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FOREWORD 

This volume contains the Notes of a seminar on Intersection Homo- 

logy which met weekly during the Spring 1983 at the University of Bern, 

Switzerland. Its main purpose was to give an introduction to the piece- 

wise linear and sheaf theoretic aspects of the theory (M. Goresky and 

R. MacPherson, Topology 19(1980) 135-162, Inv. Math. 72(1983) 17-130) 

and to some of its applications, for an audience assumed to have some 

familiarity with algebraic topology and sheaf theory. 

These Notes can be divided roughly into three parts. The first one 

(I to IV) is chiefly devoted to the piecewise linear version of the 

theory: In I, A. Haefliger describes intersection homology in the 

piecewise linear context; II, by N. Habegger, prepares the transition 

to the sheaf theoretic point of view and III, by M. Goresky and R. Mac- 

Pherson, provides an example of computation of intersection homology. 

The spaces on which intersection homology is defined are assumed to 

admit topological stratifications with strong local triviality pro- 

perties (cf I or V). Chapter IV, by N. A'Campo, gives some indications 

on how the existence of such stratifications is proved on complex 

analytic spaces. 

The primary goal of V is to describe intersection homology, or 

rather cohomology, in the framework of sheaf theory and to prove its 

main basic properties, following the second paper quoted above. Fami- 

liarity with standard sheaf theory, as in Godement's book, is assumed. 

However, this paper makes use of considerably more material on con- 

structibility, derived categories, Verdier duality and biduality. A 

second goal of V is then to supply an essentially self-contained 

account of what is required. This material is gradually introduced, 

according to the needs of the discussion of intersection cohomology. As 

a consequence, some auxiliary results are proved first only in special 

cases. To compensate for that, a section on various identities in de- 

rived categories of sheaves has been added. 



vi 

VI, by P.P. Grivel, is devoted to some basic properties of direct 

and inverse images functors and complements on some points w167 1,6,7 

of V . 

The third part (VII to IX) contains a description by M. Goresky 

of some work of P. Siegel of cobordism, the statement of a Lefschetz 

fixed point theorem in intersection cohomology (M. Goresky and 

R.MacPherson) and finally a discussion of open problems and a compre- 

hensive bibliography on intersection homology, also by M. Goresky and 

R. MacPherson. 

To complete the picture, I should at least mention an important 

item left out of these Notes, the so-called "decomposition theorem", 

pertaining to middle intersection cohomology of projective varieties, 

whose proof, at this time, makes use of characteristic p methods which 

were outside the scope of this seminar (see ref. [A] of IX). In fact, 

R. MacPherson gave a lecture on the decomposition theorem and on some 

of its uses to make effective computations, but no written version was 

included in the Notes, since it was felt it would be too much of a 

duplication with existing or forthcoming literature (see e.g. ref.[20] 

in IX). 

A preliminary version of these Notes was circulated beforehand, 

with the hope of eliciting comments and corrections. This was parti- 

cularly successful with Ludger Kaup and two of his colleagues at 

Konstanz university, namely G. Barthel and K.-H. Fieseler, who read it 

meticulously and pointed out a great number of misprints and oversights, 

for which the authors of the various chapters are very grateful. 

In drafting my own part, I was also very fortunate to benefit from 

the help of N. Spaltenstein. He checked various versions of the text 

with extreme care and suggested many changes, whether corrections, 

simplifications, alternate arguments or additions, which have consi- 

derably improved the text. I am very grateful to him for his assistance, 

which goes way beyond the few changes which have been specifically 

attributed to him in the text, and has much speeded up the preparation 

of the final text. 
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Finally, I would like to thank the editors of the Progress in 

Mathematics PM and Birkhiuser-Boston for their willingness to view 

this volume as the first of a subseries emanating from activities in 

Switzerland, although it must be said that, at this point, it cannot 

be guaranteed that it will have (m)any successor(s). 

A. Borel 

Zurich, July 1984 
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I : INTRODUCTION TO PIECEWISE LINEAR INTERSECTION HOMOLOGY 

by A. Haefliger 

i_. Pseudomanifolds and s trat i f icat ions  

i.i Topological stratified pseudomanifolds. The definition is 

by induction on the dimension n. A stratified pseudomanifold X of 

dimension n is a topological space X with a filtration 

X = XnDXn_2mXn_3m...mXlDX0mX_l = 

by closed subspaces such that 

(i) Sn_ k = Xn_k-Xn_k_ 1 is a topological manifold of 

dimension n-k (if Sn_ k is non empty). 

(ii) X-Xn_ 2 is dense in X. 

(iii) local normal triviality : for each point x6 S 
n-k' 

there is a compact stratified pseudomanifold L of 

dimension k-i 

L = Lk_IDLk_3D...~LoDL 1 = r 

and a homeomorphism h of an open nbhd U of x (called a 
o 

distinguished nbhd of x) on the product B• where B is 
o 

a ball nbhd of x in Sn_ k and cL is the open cone 

Lx[0,~[/(x,0)~(x',0) over L. Moreover h preserves the 

stratifications, namely h maps homeomorphically UnXn_ Z 
o 

on Bxc Lk_Z_ 1 (by definition, the cone on the empty set 

is just a point). 
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Xn_ 2 is often called the singular locus Z of the stratified 

pseudomanifold X. 

Example. Let X be the algebraic variety in C 3 defined by the 1.2 

equation 

2 2 
y z = x 

The singular locus [ = X 2 is the complex line x=y=0. To get the 

normal local triviality, we need to include the origin in X 0. Note 

that X-X 2 is dense in X in the complex picture. 

1.3 Pi-pseudomanifolds. Recall that a pl-space X (i.e. 

piecewise-linear) is a topological space with a class of locally 

finite simplicial triangulations of X : two admissible triangulations 

T and T' should have a common linear subdivision and any linear 

subdivision of T should be admissible. 

Any open set U of X has an induced pl-structure : for any 

admissible triangulations T of X and T of U, then there is a linear 
U 

subdivision of T such that each simplex is contained linearly in a 
U 

simplex of T. A closed pl-subspace of X is a subspace which is a 

subcomplex of a suitable admissible triangulation of X. 

picture showing a 

triangulation of the 

open half-plane 

A pl-pseudomanifold X of dimension n is ~ pl-space X of 

dimension n containing a closed pl-subspace [ of codimension ~ 2 such 

that X-[ is a pl-manifold of dimension n dense in X. 

Equivalently, for an (admissible) triangulation of X, then X is 

the union of the closed n-simplices and each (n-l)-simplex is face of 

exactly two n-simplices. 
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A stratified pl-pseudomanifold X of dimension n is a 

pl-pseudomanifold with a stratification XDXn_2mXn_3~... by closed 

pl-subspaces such that Sn_ k = Xn_k-Xn_k_ 1 is empty or a 

pl-manifold of dimension n-k and such that the local normal 

triviality holds in the pl-category (namely L is a pl-stratified 

pseudomanifold and h is a pl-homeomorphism). 

1.4 PROPOSITION : Any pl-pseudomanifold admits a pl-stratifica- 

tion. 

Proof. Let T be a triangulation of X such that Z is a 

subcomplex of T, and define X k as the union of the closed 

k-simplices of dimension ~ k contained in Z. Hence Xn_k-Xn_k_ 1 is the 

union of the interior of the (n-k)-simplices contained in [. 

To check the local normal triviality, consider the first 

barycentric subdivision T' of T. For a (n-k)-simplex O of T contained 

in [, let D' (O) (resp. L' (O)) be the union of those simplices of T' 

whose vertices are the barycenters ~ of the simplices T of T 

containing O (resp. containing O and different from O). 

D' (o) will be called the dual complex of 0 and L'(O) the link 

of O in T'. Note that D' (0) is the join O*L' (O) of the barycenter 

of O with L' (O), so D' (O) is the cone over L' (O) and the interior 

D~ of D' (O) is the open cone on L' (O). Also the union St' (O) of the 

closed simplices of T' containing the barycenter of O is the join 

~ O * D '  (O) �9 

We consider on L' (o) the stratification induced by the 

stratification of X. The interior of St'(o) is pl-homeomorphic to 

o 
(interior of O) xD (o) by a pl-homeomorphism compatible with the 

filtrations. 
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1.5 Basic example. X is a complex analytic space whose 

irreductible components are all of dimension n over ~. 

By a theorem of Lojasiewicz [7] there is a semi-analytic 

triangulation of X such that the singular locus of X is a subcomplex 

(more generally such that a given locally finite family of complex 

analytic subspaces of X are subcomplexes). For such a triangulation, 

X is a pl-pseudomanifold of dimension 2n and it can be stratified as 

above. 

Of course such a stratification is very artificial. Better 

topological stratifications with even dimension strata can be 

obtained (cf. [9] p.220 and the expos4 of A'Campo, IV). There exist 

such a pl-stratification on X such that the local normal triviality 

holds in the pl-category. 

Anyway later on it will be proved that the intersection homology 

is a topological invariant independent of the particular choice of 

the stratification and of the pl-structure. 

1.6 Normal pseudomanifolds and normalisation. A pseudomanifold 

x is normal if each point x has a fundamental system of 

neighbourhoods U whose regular part U-[ is connected. 
o 

If X is stratified and if U~BxcL is a distinguished nbhd of x, 

then U is normal iff L is a normal pseudomanifold and is connected. 

For any stratified pseudomanifold X, there is a normal 

pseudomanifold ~ with a projection ~ : ~ ~ X uniquely characterized 

-i 
by the property that the points of z (x) are in bijection with the 

connected components of the regular part of a distinguished nbhd U 

of x. The stratified pseudomanifold ~ (where __X~- k = ~-l(Xn_k)) 

together with the projection ~ : ~ ~ X is called the normalisation of 

X. 

If X is a complex analytic space, then the normalisation of X as 

an analytic space is topologically equivalent to the normalisation in 

the above sense for the pseudomanifold X. 

The normalisation can be constructed by induction on the 
o 

dimension. If U = BxcL is a distinguished nbhd and if the normalisation 

of L has been constructed, then the normalisation ~ of U is the 

disjoint union of the B• where the ~. are the connected components 
1 l 

of ~. 
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As an example, the normalisation of the cone over a pinched 

torus is the cone over a 2-sphere, so is a 3-ball. 

2. Geometr ic  cha ins  on a p l - s p a c e .  

2.1 Let X be a (locally finite) pl-space and R be an abelian 

T 
group. For a triangulation T of X, we denote by C.(X;R) the complex 

of (possibly infinite) simplicial chains of T. An element ~ of 

C~(X&R) is a function associating to each oriented i-simplex @ of T 

an element ~(O) of R (and to the simplex O with the opposite 

orientation the element -~(@)). The support I~i of ~ is the union of 

the closed i-simplices o of T such that ~(~) ~ 0. This is a closed 

pl-subspace of X. 

Let T' be a subdivision of T. There is a natural morphism of 

T T' 
complexes C. (X~R) ~ C. (X,R) associating to the i-chain ~ the 

simplicial chain ~' defined as follows : for an oriented i-simplex 

O' of T', then 6'(0') = 0 if O' is not contained in a i-simplex of T 

and ~' (O') = ~(O) if O' is contained in the i-simplex O of T with the 

coherent orientation. In general for two triangulations T and T' of X 

T ~, T' 
we say that ~6 C (X~R) and 6 C i (X;R) define the same geometric 

l 
T" 

chain if their image in C (X~R), where T" is a common linear 
1 

subdivision of T and T' are the same. Roughly speaking, to define a 

geometric chain ~, one uses a particular triangulation and then one 

forgets it. 

This equivalence relation preserves the support, so that the 

support i~l of a geometric chain ~ is a well defined pl-subspace of X~ 

If R is the group of mod 2 integers, then a geometric chain is just 

a closed pl-subspace, of pure dimension, namely its support. 
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2.2 Definition. The complex of geometric chains of X with 

coefficients in R will be denoted by C. (X;R) and its homology by 

H. (X;R) (and called the homology with closed supports of X or the 

Borel-Moore homology of X). 

The subcomplex of geometric chains with compact support will be 

denoted by C~(X;R) and its homology by H~(X;R) (and called the 

homology with compact support of X) ~ 

The classical proof that the simplicial homology of X is 

isomorphic to its singular homology shows that H~(X;R) is isomorphic 

to the homology of the complex of locally finite singular chains 

(called homology of the second kind in the Cartan Seminar, chapter 5) 

and also to the Borel-Moore homology of X without restriction on the 

supports. 

As we don't use the standard notation, we emphazise once more 

that 

H. (X;R) denotes the homology with closed supports of X 

c 
H.(X;R) denotes the usual homology of X. 

(Of course if X is compact, these two homologies are the same.) 

For instance 

~qn;R) = I R i=n 

Hi 0 i#n 

c I R i=0 
Hi~Rn;R ) = 

I 0 i~O 

If R is a field, then the universal coefficient theorem glves 

HI(X;R) = Hom(H C(x;~) ,R) 
1 

Hi(X;R) = Hom(Hci(X~) ,R) 

where H'denotes the singular cohomology. 

Any open set U of X has an induced pl-structure (cf.l.3). 

Let ~ be a geometric chain of dimension i defined using a 

triangulation T of X; let T be a triangulation of U such that each 
U 

k-simplex of T is contained in a simplex of T. The restriction 
U 

~IU of ~ to U is the geometric chain represented by the simplicial 
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chain of T which associates to an oriented i-simplex ~ of T the 
U U 

element ~(~), when ~ is a i-simplex of T containing ~ (with the 

coherent orientation), and 0 otherwise. In this way, the inclusion 

j : U ~ X induces an homomorphism 

2.2.1 j* : H (X~R) -* H. (U~R) 
1 1 

called the restriction homomorphism. 

Similarly we have an inclusion of the complex of geometric 

chains with compact supports in U in C~(X) inducing a homomorphism 

2 2.2 j. : H c -~ HC(x~R) . i (U~R) 

For a closed pl-subspace Y of X one can define the complex of 

relative geometric chains C. (X,Y~R) as lim C~(X~R)/c~IY(Y~R),- - where 
-~T 

the limit is taken over those triangulations T of X for which Y is a 

subcomplex. 

The homology of this limit will be denoted by H.(X,Y~R). 

The restriction map C.(X~R) ~ C. (X-Y~R) induced by the inclusion 

of X-Y in X gives a map C. (X,Y~R) ~ C.(X-Y~R). 

2.2.3 Fact : This map induces an isomorphism 

Hi(X,Y~R) ~ Hi(X-Y~R) (cf. Borel-Moore [1] . An elementary proof can 

be given by induction on the simplices of a triangulation T). 

2.3 The fundamental geometric cycle of an oriented pl-pseudo- 

manifold X. An orientation of a pl-pseudomanifold X of dimension n is 

an orientation of its regular part. It is given by a coherent orien- 

tation of all the n-simplices of a triangulation T of X. In other 

words, the chain associating 16~ to an n-simplex with the chosen 

orientation is an n-cycle the corresponding geometric cycle will be 

denoted by X and called the fundamental cycle of the oriented 

pseudomanifold X. Its support is the whole of X. 

More generally if R is a ring (with unit i), an R-orientation of 

X is a geometric cycle [X] with coefficients in R with support X and 

associating to each oriented n-simplex +i. 
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Its restriction to an open set U of X gives an R-orientation 

of U. 

2.4 The Poincar4 duality map. Let T be a triangulation of X and 

let C~(X,R) be the complex of simplicial cochains of T with coeffi- 

cients in R. Let T' be the first barycentric subdivision of T. 

An R-orientation [X] of the pseudomanifold X induces a 

natural morphism of complexes 

n-. n[x] C~' 
C T (X:R) , (X,R). 

It maps the cochain associating 1E R to the oriented (n-k)-simplex 

T' 
g and 0 to the others on the k-chain of C (X;R) with support D' (O) 

k 

(cf.l.4) and multiplicity one for a suitable orientation ; its boundary 

is the fundamental cycle of the pseudomanifold L'(U) for a suitable 

R-orientation. See Mc Crory [8] , for an explicit formula. 

This map induces homomorphisms 

n-k n[X] 
H (X;R) , Hk(X;R) 

nix] c 
H~-k (X; R) , Hk (X,R) 

(more generally it preserves a family of supports). 

For a n-manifold, this map induces the Poincar~ duality 

isomorphism. 

3. Defrnilion of rnte~ec~on homology 

3.1 Perversity. A perversity p is a function associating to each 

integer k, 2-<k<n, an integer p(k) such that 

p(2) = 0 and p(k) -< p(k+l) -< p(k)+l. 
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The graph of p looks like stairs with steps of height 0 or 1 : 

The o-perversity is the function o(k) = 0 and the top perversity 

t is the function t(k) = k-2. 

The middle perversities n or m are the functions taking the 

values 0,1,i,2,2,... or 0,0,1,i,2,... 

Two perversities are complementary if p(k)+q(k) = k-2. 

For instance o and t are complementary as well as m and n. 



1,3.2 l0 

3.2 Definition of intersection homology. Let X be a 

pl-pseudomanifold of dimension n with a given stratification 

X = XnDXn_2m...DX0=~. 

The group I C. (X;R) of intersection chains of dimension i and 
p 1 

perversity p is the subgroup of geometric chains ~6C i(x;R) such that, 

for each subspace Xn_k, 

< i-k+p (k) diml~ I n Xn_ k_  

< i-l-k+p (k) diml~l A Xn_ k_ 

Because of the condition imposed on ~, I C. (X;R) is a subcomplex 
P 

of C.(X;R) whose homology will be denoted by I H (X;R) (or 
pl 

I Hn-i(x;T~R) in Borel's notation, where Y is the orientation sheaf of 
P 

the regular part of X). 

We make a few obvious remarks to clarify the definition. If X 

were a manifold, a chain ~ of dimension i in general position with 

respect to the stratification would satisfy dimI~l N Xn_k ~ i-k. So the 

perversity p(k) is the extra amount of this intersection dimension 

which is allowed. Note that an intersection chain ~ is never contained 

in the singular locus Z = Xn_ 2 since the codimension in I~I of the 

intersection of I~I with ~ is at least 2. In particular any 0 or 

1-dimensional intersection chain has its support contained in X-~. 

Any n-cycle in C (X;R) is in I C (X;R). Two intersection chains 
n pn 

in I C (X;R) are equal iff their restriction to X-Z are equal. 
pl 

It follows easily that if ~ : ~ ~ X is the normalisation of X, 

then ~ induces a bijection of I C.(X;R) on I C.(X;R), so that the 
P P 

intersection homology of ~ and X are the same. 

If p and p' are two perversities such that p(k) = p'(k) for all 

k such that Xn_k-Xn_k_ 1 ~ ~, then IpC.(X;R) = Ip,C. (X;R). In 

particular if all the strata are of even codimension, then the two 

middle perversities n and m give the same intersection chains. 
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One has a natural inclusion I C (X;ZZ)@RC I C (X;R) which is not 
pl pl 

surjective in general (because of the condition on ~), so there is 

no universal coefficient theorem in general. 

For an open set U of X with the induced stratification, the 

inclusion j : U ~ X induces by restriction (resp. inclusion) maps 

I C. (X;R) ~ I C. (U;R) 
P P 

c c 
I C. (U;R) ~ I C. (X;R) 
P P 

where I C~ denotes the subcomplex of intersection chains with 
P 

compact support. Passing to homology, we get homomorphisms functorial 

with respect to inclusion 

3.2.1 j* : I H. (X;R) ~ I H. (U;R) 
P P 

c c 
3.2.2 j, : I H. (U;R) ~ I H. (X;R) 

P P 

c c 
where I H. (X;R) denotes the homology of the complex I C. (X;R). 

P P 
In particular for the injection j of X-Z in X, we have that 

j. : HC(x-Z;R) -~ I HC(x;R) 
o p o 

is an isomorphism and is surjective in dimension one. 

For pSp' (i.e. p(k) Sp' (k) for all k), we have an inclusion 

IpC. (X;R) ~ Ip,C. (X;R) inducing a homomorphism 

3.2.3 IpH. (X;R) ~ Ip,H. (X;R) p<-p' 

If X is an R-orientation of X (cf.2.3), then, for any 

triangulation T of X such that the Xn_k'S are subcomplexes, the map 

f] Ix] : C$ -1 (X R) -~ C i (X R) 

described in 2.4 factorizes through I C. for any p (since 
p l 

[D'C]6IoC i) and gives homomorpbisms 
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NIx] : Hn-I(X;P0 -~ I H. (X;R) 
p 1 

c 
N[X] : Hn-I(x;R) -~ I H. (X;R) 

c p i 

4. List  of t~e main properties of i~t~rsect ion homology 

X is assumed to be a stratified pl-pseudomanifold of dimension n. 

4.1 Relation with cohomology and homology. If X is a normal 

pseudomanifold, then the natural map 

I H. (X;R) ~ H. (X;R) 
t 

induced by the inclusion ItC. (X;R) ~ C. (X,R) is an isomorphism. 

This is also valid for homology with compact support. 

If X is R-orientable and if X in an R-orientation, then the 

natural map 

n-i 
n[X] : H (X;R) -* IoHi(X;R) 

is an isomorphism, as well as 

N[X] : Hn-l(X;R)c -~ IoHC(x;R) 

4.2 Intersection pairing. Assume that p,q and r are perversities 

such that 

p(k)+q(k) < r(k) for all k 

and that X is R-oriented. 

Then there are bilinear intersection pairings 

N 
Ip IH" (X;R) XIq ]H (X;R) ~ IrHi+j_n(X;R) 

I HC. (X;R) xI HC(x;R) ~ c (X;R) 
p i q j IrHi+j-n 

c 
I H. (X;R) xI H (X;R) ~ c (X;R) p 1 q j IrHi+j-n 
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If j is the inclusion of the open set U in X, then the first is 

compatible with the restriction j* to U and the second with j,o For 

c 
the third one, for ~6 I H. (U~R) and ~6 I H (X~R) , one has 

P • q 3 

When restricted to the regular part they give the usual 

intersection product corresponding to the cup product under Poincar4 

duality. 

These intersection products are associative and commutative in 

the graded sense, namely ~A~ = (-i) (n-i) (n-j)~n~. 

Representative geometric cycles ~ and ~ for ~6I H (X;R) and 
p 1 

~6 I H (X;R) can be chosen such that dim([~Inln I) -< i+j-n = Z and 
q 3 

dim(l~inl~ I Xn_ k) -< ~-k+r(k) ;then a representative for (~D~ has its 

support contained in l~INlnl. 

4.3 Poincar4 duality. Let p be a perversity and q be the 

complementary perversity (so p(k)+q(k) = k-2). 

Assume that R is a field and that X is R-oriented. 

Then the intersection pairing 

I H. (X;R)• H c , (X;R) N~ I HC(x;R) 
p 1 q n-i to 

c 
composed with the augmentation ItHo(X;R) = Hc(X-[)s R gives a 

pa i r ing  

I H. (X;R) • H c . (X;R) ~ R 
p • q n-i 

which is non degenerate, in the sense that it induces an isomorphism 

--~ H c I H (X;R) ~ Hom(I . (X;R),R). 
p i q n-i 
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4.4 Independence of the stratification and topological 

invariance. I H. (X,R) is independent of the stratification of the 
P 

pl-pseudomanifold X. Moreover I H. (X;R) is finitely generated if X is 
P 

compact. 

All of these properties are essentially proved by Goresky and 

Mac Pherson in their first paper [3] .In their second paper [4] , 

using sheaf theoretical techniques, they also define intersection 

homology for topologically stratified pseudomanifolds and prove the 

independance with respect to the stratification. So the groups 

I H are topological invariants of X. 
P 

5. Examps : pseudoman~fos wit~ i so la ted  s i n g u l a ~ e s  

5.1 Let X be a pl-pseudomanifold of dimension n whose singular 

set Z = X is of dimension 0. 
o 

For a given perversity p, only the integer p(n) is relevant, 

where 

0-<p (n) _<n-2 

Let ~ be the family of closed sets in X which are contained in 

X-X (so if X is compact, 9 is the family of compact sets in X-X ). 
o o 

We denote by Ct(X-X ) the complex of geometric chains in X-X whose 
o o 

support belongs to ~ and by H. (X-X) its homology. 
o 

A ring R of coefficients is understood throughout. 

A geometric chain ~ of dimension i will satisfy the perversity 

condition iff 

dim l ~Inx -< i-n+p(n) 
o 

dim I ~iAX O _< i-l-n+p (n) 

So 

I C. (X) = 
p i 

C? (X-X) i~n-p (n) 
1 o 

C i (X) A~-Ic~_I (X-X o) i=n-p (n) 

C. (X) L~n~p (n) 
1 
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hence 

5.1.1 

I H. (X) = 
p i 

H~ (X-X o) i<n-p (n) -i 

Im : H~ (X-X o) -~ H i (X) i=n-p (n) -i 

H i (X) i>n-p (n) -i 

Let q be the complementary perversity, so q(n) = n-p(n)-2. 

Similarly we hav$ for the homology with compact supports 

5.1.2 

I H c (X) = 
q I 

H c (X-X) i<n-q (n) -i 
i o 

c C 
Im: H. ( X - X )  ~ H.  (X) i = n - q ( n ) - i  

1 o 1 

H c (X) i > n - q  (n)  - 1  
1 

Note that for i>l, H (X) ~ H (X-X) (because Hi(X o) = 0) and 

for iZl , that Im(H~(X-X ) ~ H. (X)) = Im(Hi(X-X O) ~ Hi(X-Xo)) (resp. 
c Cil o 1 c C 

for i>l Hi(X) = H (X-X) and for ikl Im(H[(X-Xo)l ~ H (X))l = 
c ~l O 

= Im(Hi(X-X o) ~ Hi(X-Xo)) where c' is the family of closed sets in 

X-X which are relatively compact in X). 
o 

Alternatively, if we remove from X open conical neighbourhoods of 

each point of Xo, we get a manifold X with boundary DX the disjoint 

union of the links of the points of X . The inclusion of X in X-X 
o o 

induces isomorphisms 

c c 
Hi(X) = H1 (X-Xo) 

H i (X) = H~ (X-X o) 

c c I 
H i(X,~X) = H i (X-Xo) 

Hence I H. (X) can be expressed just in terms of the homology of 
p 1 

the regular part X-X with suitable families of supports. So if we 
o 

denote by j the inclusion of X-X in X, we can express 5.1.1 as 
o 

5.1.1' H ~(x-x o) ~ I H. (X) i<n-p(n)-i 
i ~ p 1 

H~(X-X. ) J*, I H. (X) ~J*, H. (X-X) i=n-p(n)-i 
i o p i i o 

C j* I H (X) ~ Hi(X-X O) i>n-p(n) 
p 1 ---~ 
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and similarly 5.1.2 as 

J, 
c H c H. (X-X) ___, I . (X) i<n-q(n)-i 
1 o q l 
c J* e j* c' 

H. (X-X) '' I H (X) r , H. (X-X) i=n-q(n)-l 
l o q i �9 o 

j* c i 
I H c. (X) c , H. (X-X) i>n-q(n)-i 
q i _~ l o 

All the properties of 4 can be checked directly using familiar 

properties of the homology of the regular part X-X . This exercise is 
o 

very much recommended 

As an example, let us check Poincar@ duality in the critical 

dimension i=n-p(n)-i and n-i=n-q(n)-l, assuming X compact for 

simplicity. We assume that R is a field and that X-X is R-oriented. 
o 

We have the diagram 

(x-x) (x-x) H i (X-X O) • H c ~ H c 
n-i o o o ~ s 

N E 
I H. (X) • I H. (X) , I H (X) , R 

j* j* C 

x H n • ~ H c ( x - x  ) H c (X-Xo) 
-' o o 

The middle line is a non degenerate pairing because the first 

and third lines define non degenerate pairings by Poincar~ duality 

in X-X . 
o 

5.2 Cone over a manifold. Assume that L is a compact manifold 

of dimension n-i and that X is the open cone cL on L, namely the 

quotient of Lx[0,co[ by the equivalence relation which identifies 

Lx{0} to a point (the vertex of the cone). 

By 5.1.1 and 5.1.2, we have 

o I 0 i-<n-p (n) -i 

I H (cL) = I (L) i>n-p(n)-i 
p i Hi_ 1 
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I H. (L) i<n-q(n)-i 
c o l 

I H (cL) = 

q 1 0 i>-n-q (n)-i 

5.3 The Thom space of a vector bundle. Let ~ : E --~ V be an 

oriented real vector bundle of rank r over a compact manifold V of 

dimension m. 

Let X be the Thom space of E : it is the one-point compactifica- 

tion X = EU {~} of E. One can also describe it as follows. 

Let us introduce a scalar product in the fibers of E and let B 

be the r-ball bundle over V formed by all vectors of E of norm ~ i. 

Its boundary S is a (r-l)-sphere bundle associated to E. Then X = BU cS 

in the union of B with the cone over S. It is a pseudomanifold of 

dimension n = m+r with one singular point : the vertex X = {~} of the 
o 

cone. 

Let e6 Hr(v;~) be the Euler class of E. We have the isomorphism : 

H i (E) --~ H (V) 
1-r 

c 
H.I(E) -~ H i(v) 

and the commutative diagram 

H c (E) ~ H i (E) 

Ne 
H i(v) ~ Hi_ r(v) 

Hence by 5.1.2 

5.3.1 

I H. (X) : 
p z 

H i (V) i<n-p (n) -i 

Ne 
Im: H i (V) ----~ H.z_r (V) i=n-p (n] -i 

H. (V) i>n-p (n) -i 
l-r 

(Thom isomorphism)* 

If an element of H. (V] is represented by the geometric cycle ~, 
l-r 

then the corresponding element in H. (E) is represented by 
z 

-1 (~). 
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since, for i~l, H. (X) H. (X,~) = H. (E) (V). 
i 1 1 Hi-r 

In particular, if m=r and p(n) = m-I (middle perversity), then 

I H (X;m) = 
p I 

I H (V) i<m 

i=m 

H. (V) i>m 
l-m 

where ~ denotes here the Euler number of the oriented bundle E, namely 

the evaluation of the Euler class of E over the fundamental class IV] 

of V (we have assumed V oriented and connected). 

Using the diagram 5.1.3, we can check that the intersection 

pairing 

I H (X)• H (X) -, 
pm pm 

maps (ea,eb) on eab. Hence one does not have Poincar4 duality over 

(modulo torsion) if lel # i. 

5.4 The projective cone over a projective variety. Let V be a 
N-I 

smooth algebraic variety with dimcV = m-l, embedded in CP considered 

as a hyperplane in CP N. Let X be the projective variety in CP N union 

N-I 
of the projective lines passing through a point o ~ CP and any point 

of V. 
Topologically, X is the Thom space of the line bundle over V 

corresponding to an hyperplane section (equivalently the restriction to 

V of the normal bundle of CP N-I in CP N) . 

For the middle perversity and rational coefficients, we have by 

5.3.1 

IH (X) = 
1 

H.(V) i~m 
1 

Hi_2(V) ~m 

because in dimension m, the cap product with the Euler class is the 

map Hm(V) ~ H m_2(v) given by intersection with a hyperplane section H 

which is an isomorphism by the hard Lefschetz theorem for V 

( cf. Griffiths-Harris, [5]). 
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For i>m, the isomorphism IH i (X) --* Hi_ 2 (V) is induced by 
N-I 

intersection with the hyperplane CP 

In that particular case, it is easy to check the hard Lefschetz 

theorem for X, namely that the map 

DH k : IHm+k(X) ~ IHm_k(X) 

obtained by iterating k times the map H induced by intersection with 

a hyperplane is an isomorphism (it is well defined because a generic 

hyperplane section is of perversity o), the coefficients being the 

rational numbers. 

This follows from the commutativity of the diagram 

f]H k-I 

Hm+k_ 2 (V) : : Hm k (V) 

~T ~ - "~ NH k 
IHm+ k (X) ~ IHm_ k (X) 

and the fact that the top horizontal map is an isomorphism (by the 

hard Lefschetz theorem for the smooth algebraic variety V). 

Note also that the link of the singular point of X is the circle 

bundle S associated to the line bundle ~. So according to 5.2, if U is 

an open conical neighbourhood of the singular point of X, we have 

IH~(u) = I~ i<~ 
Hi_ 1 (X) i>m 

The Thom-Gysin exact sequence of the circle bundle S ~ V gives for 

i>m+l the short exact sequence : 

DH 
0 ~ Hi(V) , Hi_2(V) ~ Hi_I(S) ~ 0 

because for i>m-i the map DH is injeetive (again by the Lefschetz 

theorem). A complement of the image of nH is the subspace Pi-2 of 

Hi_2(V) made up of the Poincar~ dual of the primitive elements. Recall 



1,5.4 20 

k 
that the space 1 ~ of primitive elements of degree k, where 

k<dim V = m-l, is the subspace of Hk(v;@) formed by the elements 
C 

n-k 
such that L ~ = 0, where L is the map induced by cup product with 

the class dual to a hyperplane section. By the theorem of Lefschetz, 

s r-2s r 
H (V,~) = @ L P 

hence @Hr(V,~) = @ pk @ ImL. 

Hence we get 

IH. (U) = 
l 

0 i-<m 

Pi-2 i>m 
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II. FROM PL TO SHEAF THEORY 

(Rock to Bach) 

Notes by Nathan Habegger 

w 0 INTRODUCTION 

We m~dern mathematicians often tend to hide the primitive 

beginnings of our knowledge, much to the detriment of beginning 

students. Of course, we are each entitled to have our own preference 

in music. But let's not forget that to the original geometers, homology 

was not a derived functor on the category of sheaves, nor a functor 

from spaces to groups satisfying axioms 1-7. Homology was space itself, 

space with multiplicities. 

It seems fitting that intersection homology was born out of the 

study of the geometry of cycles themselves. (M. Goresky and 

R. MacPherson attribute their motivation to questions posed by 

D. Sullivan). However there was perhaps a danger of the subject 

remaining little more than a curiosity, in spite of the fact that 

these invariants are among the few known which are not homotopy 

theoretic in nature. 

Enter in sheaf theory, whose theoretical power lies in the 

passage from the local to the global. With the introduction of 

Deligne's sheaf and the subsequent axiomatic development, intersection 

homology had matured. 

The intent of these notes is to take the reader through this 

evolutionary process~ beginning with the pl chain theoretic 

definitions (see I ) and ending with the sheaf theoretic definitions. 

Admittedly, nothing substancial is contained herein, given thatthesheaf 
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theoretic development may be done independently of the pl theory. 

On the other hand, the pl theory is our intuitive guide, and it is 

consoling to know that, yes, the two theories are the same. 

The material for these notes was taken from w 2 and w 3 of 

Intersection Homology II. I have also profited from an introductory 

lecture by Borel and from discussions with Haefliger. Thanks also to 

L. Kaup who took the time to make helpful suggestions for the 

improvement of an earlier version of these notes. 

w 1 THE CALCULUS OF CHAINS 

We will assume that the reader is familiar with the language of 

sheaf theory and with pl theory (as outlined in I). All spaces will 

be pl and paracompact. Homology will be taken to be Borel-Moore 

homology with coefficients in a fixed ring R with unit (or, what amounts 

to the same, singular homology, using locally finite infinite chains). 

The local homology sheaves, Hi, are generated by the presheaves 

U ~ H.(U). However, if X is of dimension n, the presheaf U ~ H (U) is 
l n 

actually a sheaf. In particular, elements of H (X) are just global 
n 

sections of the sheaf Hn, i.e. Hn(X) = Hn(X). They have support (a 

closed pl subspace) and local values (compatible with the topology of 

H ). Thus a homology class is "space" with "multiplicities". Notice 
n 

that on the regular part (e.g. on interiors of n-dimensional simplices) 

the sheaf H is locally isomorphic to the constant sheaf R. 
n 

If A and B are closed pl subspaces of X of dimension i and i-i 

respectively, then chains in C. (X) which satisfy l~ICA and l~IcB, 
1 

correspond bijectively to elements [~] 6 H. (A,B) : the chain ~ is a 
1 

C.(A) 
cycle in the quotient complex C--~--~ whose homology is H.(A,B). 

Thus in order to prescribe chains, we need only describe sets and 

homology classes. Moreover, the isomorphism H.(A,B) = H. (A\B) shows 
1 1 

that the classes need only be described locally, that is as sections of 

the homology sheaf H. of A\B. 
1 

For example, the chain ~ is completely described by I~I, its 

support, I~I and [~] 6 Hi(l~l,I~I). Moreover [~] is just a 

continuous family [~]x6 (Hi) x of non-zero local homology classes on 
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I~l\I~l. Such a description of a chain will be referred to as 

the local description. 

Products of chains ~x~ , cones on compact chains c~, direct image 

under proper pl maps f,~, may all be defined by describing appropriate 

sets and homology classes. For example, the chain cD is defined by the 

class ~,I[Q] where 2, : Hi+I(ClQi,IQ I Ucl~Qi) ~ Hi(IQI,I~DI)- 

(So ~ acn = ~-c~n). 

One may describe chains using oriented simplices and multipli- 

cities : If ~6 C. (X) and I~I is a subcomplex of some triangulation T 
1 

of X, then ~ = r A where A are the oriented i-simplices and r. 6 R. 
3 3 J 3 

If F is a closed pl subset of X which is also a subcomplex of T, then 

the restriction of ~ to F, denoted by ~n F, is given by Z r A . 
A c..F J 3 

Note that ~n F is in C.I(F) and also in Ci(X), since 3 

C. (F) cC. (X). Note also that if I~l n F has dimension less than i, 
1 l 

then ~ n F = 0, the empty chain. In general ~A (FlU F 2) = ~ N F 1 + 

N F 2- ~n (FIN F2). Note that ~n F # ~(~n F), in general. 

The restriction of a chain ~ to an open set U, ~ N U6 C. (U), is 
1 

perhaps best described as that chain whose local description is the 

same (in U) as ~.It follows that I~N Ul = I~I n U and ~(~DU) = ~NU. 

Alternatively, one may give a description of ~D U using simplices 

(cf. I w 2). 

w 2 INTERSECTION HOMOLOGY OF A PRODUCT WITH EUCLIDEAN SPACE 

Let X n be a (paracompact) stratified pl pseudomanifold. Let 

~xX denote the pseudomanifold with stratification ~R• 1 =IR• 

The correspondance ~ IR• gives a map of complexes IC (X) _~S IC.+I~RXX) 

called suspension. 

PROPOSITION 2.1 : The suspension map induces an isomorphism on 

homology 

IHi(X) ~ IHi+l~XX). 

In order to prove this proposition, we need the following 
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LEMMA 2.2 : Let ~6 IC. ~f) be a cycle with support in 
1 

~+• Then ~ = ~n for a chain ~6ICi+I~• supported in~+• 

Proof : Let Pl : ]RxX ~R, P2 : ]RxX ~ X be the projections. 

Define a map 

f : IR+xJ~J "~IRxX by 

(t,x) ~ (t+Pl(X) , P2(X)) . 

The chain f,~R+x~) has boundary ~ and is in ICi+I~RXX) , since its 

support, contained in f~R+• , satisfies the intersection conditions. 

(See diagram). 

2.3 A homology of a cycle to infinity. (cf.2.2) 

2.4 A homology to a suspended cycle. (cf.2.1) 
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2.5 A homology to a conical cycle. (cf.3.1) 

Proof of 2.1 : Since S is injective, it suffices to show that the 

quotient complex is acyclic, i.e. we must show that if ~6 ICi@RxX) has 

~ = ~x~,~6 ICi_2(X), then ~ = ~ +IRx~ where ~6 ICi+I~RXX) and 

76 ICi_l(X). 

Briefly, the idea is as follows : Cut the chain ~ transversally, 

to obtain 7 , and use the lemma to find a homology of ~ to IRx 7. 

(See diagram). In detail : 

Let Pl : ]R• ~IR be the projection. Let T be a triangulation of 

~xX for which I~l , QR• . are subcomplexes. 
3 

If X is connected (otherwise we argue componentwise), then T has 

only countably many vertices, and hence we may find t 61R such that 

-1 
Pl ({t}) contains no vertex. So I~I intersects {t}xX transversely. 

Thus ~ = ~++~_ where ~+ = ~n[t,~]xX and ~_ = ~N (-co,t]• 

(N.B. ~N {t}xX = 0, for dimensional reasons). 

Then ~+ = [t, ~) •215 7 where ~6 ICi_I(X) and ~ = D. It follows 

that ~++[t,~)• is a cycle in IC. QR• with support in [t,~)• so by 
l 

the lemma, it bounds. Similarly ~ +(-~,t]• bounds, so ~ +IRxy = 

= (~++[t,~)xy)+(~_+(-co,t]xy)____ also bounds. 



II, w 28 

w 3 INTERSECTION HOMOLOGY OF A CONE 

o 
Let L k-I be a compact stratified pl pseudomanifold. Let cL 

denote the (open) cone with vertex v and stratification 

o 

cLi_ 1 i>O 
o 

( c L )  . = 

1 {V} i=0 

o o 

Problem : If ~6 IC i_l(L) , when is c~6 IC.I(cL). 

Answer : For i>k-p(k), any 

i=k-p(k), only cycles 

i<k-p(k), no ~. 

Proof : The conditions on intersection with the strata other than 

the vertex v are automatically satisfied. Checking the conditions on 

intersection with the vertex v yields the restrictions above. 

Q.E.D. 

Notation : For a chain complex C T C 
"s -~r �9 

complex" defined by 

denotes the "truncated 

(T>rC) �9 _ �9 i 

C 
i 

= ker C 
r 

0 

i>r 

C i=r 
r-1 

i<r. 

The answer above implies that we have a map of complexes (called 

conlng) 

o 
o 

T._>k_p(k) iC._l(L) c IC. (cL) 

given by o 
~e~. 
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PROPOSITION 3.1 : Coning induces an isomorphism on homology, i.e. 

o 

IH. (cL) = 
1 

IHi_ 1 (L) i >-k-p (k) 

0 i<k-p (k) 

o 

Proof of 3.1 : The map c is injective. So it suffices to show 
o o o 

that if 56 ICi(cL) and ~< = cn, n6 IC z._2(L), then ~ = ~g+Cy, 
o 

p6 IC (cL) , 76 IC (L) . 
i+l i-i 

Let ~ : cL ~IR be the projection and let N = [0,6] be the 
+ E 

closed e-neighborhood of the cone vertex v. Choose E sufficienty small 

so that N N I~l contains no vertex other than v of some triangulation of 
6 o 

I~i . Then ~n N is conical, i.e. ~A N = c~{N N . 
o 

It follows that y6 ICi_l(L) and that ~y = -q. So ~-c~ is a cycle 

-1 o 
with support in z [c ,co) PL ]R • By lemma 2.2, ~-c7 is a boundary. 

+ 

(See diagram). Q.E.D. 
o 

If we remove the cone vertex v from cL, we have an isomorphism 
o o 
cL\{v} PL IRxL, however the obvious map eLk{v] ~ L is not pl (the 

standard mistake). So the following proposition is (technically) not a 

consequence of 2.1, 

o o 

PROPOSITION 3.2 The map IC._I(L) c\v, IC. (cL\{v}) given by 
o o o 

~ c~\v = c[ n(cL\{v}) induces an isomorphism on homology. 

Proof : The proof is similar to that of 2.1 using the projection 
o 
cL ~IR (which is pl) in place of the projection]R• ~]R. + 

w 4 THE LOCAL INTERSECTION HOMOLOGY GROUPS 

k-i 
PROPOSITION 4.1 Let L be a compact stratified pseudomanifold. 

There is a commutative diagram 

Y.>n_p(k)IC._(n_k+l) (L) ~ IC._(n_k+l ) (LJ 

n-k o res n-k o 
IC. (1~ xcL) ~ IC. ~R x(cL\{v})) 
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with vertical arrows inducing isomorphisms on homology. 

~n-k ~L) { 
In particular, IH i = IHi_(n_k+l)(L ) i>_n-p(k) 

0 i<n-p(k) 

n - k  o 
Proof : The left vertical arrow is themap ~ ~IR • which is 

o 
the composite S o S o S o c so it induces an isomorphism by 2.1 and 

n&k 
3.1. 

n-k o 
The right vertical arrow is the map ~ -*IR xc~\v which is the 

o 
composite S o S S-o c\v and so induces an isomorphism by 2.1 and 

3.2. n-k 

Commutativity holds, since suspension commutes with restriction. Q.E.D. 

Restriction homomorphisms are functorial for inclusions of open 

sets (use the local description of chains). So the correspondance 

U ~ IC i (U) defines a presheaf. The axioms for a sheaf are satisfied : 

If ~k 6 ICi(U k) are a compatible family of chains, their union 

U~k6 ICi(O U k) is a uniquely defined chain (local description again). 

