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A ρ�INVARIANT OF ITERATED TORUS KNOTSMACIEJ BORODZIKAbstrat. We ompute ρ�invariant for iterated torus knots K for thestandard representation π1(S
3 \ K) → Z given by abelianisation. Foralgebrai knots, this invariant turns out to be very losely related to aninvariant of a plane urve singularity, oming from algebrai geometry.1. IntrodutionA von Neumann ρ�invariant (also alled L2�signature, or L2�eta invari-ant) of a real losed 3�manifold M is a real number ρφ(M) assoiated toevery representation φ : π1(M) → Γ, where Γ is any group satisfying PTFAondition (see [COT1, De�nition 2.1℄). As a speial ase, if K is a knotin a 3�sphere, and we onsider representations of the fundamental group ofthe manifold S3

0(K) (i.e. a zero surgery on K), then we an talk about the
ρ�invariants of knots. In partiular, the representation ab : π1(S

3 \K) → Z,given by abelianization, gives rise to the representation ãb : π1(S
3
0(K)) → Zand the orresponding invariant, ρab(K), turns out to be the integral overnormalised unit irle of the Tristram�Levine signature of a knot.The ρ�invariants for knots have been introdued �rst in [ChG℄. They werethen deeply studied in [COT1℄. In their seminal paper, the authors observedthat they are a very subtle obstrution for some knots to be slie. Namely, letus be given a knot K bounding a disk D in the ball B4. Let Y = ∂(B4\ν(D)),where ν denotes the tubular neighbourhood. Then Y is anonially isomor-phi to S3

0(K), and, for any representation φ : π1(Y ) → Γ that an beextended to φ̃ : π1(B
4 \ ν(D)) → Γ, the orresponding ρ�invariant mustvanish. This allows to onstrut examples of non-slie knots, undistinguish-able from slie knots by previously known methods as the Tristram�Levinesignature or the Casson�Gordon invariants.The di�ulty of omputability of ρ�invariants is the ost of their sub-tlety. Only in the �rst nontrivial ase of the representation given by ab,there is a general method of omputing this invariant, namely integratingthe Tristram�Levine signature. In papers [COT2℄, [Ha℄, and others, theseDate: 29 June 2009.1991 Mathematis Subjet Classi�ation. primary: 57M25, seondary: 14H20.Key words and phrases. ρ�invariant, L2�signature, Tristram�Levine signature, torusknot, algebrai knot, plane urve singularity.The author is partially supported by the Foundation for Polish Siene.1
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2 MACIEJ BORODZIKinvariants were omputed also for some other representations of the knotgroup. But there, the hoie of knots is very spei�.In this paper we fous on ρab�invariant and ompute it for all iteratedtorus knots. The omputation onsists of integrating the Tristram�Levinesignature, whih is not a ompletely trivial task. In fat, we do even more:we ompute the Fourier transform of the Tristram�Levine signature funtionof iterated torus knot. This transform an be expressed by a surprisinglysimple formula. In partiular, this method an be used to detet knots,whih are onneted sums of iterated torus knots and whih have identialTristram�Levine signature.What we �nd most interesting and striking about ρab of algebrai knots,is its relation with deep algebro-geometrial invariants of the plane urvesingularity. We state this relation, in terms of a uniform bound (see Proposi-tion 4.6) but, honestly speaking, we are far from understanding it. Moreover,this relation is not that lear for algebrai links, as we show on an example.The struture of the paper is the following. In Setion 2 we reall, how toompute the Tristram�Levine signature for iterated torus knots and formu-late Theorem 2.8. Then we dedue some of its orollaries. In Setion 3 weprove Theorem 2.8. In Setion 4 we reall de�nitions of some invariants ofplane urve singularities and ompare them to ρab for algebrai knots. Weend this setion by omputing the ρab for a (d, d) torus link, i.e., the link ofsingularity xd − yd = 0.We apologise the reader for not giving a de�nition of the ρ�invariant.A preise de�nition from srath, inluding neessary de�nitions of twistedsignature of a 4−manifold, would make this paper twie as long. Instead werefer to [COT1, Setion 5℄, or, for more detailed treatment, to a book byLük [Lu℄.We end this introdution by remarking that the ρ invariants were alsostudied in the ontext of mixed Hodge strutures of hypersurfae singular-ities. The η invariant, de�ned, for instane, in [Ne1, Setion I℄, is loselyrelated to the ρab invariant in the ase of plane urve singularities. We referto [Ne2, Ne3℄ for the detailed study of this invariant.2. Tristram�Levine signature of torus knotsWe begin this setion with some de�nitions, whih we give also to �x thenotation used in the artile.De�nition 2.1. A knot is alled an iterated torus knot if it arises froman unknot by �nitely many abling operations. An iterated torus knot is oftype (p1, q1, . . . , pn, qn) if it is a (p1, q1) able of (p2, q2) able of . . . of (pn, qn)able of an unknot. Fore example, a torus knot Tp,q is an iterated torus knotof type (p, q).De�nition 2.2. Let K be a knot, S its Seifert matrix. Let ζ ∈ C, |ζ| = 1.The Tristram�Levine signature, σK(ζ) is the signature of the hermitian form



