, [P])

— Ol
o] =

= £ (2(P) ~ (P’ [P)) .

If M, N are 4-dimensional topological manifolds then

wg(M x N) = (0" (M)o™(N),0)
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and if P = (M; x N;)rop for some 4, j € Z then
(p(P)?,[P]) = 2(148ixj)(p1(M),[M])(p1(N), [N]),

(p2(P),[P]) = (1+ ?i*j)@l(M),[MD(pl(N),[N]>,
144 144

ws(P) = ((1 = —ixj)o™(M)o™(N), (—i*j)o"(M)o"(N)) .

The product structure on homology manifold bordism
Qe - XYV —XxY

m—+n

therefore does not correspond to the product structure
0T [Lo(Z)]) © Q97 [Lo(Z)] — Q530 Lo(Z)] 5 M) ® N[j] = (M x N)[i* j]

m+n
under the abelian group isomorphism of E
Qf = Q7°F[L(2)] .
However, as stated in Weinberger [E]7 for m > 6 there is an isomorphism of rings
¢ QleQ = (27 Q)L(2)].
We shall now give an explicit description of the isomorphism ¢, which is different
from the isomorphism Qff = QTOP[Lq(Z)] given by [L.6.
Recall that the rational cobordism groups
G eQ = A eQ
are detected by Pontrjagin numbers in dimensions * = 0(mod 4), and are 0 in di-
mensions * Z 0(mod 4). The Pontrjagin numbers of an m-dimensional topological

manifold M with m = 0(mod 4) are rational linear combinations of the character-
istic £-numbers

Li(M) = (Liy(M)Li, (M) --- L3, (M),[M]) € Q ,
one for each k-tuple I = (i1, 42, . .., i) of integers > 1 with 4(iy +ig+- - -+ix) = m.
Conversely, the characteristic £L-numbers of M are rational linear combinations of

the Pontrjagin numbers. Thus the characteristic £-numbers also determine the
rational cobordism class, with isomorphisms

QP Q=Y Q5 MY Lr(M).
I I

Definition 7.13. (i) The £L'-genus of an m-dimensional homology manifold X is

1
/X - - H X H4* X
with components
1€ H(X;Q) ifk=0
LL(X) = I

4k . :

(ii) The L'-characteristic numbers of an m-dimensional homology manifold X are
LX) = (£, (X)L, (X) ... £, (X), [X]) € Q
(I: (il,ig,...,ik),m:4(i1 —|—12—|——|—’Lk))
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with £7(X) =0 if m # 0(mod 4).
(iii) Define a function

¢+ 2 eQ— (7" @QLo(Z)] ; X — (M@ a)i(X)]
using any m-dimensional topological manifold M and a € Q such that
LX) = Li(M)®aeQ
for every I = (i1,19,...,4k) with 4(i1 +io + -+ - +ix) =
The morphism of E
b Q= QOT[Lo(Z)] 5 X = Xropli(X)]

(which is an isomorphism for m > 6) is such that the composite
ol © Q4 (L0 © Q)[Lo(Z Z@ [Lo(Z

sends an m-dimensional homology manifold X to
(D LX) € QO QILo(2)]
I I

The composite
ol @ Q % (QL°F @ Q)[Lo(Z Z@ [Lo(Z

sends an m-dimensional homology manifold X to
O L) @a)[i(X)] = O LyX)EHX)] € (D Q)[Lo(2)]
I I I
so that ¢ # 1. The inverse of ¢ for m > 6 is given by
vt QTOP(Ly(Z)) — Q5 N[i] — N;

with NV; the homology manifold with resolution obstruction ¢ obtained by the con-
struction of E The composite

Q197 2 Q)[Lo(Z)] "= Q2 @ Q@ % (VIOF @ Q)[Lo(Z)] = (3 Q)[Lo(2)]
I

is given by

WithI:(il,iQ,...,ik),m:4(i1 —|—12—|——|—’Lk)

Proposition 7.14. (i) The function ¢ : Qf @ Q — (QLOF ® Q)[Lo(Z)] is a ring
morphism which is an isomorphism for m > 6.
(ii) The rational homology manifold bordism product

QneQ (@] 9Q) - 25,,®Q; (X®Y) - (X xY)
corresponds under ¢ to the rational topological manifold bordism product
QR0 @ Q)[Lo(Z)] ® (2797 @ Q)[Lo(Z)] — (.35 © Q)[Lo(2)] ;
(M®a)i] @ (Neb)jl— (M x N)®ab)ixj] .
Herei=i(X), j=i(Y), and M @ a=¢(X), N@b=¢(Y).
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Proof. We know from E that the morphism of abelian groups
v QT 0Q — (019F @ Q)[Lo(Z ZQ NLo(Z)] 5 X = (O L1(X)[i(X)]
I

is an isomorphism for m > 6. It follows that the morphism of abelian groups

¢ Q- (207 ©Q)[L(Z Z@ [Lo(Z)] ; X = (D LH(X)[i(X))]
I

is also an isomorphism for m > 6. It remains to show that ¢ preserves the multi-
plicative structures. By [.§ (ii)

PX xY) = (P&c)[i*]]

for some element P ® ¢ € QTP © Q. We need to show that

m—+n

Pc = (MxN)®@abec QP 2Q.

m+n
From the above we see that M ® a and N ® b correspond to the £L-numbers
Li(M®a) = LX) and LI(N ®b) = L}(Y) € Q respectively.
We compare these £-numbers with those of P ® ¢, which are given by
Li(Pec) = LIY(XxY)eQ.
We observe that by [.§ (i)

1

1
= —— A X)ecly
14+8ixy (X)® (¥)
= L(X)®L(Y)e H*(X xY;Q),
and that the £-numbers satisfy the following product formula

Li(MxN)@ab) = Y L;(M®@a)Lx(N@b)eQ,
JK

with I = (il,iQ, .. .,il), and J = (jl,jQ, .. .,jl), K= (kl,kQ, . ..,kl) such that
Ji+ki = i1, otk = G2, ..., it k=1,
Conversely

S LM @a)li(N@b) = S LX) (Y)
JK J K
= 2 L5(X) @ Lyk(Y)
JK

= (LX) L)
= L)X xY)
= Li(P®c)eqQ.
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