This sheaf will be denoted by ~C.. When we wish to consider 
1 

positively graded complexes of sheaves with differential of degree +i, 

we will use codimension as variable and use the notation IC (where 
n-. 

varies from 0 to n). 

For a complex F" of sheaves H j (F') denotes the jth derived sheaf. 

H j (F') is the local homology at x. 
x 

n-k o - - n-k o 
PROPOSITION 4.2 : Let i : Z~ • -*Z~ XcL denote the 

inclusion. Let x6.2Rn-kx{v}.  

Then the maps 

n-k o IC (~ xcL) ~ ( IC)  
. x 

IC ~n-kx(cL\{v})) -* (i,IC )x 

induce isomorphisms on homology. 

COROLLARY 4.3 : For x6I~n-kx{v}, i as above, then 

H j (IC ) = 
n-. x 

H j (i ,IC n )x -. if ~<-p(k) 

0 i f j>p (kJ 
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The sheaves ~ (IC ), H j (i.~C n ) are constant onl~n-kx{v}. 
n-. -~ 

II, w 

Proof of 4.2 : For x6IRn-k• ~ there are arbitrarily small 
n-k o PL 

neighborhoods V of x and pl isomorphisms i E : ]R xcL ~ , Vs pre- 

serving product and cone structure (and hence stratified structure). 

For these neighborhoods the following diagram commutes 

n-k o 
(L) --* IC OR xcL) 

T- >-n'p (k) IC._ (n-k+l) 

IC. n-kxcL) res, ~C (V) 

It follows that the restriction map induces an isomorphism on 

homology. Passing to the limit over such neighborhoods yields the 

first assertion. The second is proved similarly. 

Proof of 4.3 Combining 4.1 and 4.2 we obtain a commutative 

diagram 

Y'_<p(k) ICk-l-- (L) -~ ICk_l~" (L) 

(IC ) ) (i.~Cn_ .) n-- x x 

with vertical arrows inducing isomorphisms on homology. The first 

assertion follows. 

To see that the sheaves are constant, we make use of 4.2 and 

the following : 

Let F be a presheaf and ~ the sheaf it generates. The map 

XxF(X) ~ ~, which takes (x,s) to the germ of s at X, is a local 

homeomorphism, where F(X) has the discrete topology. Let S be a subset 

of X for which F(X) ~ ~x is a bijection, x6 S. Then S• ~ ~IS is an 

isomorphism of sheaves. It follows that if F" is a complex of sheaves 

such that F" (X) ~ ~x induces isomorphisms on homology, x6 S, then the 

map S• ~ H3(~')IsI is an isomorphism of sheaves. 
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w 5. THE SHEAVES Ir SOFT 

In the following, we will restrict attention to positively 

graded complexes of sheaves (i.e. ~i = 0, i<0). A map ~" ~ 9" is a 

quasi isomorphism (or resolution) if it induces an isomorphism 

Hi(g.) Hi(F) ~ of derived sheaves for all i. 

The hypercohomology groups are defined by ~i(x;F') m Hi(I'(X)), 

where F" ~ I" is any injective resolution. From the spectral sequence 

HP(x;Hq(F')) ~P+q(x;F') [Godement, page 178] we see that a quasi 

isomorphism induces an isomorphism on hypercohomology. 

From the spectral sequence 

HP(Hq(x;F "))~ ]HP+q(X~F ") 

we see that if each F i is cohomologically trivial (i.e. Hq(x~F i) = 0, 

q>0), then IHi(X;~ ") = Hi(~" (X)). Examples of cohomologically trivial 

sheaves include injective sheaves, flabby sheaves and (for paracompact 

spaces) fine sheaves and soft sheaves. 

Using the above and the fact that the direct image of an 

injective sheaf is injective, it is an exercise to show the following : 

Let f : X ~ Y. If ~ is cohomologically trivial on all open 

subsets of X, then f,~ is cohomologically trivial on all open sets of 

Y. If F" ~ 9" is a quasi isomorphism, then f.~" ~ f,9" is a quasi 

isomorphism provided that ~i, i are cohomologically trivial on all 

open sets of X. In particular, if Rf,F" denotes f,[', where F" ~ [" 

is an injective resolution, then f,~" ~ Rf,~" is a quasi isomorphism, 

provided each F i is cohomologically trivial on all open sets of X. 

The above serves as motivation for the following proposition and 

as proof of its corollaries : 

PROPOSITION 5.1 : The sheaves IC i are soft. 

COROLLARY 5.2 : ~(X~IC ) = IH (X) 
n-. n-i " 

COROLLARY 5.3 : Let i k 

U~3 = X-Xn_3~. Then ik,IC n-" Iu k 

: U k ~ Uk+ 1 denote the inclusion. Let 

Rik,ICn_" IU k is a quasi isomorphism. 
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[Note : In their paper, Goresky and MacPherson claim the intersection 

sheaves are fine (which implies soft). The ordinary sheaves C. are fin~ 
l 

since they are modules over the sheaf of constructible functions 

(i.e. functions constant on interiors of simplices), which is obviously 

fine. However, the sheaves [C. are not modules over the sheaf of 
1 

constructible functions : an intersection chain cannot be broken into 

pieces arbitrarily ~ It may be that the sheaves are fine, but the 

point is rather moot, since 5.1 and its corollaries are sufficient for 

our purposes.] 

Let T be a triangulation of X and T' the first barycentric 

subdivision. If v is a vertex of T, we denote by N'(v) the (closed) 

neighborhood of v, union of all closed simplices of T' containing v as 

a vertex. 

Remark : If ~6 IC. (X) and T is any triangulation of X for which 
1 

i~I, X. are subcomplexes, then ~AN' (v) is in ICi(X). 
3 

Proof of 5.1 : We must show : If F is a closed set of X, then 

ICi(X) ~ IC (F) is surjective. Let s6 ~C (F) be given, s is represen- 
l l 

ted by ~ 6 ~C. (U) for some open neighborhood U of F [Godement, page 150] 
1 

Let N' (F) = UN' (v) where the union is taken over all vertices (of a 

triangulation T of U) belonging to a (closed) simplex intersecting F. 

By taking the triangulation T to be sufficiently fine, we may 

assume N' (F) is a closed subset of X. Assume I~I and UA x are 
J 

subcomplexes of T. Then, by the remark, ~N N' (F) (= [(~n N' (v))) is in 

~C. (X) (its support is closed in X) and restricts to s. 
1 

6 AXIOMS FOR THE INTERSECTION HOMOLOGY SHEAVES 

Let X be a stratified pl pseudomanifold. Put U k = X\Xn_ k and 

let i k : U k ~ Uk+ 1 denote the inclusion. Sn_ k = Xn_k\Xn_k_ 1 denotes 

the n-k dimensional stratum of X. U 2 is an open dense subset of X 

and is a manifold. 

The following theorem is the starting point of the sheaf 

theoretic axiomatic development of intersection homology (cf. V, w 
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THEOREM 6.1 : The complex [C 
n-- 

following : 

of sheaves satisfies the 

i) IC is a bounded complex, zero in negative degrees. 
n-. 

~Cn_. Iu 2 is quasi isomorphic to the orientation sheaf of U 2. 

2) HJ (~Cn_.) x = 0 for j>p(k), X6Sn_ k. 

3) The attaching map ran_. Iu k+l ~ Rik,~Cn_" Iu k induces an 

isomorphism 

H cic ) ~ HJ(Rik,lC n ) for x6 j<-p(k) n-. x -. x Sn-k " " 

Proof : The first assertion in l) is obvious. For x6 U2, there are 

no intersection conditions near x, so 
,o 

~Cn_.iU2 = Cn_.iU21 and hence Hi(~Cn_.)x IR i=0 , the 

identification H~ ) = R depending on the local orientation. 
n-- x 

So H~ ) l u  2 i s  t h e  o r i e n t a t i o n  s h e a f  o f  U 2 and ~ ( I C n _ . t U 2  IC n - "  n - -  

i s  a q u a s i  i s o m o r p h i s m .  

S i n c e  t h e  s t a t e m e n t s  i n  2) and 3) a r e  l o c a l ,  and s i n c e  x h a s  a 
n - k o  

neighborhood parametrized by~ xcL, Corollary 4.3 applies. (We have 

used 5.3 to r e p l a c e  R i k ,  ICn_" by i k , ~ C n _ . ) .  
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III. A SAMPLE COMPUTATION OF INTERSECTION HOMOLOGY 

by M. Goresky and R. MacPherson 

In this example we compute the intersection homology of the Car- 

l 
tesian product of S with the suspension of the 3-torus. We use the 

notation X (ZT 3) S 1 . By choosing a basepoint {p} in S 1 = • we can 

identify the following cycles in T 3 : 

• = x T 1 x x S 1 1 {p} • s I {p}; = {p} {p} Tla = S1 {p} x {p}; T b c 

T 2a = {p} x S 1 x S 1 ; T b2 = S 1 x {p} x S 1 ; T 2c = S 1 x S 1 x {p} . 

The space X is stratified in the obvious way with one stratum of 

dimension 5 and two singular strata of dimension 1 . Thus X has even 

codimension singularities and it is normal since the link of the sin- 

gular stratum is T 3 which is connected. The intersection homology 

groups with perversity p are determined by the single number p = p(4) 

which can be 0, 1 or 2 . Thus, a chain ~ is allowable in ICy(X) if it 

intersects the singular set in dimension ~ i - 4 + p and its boundary 

intersects the singular set in dimension ! i - 5 + p. 

In the following table we give a list of allowable cycles which 

generate the intersection homology groups of given dimension and per- 

versity. 

For example, the 3-cycle (ZT~) • S 1 is allowable in IC~ but is not 

allowable in IC~ or IC~ since it intersects the singular set in 

dimension 1 . Similarly the 3-cycle T 2 x S 1 generates a nonzero class 

1 a 
in IH~(X) but it is 0 in IH3(X) since it is the boundary of 

cone(T[) x S 1 which is an allowable chain in IC~ . 
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IH 5 

IH 4 

IH 3 

IH 2 

IH 1 

IH 0 

p = 0 p = 1 p = 2 

~T 3 

T 2 
a 

2 
T b 

T 2 
c 

T 1 
a 

1 
T b 

T 1 
c 

pt 

ZT 3 x S I 

T 2 • S I 
a 

2 • S 1 
T b 

T 2 x S 1 
c 

T I x S I 
a 

I • S I 
T b 

T 1 x S 1 
c 

pt x S I 

ZT 3 

ZT 2 
a 

Z~2b 
ET 2 

c 

T 1 
a 

I 
T b 

T 1 
c 

pt 

ZT 3 x S I 

ZT 2 x S I 
a 

~T~ x S 1 

ZT 2 x S I 
c 

i S I T x 
a 

1 x S1 
T b 

T 1 x S 1 
c 

pt x S I 

ZT 3 

ZT 2 
a 

ZT 2 
c 

~T I 
a 

7,171 
c 

pt 

ZT 3 x S 1 

ZT 2 x S 1 
a 

ZT~ • S 1 

ZT 2 x S 1 
c 

ZT 1 x S 1 
a 

7 T ~  x S 1 

ZT 1 x S 1 
c 

pt x S 1 
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By reading across this table we can recover the Poincar4 duality 

map H5-i(x) = IH~(X) + Hi(X ) which is an isomorphism for i = 0 and 5, 

an injection for i = 4 , a surjection for i = 1 , and is zero for 

i = 2 and 3 . We also observe that the cohomology Betti numbers 

(1,4,6,3,1,1) are not palindromic whereas the intersection homology 

Betti numbers (p = i) are palindromic : (1,4,3,3,4,1). In fact the 
1 

nongenerate pairing IH~ x IH5_ i + Z is geometric. For example, the 

cycle ~T2 a • S1 in IH~ is dual to the cycle T 1 a in IH~ , and intersects 

transversally at a single point. The paring between IH~ and IH~_ i it 

is similar. 

We verify the impossibility of constructing a product in homology 

because the cycles ZT 2 x S 1 and ZT 1 are transverse, but they intersect 
a a 

in (Zpt) x pt which is not a cycle. The cycles ZT 2 x S 1 and ZT~ do not 
a 

come from cohomology but they are intersectable since they live in IH I. 

Their product is ZT 1 
c 

This local intersection homology at a point x in the singularity 

set is easily calculated since a cycle represents 0 in IH~(X,X-x) 

unless it contains a whole neighborhood of x in the singular stratum. 

This gives the following table from which we can verify the "support 

condition": the local homology sheaf associated to IH vanishes for 
1 

all i < 5 - p . 

p = 0 p = 1 p = 2 

IH5(X,X-x) 

IH 4 (X, X-x) 

IH 3 (X, X-x) 

IH2(X,X-x) 

Z @ Z @ Z Z @ Z @ Z 

Z @ Z @ Z 

Exercise: Compute a similar table for the local compact support 

homology at a point in the singular set. 
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The Cartesian product X = ZT 3 x S 1 of the circle with the 

suspension of the 3-torus 

The suspension ZT 3 of the 3-torus, showing three level sets. 
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The 3-torus T 3 
(identify opposite faces) 

The 2-cycle T 2 a 
2 

The 2-cycle T b The 2-cycle T 2 
c 

1 The 1-cycle T 1 The 1-cycle T 1 The 1-cycle T b c a 
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IV STRUCTURES DE PSEUDOVARIETE SUR LES ESPACES ANALYTIQUES COMPLEXES 

N. A' Campo 

Le but de cet expose est de munir un espace analytique complexe 

d'une structure de pseudovari~t~. On distinguera quatre types de 

pseudovariet~ : topologique, Lipschitz, PL et diff~rentiable. 

Un espace analytique admet une structure de pseudovari~t~ topolo- 

gique canonique (Whitney, Thom, Mather, Teissier); Dennis Sullivan 

m'a annonc~ son travail en commun avec W. Hardt dans lequel une struc- 

ture de pseudovari~t~ Lipschitz est obtenue pour les espaces analy- 

tiques. L'existence d'une structure PL n'est pas connue; un exemple 

simple de Whitney montre qu'il n'existe pas de structure diff~renti- 

able en g~n~ral. 

w 1 Stratifications de Whitney. 

Soit X un espace analytique purement de dimension d , soient Y c X 

un sous-espace localement ferm~ de X et ~ C Y un point lisse de Y . 

Soient (X,~) c (~N,0) un plongement analytique local tel que 

(Y,n) soit un facteur lin~aire (~k,0) dans (EN,0) et r : E N § E k une 

r4traction lin4aire. L'espace tangent de X en un point lisse x de X 

comme un point T X dans Grassd~N . De m~me pour T Y dans est consid4r~ 
x y 

GrassuE N . Pour un point x C X - Y , assez proche de ~ , on note 

N 
[r(x),x] la direction de la droite de ~ passant par x C X et r(x) C Y. 

Voici deux propri4t4s d'incidence entre X et Y au point n C Y 

D~finition : (Propri4t4 a de Whitney):Pour toute suite (xi)i6 

de points lisses de X , telle que lim x = ~ et que la suite T X con- 
1 x. 

1 

dans GrassdcN, on a l'inclusion lim T X ~ T Y verge o 

X. 
1 

(Propri~t~ b de Whitney): Pour toute suite (xi) de points lisses de 
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X - Y , telle que lim x. = ~ , la suite T X converge dans 
1 x. 

1 

Grassd~N et la suite des directions [r(xi),xi] converge dans 

~I(EN), on a lim Tx X ~ lira ..[r(xi),x i] . 
1 

Dans l ' e x e m p l e  s u i v a n t  on a l a  p r o p r i ~ t 4  a m a i s  p a s  l a  p r o p r i 4 t 4  b :  

Ici (X,0) c (~3,0),dimX = 2,dimY = I,X ={(u,v,t) 6 ~31u2 = v 3 + t2u2}, 

y est l'axe des t . 

B. Teissier a introduit une multiplicit4 M (X,Y) C d-i telle que 
n 

l'on ait: 

PROPOSITION ~ Soient X un espace analytique, Y ~ X un sous-espace 

lisse de X et U un voisinage connexe, assez petit, de ~ dans X , tel 

que (X - Y) n U et Y N U soient lisses. Alors les assertions suivantes 

sont ~quivalentes: 

(i) n C Y N U ~M (X,Y) est constante, 
n 

(ii) pour tout point ~ C U N Y les propri~t~s aet b de Whitney 

entre X et Y au point ~ sont vraies. 

En outre B. Teissier a montr~ que la multiplicit~ M (X,Y) ne d~- 
n 

pend que de la restriction de l'anneau 0 ~ Yet que la fonction 
X 

6 X + Mn(X,Y ) est constructible par sommes et differences de fonc- 

tions caract~ristiques de sous-vari~t~s analytiques. 

Soit X un espace analytique complexe. Ii existe une stratification 

(Xa) a6 A de X telle que les strates Xa soient des sous-vari~t~s lisses 

localement ferm~es de X et que pour tout couple (Xa,Xb) de strates 

avec X b c X - X on ait en tout point de X b les propri~t~s d'incidence a a 

a et b de Whitney entre X bet Xa 

Voici la construction de la multiplicit~ Mn(X,Y): soient 
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(X,n) c (EN,0) on plongement et p = (pl,...,Pd_l) un drapeau assez 

g@n6ral de projections 

C N Pl ~ i~d P2 ~ i~d-i ~ �9 Pd-i ]32 .. ) �9 

Pour 1 < i < d , notons K le lieu critique de la restriction de D- 
1 

la p a r t i e  l i s s e  d e  X . 

D~finition . On appelle i-i~me vari6t6 polaire de X l'adh6rence 

dans X de K . On note P une vari6t@ polaire. La multiplicit@ M (X,Y) 
I 1 n 

est la suite (mn(Pl),m (P2),...,m (Pd_l)) des multiplicit@s des vari- 

6t6s polaires au point ~C Y. 

Attention : Les vari6t6s polaires (Pi) d6pendent du plongement 

local (X,Y,nl c (EN,Ed,0) et du drapeau de projections p. On montre 

que, pour un plongement local donn4, la suite M (X,Y) est contante sur 

un ouvert de Zariski darts l'espace des drapeaux de projections et que 

cette valeur g6n6rique de M (X,Y) ne d6pend pas du plongement local. 

Exemple: (Voir la figure) 

M0(X,Y ) = (2,1),Mp(X,Y) = (2,0),Mq(X,Y) = (i,0)~ 

On peut stratifier X par 

X 0 = {0} , X 1 = Y - X 0 , X 2 = X - Y . 

Cette stratification ales propri6t6s d'incidence a et b de Whitney 

et toute autre stratification de X avec les propri6t6s a et best 

plus fine. 

2 La structure de pseudovari~t6 topologique. 

Soient X un espace analytique complexe et (Xa)a6 A 

tion de Whitney par des sous-vari4t4s complexes. Deux strates X et 
a 

X b tels les que X b C Xa - X b , ont donc les propri4t4s d'incidence 

et b de Whitney en tout point de X b. 

Soient ~ C X et Y = X b la strate de X contenant ~ . Soient 

(X,Y,~) c(EN'~d,0) un plongement local, r : ~n + ~k une r~traction 

une stratifica- 
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lin4aire, k = dimY , et dist une m~trique hermitienne sur E N 

On d4duit de la propri4t4 a : 

(i) il existe des nombres r4els E > 0 et 6 > 0 tels que pour tout y 6 Y 

avec dist(q,y) < 6, la fibre r-l(y) rencontre toute trace de strate 

sur Ts = {x C X[dist(x,Y)} transversalement, 

et de la propri4t6 b : 

(2) il existe s > 0 et 6 > 0 tels que l'on a (i) et que pour tout 

y 6 Y avec dist(n,y) < 6 la fibre r-l(y) rencontre transversale- 

ment toute trace de strate sur ~Te,(Y ) = {x 6 Xldist(x,Y) = s 

pour tout s 0 < e' < s r _ �9 

Fixons c > 0 et 6 > 0 tels que l'on ait (i) et (2). Soient 

K = {x C X I dist(x,Y) <__ s et dist(r(x),~) < 6} 

r K : K -~ BY(~,6) = {y 6 Y [ dist(y,~) < 6}. 

Soit (Ks) la stratification de K la moins fine telle que les traces 

des strates Xa sur K et sur K N ~T (Y) soient les strates Ks. Alors la 

stratification (Ks) de K est de Whitney et les fibres de r K sont trans- 

verses aux strates K s . Les restrictions de r K aux strates Ks sont des 

submersions. Nous pouvons appliquer le th~or~me de Thom-Mather. Ii 

s'ensuit que l'application r K est localement triviale: plus pr~cis~- 

ment, soit 6 > 0 assez petit pour que BY(~,6) soit contractile; alors 

il existe un hom~omorphisme 

H : BY(n,6) x rKl(n) § K 

tel que: 

i) r K o H est la projection sur BY(~,6), 

2) pour toute strate K de K on a 
s 

H-I(Ks) = BY(n,6) x (K s N rKl(n)) . 

Ainsi K est un voisinage "produit-stratifi~" de ~ dans X, cette trivi- 

alisation locale n'est qu'un hom~omorphisme. 

Jusqu'~ maintenant nous n'avons utilis~ de (2) que la transversa- 

lit~ des traces des strates sur ~T (Y) et sur r-l(~). De la transver- 

salit~ des traces des strates sur ~T ,(Y),0 < ~' ~ ~, on d~duit que 
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-i r-i r K (y) = (y) Q K est au sens stratifi4 un cane: plus pr4cis4ment 

-i r (y) = c~ne(~T (Y) N X N r-l(y)) 

o~ ~T (Y) n X n r-l(y) = Lest le "link" de la strate X b = Y dans X . 
6 

Le link est stratifi4 par (La) o~ L a = Xa n L . 

Nous avons ainsi d4crit une structure de pseudovari4t4 topologique 

sur l'espace analytique complexe X , ayant une stratification o~ les 

strates sont des sous-vari4t4s complexes lisses de X . Les codimen- 

sions sont paires. 
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V: SHEAF THEORETIC INTERSECTION COHOMOLOGY 

A. Borel 

(with the collaboration of N. Spaltenstein) 

w 1 SHEAF THEORY 

AS already pointed out in the introduction, some familiarity with 

sheaf theory, as developed in Godement [5] for instance, is assumed. 

This section is meant mainly to fix some notation and add some comple- 

ments to [5]. 

We fix once and for all a commutative noetherian ring R. All 

sheaves on a space X are sheaves of R-modules. In this chapter, unless 

otherwise stated, R has finite cohomological dimension d, and all spaces 

are locally compact, locally completely paracompaet (see 1.17), of 

finite cohomological dimension over R (see 1.15). We note however that 

most of the facts recalled in A are valid on arbitrary spaces (cf[5]). 

A. Genera l~ t i~  

I.I A differential graded sheaf (DGS or complex of sheaves) S'on 

x is a collection of sheaves S i (i 6 ~) together with morphisms 

d. : S i § S i+l such that di+ 1 o d = 0 (i f ~). It is bounded (resp. 
1 . l 

above, resp. below) if S 1 = 0 for Ill > N (resp. i > N, resp. i < - N) 

for some N 6 ~ . The derived sheaf H'S" of S" is the DGS associated to 

the presheaf U ~ H'(S'(U)) with zero differential. Its stalk at x 6 X 

is H" (S$) . 

A single sheaf A will often be identified to the complex S', de- 

fined by S ~ = A and S i = 0 for i ~ 0 and necessarily zero differential. 

A single degree complex is a DGS which is non-zero in at most one di- 

mension. 

We let Sh(X) be the category of sheaves on X and DGS(X) the care- 
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gory whose objects are the DGS on X and whose maps are chain maps of 

complexes of sheaves. 

1.2 A morphism f : A" + B" of DGS induces a morphism H'(f) of the 

derived sheaves. It is said to be a quasi-isomorphism (q.i.) if H'(f) 

is an isomorphism. Two DGS A', B" are q.i. if there exist C" and q.i. 

A" + C" § B" . we shall see later that this is an equivalence relation. 

Much of what follows should formally be viewed as taking place in 

a derived category (whose objects are bounded below DGS, and where the 

q.i. are isomorphisms). We shall introduce it later (w 5). Meanwhile, 

we agree however that an equal sign between two complexes of sheaves 

means a q.i. (i.e. is an isomorphism in the derived category). 

1.3 A (right) resolution of a sheaf A on X is a q.i. A§ where 

B" is a DGS which is zero in strictly negative degrees. It is injec- 

tire (flabby, fine, soft) if the Bi'sare so. Under our assumptions A 

always has a c-soft (resp. injective) resolution which is zero in 

degrees > dimRX ( resp. > dimRX + d + i) (cf section B). Similarly, 

a (right) resolution of a DGS S" is a q.i. S" § B" ~ it is injective 

(flabby, fine, soft) if the Bi's are so. If S" is bounded (resp. boun- 

ded below), then it has an injective resolution which is bounded 

(resp. bounded below) (see 1.18). 

1.4 Hypercohomology. Let A" be a DGS on X and A" + J" an injective 

resolution. The hypercohomology ~'(x;A') is by definition H'(F(J')). 

More generally, if r is a family of supports, then ~(x;A') = H'(Fr 

If A is a single degree complex non-zero in degree k, this is just the 

space H~(x;A) of cohomology of X with coefficients in A and supports 

in r , shifted by k, i.e.: 

i(x;A') = H~ -k(x;nk) (i 6 Z) 

Assume A" to be bounded below. According to the main theorem of sheaf 

theory [5:4.6.1], there is a spectral sequence which abuts to 

~(x;A') and in which 

P,q = HP(x;HqA ") . E 2 
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As a consequence a q.i. : A" § B" induces an isomorphism of hyper- 

cohomology. 

Remark : We may also use resolutions by flabby or, if X is paracompact, 

by fine or soft sheaves. In particular if A" consists of such sheaves, 

we may take A" = ~" �9 

1.5 Derived functors. Let T be a functor from Sh(X) to some abelian 

category. Then, for S" C DGS(X), the derived functor RT(S') is by 

definition T(J'), where J" is an injective resolution of S" . The 

ith derived functor is then RiT(S ") = Hi(T(J')). In order to compute 

it, any T-acyclic resolution of S" may be used. 

1.6 Inverse and direct images. To a continuous map f : X + Y there 

are associated a direct image functor f, : Sh(X) § Sh(Y) and inverse 

image functor f* : Sh(Y) § Sh(X). They satisfy the adjunction formula 

(1) Hom(f*~,A) = Hom(~,f,A) (A C Sh(X), ~ C Sh(Y)). 

There are~n particular natural morphisms 

(2) ~ § f,f*~, f*f,A § A (A C Sh(X), ~ C Sh(Y)). 

The functor f* is exact, therefore f, transforms injective sheaves 

into injective sheaves. It is also left exact. We recall that 

f,A(V) = A(f-I(v)) (V open in Y). If we view B 6 Sh(Y) as an 6tale 

space on Y, then f*~ is the pull back on X via f . In particular 

f~x Bf(x) . These functors extend to the DGS. If S" 6 DGS(X), then 

RIf,S" is the sheaf associated to the presheaf: 

V ~ ]~i(f-iv; S.) (V open in y; i C ~) 

If f is an inclusion, then f* is the restriction. If f is a closed 

inclusion, then f, is the extension by zero. 

We recall also that if f : X § Y is a continuous map and 

S" 6 DGS(X), then we have a natural isomorphism 

(3) ~'(X;S') = ~'(Y;Rf,S') . 
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If, moreover, f is proper then 

(4) ~$(x;S') = ~c(Y;Rf.s') . 

In fact, if S" § J" is an injective resolution of S" , then f,J" is 

an injective complex, therefore both sides of (3) (resp. (4)) are 

equal to H'(r(J')) (resp. H'(Fc(J')). The hypercohomology spectral 

sequence for the right hand side of (3) (resp. (4)) is then the Leray 

spectral sequence of f for closed (resp. compact) supports. 

1.7 The attachment map. Let Z be a closed subspace of X and i the 

inclusion of U = X - Z into X. For S" 6 DGS(X), the composition of 

the natural morphisms 

(i) S" § i,i*S" § Ri,i*S" , 

is the attachment map. It is of course a q.i. at every point x 6 U . 

To say that it is a q.i. at x C Z in some dimension i amounts to the 

condition 

(2) H i(Sx) = li__~m ~i(v - (V n Z) ;S') , 

where V runs through a fundamental set of neighborhoods of x in X. 

The derived map of the attachment map is in fact part of long 

exact sequence involving cohomology with supports in Z, as will be 

described below. 

! 

1.8 The functors j" and j, for a closed immersion. Let Z, U be as 

above and j : Z + X the inclusion. For A 6 Sh(Z) we let j,A = j,A 

be the extension of n by zero. For B 6 Sh(X), let yZ B be defined by 

(i) yzB(V n z) = F Z ~ v(B;v) , (v open in X) . 

There is again an (obvious) adjunction formula : 

(2) Hom(A,yzB ) = Hom(j,A,B) , (A 6 Sh(Z), B 6 Sh(X)) . 

Since j, is clearly exact, YZ transforms injective sheaves into injec- 

tive sheaves. 
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~$. 
(3) j = RyZS = yZ ]" , 
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(S" + J" injective resolution) 

By definition, the hypercohomology space of X with support in Z, with 

respect to S', is 

! 

(4) ~(X;S') = ~" (x;j,j'S') = H" (u J" (Z)) . 

Since j~S" consists of injective sheaves on Z, it may be viewed as its 

own injective resolution, therefore 

IS" (5) ~(X;S') = ~'(z;j ) . 

Since ]" is injective, (flabby would also do), the sequence 

(6) 0 + j~yz ]" + ]" + i,i*]" ~ 0 

is exact. The long exact sequence associated to it is then 

' Hi(s~ (7) ... § Hi((j'S')x ) + ) ~ Hi((Ri.i*S')x ) + ... 

where a. is the attachment map. Globally (6) yields the long exact 
1 

sequence 

8) ... § ~i(x;S') § ~i(x;S') + mi(u;S ") + ... 
Z 

1.9 LEMMA Let Z' be a closed subspace of Z and g : Z' § Z the 
i ! ! 

inclusion map. Then (j o g)" = g" o j" 

It is clear from the definition that 

(i) 7z,S" = yz,(~zS'). 

By definition : 

'S" (j o g) = yZ,]', 
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where J" is an injective resolution of S" . But 

yZ,(J') = yZ,(yZ j') = yz,(RyzS') = yz,(j~S ") , 

I 

Since j'S" consists of injective sheaves, we have 

, , is. , 
yz,(j~S ") = Ryz,(j'S" ) = g'(j ) 

which proves the lemma. 

I.I@ Truncation. Let S" 6 DGS(X) and k 6 ~ . The truncation 

Z<_kS" of S" up to k is defined by 

i S i i < k # 

(~<kS') I= ker d i , i = k 

0, i > k 

Then Hi(~ k S') = 0 for i > k and the natural inclusion T_kS" + S" 

as a q.i. up to k. 

Similarly, one defines T>ks" by 

0 , if i < k 

(~>ks') = Coker di_ 1 , if i = k 

S i if i > k 

We have Hi(~ks') = 0 for i < k and the natural (surjective) morphism 

S" + T~ks" is a q.i. in degrees ~ k . 

I.II (a) The constant sheaf on X with stalk R is denoted R x 

Given U c X open ~nd S 6 Sh(X), we let S U denote either the restriction 

of S to U or the element of Sh(X) obtained by extending S U by 0 on 

X - U . In particular, R U is either the constant sheaf with stalk R on 

U, or the extension of the latter by 0 . 

Given S C Sh(X) and a section s of S on U, there is an obvious map 

R u § S which, for x 6 U, assigns s(x) to 1 6 RU, x . From this it 

follows easily that S is a quotient of a direct sum of sheaves R U 

[5:II,2.9.4]. 

(b) We recall that if the space X is contractible and A is a con- 
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stant sheaf on X, then Hi(x;A) = 0 for i ~ 1 . In view of the diffi- 

culty we have to locate an easily accessible reference, we sketch a 

way to this theorem: 

(a) Prove the theorem if X = I is an interval. 

(b) Let T be compact, Hausdorff, acyclic for cohomology with con- 

stant coefficients, Y a space, ~ : Y x T + Y the natural projection 

and B a sheaf on Y. Then ~" : H'(Y;B) § H'(Y x T;~*B) is an isomorphism 

(Vietoris-Begle). To see this one considers the spectral sequence of 

z . Since ~ is proper, the fibre of the Leray sheaf R'~,~*B at y 6 Y 

-i 
is H'(f(y); By) , [4:1V,4.2] . Therefore the spectral sequence of 

degenerates and yields our statement. 

(c) For t C T, let i t : Y § Y x T be defined by y~-+ (y,t). Then 

i[ is an inverse to n" , hence is independent of t. 

(d) Take now T = I . If X is contractible and o : X x I § X 

describes a homotopy of the identity to the constant map, then consider 

i" o o" and use (c). 
t 

B. Cohomological dimension and bounded r~olu t~ons .  

In this section, for the convenience of the reader, we review in 

more detail and prove some basic known facts on cohomological dimen- 

sion and the existence of bounded resolutions, in the form most 

suitable to our needs. For variants, generalizations and further de- 

tails we refer to [4;5;8;10]. 

1.12 LEMMA Let Y be a topological space and A a subsheaf of ~. 

(i) For every ideal m of R , the set {y C Ylm c A } is open 
Y 

in Y . 

(ii) Let V = {y C YIA = R}. If V ~ X, then there exists a 
Y 

proper ideal m of R and an open set U ~ ~ V such that A U = u ~" + v ~" " 

Proof : (i) follows from the fact that m is finitely generated, 

since R is noetherian. To prove (ii), it suffices to take for m a 

maximal element among the Ax,X ~ V i 

1.13 LEMMA . Let Y be any topological space and 

the following conditions are equivalent : 

(i) S is injective. 

S C Sh (Y) ~ 
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(ii) 

S (u) § S (v) 

54 

For any pair of open sets U ~ V, the restriction map 

is a split surjection of injective R-modules. 

[This lemma and its use in 1.17 were pointed out to me by 

N. Spaltenstein]. 

Proof : By a standard construction [5:II,7.1] any sheaf A can be 

embedded in an injective sheaf J such that, for any U ~ Y open, we 

have J(u) = Zycul(y)y , where l(y) is a skyscraper sheaf with support 

in {y}.The sheaf J clearly satisfies (ii). If now A is injective, 

then it is a direct factor of J , hence (ii) also holds for A . 

Assume now that S satisfies (ii). Let A c B be sheaves on Y and 

f : A + S a morphism. We have to show that f extends to B . The set 

of subsheaves C of B containing A , to which f extends, ordered by 

inclusion, is obviously inductive, hence, by Zorn lemma, has a maximal 

element. We are therefore reduced to proving that if A ~ B, then f 

extends to a subsheaf C of B containing A strictly. 

Let first B = Ry. Since A ~ B, we may choose U,V and |~ as in 1.12 (ii). 

Let C = n + R U. By construction n U ~ RU, hence C contains A strictly. 

we want to prove that f extends to C. For this it suffices to extend 

flA U to R U. This amounts to finding a map f' : R § A(u) which makes 

the diagram 

f 
m ~ A (u) 

n ~ 1 r 

R ~ A (V) 

commutative. But the existence of f' follows from the fact that r is a 

split surjection of injective R-modules. 

Since R U c Ry for any open U c Y, this also proves our assertion 

when B = R U . In general, since n ~ B, we may find an open set U ~ Y 

and a section s of B U not belonging to A U . use s to construct a 

morphism g : R U + ~ as recalled in 1.12. Then 

A ~ C = A + g(Ru) cB 

and the above readily yields an extension of f to C. 
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1.14 Let r be a family of supports in X and 

(i) 0 § A § jo § jl § ... § jn-i + B + 0 

an exact sequence in Sh(X) where the Jl's are acyclic in #- cohomology. 

Then, by using long exact sequences in cohomology, one gets 

(2) H (U;~) = H +n(u;A) (U c X open ; i ~ i) 

In particular, taking for ~ the family of compact subsets, we see that 

the condition 

(3) Hn+l(u~A) = 0 for all U open in X 
c 

H~(U;~) = 0 for all such U's, i.e. that B is c-soft. Since A implies 

always has a c-soft resolution K', this shows that if A satisfies (3) 

then it has a c-soft resolution which vanishes in degrees > n,(namely 

T<nK') �9 

1.15 DEFINITION . The cohomological dimension dimRX of X over R 

is the smallest n E ~ U ~ such that 

(i) Hi(u;A) = 0 for all U open in X,A C Sh(Y) and i > n. 
c 

Note that, by 1.14, the condition (i) for i = n + 1 implies (i) in 

general. 

1.16 PROPOSITION . Let X be a locally compact space and n C ~. Then 

the following conditions are equivalent 

(i) dimRX ~ n . 

(ii) H~+I(x;A) = 0 for all A C Sh(X). 

n+l 
(iii) H c (U;~) = 0 for every ideal m of R and every open 

subset U of X. 

(iv) ~ n+l n c (U;R) = 0 for all U open in X. 

Proof : The implications (i) -~ (ii) and (iii) ==~(iv) are obvious. 

The equalities 
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(i) Hc(U;B U) = Hc(U;B) = Hc(X;Bu), (U open in X; B 6 Sh(X) 

show that (ii) ~ (iii) and, taking 1.14 into account, that (ii) =~(i). 

There remains to prove that (iv) ~ (iii) ==~(ii). 

Assume (iv) to hold. Then, by 1.14, R U has a c-soft resolution 

vanishing in degrees > n . Therefore 

(2) Hi(U;R) = 0 for all i > n, (U open in X). 
c 

The same is then true with R replaced by Rm(m C ~) or also by any 

finitely generated projective R-module P, since such a module is a 

direct summand of an R m. Since R has finite dimension d , any ~ has a 

left resolution of length ~ d by finitely generated projective R-mo- 

dules. Then (iii) follows from the above and 1.14. 

Assume now (iii) to hold. Let M be the family of all sheaves S for 

which Hn+I(x;S) = 0. We have to show that M = Sh(X). 
c 

By assumption, M contains the sheaves m U (m ideal of R;U open in X). 

It is also clear that if 0 ~ n' ~ A + n" ~ 0 is an exact sequence in 

Sh(X) and A', A" 6 M (resp. A',A 6 M) then A 6 M (resp. A" 6 M). 

Finally, if (Ai)i61 is directed under inclusion and consists of ele- 

ments in M, then the union of the A. belongs to M since cohomology 
i 

with compact supports commutes with inductive limits [5:II,4.12.1]. 

But it is known that this implies M = Sh(X), (see [4:15.10]e.g). 

1.]7 PROPOSITION . Assume that dimRX is finite and that X is 

locally completely paracompact. Let n = dimRX and d = dimR . Let 

(i) 0-~ n ~ j0 d0 jl dl . jm-i dm-i 
--+ --+ .. -+ B~ 0 

be an exact sequence in Sh(x). 

(i) If the ji's are flabby and m = n + i, then B is flabby. 

(ii) If the ji's are injective and m = n + d + i, then B is 

injective. 

[We say that a space is locally completely paracompact if every point 

has an open neighborhood all of whose open subsets are paracompact.] 
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Proof : (i) Let Z n = ker d . By 1.14, Z n is c-soft, we have the 
n 

short exact sequence 

(2) 0 + zn § Jn -~ B -~ 0 , 

Let U be an open paracompact subspace of X. By Theorem 3.4.1 in [5:II], 

the restriction of Z n to u is soft, hence 

(3) Hi(u;Z n) = 0 , (i > i) . 

The exact sequence (i) then gives rise to the commutative diagram 

Jn(X) 'P B(X) 

(4) Jn(u) -~ B(U) �9 0 

0 

with exact first column since jn is flabby and exact second row by (3). 

Therefore B(X) + B(u) is surjective, x being assumed to be locally com- 

pletely paracompact,it follows that every point has an open nei~,borhood 

on which the restriction of B is flabby. Since ~labb~ness is a local 

property [5:II,3.11], this proves (i). 

(ii) Let Z j = ker d (n < j ~ n + d). By (i) Z n+l is flabby. 

Since the ji's are injective, hence afortiori flabby, the equalities 

(5) Z n+i+l = jn+i/zn+i (i ~ i < d), B = jn+d/zn+d 

imply that /n+i (i ~ i ~ d) and B are also flabby. In particular, all 

terms in the exact sequence 

(6) 0 § Z n+l § jn+l + ... § jn+d § B § 0 

are flabby. In order to prove that B is injective it suffices, by 1.13, 

to show that given V c U open in X, the restriction map r : B(U) § B(V) 

is a split surjection of injective modules. Given V c U , we get from 
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(6) the commutative diagram 

0 0 0 0 

L L 
"~ C n P C n+l "~ ... ~" C n+d �9 C n+d+l �9 0 

zn+l(u) ~- jn+l(u) ~ ... ~* jn+d(u) ~ B(U) , 0 

zn+l(v) -~ jn+l(v) ~ ... ~ jn+d(v) �9 B(v) �9 0 

L L 
0 0 0 0 

where the C n+i (0 < i < d + i) are the kernels of the restriction maps. 

The columns are exact since the sheaves Z n+l, jn+i and B are flabby. 

This last fact also implies that the second and third rows are exact. 

Then so is the first row. By 1.13, jn+i(u), jn+i(v) and C n+i are in- 

jective modules (i = l,...,d). Since dim R = d, it follows by standard 

homological algebra that C n+d+l , B(U) and B(V) are injective modules. 

Then r is also a split surjection, whence our assertion. 

1.18 COROLLARY. Any n 6 Sh(X) has a flabby (resp. injective) 

resolution A + J" which vanishes in degree > n + 1 (resp. > n + d + i). 

Any A" 6 DGS(X) which is bounded (resp. bounded below] has an injec- 

tire resolution which is bounded (resp. bounded below). 

In fact, A always has a flabby (resp. injective) resolution A § J" 

By the theorem, T<n+iJ" (resp. T<n+d+iJ" ) is then a flabby (resp. in- 

jective) resolution. This proves the first assertion. The second one 

then follows from the construction of a resolution of A" by means of 

resolutions of the A1's. More specifically, if 

Am + ira,0 § Im,l § ... (m 6 zz) 

is the Godement injective resolution of A m [5:II,7.1] then, by 1.17, 

A m § jm,- = T I m'" (e = n+d+l) 
<=e 
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is alsoen injectiv~resolution,which is obviously bounded. Moreover 

there is a morphism jm,i ~ jm+l,i (i 6 ~) which sits over 

d : A m + A m+l . From this we get on the direct sum J'," of the jm,i 

a structure of double complex. Let then J" be the simple complex de- 

rived from J"" by using the total degree. Then A" + J" , where 

Am § jm is defined via A m § jm,o , is the sought for injective reso- 

lution. 

It is also possible to combine 1.17 with the construction of an 

injective resolution given in [8:I,7.1]. 
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w 2 DELIGNE'S SHEAF. FIRST AXIOMATIC CHARACTERIZATION 

2.1 Let X be a Hausdorff space. A filtration X = (X i) 

(i) X = X n ~ Xn_ 2 O Xn_ 3 ~ ... o X 0 ~ X_l = 

by closed subspaces is said to be a n-dimensional topological strati- 

fication if it satisfies the conditions of i.i in I . This implies in 

particular that X is locally compact, of cohomological dimension n .The 

space X is a n-dimensional topological pseudomanifold if it admits a 

topological stratification, a stratified n-dimensional pseudomanifold 

if it has been endowed with one. 

In this section, X is a stratified n-dimensional pseudomanifold 

X its stratification. 

The stratum S i = X i - Xi_ 1 is an i-manifold, (if not empty). We set 

�9 = X - X (2 < i < n+l) , (2) U1 n-i = = 

The U.'s form an increasing sequence of open subsets and we have 
1 

(3) Uk+ 1 = U k U Sn_ k . 

We let i k 

(4) 

and Jk be the inclusions 

ik Jk 

U k ~ Uk+ 1 - Sn_ k �9 

If S" is a DGS on X, we let S~ denote its restriction to U k . We let 

s be a local system on U 2 , i.e. a locally constant sheaf of R-modules 

with finitely generated stalks. If u 2 is connected, it is defined in 

the usual way by a finitely generated R-module E 0 over the fundamental 

group ~I(U2) of U 2 and conversely. 

Remark. In [6], Goresky and MacPherson start from a slightly more 

general notion of topological stratification : they allow a first stra- 

tum Sn_ 1 of dimension n-1 and X - Xn_ 1 is not necessarily dense. How- 

ever, soon after a blanket assumption requires all topological strati- 

fications to satisfy the conditions imposed above. Therefore we do not 

really need this more general concept. 
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These restrictions are necessary to prove topological invariance, but 

do not intervene in the discussion of constructibility or Verdier dua- 

lity and biduality. In order to be able to point that out conveniently, 

we shall call "unrestricted" those more general topological stratifi- 

cations.and, for brevity, also call pseudomanifold a space admitting 

one. For those we then allow i = 1 in (2), (3), (4). 