A ρ�INVARIANT OF ITERATED TORUS KNOTS 3given by(2.1) (1 − ζ)S + (1 − ζ̄)ST .It is well-known that the form (2.1) is degenerate (i.e. has non-trivialkernel) if and only if ζ is a root of the Alexander polynomial ∆K of K.The funtion ζ → σK(ζ) is pieewise onstant with possible jumps only atthe roots of the Alexander polynomial ∆K(ζ). The value of σK at suhroot an a priori be di�erent then left or right limit of σK at that point.However, there are only �nitely many suh values and they do not in�uenethe integral. As we do not want to take are of this values, we introdue avery handy notion.De�nition 2.3. We shall say that two pieewise-onstant funtions from aunit irle (or a unit interval) to real numbers are almost equal if they areequal at all but �nitely many points.We would like to ompute ρab for an iterated torus knot. We will useProposition 5.1 from [COT2℄, whih we an formulate as follows.Proposition 2.4. For any knot K ⊂ S3 we have
ρab(K) =

∫ 1

0
σK(e2πix)dx.Therefore, what we have to do, is to ompute the integral of the Tristram�Levine signature for an iterated torus knot. We begin with realling resultsfrom [Li℄, where the funtion σK is omputed for iterated torus knots.Let p, q be oprime positive integers. Let x be in the interval [0, 1]. Con-sider the set

Σ = Σp,q =

{
k

p
+

l

q
: 1 ≤ k < p, 1 ≤ l < q

}
⊂ [0, 2] ∩ Q.The funtion sp,q(x) is de�ned as

sp,q(x) = −2#Σ ∩ (x, x + 1) + #Σ.Lemma 2.5 ([Li℄). If ζ = e2πix is not a root of the polynomial (tpq − 1)(t −
1)/(tp − 1)(tq − 1), then the Tristram�Levine signature of the torus knot Tp,qat ζ is equal to sp,q(x).Therefore, omputing the ρ�invariant of a torus knot boils down to om-puting the integral of the funtion sp,q(x). Before we do this, let us show,how one an ompute the Tristram�Levine signatures of an iterated torusknot. We shall need another lemma from [Li℄.Lemma 2.6. Let K be a knot and Kp,q be the (p, q)−able on K. Then forany ζ ∈ C, |ζ| = 1, we have

σKp,q(ζ) = σK(ζq) + σTp,q(ζ).