2.2 Deligne's sheaf .We fix a perversity p and a local system E 

on u 2 . Deligne's sheaf is defined inductively on U k by the rules : 

(I) P(E) 2 = E on U 2 , 

and, for k > 2 , assuming P(E) k defined over U k , 

(2) P(E)~+ 1 = Tj~p(k)Rik,P(E) ~ . 

Then P(E)" = P(E)n+ 1 . 

This sheaf depends on X , p and E . It will be denoted by P" , P'(E) , 

P~(E)_ , P~,x(E)_ according to the needs of the context. Note that no 

PL structure is involved in its construction. In fact, the latter makes 

only use of the filtration 2.1(1) of X . 

2.3 The set of axioms AXlp, X . Let S" C DGS(X) . The AXl consists 

of the following three sets of conditions 

(a) S" is bounded, S i = 0 for i < 0 and S~ = E . 

(b) For x 6 Sn_ k we have Hi(S~) = 0 if i > p(k), (k = 2,...,n) . 

(c) The attachment map ~k : Sk+l + Rik*Sk is a q.i. up to p(k) . 

2.4 LEMMA . Assume S" satisfies AX1. Then 

(1) 

Proof : Consider the diagram : 
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(2) 

S[+l 

~k+l 

T~(k)Sk+l 

~k 

! 

~k 

Rik,S ~ 

7k+ 

~(k)Rik*Sk 

By (b), 8k+ 1 is a q.i. By (c) ~{ is a q.i. This implies, by definition, 

that S~+ 1 and T(k)Rik,S ~ are q.i. 

2.5 THEOREM . The sheaf P(E)" satisfies AX1. Any S" satisfying 

AXl is q.i. to P(E)" . 

This first assertion is clear from the definition of P(E)" . 

Assume S" satisfies AXI. Then S~ = P(E)~ by (a). Assume that S~ = P(E) k 

Rik,S ~ Rik,P(E)" for some k ~ 2. Then = k ' hence also 

(i) Y<p(k)Rik,S~ = Y<_p(k)Rik,P(E) 

�9 = �9 

which yields Sk+ 1 P(E) k+ 1 by 2.4 and 2.2 (2)�9 

2.6 Notation . We let I H'(X;E) denote the hypercohomology of X 
P 

with respect to any S" satisfying AXl and call it the intersection 

cohomology of X with coefficients in the local system E �9 More general- 

ly, if # is a family of supports, IpH~(X;E ~) is the intersection coho- 

mology of X with coefficients in E and supports in ~ . 

2.7 Remarks. (a) The set of axioms AXI is not exactly the same as 

in [6]. There it is also required that S" be "constructible". We shall 

see that this last condition is in fact a consequence of AXl as defined 

here (S 3). 

(b) For simplicity, we required S" to be bounded and zero in 

strictly negative degrees. But we are really "in the derived category"�9 

We could instead require only 

(i) S" is bounded below. His . is zero for i < 0 and i big enough. 

In fact,if S" is bounded below, the hypercohomology spectral se- 

quence converges. Moreover, using double truncation, we see that S" is 

q.i. to a bounded complex T" which is zero in strictly negative degrees 

(l.lO). It follows then that 2.5 extends also to such complexes of 
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sheaves. 

2.8 THEOREM . Assume p = 0 is the zero perversity. Let E be a 

local system on U 2 and i : U 2 + X the inclusion. Then i,E satisfies 

AXI. In particular 

(i) IoH'(X;R) = H" (X;i,E) . 

If X is normal and E = RU2 , then i,E = R x and 

(2) IoH" (X;R) = H" (X;R) . 

Proof. Obviously, i,E satisfies AXI (a), (b). For k ~ 2, let 

i2, k : U 2 § U k be the inclusion map. It is clear from the definitions 

that, for any sheaves A 6 Sh(U2) and B E Sh(Uk) : 

(3) (i,A) k+l = i2,k+l,A = ik,(i2,k,A ) and T 0Rik,B = ik,B . 

This shows that i,E satisfies also AXl (c). Assume now X to be normal. 

Then a point x 6 Sn_ k has a fundamental set of distinguished neighbor- 

hoods U such that U - Z is connected. This implies immediately that 

i R is the constant sheaf RX, whence the last assertion. 
* U 2 

2.9 PROPOSITION . Assume X to be paracompact. Let 0 be the orien- 

tation sheaf. Let I C. be the intersection homology sheaf defined with 
P 

respect to a PL structure (see I) and let I C" be defined by 
P 

I C i = I C . . Then I C" satisfies AXI with E = O.we have 
p p n-i p 

(i) I H.(X;R) = I Hn-i(x;0) , (i C Z) 
pl p 

and I H.(X;R) is independent of the underlying PL structure. 
P 

On U 2 , the sheaf I C. is the homology sheaf. Since U 2 is a mani- 
P 

fold, we have I C" = 0 . Hence I C" satisfies AXI (a) for E = 0 . That 
P P 

it fullfills the conditions (b) and (c) was proved in II,6.1. 

By definition 

(2) IpH (X;R) n-i . i = H (FX(IpC)) . 
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But I C" is soft (cf II,5.1) therefore the right hand side of (2) also 
P 

represents hypercohomology, hence (i). 

2.1@ Distinguished neighborhoods. We fix here some notation to be 

used frequently in the sequel. 

Let k ~ 2 and x 6 Sn_ k. The distinguished neighborhoods U of x are 

of the form B n-k • ~(L), where B n-k is an open ball in Sn_ k around x 

and ~(L) an open cone over a compact pseudomanifold L of dimension 

k-l, the "link" of x. A distinguished neighborhood of x is also one of 

y 6 B n-k . By a fundamental set U or U of distinguished neighborhoods 
x 

of x we shall always mean a countable fundamental set of neighborhoods 

of x obtained from one such U by shrinking B n-k and ~(L) to x in the 

standard way. We let z : U + ~(L) be the natural projection. 

By definition there is a topological stratification s of L such 

that the stratification induced by X on U is the ~ - inverse image of 

the cone over s . We have in particular an increasing sequence of open 

subsets V�9 of L such that 
] 

( l )  U Q U Bn-k • o o , o 3 c(Vj)* (j = 2 .... k,c(Vj) = - . �9 = , . c(Vj) {x}) 

If S. is the j-dimensional stratum of s then 
] 

~ 

(2) Vs 1 = Vs O Sk_s 1 , (2 < s < k) . 

We let [~ , jl be the inclusions 

(3) VZ---~ VZ+ 1 - Sk_l_ ~ , (2 ~ Z < k) . 

We have the cartesian squares 

i. 

U3.NU 3 ~ Uj+INU 

c~ )* c(ij) o , c(Vj+ I) 

(2 < j < k) 

UkNU 

~ 

i k 
' U 

, ~ 

The space ~(L)* obtained from ~(L) by deleting the vertex is naturally 

isomorphic to~ • L , hence 
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(5) U B n - k  H n - k + l  
- = xL~ 

We let ~ (resp. ~) be the projection of the left hand side onto B n-k+l 

(resp. L). Thus v is the composition of ~ and of the natural projection 

of ~ x L onto L. We also have a cartesian diagram 

i 

U nU3 3 ~ Uj+InU 

t 

(6) v ~ [ 

1 i .  

V 3 ~ V-+13 ] 

2.11 Let C. be the homology sheaf of X, (say defined via a PL 

structure as in I , a more general definition will be recalled in w 7). 

We define ~" by 

(7) 9 i = Cn_ i , (i f ~) . 

2.12 THEOREM . Assume X to be normal. Let 9" be as above and 0 

be the orientation sheaf on U 2 . Then ~" satisfies AXlt, 0 ,(where t 

is the maximal perversity). In particular 

(i) ItHi(X;0) = Hn_i(X;R) (i C ~) 

Proof. We have ~ = 0 in U 2 since U 2 is a manifold, hence 9" satis- 

fies AXI (a). We have t(k) = k - 2 (k ~ 2). To prove that 9" satisfies 

AXl (b), (c), we have then to show, for k = 2,...,n : 
t 

(2) HJ(9~) = 0 (x C Sn_k, j > k - 2) 

(3) ~k : HJ (gk+l,x)" ~ H j ( (Rik.~) x ) is an isomorphism for j ~ k - 2 

In the sequel, homology is understood with coefficients in R. In the 

notation of 2.10,we have 

(4) H j (Q-) = lim H . (U) , 
x --~U n-3 

(5) H j ((Rik,~)x) = li__muHn_ j(U - B n-k) , 
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as U runs through a fundamental set U of distinguished neighborhoods 

of x (2.10).It is therefore enough to prove the two following asser- 

tions 

(6) H. (U) = 0 (i < n - k + i) 
1 

(7) The restriction map ~i : Hi(U) -~ Hi(U - Bn-k) is an isomorphism 

for i > n - k + i. 

We consider the long exact sequence in homology of U mod B n-k 

(8) 
6. 

§ Hi(Bn-k ) -~ Hi(U ) § Hi(U - B n-k) ~ Hi_l(Bn-k ) -~ 

Recall that H (B n-k) is zero for i / n - k and equal to R for i = n - k. 
1 

Therefore (8) yields (7). We have U - B n-k = B n-k+l • L , hence 

(9) Hi(U B n-k) - = Hi_(n_k+l ) (L) , (i C ~) . 

This is zero if i ~ n - k . Therefore (8) implies (6) for i < n - k . 

Moreover we see that in order to prove (6) for i = n - k, n - k + 1 , 

it suffices to show : 

(10) 6n_k+ 1 : Hn_k+l(U - Bn-k) + Hn_ k(Bn-k) is an isomorphism . 

We have U = B n-k x ~(L) and U - B n-k = B n-k x (~ • L) . From that and 

the K~nneth rule, we see that we have to prove that 

(ii) 61 : HI ~ x L) + H (x) 
0 

is an isomorphism, where 61 is the boundary homomorphism in the segment 

(12) HI(~(L)) § HI(~ • L) 61~ H0 (x) ~ H0 (~(L)) 

of the long exact sequence in homology of ~(L) modulo its vertex. We 

have H0(x ) = R . The space L is compact and, since X is normal, is con- 

nected, hence 

(13) HI ~ x L) = H 0 (L) = R . 
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~(L) is connected, non - compact, hence H0(~(L)) = 0 . As a moreover 

consequence, 61 is an isomorphism. 
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3 CONSTRUCTIBILITY 

In this paragraph R is a noetherian commutative ring of finite 

cohomological dimension and X is a locally compact topological space 

of finite cohomological dimension over R. We assume moreover that every 

point of X has a countable fundamental system of neighborhoods. 

3.1 We introduce first some notions concerning direct and inverse 

systems of R-modules. The index sets are always assumed to be filtered 

on the right (for any indices i and j there exists k with k ~ i and 

k ~j). 

Definitions. A direct system of R-modules (Ai)i 6 I 

constant if the following conditions hold: 

i) For each i 6 I, there exists i' > i such that 

is essentially 

Ker (A i § Ai, ) = Ker (A i ~ ~ Aj) 

2) There exists i 6 I such that A. § lim A. is surjective. 
O i ~ i 

0 

An inverse system of R-modules (Ai),(i 6 I) , is essentially con- 

stant if the following conditions hold: 

i') For each i 6 I, there exists i' ~ i such that 

Im (Ai, § Ai) = Im (li m Aj + Ai) 

2') There exists i 6 I such that lim A § A. is injective. 
o ~ 1 1 

o 

3.2 Remarks. a) Let (Ai) i 6 I be a direct system and let 

Ai = Ai/ Ker (A i + lim.__+ A5). Then (Ai), (i 6 I)~ , is a direct system in 

which all the maps are injective and lim A. = lim A. . Condition (2) 
---+ 1 ----+ 1 

requires that (Ai) is a constant system if we consider only large 

enough indices. 

In using (i') note that we may have 

Im (l+~mim Aj § Ai) ~ n j > iIm (Aj + Ai) . 

However, this cannot happen if I has a countable cofinal subset. 
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b) Let J ~ I be cofinal (i.e. for any i C I there exists j C J with 

i ~ j). Then a direct (resp. inverse) system (Ai) i C I is essentially 

constant if and only if (Ai)i 6 J is so. 

In particular, if I is the set of all neighborhoods (or open neigh- 

borhoods) of some point x C X , ordered by U ~ V if U o V , the counta- 

bility assumption implies that we need only to check (i) and (2) (resp. 

(i') and (2') for some suitable sequence of neighborhoods. 

c) Let (Ai) i C I be a direct system. If ~lim A.l is finitely generated, 

then (2) holds. If for every i C I there exists i" > i such that 

Im (A i + Ai.) is finitely generated, then (i) holds since R is noe- 

therian. 

Consider now an inverse system (Ai) i C I , and suppose that R is 

artinian. If lim A is finitely generated, then (2') holds. If I has a 
+--- 1 

countable cofinal subset and for every i 6 I there exists i" > i such 

that Im (Ai. + Ai) is finitely generated, then (i') holds. 

3.3 Let S" 6 DGsb(x). We introduce now various constructibility 

conditions. 

(i) S" is cohomologically locally constant (in short clc) if H'S" 

is locally constant. 

(ii) Let X : X n = X ~ Xn_ 1 D Xn_ 2 ~ ... ~ X 1 o X 0 ~ X_I = @ be 

a filtration of X by closed subsets. We say that S" is X-cohomologi- 

cally locally constant (in short X-clc) if H'S" is locally constant 

on each stratum X i - Xi_ 1 (0 ~ i ~ n). We say that S" is X-cohomologi- 

cally constructible(in short X-cc) if it is X-clc and the stalks 

H'S" (x 6 x) are finitely generated. 
x 
(iii) S" is cohomologically constructible (in short cc) if it satis- 

fies the following conditions: 

CCI. For x C X and m C ~ the inverse system ~m(Ux;S" ) (over all open 
' c 

neighborhoods of x) is essentially constant and its limit is finitely 

generated. 

For x C X and m C ~ , the direct system ~m(Ux;S') CC2. (over all neigh- 

borhoods of x) is essentially constant and its limit is finitely ge- 

nerated. 

CC3. For x 6 X and m C ~ , Hm(f~S')x = +---lim ~m(ux;S')'c where Ux runs 

over the open neighborhoods of x and f : x § X is the inclusion. 
x 

CC4. (Property (P,Q) of Wilder). If P c Q are open in X, P c Q and 
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compact, then the image of ~J(P;S') in ~J(Q;S') is finitely genera- is 
c c 

ted. 

If X is a pseudomanifold with a topological stratification X , we 

shall show that S" is cohomologically constructible if it is X - cohomo- 

logically constructible, and that the complexes of sheaves construc- 

ted in paragraph 2 are X - cohomologically constructible. Here X may 

be unrestricted (2.1). 

3.4 Remarks. a) If CC4 holds and X is compact, we can take 

P = Q = x and we find that ~m(x;S') is finitely generated. This will 

show in particular that the intersection cohomology groups of compact 

pseudomanifolds are finitely generated. 

b) One can show that the following relations hold : 

(i) CCl ~. CC3 ; 

ii) CCI :-CC4 ; 

iii) if H'(SI) is finitely generated for all x 6 X , then 

CCI �9 ~ CC2 ; 
t 

iv) if H(fxS') is finitely generated and R is artinian, then 

CC2 (at x) ==~ CCI (at x). 

We shall prove here only (ii) and (iii). We shall use actually only 

(ii). See 3.17 for some references and further comments. 

3.5 THEOREM . CCI ----~ CC4 . 

The condition CC4 is certainly satisfied for j very large, since 

in this case ~(Q;S') = 0 . We can therefore use descending induction 

on j. We assume that CC4 holds for j + 1 (and any open subsets P c Q 

with P compact, P c Q). 

Let E = {U c QIu open, u compact, u ~ Q} and let 

E j = {U E EIIm0HJ(u;S ") + ~J(Q;S')) is finitely generated }. We must 
.c c 

show that P E E 3 . Since R is noetherian, it is clear that if P c V 

for some V E E j then P E E j It is therefore sufficient to show o 

that every compact subset K of Q has a neighborhood V E E j . 

It follows immediately from CC1 that every x 6 Q has a neighbor- 

hood which is an element of E j. If K C Q is compact, we can therefore 

find UI...,U k E E j such that K C U 1 U... U U k. We must show that we 

can do this with k = i. The crucial case is k = 2. Indeed, if this is 

settled we can use induction for k ~ 3 : the compact set 

K - (U 1 U ... U Uk_ 2) is contained in Uk_ 1 U U k, hence has a neighbor- 
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hood U~_ 1 C E 3, and K C U 1 U ... U Uk_ 2 U U~_ I. 

So let k = 2. We can then find an open neighborhood V 1 of K - U 2 

such that ~i ~ UI" Then K ~ V 1 U U 2 , and we can find an open neighbor- 

hood V 2 of K - V 1 such that V2 C U2" Then K c V 1 U V 2 , and we need 

only to check that V 1 U V 2 6 E 3 . Consider the diagram 

~J(Vl)c @]~J(V2)c ~ ~H~(UI) @~J(U2)c 

c (Vl U V 2) ~ U U 2) 

~+lCVlnV 2) ~ . ~+l(lnU21 

where hypercohomology is meant with respect to S" and the columns are 

given by the Mayer-Vietoris sequences. We must show that Im (~o6) is 

finitely generated. By hypothesis Im (~) = Im (vo~) is finitely gene- 

rated. Thus v(Im 5 N Im e) is finitely generated, and we need only to 

show that Im B/(Im B N Im e) is finitely generated. But 

Im (B)/(Im B n Im e) ~ Im (6o~) ~ Im (u 

and Im (~) is finitely generated by induction hypothesis. 

3.6 Proof of 3.4 (iii). In this proof, hypercohomology is with 

respect to S'. 

By CCI we can find a fundamental system (Ui) i > _ 2 of open neigh- 

borhoods of x with the following properties: for i ~ - 1 , Ui c Ui- 1 
J § ~J U'z is compact, and Im 0Hc(Ui) c(Ui-l) ) is finitely generated. We 

only to show that the direct system ~J(ui;S')i>~ is essentially need 

constant. As H'S~ =_ li___~m~](ui;S'), is finitely generated, it suffices 

to show that Im ~3(ui;S')--~3(~i+2;S')) is finitely generated (i ~ i). 

It is enough to check this when i = i. 

We have a commutative diagram with exact rows: 
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]{J(Uo) , ]HJ(uI) ~ ]~J+I(u ~ - U1 ) 

~{~ (U_l) y i{ j (~2) 6 l~j+l - 
~ ~ c (U-i - U2) 

~3c(U_2) ~ , ]{j(~3 ) , ]~J+ic (U-2 -U3 ) 

Now Im (I) is finitely generated by construction and Im (9) is 

finitely generated since CCI implies the (P,Q) - property. It follows 

that 

B(Im (a) N Im (y)} c Im (8oy) = ~(Im (I)) and 

Im (~)/(Im (c~) n Im (y))= Im (6oc~) c Im (~) 

are also finitely generated. This implies that Im (Boa) is finitely 

generated, as required. 

3.7 PROPOSITION. Let M be a manifold, m its dimension, S" a clc 

differential graded sheaf on M and x 6 M . Then : 

a) The direct system ~i(u;S') (resp. the inverse system ~(u;S')) 

is constant on the set of neighborhoods of x which are homeomorphic 

to open balls, and equal to His . {resp. Hi-ms~) , (i 6 ~) . 
x x 

i S" . " , . b) f = f*S'[-m] In particular Hl(f~S ") = HI-m(s~) (i 6 Z) 
x x x x 

Moreover if H'S" has finitely generated stalks, then S" is cc. 

a) H'S" is constant on u and therefore the spectral sequences for 

~(U;S') and ~ (U;S') collapse. We have 
c 

(i) 

Hi(u~H'S ") = 

�9 { Hci(U;H'S ") = 

H'S x if i = 0 

0 if i I 0 

H'S" if i = m 
x 

0 if i ~m , 

and therefore 
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(2) ~J(u;S') = HJ(si), ~J(u;S')c = HJ-m(Sx ) 

This implies (a). 

(j c z) . 

V, 3.7 

b) Let U be an open neighborhood of x whose closure is homeomorphic to 

a closed ball and let J" be an injective resolution of S'. we have a 

natural map 

(3) f~S" = F{x}(U;7" ) -~ Fc(U;J') 

We claim that the cup product with a fundamental class [U] c with 

compact support yields a q.i. 

(4) F(U;7") + F (u;J')[m] . 
c 

This cup product induces a morphism of the hypercohomology spectral 

sequences which increases the total degree by m . On the other hand, 

, H i+m U;E) for any R-module E it gives an isomorphism of Hi(U;E) onto c ( 

for all i (note that both terms are zero for i ~ 0 and equal to E for 

i = 0). It follows then from (i) that U [U] c yields an isomorphism of 

the E 2 terms increasing the total degree by m. Together with (2), this 

implies our assertion. By (a) we know that 

(5) F(U;J') �9 J" *-S" 
x x 

is a quasi-isomorphism. So we need only to check that (3) yields a 

quasi-isomorphism. That is, we must show that H (fiS') = ~ (u;S'), or 

equivalently that Hi(f~S ") = ~i-m(u;S') (i C 2). 
x 

We consider the following commutative diagram with exact rows: 

(6) 

. . .--* Hi (fxS") 

... § ") 

~{i(~;S. ) § ]{i(~ -{x};S') "~ ... 

Bi u 

~(~;S') ~ ~(~ - u;S') .... 

We want to show that ei is an isomorphism. For this, it suffices to 
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prove that Yi is an isomorphism for all i's. This map is induced by 

the restriction map. It suffices to show that it induces an isomorph- 

ism of the E 2 - terms of the corresponding hypercohomology spectral 

sequences i.e. we have to see that the restriction 

(7) H'(U -{x};H'S') ; H'(U - u;H'S') , 

is an isomorphism. But we may write 

(8) U - {x} = S n-I x (0,i] , U - U = S n-I x {i} 

and the inclusion map is the obvious one, whence our claim. 

Suppose now that the stalks of H'S" are finitely generated. Part 

(a) shows then that CCl and CC2 hold. Part (b) proves CC3 . By (3.5) 

we have also CC4 . Thus S" is cohomologically contructible. 

3.8 LEMMA. Let (M,m) be a stratified pseudomanifold, Y a topolo- 

gical space and equip X = Y • M with the filtration X by its closed 

subsets Y • M . Let ~ : X + Y be the projection, and for y 6 Y let 
1 

M = -l(y) . Let S" be X-clc on x . Then 
Y 

a) Suppose that Y is a closed ball. Then the natural map 

~(X;S') + ~c(My;S ) is an isomorphism for all y C Y . 

b) Suppose that M is compact and that every point in Y has a fundamen- 

tal system of neighborhoods which are homeomorphic to a closed ball. 

Then R~,S" is clc. If moreover Y is contractible, then 

~" (X;S') + ~" (M ;S') is an isomorphism. If Y is an open ball of di- 
y 

mension d , then ~3(X;S')~c = ~J-d(My ;S') m 

a) Let T : x + M be the projection and j : M 
y Y 

By definition: 

§ X the inclusion. 

~c(My;S') = ~c(My;j*S') �9 

We also have 

since T is proper (1.6). Suppose for simplicity that S" is injective 

(if this is not the case, replace S" by an injective resolution).There 

is then a natural map f : R~,S" = T,S" § j'S" defined as follows. 
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A section y of T,S" over an open subset U of M is by definition a 
-i Y 

section of S" over T (U). Then f(y) is the restriction of u to 
-i 

T (U) N M = U . It is clear that j* : ~[(X;S')c § ~[(My;S')c corres- 
Y 

ponds to f" : ~$(My;RT,S') § ~c(My;j*S') . If suffices therefore only 

to check that f is a quasi-isomorphism. In fact, we shall prove it in 

case M is a manifold with the trivial stratification and then estab- 

lish (a) in general by an inductive argument. 

Suppose first that M is a manifold with the trivial stratification. 

Then H'S" is locally constant�9 Let U c M be open and homeomorphic to 
Y 

an open ball. Then T-I(u) = Y • U is contractible. As H'S" is locally 

constant, H'S" must be constant on 7-1(U). Thus the spectral sequence 

for ~'(T-I(u) ;S ") collapses and gives ~'(T-I(u) ;S ") = H'S" for any 
z 

z 6 T-l(u), in particular for any z C U. But ~'(T-I(u);S ") = ~'(U;RT, S') 

Thus, letting Uz run over the open neighborhoods of z in My, we get 

H'(R~,S')z = li~m~'(Uz;RT,S" ) = H'S~ = H'(j*S')z 

Thus f is a quasi-isomorphism and (a) holds in this case. 

We use now induction on k �9 Let V k = M - Mm_ k where m = dim M, and 

Z k = M k - Mk_ 1 , U k = Y • V k , Sn_ k = Y • Zm_ k . (We have identified 

M and M). We have then a commutative diagram with exact rows, where 
Y 

hypercohomology is with respect to S" : 

Hi (Uk) ]4i 
"---+ c > c (Uk+l) 1 ]q: (Sn_k) 

]{i(Vk)c § ~i(Vk+l) § ~{~(Zm-k)--~ 

The Yi's are isomorphisms by (a) since Zm_ k is a manifold. By in- 

duction on k we may assume that the ~ 's are isomorphisms. The 8 's 
1 1 

are then isomorphisms by the 5-1emma�9 For k = m we get (a). 

b) Let y 6 Y and B be a neighborhood of y in Y which is a closed ball. 

Since M is compact (a) gives 

~'(~-I(B);S') = ~'(~-l(z);S') for all z C B . 

It follows immediately that R~,S" is clc. 
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Suppose now that Y is contractible. We have~'(X;S') = ~'(Y;R~,S') . 

As Y is contractible, R~,S" is cohomologically constant and the spec- 

tral sequence for ~ gives ~'(x;S') = H'(R~,S')y . We need therefore 

only to check that H'(R~,S')y= ~'(My;S') . But 

H'(R~,S')y = li__~m ~'(Uy;R~,S') = li_~m]H'(~ -I (Uy) ;S') 

where U runs over all neighborhoods of y. For neighborhoods U homeo- 
Y Y 

morphic to closed balls, we get by (a)]H'(~-l(Uy);S ") =~,(My;S') , as 

requested. The second assertion of (b) is proved. 

Since M is compact, ~ is proper and we have also 

~'c(X;S') = ~(Y;R~,S') . 

If Y is an open ball of dimension d , the spectral sequence for 

hypercohomology with compact supports gives 

]{J(Y;R~,S') = H j-d(Rz,S')y 

for all y E Y . We have checked above that 

therefore 

H j-d(R~.S')y = ]~j-d(My;S.) 

mension d . 

]{Jc(X;S') = ]{J-d(My ;S') , if Y is an open ball if di- 

3.9 LEMMA . Let (X,X) be a stratified pseudomanifold and let 

A" E DGS(Uk) . Assume that A" is X - clc, and let U = B • ~(L) 

be a distinguished neighborhood of x 6 Sn_ k . Then 

a) ~'(U;Rik,A') = ~'(L;A'IL ) 

b) Rik,A" is X - clc on Uk+ 1 . 

We have ~'(U;Rik,A" ) = ~'(U Q Uk;A" ) . But U N U k = B x ~(L)* 

B x ~ x L . By 3.8(b), we get (a), and (b) follows from (a) since U 

is a distinguished neighborhood of any y 6 B . 
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3.1@ PROPOSITION . Let (X,X) be a stratified pseudomanifold, 

S" C DGS(X) be X - clc and x C X. Then: 

a) The inverse system ~(U;S') is constant over distinguished neighbor- 

hoods of x . 

b) The direct system ~J(u;S') is constant over distinguished neigh- 

borhoods of x . 

c) CC3 holds for S" 

i S �9 d) For any stratum Z of X , the sheaf 3Z is clc on Z . 

e) If S" is X - cc , then S" is cc. 

a) We use the notation of 2.10 for the stratification. Let k be 

such that x C Sn_ k . Let U = B n-k x ~(L) be a distinguished neighbor- 

B n-k hood of x C Sn_ k . Let Z = U N Sn_ k . We have an exact sequence 

(1) ~3(u-z;S') +~ (U;S') § (z;S')--~ 
c 

Now S'ISn_ k is clc. Hence by 3.7 , ~J(z;S')c gives a constant in- 

verse system. Since U - Z = B n-k x ~(L)* a B n-k+l x L , we find by 

3.8 (b) that 

(2) ]~(U-Z;S') = ]~j-n+k-l(L;S.) . 

It follows that ~J(u-z;S') gives also a constant inverse system. By 
c 

the 5-1emma, the inverse system ~(U;S') is constant over distinguish- 

ed neighborhoods of x . This proves (a) . 

c) Let U = B • c(L) be a closed distinguished neighborhood of x C Sn_ k. 

We have a commutative diagram with exact rows 

(3) 

H j (f'xS") 

3 

~3c (u;3") 

~J(u;S') ~ ~J(u- {x};S') 

IqJ(u;S ") ~ ~J(u - U;S') ' 

We want to prove that ~ zs an isomorphism for all j . It is 
3 

enough to check that Ti is an isomorphism for all j . Let d = n - k - i. 

We have 
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(4) = ~d+l • c(L) = c(S d) • c(L) = c(sd*L) , 

where S d is the d-dimensional sphere and sd*L is the joint of S d and 

L . It follows that 

(5) - {x} = (0,i] • (sd*L) 

(6) - U = {I} • (sd*L) 

We are in the situation of 3.8 (b) with Y = (0,i] and M = sd*L. It 

follows that yj is an isomorphism for all j's. 

d) Consider the long exact sequence 1.8(7) in Sh(Sn_k) 

�9 v . i . . . 

(7~ .... H~(j~Si+l ~ -~ H~(~Sk+l ) § H (jV~k~Sk) .... 

The second term is locally constant for each i , and so is the third 

by 3.9(b). Since Sn_ k is locally connected, this implies by the 

5-1emma that the first term is locally constant for each i . 

b) Let U = B • ~(L) be a distinguished .eighborhood of x 6 Sn_ k . Con- 

sider the long exact sequence (1.8(8)). 

' i . 

-~ IHi(B;JkS" ) +~{i(u;S') -~]~ (U;Rik.Sk) § 

When U runs over a fundamental system of distinguished neighborhoods 

of x , the first term is constant by (d) and 3.7 , and so it the third 

one by 3.9(a) . Also the middle one is then constant by the 5-1emma. 

e) Assume now S" to be X - cc . To prove (e) we use 3.7 , induction 

on k and dim X and in particular assume (e) proved for the links. Con- 

sequently, CC4 for L implies that ~'(L;S') is finitely generated 3.4(a). 

Therefore so is ~(U - z;S') by (2) . But ~'(z;S') is finitely gene- 

rated by 3.7 , hence so is ~J(u;S') in view of (i). Together with (a), 
c 

this proves that S" satisfies CCI . Then 3.5, 3.6 and (b), (c) show 

that S" is cc. 
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3.11 COROLLARY . (i) The constant sheaf R x on X is cc. 

(ii) The assignement x~--~H'(f~S') is locally 

constant on every stratum of X . 

(iii) In the situation of 3.9 , the DGS Rik,A" 

X - cc if A" is X - cc. 

is 

Proof : (i) follows directly from 3.10 since R X is obviously 

X - cc for any X . 

(ii) Let x C Sn_ k and denote by gx the inclusion of x in 

f! ' , Sn_ k . Then f = Jk o gx and therefore = gl o j~ (1.9) . By 3.7 x x P 

we have then 

! 

Hi(f'xS" ) = Hi-n+k(jkS')x , (i C Z) 

l 

since JkS" is clc on Sn_ k by 3.10(d); (ii) follows. 

(iii) We know already that Rik,A" is X - clc . It remains to 

check that H'(Rik,A')x is finitely generated if x C Sn_ k . By 3.9(a) 

this is equal to ~'(L;A'IL ) . By 3.10(e) A" is cc and in particular 

satisfies CC4 . As L is compact ~'(L;A'IL) is therefore finitely gene- 

rated. 

3.12 PROPOSITION . Let (x,X) be a stratified pseudomanifold and 

let S" 6 DGS(X) satisfy (AXI)p,X,E for some local system E on U 2 . Then 

S" is X - cc and cc . 

In view of 2.5 and 3.10 , it suffices to prove that Deligne's 

sheaf P'(E) is X - cc . The local system E is X - cc on U 2 and P" is 

constructed by successive applications of operations of the form 

Rik, and T<p(k ) , both of which preserve the property to be X - cc 

(by 3.11 (iii) for Rik, , obviously for T<p(k)) 
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3.13 Let M be a topological space and ~ : X' = X x M § X the 

projection. Let Y c X and Y' = -l(y) . We have a cartesian diagram 

(i) ~' 

i ! y ,  > X' 

~ X 

LEMMA . Assume M is locally contractible . 

(a) Let Y be open and S" C DGS(Y) . Then 

(2) Ri,~'*S" = n*Ri,S" , (S" 6 DGS(Y)) 

(b) Let Y be closed and T" 6 DGS(X).Then 

I i 

(3) ~'*i'T" = i"~*T'. 

Proof :Let U C X , V c M be open, with V connected, and let 

A 6 Sh(X). Since ~*A is constant on the fibres of ~ and V is connected, 

we have 

(4) (~*A) (U • V) = A(U) . 

We now prove (a). Using (4) for n and ~' , we find that we have 

for B C Sh(Y) : 

(5) i,~'' '*B = ~*i,B . 

In particular, if S" § I" is the canonical flabby resolution of 

S" [5] we have 

(6) i~'*l" = ~*i,l" = z*Ri,S" . 
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Since ~'* is exact, ~'*S" § n'*~" is a resolution. We claim that: 

(7) ~'*I z is acyclic for i~ (i 6 ~) . 

Assume this for the moment. Then ~'*[" can be used to compute 

Ri~'*S', and (6) becomes Ri~'*S" = ~*Ri,S', as claimed. 

We need therefore only to prove (7). By construction I i is a sheaf 

of the form 

(8) 
F(y) , with ~(y) C Sh(Y) , supp([(y)) c {y} . 

y6Y 

It follows from (4) that 

(9) ~'*( H F(y)) = K ~'*F(y) . 
y6Y y6Y 

' since its support It is clear that each ~'*F(y) is acyclic for l, , 

is closed in X' . As direct image commutes with direct products, we 

see that in order to prove (7) it is sufficient to check that if 

~'*F(y) § ]'(y) is an injective resolution (y C Y), then both 

~y6y~'* F(y) § and ~yCyi~'*~(y) + ~y6Yi~l(y) are still reso- 

lutions. For this, it is enough to prove that if U c y , V c M are open, 

with V contractible, then the sequence 

(iO) ~ ~'*~(y) (U x V) § H ]0(y) (U x V) + ~ ]l(y) ( U x V) ~ ... 

y6Y y6Y yCY 

is exact. This can be checked componentwise, and for a fixed y 6 Y it 

amounts to 

(ii) HZ(U x V;~'*~(y)) = 0 for i > 0 . 

If y C U , then the support of n'*F(y) Iu x V is contained in the 

contractible space {y} x V , and ~'*F(y) l{y } x V is a constant sheaf. 

By i.ii, this implies (ii) in this case. But (ii) is obvious if y ~ U. 

This completes the proof of (7) and of part (a). 

We can prove (b) along the same lines. Using (4), we get 

(12) ~'*yyA = yy,~*A (A C Sh(X)) . 
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In order to prove (3) it is therefore sufficient to check that if 

7" + J" is the canonical resolution of T" by flabby sheaves [5], then 

~,jl is acyclic for 7y, (i E ~). But each ]i is of the form 

(13) H O(x) 

xCX 
with O(x) C Sh(X) , supp(G(x)) c {x} . 

As supp(~*G(x)) is either disjoint from or contained in Y' it is t 

clear that the sheaves ~*G(x) are acyclic for yy, . Moreover yy, 

commutes with direct products and as in (9) we have 

z*(~x6xG(X)) = Ex6XZ*G(x) . We conclude then as in part (a) that 

~,]i is yy, - acyclic. 

Remark: The same method can be used to prove the following 

version of the Vietoris-Begle theorem. Assume that M is contractible 

and locally contractible, and let T" 6 DGS(X). Then 

(14) ~'(X x M;~*T') = ~'(x;T') . 

We check first that for any A C Sh(X), n*A is acyclic for ~. . By 

I.Ii (b) this is true for skyscraper sheaves. The same arguments as 

above show then that it is true for arbitrary products of skyscraper 

sheaves. If A + J" is the canonical flabby resolution, ~*J" can there- 

fore be used to compute R~,~*A . But applying ~, to ~*A + ~ * J "  and 

using (4), we get A + J" back, which is still exact. This proves that 

~*A is acyclic for ~, . Therefore we have 

(15) R~,on* = ~,o~* = Id , 

and, using 1.6 (3) : 

(16) ~'(X x M;~*T') = ~'(X;R~,~*T') = ~'(X;~,n*T') = ~'(x;T') 

3.14 LEMMA . Fix a perversity p . Let (Y,y) be a stratified pseudo- 

manifold, M be a manifold and let X = M x y be equipped with the 

stratification M x y D M • Ym-2 ~ "'" D M x Y-I = @ " Let .~ : X + Y 

be the projection and E be a local system on Y - Ym-2 

P x U , , E )  = ~*P~, (E)  . 
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'Y be the inclusion V k § Vk+ 1 and Let V k = Y - Yk ' let i k 

~k : UR § Vk be the projection. We show that (Px) k = ~(PY)k " 

k = 2 this is clear. Assuming it holds for k , we have : 

V, 3.15 

For 

(P~) k+l = ~m(klRik*(P~}k ~<~(k)Rik*q(~} k = 

.Y . Y . . 
= ~p(k)~+iR~k,(Py)k = ~+l~<__p(k)R~k,(Py)k = ~+l(Py) k+l 

in view of 3.13 and because inverse image commutes with truncation. 

3.15 LEMMA. Let (X,]() be a stratified pseud~manifold and E be a 

local system on U 2. Let x f Sn_ k and U = B n-k x cO(L) be a distingui- 

shed neighborhood of x . Then 

~i(u;P" (f)) = 

~i(L;PL(E)) , if i <__p(k) , 

0 if i > p(k) , 

[ Here P~(E) is Deligne's sheaf on L with respect to the local system 

EIL A U 2 "] 

By 3.12.and 3.10 (b), P" is X - cc and H" (P~) = ~'(u;P'). In parti- 

cular ~I(u;P') = 0 for i > p(k) by condition (b) of (AXl). 

As 

U - B n-k = B n-k • cO(L) * -= B n-k+l • L , 

3.8 (b) and 3.14 show that 

~i(u - Bn-k;p ") = ~i(L;P~(E)) . 

In particular this is constant over distinguished neighborhoods, and 

we gcts commutative diagram 
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~i(u;p" ) , ~i(L;P~) 

Hi(p~) i . . 
.9 H (Rlk,Pk) x , 

where the bottom map is given by attachment. By condition (c) of 

(AXI) it is an isomorphism for i ~ p(k) . 

3.16 Remark on constructibility in [6] . This basic notion there 

is what is called here X - cc. However some general results involving 

cc are also needed, which is why that notion is also considered. The 

theorem on p. 84 of [6] shows that X - cc implies CC2, in fact more 

strongly the constancy of this inductive system. It is further stated 

there that this implies the other conditions CCI of 3.3, but I do not 

see that CCI follows from CC2 (unless R is artinian). Our 3.8 is 

related to 1.13 (17) of [6]. There, however, only clc DGS are con- 

sidered, but in the proof of the lemma in 3.1, p.lOl, it is used for 

a DGS which is X - cc. 

3.17 The above contains all that we need in the sequel about con- 

structibility. For information, we add here a few comments and refe- 

rences. 

a) The results mentioned in 3.4 are all proved in [iO], Exp. 7.8. 

b) Let us say that a direct (resp. inverse) system {A } is 
l 

essentially finitely generated if, given i, there exists j ~ i such 

that A i + Aj (resp. Aj § Ai) has a finitely generated image. Consider 

the four following conditions 

(i) For each x 6 X, the inverse system ~(U;S') is essentially 

finitely generated. 

(ii) For each x 6 X , the direct system ~'(U;S') is essentially 

finitely generated. 

(iii) Property (P,Q). 

(iv) If K is compact and contained in the interior of Q,the restric 

tion map ~'(Q;S') +~'(K;S') has a finitely generated image. 
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Obviously CCI (resp. CC2) implies (i) (resp. (ii)). Moreover, the 

proof of 3.5 actually shows that (i) implies (iii), whence the equi- 

valence of these two conditions. In fact the four conditions are equi- 

valent. This is proved in [4 :p.77-80] when S" is the constant sheaf 

R but the proof is general. The argument of 3.5 can already be found 
X 

in [1;2], but in [i] it was directly inspired by an earlier one of 

R.L.Wilder. 

c) Condition (i) for R x is equivalent to "cohomological local 

connectedness" in all dimensions, noted clc ~ , defined in [1;2;4]; 

again, in a different language, it also goes back to R.L.Wilder. Thus 

if R X is cc , then X is clc ~ in the sense of these references. 
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4 REFORMULATION OF THE AXIOMS AND TOPOLOGICAL INVARIANCE OF IH 

In this paragraph X is a pseudomanifold of dimension n . We consi- 

der a fixed perversity p , and let q be the dual perversity 

(i.e. q(k) = k - p(k) - 2) . 

4.1 Let X be a filtration of X by closed subsets 

X = X ~ ~ D ... ~ X_l = @ n Xn-2 Xn-3 

As usual, we set : 

and let 

U k = X - Xn_ k , S k = X k - Xk_ 1 , 

ik : Uk + Uk+l ' Jk : Sn-k + Uk+l ' 

f : {x} § X (x 6 X) 
x 

be the inclusions ; unless otherwise stated, we write 

S~ = S ' l u  k i f  S" E DGS(X) . 

Let E be a local system on U 2 . In paragraph 2 we considered the 

following set of conditions on S" 6 DGS(X). 

(AXI)x E : 

(la) (normalization) : S" is bounded, S i = 0 for i < 0 and S~ = E . 

(ib) If x 6 Sn_ k , then HJ(s~) = 0 for j > p(k) . 

(ic) The attachment map ~k : Sk+l Rik,S { is a quasi-isomorphism 

up to p(k) . 

We have seen (3.12) that if X is a topological stratification, 

then any S" satisfying (AXl)~, E is X - cc (hence also X - clc). 

4.2 We consider now a second set of conditions on S" 6 DGS(X). 
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(AXI')x, E : 

(l'a) S" is bounded, S i = 0 for i < 0 , S~ = E and S" is X - clc . 

(l'b) If x 6 Sn_ k , then HJ(s;). = 0 for j > p(k) 

(l'c) If x E Sn_ k , then H3(f~S ") = 0 for j < n - q(k) . 

Notice that (ib) is the same as (l'b) and that (l'a) is (la) to- 

gether with the requirement that S" be X - clc . 

4.3 PROPOSITION. Assume that each stratum Sn_ k is a manifold of 

dimension n - k or is empty. Assume also that S" C DGS(X) is X -clc and 
! 

that jkS" is clc for 2 < k < n . Then S" satisfies (AXI)x,E if and 

only if it satisfies (AXI')x, E . 

We must show that in presence of (la), (lb) and of the hypotheses 

of the proposition, the conditions (ic) and (l'c) are equivalent. It 

is convenient to consider also 

�9 ! 

(l"c) If x 6 Sn_ k , then H3(JkS') x = 0 for j < p(k) + 1 . 

By 1.8(7), we have for x C Sn_ k an exact sequence : 

J 

HJ(j~S')x , HJ(s~) ek , H3(Rik,S~) x 

If HJ(j~S') x = 0 for j < p(k) + i, the attachment map is certainly an 

isomorphism for j ~ p(k). Conversely, if e~ is an isomorphism for 
�9 | 

j ~< p(k) , then H3(j~S') x = 0 obviously for j ~< p(k), but then also 

for j = p(k) + 1 , because HP(k)+I(Sx) = 0 . Thus (ic)~=~(l"c), 

modulo (ib). 

Let now s be the inclusion of x in Sn_ k . Then f = Jk o s and 
x x x 

f~x = Z~x o j~' . Thus H j (f S') = HJ(s By hypothesis, j~S" is 

clc . Since Sn_ k is a manifold of dimension n - k , (3.7.b) gives then 

I i 

HJ(s = n"J-n+k" 'o.[3kb )x 

AS j < n - q(k) ~=~ j- n + k < p(k) + 1 , we get (l'c) ~" ) (l"c) . This 

proves the proposition. 
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4.4 COROLLARY . If X is a topological stratification, then 

(AXI)x, E 4 ~(AXI')x, [ . 

We know now that S" is X, - clc if it satisfies (AXl)x,E (3.12) or 

(AXI')x,E . By (3.10.d) , j~S" is then clc (2 ~ k i n) . 

4.S COROLLARY . If X is a topological stratification,(AXl)x,E 

characterizes S" uniquely up to quasi-isomorphism, and any S" satis- 

fying (AXI')x,E is X - cc . 

This follows from 2.5 and 3.12 . 

4.6 Let S" 6 DGS(X) , j 6 Z . We shall consider the following sub- 

sets of X : 

{x f XIHJ(s~) ~ 0} (1) 

(2) {x 6 XIHJ(f~S ") { 0} 

(i) is the support of HJ(s ") . By analogy (2) is sometimes called the 

j-tb homological cosupport of S" . It is also convenient to introduce 

the following : 

Notation: Let p be a perversity. For j 6 I~ we set 
-i p-i 

p (j) = min{clp(c ) > j} , with (j) = ~ if j > p(n) 

It is useful to remember the following rule. For 2 < k < n 

-i 
(3) p(k) ~ j ~ ~ k ~ p (j) . 

4.7 Let S" 6 DGS(X) . We consider the following set of conditions 

on S ~ . 

(AX2)x, ~ : 

(2a)x S" is bounded , S i = 0 for i < 0 , S~ = E and S" is X - clc. 

(2b) dim supp (HJS ") ~ ~ n - p-l(j) for all j > 0 . 

(2c) dim {x C XlHJ(f:S ")- ~ 0} ~ n - q-l(n - j) for all j < n . 
F ~ 

Notice that (2a)x is the same as (l'a)x . 

4.8 Remark. Here only the first condition depends on X . This de- 

pendence is emphasized because we shall later replace this condition 
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by another one which does not refer to any privileged topological 

stratification. 

4.9 PROPOSITION . Let S" 6 DGS(X). Assume that each stratum Sn_ k 
| 

is a manifold of dimension n-k or is empty, and that j~S" is clc for 

each k (2 < k < n). Then S" satisfies (AXI')x,[ if and only if it 

satisfies (AX2)x,[ . 

Notice first that 

-i 
(i) j < p(k) < .-- n - k < n - p (j) 

-i 
(2) j > n - q(k)~ ~ n - k <_ n - q (n-j). 

We show that in presence of (l'a) and of the hypothesis of the propo- 

sition, (l'b) < ~ (2b) and (l'c) ~--~. (2c) 

(l'b) ---~ (2b) : If x C Sn= ~ and HJ(Sx)- ~ 0 , then j ~ p(k) . 

Hence dim Sn_ k ~ n - k ~ n - p (j) by (i) . This implies (2b) 

(2b) ==w*(l'b) : If x C Sn_ k and HJ(s~) ~ 0 , then HJ(s~) ~ 0 for 

y in some neighborhood of x in Sn_ k , since S" is X - clc . Therefore 

-i 
n - k ~ n - p (j), and j ~ p(k) by (i) . Thus (l'b) holds. 

(l'c) ==~ (2c) : This is proved in the same way as (l'b)==~(2b) . 

(2c) ===~(l'c) : If x C Sn_ k and s is the inclusion of x in Sn_ k x w 

f! s ' i S . s ' then f = Jk o s and = o j~ . In particular f = (j~S') . 
x x x x x x 

It follows then from (3.7.b) that H3(fvS ")" & HJ(f~S ")" for y in some 

neighborhood of x in Sn_ k . We can then proceed as for (2b) ~ (l'b). 

4.18 COROLLARY. Assume that X is a topological stratification. Then 

(AXI')x,E .~ ~ (AX2)x,s . In particular (AX2)x,E characterizes S" 

uniquely up to quasi-isomorphism and implies that S" is X - cc . 

Both axioms require S" to be X - clc . Since X is a topological 
! 

stratification, we know then by 3.10.d that j~S" is clc for all 

k (2 < k < n). The hypotheses of the proposition are fulfilled. 

4.11 LEMMA . Let M be a manifold of dimension n and let U be a 

dense open subset of M whose complement has codimension ~ 2 . 

E' I is a morphism a) If E,E' are local systems on M and f : EIU § U 
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then there exists a unique morphism g : E + E ~ which extends f . More- 

over g is an isomorphism if f is one. 

b) If E is a local system on U ,then there exists a largest open 

subset V ~ U of M over which E extends to a local system. 

We can assume that M is connected. Then so is U . [To see this, 

note that Hn(U;A)c = H~(M;A) for any coefficients since 

Hi(M - U;A) = 0 for i > n - 2 , and that if A is a field of characte- 
c 

ristic two the rank of Hn(U;A) is the number of connected components 
c 

of U .] Let x 6 U . The category of local systems on M (resp. U) is 

equivalent to the category of finitely generated Zl(M,x)-modules (resp. 

nl(U,x)-modules) and the restriction of local systems from M to U 

corresponds to the restriction of scalars given by ~l(U,x) § Zl(M,x). 

a) In view of the remarks above, it is sufficient to prove that 

~l(U,x) + ~l(M,x) is surjective. This follows easily from the fact 

that for every open ball B in M, the intersection B n U is connected, 

by the above argument. 

b) By (a) the local systems E' which extend E over open subsets 

U' ~ U can be glued together. 

4.12 Let U, U' be open submanifolds of X whose complements have 

codimension ~ 2. If E is a local system on U, we say that E is defined 

over U' if EIU N U' can be extended to a local system on U' , or equi- 

valently if U' is contained in the largest open submanifold of X over 

which E can be extended to a local system. This extension is also 

called E . 

We say that a stratification of X is adapted to E if E is defined 

over its dense stratum. 

4.13 We can now state a new set of conditions on S" 6 DGS(X) . Let 

E be a local system on some open dense submanifold of X whose comple- 

ment has codimension ~ 2 . Then (AX2) E consists of the following con- 

ditions. 

(AX2) E : 

(2a) S" is bounded, S i = 0 for i < 0 , S'is ~ - clc for some topo- 

logical stratification of X and S'IU = EIu for some open dense 

submanifold U of X whose complement has codimension ~ 2 and 

over which E is defined. 
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-i 
(2b) dim supp HJs" < n - p (j) for all j > 0 . 

(2c) dim {x C XlH3(f S') r 0} ~ n - q (n - j) for all j < n . 

Notice that the second and the third conditions are the same as 

for (AX2)x, E . 

4.14 Remarks. a) Unlike the previous axioms, this one does not 

refer to any particular stratification of X. 

b) Let S" satisfy (AX2)E . In (2a) the open subset 

U and the stratification X are not assumed to be related. We can how- 

ever certainly assume that U c U2 " Now H0(S')IU = E and Hi(s')IU = 0 

for i / 0 . On the other hand Hl(S ") is locally constant on U 2 . It 

follows that H0(Sl)1~a = E and H (S)u = 0 for 1 / 0 . Therefore E 

is defined over U 2 ~ S'IU 2 = E . In 2particular S" satisfies (AX2)~,E- 

As a consequence S" satisfies (AX2)E if and only if it satisfies 

(AX2)x,E for some topological stratification X adapted to E . 

c) If a local system E is given on a dense open 

submanifold U of X whose complement has codimension ~ 2 , there does 

not necessarily exist S" 6 DGS(X) satisfying (AX2)E . For example let 
~2 

X = and U be the complement of {(~,0) In C ~, n ~ 0} U {(0,0)} . It 

is easy to construct a local system E on u which cannot be extended 

to a local system on a larger open subset of X . As U does not contain 

the open stratum of any topological stratification, no S" C DGS(X) can 

satisfy (AX2)E . 

4.15 THEOREM . Let E be a local system on some open dense submani- 

fold of X whose complement has codimension ~ 2 and let U2 be the 

largest open submanifold of X over which E extends to a local system. 

Assume that there exists a topological stratification of X which is 

adapted to E . Then there exists P" C DGS(X) satisfying (AX2)E with 

P" I~ = E and (AX2)x~E~ for every topological stratification XI ~ 

adapted to E 

we construct P" as the Deligne sheaf associated to the local 

system E on U2 and a filtration X of X by closed subsets 

(i) Xn = X o Xn-2 ~ "'" o Xn-k O "'" o X0 ~ X-I ' 

with Xn-2 = X - 02 . Here the main difficulty is to construct ~ . This 

will be done by induction on k . We require this filtration to have 
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suitable properties. Let O k = X - Xn-k ' Sn-k = Xn-k - Xn-k-i ' with 

the inclusions i k : O k + Uk+l ' Jk : Sn-k § 0k+l " We have for each k 

a differential graded sheaf-~ k on O k defined by P~ = [ and 

~ ~ ~ 

Pk+l = ~(k)Rik*Pk " We want to have for each k (2 ~ k ~ n) : 

~ 

(i) Sn_ k is a manifold of dimension n - k or is empty . 

~~. 
(Ik) (ii) 3kPk+ 1 is clc . 

~. 
(iii) 3k k+l is clc . 

(IIk) For every topological stratification X of X which is adapted 
~ 

to E , Sn_ k is a union of connected components of strata of 

~ 

X and Uk+ 1 c Uk+ 1 . 

Suppose that has these properties. By hypothesis there exists 

at least one topological stratification X of X which is adapted to [ . 

By (IIn) we have then Un+ 1 DUn+ 1 = X . Let ~" = Pn+l 6 DGS(X) . By 

construction P" satisfies (AXl)~,[ . By (4.3), (4.9) and (I) it satis- 

fies also (AX2)~,[ . If X is a topological stratification of X which 

is adapted to [ , we find then by (If) that P" is X- clc . Therefore 

it satisfies (AX2)x, [ . As there exists at least one such stratifica- 

tion, P" satisfies (AX2)[ . Thus P" has the required properties. 

It is therefore sufficient to construct a stratification X satis- 

fying (Ik) and (IIk) for all k ~ 2 . 

The dense stratum U2 is already defined, and P~ _ = [ . We check 

first that U2 is a union of connected components of strata of X , if 

X is a topological stratification of X which is adapted to E . Let 

x 6 X and let U = B • ~(L) be a distinguished neighborhood of x with 

respect to X . It is clear that if x has a neighborhood which is homeo- 

morphic to an open ball, then every y-6 B has such a neighborhood. 

Assume now that U is a manifold. Let ~ : U § ~(L) be the projection. 

By induction on the codimension of the stratum containing x , we can 

assume that [ is defined over B • ~(L) . Now if [ is defined in some 

neighborhood of x, then ~*([l{x} • ) is a local system on U which 

restricts to [ on U N U 2 . Thus B c U2 if x 6 U2 " It follows easily 

that U2 is a union of components of strata of X o 
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Suppose now by induction that U2,...,Uk are already defined and 

that (Ii) , (IIi) hold for 2 ~ i < k (notice that P2 ..... P~ are also 

defined). Let [k : Ok § X , ~k : Xn-k + X be the inclusions and let 

- = - ~" S' be the largest submanifold of Xn-k of ~k+l T<p(k)Rik,~ k . Let n-k 

dimension n - k . Let S" (reap. S"' ) be the largest open subset of 
n-k n-k 

~ _ _ _i 

Xn_ k over ~hich J{Pk+l (reap. j~+l ~ i~ c~c. 

We take 

- = ~ ,  n ~ "  n s " ,  " = O k U  Sn-k n-k n-k n-k ' Uk+l Sn-k 

~ 

It is clear that Uk+ 1 is open and satisfies (Ik) . It remains to check 

that (IIk) holds too. This is asserted by : 

4.16 LEMMA. In this situation, let X be a topological stratifica- 

tion of X adapted to E and let Y be a connected component of some 

stratum of X Then each of the sets S' S" S"' has an inter- 
" n-k ' n-k ' n-k 

section with Y which is either empty or equal to Y . Moreover 

y c S' n S" n S"' if codimxY = k and Y ~ O k 
n-k n-k n-k 

We may assume that Y c Xn-k " The statements concerning S' 
n-k 

follow immediately from the existence of distinguished neighborhoods. 

Let now x 6 Y and let U' = B x ~ ) be a distinguished neighborhood of 

x in X. Let ~ : U' § c~ be the projection and let U' = U' N 0 , 
3 3 

V.] = ~(0i) (2 ~< j ~< k). Let also 0'k+l = U' , Vk+ 1 = ~ . 

Then 0' = ~-l(v _ we have a cartesian square : j j) . For 2 < j < k 

h. 

3 j+l 

~J] l~J +I 

V 3 ] Vj+I 

where h3 ' hj are inclusions and ~j ' ~j+l are obtained by restricting 

= , where V 2 is identified with {x} • V 2 c 02 . Then . Let Q~ [IV 2 

~10, = z~Q~ . Define now by induction Q~ ..... ~+i by 
2 
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~+i = T~p(j 

94 

Rhj, . By 3.13 , we have then over U 3 

and in a similar way we find by induction that 

P:Io , = 7T~S for 2 < j ~ k and Pk+IIU, = u*Q~+I . 
3 3 

Consider the inclusions g : (U' - 0~) § U' and 

: (~ -v k) §176 . 

We have a cartesian square 

H I ~i 
- U k 

o (L) - V k 

g ~ U' 

§ o (L) 

where ~' is the restriction of 7. We have then 

-. = - 

(1) g*Fk+l = g*~*Qk+l ~'*(g*Qk+l ) 

and by 3.13 

i- = i = _i ) 

g'P +l 

From (i) (resp. (2)) it follows that the neighborhood B of x in Y is 

either entirely contained in S~-k (resp. S~Ik ) or disjoint from it. 

Therefore Y n S~-k (resp. Y N S~Ik) is both open and closed in Y . 

Since Y is connected, this yields the first assertion pertaining to 

S~-k (resp. S~ik). 

If codimxY = k , then ~(L) - V k is a point and g*~+l ' g~+l 

are automatically clc . By (i) and (2) we find then that 

Y ~ S~-k N S~i k . This proves the lemma. 
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4.17 COROLLARY . Let S" satisfy (AX2) E . Then S" is quasi-isomor- 

phic to P" . 

By 4.14.b, we know that S" satisfies (AX2)x, E for some topologi- 

cal stratification X of X which is adapted to E . The differential 

graded sheaf P" constructed in 4.15 satisfies also (AX2)x, E . By 4.10, 

S'=~" 

4.18 COROLLARY . Let X be a topological stratification of X , let 

0 be the orientation sheaf on U 2 and P" = P~(O) . Then P" is inde- 

pendent on the choice of X . 

This is a special case of 4.17 . Notice that every topological 

stratification of X is adapted to 0 . 

4.19 COROLLARY . Let X be a PL-pseudomanifold. Then the intersec- 

tion homology groups IpHi(X;R ) defined in (I) are independent of the 

PL-stratification used in their definition. 

This follows from 2.9 and 4.18 . 

4.20 Remarks on [6] . In our discussion of the axioms, there are 

some minor differences with [6] on which I would like to make some 

comments. 

First of all, the various sets of conditions [AX i] in [6] always 

include constructibility assumptions, more precisely what has been 

called here X - cc . They were absent from our version of AXl in ~ 2 , 

but we saw that they follow from it. In AXI' and the various AX2 , we 

have required X - clc , i.e. we have not assumed finite generation of 

the stalk cohomology . (Of course, we get it back, once the equivalence 

with AXl is established, as was pointed out). There are two reasons 

for this. One is that it may be of interest for the applications to 

weaken the constructibility assumptions as much as possible. In fact, 

according to M. Goresky and R. MacPherson, it is an open question as 

to whether one could also dispense entirely with them in AX2. But there 

is also a technical reason of more immediate interest in connection 

with the proof of topological invariance : in the construction of 

and P" in 4.15 , and in the similar step in 4.2 of [6] , what comes 
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out naturally from the proof is X - clc but not the finite generation 

of the stalk cohomology. In fact, as far as I can see, the latter is 

not proved at all in [6]. 

In the inductive construction of the p-filtration in [6], use is 

made of cohomology manifolds and the strata are only assumed to be 

cohomology manifolds. This yields a stratification which may be coarser 

than X . We have preferred to stick to manifolds because the proof 

uses 3.7 , which has been proved here only for manifolds, and also in- 

cidentally to show that the recourse to cohomology manifolds is not 

needed to establish the topological invariance. 

In the construction of the analogue P of P in [6] it is proved 
P 

that P is clc on the strata of X . No other reason is given to make 
P 

sure that the new strata are unions of connected components of old 

strata. It seems to me that some argument, as given in 4.15 or 4.16, 

is needed to settle that point. 
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5 THE DERIVED CATEGORY OF SHEAVES 

V, 5.1 

So far, we have not formally introduced the derived category of 

Sh(X), although we have made much use of the notion of quasi-isomor- 

phism, often written as an equality, which should really be understood 

as an isomorphism "in the derived category", but there was hardly any 

need to be more explicit about it. However, the formalism of derived 

categories will enter in a more substantial way in the discussion of 

Verdier biduality and of pairings in ~ 9 , whence the need of a more 

formal presentation. We shall limit it however to the needs of this 

seminar, and refer to [7;12] for a much more thorough and more general 

treatment. 

From Sh(X) we form the category K(ShX) or simply K(X) whose objects 

are the complexes of sheaves of R-modules on the space X and whose 

maps are the homotopy classes of morphisms. If X is a point it reduces 

to the category of complexes of R-modules. It has a translation func- 

tor, namely the automorphism which assigns to (S',d) the complex 

(S'[l],-d). Much of the following would be valid for the category of 

complexes on an abelian category with enough injectives. (See [7;12].) 

A. Triangles  and long exact  sequences.  

We are all accustomed to derive long exact sequences in cohomology 

from short exact sequences of complexes. However we cannot in general 

replace an element in a short exact sequence in K(X) by an isomorphic 

one in K(X) (i.e. a homotopy equivalent one) and still get a short 

exact sequence. So this notion does not make good sense in K(X) , which 

is not an abelian category; it is even worse if we want to replace an 

element by a q.i. one, i.e. to work in the derived category. It turns 

out that the adequate substitutes for short exact sequences to generate 

long exact cohomology sequences are the so-called distinguished (or 

exact) triangles. We shall therefore first introduce those and discuss 

some of their properties. 

(i) 

5.1 A triangle (A',B',C',u,v,w) in K(X) is a sextuple 

u v w 
A" ~ B" -~ C" , A'[I] 
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of elements A', B', C" and morphisms u,v,w. It is also written 

(2) 

u 

A" �9 B" 

w\ / v  
C" 

with usually [i] affixed to ~ , to indicate that w is a morphism fro~ 

C" to A'[I] . 

A morphism of triangles 

u 

A" >B" 

(3) wk /v 

C" 

u ! 

A'" ~ B'" 

~ w ~ / v '  

C'" 

is given by a (homotopy) commutative diagram 

(4) 

A" u ~ B" v ~ C" w ~ A'[1] 

A' u' B'" v' . w' A' �9 ~ ~ ' ~ "[i] 

It is an isomorphism if f,g,k are homotopy equivalences�9 

5.2 The mapping cone 

defined as 

C" of a morphism u : A" + B" in DGS(X) is u 

(i) C" = A'[l] s B" , u 

with the differential 

(2) d(a,b) = (-da,u(a)+db), (aCAi+l; b C Bi; i C Z) 

The maps : 

(3) 

: B" § C" , given by ~-~ (O,b) u 

Q : C" § A'[I] , given by (a,b)~ a u 

are easily seen to be morphisms in DGS(X), whence a triangle 
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u ~ 

(4) A" ~ B" ~ C" ~ A'[I] u 

V, 5.3 

to be called a standard triangle. If u, u' 6 HOmDGS(X) (A',~') are homo- 

topic morphisms, then C" and C', are easily seen to be isomorphic in u u 

K(X). However the isomorphism is not unique in general, with that pro- 

viso C" is a well defined object in K(X). A distinguished triangle in 
u 

K(X) is one which is isomorphic to a standard one. 

If (A',B',C', u,v,w) is a triangle, the maps u,v,w induce a long 

sequence of homomorphisms of derived sheaves 

(5) ...---+ Hi(A ") ---+ Hi(B ") --. Hi(c ") ~ Hi+I(A')-~ ... 

as well as an analogous sequence for hypercohomology. If 

(A',~',C',u,v,w) is distinguished, these sequences are exact. To see 

this, it suffices to consider a standard triangle. But then 

v w 
( 6 )  0 - - - -+ B"  ' ~ C"  ~ A ' [ 1 ]  ~ 0 

u 

is exact. It is easily checked that the long exact sequence of derived 

sheaves associated to (6) coincides with (5)(in particular the connec- 

ting homomorphism for (6) coincides with the map induced by u). For 

hypercohomology, let ~ : J~.~ J~.be a map of injective resolutions 

which extends u . Then C~ is an injective resolution of C" , and the u u 

short exact sequence 

(7) 0 ' ]i i C[ , 3[ [i] - 0 
�9 u A " 

gives a long exact sequence for hypercohomology, which again coincides 

with the sequence induced by u,v,w . 

5.3 For A" C K(X) , we shall denote by C~. the cone over the 

identity map of A" . It is already clear from the long exact sequence 

that H'C~. = 0 , but in fact, C~. is isomorphic to 0 in K(X), i.e. 

the identity map of C~. is homotopic to zero% it is indeed readily 

checked that the map h defined by 

h(a,a') = (a',0) (a C A i+l ; a' 6 A I) , 

provides such a homotopy. 



V, 5.4 iOO 

Let 

5.4 The standard triangle associated to a short exact sequence. 

u v 

(i) 0 ---+ A" ----~ B" , C" ---* 0 , 

be a short exact sequence of DGS. As already mentioned~distinguished 

triangles are substitutes for short exact sequences. We want to re- 

place (i) by the standard triangle 

(2) 

u 

A" ~B" 

/ 
C" 

u 

Both (i) and (2) induce long exact sequences. To compare them, we 

define m : C" § C" by u 

(3) m(a,b) = v(b) . 

LEMMA (i) The map m is a q.i. and up to sign IdA. , Id B. and m 

induce an isomorphism between the long exact sequences of derived 

sheaves associated to (i) and (2) . 

(ii) If (i) is split, then m is an isomorphism in K(X) . 

It is easily seen that m is a morphism and that up to sign IdA. , 

Id B. and m induce a morphism of long exact sequences. Using the 5- 

lemma, we get (i). 

Assume now (i) to be split and let s : C" § B" be a splitting, 

(i.e. a R-linear map preserving degrees but not necessarily commuting 

with the differentials). We have v o s = Id. Since v commutes with d, 

it is obvious that for c C C i we have v(sdc - dsc) = 0, i.e. 

dsc - sdc 6 A i+l . Therefore 

n : c I ~ (sdc - dsc, sc) 

defines a linear map preserving degrees of C" into C" . It is readily 
u 

checked to be a morphism. Clearly m o n = Id . We have a direct sum 

decomposition 
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B" = u(A') S s(C') 

from which we see that 

ker m = C" A. = A'[I] ~ A" c A'[I] @ B" = C" u 

whence a direct sum decomposition of complexes 

~ 

C'u = n(C') S C A" 

But C A" ~ 0 by 5.3 . Therefore the projection of C'u onto n(C ) is a 

h o m o t o p y  e q u i v a l e n c e  a n d  i t  f o l l o w s  t h a t  n o m i s  h o m o t o p i c  t o  I d .  T h i s  

proves (ii). 

Remark . An advantage of the triangle (2) on the exact sequence 

(i) is that it remains a standard triangle if we apply to it an addi- 

tive functor F : Sh(X) + A , where A is an abelian category. Moreover 

the long exact sequences deduced from (2) are read directly from the 

triangle; that is, the somewhat mysterious connecting homomorphism is 

now induced by a honest morphism of DGS. Of course we would like to 

replace C" by C" in (2). Part (ii) of the lemma says that this is u 

possible if (i) is split, and the introduction of the derived category 

will allow one to do it in general, at the cost however of a more de- 

licate notion of morphisms. 

6.6 To illustrate the use of cones, we describe here briefly some 

variations on the previous way to get long exact sequences, which show 

so to say that a cone may be viewed as a substitute not only for a 

quotient, as in 5.4, but also for a kernel�9 This will not be needed in 

the sequel�9 

Since the cone C A" on the identity map of A" 6 K(X) is isomorphic 

to zero (5.3) we see that the projection of B'" = B" @ C A" onto B" , 

with kernel C" A. , is an isomorphism. The map u' : A" § B"given by 

u' (a) = (u(a),a) is then a direct morphism and it is easily seen that 

B"/u(A') ~ C~ , whence a split short exact sequence 

u I v I 

( 1 )  o -+ A" - - ~  B "  ~ C" - +  o 
U 
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where 

u'(a) = (u(a),O,a),v' (b,~,a) = (-~,b-u(a)), s(a,b) = (b,-a,O) 

for a 6 A i, b 6 B i and ~ E A i+l , which (up to sign) yields the same 

long exact sequence as 5.2(5). 

If u is already part of the short exact sequence 5.4(1), then the 

latter can be replaced by (i), which is split, with B'" isomorphic 

to B" and C" q.i. to C" . 
u 

In this construction, u has been replaced by an injective direct 

morphism. It could similarly be replaced by a split surjection. In fact 

let A'" = A" 8 C'B.[-I ] and define 

(2) u" : A'" = A" �9 B" s B'[-I] § B" , 

by 

(3) u"(a,b,b') = u(a) - b . 

Then we get a split exact sequence 

u" 

(4) 0 § C'[-I] § A'" -+ B" § O, u 

which again leads to the previous long exact sequence (up to sign). If 

u is part of a short exact sequence 

u 

(5) 0 § C" § A" § B" § 0 , 

then we see that C'[-I] is q.i. to C" , i.e. to ker u . u 

B. F ~ t h e r  proper t ies  of d i s t ingu ished  t ~ a n g l e s  . 

5.6 (Turning triangles). Let 

u v w 

(I) A'--+ B" ---+ C" --~ A'[I] , 

be a distinguished triangle in K(X). Then 

v w -u[l] 

(2) B" --+ C" ~ A'[I] , B'[I] 
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is a distinguished triangle. 

We have to prove that A'[I] is isomorphic to C" . For this we may 
v 

assume that (i) is standard, i.e. C" = C" and u 

v 

(3) 0 --+ B" ---~ C" --~ A'[I] -+ 0 

to be a short split exact sequence. But then A'[I] is isomorphic to 

C" by 5 . 4  ( i i )  a n d  t h e  d i a g r a m  
v 

v 

B" ) C" ~ C" ~ B ' [ I ]  
v 

Id Id 

w v 

B" > C" ~ A'[I] 

Id 

-u[l] 

~ B'[I] 

in which the top row is a standard triangle, is easily seen to commute 

up to homotopy. 

5.7 Let 

u I v I w ~ 

(i) A'" ~ B'" ~ C'" ~ A"[I] 

be a distinguished triangle. Then any (homotopy) commutative diagram 

u 

A" ~B" 

(2) 

A m- 

g 

u ~ 

extends to a morphism of 5.6(1) into 5.7(1) . 

To see this, we may again assume (i) and 5.6(1) to be standard. By 

assumption (2) is homotopy commutative. There exists therefore a linear 

map k : A'[I] § B'" such that 

(3) u' o f - g o u = dk + kd . 

Define 
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(4) h : A'[I] ~ B" + A"[I] ~ B'" , 

by 

(5) h(a,b) = (fa,gb - ka) (a f A i + l , b  C Bi;i 6 ~) . 

Then it is easily checked that h is a morphism and that the diagram 

(6) 

B" ) C" u 

B ' "  ~ Cu, 

A'[1] 

f[l] 

A"[I] 

is commutative. 

Note that since triangles can be turned (5.6), it also follows that a 

homotopy commutative diagram 

v w 
B" > C" C" .~ A'[I] 

1 v I or l w l 
B'" ~ C'" C'" § A"[l] 

extends to a morphism of triangles. 

f u 
5.8 A diagram A" �9 B'- C" , where u is a q.i., can be com- 

pleted to a homotopy commutative diagram 

g 
D" ~C" 

(i) w I ] u 

f 
A" ~ B" 

where w is a q.i. 

To see this we consider the standard triangle 

u v 
(2) C" ) B" ) C" ~ C'[l] u 

over u . Since u is a q.i. it follows from the long exact sequence 
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that H'C" = 0 . Let h = v o f . We have then a commutative diagram 
u 

# 

A" 

C" 

/ 
C" =C" u u 

f 

B" 

Note that w is a q.i., since H'C" = 0 . By 5.8 , we can find u 

g : C~ + C" which completes (3) to a homotopy commutative diagram. We 

then take D" = C~[-I] . 

5.9 By reversing arrows, we see that similarly, a diagram 
u 

B" § A" § C" , where u is a q.i., can be completed to a homotopy 

commutative diagram 

(i) 

C" ) D" 

'[u T w 

A" §  

where w is a q.i. 

5.10 All these constructions can be carried out with Sh(X) re- 

placed by an arbitrary abelian category A . Instead of DGS(X) we con- 

sider the category C(A) of complexes of objects of A (with chain maps 

of degree 0 as morphisms),K(X) becomes K(A) and we get distinguished 

triangles in K(A) . If F : Sh(X) + A is a covariant additive functor, 

there are obvious extensions of F to DGS(X) + C(A) and K(X) + K(A) , 

which we still denote F . It is clear that F(S'[I]) = F(S')[I] and 

that F transforms distinguished triangles into distinguished triangles. 

If A',B" C DGS(X), i C Z~ let HomI(A',B ") consist of all mor- 

phisms of graded sheaves A" + B" which are homogenous of degree i . 

For f 6 Homi(A',B ") let d(f) = d B. o f + (-l)i+if o d A. . This defines 

a differential graded module Hom'(A',B') . Setting 

Hom'(A',B')(U) = Hom'(A'Iu,B'Iu) for U open in X, we get a 

DGS Hom'(A',B') . We can view Hom" as a functor from 

DGS(X) • DGS(X) to DGS(X) (contravariant in the first variable, cova- 

riant in the second) or from K(X) • K(X) to K(X) . 
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Let D" 6 K(X) be fixed, and consider the functor A'I ~ Hom'(D',A') 

We have an obvious isomorphism Hom'(Q',A'[l]) =Hom'(~',A')[l] , and 

if the triangle 

u v w 

(1) A" ) B" > C" , A'[l] 

is distinguished, then so is its image under Hom'(Q', ) 

(2) ~om'(~',A') + ~om'(D',B') § Hom'(D',C') § Hom'(~',A')[l] 

It is enough to check this last point when (1) is standard. In this 

case C" = C" and there is an obvious isomorphism u 

Hom'(~',C~) = C~om.(~.,u ) 

Consider now the contravariant functor A" ! > Hom'(A',~') . The 

obvious isomorphism of graded sheaves Hom'(A'[-l],~') a Hom'(A',D')[I] 
i 

is not an isomorphism of DGS. Let ~A': H~176 

be multiplication by (-i) i+l . Then ~A" (r is an isomorphism of 

DGS . If the triangle (i) is distinguished, then so is 

(3) Horn" (C',~') -~ Horn" (B',~)') • Horn" (A',~') § Horn" (C',7)') [i] , 

where the first two maps are induced by v and u , and the third one is 

#C" o Hom" ( w [-I],~') . This needs only to be checked in the case where 

v w -u[l] 
(4) B" ~ C" ~ A'[I] ~ B'[I] 

is standard, and the result follows from the existence of a suitable 

isomorphism Hom" (C~[-I],D') ~ C~om. ( v ,~') " 

In general a covariant (resp. contravariant) functor F : K(X)~K(A) 

is said to be exact if we are given a natural isomorphism 

CA" : F(A'[I]) + F(A')[I] (resp. F(A'[-I]) § F(A')[I]) and if the 

triangle (F(A'), F(S'), F(C') , F(u), F(v), CA" o F(w)) 

(resp. (F(C'), F(B'), F(A'), F(v), F(u), r o F(w[-l]))) is distin- 

guished whenever the triangle (i) is distinguished. 

5.11 We shall stop here this enumeration of properties of K(X). 

5.3, 5.6, 5.7 almost prove that K(X), endowed with the set of distin- 

guished triangles, is a "triangulated category" [7:p.20]. What is 
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missing is mainly a proof of the "octahedral axiom", which we omit, 

since, as far as I can see, it is not needed in these Notes. 

We note also that if f : A" § B" is a morphism and A',B" are 

bounded (or bounded above, or bounded below) then so is C~ . Therefore 

if such boundedness conditions are satisfied by A',B',C" is 5.8, 5.9, 

then the D" constructed there also does so. 

C. The derived category of Sh(X)  . 

5.12 The derived category D(X) of Sh(X) has the same objects as 

K(X), i.e. graded differential sheaves on X, but the morphisms are 

different. 

A morphism from A" to B',(A',B" 6 D(X)) is an equivalence class of 

diagrams of morphisms in K(X) : 

( i )  A" ~ C ' - - ~  B" 

where ~ indicates a q.i.. This diagram is equivalent to A" ~ C ''-+ B" 

if there exists A" ~ D" + B" and morphisms C" + D" § C' such that 

C" 

/T\ 
A'~ ~ D" ~ B" 

C" 

is commutative in K(X) (i.e. homotopy commutative). Another way to say 

this is to define 

MOrD(X.) (A',B') as ~lim MOrK(X) (C',B') , where 

lim is taken over morphisms which are parts of commutative diagrams 

C" ) C ! " 

A" 

A" and B" are isomorphic in D(X) if there exists (i) where both maps 
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are q.i.. 

Similarly, one defines the derived category Db(x) of bounded com- 

plexes or the category D+(X) (resp. D-(X)) of complexes which are boun- 

ded below (resp. above). 

In case Xis apseudomanifold, another variant is to consider the 

subcategory of Db(x) consisting of bounded complexes which are cohomo- 

logically constructible with respect to some stratification, or with 

respect to a fixed stratification. In fact, the most important com- 

plexes considered in this seminar, namely those yielding intersection 

cohomology, are cohomologically constructible with respect to any stra- 

tification, as we saw in ~ 4 . 

For the definition of D(X) to make sense, we need to know how to 

compose morphisms. Assume we have a diagram 

(3) 

A" B" C" 

then, by 5.9 , we can complete it and get a homotopy commutative 

square : 

F" 

(4) ~)" E" --... / 
g" 

Then 

(5) A" ~-~ F" ~ C" 

is the composition of the given morphisms. Moreover, if all the mor- 

phisms in (3) are q.i. then so is F" § C" in (5). It should be checked 

of course that the equivalence class of (5) is independent from the 

choices made. This is left to the reader. For the proof, e.g. to verify 

that the choice of (4) is unimportant, it is useful to know the follo- 

wing fact [7:p.37] : 
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(6) If f,g : A" § B" are morphisms in K(X), then the following condi- 

tions are equivalent : 

(i) there exists a q.i. s : A'' § A" such that f o s = g o s ; 

(ii) there exists a q.i. t : B" + B'" such that t o f = t o g . 

5.13 A distinguished triangle in D(X) is one which is isomorphic 

in D(X) to one in K(X) . It is clear that 5.6, 5.7 are valid in D(X) 

with minor changes in the formulation. Furthermore, the following pro- 

perties of triangles in D(X) are easily deduced from 5.7 and the 5- 

lemma : 

If the triangles (n',B',C',u,v,w) and (A',B',C",u,v',w') are dis- 

tinguished, then they are isomorphic. 

If in a morphism of triangles, two of the maps are isomorphisms, 

then so is the third one. 

Let X be a topological stratification of X . If two of the objects 

in a distinguished triangle are X - cc, then so is the third one. 

5.14 As in 1.7, 1.8, let U be an open subset of X, Z be its com- 

plement and i : U § X, j : Z § X the inclusions. Then the exact se- 

quence 1.8(6) now gives rise to a distinguished triangle in D(X) 

! 

j,j'S" - -  S" 

Ri,i*S" 

(S" 6 D (X)) 

5.15 An element of MorD(X) (A',B") defines a unique morphism of 

H'A" into H'B', whence a natural map 

MOrD(X) (A',B') ~ MOrK(X) (H'A',H'B') 

However this map is not an isomorphism in general [7:p.39]. 

As an example, start with an exact sequence 

u v 

(i) o-+ A --+ B --~ C -+ O 

in Sh(X). Considering A,B,C as complexes, we get in D(X) a distin- 

guished triangle 
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(2) 

u 

A" ~ B" 

C" 

It is clear that H'(w) : H'C" + H'n'[l] is the zero map However, w 

need not be zero in general. Indeed, in the long exact sequence 

... § Hi(x;A) + Hi(x;B) ~ Hi(x;C) § Hi+I(x;A) § 

the connecting homomorphisms are induced by w . If w = 0 , these con- 

necting homomorphisms must also be zero, and this is not true in gene- 

ral. 

5.16 If F is an additive functor from Sh(X) to an abelian category 

A , then the right derived functor RF : D(X) § D(A) is defined as in 

1.5 by setting RF(A') = F(I') for some injective right resolution 

A" § I" . That this makes sense follows from the fact (implicitely used 

in 1.5 and standard for resolutions of a single sheaf) that all the 

injective resolutions of A" are canonically isomorphic in K(X). 

The key property to check this is the following. Let I',J" be in- 

jective complexes and let u : I" + J" be a q.i.. Then u is an iso- 

morphism in K(X). To see this, notice that C" = C" is an acyclic com- u 

plex of injective sheaves. It follows then froml.17 and our assumptions 

on X and R that for every n the sheaf ker d n = coker dn_ 1 is injective, 

hence that C" is homotopic to 0 . Thus Id C. = dh + hd for some map 

h : C" § C'[-l] . As C" = I'[i] �9 J" , the application h gives maps 

a : I'[i] § I" , b : J" § I" , c : J" + J'[-l] . 

It is readily checked that b is a chain map, and that a (resp. c) is a 

homotopy between b o u and Idl. (resp. Idj. and u o b). 

From 5.9 we deduce then easily that if f : A" § B" is a morphism in 

K(X) and s : A" + C" , t : B" + I" are resolutions with I" injective, 

then there exists g : C" § I" such that g o s = t o f (in K(X)). We 

claim that g is unique in K(X). Indeed if g' : C" + I" has the same 

property, then g' o s = g o s. Hence by 5.12(6) there exists a q.i. 

s' : I" § J" such that s' o g' = s' o g . We can take J" injective. 

Then s' is an isomorphism in K(X), and therefore g' = g . 
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This implies the required uniqueness of injective resolutions and 

shows also that RF is well defined on morphisms in D(X). 

It is clear that RF transforms distinguished triangles into dis- 

tinguished triangles. 
! 

For example if j : Z § X is a closed immersion the functor j" is a 

functor from D(X) to D(Z). 

We can define in a similar way RF : D(X) § D(A) when F is an exact 

functor from K(X) to K(A) (5.10). 

To define RHom', we consider Hom" (A',B') as a functor of B" (with 

A" fixed) and we take its right derived functor. We shall see in 5.17 

that for a fixed 8", the functor A" ~--~ RHom" (A',~') transforms q.i. 

into q.i., hence defines a functor from D(X) into itself. 

The functor RHom" is defined in a similar way. For A',B" C D(X) we 

define also 

Ext'(A',B') = H'(RHom'(A',B')) 

5.17 For any A',B" 6 K(X), there is a natural homomorphism 

(i) M~ (A',B') ~Mor D(x) (A',B') . 

It follows from the discussion in 5.16 that (i) is an isomorphism 

if B" is injective. This gives another description of the morphisms 

in D(X). 

We can also recover Mor (A',B') from RHom'(A',B') or 
D(X) 

RHom'(A',B') . Let I" be an injective resolution of B" . It follows 

immediately from the definition of the differential on Hom'(A',l') 

that Hi(Hom'(A',l')) = MorK(X) (A',l'[i]), and this is (5.10) 

M~ (X) (A',l'[i]) = MorD(X) (A',B'[i]) by (i) . Thus 

(2) ExtI(A',B ") = MOrD(X) (n',B'[i]) . 

As I" is injective, Hom" (n',I') is a complex of flabby sheaves 

[5:II.7.3.2], hence can be used to compute hypercohomology. Therefore 
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~'(X;RHom" (A',B')) = H'(F(X;Hom" (A',I')) 

= H'(Hom'(n',l')) = Ext" (A',B') 

and (2) gives also 

(3) ]~i(X;RHom" (A',B')) = MorD(X) (A',B'[i]) 

The same holds over open subsets of X . The limit over the open 

neighborhoods of x 6 X of the left hand side of (3) gives 

H'(RHom" (n',B')x) . But the right hand side of (3) depends on A" only 

up to q.i.. Thus for a fixed B', the functor A" ~--~ RHom'(A',B') trans- 

forms q.i. into q.i., as claimed in 5.16 . 

5.18 It is often convenient to use resolutions by F - acyclic 

objects to compute RF. For example let us check that we can indeed use 

flabby resolutions to compute RF(X; ) (and hence hypercohomology). In 

view of 5.9, we must check that if u : A" + B" is a q.i. and A',B" are 

flabby, then the morphism F(x;A') § F(x;B') induced by u is still a 

q.i.; or equivalently, that r(x;C~) is an acyclic complex of R-modules. 

Let d be the differential of C" . Since C" is an acyclic complex of u u 

flabby sheaves, it follows from 1.17(i) that for every n 6 ~ the sheaf 

ker dn = Im dn_ 1 is also flabby. The acyclicity of F(x;C~) is then clear. 

More generally let A,B be abelian categories and let F : A § B be 

an additive functor. If A has enough F - acyclic objects (in some pre- 

cise technical sense) and for some n 6 ~ every object has an F - 

acyclic resolution of length ~ n , then the argument above can be 

used to define RF even if A h63 not enough injectives, or if the injec- 

tire dimension of A is not finite. We shall encounter a similar situ- 

ation with the definition of the left derived functor of | in D(X) 

(6.2) in a case where there are not enough projectives, but where an 

ad hoc argument will show that the definition makes sense. 

In some cases RF can also be defined only on some subcategories of 

D(X), e.g. on D+(X). 

Remark . 5.16, which expands an earlier version, and 5.17, 5.18 

were written up by N. Spaltenstein. 
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6 FLAT AND c-SOFT SHEAVES 

V, 6.0 

We review or prove here some facts about flat or c-soft sheaves, 

and recall the definition of the left derived functors of the tensor 

product. In this paragraph and the next one, we lean heavily on 

B.Iversen's Notes [8]. As usual, the underlying space X is locally com- 

pact, of finite cohomological dimension n over R and R has finite co- 

homological dimension d. We let Mod(R) denote the category of R-modules. 

6~ Flat modules. We recall that a R-module is flat if it satis- 

fies the following equivalent conditions : 

(i) For any monomorphism i : B § C in Mod(R), the morphism 

i 8 Id.: B | A § C | A is injective. 

(ii) The functor | A is exact. 

(iii) Tori(A,B) = 0 for any B 6 Mod(m) and i ~ 1 . 

(iv) TorI(A,B ) = 0 for any B C Mod(R). 

(see e.g. [3], Prop.3,p.8 and Th6or.2,p.74). 

The functors Tor i are usually defined by means of left free or projec- 

tive resolutions but flat ones can also be used [3:Th6or.l,p.lO0]. The 

equality dim R = d implies 

(I) Tori(A,B) = 0 for A,B C Mod(R) and i > d . 

[3: lemme i,p.134] . Let 

(2) 0 -~ A § Bk_l -~ ... § B0 + C § 0 , 

be an exact sequence in Mod(R), where the B.'s are flat. The standard 
1 

shift argument by means of long exact sequences implies 

(3) Tori(A,D) = Tori+k(C,D) (i > 1 , D C Mod(R)). 

It follows then from the above that A is flat if k ~ d . In particular, 

every R-module C has a flat left resolution of length ~ d . More gene- 

rally, it also follows from (3) that if C has a left flat resolution 

of length e and k ~ e , then A is flat. 
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6.1 A sheaf A on X is flat (or R-flat) if, given a monomorphism 

i : B § C, the morphism i | 1 : B | A § C | A is also injective. The 

sheaf A is flat if and only if A is a flat R-module for all x C X . A 
x 

complex of sheaves is flat if it consists of flat sheaves. 

Given a sheaf A , there always exists a surjective morphism P § A , 

where P is a direct sum of sheaves R u (U open in X) extended by zero. 