4 MACIEJ BORODZIKThis allows a reursive omputation for an iterated torus knot. Namely,let for r > 1
sp,q;r(x) = sp,q(⌊rx⌋).Corollary 2.7. Let K be an iterated torus knot of type (p1, q1, . . . , pn, qn).Let x ∈ [0, 1] be suh that e2πix is not a root of the Alexander polynomial of

K. Denote by rk = q1 . . . qk−1. Then
σK(e2πix) =

n∑

k=1

spk,qk,rk
(x).The ore of this setion isTheorem 2.8. For any β ∈ C whih is not an integer divisible by r we have(2.2) ∫ 1

0
eπiβxsp,q,r(x) dx =

2eπiβ/2 sin πβ
2

πβ
np,q;r(

πβ

2
),where

np,q;r(t) = cot
t

pqr
cot

t

r
− cot

t

pr
cot

t

qr
.In partiular, by taking a limit β → 0 we get

∫ 1

0
sp,q,r = −

1

3
(p −

1

p
)(q −

1

q
).Remark 2.9. The funtion np,q;r(t) will be alled normalised Fourier trans-form.We prove Theorem 2.8 in Setion 3. Now we pass to orollaries.Corollary 2.10. The ρab invariant of an iterated torus knot is equal to

−
1

3

n∑

k=1

(pk −
1

pk
)(qk −

1

qk
).Apart of this orollary, Theorem 2.8 has its interest of its own. In fat, itmight help to study possible obordism relations between iterated torus knot.For example, Litherland showed in [Li℄, that the onneted sum of knots T2,3,

T3,5 and a (2, 5)-able on T2,3 has the same Tristram�Levine signature as a
T6,5. It might be possible that normalised Fourier transforms of torus knotsan help studying similar phenomena. This ould be done as follows.Lemma 2.11. Let us be given two �nite sets I and J of triples of integers
{p, q, r}. Then the di�erene(2.3) ∆IJ(x) :=

∑

i∈I

spi,qi;ri
(x) −

∑

j∈J

spj,qj ;rj
(x)is almost equal to zero for x ∈ [0, 1], if and only if the di�erene(2.4) ∆̂IJ(t) :=

∑

i∈I

npi,qi;ri
(t) −

∑

j∈J

npj ,qj;rj
(t)is equal to zero on some open subset in C.



A ρ�INVARIANT OF ITERATED TORUS KNOTS 5Sketh of proof. The 'only if' part is trivial. To prove the 'if' part we observethat ∆̂IJ(t) · t
et sin t is, up to a multipliative onstant, and up to resaling ofthe parameter t, the Fourier transform of ∆IJ(x), when we extend ∆IJ(x)by 0 to the whole real line. On the other hand, vanishing of ∆̂IJ(t) on someopen subset of C implies that it is everywhere 0. �Proposition 2.12. The ondition that ∆IJ(x) is almost equal to zero isequivalent to the fat, that two following onditions are satis�ed at one(a) ∑i∈I(pi −

1
pi

)(qi −
1
qi

) =
∑

j∈J(pj −
1
pj

)(qj −
1
qj

).(b) For any t0 suh that πrkt0 ∈ Z for some k ∈ I ∪ J the residuum at
t0 of ∆̂IJ(t) is zero.Remark 2.13. If T is the least ommon multiplier of pkqkrk for k ∈ I ∪ J ,then Tπ is the period of ∆̂IJ(t). It follows that the ondition (b) involvesonly �nitely many equations.Proof of Proposition 2.12. Vanishing of ∆̂IJ(t) learly implies (b). The equal-ity in (a) is equivalent to 3∆̂IJ(0) = 0. We shall prove that (b) implies that

∆̂IJ(t) is bounded on C. This is done as follows.Observe that, in general, ∆̂IJ(t) an have poles only at suh t0's, that
πrkt0 ∈ Z, for some k ∈ I ∪ J . Moreover, these poles are at most of order
1: in fat, it is a matter of simple omputation, that np,q;r does not havea pole of order 2. Therefore, ondition (b) implies that the ∆̂IJ(t) extendsholomorphially aross points n

πrk
, where k ∈ I ∪ J and n ∈ Z. As thisfuntion is periodi with real period, for any δ > 0 it is bounded on the strip

| Im t| ≤ δ by some onstants, depending of ourse of δ.A uniform bound on ∆̂IJ(t) for | Im t| ≥ δ results from the standardestimate | cot t|2 ≤ 1 + 1
(Im t)2