(l.ll(a)). Those are obviously flat, hence so is P.From (6.0) we see 

then: 

(i) Every A C Sh(X) has a left flat resolution of length ~ d =dim R 

More generally, given A'C DGS(X) , there exists a left flat reso- 

lution P" § A" . Such a resolution can be constructed as follows�9 For 

each i , let f : F i § A i be a surjective morphism of sheaves with F i 
1 

flat and F i = 0 if A i = 0 . Let ~" be the complex defined by 

~i = F i 8 Fi-i , d(x,y) = (0,x) (x C F i , y C F i-l) and define 

v : ~" + A �9 by v(x,y) = fi(x) + dfi_l(y) . Then ~" is flat and v is a 

surjective chain map. We have a short exact sequence 

u v 

(2) 0 § Ker v --~ Q'---~ A" § 0 , 

and by 5.4(i) a q.i. Cu § A" . Let P[ = C~ . Iterating this operation, 

we get a sequence of q.i.'s 

(3) . . . .   Pk-1 . . . .  q A ' ,  

and it is therefore sufficient to check that P~ is flat�9 
u 

If for some e C ~ , each n i in (2) has a left flat resolution of 

length ~ e , then, by 6.0, each (ker v) I has a left flat resolution of 

length < max(e-l,0), and so does each C i = (ker v) i+l @ Qi . Using (i) 
u 

and induction on k , we find that in general Pk has a left flat reso- 

lution of length ~max(d-k,0) �9 In particular P~ is flat and we can take 

p. =p. 
d " 

It is clear that if A" is bounded (resp. bounded above, resp. boun- 

ded below), then so is the flat resolution P" given by this construc- 

tion. 

Remark: Originally, I had used a construction suggested in [8], 

which applies to bounded above complexes. The previous argument is due 

to N. Spaltenstein. 



115 V, 6.3 

6.2 Let P" C DGS-(X) be flat. Let Q',B" C DGS(X) and Q" + B" 

be a q.i. We claim that the induced homomorphism m : P" | Q" § P" | B" 

is also a q.i.. We note first that we can assume ~ and B ~ to be bounded 

above. In fact, any S" C DGS(X) is the inductive limit of its trunca- 

tions T<kS'. Since | and taking cohomology commute with inductive 

limits, it is enough to prove our assertion with ~" and B" replaced 

by their truncations at a given level. Consider now the spectral se- 

quence (Er) and (E~) associated to the filtration of P" @ ~" and 

P" | B" by the degree in P" . Since P" is flat, we have 

! = 
E 1 = P" ~ H'Q" , E 1 P" | H ' B "  , 

hence the map (Er) § (E~) induced by m is an isomorphism at the E l- 

level. In view of our boundedness assumptions,these spectral sequences 

converge and our claim follows. 

Let now A',B" C DGS-(X) . Choose, as we may by 6.1, flat left reso- 

lutions P',Q" of A" and B" respectively which are bounded above. The 

result just proved implies that we have q.i. 

(2) P" ~ B" = P" ~Q"  =A"  |  

L 
We then define the left derived functor A" | B" in D (X) by 

L 
(3) A" |  ~B" =A" |  | . 

The ith left derived functor is then 

L 
(4) Tori(A',B" ) = H-i(A" | B') (i 6 z) . 

L 
If A',B" C DGsb(x), then we may also take P',~" bounded and A" | B" is 

defined in Db(x).  
L 

It is also possible to define A" 8 B" in D(X) without boundedness 

conditions (see 6.9), but we shall not need this. 

6.3 We recall that a sheaf A is c-soft if any continuous section 

over a compact subset is the restriction of a continuous section on X 

(this is called soft in [8]).If n is c-soft, then H~(X;A) = 0 for 

i ~ 1 . It follows from the cohomology sequence with compact supports 

that n is c-soft if and only if H~(u;A) = 0 for all open U ~ X . 
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Any injective or flabby sheaf is c-soft . If a sheaf on the open 

subset U c X is c-soft, then its extension by zero is c-soft on X. The 

restriction of a c-soft sheaf to a closed subspace is c-soft. 

6.4 Consider an exact sequence of sheaves 

(i) 0 § A § Fk_ 1 § ... + F 0 § B § 0 

where the F. a r e  c - s o f t .  S i n c e  t h e  F. a r e  a c y c l i c  f o r  cohomology w i t h  
1 1 

compact supports it follows by standard arguments that 

(2) H~+k(u;A) = Hi(uIB) (U open in X; i > l) . 
c 

If now k > n , then Hk+i(u;A) = 0 , hence H• = 0 and consequently 
c c 

B i s  c - s o f t  ( 6 . 3 ) .  T h i s  a l s o  shows t h a t  i f  k ~ 0 and n i s  a l s o  c - s o f t ,  

then B is c-soft. 

6.5 PROPOSITION . Let S,A 6 Sh(X). Assume that S is c-soft and that 

either A or S is flat. Then A | S is c-soft. 

Proof. There is an exact sequence 

(1) 0 § Pn + Pn-I § """ -~ P0 § A § 0 , 

where P is a direct sum of sheaves R u 
3 

flat. The following sequence 

(0 <= j <__ n-l) (6.1), hence is 

(2) 0 § Pn |247174247174247174 

is also exact because either S is flat or, if A is flat, all the terms 

in (i) are flat. For any open U c X , the sheaf R U | S is the extension 

of SIU by zero, hence is c-soft. Therefore P | S is c-soft 
1 

(0 ~ i ~ n-l). Then A | S is c-soft by 6.4 . 

Since c-soft sheaves are acyclic for cohomology with compact sup- 

ports, 6.5 implies : 

6.6 COROLLARY Let S be flat and c-soft. Then the functor 

A ~-+ F (A | S) is exact. 
c 
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6.7 PROPOSITION .(i) Let ~ be a flat sheaf. Then ~ has a c-soft 

flat resolution ~ § K" , where K i = 0 for i > n . 

(ii) Let R x § S" be a c-soft flat resolution of 

R x , such that S i = 0 for i > n. Then, for any sheaf A, the canonical 

morphism A § A | S" is a c-soft resolution of A . In particular, A 

has a c-soft resolution which vanishes in degrees i > n . 

Proof - (i) We consider first the canonical Godement resolution 

(i) 0 § F § jO do jl dl ____~jn-1 dn-i 

The Ji's being flabby, are c-soft. We claim that ji and Im d. are fla~ 
' 1 

It suffices to prove this for j = 0 . For U open in X, we have 

J O ( u )  = ~xCUFx , h e n c e  J O ( u )  i s  f l a t ,  s i n c e  R i s  n o e t h e r i a n .  The 

R-module ~0 , being an inductive limit of flat R- modules, is then also 
x 

R - f l a t .  M o r e o v e r  ~0 i s  t h e  d i r e c t  sum o f  F a n d  o f  an  R - s u b m o d u l e  K 
x x x 

(the sections with value 0 at x).Then K is flat. Since it is isomor- 
x 

p h i c  t o  (Im d o ) x ,  t h e  l a t t e r  i s  f l a t .  T h i s  p r o v e s  o u r  a s s e r t i o n .  We 

then take as a resolution of F : 

(2) 0 + F § S 0 § ... § S n § 0, 

where 

(3) S i = ji (0 ~ i ~ n-l) , S n = Im dn_ 1 

and observe that S n is c-soft by 6.4 . 

(ii) Let R x § S" be as in (ii). Then 

A = A | RX + A | S" 

is a resolution, since the Sl's are flat, and is c-soft by 6.5 . 

6.8 COROLLARY . If A" is a bounded complex of sheaves, then 

A" § A" | S" is a bounded c-soft resolution of A" . 
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6.9 (N. Spaltenstein): Let P" § A" , Q" § B" be flat resolutions 

of A',B" 6 K(X) , with A',B" not necessarily bounded above. We check 

here that, as in 6.2 , we have quasi-isomorphisms 

( i )  P" | Q" = P" | B" = A" | Q" , 

L 
so that A" | B" is well-defined and can be computed by any one of the 

expressions in (i) . 

Using cones and the symmetry between A" and B" , we see easily 

that it suffices to prove the following . 

Let A" be flat : 

(a) If A" is acyclic, then so is A" | B" . 

(b) If B" is acyclic, then so is A" | B" . 

As this needs only to be checked on stalks, we may (and do) assume 

that we are dealing with complexes of R-modules. 

Let d be the differential of A" . Assume that A" is not only flat, 

but that 

(2) Ker d and Im d are flat (i 6 Z) . 
1 1 

Then, by [3,p.76-77], there is a K~nneth rule for H'(A" | B'). In 

particular H'(A" | B') = 0 if A" or B" is acyclic. 

In view of 6.0 , it is easily checked that (2) holds if A" and 

H'(A') are both flat. This proves (a) and a special case of (b). 

To prove (b) in general, let e(A') be the smallest integer e such that 

every module Hi(A ") has a flat resolution of length ~ e . By 6.0, 

e(A') is finite. We use induction on e(A') . We know already that (b) 

holds if e(A') = 0 . For the induction step, it is sufficient to show 

that if e(A') ~ 1 , then there exists a morphism f : F" § A" with F" 

flat, e(F') = 0 , e(C~) = e(A') - 1 . Such a morphism can be construc- 

ted as follows : for each i , let F i + Ker d be a surjective map with 
1 

F i flat. Give F" the zero differential . 

Since H'(F') = F" + H'(A') is surjective, we have a short exact se- 

quence 

0 + H'(Cf)[-l] § F" + H'(A') § 0 . 

Then 6.0 shows that f : F" § A" has the required properties. 
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w 7 THE DUAL OF A COMPLEX OF SHEAVES. VERDIER DUALITY 

We fix an injective resolution I'of R , of length equal to the 

dimension d of R , and a c-soft flat resolution K" of RX, of length 

n = dim X . For U open in X , and A a sheaf on X , we let A U denote 

the restriction of A to u . In particular, K~ is a c-soft flat resolu- 

tion of R U . Sometimes, we shall also denote in this way the extension 

by zero to X of the restriction of A to u , i.e. make no notational 

distinction between A U and j!A U . 

A. The dua~izing sheaf and homology . 

7~ We consider the presheaf 

(i) U~-+ Hom'(Fc(KO),I'). 

It is a sheaf ([2], [4:V,I.9]), to be called the dualizing sheaf on X 

and to be denoted by D~ . We have 

(2) ~(U) = ~j Hom(Fc(K~),IJ+i), (i C Z) 

hence, with our choice of K" and I" , it can be non-zero only for 

i C [-n,d]. [The same definition with another injective resolution of 

R or another c-soft resolution of R x , (not necessarily flat), leads 

to a q.i. complex of sheaves, hence D~ is well defined in Db(x) ]. For 

I" injective, DX is obviously flabby. We shall see that, with K" flat, 

it is in fact injective (7.6). It follows therefore from the defini- 

tions that we have 

(3) ~'(uiD x) = Ext'(r c(K~),R) . 

We recall that the right hand side is the abutment of a spectral 

sequence in which 

E p'q = ExtP(H~q(U;R),R) (p,q 6 %) (4) -2 
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If d = 1 , in particular if R is a Dedekind ring, then (3) yields 

an exact sequence 

(5) 0 + Ext(~+I(u;R),R) + ~-i(x;Q~) + Hom~H~(U;R) § 0 , 

which becomes, when R is a field : 

(6) ~i(u;~) = Hom(H~ i(U;R),R) . 

Assume that X satisfies the first axiom of countability and that 

R x is cc (w 3). Then, taking the limit over neighborhoods U of x ,we 

get from (3) 

! 

(7) (QX) x = R Hom'(fxRx,R) 

in particular 

(8) H" (DX)x = Ext" (f~K',R) , 

where the right hand side is the abutment of a spectral sequence in 

which 

_ ! 

(9) E 2p'q = ExtP(H q(f~Rx),R) (p,q 6 ~) 

By definition in [21 , ~-i(X,Dx)- = H-i(F(D~))- 7.2 

is the i-th homology group of X with coefficients in R and arbitrary 

closed supports. A priori, this group may be non-zero for i 6 [-d,n] . 

One would of course like it to be zero for i < 0 . This is proved in 

[9] when R is a principal ideal domain (which implies d ~ i). I do not 

know what is the situation for more general rings. If X has reasonable 

local properties e.g. if it is locally constructible, the homology is 

indeed zero in degrees i < 0 . 

The sheaf C. defined by C i = D-ix (i C Z) is the fundamental homo- 

logy sheaf. If X has a PL structure, it is q.i. to the homology sheaf 

constructed in I,II . 

7.3 If X is a manifold, then 
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(i) H.C. = 0 (i / n) 
1 

(2) H C.  = 0 
n 

( 0: orientation sheaf) . 

Therefore D~[-n] is a resolution of 0 , (which is injective by 7.7). 

We recall that a cohomology n-manifold over R can be defined as a 

finite dimensional space where R x is cc , in which (i) is valid and 

H C. is locally isomorphic to R X . However we shall not need this 
n 

notion in this seminar. 

B. The dual  of  a complex of sheaves . 

In this section, our main goal is to prove the equality in Db(x) 

of the dual of a complex of sheaves A" , as constructed in [2] , and 

of the Verdier dual of A" [iO].This theorem can be viewed as a special 

case of the Verdier duality, which will be discussed in general in the 

next section. 

The main point in the proof is an isomorphism at the sheaf level. 

We discuss this first. 

7.4 We fix an R-module N and a flat c-soft sheaf K . For a sheaf 

A , we consider the presheaf 

(i) E(A) : u~-+ Hom(Fc((A | K)u),N ) (U open in X) 

It is a sheaf, as easily seen [2;8] . 

7.5 PROPOSITION . There is a natural isomorphism of sheaves 

(i) ~A : E(A) = ~om(A,E(Rx)) 

If N is injective, the functor A P-~ E(A) is exact and E(Rx) is injec- 

tive. 

Let V ~ U be open in X . We have natural homomorphisms 

(2) A(V) | Fc(K v) ~ Fc((A | K) v) + s ~ K) U) , 
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whence 

(3) 
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Hom(Fc((A | K)u),N)+ Hom(A(V) | Fc(Kv),N ) . 

But the right hand side is equal to 

(4) Hom(A(v),Hom(~(Kv),N)) = Hom(A(v) ,F(Rx) (V)) , 

whence a homomorphism 

(5) ~V : E(A) (U) § Hom(A(v),E(Rx) (V)) . 

For V' C V open and o 6 E(A) (u), the following diagram is commutative: 

~v(O) 
A(v) ~ [(Rx) (V) 

A(v') > E(Rx) (V') 

Hence we get 

(6) ~ : E(A) (U) ~ Hom(A,E(Rx)) (U) . 

This again commutes with restriction to U' ~ U , and yields a sheaf 

homomorphism 

(7) ~A : E(A) ~ Hom(A,E(Rx)) . 

This is the natural homomorphism in (i). To prove it is an isomorphism, 

we have to show that 

(8) E(A) (U) = Hom(Au,E(Rx)H) , (U open in X) . 

Of course, E(Rx) U = E(Ru) on U . So we have to prove 

(9) E(A)(u) = Hom(Au,E(Ru) ) , (U open in X) . 
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Assume first that A = R V for V open in U . We have R V | K = K v , 

therefore E(Rv)(U) is equal to E(Rv)(V) . But 

(iO) Hom(Rv,E(Ru) ) = E(Ru) (V) = E(Rv) (V) . 

This proves (8) in that case, hence also when n is a direct sum of 

sheaves R V . 

As recalled in 6.1 , there is an exact sequence 

(ii) Q § P § n § 0 
U I 

where Q and P are direct sums of sheaves Rv(V c U) . From (7) and (ii) 

we get the commutative diagram 

(12) 

0 0 

Hom(Fc(A U | K),N) ~ Hom(Au,E(Ru)) 

~p 
Hom(Fc(P | K),N) , Hom(P,E(Ru)) 

Hom(rc(Q~ KI,N) , Hom(Q,E(Rul) 

where the columns are exact, as follows from the left exactness of 

Hom(,N) and from 6.6 (for the left hand column). We have already seen 

that Up and ~Q are isomorphisms. Simple diagram chasing then shows 

that ~A is an isomorphism. This proves the first part of 7.5 . Assume 

now N to be injective. Then 6.6 implies that n~--~ E(A) is an exact 

functor. Together with (i) , this shows that E(Rx) is injective. 

7.6 COROLLARY . The dualizing complex of sheaves D~ is injective. 

Indeed, in each degree it is a finite direct sum of sheaves of the 

form E(Rx) ,(for various K's and injective N's). 

7.7 The dual of a DGS . We now carry the foregoing over to com- 

plexes of sheaves. Given A" C DGS(X) we define the dual complex D~A" , 
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or simply D'A" , by means of the presheaf 

(i) U ~ Hom" (Fc((A" | K')u),I" ) , 

which is again a DGS. We have then, as a generalisation of 7.1(3) 

(2) ~" (U;DxA") = Ext" (Fc((A" | K')U ) ,R) 

(U open in X). The right hand side of (2) is the abutment of a spectral 

sequence in which 

(3) ~2~P'q = Ext p~c q- (u;A'),R) (p,q 6 ~) 

This also yields analogues of 7.1(5),(6) . If X satisfies the first 

axiom of countability and A" is cc , then 7.1(7),(8),(9) also extend; 

we have 

(4) (DxA') x = RHom" (fx A',R) 

(5) H" (DxA') x = Ext" (f"x A" ,R) , 

where the right hand side can be computed by using K" | A" or any 

bounded injective resolution of A" . The right hand side is the abut- 

ment of a spectral sequence in which 

P,q ExtP(H-q(f'xA'),R) (P,q 6 2) (6) E 2 = 

Note that DxA" can be computed in D(X) by the formula 

U ~ > Hom'(Fc(Su),I') 

for any c-soft resolution A" § S" of A" . The advantage of (i) is that 

it yields a specific element of DGS(X) 

The above definition of the dual complex DxA" follows [2] . On the 

other hand, the Verdier dual of A" in Dbx is RHom" (A" ,~x) . The equa- 

lity 

(7) DxA" = RHom'(A',D x) , in Db(x) , 
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is a special case of Verdier duality (7.16). The equality (8) is a 

consequence of the following statement which is more precise in the 

sense that it asserts the existence of an isomorphism already in 

DGsD (X) . 

7.8 THEOREM . (i) The functor n'~--~ D~A" in DGS(X) is exact and 

preserves quasi-isomorphisms. 

(ii) There is a natural isomorphism in DGsb(x) : 

(i) D~A" & Hom" (n',Q~) , (A" 6 DGsb(x)) . 

Proof : The first assertion of (i) follows from 7.5 . Let 

: A" § B" be a q.i.. By 1.4 , it yields an isomorphism 

~(u;A') § , (u open in x), hence also an isomorphism of the 

E2-terms , given by 7.7(3) of the spectral sequences abuting to the 

right-hand sides of 7.7(2) for A" and B" respectively. Thus ~ yields 

an isomorphism of ~'(u;D~B') onto ~'(U;D~A') . Going over to the limit 

over a fundamental set of neighborhoods of a point x f X , we get then 

an isomorphism of H'(DxB') x onto H'(DSA') x ~  . This proves the second 

part of (i) . The map ~ of 7.5(1) , applied to Ai,KJ,I k,= (i,j,k 6 Z) 

yields a map 

(2) D~A" -~ Hom'(A',~) , 

which is bijective by 7.5 and obviously commutes with the differentials. 

This gives (ii). 

7.9 A complement to II,7.4 in [5] . Before specializing the fore- 

going we make some remaks about homomorphisms of sheaves. 

Let [,M C Sh(X). Given x C X , there is a natural homomorphism 

(i) ex : H~ ~ H~ ' 

and more generally 

(2) e'x : Ext'(['M)x--+ Ext'(ix'Mx) " 

As is well known e is neither surjective nor injective in general. We 
x 

have however [5:II,7.4] : 
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If L is locally constant with finitely generated stalks, then we 

can compute RHom" (L,M) and Ext" (L,M) by using locally a left resolu- 

tion of [ by finitely generated free sheaves (instead of a right in- 

jective resolution of M , as is always possible). Moreover e" is an 
x 

isomorphism. 

The key remark here is that the functor M ~ Hom(L,M) is exact if 

L is locally free of finite rank (this is a consequence of the equality 

Hom(Rx,~) = ~) , and the general case follows then by standard homo- 

logical algebra. To handle clc complexes, we shall need the following 

variant. 

LEMMA . Let X be locally contractible and i,~ C Sh(X) be locally 

constant. Then we can compute RHom" (L,M) and Ext" (L,M) by using lo- 

cally a free left resolution of L . Moreover Extl(i,M) is locally con- 

stant and e" is an isomorphism. 
x 

We check this only in the case where L = ~ ['i with Li = RX and 
iCI 

leave it to the reader to conclude as in [5:II,7.4]. 

We have 

(3) ~ o m ( L , M )  = M I . 

Since X is locally connected, M I is locally constant and 

(MI)x = (Mx) I = Hom(Lx,Mx) , (x C X) . 

It remains only to check that M is acyclic for Hom(L, ) .( Note here 

that the functor A--+ A I is in general not exact if I is not finite, 

since an arbitrary product of exact sequences in Sh(X) need not be 

exact) . Let J" be an injective resolution of M . we must show that 

Hom(L,M) --~ ~om'(L,J') 

is still a resolution. It is sufficient to show that if U is a con- 

tractible open subset of X, then the sequence of R-modules 

(4) 0 + M(U) I + j0(u)I § jl(u)I § ... 
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is exact. But this can be checked componentwise, and the exactness of 

(5) 0 § M(U) § /0(U) § Jl(u) § ... 

is equivalent to the vanishing of Hi(u;M) for i > 0 , which follows 

from l.ll(b). 

7.1@ A special case. Let X be a manifold, n = dim X and 0 

the orientation sheaf of X . We have seen that D~[-n] is an injective 

resolution of 0 . (7.3). Therefore, if A" 6 DGS(X) , then 

(i) D'A'[-n] = RHom'(A',0) 

and therefore 

(2) Hi-n(D'A')x = Exti(A''O)x (i C Z ; x C X) 

Assume now that A" = E is a locally constant sheaf. Then (2) and 7.9 

imply : 

Hi-n(D'E) Exti(Ex,R) (3) x = , (x C X; i C Z) . 

It follows in particular that D'E is clc , with finitely generated 

stalk cohomology if E moreover is finitely generated, and that x has 
x 

a neighborhood on which D'E[-n] is q.i. to the complex of constant 

sheaves with stalks Hom'(Ex,I" ) , where I" is an injective resolution 

of R . From (3) we also get 

(4) D'E[-n] = E* ~ 0 , if E is a free R-module (x C X) , 
x 

where E* is the locally constant sheaf Hom(E,Rx) with stalks 

E* x = H~ " 

C. The functors f ,  and f~. Ver~ i~  dua l i t y  . 

We now discuss Verdier duality with respect to a continuous map 

f : X + Y . We refer to VI for a more detailed exposition of the basic 

facts on f, and f~ 



V, 7.11 128 

7.11 The functor direct image with proper support f, . 

Given a sheaf A on X , consider the presheaf on Y defined by 

(i) V~-+ FCv(f-lv:A) , (V open in Y) 

where #V is the family of closed subsets C of f-iv such that f : C § V 

is a proper map. It is not difficult to see that if {V } is an open 
i 

cover of V and C is closed in f-iv , then f : C + V is proper if and 

only if the maps f : f-iv n C § V are proper. From this it follows 
1 1 

that the presheaf (I) is a sheaf, contained in f,A , to be denoted 

f,A i(see VI,2.2 or [8:p. I19]) . 

We have then 

(2) f,A(v). = FCv(f-Iv;A) , (V open in Y) . 

In particular, if f is a proper map, then f, is the direct image func- 

tor f,(l.6)~ if Y is a point, then f,A = Fc(X~A ) . 

7.12 LEMMA . Let K be a c-soft sheaf on X . Then for every y C Y 

we have a canonical isomorphism 

(1) ~ : f,(K)y. = Fc(f-lylKlf-ly) 

Proof : If V is an open neighborhood of y , then the intersection 

of any C 6 ~V with f-ly is compact, hence the restriction gives a map: 

(2) : f,(K)(V) § Fc(f-ly;K) . 

Since K is c-soft, the map ~ is surjective. On the other hand, if an 

element s of the left hand side restricts to zero, then its support 

C is a closed subset of f-lv not meeting f-ly , therefore f(C) is a 

closed subset of V not containing y . Then s = 0 , which shows that 
Y 

is injective. 

Remark. 7.12 is true for any sheaf (see VI,2.6) but we shall not 

need this fact. 

7.13 Fix B 6 Sh(Y) and a c-soft flat sheaf K on X.~or A 6 Sh(X),set 
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(i) E(A) = Hom(f,(A | K),B) . 

We have then the 

LEMMA . Assume B to be injective . Then the functors A~-~ f,(A | K) 

and A ~+ E(A) are exact and E(A) is flabby . 

Proof . The sheaf A | K is c-soft (6.5),hence so is its restriction 

to f-l(y) . In view of 6.6 , it follows that A~-+ Fc(A | KIf-ly) is 

exact. By 7.12 , applied to n | K , this implies that A F-+ f,(n | K) 

is exact, since B is injective, the first assertion follows. The 

second one is standard (cf.[5], lemma 7.3.2, p.264) . 

f! 7.]4 The functor . Given a sheaf B on Y , the rule 

(i) U ~-+ Hom(f,Ku,B). , (U open in X) 

! 

defines a sheaf on X , to be denoted by f~B. We claim there is a cano- 

nical isomorphism 

! 

(2) Hom(f,(A | K),B) = E(A) = f,Hom(A,f~B) . 

If Y is a point, then f,(A | K) = F (A | K) , therefore (2) , used si- 
c 

multaneously for all the sheaves A U (U open in X) , gives 7.5(1) 

back. 

To prove (2) in general, we consider the two functors from 

Sh(X) • Sh(Y) to Sh(Y) given by 

A,B~-+ EB(A) = Hom(f,(A | K),B) 

! 

A,B ~-+ FB(A) = f.Hom(A,f~B) 

V, 7.14 

We have to prove that they are naturally isomorphic. Fix n and consider 

them as functors in B . They are left exact and commute with arbitrary 

direct products. If supp B is a point, then it is easily seen that 
~ 

we are reduced to 7.5 . We have then also an isomorphism EB(A) + FB(A) 

when B is a product of skyscraper sheaves. In general, consider the 

(A 6 Sh(X), B 6 Sh(Y)) 
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beginning 0 § § ~ § ~ of the canonical flabby resolution of B . we 

get a commutative diagram 

0 ~ EB(A) 

0 ~ FB(A) 

Ep(A) ~ EQ(A) 

Fp(A) ~ F~(A) 

with exact rows in which the two vertical arrows are isomorphisms since 

P and Q are products of skyscraper sheaves. This yields a canonical 

isomorphism EB(A ) § FB(A ) , whence (2) . 

7.15 NOW assume B to be injective. Taking global sections in 

7.14(2) , we get the isomorphism 

( i )  
! 

Horn(f, (A | K),B) = Hom(A,f~B) . 

Since f,(A | K) is exact in A (7.13) , we see that the right hand side 
! | 

is also exact in A , hence fKB is injective, i.e. fK transforms injec- 

tive sheaves into injective ones. 

v 
7.16 Let now J" 6 DGS(X) . We let f~.J" be the simple complex 

' j 
associated to the double complex {f'.J } (i,j 6 ~) . For A" 6 DGS(X), 

K I 

7.14 yields an isomorphism in DGS(Y) : 

! 

(2) som'(f,(A" | K'),J') = f,~om'(A',f~.J') . 

!B" Let now B'6 DGsb(y); define f in Db(x) by f~.J" where J" is an in- 

i 
jective resolution of B', i.e. f|B" = Rf~.B" . It consists of injective 

! 
sheaves. Moreover, Hom" (A',f~.J') is flabby. 

Therefore f,Hom" (A',f~B) represents Rf,RHom" (A',f'B). On the other hand 

A" | K" is a c-soft resolution of A" , hence Rf,A" = f,(A" | K') and 

the left hand side of (2) represents RHom'(Rf,A',B') . This proves 

therefore: 

7.17 THEOREM (Verdier duality). In Db(y), we have the canonical 

isomorphism 



(i) 

131 

! 

RHom'(Rf,A',B') = Rf,RHom'(A',f'B') 

V, 7.19 

This theorem was announced by J.L. Verdier in [Ii]. A proof is 

given in [iO:Exp.4]. The notes [8] stop short of the statement 7.16 

but give all the essentials of the proof (see IV.6 and V.4 there). We 

have to a large extent followed the exposition of [8]. 

7.18 Assume now that Y is a point and B" = R . Then J" is just an 
pt 

injective resolution of R . Take first A" = R x . Then the left hand 
! 

side is ~ A ' while the right hand side is f'Rpt . Hence 

(2) v~ f: = Rpt , if f : X § pt . 

For a general A" , 7.17 follows in the present ease from 7.5 . 

7.19 If S',T" 6 Db(z), we have by 5.17(3) 

Mor (S',T') = ]{O (z;RHom" (S" ,T') ) 
Db(z) 

It follows then from 7.17 that 

i 

(i) Mor (n',f'B') = Mor (Rf,A',B') . 
Db(x) Db(y) 

Suppose now that f : X § Y is the inclusion of a closed subset. In 

1.8 we have defined a functor 7X : Sh(Y) + Sh(X) . It is right adjoint 

to f, , and it follows easily that RYx is right adjoint to Rf, . Thus 

the functor R~X and f! are both right adjoint to Rf, , and they are 

therefore canonically isomorphic. As a consequence the definition of 

f! given in 1.8 is compatible with the one given here. 

This can also be checked directly as follows. For B" C Db(y) and 

U c X open we have 

fiB'(u) = Hom" (f~KO,B') = Hom'(KO,TxB" ) 

Using the natural map R U § KO, we get a morphism 

%U : H~ § H~ : YX B'(U) ' 
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~B~ ~ w whence a morphism # : f § yx B" To check that ~ is a q.i. it 

suffices to notice that each ~U is a q.i. since R U § K~ is one and 

yX B" is injective. 

fl A similar argument shows that = f* , if f is the inclusion of 

an open subset. 
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8 CONSTRUCTIBILITY OF RHom AND BIDUALITY ON A PSEUDOMANIFOLD 

A. Co~truct ibi l i ty  

8.1 LEMMA . Let Y be a locally compact space, every point of which 

has a fundamental system of contractible neighborhoods and S" a clc 

complex of sheaves on Y . Then every point y C Y has a neighborhood 

on which S" is q.i. to a complex of constant sheaves. 

Proof. Let U be an open contractible subspace of Y . The sheaf 

H'S" is constant on u . The E 2 term of the hypercohomology spectral 

sequence on U with respect to S" is given by : 

-P,q 
(i) ~2 

HP'u; uq~ n o ) = [0 if p ~ 0 , 

Hqs" if p = 0 and y C U . 
Y 

(we have used 1.11(b)). We have then 

0,q = Hq S. 
(2) ~q(u;S') = E 2 Y , (q C ~;y C U) . 

Let S" § J" be an injective resolution of S" and let T" be the complex 

of constant sheaves on U such that 

(3) T p = F(U;J p) , (p 6 2) 
Y 

The the restriction supplies a morphism T" § J" which is obviously 

a q.i.. 

8.2 PROPOSITION . Let Y be a locally compact space, Z a closed sub- 

space and j : Z + Y the inclusion map. Then, for any S" C DGS(Y) , we 

have in D(Z) the isomorphism 

! 

(i) D~j*S" = j'D'S" . 
g 
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Proof : Let K" be a c-soft flat resolution of Ry . Then j'K" is a 

c-soft flat resolution of R z . If we use these resolutions in 7.7(1) 
! 

and set j'DQ$" = yz(DQS') (this is allowed since D~S" is flabby), then 

the isomorphism (i) actually holds in DGS(Z) . We prove this stronger 

statement. 

For each open subset V c y , we have an exact sequence 

(2) 0 § Fc(V-Z;S" | K') § Fc(V;S" | K') + Fc(ZNV;j*S" | j*K') + 0 

Applying Hom'( ,I') to (2), we get an exact sequence 

(3) 0 § F(V-Z;DyS') § F(V;D~S') § F(ZNV;D~j*S') + 0 

hence an exact sequence 

(4) 0 + i , i * D ~ S "  § D'S'y § j ~ D ~ j * S "  § 0 

But since DQS" is flabby we know that the kernel of DQS" + i,i*DQS" 

is j~yzDQS" = j[j~D~S" . Thus D~j*S" = j~D#S" . 

8.3 PROPOSITION . Let X be a pseudomanifold and X an unrestricted 

(see 2.1) stratification of X . Then ~ is X - cc . 

Proof : We use the notation 2.1 for X and prove by induction on 

k ~ 1 that (D~) k = DO is X - co . On U 1 , the complex D~ is q.i. to 

the orientation sheaf) up to a shift (7.10) whence our assertion in 

this case. Assume it is proved for some k ~ 1 . Consider the exact 

triangle 

(i) 

'IP" 
Jk'3k X " ~Uk+ 1 

Ri D" 
k* U k 
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By induction and 3.11 , Rik,~k is X - cc on Uk+ 1 . 

8.2 gives 

! ! 

ji ; = jiD;CRxl = D;k+j R x = D;k+lRSk+ 1 

V, 8.5 

On the other hand, 

= ~Sk+l ' 

which is clc with finitely generated stalked cohomology, since Sk+ 1 

is a manifold. It follows that ~Uk+l is X - cc (5.]3) . 

8.4 We now discuss the contructibility of RHom. We let D(R) denote 

the derived category of R-modules. 

If Y is a space and S',T" C DGS(Y), then the map ex(X C Y) of 7.9 

extends naturally to a morphism 

(i) Re'x : RH~ + RH~ (S~,TI) , (x f Y) . 

We are interested in giving conditions under which Re" is an isomor- 
x 

phism. We recall [5:I,5.4.1] that the cohomologyof the right hand side is 

the abutment of a spectral sequence in which 

(2) ~P'q @iExtP(H-i(s~) Hq+i([~)) (p,q C 2) ~2 = , t �9 

8.5 PROPOSITION . Let Y be a locally contractible space and 

i',~'C DGS(Y) be clc . Then 

(i) RHom'([',~') x = RHom~(R) ([~,M~) (x C Y) 

and RHom~(y) (i',~') is clc . The latter has finitely generated stalk 

cohomology if i" and ~" have that property . 

Proof . Since our assertions~are local, we may, in view of 8.1 , 

assume [" and M" to consist of constant sheaves. Then [" has a left 

resolution C" § [" by constant sheaves with R-free stalks, and 

RHom'(L',M') is q.i. to RHom'(C',~') . The arguments of 7.9 show that 

we can take 
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(2) R H o ~ ' ( L ' , M ' )  = Hom' (C ' ,M ' )  

and that 

(3) Hom'(C',M') x = Hom'(Ci,M~) 0 

In particular this gives (i). Using the fact that Y is locally 

connected, we find also that Hom'(C',M') consists of constant sheaves 

and that it is clc . Thus RHom'(L',M') is clc . The last assertion 

of the proposition follows from (i) 

8.6 THEOREM . Let X be a pseudomanifold and X an unrestricted 

stratification of X . Let A',B" 6 DGS(X) be bounded below and X - clc 

(resp. X - cc). Then RHom'(A',B') is X - clc (resp. X - cc). 

Proof : In the notation of 2.1 , we want to prove by induction or 

k ~ 1 that RHom'(A',B') k is X - clc (resp. X - cc) if A" and B" are 

so. For k = 1 , this follows from 8.5 . Assume it is proved for some 

k ~ 1 . If we apply RHom'(,B') to the distinguished triangle 

(i) 

1 

Jk:J~ A" 

we get a triangle 

~om" (A~,~') . ~om" (A~+ l, ~') 

RItom" (jk_tJ~A" ,B') 

which is also distinguished (5.10).By 5.13, it suffices to show that 

two vertices are X - clc (resp. X - cc). 

It follows immediately from the definitions that 
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(3) ~omlik~A~,~') = Rik,~om'IA~,~ 

By induction assumption RHom(A~,B~) is X - ale (rasp. X - cc) on U k . 

Then the right hand side of (3) is X - clc (rasp. X - cc) on Uk+ 1 

by 3.9 (rasp. 3.11). 

Verdier duality (7.17), applied to Jk ' gives 

! 

(4) RHom'(jklj~A',B" ) = RJk,RHo~(j~A',j~B" ) 

! 

On Sk+ 1 , the complex j~B" is clc (rasp. clc with finitely generated 

stalk cohomology) if ~" is X - clc (rasp. X - cc) by 3.10 , therefore 
! 

RHom'(j~A',j~B') is clc (rasp. clc with finitely generated stalk coho- 
! 

mology) by 8.5 . The same is then true for RJk,RHo/(j~A',j~B" ) , which 

is just extension by zero. 

8.7 COROLLARY . Let S" C DGS(X) be X - clc [rasp. X - cc). T~en 

D~S" is X - clc (rasp. X - cc). 

We have D~S" = RHom'(S',D~) by 7.8 and D~ is X-cc by 8.4 . We may 

therefore apply 8.6 . 

B. Biduality 

8.8 PROPOSITION . Let Z be a closed subspace of the locally compact 

space Y . Let j : Z + Y and i : U = Y - Z § Y be the inclusion maps. We 

have then in D(Y) : 

(A" C DGS(Z); B" 6 DGS(U)) 

Assume moreover that Y satisfies the first axiom of countability 

and that Ri,B" is cc (B" 6 DGS(U)). Then 

13) D~RiJ = i:D~" 
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Proof : Let K" be the c-soft flat resolution of Ry used to define 

DQ . Then j'K" and i'K" are c-soft flat resolutions of R Z and R U 

respectively . We use them to compute D~ and D~ . Since D~B" is flabby, 

we may set Ri,D~B" = i,D~B" . we claim that with these choices (i) 

and (2) hold already in DGS(Y) . Indeed, these stronger statements 

follow from the definitions (7.7) and from the fact that, for V c Y 

open, we have 

(4) Fc(J,A" ~ K V) = Fc(A" | (J*K')vn z) 

(5) s | KV) = Fc(B" | (i*K')unv) . 

This proves (i) and (2) . For (3) , it is clear that DQRi,B" and 

i~D6B" agree over u . Thus it is enough to check that (DQRi,B') x = 0 

for x C Z . But the constructibility assumption implies (7.7(6)) 

(6) 
i 

H" (DyRi,B')x = Ext" (fxRi,B ",R) . 

| 

It suffices then to show that H'(f~Ri,B') = 0 . 

f! ' , since = i" o j" , where Z is the inclusion of x in Z , it is 
x x x 

! 

sufficient to prove that H'(j'Ri,B') = 0 . This follows from 1.8(7) 

applied to S" = i,]" , where J" is an injective resolution of B" on U . 

8.9 The map BD x : S'~-+ D~D~S" . Let first S,[ C Sh(X). There is 

an obvious sheaf homomorphism e : S § Hom(Hom(S,T),T) which generalizes 

the canonical map of a module into its bidual : given U c X open and 

s 6 S(U) , we have to associate to it a map of Hom(S,T) IU to TIU . By 

definition, this consists of a collection of maps Hom(SIv,TIv ) § T(V) 

for all V open in U , compatible with restrictions. Now any 

c 6 Hom(SIv,TIv ) yields in particular a map c V : S(V) § T(V) . we set 
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(i) e(s)(c) = Cv(S) . 

This extends obviously to graded sheaves. But this yields a morphism 

in DGS(X) only up to signs. Given now S',T" 6 DGS(X) , we then define 

(2) e(s) (c) = (-l)iJcv(S) (s f Si(u), c f HomJ(S']v,T']v);i,j 6 ~z). 

We leave it to the reader to check that this is indeed a morphism. 

From now on X is a pseudomanifold, X an unrestricted (see 2.1) 

stratification of X and Db(x) the derived category of bounded com- 

plexes which are X - cc . We let BD X : S'~--~ D'D'S" be the map defined 

by (2) for T" = D~ . we have seen that S'~ --~ D'S" preserves Db(x) 

(8.6) and we know by 7.8 that it is exact and preserves q.i.. The same 

is then true of S'~ --+ D'D'S" . 

8.10 THEOREM . If S" f Db(x) , then BD 
X 

isomorphism in Db(x) . 

: S" --~ D'D'S" is an 

a) we first assume x to be a manifold with the trivial stratifica- 

tion. Then S" is clc with finitely generated stalk cohomology . Our 

assertion being local we may assume that X is a ball of dimension n . 

Then H'S" is constant. In view of 8.1, we may (and do) assume S" to 

be a complex of constant sheaves. Since X is orientable, D~[-n] is an 

injective resolution of R X . 

Assume first S" to be a sheaf E . Then D'E is clc by 7.9 . If 

moreover E is free with finitely generated stalks, then E** = E and 

therefore 7.10(4) implies that E § D'D'E is an isomorphism. If E is 
x 

finitely generated, but not necessarily free, then it has a bounded 

left resolution C" + E by constant, R-free sheaves with finitely gene- 

rated stalks. We apply BD x to C" § E and get a commutative diagram 

�9 C i 

l 

...-+ D'D'C i -~ 

C i-I C O ) ~176 ---+ E --~ 0 

] ~i-i aO 

D'D'Ci-I--+ ...-~ D'D'cO--~ D'D'E-+ 0 
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where the vertical arrows are defined by BD X . We have just seen that 

~ is a q.i. (i ~ 0). The upper row is exact. Then so is the lower row 
1 

since S'~-* D'D'S" is exact. It is then clear that B is a q.i. 

This proves our assertion when S" is a Single degree complex or 

also (l.lO)when H'S" is not zero in at most one degree. We then pro- 

ceed by induction on the length of H'S" : if b is the greatest integer 

for which Hbs" / 0 , we consider the exact sequence 

(i) 0 + T<bS" -~ S" + T>bs" -~ 0 

from which we get a commutative diagram 

(2) 

0 ----+ T<bS" > S "  I "~-b S "  ~ 0 

0 ~ D'D'~<bS" --~ D'D'S" , D'D'T>bs" ~ 0 

with exact rows. By induction, s and ~3 are q.i.. Then so is Z2 ' 

which concludes the proof of 8.10 in the present case. 

b) In the general case, we use the notation of 2.1 and prove by 

induction on k ~ 1 that S~ ~D'D'S~ is a q.i.. For k = 1 this follows 

from a) . So assume it is true for some k ~ 1 . Let 

Z = Sn_ k , U = U k , Y = Uk+l , J = Jk and i = i k . 

Applying D~9~ to the distinguished triangle 

(i) 

! 

J :J'S~+ 1 s~+ 1 

Ri,i*Sk+ 1 
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we get a morphism of distinguished triangles which we can write, taking 

into account the equality i*S~+ 1 = S~ : 

(3) 

-mS. - 
J' J k+l 

i vp j:j's' < Vp S + 1 

! 

Ri,S~ Lj~j'S~+I[I] 

Ju JaCl] 

! 

Vp Ri,S i -Vp J J'Si+ltl) 

We have to prove that $ is an isomorphism in D(X) . For this, it 

suffices to show that e and y are so. Applying 8.8(2) twice, we get 

:S" = .... IS" D~D~j:3 k+l 3~DzDz3 k+l ; 

�9 : S �9 the right hand side being equal to 3!3 k+l by induction assumption 

(or a)) we se that a is an isomorphism. By 8.8(3) we have 

Using then 8.8(2), we get 

Since D~D~S~ = S~ by induction, this shows that y is an isomorphism 

in D(X), too, and ends the proof of the theorem. 

8.11 COROLLARY . For any S'C Db(x) and any x 6 X , we have 

i 

H'(SI) = Ext'(f~D'S',R) 

This follows from the isomorphism 7.7(6), applied to D'S" , and from 

biduality (8.10) . 
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Remark. The analogue of 8.10 in the complex analytic or algebraic 

setting, with the notion of constructibility usual in that framework, 

is proved by J.L. Verdier in [13], see 6.2,p.i18 there. 

Another version under more general assumptions is given in 

Exp. i0, w of [i0]. 
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9 PAIRINGS AND POINCAR~ DUALITY IN IC 

In this paragraph (X,X) is a stratified pseudomanifold of dimen- 

sion n . 

A. Some morphksms . 

9.I LEMMA . Let Y be a topological space, A" C D(Y), m E ~ . Assume 

that the natural morphism T A" § A" is an isomorphism (in D(Y)). 

Then: 

a) for any B" 6 D(Y), the natural homomorphism 

(i) Mor D(Y) (A',T<mB') ~ Mor D(Y) (A',B') 

is an isomorphism. 

b) Let U C y be open and i : U § Y be the inclusion map. Then for any 

B" ~ D(U) the natural homomorphism 

(2) MOrD(y) (A',T<mRi,B'') --+ MorD(U) (i*A',B'") 

is an isomorphism. 

Proof. Recall (5.12) that a morphism from A" to B" in D(Y) is 

represented by a diagram 

(3) A" ~- C" ~ B" 

in K(Y). Since T A" § A" is a q.i., so is C" § C" , and (3) is 
<m 

equivalent to the diagram 

(4) A" ,~ ~<m(C') --~ B" . 

But T<m(C" ) -~ B" factors through ~<m B'. Thus (i) is surjective. In- 

jectivity can be checked in a similar way. Indeed, given a commutative 
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diagram 

(5) 

C" 

A ' ~  ~ D" ~ B" o " ' ~ "  B" 

In K(Y), we can replace D" by �9 D" and factor T D" § B" through 
<m 

T< B'. It is readily checked that the resulting diagram remains 

commutative in K(Y). This proves (a). Now (b) follows from the adjunc- 

tion isomorphism 

(6) MOrD(y) (A',Ri,B") = MorD(U)(i*A',B'') 

and (a), applied to B" = Ri,B'" . 

9.2 PROPOSITION . Let f2 : E § F be a morphism of local systems on 

U 2 and p,q be perversities. Assume that p ~ q (i.e. p(k) ~ q(k) for 

every k h 2) . Then f2 extends in a unique way to a morphism 

f : P~(E) § P~(F) in D(X) 

Proof . Let L" = P'(E), M" = P'(F) and let k ~ 2 . It is enough to 
P q 

check that any morphism fk : L~ § Mk in D(Uk) extends uniquely to a 

morphism fk+l : Lk+l + Mk+l in D(Uk+I). By definition 

Mk+ 1 = T<q(k)Rik,M ~ , and ~<q(k)Lk+l = L~+ 1 . Thus by 9.1(b) 

M~ U (k+l) (ik+l T<q(k)Rik*Mk) = MOrD(Uk) ([k,Mk) 

and the result follows. 

9.3 LEMMA . For any k ~ 2 , the attachment map 
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(i) ~ ---+ : ~k+l aik*0~k 

is a quasi-isomorphism up to k - 2 - n . 

Proof. Let S" = Q~ . Then 8.2 implies 

~S" = !D" 
3k k+l 3k Uk+ 1 = DSn-kJ~Rx = QSn-k 

But ~i = 0 for i < - dim Sn_ k 
Sn- k 

i < k - n . The result follows now from the long exact sequence 1.8(7): 

I 

= k - n . Thus Hi(JkSk+l ) = 0 for 

In view of 9.3 , the proof is essentially the same as for 9.2 : 

Let L" = P'(E),M" = D~[-n]. For k > 2 we have p(k) < k - 2; using 
p ~ 

successively 9.1(a), 9.3 and 9.l(b) we find 

Mor (L~+I,~+I) = Mor (L~+I,~<k_2M~+ I) = 

D(Uk+ I) D(Uk+ I) 

= Mor D ( L k + l , ' r < k _ 2 R i k , M k )  = MOrD(Uk ) (L~,M~) . 

(Uk+ I) 

By induction on k, this proves the proposition. 

9.4 PROPOSITION . Consider on U 2 a local system E , the orientation 

sheaf 0 and a morphism f2 : E § 0 . Let p be a perversity. Then there 

exists a unique morphism f : P~(E) § D~[-n] in D(X) which extends f2 

! . Hi H i �9 . 
...--+ Hi(jk!JkSk+l ) --+ (S~+ I) ---+ (RZk,Sk) ---~ ... 
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B. P o i n c a r ~  D u a l i t y  . 

9.5 LEMMA . Let Y be a topological space with a filtration y by 

closed subspaces Ym = Y ~ Ym-i ~ "'" ~ Y-I = ~ " Assume that each 

stratum Yi - Yi-I is a manifold of dimension i or is empty (0 < i < m). 

Let s C ~ and S" C DGS(Y) be such that HJ(s~) = 0 if y C Yk - Yk-i 

and j > ~ - k . Then ~J(Y;S') = 0 for j > s . 
c 

Proof. We use induction on m . The lemma is clearly true for m = 0. 

Let now m > 0 and assume that the result holds for m - i. We have a 

long exact sequence 

(i) .... ]HJ(Y-Ym_I;S') ---~IIJ(Y;S ") ' ]HJ(Ym_I;S') .... 

By induction hypothesis ~J(Ym 1 ;S') = 0 for j > Z . Since Y c - - Ym-i 

is a manifold of d i m e n s i o n  m (o r  i s  e m p t y )  a n d  H i ( S ' [ y _ y m _ l )  = 0 f o r  

i > s - m , it follows from 6.8 that S'Iy -.Ym-1 has a c-soft resolu- 

tion A" with A j = 0 for j > Z . Therefore ~3(Y-Ym-I;S')c = 0 for j > ~ . 

The exact sequence (1) g i v e s  t h e n  ~ J ( Y ; S ' )  = 0 f o r  j > s . 
c 

9.6 COROLLARY . Let E be a local system on U 2 and let p be a 

perversity. Then 

~(X;Pp(E)) = 0 for j > n and ~{n(X;Pp ( E ) ) c  = Hn(u2 ;E)c " 

Let x C S k c Xn_ 2 . By definition of P'(E) we have 
P 

HJ(P~(E) x)p = 0 for j >p(n-k),in particular for j > n - k - 2 . By 9.5 

we have therefore 

~3(X n 2;Pp(E)) = 0 for j > n - 2 . 
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From the long exact sequence: 

�9 .. ~ H~(u2;E) ~ ~Jc(X;Pp" (E)) ---+~(Xn_2;P~(E)) ---+ ... 

we deduce then that 

~J(x;P~(E)) = HJ(u2;E ) for j > n 
C C ~ ' 

and it is well known that H~(u2;E ) = 0 for j > n g 

9.7 Assume now that R is a field. Let V* = Hom(V,R) denote the 

dual of a vector space V over R . If S" C DGS(X), 7.7(2) becomes 

(i) ~i(u;D~S')A = ~ i(U;S')* (u open in x , i C ~) 

Suppose that S" is X - clc . Letting U run over a fundamental 

system of distinguished neighborhoods of x C X , we get then by 3.10 

H-i(f~S') * (i C Z , x f X) (2) HI(DxS )x = 

Suppose moreover that S" is X - cc . Then, similarly, 8.11 gives 

(3) Hi(Sx) = H-i(f~D~S') * (x C X , i C Z) 

Replacing D~S" by D~S'[-n] and modifying the indices in a suitable 

way, we get from these formulae : 

(i') IH i(U;DXS'[-n]) = ~{n-i(u;S.), 

n-i ' . 
(2') Hi(DxS'[-n]x ) = H (fx S )* 

H i(Sx) = H n-i(f'xDX S" [-n])* 

(i C Z, U open in X) 

(i f ~, x C X) 

(3') (i E ?Z., X E X) 

(where we write DxS'[-n] for (DxS')[-n]). we can now prove 
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9.8 THEOREM .Let R be a field and let p,q be complementary per- 

versities. If E is a local system on U2, then there exists a unique 

isomorphism 

(1) DxPp(E)[-n ] = Pq(Du2E[-n] ) 

in D(X) which extends the identity map of Du2E[-n] . 

Proof . As R is a field, E is locally free. By 7.10(4) we have then 

Du2 ) and 0 is the orientation " El-n] = E* | 0, where E* = Hom(E,Ru2 

sheaf. In particular D6~*[-n]is again a local system, so that the 

right hand side of (i) makes sense. 

Let S" = P'(E) . We check first that D~S'[-n] satisfies 
P x 

(AX2)x,E* | 0,q weakened along the lines of 2.7(b), that is, with the 

condition (D~S'[-n]) i = 0 for i < 0 replaced by Hi(D~S'[-n]) 0 

for i < 0 . 

(a) By 8.7 , D~S'[-n] is bounded and X - clc , and 

DxS'[-n]Iu 2 = Du2E[-n] since S'Iu 2 = E . 

Let U be a distinguished neighborhood of x C X and let i < 0 . 

Using successively 9.7(2'),3.10 and 9.6 , we get 

H i(D~S'[-nlx) = H n-i(f~S')* = ~-i(u;S.), = 0 

i . . 
Thus H (DxS [-n] = 0 for i < 0 Q 

H i . n-i ~ . 
(b) By 9.7(2'), (DxS'[-n]x) = H (fx S )* . Therefore 

supp Hi(D~S'[-n]) = {x C X{Hn-i(f~S') ~ 0} 

As S" satisfies condition (c) of (AX2)x,E,p we get for i > 0 

i . 
supp H (DxS'[-n]) ~ n - q-l(n-(n-i)) = n - q-l(i) . dim 

Condition (c) follows in a similar way from condition (b) of 
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(AX2)x,E,p for S" . 

Thus D~P~(E)[-n] satisfies (AX2)x,E , | 0,q ' and so does of course 

P'(E* | O) . The existence of the isomorphism (i) follows then from 
q 

4.10 , and its uniqueness from 9.2 . 

9.9 COROLLARY . We have a natural isomorphism 

(i) I HI(X;E * | 0) = I Hn-I(x;E) * . (i C 2Z) . 
q p c 

(2) 

Proof: we must show that 

Since E* | 0 = 

(3) 

n-i Pp(E))* ~i(X;Pq(E* | 0)) =~c (x; 

Du2E[-n] , this is equivalent by 9.8 to 

i iX Dxp E ni 

and 9.9 gives 

9.10 Examples. In this section X is normal . 

i) Take E = 0, p = t, q = 0 (t is the top perversity) 

and 2.12 , we have 

I Hi(x;O * | 0) = IoHi(X;R) = Hi(X;R) 
q 

�9 By 2.8 

I Hn-i(x;0) = I Hn-i(x;0) = Hi,c(X,}{) 
pc t c 

HI(X;R) = H i (X;R)* 
wc 

ii) Take E = R, p = 0, q = t . Then by 2.12 and 2.8 , we get 

IqHi(X;R * | 0) = ItHi(X;0 ) = H n_i(x;R) 

which can be deduced from 9.7(1) by setting S" = P~(E),u = x and 

shifting by n . 
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I H n-i(x;R) = IOHn-I(X;R) = H n-i(x;R) 
p c c 

and 9.9 yields 

Hn_I(X;R) = H n I(X;R), . 

9.11 Let R be a field. Suppose that X has only even-codimensional 

strata and that U 2 is orientable (i.e. the orientation sheaf on U 2 is 

isomorphic to the constant sheaf R). Let m be the middle perversity. 

If S" C DGS(X) , then S" satisfies (AX2)R,m if and only if D~S'[-n] 

does so. We are thus led to consider the set of conditions : 

AX3 . 

(3a) S" is bounded, Hi(s ") = 0 for i < 0 , S" is the constant 

sheaf R on the dense stratum of some topological stratifica- 

tion of X , and S" is X - clc for some topological stratifi- 

cation X of x . 

(3b) dim supp Hi(s ") ~ n - 2i - 2 for i > 0 . 

(3c) D~S'[-n] is isomorphic to S" in Db(x) . 
A 

9.12 PROPOSITION . Let S" 6 DGS(X) be bounded. Then in the situ- 

ation of 9.11 the following conditions are equivalent: 

a) S" satisfies AX3 . 

Hi(s ") = 0 for i < 0 and ~?~S" satisfies (AX2)R,m b) o 

Proof : If (b) holds, then 9.8 shows that S" satisfies AX3 . Con- 

versely, if S" satisfies AX3 , then (2a) and (2b) certainly hold for 

T>0S" , and as in the proof of 9.5 we find that (2c) holds because 

D~S'[-n] satisfies (2b). Notice that the passage from condition (2b) 

for D~S'[-n] to (2c) for S" uses only 9.7(2'), which requires only S" 

to be X - clc . 
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C. P a i r i n g s  . 

9.13 LEMMA . Let Y be a topological space and let A',B" 6 D(Y) 

satisfy Hi(A ") = 0 for i > 0, Hi(B ") = 0 for i < 0 . Then the natural 

homomorphism 

MOrD(y) (A',B') ,Hom Sh(Y) (HO(A')'HO(B')) 

is an isomorphism. 

Proof . we can assume that B i = 0 for i < 0 . The morphisms from 

A" to B" in D(Y) are represented by diagrams in K(Y) 

(i) A" s C" f~ B" 

with s a q.i.. The lemma is a direct consequence of the following ob- 

servations: 

a) If in (i) we replace C" by T<0C" , the resulting diagram represents 

the same morphism in D(Y) . 

b) If in (i) we have C i = 0 for i > 0 , then the natural homomorphism 

MOrK(y) (C',B') § Hom Sh(Y) (H0(C')'H0(B')) = Horn Sh(Y) (HO(A')'HO(B')) 

is an isomorphism. 

c) Given r C MOrD(y) (A',B'), there exist C', a q.i. s : C" + A" and 

morphisms f,f': C" § B" in K(Y) such that (s,f) and (s,f') represent 

and #' respectively. (In other words r and ~' have a common denomina- 

tor). This follows from 5.8. 

Remark: Under the same hypothesis, the natural homomorphism 

MOrD(y) (B',A") ~ Horn Sh(Y) (HO(B'),HO(A')) 

need not be an isomorphism. 

9.14 PROPOSITION . Let ~2 : E | F § G be a pairing of local systems 

on U 2 and let p,q,r be perversities such that p(k) + q(k) ~ r(k) 
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(2 < k < n). Then there exists in Db(x) a unique morphism 

: ~E~ ~ ~F~ § p~cG~ whic~ coincides with ~ over U~ ~oroove~, 

if G is the orientation sheaf, then there exists a unique morphism 

~' : Pp(E) ~ Pq(F) § Q~[-n]which coincides with ~2 over U 2 

Proof. Notice first that Hi(E ~ F) = 0 for i > 0 and 

HO(E ~ F) = E | F . By 9.13 we can therefore consider ~2 as a morphism 

L 
from E | F to G in D(U2) so that the statement of the proposition makes 

sense. Let 

L : Ppc~, M ~ ~IF~ A ~ L ~ M 

We claim 

(i) Hi(A~+I ) = 0 for i > r(k) (k ~ 2) . 

L 
Indeed, A~+ 1 is quasi-isomorphic to L~+ 1 | M~+ 1 . To compute the 

latter, we can first replace L~+ 1 and M~+ 1 by T(k)L~+ 1 and 

Y<q(k)M~+l respectively. We can then choose a flat resolution 

F" + T<==p(k)L~+ 1 with F i = 0 for i > p(k) . Then A~+ 1 is quasi-isomor- 

�9 i 
phic to F" ~ T<q(k)M~+ 1 and (F" | T<q(k)Mk+l) = 0 for i > r(k) . 

We can now conclude as in 9.2 and 9.4 . Let N" be one of the com- 

plexes P~(G) or, if G = O,D~[-n]. using 9.1 and 9.3, we see that for 

any A" 6 D(X) satisfying (i), any morphism fk : A~ § N~ in D(Uk) can 

be extended in a unique way to a morphism fk+l : Ak+l § Nk+l in D(Uk+I). 

Using induction on k ~ 2 , we get the existence and uniqueness of the 

required extension of ~2 " 

9.15 The pairing ~ : P~(E) ~ P~(F) § P~(G) of 9.14 gives rise 

to various pairings in hypercohomology. In particular we get a map 

Ill ~Ix;p~c~ll ~J~x~P~cF~ +~i+J~x~P~ cG~Ic 
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Let E* = Hom(E,R) . We can take F = E* | 0, G = 0, and for 
2 

the canonical pairing E | (E* | 0) § . By 9.3 we know that 

~n(x;P[(0))r = Hn(u2;0) . When i + j = n we can compose in this case 
c c 

(i) with the canonical map from H~(U2,0) to R . We get then a natural 

pairing 

�9 iqHJ (2) I Hn-J(x;E) | (X;E* | 0) § R . 
p c 

9.16 PROPOSITION . If R is a field and p,q are complementary per- 

versities, then 9.15(2) coincides with the pairing 

(i) Ip cHn-J(x;E) | Iq H3(X;E* | 0) + R 

induced by the isomorphism 9.9 . 

Proof . 9.9 is defined by means of the isomorphism 9.8(1) 

(2) P'q (E* | 0) - '  Horn" (Pp(E),PxI-n]) 

The latter also yields a morphism 

L 
(3) ~" : Pp (E) | Pq (E* | O) + Dx[-n] . 

Now (3) induces a pairing of hypercohomology groups 

(4) ~2-J(x;P~(E)) | HJ(x;P4(E* | 0 ) )  + ~(X}P~[-n]) 

n which, composed with the natural map from ~c(X;Px[-n]) to R , gives 

(i) back. 

On the other hand, 9.15(2) comes from the pairing 

(5) 

provided by 9.14 . Let 8 : P[(O) § D~[-n] be the morphism given by 
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9.4. It is clear that ~" restricts over U 2 to the natural pairing 

~2 : E | (E* | 0) + 0 . By the uniqueness statement in 9.14 , we have 

therefore ~" = B o ~ . This implies in particular the equality of (i) 

and 9.15(2) 
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w iO SOME FORMULAE IN DERIVED CATEGORIES OF SHEAVES 

In this section we collect and prove a number of general identities 

pertaining to derived categories of sheaves and the duality functor. 

Together with the previous w , this will include all the identities 

in [6] (except for 1.13.(13), not always true). A number of them have 

already appeared, at least in special cases, in the previous sections 

but the discussion was often limited to what was needed at the moment. 

A. Continuous maps 

In this part, the spaces satisfy from i0.2 on our usual standing 

assumptions (locally compact, locally completely paracompact (i.17), 

finite cohomological dimension over R/ and 

nuous map. 

(i) 

f : X + Y is a conti- 

I@.I PROPOSITION . We have in D(X) 

L 
f*(A" ~ B') = f'A" ~ f'B" (A',B" C D(Y)) . 

If we replace B" by a flat left resolution we are reduced to prove 

in Sh(X) 

(2) f*(A ~ B) = f*A ~ f*B , (A,B C Sh(Y)) , 

which follows immediately from the relation (A | B)x = A | B 
x x 

1@.2 PROPOSITION . Let A',B',C" C D(X) . Then 

L 
(i) RHom'(A" | B',C') = pao/(A',RHom'(B',C')) 

Proof. We note first that we have 

Hom(A | B,C) = Hom(A,Hom(B,C) (A,B,C 6 Sh(X)) , (2) 

as follows from the corresponding identity for modules, applied to 

sections over open subsets. From this, it follows : 
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(3) If B is flat and C injective, then Hom(B,C) is injective 

because (2) shows that A~-~ Hom(A,Hom(B,C) is an exact functor. 

Now in order to prove (i) we may assume that B" is flat and C" in- 

jective, and then (i) becomes 

(4) Hom'(n" | B',C') = Hom" (A',Hom'(B',C')) , 

but this follows from (2) 

I@.3 PROPOSITION . In D(Y), we have the equalities 

(i) Rf.RHom'(f*A',B') = RHom'(A',Rf.B') (A" 6 D(Y),B" 6 D(X)). 

(2) MOrD(X) (f*A',B') = MOrD(y) (A',Rf.B") 

Proof . we may assume B" to be injective. Then so is f.B', and 

Hom'(f*A',B') is flabby. To prove (i) we are then reduced to showing : 

(3) f.Hom'(f*A',B') = Hom" (A',f.B') 

For this, it is enough to show the following equality in Sh(Y) 

(4) f.Hom(f*A,B) = Hom(A,f.B) (A C Sh(Y),B 6 Sh(X)) . 

But this is just another way to write the standard adjunction formula 

(VI,I.4) 

(5) Hom(f*A,B) = Hom(A,f.B) (A 6 Sh(Y),B 6 Sh(X)) 

for Y and all its open subsets. This proves (i). Now (2) follows from 

(i) and 5.17(3) 

1@.4 As a counterpart to 10.3 , we recall the adjointness pro- 

perties of f~ and f, . The latter is the functor direct image with 

proper supports (7.11). Given a flat c-soft sheaf K on X , we have 
v 

defined a functor f~ : Sh(Y) § Sh(x) which satisfies 
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! 

(i) Hom(f,(A | K),B) = Hom(A,f~B) (A 6 Sh(x),B 6 Sh(Y)) 

Furthermore, A~-~ f,(A | K) is exact and, if B is injective, then so is 
w 

f~B (7.14). In the derived categories, (i) leads to the Verdier duali- 

ty (7.17) 

(2) RHom'(Rf,A',B') = Rf,RHom'(A',f~B ") ,(A" C D(x),B" 6 D(Y)), 

and (see 7.19(i)) to: 

w 

(3) MOrD(y) (Rf,A',B'). = MorD(X) (n',f'B') 

! 

where fiB" is defined as f~.J" , with J" an injective resolution of 

B" a n d  K" a f l a t  c - s o f t  r e s o l u t i o n  o f  R x . 

I@.5 LEMMA . (i) Let A" 6 DGS(X). For V c y open, let 

= A" be the DGS on Y associated ~(V) {C n f-IvIc c X compact} and fc 

(f-iv;A') . Then f A" = f,A" . to the presheaf V~-+ F~(V) 
c 

(ii) The functor f, preserves c-softness . 

Proof : (a) We have clearly ~(V) ~ ~(V) whence an inclusion 

(I) F~(V) (f-lv;A") § F~(V) (f-ivlA") 

which induces an injective homomorphism 

(2) ~ : f A" -~ f,A" . 
c 

Let V' be relatively compact, open with closure in V . If C C ~(V) , 

then C N f-iv' has a compact closure, hence belongs to ~(V') . There- 

for 

Im(F~(v, ) (f-iv,;A") -~ F~(V, ) (f-iv;A')) D 

Im(F~(v) (f-lv;A') -~ F~(V, ) (f-iv';n')) 

and ~ is surjective. This proves (i). The equality 
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(RlfcB)y = H (f-ly;B) (y 6 Y;i 6 Z;~ 6 (3) Sh(X)), 

which follows from [4:IV,4.2] can then also be derived from 7.12 . 

(b) We now prove (ii). Let A C Sh(X) be c-soft. We have to show 

f,A is c-soft. This amounts to proving that H~(V;f,A) = 0 for that all 

V open in Y . Consider the spectral sequence (Er) of f for cohomology 

with compact supports. It abuts to H'(X;A) and we have 
c 

P'q = HP(v;RIfcA ) (p,q 6 (4) E 2 2). 

Since Alf-iv is c-soft we have, in view of (3), Rif A = 0 for i ~ 1 , 
C 

hence, taking (a) into account, we get 

(5) H~ (f-IV;A) = Hi(V;fc A ) e  = H~(V;f,A). (i 6 =) . 

But the first term is zero for i ~ 1 since A is c-soft. This proves 

(ii) . 

Remark . I had proved originally that Rf A" = Rf,A" . Spalten- 
c 

stein pointed out that ~ is in fact an isomorphism in DGS(Y). 

I0.6 THEOREM . Let g : Y + Z be a continuous map. 

(i) (g o f)* = f* o g* , R(g o f), = Rg, o Rf, , 

! ! I 

(ii) (g o f)" = f" o g" , R(g o f), = Rg, o Rf, . 

It is clear that the first equality of (i) and (f o g), = f, o g, 

are true at the sheaf level. Then (i) follows from the fact that f* is 

exact and f, preserves injective sheaves. 

(ii) We first note that (f o g), = f, o g, at the sheaf level. That 

follows from the definition and the elementary fact : if 

p ~ Q v R are continuous mappings of locally compact spaces and u 

is surjective, then v o u is proper if and only u and v are so. 

The second equality of (ii) is then a consequence of lO.5(ii). To 

prove the first one, we note that by 10.4(3) the functors (g o f)~ 

and f~ o g~ are right adjoints respectively to R(g o f), and 

Rg, o Rf, , which have just been shown to be equal. 
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(i) 

I@.7 PROPOSITION . Let 

X' q' + X 

y, q _~y 

be a cartesian diagram of spaces. Then 

(2) q*f,A = h,q'*A in Sh(Y') 

(3) q*Rf,A" = Rh,q'*A" in D(Y') 

(4) Rh.q' = q'Rf.~" in D(Y') 

Proof. Let V C Y be open. If C c f-l(v) 

(A 6 Sh(X)) 

(A" 6 D(X)) 

(B" C D(X)) 

is such that the restric- 

= (f~A)y = Fc(f-ly;A') 

= Fc(h-ly';q*A ) 

It follows from (7) and (8) that we have 

(9) H'(q*Rf,A')y,=f{'~Rf~A')y = ~(f-ly;A') 

(iO) H'(Rh,q*A')y, = ~(h-ly';q'*A ") 

By VI,2.4 we have 

(7) (q*f~A)y, 

(8) (h,q'*A)y, 

tion of f to C § V is proper, then so is the restriction of h to 

qj-l(c) ~q-l(v). From this we get natural homomorphisms 

(5) ~ : q*f,A + h,q'*A 

(6) ~ : q*Rf,A" § Rh,q'*A" . 

It suffices then to show that ~ (resp.~) is an isomorphism of the 

stalks (resp. stalk cohomology groups). Let y' C Y' and y = q(y') 
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Since q' induces a hom~omorphismof h-ly ' onto f-ly , this shows that 

~y, (resp. ~y,) is an isomorphism (resp. quasi-isomorphism). This 

proves (2) and (3) 

Exchanging Y and Y' we also get 

(li) f*Rq,A" = Rq~h*A" , (A" C D(Y')) 

which implies (4) by adjonction. 

I@.8 PROPOSITION . (i) Let A C Sh(X) be c-soft and B 6 Sh(Y) 

be flat. Then 

(i) f, (A S f'B) = f,A ~ B , in Sh(Y) . 

(ii) We have in D(Y) 

(2) Rf,(A" ~ f*B') = Rf,A" ~ B" (A" c D(x),B" C D(Y)) . 

Proof. (i) There is an obvious map from the right hand side of (I) 

to the left hand side. Therefore we need only to check that the stalks 

at y E Y are naturally isomorphic. We have, by VI,2.6 : 

(3) (f,A | B)y = (f,A) | B = Fc(f-ly;A) | By 
�9 y y 

(4) (f,(A | f*B))y = Fc(f-ly;A | f'B)) D 

But f*BIf-ly is the constant sheaf with stalk B . The equality of the 
Y 

last terms in (3) and (4) is then obvious if B is a free R-module. 
Y 

By assumption, B is flat hence, by a theorem of D. Lazard, is an 
Y 

inductive limit of free R-modules (see e.g. [3:p.14]).Since cohomology 

with compact supports commutes with inductive limits [5:II,4.12.1], 

(i) follows. 

(ii) We may assume A" to be c-soft and B" to be flat. Then 

A" | f'B" is also c-soft (6.5). we are therefore reduced to proving 

f,(A" ~ f*B') = f,A" | B" , 

when A" is c-soft and B" is flat�9 But this follows from (i) 
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I~.9 Remarks. (i) To prove (2) we need only to use (i) when A 

is c-soft, in which case (3) and (4) already follow from 7.12. 

(2) We note that (i) would be false in general if f, were replaced 

by f, (unless f is proper, of course). In fact, if X is a discrete set 

and f the projection onto a point, then B is just an R-module and 

f,(n | B) is the direct product of the modules A | B (x 6 X), while 
x 

f,(A) | B is (HxAx) | B , and these are different in general if X is 

infinite. 

~@.l@ PROPOSITION. (i) Let K 6 Sh(X) be flat and c-soft. Then 

we have, in Sh(X) 

i ! 

(i) f~(Hom(n,B)) = Hom(f*A,f~B) , (A,B 6 Sh(Y)) . 

(ii) In D(X), we have the equality 

(2) 
! I 

f'RHom'(A',B') = RHom'(f*A',f'B') , (A',B" C D(Y)) 

Proof : (i) We have to establish a natural isomorphism between 

the spaces of sections of the two sides of (i) over an arbitrary open 

subset U of X . It follows directly from the definitions that we have 

(3) 
! 

As a consequence, it suffices to prove the equality (i) for U = X. By 

10.3(3) . 

(4) 
! ! 

f,Hom(f*A,f~B) = Hom(A,f,f~B) , 

f 

hence,since 7.14(2) implies Hom(f,K,B) = f,f'B : 

(5) 
! 

f,Hom(f*A,f~B) = Hom(A,Hom(f,K,B) ). 

using 10.2 we get 

w 

(6) f,Hom(f*A,f'KB ) = Hom(A | f,K,B) . 



v, io.io 162 

On the other hand, from 7.14(2) and 10.3 we also get 

i 

(7) f.f~(Hom(A,B)) = Hom(f.K,Hom(A,B))) = Hom(f.K Q A,B) , 

whence 

(8) 
! ! 

f.f~(Hom(A,B)) = f.Hom(f*A,fiB) . 

The equality of the spaces of sections on Y of the two sides in (8) 

then gives the required equality. 

~B" (ii) We may assume B" to be injective and A" flat. Then f and 

Hom" (A',B') are also injective, so that we are reduced to proving 

(9) 
! ! 

f'Hom'(A',B') = Hom'(f*A',f'B') , 

but this follows from (i) . 

I@.II THEOREM . In D(X) and D(Y) we have the following equalities 

! 

(1) = 

! 

(2) f'9yn" = Dxf*A" , DyRf,B" = Rf,DxB" (n" C D(Y),B" C D(X) 

Proof: (i) Let g : Y + pt be the projection of Y to a point. By 

7.18, we have 

! ! 

(3) Dy = g'Rpt , D X = (g o f)'Rpt 

Therefore (i) follows from (3) and the first equality in iO.6(ii). The 

equality 10.10(2) with B = QQ , then gives 

! 

(4) f'RHom" (A',Dy) = RHom" (f*A',QX) , 

which is the first equality in (2) . The Verdier duality 10.4(2) yields 

! 

(5) RHom" (Rf, B" ,Dy) = Rf,RHom" (B" ,f'Dy) 
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Since f~ = D ~ X by (i), this proves the second part of (2) 

V, 10.13 

B. S t ra t i f i ed  maps 

In this section, except in IO.14,X and Y are equipped with topolo- 

gical (unrestricted) stratifications (2.1) X and y and f : X § Y is 

a stratified map ([6:1.2], see below). 

10.12 The continuous map f : X § Y is stratified if the following 

conditions are fulfilled: 

(i) For every connected component S of a stratum of ~ , the space 

f-is is a union of connected components of strata of X . 

(ii) Let y 6 Y and S the stratum of y containing y . Then there 

exists a neighborhood U of y in S , a stratified space F and a strati- 

fication preserving homeomorphismF • U ~ f-iu which transforms the 

projection to U onto f . 

In (ii) it is of course understood that the stratification of 

U • F is the product by U of the given stratification F of F . This 

condition implies in particular that if T is a connected component of 

a stratum of y , then f(X) n T is open in T (possibly empty). 

Also, if f is a closed inclusion, then each stratum of X is the 

intersection of X with a stratum of y of the same dimension. 

For brevity, we shall say f is algebraic if X,Y are complex alge- 

braic varieties, X and y are defined by algebraic subsets, and f is a 

morphism of algebraic varieties. 

]O.13 we shall say that X,endowed with the topological stratifi- 

cation X,is compactifiable if it is embeddable as an open dense set in 

a compact space X of the same dimension admitting a topological strati- 

fication X whose trace on X is a refinement of X. Then (X,X) is said 

to be a compactification of (x,X) . If x is already compact, then (X,X) 

is a compactification of itself. The main point of this definition how- 

ever is that if (X,X) is algebraic, then it is known to be compacti- 

fiable. 
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LEMMA . Assume (X,X) to be compactifiable. Let A'C DGS(X) be X - c~ 

Then ~'(X;A') and ~" (X;A') are finitely generated (i 6 2). 
c 

If X is compact, this follows from 3.10 . Let now (X,X) be a com- 

pactification of (x,X) and i : X + X the inclusion map. Clearly i,A" , 

(which is extension by zero), is X - cc, hence 

]~c(X;A') = ]~c(X;i,A'). ' 

is finitely generated (3.10). By 3.11 , Ri,A" is X - cc, hence 

~'(X;A') = ~'(X;Ri,A') (i 6 2) 

is also finitely generated. 

We shall need the following complement to 3.8. 

10.14 LEMMA . Let (M,M) be a stratified pseudomanifold, Y a lo- 

cally contractible space and ~ the projection of X = Y x M onto Y . 

We let X be the stratification of X product of m by Y . Let 

S" 6 DGS(X) be X - clc. Let ~ be the projection of X onto M . 

(i) If Y is moreover contractible the adjonction morphism 

~*Ro,S" ~ S" is a q.i. 

(ii) The sheaves R~,S" and Rn,S" are clc on Y . If Z c y is open, 

contractible then the restriction map induces an isomorphism 

(i) IH" (n-iz;S') = ]H" (~-ly;S') (y 6 Y) . 

In particular 

(2) (Ri~,S')y = ]~i(~-ly;S') (y 6 Y; i 6 2) 

If y 6 Y and T is a compact contractible neighborhood of y , then the 

restriction map induces an isomorphism 

(3) ~( -IT;s. ) �9 -i �9 
= ~c(n y;S ) . 
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Proof . (i) Consider first the case where M is a manifold with the 

trivial stratification. Let x = (y,z) 6 X . Then 

(4) H'(o*Ro,S') x = H'(Ro,S') = lim ~'(U;Ro,S') = lim ~'(U x Y;S') 
z ----+ ~ ' 

where U runs through the neighborhoods of z in M . If U is contractible, 

then H'(S') is constant on U • Y and since U • Y is contractible, the 

hypercohomology spectral sequence and l.ll(b) give 

(5) ~" (U • Y;S') = H'S" . 
x 

Therefore H'(d*Ro,S') x = H'S~ , as claimed. To prove (i) in general, we 

use for m our usual notation for stratifications and proceed by in- 

duction on k ~ 1 . We have a commutative diagram 

(6) 

i x y ~ J Sn_k x y UkX Y ~ Uk+ 1 

i '  j '  
U k ~ Uk+ 1 ~ Sn_ k 

where i and j stand for i k and Jk " We assume that Ro,S~ + S~ is an 

isomorphism and want to prove that the same is true with k replaced 

by k+l . Adjunction gives a natural morphism of distinguished triangles 

(7) 

! ! 

~ , . . o . j : j ' s i +  1 .. o. .~, .si+ 1 J ,J 's i+  1 - - - - - s , l + l  

o*Ro.Ri.S~ Ri.S~ 

therefore it suffices to check that 

(8) o*Ra,Ri,S~ ---'~ Ri,S~ and o*Rd*j'j~S', k+l ~ J~31S'k+l 

are isomorphisms. By 3.13 and the induction assumption, we have 

c91 o*Ro,Ri.S~ = o*Ri:Ro:S~ = Ri.o'*RO:S~ = Ri,S~ 
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which gives the first part of (8). The induction hypothesis implies 
�9 ! ! �9 . . 

that Ro~S k is ~ - clc. Hence so is RI,RO,S k by 3.9 . By (9), RI,Sk+ 1 

is therefore ]( - clc. Using the righthand side triangle of (7), in 
! 

which Sk+ 1 is also X - clc, we find then that j'Sk+ 1 is clc. Since 

the stratum Sn_ k of M is a manifold, we have 

�9 'S" = ' " ' 'S" o*R~,3,3 k+l ~'3~R~ Sk+l = J*~ = J'.J k+l 

which proves the second part of (8) . 
-i -1 

(ii) Let jy : ~ y § n Z be the inclusion. Then (i) implies 

(i0) Ro,S" = j~S" , S" = o*j~S" , 

hence (1) follows from the Vietoris-Begle theorem (3.13, Remark). 

Since (Rln,S')y is the inductive limit of the ~i(z-iz;S'), where Z 

runs through a fundamental set of neighborhoods of y, this also proves 

(2) and shows that R~,S" is clc. If T is compact contractible, then 

(3) follows from (iO) and the usual Vietoris-Begle theorem. By 10.5, we 

may view R~,S" as the Leray sheaf R~cS" of ~ . Again H'(R~cS')y is the 

inductive limit of the ~(~-IT;s'), and it follows that R~,S" is clc. 

Remark. In this lemma "Y locally contractible" means : every 

y 6 Y has a fundamental system of open neighborhoods and of closed 

neighborhoods which are contractible. 

10.15 LEMMA . Assume f is a closed inclusion and let B" 6 DGS(Y) 

_ _ f~ be y clc (resp. y cc). Then B" is X - clc (resp. X - cc). 

Proof. Let A" = fiB" . We use the usual notation (2.1) for X 

and prove by induction on k ~ 1 that A~ is X - clc (resp. X - cc). 

Since U 1 is a union of connected components of strata of Y of the same 

dimension as X , our assertion for A{ follows from 3.10. 

Assume it is proved for some k h 1 . We consider the distinguished 

triangle 

jk:j A +l 1 

Rik,A k 
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Since A~ is X - clc (resp. X - cc) on U k , the same is true for Rik,A [ 
! 

on Uk+ 1 by 3.9, 3.11 . There remains then to see that j[A" is clc 

(resp. with finitely generated stalk cohomology) on a connected com- 

ponent Z of Sn_ k . Let Z : Z § Y be the inclusion. Then ~ = f o Jk ' 

! 

hence i ! = j~ o f! !A" = , (1.9). We have then 3k k+l i!~" and the latter 

has the required properties by 3.10, 3.11 , in view of the fact that 

Z is a connected component of a stratum of y . 

I0~ THEOREM . Let A" 6 DGS(X) and 8" C DGS(Y) . 

(i) If 8" is y - clc (resp. y - cc), then f'B" is X - clc (resp. 

X - cc). 

(ii) If A" is X - clc, then Rf,A" and Rf,A" are y - clc, 

(iii)If A" is X - clc and ~i(f-ly;A') is finitely generated for 
c 

every y C Y and i C Z, then Rf,A" is y - cc. 

(iv) For 0 < k < m = dim Y, let T k = Yk - Yk i' Zk the inclusion 

of f-l(Tm_k) in X, and h k the restriction of f to f (Tm_k). Assume 

that A" is X - clc and that for every k (0 ~ k ~ m), y C Tm_ k and 
! 

C ~ , ~i(f-ly;s is finitely generated. Then Rf,A" is ~ - cc. i 

(v) If A" is X - cc and every fibre of f is compactifiable (10.13), 

then Rf,A" and Rf,A" are ~ - cc. 

Proof: (i) Let S be a stratum of y . Then 8" is clc (resp. with 

finitely generated stalk cohomology in each degree) on S . The same 

is therefore true for f'B" on f-is , hence also afortiori for the re- 

striction of f'B" to any component of a stratum of X contained in 

f-is . Since any connected component of a stratum of X is caught in 

this way, this proves (i). 

(ii), (iii), (iv). It follows from 7.12 (or VI,2.6) that 

(i) ~'(Rf,A')y = ]~c(f-ly;A ") (y C Y) 

Let y 6 Y and let U,F be as in iO.12(ii). We assume that U is a 

ball of dimension d . Let h be the restriction of f to f-l(u) . By 

= . and iO.14(ii) shows that Rh,(A'If_l ~ i0.7(3), (Rf,A')IU. Rh,(A'If_Iu ) , 

is clc on U. As a consequence it is y - clc. In view of (i), it is then 

- cc under the assumptions of (iii). 
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We now prove, by induction on k ~ 1 , that B" = Rf,A" is y - cle 

on V k = Y - Ym-k ' with finitely generated stalk cohomology under the 

assumptions of (iv). Let y 6 V 1 . We use the notation of iO.12(ii). 

Then U is also a neighborhood of y in Y . Since f-iv I is open in X 

we have by iO.14(ii) 

(2) (Rif,A')y = ]{i(f-ly;A') = I~i(f-ly;i~A') (i c ~) 

and Rf,A" is clc on U . This proves (ii) and (iv) for (Rf.A')I . 

Assume they hold for some k ~ 1 . As usual, we consider the dis,in- 

guished triangle 

! 

Jk:JJ +l " B +I 

Rik,B k 

By assumption B" is y - clc (resp.y - cc in case (iv) on v k . Then 

the same is true for Rik,B ~ by 3.9 ,3.11 . It suffices therefore to 
! 

prove that j~B~+ 1 is clc on Tm_ k (resp. with finitely generated stalk 

cohomology in case (iv)). By 10.7(4), we have on Tm_ k 

! ! I 

(3) j~B" = j~Rf.A" = Rh.g 'A" . 

By IO.15,s is X - clc. Since Tm_ k is a manifold, we know by the 

case k = 1 that Rh,Z~A" satisfies our conditions. 

(v) By 10.13 the assumption of (iii) are fulfilled, and so are those 

of (iv) by 10.15 and 10.13 . 

I@.17 THEOREM (i) The functors f* and f! map Db(~) into Db(x) and 

satisfy the relations 

(ii) Assume f to be proper or algebraic (10.12), or more generally 

that every fibre of f is compactifiable (10.13). Then Rf, and Rf, map 
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Db(x) into Db(~) and satisfy the relations 

V, 10.18 

Proof. (i) We already know by 10.16 that f* maps Db(y) into Db(x) 

and by iO.ii that the third relation of (i) is satisfied. Using the 

biduality in Y we get then the first one. Since D~ and D~ preserve 

Db(x) and Db(y) resp. (8.7), this shows that f! maps Db(y) into Db(x) 

The other two relations in (i) follow from the others and biduality. 

(ii) By iO.16,Rf, and Rf, map Db(x) into Db(y). By iO.ii, the last 

relation of (2) holds. The other ones then follow by biduality. 

We conclude this section with an elementary fact which is a com- 

panion to 8.6: 

10.18 PROPOSITION . Let A',B" 6 DGsb(x). If they are X - clc 

L 
(resp. X - cc] then so is A" | B'. 

Proof. Let x 6 X and U an open neighborhood of x in the stratum of 
L 

X containing it. We have to prove that A" | B" is clc (resp. clc with 

finitely generated stalk cohomology) on U. We may assume U to be a 

ball. A" and B" are then cohomologically constant on U. By 8.1 we may 

assume they are complexes of constant sheaves. We may then replace B" 

by a bounded flat left resolution by constant sheaves. We have then 

L L 
A'(U) | B'(U) = A'(u) | B'(U) = A" | B" = A" | B" , 

Y Y y y 
(y C U) 

From this it follows that A" | B" is a constant DGS on U. This shows 
L 

first that A" | B" is X - clc. Moreover 

L 
H'(A" | B') 

is finitely generated if H'(A$) and H'(B~) are finitely generated (as 

follows from the Tor-spectral sequence), and the proposition follows. 
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C. Some i d e n t i t i ~  on products 

The spaces X and Y are as in part A in 10.19 to 10.21 and as in 

part B from 10.22 on. We let p : X x y § X and q : X x y + y denote 

the canonical projections. 

I@.19 THEOREM . Let A" E DGsb(x), B" E DGsb(y) . Then 

L 
(i) RFc(X;A') | RFc(Y;B') = RFc(X x y; p'A" L q*B') 

Proof. We consider the cartesian diagram 

(2) 

XxY q . Y 

r 
X p t  

By 10.8, we have 

L L 
(3) Rq,(p*A" | q*B') = Rq,p*A" ~ B" �9 

From 10.7(3) we get 

(4) Rq,p*A" = s*Rr,A" . 

Using 10.8 again, we derive 

L L 
Rs,(s*Rr,A" | B') = Rr,A" ~ Rs,B" 

which, combined with (3) and 10.6, gives 

L L 
(5) Rr,A" | Rs,B" = R(s o q),(p*A" ~ q*B') 

But this is just another way to write (i) . 
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1@.2@ Remarks (a) 10.19 is a generalization of the usual K~nneth 

rule to compute cohomology with compact supports of a product. To see 
L 

this assume that A" = R x and B" = Ry . Then p'A" | q'B" = R x • 

and (5) gives 

L 
(i) R%(Rx) ~ R%(Ry) = R%(R X • , 

which provides the K~nneth relation. 

(b) Let Z be a third space and, changing our notation slightly, 

consider instead of (2) the cartesian diagram 

Xx y q ~. y 
Z 

p s 

r 
Z 

Then (5) is again valid, with the same proof. For this formula, see 

also [i0: Exp. 3, Prop 4.5] or [4: V.3]. 

(c) Assume that x 6 X and y f Y have some neighborhoods U and V 

respectively such that 

(2) ~(u;A') = H'f~A" , ~ ( v ~ ' )  = H'f~B" 
Y 

(3) ~(uxv;p*A" ~ q*B') = H'flx,y ) (p'A" ~ q*B') 

Then 10.19(1) yields in this case 

(4) f A" ~ f B" " = f(x,y)(p'A" | q*B') (x 6 x, y f Y) 

Note that this assumption is fulfilled when X and Y are endowed with 

unrestricted stratifications X,y such that A" and B" are X -clc and 

y -clc respectively (3.10) 

10.21 PROPOSITION. Assume that Y is locally contractible. Then 

(i) p*RHom" (A',B') = RHom" (p*A',p*B') (A',B" C D b(x)) . 
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This assertion is local. We may therefore assume Y to be contrac- 

tible and locally contractible. Note that if X is stratified, the pro- 

position is easily proved since 10.3 and iO.14(i) give 

RHom'(p*A',p*B') = p*Rp,RHom'(p*A',p*B') = p*RHom'(A',Rp,(p*B')) 

and we have Rp,(p*B') = B" by 3.13(15). 