. Hene, if (b) holds, then the funtion ∆̂IJ(t)is a bounded holomorphi funtion, by Liouville's theorem it is then onstant.The ondition (a) implies then that it vanishes at 0, so it is zero everywhere.
�3. Proof of Theorem 2.8To make omputations at least a bit more transparent, let us �rst assumethat r = 1. The funtion sp,q an be expressed as the sum

sp,q(x) = 2
∑

α<1/2
α∈Σp,q

χ(α,1−α)(x) − 2
∑

α∈(1/2,1)
α∈Σp,q

χ(1−α,α)(x),where χ(a,b) is the harateristi funtion of the interval (a, b). Therefore(3.1) ∫ 1

0
sp,q(x)eπiβxdx = −

2

πiβ

∑

α<1
α∈Σp,q

eπiαβ − eπiβ(1−α).



6 MACIEJ BORODZIKWe have
∑

α<1
α∈Σp,q

eπiαβ =

p−1∑

k=1

q−1∑

l=1
l<q(1−k/p)

eπiβ(k/p+l/q).The internal sum on the right hand side is the sum of geometri series (herewe use the assumption that β is not an integer) and an be expressed as
1

1 − eπiβ/q
(eπiβk/p − eπiβ(k/p+lk/q)),where lk satis�es

k/p + lk/q > 1 > k/p + (lk − 1)/q.So we have(3.2) ∑

α<1
α∈Σp,q

eπiαβ =

p−1∑
k=1

eπiβk/p −
p−1∑
k=1

eπiβ(k/p+lk/q)

1 − eπiβ/q
.The �rst sum in the denominator is again a geometri series. As to theseond one, let us denote

γk = k/p + lk/q.Then γk's have the following obvious properties(a) γk's are all di�erent;(b) 1 + 1
pq ≤ γk ≤ 1 + p−1

pq ;() eah γk is of the form 1 + ak/pq with ak an integer.By the Dirihlet priniple the set {γ1, . . . , γp−1} is the same as the set {1 +
1/pq, . . . , 1 + (p − 1)/pq}. Therefore, the seond sum in the denominator(3.2), upon reordering, an be expressed as

p−1∑

m=1

eπiβ(1+m/pq),whih again is a geometri series. Putting things all together we get(3.3)
∑

α<1
α∈Σp,q

eπiαβ =
1

1 − eπiβ/q

(
eπiβ/p − eπiβ

1 − eπiβ/p
−

eπiβ(1+1/pq) − eπiβ(1+1/q)

1 − eπiβ/pq

)
.On the other hand, we have

∑

α<1
α∈Σp,q

eπi(1−α)β = eπiβ
∑

α<1
α∈Σp,q

eπiα(−β),



A ρ�INVARIANT OF ITERATED TORUS KNOTS 7and the sum on the right hand side is just (3.3) with −β substituted in plaeof β. Substituting this into (3.1), and applying the formula eπia − eπib =