In the general case, the following argument is due to N. Spalten- 

stein. 

It follows from 3.13(4) that in Sh(X• 

(2) Hom(p*A,p*B) = p*~om(A,B) (A,B 6 Sh(X)). 

Let now B 6 Sh(X) be injective. If U c X, V c y are open, with V con- 

tractible, the Vietoris-Begle theorem (3.13, Remark) implies in parti- 

cular that p*B is acyclic for F(UxV; ). It follows then easily that 

if A = @icIRu. for some family (Ui)iC I of open subsets of X , then p*B 
1 

is also acyclic for Horn(p'A; ) = ~iEiHom(~ xy; ). Thus (i) reduces 
1 

to (2) when A" is a single degree complex which is a direct sum of 

sheaves of the form R u , U open in X . In particular (i) holds in this 

case. As every sheaf on X is a quotient of such a sheaf, the general 

case of (i) follows then from [7:1.7.1] (or rather its counterpart for 

contravariant functors). 

I@.22 LEMMA .(i) Let A" C DGsb(x), B" C DGsb(y), and let the index 

k correspond to the filtration on X ~ Y induced by X . Assume that A" 

is X - clc . Then 

L L 
(i) Rik,(P*A')k | (q*B')k+l = Rik,((p*A')k | (q*B')k). 

(2) 

(ii) Let A',B" 6 DGS(X), where A" is X - clc and B" is clc. Then 

L L 

Proof. (c) We shall use the following easy consequence of the 

Vietoris-Begle theorem (3.13,Remark). If Z is a topological space, 

S" C DGsb(z) and 
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(3) 

Z • 

i Z 

Z x[0,1) 

are the obvious maps, then 

(4) Ri,#*S" = ~*S" 

It is clear that (i) holds over U k x y . Let now x 6 Sn_ k , and 

U = B • CO(L) a distinguished neighborhood of x in X . We prove that 

(i) holds over U x y . We have a commutative diagram 

(5) 

B • c~ * x y ik > B • ~ • Y 

B x ( 0 , 1 )  x L x y ~ B x [ 0 , 1 )  x L x y 

The map ~ is proper, hence ~, = ~, . 

By 10.8 we get 

L L 
(6) Rik*(P*A')k | (q*~')k+l = R~*(Ri*(p*A')k) | (q*B')k+l 

L 
R~,(Ri,(p*A')k | ~* (q*B')k+l) 

On the other hand, 

(7) 
L L 

Rik,((p*A') k | (q*~')k) = Rik,((p*A')k | i~((q*~')k+l)) = 

L 
= R~,(Ri,((p*A')k | i*~*(q*~')k+l)) . 

Thus we need only to prove: 

L L 
(8) Ri,(p*A')k | ~*(q*B')k+ 1 = Ri,((p*A')k | i*~*(q*~')k+l) ' 
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Let Z = B • L • Y , and let % , ~ be the projections defined by (3). 

Let 

S" = R%, (p*A') k ' 

By iO.14(i) we have 

(p*A') k 

From (4), we then get 

Ri,(p*A') 

We have therefore 

(9) Ri,(p*A') 

On the other hand 

L 
(p*A') k | i * ~ * ( q * ~ ' ) k +  1 :  

and, by (4) 

(lO) 

T" = R@. (7* (q*B') k+l) . 

= %*S" , ~*(q*B')k+l = ~*T" . 

= Ri,(~*S') = ~*S" �9 

L L 
| 7*(q*B')k+l = ~*S" | ~*T" . 

L L L 
= ~*S" | i*~*T" = ~*S" ~ ~*T" = ~*(S" ~ T') 

Ri,(~*(S" ~ T')) ~*(S" L = ~ T') . 

Since the right hand sides of (9) and (iO) are equal, this proves (i). 

(ii) We may take A" flabby and B" flat. Then 

L L 

There are natural morphisms 

Cll~ ik~A ~ ~ Bi+ 1 ~ ik~A i ~ ~ ~ ~ik~IA ~ ~ ~ .  

and this gives a natural morphism 
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L L 

It remains to check that, under the assumptions of (ii), (12) is an 

isomorphism in D(X). This is local, hence we may assume that X is con- 

tractible. By 8.1, we may then assume that B" is a complex of constant 

sheaves. In this case (ii) is a special case of (i), with Y = pt . 

I@.23 PROPOSITION . Let A',B',C" { DGsb(x).Assume that A" is 

X - cc, B" is X - clc and C" is clc. Then 

(1) 
L L 

RHom" ( A ' , B ' )  | C" = RHom" ( A ' , B "  ~ C ' )  . 

Proof. We note first that, for any A',B',C" 6 Db(x), there is a 

natural morphism 

L 
(2) ~ : RHom'(A',B') ~ C" § RHom'(A',B" L C') 

In fact we may assume C" to be flat and B" to be injective. We then 

define ~ as the composite map 

(3) Horn" (A',B') | C" § Horn" (A',B" 8 C') § RHom" (A',B" | C') . 

We shall prove that (1) is implemented by u . 

Our statement is local on X. We may therefore assume X to be con- 

tractible. Then H'C" is constant. By 8.1, C" may be replaced by a boun- 

ded complex of constant sheaves, hence also by a bounded complex of 

constant flat sheaves. We assume this from now on and have to prove 

that ~ induces an isomorphism 

(4) RHom" (A',B') | C" = Rsom" (A',B" | C') 

We check first that ~ is an isomorphism in the case where A" is 

clc with finitely generated stalk cohomology and B',C" are arbitrary. 

As the problem is local, we may assume that X is contractible. Then 

H'A" is constant, and by 8.1 we may replace A" by a complex of constant 

sheaves with finitely generated free stalks [3: w 5, Prop.7]. This 

resolution can be used to compute RHom" [5: II,7.4]. It remains then 

only to notice that for A,B,C 6 Sh(X) we clearly have 
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;~om(A,B) | C = ~om(A,B | C) 

if A is a finite direct sum of copies of R x 

In the general case we argue as usual by induction on k, in the 

notation of 2.1 . Consider the relation 

(5) k ~o~ ~A~,B~) ~ c~ ~ ~o~ cA~,~, c~) 

The special case discussed above implies in particular that (5)l,holds. 

Assume it is true for some k ~ 1 . We want to prove (5)k+l . Set 

i = i k and j = Jk " From the distinguished triangle 

(6) 

! ~ 

J,J'Bk+ 1 - Bk+ 1 

Ri,B k 

we get by applying v a morphism of the distinguished triangle 

(7) 

�9 , L 

~om" CAk+l,j:j'~+ l) ~ C~+ l -  ~om" IA~+I,B~+ l) ~ C~+ 1 

L 

~o~" (a~+l,Ri,S ~) ~ c~+ 1 

into the distinguished triangle 

(8) 

L 

�9 : ~" ~ q+l) ~,o,~" cAk+l,~+ ~ ~ C~+g RHom" (Ak+l,j,.j (k+l) - " 

B 

R H o m "  (Ak+l,Ri ,(Bk) @ Ck+ 1 �9 
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It suffices to show that it is an isomorphism on the left edge. Using 

successively 10.3(1), iO.22(ii), (5)k , 10.3(1)and iO.22(ii) again,we get 

(9) 
L L 

~om" IA~.,.1,~i,iS ~) ~ C~+ 1 = ~ i , ~ o ~ "  I~.~,S~.) ~ C;.+l = 

L L 

L L 

This proves the equality of the two bottom vertices of the triangles 

(7) and (8). For the upper left vertices of (7) and (8), we remark 

first that Rj, = j, = j, = Rj, since Sn_ k is closed in Uk+ 1 . 

Note also that by assumption j*A~+ 1 is clc with finitely generated 

stalk cohomology. Using sucessively 10.3(1), iO.8(ii), the special 

case discussed above, 10.3(1) and iO.8(ii) again, we get 

(io) �9 , L . ., L . 

RHom" (Ak+l,j:j'~]k+l) | Ck+ 1 = Rj,RHom" (j*Ak+l,]'Bk+l) | Ck+ 1 = 

, L . . ., . L 

Rj, (RHom" (J*nk+l,j'FOk+l) @ J*Ck+l) = Rj,RHom" (3*Ak+l, 3 Bk+ 1 ~ J'Ok+l) 

. g h . ! 

~o~" (ak+l,~ : (J'~+l ~ J*C~+ll = ~o~" (ak+l,j:j'S~+ 1 ~ C~+l). 

Thus the upper left vertices of (7) and (8) are also isomorphic, and 

it follows that (5)k+l holds. 

I@.24 Our next goal is to prove 10.25, but before doing that, we 

need to show the existence of a natural morphism e from the left hand 

side to the right hand side of 10.25(1). 

(a) We first consider the case where A" = R X . We want therefore a 

morphism 

L 
~B" (i) ~ : p*Dx | q'B" + q . 

we may assume B" to be flat. Then so is q'B" and we can erase the L 

on the left hand side. Fix a flat c-soft resolution K" of R X and an 

injective resolution I" of R . The complex L" = p'K" is a flat reso- 

lution of R X • y whose restriction to any fibre of q is c-soft . It can 
i 

therefore be used to compute q" (VI,~3). On the other hand, I S = s'I" , 



V, 10.24 178 

where s is the projection of Y to a point, is a resolution of Ry and, 
L 

since B" is flat, B" | I~ = B" | I S = B" . Therefore, if J" is an 
i ! 

injective resolution of B" | I$ , then q[.(J') represents q'S" . In 
! ! 

particular there is a natural morphism q~.(S" | Iy) § q~.(J') = q'S" . 

To show the existence of ~ it suffices therefore to prove the existence 

of a natural morphism 

! 

121 is 

For this, it is sufficient to define, for U c X and V c y open, a 

natural map 

| 

(3) p*D~(U x V) x q'B" (U • V) § q~. (S" | IS)(U x V) . 

In view of the definition of a morphism of sheaves, we need actually 

only to define a natural map 

i 

(4) V~(U) x B ' (V)  + q [ . ( S "  | I~)  (U x V) = HOmsh(Y) (q~(C 6 • V ) , B" | I ~ ) ,  

In order to do so, it is sufficient to give, for every connected open 

subset V' of V, a natural map 

(5) Qx(U) x B" (v) § HOmR(q~ (LO • V)(v'), (B" ~ Iy)(v')) , 

or equivalently 

r D~(U) • S'Cv) x q~(L6 x v )(V') § r | I~)(v') . 

Since L" = q'K" and V' is connected, we have 

(7) q!(LO x V (V')) = F,v,(X x V';(p*K')u x V ) = s x V';p*(K~)) = 

Therefore (6) is equivalent to a map 

{8) Dx(U) • B'(v) • Fc(X;K U) + (B" | Zy)(V') . 
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But ~(U) = Hom(%(x;KO),I') . Therefore we can define the required 

map in (8) as the composite of the map 

(9) 

given by 

Vx(U) • B" (V) • Fc(X;Ku) + B" (V') | I" 

(i0) (f,b,7) ~-+ (blv , ) 8 f(y) (f 6 Dx(U) , b C B'(v), yf Fc(X;Ku)) , 

We have, by 7.8 and 10.21, quasi-isomorphisms 

L L L 
(ii) B: P*DxA" | q'B" = p*RHom" (A" ,D x) | q'B" = RHom" (p'A" ,p*D x) | q*B', 

and from 10.23(2), a natural morphism 

L 
(12) v : RHom" (p*A',P*Dx) | q'B" § RHom" (p*A',p*Qx L q*B') . 

We then define ~ as the composition of vo ~ with the morphism 

L | 
RHom" (p*A',P*Qx | q*B') + RHom" (p*A',q'B') 

induced by the map e defined in (a) . 

10.25 THEOREM . Let A" 6 DGsb(x) be X - clc and B" C DGsb(y) be 

y - cc . Then 

h f 
(i) p*DxA" | q'B" = RHom'(p*A',q'B') . 

Proof. In view of 10.24, we need only to check (i) on the stalks. 

Let x 6 X, y 6 Y �9 We have 

L L 

(2) (p*DxA ~ q.B)(x,y) = (DxA')x ~ B~ 

: p*D~n" ~ q'B" § RHom'(p*A',q~B'), (n" 6 Db(x), B" 6 Db(y)) 

with the natural map from B" (v') | I" to (B" | Iy)(v') 

(b) We can now define a morphism 
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It follows easily from 3.10 that 

! 

(3) (DxA') x = RHom" (fx A',R) 

Thus for the left hand side of (i) we get 

L , L 
(4) (P*DxA" | q*8") (x,y) = RHom'(fxA',R) | 8"y . 

Consider now the right hand side of (i). Since 8" is y - cc , 

iO.17(i) gives 

(5) q '8"  = Dxxyq*D,;s" = ~ o ~ "  {q*D,;8" ,~x•  

By 10.2, we have therefore 

(6) 
! 

RHom" (p*A',q'8") = RHom" (p*A',RHom" (q*DyS",~Xxy)) = 

L L 
i p * A "  | =  x• | . 

As in (3), we derive from 3.10 : 

L , L 
(7) (D~• | q*DQS")) (x,y) = RHom" (f(x,y)" (p,A" | q*DQS"),R) . 

Using then 10.20(4),iO.2 and 8.11, we get 

(8) 
, ! 

RHom'(p*A',q'8") (x,y) = RHom'(f(x,y ) 

v 
RHom'(f~A" L f~D~B',R) | = 

! 

aHom':f~A' ,~om'If~D~8",R~l  = 

cp*A ~ q*D#8~,RI = 

= RHom'(f'xA',By ) . 

Thus we need only to check that 

x' T x (9) RHom'(f-A',R) | B" = RHom'(f A',B-) . 
Y Y 
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This is a statement about complexes of modules. By [3:w 5, 

Prop.7] the complex 9" is q.i. to a complex N" of finitely generated 
Y 

free modules. Then I" | N" is an injective resolution of N', and (9) 

is equivalent to 

, 

(iO) Hom'(f A',I') | N" = Hom'(f~A',I" | N'), 

which obviously holds since N" consists of finitely generated free 

modules. 

10.25 COROLLARY .We have p*QX ~ q*~Q = ~Xxy " 

I 

P r o o f .  I n  1 0 . 2 5 ( 1 )  t a k e  A" = R x a n d  9"  = ~ . S i n c e  q ' ~  = ~ •  , 

(iO.Ii) we get 

L 
| IRx  , i yI Y 

10.27 

map. Then 

(1) 

COROLLARY . Let Y = X and d : X § X • X be the diagonal 

d:(p*D~A" ~ q*B') = RHom'(A',B'), (A',B" ~ DGsb(x)). 

Proof. Since p o d = q o d = Id., 10.6 and 10.iO(ii) show that 

! i 

(2) d'RHom'(p*A',p'B') = RHom'(A',B') . 

d ~ The corollary then follows by applying to both sides of 10.25(1). 

Remark. The statement of 10.25 is borrowed from [iO:Exp.9,p.44], 

where it is called "Th4or~me du noyau" and is proved under somewhat 

more general assumptions. My original argument was an induction on 

strata as in 10.22 or in many places in these Notes. The simpler proof 

given here was communicated to me by N. Spaltenstein. 
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VI : LES FONCTEURS DE LA CATEGORIE DES FAISCEAUX 

ASSOCIES A UNE APPLICATION CONTINUE 

par Pierre-P. Grivel 

I n t~o  d u ~ o  n 

L o r s q u e  X e t  Y s o n t  d e s  e s p a c e s  l o c a l e m e n t  c o m p a c t s  e t  

f : X ~ Y est une application continue, Verdier (voir [V]) d4finit 

deux foncteurs de la cat~gorie des faisceaux de A-modules, not4s f, 

f~ et , qui permettent de d4terminer une dualit~ de Poincar~ pour 

les espaces localement compacts. L'actualit4 de ces foncteurs, 

connus et utilis4s depuis longtemps en g4om~trie alg4brique 

(voir [H]), provient du fair qu'ils interviennent dans la th4orie 

de la cohomologie d'intersection (voir [GMP]). 

Le foncteur f,, foncteur image directe ~ supports propres, 

g4n~ralise le foncteur F (X;-) des sections ~ supports compacts et 
c 

a des propri~t~s plus r~guli~res que le foncteur image directe f,. 

Le foncteur f~ est dans un certain sens un adjoint du foncteur f,. 

Dans cette note, 4manation d'une partie d'un s4minaire tenu 

& Gen@ve durant le semestre d'4t4 1983, on se propose de donner une 

construction d~taill~e et autant que possible 414mentaire de ces 

deux foncteurs. 

Je remercie Nathan Habegger avec qui j'ai eu plusieurs 

discussions au sujet de ce travail et dont les suggestions m'ont 

permis d'am41iorer certaines d4monstrations. 
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1. LES FONCTEURS f. et f* 

1.1 Si X est un espace topologique nous d~signerons par 

Ouv(X) l'ensemble des ouverts de X et nous noterons ~h(X) la 

cat4gorie ab~lienne des faisceaux de A-modules sur X, o~ A est un 

anneau commutatif unitaire. 

Soit Fun faisceau sur X; si U 6Ouv(X) nous noterons 

F(U;F) (resp. F~(U;F)) le A-module des sections de ~ sur U 

(resp. ~ supports dans la famille ~) et si V60uv(X) tel que UcV 

nous noterons OU,V : F(V;F) ~ r(U;~) le morphisme de restriction. 

1.2 Consid~rons une application continue f : X ~ Y. Si A est un 

faisceau sur X on v4rifie facilement qu'on obtient un faisceau sur Y, 

not~ f.A , en posant : 

F(v;f.A) = F(f-I(v);A) pour tout V6Ouv(Y) 

= pour tout V,W60uv(Y) 
OV,W 0f-I (V) ;f-I (W) 

tels que vc W. 

La correspondance A ~ f.A d4finit @videmment un foncteur 

f. : Sh(X) ~ Sh(Y). 

Ce foncteur f. est exact gauche car le foncteur F(U;-) est 

exact gauche pour tout U60uv(X). 

1.3 Exemples : 

1.3.1 Si Y est un point alors f. = F(X;-) 

1.3.2 Si j : X ~ Y est l'inclusion d'un ferm4 X dans Y alors 

A u A Y O.A = (o6 est l'extension de A par z~ro ~ Y). ll en r~sulte 

que le foncteur j. est exact. 

En effet pour tout V60uv(Y) consid~rons l'inclusion 

~(V) : F~ (VN X;A) ~ F(vn x;A) o6 ~v est la famille des ensembles C 

V 

ferm~s dans Vn X qui sont ferm4s dans V. Mais ~(V) est aussi 

surjective car si C est ferm~ dans vn x il en r4sulte que c est ferm~ 

dans v puisque x est un sous-espace ferm4; donc C6 ~ . Ainsi la 
V 

famille {~(V)} v60uv(Y)' 4videmment compatible avec les restrictions, 

d4finit un isomorphisme de faisceaux ~ : A Y ~ f.A. 
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Par contre si j : X ~ Y est l'inclusion d'un ouvert X dans Y 

alors en g4n4ral j,A ~ n Y. prenons par exemple l'inclusion j de 

X = ]0;i[ dans Y = [0;i[ et soit A = ~ le faisceau constant sur x 
x 

avec fibre ~. Si on calcule la fibre de j,A et de A Y au point y=0 

de Y on obtient (j,A) 0 = ~ tandis que (AY) 0 = {0} i 

1.4 THEOREME : Le foncteur f, : Sh(X) ~ Sh (Y) admet un foncteur 

adjoint ~ gauche f* : Sh(Y) ~ Sh(X). 

D4monstration : Soit Bun faisceau sur Yet soit z : [B ~ Y 

l'espace @tal@ sur Y associ6 ~ B. Alors par d4finition f*B est le 

faisceau associ@ ~ l'espace @tal@ x x LB ~ x obtenu en prenant le 
Y 

produit fibr@ de ~ par f. 

Ii r@sulte de cette construction que pour tout x6 X on a un 

isomorphisme entre les fibres 

(1.4.1) (f'B) x = Bf(x) 

On peut alors montrer ([B],chap. I, w que pour tout faisceau A sur x 

et tout faisceau B sur Y on a un isomorphisme 

(1.4.2) : HOmsh(X ) (f*B;A) ~ HOmsh(Y ) (B;f.A) 

On en d6duit les fl@ches d'adjonction 

(1.4.3) : f*f, ~ iSh(X ) 

8 : iSh(Y ) ~ f,f* 

1.5 COROLLAIRE : Le foncteur f* est exact. 

D~monstration : Cela r~sulte de (1.4.1). 

1.6 Exemple : Si j : X ~ Y est l'inclusion d'un sous-espace X 

dans Yet si A est un faisceau sur Y alors j*n = nlx est la 

restriction de n ~ x. 
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1.7 Soit Inj(X) la sous-cat4gorie pleine de Sh(X) dont les 

objets sont les faisceaux injectifs. On notera que la cat@gorie 

Inj(X) n'est pas ab41ienne. 

COROLLAIRE : Le foncteur f, : Sh(X) ~ Sh(Y) se restreint ~ un 

foncteur f, : Inj(X) ~ Inj(Y). 

D~monstration : Soit 0 ~ A ~ B ~ C ~ 0 une suite exacte de 

faisceaux sur Yet soit I un faisceau injectif sur X. En appliquant 

successivement ~ cette suite les foncteurs exacts f* et 

HOmsh(x) (-;I), puis en utilisant l'isomorphisme } de (1.4.2) on 

obtient une suite exacte 

0 ~ HOmsh(Y) (C;f,~) ~ HOmsh(Y) (B;f,I) ~ HomSh(Y) (A;f,l) ~ 0. 

Iien r~sulte que le faisceau f,~ est injectif. 

2. LE FONCTEUR f, 

2.1 soit f : x ~ Y une application continue entre espaces 

localement compacts. 

Si Vest un ouvert de Y d6signons par ~ la famille des ensembles 
V 

-i 
C qui sont ferm@s dans f (V) et tels que l'application flc : C ~ V 

i 

soit propre. 

LEMME : a) Pour tout V 60uv(Y), ~ est une famille de supports 
V 

sur f-l(v). 
b) Si Vet W sont des ouverts de Y tels que VcW, 

l'inclusion j : V ~ W induit une application ~ : ~ ~ ~ donn4e par 
W V 

~(C) = CNf-l(v). 

D~monstration : a) Soit K un ensemble compact contenu dans V. 

-i 
Si C,D6~ v alors CUD est ferm~ dans f (V) et on a 

1 si ICuD(K) = flc(K) cf (K); il est donc clair que CUD6 ~ v 

maintenant C6 ~ et D est un ensemble ferm~ dans f-i (V) tel que 
-iv 

on a ID(K) cf (K) et puisque f-1 DeC ID(K) est ferm~ il est clair 

que D6 ~ . 
V 
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b) Si C6 ~ alors cA f-l(v) est ferm4 dans f-l(v); de plus si 
W 

K est un ensemble compact contenu dans V, donc dans W, on a 
-i -i 

f (K) = fic(K) et cet ensemble est compact~ donc 
iCAf -I (V) 

CAf -l(v) E ~ . 
V 

2.2 Si A est un pr4faisceau sur X il r4sulte du lemme 

pr~c4dent qu'on d4finit un pr4faisceau sur Y, not~ f.A , en posant 

F(V f.A) = ~ (f-l(v) ;A) pour tout V6Ouv(Y) 

V 

= pour tout V,W60uv(Y) 
OV,W Pf-l(v) ;f-l(w ) 

tels que VOW. 

PROPOSITION : Si A est un faisceau sur X alors f,A est un 

faisceau sur Y. 

D~monstration : Soit {Vi}i61 une famille d'ouverts de Y ; 

V = U V et V. = V nv . Alors {f-l(vi)~ }i6I est une famille posons 
i6I i lj 1 j 

-i -i 
d'ouverts de X telle que f (V) = U f (V i) et 

i6I 
-i -i f-i f (V .) = f (V.) n (v). puisque A est un faisceau sur x on a une 

13 1 3 

suite exacte 

(2.2.1) 

<0 
0 ~ F (f-i (V) ;A) F (f-i (V.) ;A) ~ ~ F (f-l(v..I ;A) 

l 13 
i6I (i,j)6IxI 

oK ~(s) = (pf_l(vl (s)) et 
.),f-l(v) i6I 

~((si)i6I) = (P 1 -1 (si)-Pf-I 
f- (Vij)'f (Vi) (Vij)'f-l(V')3 

Ii suffit donc de v4rifier que la suite induite 

(s.)% 
3 )(i,j) 6 IxI 
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0 ~ F~ (f-l(v);A) -~ ~ F~ (f-l(vi) ;A) ~-~ H F~ (f-l(vij) ;A) 

V i61 V (i,j)6IxI V.. 
i z3 

est encore exacte. 

Le seul point non trivial est de voir que Ker~CIm~ . Soit 

(si)i616 Ker~CKer44 en vertu de l'exactitude de la suite (2.2.1) 

il existe s 6 F(f-I(v);A) tel que ~(s) = (si) iC I . Ii faut donc 

v@rifier que le support Is[ de s appartient ~ #V' c'est-&-dire que 

l'application f[Isl : Isl ~ Vest propre. 

Soit un ensemble compact KCV = U V i. Comme Y est localement 

i6I 
compact un petit argument de topologie g@n6rale montre qu'on peut 

trouver un sous-ensemble fini JCI et une famille de compacts {Kj}j6 J 

tels que K cV. pour tout j6 Jet Kc U K . 
3 3 1 j6J ] 

Is[ N f-l(vj) U f (K) et ce dernier Comme Isjl = on a f?isl (K) c -i 
. _ j  I I S . I  3 
3t 1 3 

ensemble est compact car [s.l 6 ~ . Donc fTlsl (K) est compact. 
3 V. 

3 

2.3 Soit ~ : A~ ~ un morphisme de faisceaux sur X; si 

V6Ouv(Y) et si ss F} (f-l(v);A) alors ~(f-l(v)) (s) 6 F~ (f-l(v);B) car 

v v 
l~(f-l(v) (s) Ic [sl. Ii en r@sulte que la correspondance A ~ f,A d@finit 

un foncteur f, : Sh(X) ~ Sh(Y). Ce foncteur f, est exact gauche car 

le foncteur F~ (f-l(V);_) est exact gauche pour tout V60uv(Y). 

V 

2.4 PROPOSITION : Ii existe un morphisme canonique de foncteurs 

O~f,~f, 

De plus si 1 'application f : X ~ Y est propre, les foncteurs f, et f , 

sont isomorphes. 

D4monstration : Le morphisme de foncteurs est d@fini par la 

famille d'inclusions {F~ (f-l(v) ;A) ~ F(f-I(v) ;A)}v6 
ouv (Y) 

o 

V 
Si f est une application propre, il faut voir que C6 ~V si et 

-i 
seulement si C est un ensemble ferm4 dans f (V). 

-i 
Soit C un ensemble ferm@ dans f (V) et soit un compact KcV; alors 

f - 1  (K) e s t  un compac t  c o n t e n u  darts f - 1  (V) , donc f - 1  (K) = CA f-l(K) est 
I C 

compact ; ainsi C6 ~ . 
V 
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2.5 Exemples : 

2.5.1 Si Y est un point alors f, = F (X;-) (o~ c est la famille 
c 

des ensembles compacts de X~ comme X est localement compact, c est 

une famille paracompactifiante de supports). 

2.5.2 Si j : X ~ Y est l'inclusion d'un ouvert ou d'un ferm@ X 

dans Y alors j,A = A Yet le foncteur f, est exact. (Ii est int6ressant 

de rapprocher ce r@sultat de celui de 1.3.2). 

En effet si X est ferm@ dans Y alors jest une application 

propre, donc j, = j, et le r4sultat d@coule de 1.3.2. 

Si X est ouvert dans Y, il faut montrer que pour tout V6 Our(Y) on a 

=~ . 
V V 

Si C6 ~ alors pour tout compact K contenu dans V, l'ensemble 
V 

C n K est compact dans le sous-espace localement compact V, donc C est 

ferm@ dans V. Invers@ment si C 6 ~ et si K est un compact contenu dans 
V 

V alors CN K est compact. 

2.6 On peut caract6riser les fibres du faisceau f,A de la 

faqon suivante. 

PROPOSITION : Soit A un faisceau sur X et un point y6 Y. Ii 

existe un isomorphisme 

: (f,A)y ~ F (f-l(y);A ) 
. c f-i (y) 

D~monstration : Soit Sy6 (f,A). Y~ soit V un voisinage ouvert de 

y et s6 F~ (f-l(v);A) un repr4sentant de s . On a 
V Y 

s 1 6 F c (y) ;A ; en effet Is I = Isl A f-l(y) est 
If- (y) If -l(y If -l(y) 

�9 est ind4pendante compact puisque I sI 6 ~V Comme la valeur de sl f-i (y) 

du choix du repr4sentant de s on d4finit le morphisme ~p en posant 
Y 

%0(Sy) = sif_l(y ). Montrons que q0 est injectif. Soit Sy6 (f,A)y 

repr@sent@ par s6 F} (f-l(v);A). Supposons que ~0(s ) = 0. Alors 
V Y 
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= 0, donc IslDf-l(y) = @, d'oO y ~ f(Isl). De plus s 
.~-i (y) 

l'ensemble f(isl) est ferm~ dans V. En effet fl IsI : IsI ~ vest une 

application propre entre sous-espaces localement compacts, donc 

l'image est ferm~e. IIen r~sulte que s = 0. Montrons que ~0 est 
Y 

surjectif. Comme Y est r4gulier on peut trouver une sous-famille W 

de la famille ordonn4e V des voisinages ouverts de y, telle que 
Y f-i 

N V = {y}. On en d~duit ais~ment que N f-l(v) = (y). Si V6 W 
v6W v6W 
consid~rons la famille de supports ~f-l(v) {Knf -l(v) I K6 C} . On a 

alors ([S],chap VII, exemple 2) 

F (f-l(y) ;A ) = lim F~ (f-l(v) ;A) 

c If -I (y) V6~ f-i (V) 

De plus on a ~ -i c ~V; en effet si C6 ~ alors C = Knf-l(v) 
f (V) f-l(v) 

o~ K est un compact de X, donc C est ferm~ dans f-l(v); et si K' est 

un compact de V alors f-i Ic(K') = KNf-I(K ') est compact; ainsi C6 ~V" 

On a donc une inclusion F~ (f-l(v);A) ~ F~ (f-I(v);A). 

f-l(v ) v 

Soit t6 F c(f-l(y) ;A -1 ) ; soit V6W et s6 F~ (f-l(v) ;A) un 

If (Y) 1 f-i (V) 
repr~sentant de t. Alors s6 F~ (f- (V);A). 

V 
Sis d~sigae l'image de s dans lim F~ (f-l(v);A) = (f,A) , il est 

Y v6~ v Y 

clair que ~(s ) = t. Y 
Y 

2.7 COROLLAIRE : Ri(f,A)y = Hi(f-l(y);A) 

2.8 On va ~tablir maintenant quelques r~sultats qui seront 

utiles au paragraphe suivant. Rappelons pour commencer les deux 

d4finitions suivantes : 

Un faisceau ~ sur X est f,-acyclique si Ri(f,~) = 0 pour tout 

entier i~l. 

Le foncteur f, est de dimension cohomologique finie s'il e-xiste 

u~n entier n~0 tel que pour tout faisceau F sur X on a Rl(f,F) = 0 

I~ur i>n. 
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Enfin il sera commode pour la suite de l'expos4 de poser encore 

la d~finition suivante. 

Un faisceau F sur x est f,-mou si pour tout y6Y le faisceau 

Flf_l(y ) eat c-mou. 

2.9 Exemples 

2.9.1 Dans le cas o~ Y est un point les d4finitions pr4c~dentes 

redonnent les d~finitions classiques de faisceau c-acyclique, 

d'espaees de c-dimension finie et de faisceau c-mou. 

2.9.2 si j : x ~ Y est l'inclusion d'un ouvert ou d'un ferm~ X 

dans Y alors j, est exact, donc tout faisceau est j,-acyclique et j, 

est de dimension cohomologique nulle. 

2.10 LEMME : Soit Fun faisceau sur x. 

i) F c-mou ~ F f,-mou ~ F f,-acyclique. 

2) F est f,-mou si et seulement si F U est f,-mou pour tout u6 ouv(x). 

(on rappelle que F U = (Fiu)X). 

3) si F est f,-mou alors F U est f,-acyclique pour tout u6 ouv(x). 

D~monstration : 

i) La premiere implication r~sulte de ([B],chap. II, prop.9.2). De 

plus le faisceau F est c-acyclique (idem, th.9.8); on a 
I f-i (y) 

donc d'apr~s le corollaire 2.7. Ri(f'F)y. = Hi(f-l(y)c ;F) = 0 pour 

tout entier i>0 et tout y6Y. 

2) Si F U est f,-mou pour tout ouvert u de X alors il est ~vident que 

F est f,-mou. Invers4ment si F est f,-mou et si u est un ouvert 

= (F ) et ce dernier 
de X on a (F U) if_l(y ) if_l(y ) UNf_l(y ) 

faisceau est c-mou ([B], chap. II, coroll. 9.10). 

3) C'est une cons4quence de i) et 2). 
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2.11 COROLLAIRE. Si Iest un faisceau injectif sur X alors 

I est f,-mou et I U est f,-acyclique pour tout U60uv(X). 

D~monstration : En effet si Iest injectif alors Iest c-mou 

([B],chap. II, prop.5.2 et corollaire 9.5). 

2.12 THEOREME : Si le foncteur f, est de dimension cohomologique 

finie alors tout faisceau F sur x admet une r~solution born~e 

0 ~ F ~ L" par des faisceaux qui sont f,-mous. 

D~monstration : Supposons que la dimension cohomologique de f, 

est inf4rieure ~ net soit Fun faisceau sur x; on a donc 

Ri(f,F) = 0 pour tout i>n. 

Consid4rons une r4solution injective 0 ~ F ~ I" de F et posons 

B = Coker(d : I n ~ In+l). On obtient ainsi une r4solution born4e 
n 

de F 

(2.12.1) O_, F_~ I 0 1 - ~ I  -~ ... -~In-'B-'O 

dans laquelle les faisceaux I p pour p = 0,1,...,n sont f,-mous en 

vertu de 2.11. 

I1 reste ~ montrer que Best aussi f,-mou; pour cela il suffit 

de montrer que Hl(f-l(y); (B )v ) = 0 pour tout ouvert v de 
c I f - l (y )  

-1 -1 
f (y) ([B],chap. II, prop.15.1). Mais Vest un ouvert de f (y) si 

et seulement si il existe un ouvert U de X tel que V = UNf-l(y); de 

( ) = . I1 suffit done de montrer que 
plus Blf_l(y ) Unf-l(Y) (B U) if_l(y ) 

H l(f-l(y) ; (Bu) ~ ) = 0 pour tout ouvert U de X. Or si U est un 
c I f-I (y) 

ouvert de X, la suite 

I 0 ~ I 1 ~ ... ~ I n ~ B ~ 0 0-, F U u u u u 

est exacte et les faisceaux I~, pour 0~p~n, sont f,-acycliques en 

R i+n f'F vertu de 2.11. Iien r4sulte que Ri(f~Bu ) = ( ~ U ) pour ial 

([S],chap. III, lemme 6); ainsi d'apr~s l'hypoth~se sur la dimension de 

f, on en d~duit que Ri(f~B U) = 0 pour i~l. Donc pour tout ouvert U de 
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X le faisceau ~U est f,-acyclique. Mais on a 

Hi(f-l(Y) ~(BU) q 1 ) = Ri(f,~ U) en vertu de 2.7~ d'o~ la 
c if- (y) y 

conclusion. 

VI, 2.14 

2.13 Pour faciliter la suite de l'expos4 on va encore introduire 

les d@finitions suivantes qui sont sugg4r4es par le th4or~me pr@c4- 

dent. 

Soit Fun faisceau sur x. 

on appelle f,-r@solution de F une r@solution born@e de ~ par 

des faisceaux qui sont f,-mous. 

On appelle r4solution de type standard de ~ une suite exacte 

O ~ F ~ L  0 L 1 ~ ... ~ LP-I ~ LP ~ 0 

o~ les faisceaux LJ pour j = 0,1,...,p-1 sont injectifs et le 

faisceau i pest f,-mou. 

En vertu du corollaire 2.11. une r4solution de type standard de 

est une f,-r~solution de F. 

De plus la d~monstration du th~or~me 2.12 montre que si f, est de 

dimension cohomologique finie, tout faisceau admet une r4solution de 

type standard. 

2.14 PROPOSITION : Soit ~un faisceau sur X. 

i) Si 0 ~ ~ ~ K" est une r6solution born~e de F il existe une 

r4solution de type standard 0 ~ F ~ L" et un morphisme de r~solu- 

tion K" ~ L" au-dessus de ~. 

2) Si 0 ~ ~ ~ L" et 0 ~ V ~ M" sont deux r~solutions de type standard 

il existe toujours un morphisme de r~solution au-dessus de ~ de L" 

dans M" ou de ~" dans L'. 

D~monstration : 

i) Comme la cat~gorie Sh(X) admet suffisamment d'objets injectifs 

il existe une r~solution injective [" de F (en g~n4ral non born~e) 

et un morphisme injectif i : K" ~ [" au-dessus de F ([H],chap. I, 
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lemme 4.6). 

Supposons que la dimension cohomologique de f, est inf@rieure 

& net soit q la longueur de la r@solution K'. 

Si q-<n la solution est donn@e par le diagram_me commutatif et 

exact suivant 

0 ~ F ~ KO ~ ... ~ K q ~ 0 ~ ... ~ 0 ~ 0 --~ 0 

0 ~ F ~ I 0 ~ ... ~ I q ~ lq+l ... ~ in ~ Coker d ~ 0 
n 

Si q~n+l la solution est donn@e par le diagramme commutatif et 

exact suivant 

0 F ~ K  0 0 

111  .... i 
K q-I 

' i0 i q-2 iq-i j ' 

0 F -~ /0 .. ~ /q-2 ~ [q-i ~ Coker d ~ 0 
q-i 

o~ on a construit le morphisme j grace ~ l'exactitude des lignes 

de ce diagramme. 

2) Soit pet q la longueur des r@solutions L" et M'. si p~q alors il 

existe un morphisme ~ : [" ~ ~" au-dessus de F. La construction 

de ~ est adapt@e de la construction classique ([T],chap. 5, prop.2.3) 

2.15 On va @tudier maintenant le comportement du foncteur f, 

vis-a-vis des sommes directes infinies de faisceaux. 

THEOREME : Soit {A}6 A une famille de faisceaux sur X; on a un 

isomorphisme canonique 

@ (f~A) = f,( @ A ) 
a6A " e6A ~ 

D@monstration : I1 convient de rappeler que ~ A d@signe le 

~6A ~ 
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faisceau engendr@ par le pr6faisceau U ~ �9 (A (U)) ; c'est donc le 

a6A 
faisceau des sections de l'espace @tal@ L( @ A ) = J~_ ( �9 (A). ). 

a6A a xtx ~s a x 

Les morphismes de faisceaux ~vidents A ~ S A induisent le 

a a6A a 
m o r p h i s m e  c a n o n i q u e  

@ : �9 (f,A) ~ f, ( @ A ) 

a6A a " a6A a 

Pour montrer que ~ est un isomorphisme il suffit de montrer que, 

pour tout y6 Y, le morphisme induit sur les fibres 

~y : @ (flA a) ~ (f,( @ A )) 
a6A Y " a6A a y 

est un isomorphisme. 

Compte tenu de l'isomorphisme de la proposition 2.6. et du fait que 

( ~ A ) = @ (A) , il suffit donc de montrer qu'on a 
aeA If-l(y) as If-l<y) 

un isomorphisme 

~ : @ F (f-l(y);(A) ) ~ F (f-l(y); ~ ((A) )). 
a6A c ] f-i (y) e ~6A ~ I f-i (y) 

On est donc ramen@ & d4montrer l'affirmation suivante : 

soit {A}6 A une famille de faisceaux sur un espace compact X; alors 

le morphisme canonique 

: e F(x;A ) ~ F(x; e A ) 

~s a a6A ~ 

est u_n isomorphisme. 

Ii est 4vident que ~ est injectif. Montrons donc que ~ est 

surjectif. 

Une section continue s : X ~ L( @ A ) donne naissance ~ des sections 

: X ~ L(A ) d4finies en posant se(x) = p (s(x)) od p~ continues s 

est l'application continue induite sur les espaces 4tal~s par la 

projection canonique @ A ~ A ([T],chap. II,3.8). 

a6A a 

Six 6 X on a s(x) = (s(x))a6 Aet il n'y a qu'un nombre fini 

d'indices ~ pour lesquels s (x) ~ O; de plus sis (x) = 0 il y a un 
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petit voisinage ouvert de x sur lequel s reste nulle. 

Ainsi pour chaque point x6 X il existe un voisinage ouvert V de x sur 
x 

lequel le nombre de composantes non nulles de sne peut pas augmenter. 

La famille {Vx}x6 X recouvre X (il suffit d'ailleurs de recouvrir le 

support de s) ; on peut donc en extraire un recouvrement fini; par 

suite il n'y a qu'un nombre fini de sections s qui ne sont pas 

identiquement nulles. Donc (s) 6A6 ~AF(x;A ) et ~((s ) 6 A) = s. 

2.16 Le th4or~me 2.15 est faux pour le foncteur f,. Prenons 

X = U U , off U = ] 2 n  2 n + l [ ; m u n i  d e  l a  t o p o l o g i e  i n d u i t e  p a r  c e l l e  
n n 

n61N 

de ~R l'espace X est localement compact. Prenons A = 2z le faisceau 
n U 

n 

constant sur Un, 4tendu par z~ro en dehors de U . Comme la famille 
n 

{A } est localement finie, le pr4faisceau U ~ �9 A (U) est un 
n n6]N n6]N n 

faisceau. 

Consid4rons alors la section s 6  F (X;  19 A ) q u i  e s t  d 4 f i n i e  p a r  
n 

n 6 ~  

la propri4t4 suivante : pour tout x6 X et tout n6~N, 

{~ si x6 U n 

Pn (s(x)) = si xs 
n 

Ii est 4vident que cette section ne peut pas s'4crire comme une somme 

directe ~ s avec seulement un nombre fini de s non identiquement 
n6]N n n 

nulle. Donc F(X; S A ) ~ S F(X;An). 
n 

n 6 ~ l  n 6 ~ l  

2.17 PROPOSITION : Le foncteur f, est exact sur la categoric 

Inj(X). 

D~monstration : Si 0 ~ A ~ ~ ~ C ~ 0 est une suite exacte de 

faisceaux injectifs sur X on a ~ = A8 C; il en r~sulte que 

f,~ = f,A �9 f,C et par consequent la suite 0 ~ f,A ~ f,B ~ f,C ~ 0 

est exacte. 
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3. LE FONCTEUR f" 

VI, 3.3 

3.1 Si X est un espace topologique nous d4signerons par C+(X) 

la cat~gorie dont les objets sont les complexes born~s inf~rieurement 

de faisceaux de A-modules sur X et dont les fl~ches sont les morphismes 
+ 

de complexes. Nous d4signerons encore par K (X) la cat~gorie dont les 

objets sont ceux de C+(X) et dont les fl~ches sont les classes d'homo- 
+ 

topie de morphismes de complexes. Nous d~signerons enfin par I (X) 
+ 

la sous-cat~gorie pleine de K (X) dont les objets sont les faisceaux 

de A-modules injectifs sur X. 
+ 

La cat4gorie d4riv4e associ~e sera not4e D (X) (voir [H], chap. I). 

3.2 Soit X et Y deux espaces localement compacts. Consid4rons 

une application continue f : X ~ Y telle que le foncteur f, soit de 

dimension cohomologique finie. Notons ~ le faisceau constant sur X 

qui admet l'anneau com/nutatif unitaire A con~ne fibre. D'apr@s le 

th~or@me 2.12, on peut trouver une f,-r~solution 0 ~ ~ ~ K" du 

faisceau A. On va tout d'abord d4finir un foncteur = 

i 

fK. : K +(Y) ~ K +(x) 

On verra ensuite que ce foncteur induit sur les categories d4riv4es 

un foncteur qui est ind~pendant du choix de K'. 