2ieπi(a+b)/2 sin π(a−b)
2 several times, we arrive �nally at

∫ 1

0
sp,q(x)eπiβdx =

2eπiβ/2 sin πβ
2

πβ
(cot

πβ

2pq
cot

πβ

2
− cot

πβ

2p
cot

πβ

2q
).To onlude the proof in the ase r > 1 we observe that

sp,q;r(x) =2
∑

α<1/2
α∈Σp,q

r−1∑

k=0

χ(α+k
r

, 1−α+k
r )(x)+

−2
∑

α∈(1/2,1)
α∈Σp,q

r−1∑

k=0

χ( 1−α+k
r

, α+k
r )(x)Thus(3.4) ∫ 1

0
sp,q;re

πiβx =
−2

πiβ

∑

α<1
α∈Σp,q

r−1∑

k=0

eπiβ(α/r+k/r) − eπiβ(1−α/r−k/r).Now, for �xed α we have
r−1∑

k=0

eπiβ(α/r+k/r) = eπiα(β/r)
r−1∑

k=0

eπiβk/r = eπiα(β/r) 1 − eπiβ

1 − eπiβ/r
.Therefore, returning to (3.4) we get

∑

α<1
α∈Σp,q

r−1∑

k=0

eπiβ(α/r+k/r) =
1 − eπiβ

1 − eπiβ/r

∑

α<1
α∈Σp,q

eπiα(β/r).We an use (3.3) again, substituting β/r in plae of β. Similarly we andeal with a sum of terms eπiβ(1−α/r−k/r). Now straightforward but longomputations yield the formula (2.2).4. Relation with algebrai invariantsThe setup in this setion is the following. Let (C, 0) ⊂ C2 be germ ofa plane urve singularity with one branh. This means that there exists aloal parametrisation C = (x(t), y(t)), with x and y analyti funtions in onevariable with x(0) = y(0) = 0. Let us assume that the Puiseux expansion of
y in frational powers of x written is the multipliative form (see [EN, page49℄) is

y = xq1/p1(a1 + xq2/p1p2(a2 + . . . + xqs/p1p2p3...ps(as + . . .))),with q1 > p1 (otherwise we swith x with y), gcd(qi, pi) = 1 and pi, qi >
0. The pairs (p1, q1), . . . , (pn, qn) are alled harateristi pairs (or Newton



8 MACIEJ BORODZIKpairs) of the singularity. They ompletely determine the topologial type ofthe singular point.Lemma 4.1 (see e.g. [EN℄). Put a1 = q1 and ak+1 = pk+1pkak +qk+1. Thenthe link of the singularity (C, 0) is an iterated torus knot. More preisely, itis a (pn, an) able on (pn−1, an−1) able on . . . on (p1, a1) torus knotRemark 4.2. The ordering of ables in [EN℄ is di�erent than in [Li℄. A-ording to De�nition 2.1, the link of the singuarity (C, 0) above would be aniterated torus knot of type (pn, qn, pn−1, qn−1, . . . , p1, q1).Corollary 4.3. The ρab invariant of an algebrai knot is equal to(4.1) ρab = −
1

3

n∑

k=1

(
akpk −

ak

pk
−

pk

ak
+

1

pkak

)
.It is on purpose that we wrote formula (4.1) in a di�erent shape that inCorollary 2.10.Let us now resolve the above singularity. This means that we have a map

π : (X,E) → (U, 0), where U is a neighbourhood of 0 in C2, E is the exep-tional divisor and X is a omplex surfae. We require the strit transform
C ′ to be smooth, C ′ ∪ E to have only normal rossings as singularities andthe resolution to be minimal, so that we annot blow-down any exeptionalurve without violating one of the two above assumptions.Put K = KX the anonial divisor on X and let D = C ′+Ered. Here, thesubsript 'red' means that we take a redued divisor, i.e. oe�ients withall omponents are equal to 1.Lemma 4.4 ([OZ℄). Using the notation from this setion, we have(4.2) (K + D)2 = a1p1 −

⌈
a1

p1

⌉
−
⌈p1

a1

⌉
+

n∑

k=2

(
akpk −

⌈
ak

pk

⌉)
,where (K + D)2 denotes the self-intersetion of the divisor K + D, and

⌈x⌉ = min(n ∈ Z, n ≥ x).On the one hand (K + D)2 has a very natural meaning. Namely, at leastfor unibranhed singularities, this is the sum of the Milnor number µ and soalled M̄ number of singularity. The latter, introdued in [Or℄ and studiedin [BZ℄, an be interpreted as a parametri odimension of a singular point,i.e. the number of loally independent onditions, whih are imposed on aurve given in parametri form, by the appearane of the singularity of giventopologial type.On the other hand there is an apparent similarity of left hand sides offormulae (4.1) and (4.2). To make it even more similar, let us take a Zariski�Fujita [Fuj℄ deomposition of the divisor K + D. We have then
K + D = H + Nwith H nef (its intersetion with any algebrai urve in X is non-negative),

N e�etive and N2 < 0, H · N ′ = 0 for any N ′ supported on suppN .