+ 
3.3 Soit G" un objet de K (Y) ; sans restreindre la g4n4ralit4 

on peut supposer que G i = 0 si i<0. Pour tout U 6Ouv(X) posons 

i 

fK" (G') (u) = Horn" (f,. (K U) ;G') 

Maintenant soit U,V60uv(X) tels que UcV. On d4finit tout d'abord 

un morphisme injectif ru, V : K U ~ ~ de complexes de faisceau-x sur X 

de la fagon suivante : soit W6Ouv(X); si s6 F(W;K u) alors par 

d4finition s6 F(wNU;K') et le support de s est ferm~ dans W; on peut 

donc ~tendre s par z4ro sur WNV de fagon ~ obtenir une section 

~6 F(W;K V) ; on pose alors ru,v(W) (s) = ~. 
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On peut maintenant d~finir des morphismes 

i i 

OU, v : fK. (~') (V) ~ fK. (~') (U) 

en posant 

0U,V(~) = ~*f~(ru, v) si ~6 Hom'(f~(~) ;~'). 

Enfin on d4finit une diff4rentielle de degr4 +l 

i i 

~U : fK" (~') (U) ~ fK. (G') (U) 

en posant 

~U(~) = d'o~0-(-l) deg(~)~od'' si ~6 Hom'(f,(KU);G'),. 

o~ d' est la diff4rentielle du complexe G" et d" est la diff~rentielle 

induite sur f,(KU), par la diff~rentielle du complexe K'. 

r 

3.4 LEMME : La correspondance U ~ f~.(G')(U), avec les 

morphismes QU, Vet les diff4rentielles ~U" d4finit un complexe born4 
t 

inf~rieurement de pr~faisceaux sur X. Ce complexe sera not4 f~.(G'). 

D4monstration : I1 est imm~diat que les morphismes QU,V satisfont 

les conditions de compatibilit4 des morphismes de restriction. De plus 

les ~ sont compatibles avec ces restrictions donc d@finissent une 
U 

i 

diff4rentielle ~ sur fK.(G') de degr4 +i. Enfin la composante de 
i 

degr4 k6~ du complexe de A-modules fK. (G') (u) est donn~e par 

Hom(f, (K~) ;Gi+k); comme le complexe K" est doublement born~ et le 
i6~ " U 

complexe G" est born4 inf4rieurement, ceci montre que le complexe 
t 

f~.(G') est born~ inf4rieurement. 

+ r 
3.5 THEOREME : Si G" est un objet de K (Y) alors f'. (G') est un 

K 

objet de K+(X). 
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D4monstration : Soit {U}6Aune famille d'ouverts de X ; 

posons U = a6AU U~ et U~ = U~U~ et consid6rons la suite 

(3.5.1) 
i t i 

~6A ~ (~,B) 6ixA (u ~) 

oa ~(s) = (pua,u(S))a6A 

et ~((sa)~6A) = (Ou ,u (s~)-Ou ,u (sB)) 
aS c~ a~ B (~,B) 6A• 

Ii faut d@montrer que cette suite est exacte. 

En tenant eompte des propri~t4s du foncteur Hom" vis-a-vis du 

produit direct et de la somme directe et en utilisant le fait que le 

foncteur contravariant Hom'(-;~') est exact gauche, on voit que 

l'exactitude de la suite (3.5.1) est impliqu4e par l'exactitude de la 

suite 

(a,B)6A• " aB ~6A " a " 

Mais d'apr&s ie thdor~me 2.15 l'exactitude de cette suite est 

#quivalente ~ l'exactitude de la suite 

( 3 . 5 . 3 )  f , (  @ KU ) ~ f ,  ( �9 K" ) ~ f ,  (KU) ~ O. 
�9 (a,8)EA• ~B " aEA u . 

Consid~rons donc la suite de faisceaux sur X 

(3.5.4) @ ~ ~ @ K" ~ K" + 0 
(a,B)6A• a6A u~ u 

oO ~ est le morphisme canonique induit par les morphismes 

rU ,U : KU + <U et ~ est le morphisme canonique induit par les 

morphismess or -~ ~ : K" + @ K" ' ~T d4signant 
U B,U a 8 u 8,U B uaB a6A u 

l'inclusion canonique de K" dans �9 K" . La suite (3.5.4) est 
u T a6A ua 

exacte. En effet soit x6 X et consid~rons la suite des fibres 

~x A (K~) x ~ o (3 .5 .5)  �9 (K~a8) x , �9 (K~) x 
(a,B)EAxA aCA a 



VI, 3.5 200 

Six ~ U tousles termes de cette suite sont nuls. Sinon posons 

A = {e 6 AIUs a alors la suite 
x 

x x x 
(~,~)6Ax• a6A x x 

o~ ~x est le morphisme canonique induit par le morphisme identit4 

de Kx et ~x est le morphisme canonique induit par les morphismes 

i -Z~ : K" ~ ~ Kx; cette suite est clairement exacte. 
x ~6A 

x 

Pour terminer la d4monstration il reste & prouver que le foncteur 

f, preserve l'exactitude de la suite (3.5.4). 

Pour chaque entier nal posons U = U A...NU et 

(~i;...;~) ~ n 1 n 
consid4rons la suite de faisceaux sur X 

(3.5.6) 

�9 K" ~ ... ~ ~ K" ~ S K" ~K" ~ 0 

(~l;'';~n)6An U(~l;''';~n) (~I;~2)6A2 U(~l;a 2) ~6A U U 

qui prolonge la suite (3.5.4). Les fl&ches de cette suite sont les 

morphismes canoniques induits comme pr4c~demment par les morphismes 

n 
H (-i) il 

i=l (r " " " ;~'I ; " " " ;~n ) 

o r 

U(~l;"" ;~n )'u(~l;''" ;~i;"';~n ) 

�9 K" ~ �9 K" 

U(~i; " " " ;~n ) (el; " " " ;~n-i ) 6An-I u (~i; " " " ;~n-i ) 

Une d4monstration analogue & la pr4c~dente montre que (3.5.6) est 

une suite exacte, et les faisceaux des complexes de cette suite sont 

f,-acycliques d'apr~s 2.10.3. 

Comme le foncteur f, est exact gauche (2.3), exact sur les 

faisceaux injectifs (2.17) et de dimension cohomologique finie par 

hypoth~se, il r~sulte du corollaire A.3 de l'appendice que f, pr4serve 

l'exactitude de la suite (3.5.6), donc de la suite (3.5.4). 
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f! 3.6 COROLLAIRE : La correspondance G" ~ K.(G') d~finit un 

' K+(y) + foncteur fk" : ~ K (X). 
e 

De plus la correspondance K" ~ fK. d4finit un foncteur contravariant 

de la cat~gorie des f,-r~solutions de A et des morphismes de r~solu- 
+ 

tion au-dessus de A dans la cat4gorie des foncteurs de K (Y) dans 
+ 

K (X) et des morphismes de foncteurs. 

l 

3.7 PROPOSITION : Si G" 60bI+(Y) alors le faisceau fK.(G') est 

f lasque.  

D~monstration : Si U est un ouvert de X on a une injection 

canonique 

O-.',K" -~K" 
U 

d'o~ une injection 

0 ~ f K~ ~ f,K" 

puisque f, est exact gauche. Mais le foncteur Hem" (-;G') est exact 

puisque G" est injectif. On en ddduit que le morphisme canonique 

est surjectif. 

f . (G') (X) ~ f . (G') (U) ~ 0 

3.8 THEOREME : Soit G'60bI+(Y). Si K" et L" sont deux 

f,-r~solutions du faisceau ~, alors les complexes de 
�9 w # 

f~.(G') et f[.(G') sont quasi-isomorphes. 

faisceaux 

D4monstration : D'apr~s la proposition 2.14. i) il existe des 

r4solutions de type standard M" et N" et des morphismes de r4solutions 

K" ~ ~" et i" ~ N" au-dessus de A. De plus par 2.14 2) on peut trouver = 

un morphisme de r4solution M" ~ N" ou ~" ~ ~" au-dessus de A . = 

Le th~or~me est alors une cons4quence imm4diate du r4sultat suivant. 

3.9 LEMME : Soit K" et L" deux f,-r~solutions de A. Si = 

: K" ~ L" est un morphisme de r6solutions au-dessus de A alors le = 
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e t 

morphisme ~ : f[. ~ fK. induit un quasi-isomorphisme 
# a 

~(G') : fL.(~') ~ fK.(G') pour tout ~'60bI+(Y). 

D~monstration : Pour tout ouvert U de X le morphisme induit 

~U : KU ~ [U est un quasi-isomorphisme ear le foneteur U ~ ~U 4tant 

exact, il transforme r4solutions en r4solutions. Maintenant on a 

HqRP(f,~u). = HqRP(f,[u). = 0 pour tout q et tout p # 0 car les 

faiseeaux K q et [q sont f,-acycliques pour tout q (lemme 2.10.3)). 
U U 

I1 en r4sulte que f~u : f,KU. ~ f[U est un quasi-isomorphisme 

([S],chap. IX, corollaire Prop.4). 

Maintenant soit G'60bI+(Y) et U60uv(X); consid4rons le diagramme 

commutatif suivant 

0~Ext n-l(H(f., (iU));H(G'))~Hn(Hom'~(G.) (U)* (f" (iU). ;G'))~Homn(H(f,. (iU));H(G')) ~0 

0~ Ext n-1 (H (f: (KU));H (~'))~ H n (Horn" (f,. (~U) ;G" ))-~ Horn n (H (f,. (KU));H (~')) ~ 0 

Les lignes sont exactes car les faisceaux du complexe G" sont 

injectifs ([G],chap. I, th.5.4.2); les deux fl~ches verticales extremes 

sont des isomorphismes car elles sont induites par l'isomorphisme 

(f~u)* : H(f[ (K~)) ~ H(f ([U)). 

Du lemme des cinq il r@sulte donc que la fl6che ~(G') (U)* est un 

isomorphisme. Par suite ~(G') est un quasi-isomorphisme. 

3.10 COROLLAIRE : Le foncteur 

f! D + : D+(Y) ~ (X) 

t 

induit sur les categories d4riv~es par le foncteur fK., est ind4- 

pendant, ~ isomorphisme pros, du choir de la r6solution K'. 

D~monstration : En effet si K" et L" sont deux f,-r@solutions de 
+ + 

A e t  s i  P : K (X) ~ D (X) e s t  l e  f o n c t e u r  c a n o n i q u e ,  i l  r ~ s u l t e  d u  
= X r i 

th~or~me 3.8 que les foncteurs PxOfK. et PxOfL. sont canoniquement 

i s o m o r p h e s .  De p l u s  t o u t  f o n e t e u r  d e  I + ( Y )  d a n s  D+(X) s e  f a c t o r i s e  ~ 
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travers D+(Y) ([HI, chap. I). On obtient ainsi le foncteur 
+ + 

f : m (Y) ~ D (X). 

VI, 3.11 

3.11 Exemples 

3.11.1 Supposons que Y est un point et que X est un espace 

localement compact de c-dimension finie (2.9.1). Si I" et J" sont deux 

r@solutions injectives de A il est @vident que les faisceaux 
I i 

fK. (I') et fK. (J') sont quasi-isomorphes. 

Pour tout ouvert U de X on pose 

t 

IDx(U) = fK. (I') (U) = Horn" (rc (U;Ku);I') . 

D'apr~s ce qui pr6c6de le faisceauD est bien d4fini sur la cat4gorie 
X + 

d4riv6e D (X) ; on  a p p e l l e ~  l e  f a i s c e a u  d u a l i s a n t  s u r  X ( p o u r  p l u s  d e  
X 

d~tails sur ce faisceau voir [GMP] et [Bo]). 

3.11.2 Si j : X ~ Y est l'inclusion d'un sous-espace ouvert ou 
i 

ferm4 X de Y, alors le foncteur j" est adjoint ~ droite au foncteur j,. 

On doit montrer que si A" 60hK+(x) et @'60bI+(Y) on a un isomorphisme 

(A';j" (G')) : Horn'+ (j, (A') ;G') ~ Horn'+ 

K (Y) K (X) 

Y 
D'apr@s 2.5.2 on a j, (A') = A" . 

D'autre part, d'apr6s 2.9.2, le foncteur j, est de dimension cohomo- 

logique nulle, donc 0 ~ A ~ A ~ 0 est une j,-r4solution du faisceau 
= 

constant A sur X. Supposons tout d'abord que X est un sous-espace 
= 

ouvert de Yet soit U 6Ouv(X). On a alors (Au)Y = A U (en consid6rant 

dans le membre de droite A comme le faisceau constant sur Y), d'o~ 
= 

on en d@duit, compte tenu de ([G],chap. II, Remarque 2.9.1) et de 1.6, 

I 

j (O')(U) = Horn" (Au;@') = F(U;G') : F(U;j*@') 

i 

Donc si X est un ouvert de Y on a j" = j* 

L'isomorphisme ~ est alors une cons4quence de ([T],chap. III, Remark 

8.13) . 
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Supposons maintenant que X est un sous-espace fezm~ de Y. Soit 

U 6Ouv(X) et choisissons V60uv(Y) tel que U = vN X�9 On a alors 

(Au)Y = (Ax)v , d'o~ on en d~duit 

i 

j" (G �9 (u) = Horn" ((Ax)v;G') = F(X ) (v;G') 

ofl (X) d4signe la famille des ensembles ferm4s de Y qui sont contenus 

dans X. 

Rappelons que, puisque X est un ferm4 de Y, on a j, = j, (2.5.2). 

On peut maintenant construire le morphisme ~. 

Soit ~06 Horn" (j.(A') ;G') . Soit U60uv(X) et soit V60uv(Y) tel que 

U = VNX. II faut d~finir un morphisme ~(U) : F(u~A') ~ F (v;G') 
(x) 

compatible avec les restrictions�9 On a F(u;A') = F(vN x;A') = 

= F(v;j,A). si ss on a l~(v)(s)Icx; en effet si y6 Y-X on 

a (QO(V) (s)) = %0 (s) = 0. On d~finit alors ~(U) en posant 
Y Y Y 

~(U) (s) = q0(V) (s) et on d~finit ~ en posant ~ (~0) = ~. 

Le morphisme r4ciproque de ~ est imm4diat ~ construire. 

On en d~duit que ~ est un isomorphisme. 

On a donc des fl~ches d'adjonction 

i 

: J,j ~ 1 + 
K (Y) 

! 

~:i+ ~ jj, 

K(X) 

| 

Enfin un argument classique d~j~ utilis4 montre que j" (G')60bI+(X). 

Appendice 

A.I Soit C et D deux cat4gories ab~liennes; on suppose que C 

admet suffisamment d'objets injectifs. Soit F : C ~ Dun foncteur 

exact gauche, exact sur les objets injectifs et de dimension cohomo- 

logique finie. 
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A.2 PROPOSITION : Soit 

d 3 d 2 d I d 0 

... ~ A 3 ~ A 2 , A 1 , A 0 , 0 

une suite exacte dans ~ telle que les objets Ap, pour p~O, sont 

F-acycliques. Alors les noyaux Z = Kerd sont aussi F-acycliques. 
P P 

D@monstration : Pour chaque entier p~0 on a une suite exacte 

0 ~ Zp+ I ~ Ap+ I ~ Zp ~ 0. 

On peut trouver des r@solutions injectives 0 -~ Z. ~ Y 
3 3 

0-~ A. ~ X" telles que chacune des suites 
3 j 

et 

0-~Y" ~x" ~Y" -~ 0 
p+l p+l p 

soit exacte. D'apr@s l'hypoth@se faite sur F chacune des suites 

0-* F(Yp+ I) -~ F(Xp+ I) -~ F(Yp) ~ 0 

est encore exacte. 

Comme les complexes F(X[] sont acycliques, il r~sulte de la suite 
3 

exacte longue de cohomologie que l'on a pour tout entier ihl et p~l 

i+l 
des isomorphismes H l(F(Y[)p ) = H (F(Y--+l)p ) ~ donc H i(F(Y')) = 

P 
= Hi+q(F(Y" )) pour tout entier q~l. Comme F est de dimension cohomo- 

p+q 

logique finie on a Hl+q(F(Y~q))~. = 0 d~s que q est assez grand. Iien 

r@sulte que Hi(F(Y')) = 0 pour tout i~l~ donc Z est F-acyclique. 
P P 

A. 3. COROLLAIRE : Soit 

... -~ A 3 ~ A 2 -* A 1 -* A 0 -~ 0 

une suite exacte dont chacun des termes est F-acyclique. Alors la 

suite 

... -~ F(A 3) -~ F(A 2) ~ F(A I) -* F(Ao) -~ 0 
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est encore exacte. 

206 

D~monstration : I1 suffit d'appliquer ([S],chap. III, prop.7) aux 

suites exactes 

0 ~ Z ~ A ~ A ~ ... -~ A ~ A0 ~ 0. 
p p p-i 1 
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VII. WITT SPACE COBORDISM THEORY (after P. Siegel) 

by M. Goresky 

This is a report on the paper [S] of Paul Siegel. 

i. Motivation. It was shown in [GMI] that if X is a compact piece- 

wise linear pseudomanifold with even codimension strata, and if �9 re- 

presents the "middle perversity" then IH~(X) satisfies Poincar6 duality 

over the rationals. This gives rise to a cobordism invariant signature 

for 4k-dimensional pseudomanifolds (where the cobordisms are also re- 

quired to have even codimension singularities). It then seems an in- 

teresting question to compute the cobordism groups of spaces having 

even codimension singularities. This turns out to be a bad question 

because a stratified space X might not be cobordant to the space X' 

which is obtained from X by refining the stratification. Therefore we 

must allow the spaces and cobordisms to have some strata of odd codi- 

mension, provided that these strata do not destroy the Poincar4 duality 

of the intersection homology groups. Siegel found a natural class of 

such spaces (which he called Witt spaces), and calculated their cobor- 

dism groups by inventing an important surgery technique for singular 

spaces. These cobordism groups ~W turn out to be 0 unless i ~ 0 
1 

(mod 4), and to coincide with the Witt group, W(Q) for i = 4k .[MH] 

2. Witt spaces. An oriented piecewise linear pseudomanifold X is 

called a Witt space if, for each stratum S with odd codimension, 

m 
IHs = 0 (*) 

where L is the link of the stratum, s = dim(L) = codim(S) - 1 and 

is "lower middle perversity", m(c) = [(c - 2)/2] . 

If X is a Witt space with respect to one stratification, then it is 

also a Witt space with respect to any other stratification (this 

follows from the stratification invariance and topological invariance 

of the sheaf of intersection homology chains [GM2]). 
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THEOREM . If X is a compact Witt space, then IH~(X;Q) satisfies 

Poincar4 duality over the rationals, i.e. the intersection pairing 

IHm(X;Q) • IHm_i(X;Q) + Q 

is nondegenerate. (Here n = dim(X)). 

Proof. Let ~ denote the "upper middle perversity", n(c) = [(c-i)/2]. 

Then IH~(X;Q) is dual to IH~(X;Q). However for a Witt space X, the 

natural map IH~(X;Q) § IH~(X;Q) is an isomorphism. This is almost a 

tautology from Deligne's construction of the sheaf of intersection 

chains. 

We define ~W to be the cobordism group of i-dimensional Witt spaces. 
i 

Thus ~W is generated by compact oriented i-dimensional Witt spaces 
i 

(with additive structure given by connected sum, and action of -i 

given by reversal of orientation) and has the relations X ~ 0 if 

X = ~Y where Y is an n +l-dimensional Witt space with collared bounda- 

ry. (This means that each stratum of odd codimension in Y - ~Y must 

satisfy the condition (*)). 

3. When is X a boundary ? First we notice that if i is odd, then 

~W 
i = 0 , because any i-dimensional Witt space X is the boundary of 

Y = cone(X). (Y is also a Witt space because the cone vertex is a 

stratum with even codimension in Y) . Similarly, if X is a 2k-dimen- 

sional Witt space and if IHk(X;Q) = 0 then X represents the 0 element 

in ~W because Y = cone(X) is again a Witt space. 
1 

4. The Witt group W(Q). (see [MH]). W(Q) is the abelian group which 

is generated by rational vector-spaces with a symmetric nondegene~ate 

bilinear pairing, B : V • V § Q , and has the relation (V,8) = 0 if V 

contains a self annihilating subspace W = W • such that 

dim(W) = dim(V)/2 . The additive structure on W(Q) is given by the 

perpendicular direct sum of vector-spaces. This group has been calcu- 

lated : 

W(Q) ~ W(Z) $ $ W(Z/(p)) 
p prime 
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where W(Z) e Z and is given by the signature 

W(Z/(2)) -- Z/(2) 

W(Z/(p)) & Z/(4) or Z/(2) @ Z/(2) if p : 2 

To any 4k-dimensional Witt space X we have an associated rational 

vector-space and symmetric bilinear form, 

[X] = (IH2k(X;Q), intersection pairing) 

5. The Main Theorem . THEOREM. [S] The association X § [X] induces 

an isomorphism 

W 
w : ~4k § W(Q) 

Furthermore, ~W = 0 if i 7 0 (mod 4). 
1 

Proof. First we check that w is well defined. If X = DY then the 

image of the boundary homomorphism 

(Y,3Y) IH2k+l § IH2k(X) 

is a self annihilating subspace of half the dimension. Thus, w(X) = 0 . 

Next, Siegel shows w is surjective by constructing for each element 

6 W(Q) a specific 4-dimensional space which represents e in the Witt 

group. The interesting argument concerns the injectivity of w . Suppose 

that X is a connected 4k-dimensional Witt space such that w(X) = 0 , 

i.e. IH2k(X;Q ) is split. It suffices to find a cobordism X ~ X' such 

, 
that IH2k(X ) = 0 , for then X' is the boundary of the cone(X'). By 

[MH] it is possible to find a symplectic basis for IH2k(X), i.e. a 

basis in which the matrix of the intersection pairing is 
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Siegel shows that every basis element can be represented as an irre- 

ducible piecewise linear cycle in X . Let 6 be such a cycle and let 

N(~) be a regular neighborhood of ~ in X , with boundary ~N(~). Siegel 

now does surgery on X by removing the interior on the neighborhood 

N(6) and replacing it with cone(N(~)). 

Claim. The space X' = X - N(6) U cone(~N(<)) is Witt-cobordant to 

�9 m i m 
X, and dzm(IH2k(X )) = dim(IH-k(X))z - 2 o 

Proof of Claim :Notice that X' is homeomorphic to the space ob- 

tained from X by collapsing N(6) to a point. This kills the homology 

class [~] . It turns out that the dual homology class [6]* is also 

killed : if 6" presents a 2k-dimensional cycle in X such that 

�9 m l [~].[~*] = i, then~*is no longer allowed in IH2k(X ) since it would have 

to pass through the singular point. (A rigorous calculation of IH2k(X' ) 

may be made using the formula 

~ (X,N(6)) IH2k(X') = Image(IH~k(X - N(~)) + IH2k 

and noticing that this map factors through IH2k(X)) 

To see that X' is cobordant to X, collapse N(~) slowly in X x [0,i] 

and add a collar X' x [i,i + c] to the end. Thus we have "filled in" 

the surgery by adding the cone over (N(~)) U cone~N(6)) and we must 

check that the resulting space Y is a Witt space. 

The new singularity of odd codimension in Y is a point whose link 

is L = N(~)) U cone(N(6)). We must check that IH~k(L;Q ) = 0 . This 

group is at most one-dimensional and is generated by [6] : any 2k-di- 

mensional cycle in L must miss the cone point and can therefore be 
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deformed into N(~) and then further deformed onto ~ , which was chosen 

to be irreducible. On the other hand, 0 is a Witt space so 

IH2k(L;Q ) m  x iH2km (L;Q) + Q is nondegenerate. But the original basis was 

symplectic, so ~ . ~ = 0. This means that IH2k(L,Q = 0 as desired. 

7. Remarks. A similar argument applies to 4k + 2-dimensional 

spaces, but in this case a symplectic basis always exists since the 

intersection pairing is antisymmetric. 

A similar theory can be constructed by replacing the coefficients 

Q with Z/(2) in the definition (*) of Witt spaces. The resulting co- 

bordism groups are 0 in odd dimensions and coincide with 

W(Z/(2)) = Z/(2) in even dimensions. The invariant is given by the 

middle intersection homology Euler characteristic, mod 2 . 

8. Problems. 

i. The class w(X) C W(Q) is a "genus" which gives rise to a charac- 

teristic class, part of which is the L class of Hirzebruch and Thom. 

It would be interesting to study the torsion contributions to this 

characteristic class, perhaps calculating them for toric varieties. 

2. Find a classifying space for this cobordism theory. There does 

not appear to be any natural notion of a normal microbundle or block 

bundle of a Witt space. 

3. Find an analogous theory using Z coefficients instead of Q 

coefficients. There is a natural class of pseudomanifolds whose inter- 

section homology satisfies Poincar4 duality over the integers [GS]. 

These are stratified spaces such that 

a) IHm(L;Z) = 0 whenever L is the link of a stratum of odd codi- 

mension, c = Z + 1 

b) IHz_I(L;Z ) is torsion free whenever L is the link of a stratum 

2 

of even codimension c = Z + 1 . 
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VIII. LEFSCHETZ FIXED POINT THEOREM 

AND INTERSECTION HOMOLOGY 

by 

Mark Goresky and Robert MacPherson 

This article is a summary of the essential ingredients 

in [3]. We will consider a placid self-map with isolated 

fixed points on a subanalytic pseudomanifold and show that 

the trace of the induced homomorphism on intersection 

homology may be interpreted as a sum of certain linking 

numbers at the fixed points. 

In this note all spaces will be compact oriented sub- 

analytic pseudomanifolds which admit stratifications by 

even codimension strata. All maps will be subanalytic, and 

intersection homology will be taken with middle perversity 

and field coefficients, k . 

Definition: A map f: X ~ Y is placid if there exists a 

stratification of Y such that for each stratum S, 

codimxf-l(s) ~ codimy(S). 
A placid map induces homomorphisms both ways on inter- 

section homology. Thus we can define the Lefschetz number 

of a placid self map f: X ~ X by 

IL(f) = Z(-I) i Tr(f,: IHi(X) ~ IHi(X)) . 

The Lefschetz fixed point theorem of Verdier [4] 

implies that IL(f) can be written as a sum of local 

contributions at the fixed Doints of f. We wish to study 

these local contributions. 
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Intersection Homology of a join 

Let L 1 and L 2 be pseudomanifolds of dimension Z . 

Consider the join LI*L 2 . It has a covering by two open 

sets cone(L I) • L 2 and LlX cone(L 2) whose intersection 

is L 1 x L 2 x (0,i). Using Mayer Vietoris and the Kunneth 

formula it is easv to see that IHs 2) = IHz+I(LI*L 2) = 0 . 

Intersection Homology of X • X 

Choose two stratifications of X and stratify X x X 

by the product stratification. Let p be the (stratum 

dependent) perverisity which attaches the following number 

to a stratum A x B of X x X: 

cod(A) + cod(B) - 1 if cod(A) ~ cod(B) 

p(A x B) = 2 

cod(A) if cod(A) = cod(B) 

Proposition: The natural homomorphism 
I 

IHT(X x X) ~ IH~(X x X) is an isomorphism. 

Proof: In fact the complexes ICT(x x x) and IC~(X x X) 

are quasi-isomorphic, as can be seen from Deligne's 

construction of the complex of sheaves IC (see [2]). If 

(Xl,X 2) g A • B is a point in a stratum where 

codim(A) = codim(B), then the stalk cohomology at (Xl,X 2) 

of the two complexes IC ~ and IC ~ differ only in one 

dimension, and in this dimension the offending group is 

IHz(LI*L 2) = 0, where L 1 is the link of A and L 2 is 

the link of B and s = codim(A)-i = dim(L I) = dim(L2). 

(Note that LI*L 2 is the link in X x X of the stratum 

A • B. We have used the "obstruction sequence" technique 

from [2] w 

Intersecting the Graph and Diagonal 

Let f: X n ~ X n be a placid map. An easy dimension 

count shows that the graph 

G(f) = { (x,f(x)) Ix s X} 

is a (p,n) - allowable cycle in IH~(X x X) which 
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inherits an orientation from that of X because projection, 

to the first factor G(f) ~ X is a homeomorphism. By the 

preceding proposition, this cycle has a canonical lift to 

IHm(X • X). A similar remark applies to the diagonal, A . 
n 

Thus we can define the intersection product of these two 

homology classes [G(f)]. [s to be the image of the class 

[G(f)] 8 [s under the multiplication homomorphism 

IHn(X • X) 0 IHn(X • X) ~ k where k is the coefficient 

field. 

Theorem i. The Lefschetz number IL(f) is equal to the 

intersection product [G(f)]. [A] . 

Proof. The proof is the same as in Lefschetz. Choose a 

�9 o ... W} basis {e I , �9 ,e r} for IHm(X), and let {el*, ,e r 

denote the dual basis. Then 

[A ]  = 

[G(f)] =Z Z(-1) [ei 
i j  

r 

e. O e.* 
i=l 1 1 

(n- eiJ ) r  I f.. e.* O e. 
z] i ] 

where leil denotes the dimension of e i and where 

is the matrix of f, with respect to the basis 

{el,---,e r} . Multiplying these two classes gives the 

alternating sum of traces. (Here we use the sign 

conventions of Dold [i] w VIII.13.) 

(fij) 

Isolated Fixed Points. Suppose x ~ X is an isolated 

fixed point of a placid self map f: X ~ X. We wish to 

study the intersection number of the graph of f with the 

diagonal at the point (x,x). Let L denote the full link 

of x in X, i.e. the boundary of a distinguished 

neighborhood of x. Then the full link of (x,x) in 

X x X is the join L*L. The local intersection number of 

G(f) with the diagonal A may be interpreted as a linking 

number (in L'L) of the cycles 
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GL(f) = G(f) n L*L 

and 

AL(f) = A N L*L 

Let N(A L) be a regular neighborhood of A L in L*L 

(which admits a stratum preserving deformation retraction 

N(A L) ~ A L) and let [AL] denote the homology class in 

IH~ I(N(AL)) which is carried by A L . There is a unique 

homology class K e IHn(L*L,N(AL)) such that 3,(K) = [AL] 

where 

3,: IHn(L*L,N(AL)) ~ IHn_I(N(AL)) 

is the connecting homomorphism (which is an isomorphism 

because IHn(L*L) = IHn_I(L*L) = 0). 

Definition. The linking number of GL(f) and A L in L*L 

is the image of K O [GL(f)] under the nondegenerate inter- 

section pairing 

IHn(L*L , N(AL)) | IHn_I(L*L - N(AL)) ~ k . 

Remark. If X is normal then both of these groups are one- 

dimensional. 

Theorem 2. If all the fixed points of a placid map 

f: X ~ X are isolated, then the Lefschetz number of f 

the sum over all the fixed points of the local linking 

numbers of GL(f) with A L . 

Outline of proof. The diagonal A c X • X is homologous 

to a cycle A' which narrowly misses each of the fixed 

points and which coincides with the chains K (defined 

above) near each fixed point. But the intersection of the 

graph G(f) and A' 

section numbers of 

linking numbers of 

is 

occurs in points of K and the inter- 

G(f) with K are precisely the 

GL(f) with A L . 
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Definition. The self map f is contracting near an 

isolated fixed point x E X if there is a (closed) conical 

neighborhood U = cone(L) of x, which contains no other 

fixed points, such that f(u) is contained in the interior 

U ~ of U . 

By carefully examining the cycles GL(f) and A L it 

is possible to show 

Theorem 3. If f is contracting near a fixed point x e X 

then the local contribution at x to the intersection 

homology Lefschetz number of f is the trace 

i 
Z(-I) Tr(f*: IHi(X,X-x) ~ IHi(X,X-x)) 

of the induced homomorphism on the stalk cohomology of the 

intersection homology sheaf. 
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IX. PROBLEMS AND BIBLIOGRAPHY ON INTERSECTION HOMOLOGY 

by M. Goresky and R. MacPherson 

A. Intersection Homology - versions of other functors 

Before considering various possible extensions of 

intersection homology (such as intersection K-theory), we 

wish to reflect on small resolutions[D], [F]. For a small 

resolution ~: X ~ X there is a canonical isomorphism 

H,(X) ~ IH,(X). We might expect other "intersection 

functors" to satisfy a similar identity. A severe 

limitation on the existence of such functors is therefore 

provided by the existence of spaces which have two different 

small resolutions. 

We illustrate these ideas by showing that it is not 

possible to find a natural ring structure on intersection 

homology or to find Chern classes in intersection homology. 

Example i. Let X be the Schubert variety in the 

Grassmannian G2(64) consisting of all complex two-planes 

V 2 c ~4 such that dim(V 2 Q 62 ) a I. This variety X has 

a singularity at the point V 2 = {2, and it has a small 

resolution ~i: X1 ~ X where X1 consists of all (1,2)- 

flags V 1 c V 2 c ~4 such that V 1 c ~2. It has a second 

which consists of all (2,3) small resolution ~2:X2 ~ X2 62 V3" 

flags V 2 c V 3 c ~4 such that c Although X1 and 

X2 are homeomorphic, the homology isomorphisms 

(71), (v2), 
H,(X I) -> IH,(X) e H.(X 2) 

do not preserve the ring structures, nor (by a calculation 

of Verdier) do they preserve the Chern classes. 
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Example 2. Let X be the Schubert variety 

X = [V 2 ~ G2(~ 5) Idim(V 2 n ~3) ~ i} . 

Let X1 be the variety of partial flags V 1 c V 2 c ~5 

such that V 1 c ~2. Let X2 be the variety of partial 

flags V 2 c V 4 c ~5 such that ~3 c V 4 . Both E 1 and 

X2 are small resolutions of X but their cohomology rings 

H*(X I) and H*(X 2) are not even abstractly isomorphic. 

Remark ([8]). It is not possible in general to find, for 

any variety X a new space z: X ~ X such that the inter- 

section homology sheaf of X is quasi-isomorphic to the 

pushforward R~,(Z~) 

such that 

of the constant sheaf on X (i.e. 

IH,(U) ~ H,(z -I(U)) 

for each open set U c X). 

Problem #i. Is there an "intersection homology version" of 

cobordism theory or K theory (or homotopy theory)? Such 

a theory should satisfy Poincar~ duality (in some suitable 

sense) and should agree with the usual cobordism or K 

theory of a small resolution (when one exists). In 

particular one must determine whether the cobordism or K 

groups of any two small resolutions coincide. 

An obvious attempt at such a theory would be to define 

I ~P(x) to be cobordism classes of continuous maps 
1 

f: M ~ X (from a smooth i-dimensional manifold M to a 

stratified space X), which are required to satisfy a 

perversity condition 

dim f-l(s) ~ i - cod(S) + p(cod(S)) 

whenever S is a statum of X. However it is unclear how 

to construct a product 

I ~(X) @ I ~(X) ~ I ~P+q(x), 
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and there is no reason to believe that Poincar6 duality will 

hold for such a theory. 

B. Relations with Analysis 

Let X be a complex projective algebraic variety. 

Consider the Kaehler metric on the nonsingular part X ~ of 

X which is induced from the Fubini-Study metric on the 

ambient projective space. 

Problem #2: In [15] it is conjectured that the closed L 2 

differential p-forms modulo the exact L 2 differential 

p-forms is a finite dimensional group which is canonically 

isomorphic to IH2n_p(X). It is also conjectured that every 

such L 2 cohomology class contains a unique harmonic form, 

and the G-valued harmonic forms can be split into (p,q)- 

components thus inducing a pure Hodge structure on IH,(X). 

There should also be relations between IH,(X) and 

other differential operators on L 2 (see the discussion in 

[F]). 

Problem 3: Does the index of the ~ complex on the L 2 

differentia] forms on X ~ coincide with the arithmetic 

aenus of every resolution of singularities o { X? What is 

the correct generalization of the A genus to singular 

varieties so that it coincides with the index of the L 2 

Dirac operator (see [2])? 

These L 2 methods may eventually be used to prove 

that the decomposition formula ([A], [20]) holds for 

complex analytic maps. 

C. Functoriality of Intersection Homology 

Problem #4: Find the most general category of spaces and 

maps (perhaps with additional data) on which intersection 

homology is functorial. 

Remark: Problem #4 has a trivial solution: intersection 

homology is a functor on the category whose morphisms from 
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X to Y are continuous maps f: X ~ Y together with a 

"lift" to a sheaf map f. IC'(X) ~ IC" (Y). The real problem 

is to find a functor from a more geometric category to this 

one. 

Discussion: (In this discussion we will treat only the 

middle perversity.) There are several classes of maps 

f: X ~ Y for which one can naturally associate homo- 

morphisms between IH,(X) and IH.(Y). (If we restrict to 

field coefficients every natural homomorphism 

IH.(X) ~ IH.(Y) has an adjoint IH.(Y) ~ IH.(X) so 

functoriality will be both covariant and contravariant.) 

(a) Placid maps: [6] [E] [F] These are not closed under 

composition, but there is a well defined placid homotopy 

category and intersection homology is functorial on this 

category. 

(b) Small maps [D]. There is no obvious way to make these 

into a category. However if the composition of two small 

maps f and g happens to be small then f.g. = (fg).. 

There are examples of diagrams of placid or small maps 

such that the induced homomorohisms on homology do not 

commute. The varieties X, Xl and X2 can be taken as in 

example 1 above, and X can be taken to be the blow up of 

X at the singular point. 

diagram 

where fl and 

Then there is a commutative 

fl 

f2 I I 71 

X2 72 ~X 

f2 are placid, 71 and 72 are small, 

but the induced square on intersection homology does not 

commute. 

(c) Proper algebraic surjections: Deligne has shown that 

if f: X ~ Y is a proper alaebraic surjection and if D 
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is a choice of a relatively ample divisor then the direct 

sum decomposition ([A], [20], [F]) can be made canonical. 

This procedure produces a map 

R~,: It�89 ~ It�89 

(d) Two-way morphisms: A possible replacement for 

functoriality of intersection homology may be a group 

IH,(f) defined for appropriately stratified maps f: X ~ Y, 

which maps both ways, i.e. 

IH.(X) ~ IH,(f) ~ IH,(Y) 

A candidate for IH,(f) may be constructed using chains on 

X which satisfy the allowability conditions in X and 

whose images satisfy the allowability conditions in Y. 

However it is not clear how to formulate functoriality of 

this construction, nor is it clear to what extent IH,(f) 

is invariant under restratification of X and Y. 

(e) The following question is even more speculative: For 

an oriented map f: X ~ Y ([3]) with equidimensional 

fibres, is there a functor fm: Db(y) ~ Db(x) (defined on 

the constructible derived categories of X and Y) with 
m 

the property that f (IC~) = IC~ ? This functor should be 

"halfway" between the functors f* = f~ and f! = ft and 

the relative orientation should induce natural transforma- 
I 

tions f, ~ fm ~ f. If such a functor exists we might 
m 

defize IH(f) to be the hypercohomology of f (~_~y) . In 

any case one can ask whether there is a bivariant inter- 

section homology theory ([3]). 

D. Cobordism Calculations 

Fix a (finite dimensional regular Noetherian) 

coefficient ring R. Let p ~ m be a perversity below the 

middle one, and let q = t - p be the complementary 

perversity. We shall say an n-dimensional compact 

pseudomanifold X satisfies p - partial Poincare duality 

(over the ring R) provided 

(i) the natural sheaf map IC'- ~ IC'- is a quasi- 
P q 

isomorphism, and 
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(2) the intersection pairing IC'- • IC'- ~ D "[n] 
q P 

induces a quasi-isomorphism 

Problem #5: 

satisfying 

Discussion: 

IC'~ ~ R Hom" (IC'~ , D ") In] 

Compute the cobordism aroums dP of spaces 

p - p a r t i a l  P o i n c a r e  d u a l i t y .  

Condition (i) and (2) imply that IH,P(x) 

satisfies Poincare duality over R. If R is a field then 

condition (2) is always satisfied; in general this is a 

condition on the higher tor groups of the intersection 

homology groups of links of strata (see [7] for the case 

R = Z). Condition (i) is equivalent to the following 

statement: for each stratum of codimension c, if 

p(c) < q(c) then 

IH~(c)+I(L;R)p = IHP(c)+2(L;R)p ..... IH p, , (L;R) = 0 
q~c) 

where L is the link of the stratum in question. 

Several interesting cases of these cobordism groups 

are known: 

(a) R = Q, p = m. These spaces are the Witt spaces of 

Siegel ([14]) and the cobordism groups are = 0 

unless i ~ 0(mod 4) and ~4k = W(Q), the Witt group 

of the rationals. 

(b) R = Z/(2), p = m: These spaces are "~/(2)-Witt 

spaces" and the cobordism groups are ~odd = 0; 

= Z/(2) . 
even 

(c) R = ~, p = m: These spaces are discussed in [7] and 

the cobordism groups have been shown ([13]) to coincide 

with the higher Mischenko-Witt groups of the integers. 

(d) R = Q, p = O: These spaces are rational homology 

manifolds whose cobordisms groups were computed by 

Maunder. 

(e) R : Q, p(c) = [~]. For these spaces IH~(X) forms a 

non-associative?) ring because the produc[ of any two 

classes in IH~(X) lies in IH~ p(X) & IH~(X) . 
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Is it possible to find explicit constructions for the 

classifying spaces of these cobordism theories? 

There are canonical maps ~ ~ ~q whenever q > 
W -- " 

One expects these maps to be rationally surjective and to 

correspond to "killing" various characteristic numbers: 

as p increases it should be harder and harder to define 

characteristic numbers by intersecting characteristic 

classes. 

There should also be interesting products between the 

various ~ 

Problem #6: Is there a sheaf-theoretic construction of the 

bordism group ~m i(X) of continuous maps from i-dimensional 

Witt spaces to X? The objects in this theory should be 

certain equivalence classes of complex of sheaves ~" on 

X together with a Verdier dual pairing ~" | ~" ~ ]D~ . 

If f: Y ~ X is an element of ~m(x) then the correspond- 
1 

ing sheaf is ~" = Rf, y . If X is a point then we 

should recover the higher Mischenko-Witt groups. 

E. Intersection Homology of Real Algebraic Varieties 

Problem #7: Is there a self-dual Z/(2)-generalization of 

intersection homology for real algebraic varieties? 

Discussion: It would not be a purely topological invariant- 

for example it would give different groups for the following 

two spaces: 
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If we denote this proposed group by IJ, we would 

expect IJI(X) = Z/(2) �9 Z/(2) while 

IJI(Y) = Z/(2) ~ Z(2) �9 Z/(2) ~ ~(2). 

If the real algebraic variety X has a (real) small 

resolution X then IJ,(X) should agree with H,(X). The 

example of a real Schubert variety is suggestive: Let X 

be the real version of example 1 from section A. Then, 

IJ,(X) = H,(X;Z/(2)) which is Z/(2) in dimensions 0 

and 3, and is Z/(2) �9 ~/(2) in dimensions 1 and 2. 

I P(X;Z/(2)) for any perversity p. Notice that this is not H, 

A preliminary problem would be to determine whether 

H,(X;Z/(2)) is the same for all small resolutions X of a 

real algebraic variety X. 

F__ t. Intersection Homology of Noncompact Varieties 

The following question was asked by D. Kazhdan: 

Problem #8: Is there a generalization of intersection 

homology which applies to a noncompact variety and which 

satisfies Poincar6 duality and hard Lefschetz? 

We remark that it is easy to find self dual homology 

Fi(X) associated to a non-compact variety. For groups 

example 

Fi(X) = Image (Hi(X) ~ HBM(x)) 

where HiM(x) denotes the (Borel-Moore) homology with 
1 

closed supports. If X is nonsingular then this group is 

dual to F2n_i(X) and Deligne has pointed out that it 

even has a pure Hodge structure. However, it does not 

satisfy hard Lefschetz. 

G. Orbits of Reductive Group Actions 

Intersection homology has been computed for Schubert 

varieties ([41], [42], [40]), toric varieties ([El) and for 

K~ orbits on the variety of Borel subgroups of a complex 

reductive group [47], and nilpotent varieties ([36], [37]). 

In each of these cases both the global and the local inter- 
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section homology turns out to be zero in odd degrees. 

Problem #9: Explain this phenomenon. Is it also true for 

any space on which a reductive group acts with finitely 

many orbits? 

H__ t Characteristic Numbers of Algebraic Varieties 

Problem #i0: Which characteristic numbers can be defined 

for all algebraic varieties, in such a way that they 

coincide with the (usual) characteristic numbers of 

whenever X ~ X is a small resolution? 

Discussion: This list is known to contain the Euler 

characteristic, the signature (or "L-genus"), and the 

arithmetic (or Todd) aenus. Do all algebraic cycles lift 

(rationally) to intersection homology? If so, and if the 

lifts are sufficiently canonical, can we then multiply 

Chern classes to create more characteristic numbers? 

I. Miscellaneous 

Problem #ii: Is there a category of spaces, maps and 

homotopies, and a "classifying space" B so that IH (X) 
l 

can be interpreted as homotopy classes of maps from X to 

B? 

Problem #12: Find a stratification independent constructive 

definition of intersection homology. (Note that a 

stratification independent characterization is given in [D]). 
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