A ρ�INVARIANT OF ITERATED TORUS KNOTS 9Lemma 4.5 ([OZ℄).(4.3) H2 = a1p1 −
a1

p1
−

p1

a1
+

n∑

k=2

(
akpk −

ak

pk

)
.In the ase of unibranhed singularity, the quantity H2 is the sum ofMilnor number and so alled M -number (without a bar) of singular point.Its importane lies in the fat that the sum of M -numbers of all singularpoints of an algebrai urve in CP 2 an be bounded from above by globaltopologial data of the urve, as genus and �rst Betti number (see [BZ℄).These bounds involve very deep Bogomolov�Miyaoka�Yau inequality fromalgebrai geometry.Thus the following result seem to be a very mysterious and shows a deeplink between knot theory and algebrai geometry.Proposition 4.6. Let ρab be the integral of the Tristram�Levine signatureof an algebrai knot (see (4.1)) and H2 be like in (4.3). Then

0 < −3ρab − H2 <
2

9
.Proof. It easy to observe that

∆ := −3ρab − H2 =
1

a1p1
+

n∑

k=2

(
1

akpk
−

pk

ak

)
.On the one hand

∆ ≤
n∑

k=1

1

akpk
.Reall that ak+1 = akpk+1pk + qk+1, so ak+1pk+1 > akpkp

2
k+1 ≥ 4akpk.Hene

∆ ≤
1

a1p1

n−1∑

k=0

1

4k
<

4

3a1p1
.But a1p1 ≥ 6, so one inequality is proved.To prove in the seond one, let us reorganise terms of ∆ as follows

∆ =

n−1∑

k=1

(
1

akpk
−

pk+1

ak+1

)
+

1

anpn
.But

1

akpk
−

pk+1

ak+1
=

1

akpk
−

pk+1

akpkpk+1 + qk+1
>

1

akpk
−

pk+1

akpkpk+1
= 0.

�



10 MACIEJ BORODZIKWe end up the hapter with the simplest example of multibranhed sin-gularity, i.e. with a singularity de�ned loally by xd − yd = 0 with d ≥ 2.Its link at singularity is the torus link Td,d. Let us onsider a set
Σd = {

i

d
+

j

d
, 1 ≤ i, j ≤ d − 1}.Here the element k/d appears in Σd preisely d − 1 − |d − 1 − k| times,aording to possible presentations k = i + j, 1 ≤ i, j ≤ d − 1. Let sd(x) bethe funtion omputing the elements of Σd in (x, x + 1) with a '−' sign andthe others with '+' sign. Then sd is almost equal to the Tristram�Levinesignature of link Td,d. We have the formula

sd = 2
∑

k<d/2

(k − 1)χ( k
d
, d−k

d ) − 2(k − 1)
∑

k>d/2

χ( d−k
d

, k
d ) − (d − 1).The �nal term, −(d−1), omes from the d−1 elements of the set Σd of type

d/d. They belong to any interval (x, x + 1). Thus, the integral of sd is equalto
∫ 1

0
sd = −2

d−1∑

k=1

(k − 1)
2k − d

d
− (d − 1).But an elementary alulus shows that

d−1∑

k=1

(k − 1)(2k − d) =
d(d − 1)(d − 2)

6
.Hene

∫ 1

0
sd = −

1

3
(d − 1)(d + 1).On the other hand, in order to resolve the singularity of C we need onlyone blow-up. The exeptional divisor E onsists of single rational urvewith E2 = −1. Then K = KX = αE and C ′ = βE (as E spans seond(o)homology of blown-up spae) and K(K + E) = −2 by genus formula, so

K = E and C ′ ·E = d, so C ′ = −d·E. Thus K+D = K+C ′+E = (2−d)E.Moreover, this divisor is nef, so its Zariski�Fujita deomposition is trivial,
H = (2 − d)E, N = 0, so in this ase

H2 = (d − 2)2.This shows that, in ase of general links, a trivial analogue of Proposition 4.6does not hold.Aknowledgements. The author is very grateful to Tim Cohran and StefanFriedl for explaining the rudiments of ρ�invariants. He wishes also to expresshis thanks to Andràs Némethi for various disussions on the subjet.
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