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A ρ�INVARIANT OF ITERATED TORUS KNOTSMACIEJ BORODZIKAbstra
t. We 
ompute ρ�invariant for iterated torus knots K for thestandard representation π1(S
3 \ K) → Z given by abelianisation. Foralgebrai
 knots, this invariant turns out to be very 
losely related to aninvariant of a plane 
urve singularity, 
oming from algebrai
 geometry.1. Introdu
tionA von Neumann ρ�invariant (also 
alled L2�signature, or L2�eta invari-ant) of a real 
losed 3�manifold M is a real number ρφ(M) asso
iated toevery representation φ : π1(M) → Γ, where Γ is any group satisfying PTFA
ondition (see [COT1, De�nition 2.1℄). As a spe
ial 
ase, if K is a knotin a 3�sphere, and we 
onsider representations of the fundamental group ofthe manifold S3

0(K) (i.e. a zero surgery on K), then we 
an talk about the
ρ�invariants of knots. In parti
ular, the representation ab : π1(S

3 \K) → Z,given by abelianization, gives rise to the representation ãb : π1(S
3
0(K)) → Zand the 
orresponding invariant, ρab(K), turns out to be the integral overnormalised unit 
ir
le of the Tristram�Levine signature of a knot.The ρ�invariants for knots have been introdu
ed �rst in [ChG℄. They werethen deeply studied in [COT1℄. In their seminal paper, the authors observedthat they are a very subtle obstru
tion for some knots to be sli
e. Namely, letus be given a knot K bounding a disk D in the ball B4. Let Y = ∂(B4\ν(D)),where ν denotes the tubular neighbourhood. Then Y is 
anoni
ally isomor-phi
 to S3

0(K), and, for any representation φ : π1(Y ) → Γ that 
an beextended to φ̃ : π1(B
4 \ ν(D)) → Γ, the 
orresponding ρ�invariant mustvanish. This allows to 
onstru
t examples of non-sli
e knots, undistinguish-able from sli
e knots by previously known methods as the Tristram�Levinesignature or the Casson�Gordon invariants.The di�
ulty of 
omputability of ρ�invariants is the 
ost of their sub-tlety. Only in the �rst nontrivial 
ase of the representation given by ab,there is a general method of 
omputing this invariant, namely integratingthe Tristram�Levine signature. In papers [COT2℄, [Ha℄, and others, theseDate: 29 June 2009.1991 Mathemati
s Subje
t Classi�
ation. primary: 57M25, se
ondary: 14H20.Key words and phrases. ρ�invariant, L2�signature, Tristram�Levine signature, torusknot, algebrai
 knot, plane 
urve singularity.The author is partially supported by the Foundation for Polish S
ien
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2 MACIEJ BORODZIKinvariants were 
omputed also for some other representations of the knotgroup. But there, the 
hoi
e of knots is very spe
i�
.In this paper we fo
us on ρab�invariant and 
ompute it for all iteratedtorus knots. The 
omputation 
onsists of integrating the Tristram�Levinesignature, whi
h is not a 
ompletely trivial task. In fa
t, we do even more:we 
ompute the Fourier transform of the Tristram�Levine signature fun
tionof iterated torus knot. This transform 
an be expressed by a surprisinglysimple formula. In parti
ular, this method 
an be used to dete
t knots,whi
h are 
onne
ted sums of iterated torus knots and whi
h have identi
alTristram�Levine signature.What we �nd most interesting and striking about ρab of algebrai
 knots,is its relation with deep algebro-geometri
al invariants of the plane 
urvesingularity. We state this relation, in terms of a uniform bound (see Proposi-tion 4.6) but, honestly speaking, we are far from understanding it. Moreover,this relation is not that 
lear for algebrai
 links, as we show on an example.The stru
ture of the paper is the following. In Se
tion 2 we re
all, how to
ompute the Tristram�Levine signature for iterated torus knots and formu-late Theorem 2.8. Then we dedu
e some of its 
orollaries. In Se
tion 3 weprove Theorem 2.8. In Se
tion 4 we re
all de�nitions of some invariants ofplane 
urve singularities and 
ompare them to ρab for algebrai
 knots. Weend this se
tion by 
omputing the ρab for a (d, d) torus link, i.e., the link ofsingularity xd − yd = 0.We apologise the reader for not giving a de�nition of the ρ�invariant.A pre
ise de�nition from s
rat
h, in
luding ne
essary de�nitions of twistedsignature of a 4−manifold, would make this paper twi
e as long. Instead werefer to [COT1, Se
tion 5℄, or, for more detailed treatment, to a book byLü
k [Lu℄.We end this introdu
tion by remarking that the ρ invariants were alsostudied in the 
ontext of mixed Hodge stru
tures of hypersurfa
e singular-ities. The η invariant, de�ned, for instan
e, in [Ne1, Se
tion I℄, is 
loselyrelated to the ρab invariant in the 
ase of plane 
urve singularities. We referto [Ne2, Ne3℄ for the detailed study of this invariant.2. Tristram�Levine signature of torus knotsWe begin this se
tion with some de�nitions, whi
h we give also to �x thenotation used in the arti
le.De�nition 2.1. A knot is 
alled an iterated torus knot if it arises froman unknot by �nitely many 
abling operations. An iterated torus knot is oftype (p1, q1, . . . , pn, qn) if it is a (p1, q1) 
able of (p2, q2) 
able of . . . of (pn, qn)
able of an unknot. Fore example, a torus knot Tp,q is an iterated torus knotof type (p, q).De�nition 2.2. Let K be a knot, S its Seifert matrix. Let ζ ∈ C, |ζ| = 1.The Tristram�Levine signature, σK(ζ) is the signature of the hermitian form



A ρ�INVARIANT OF ITERATED TORUS KNOTS 3given by(2.1) (1 − ζ)S + (1 − ζ̄)ST .It is well-known that the form (2.1) is degenerate (i.e. has non-trivialkernel) if and only if ζ is a root of the Alexander polynomial ∆K of K.The fun
tion ζ → σK(ζ) is pie
ewise 
onstant with possible jumps only atthe roots of the Alexander polynomial ∆K(ζ). The value of σK at su
hroot 
an a priori be di�erent then left or right limit of σK at that point.However, there are only �nitely many su
h values and they do not in�uen
ethe integral. As we do not want to take 
are of this values, we introdu
e avery handy notion.De�nition 2.3. We shall say that two pie
ewise-
onstant fun
tions from aunit 
ir
le (or a unit interval) to real numbers are almost equal if they areequal at all but �nitely many points.We would like to 
ompute ρab for an iterated torus knot. We will useProposition 5.1 from [COT2℄, whi
h we 
an formulate as follows.Proposition 2.4. For any knot K ⊂ S3 we have
ρab(K) =

∫ 1

0
σK(e2πix)dx.Therefore, what we have to do, is to 
ompute the integral of the Tristram�Levine signature for an iterated torus knot. We begin with re
alling resultsfrom [Li℄, where the fun
tion σK is 
omputed for iterated torus knots.Let p, q be 
oprime positive integers. Let x be in the interval [0, 1]. Con-sider the set

Σ = Σp,q =

{
k

p
+

l

q
: 1 ≤ k < p, 1 ≤ l < q

}
⊂ [0, 2] ∩ Q.The fun
tion sp,q(x) is de�ned as

sp,q(x) = −2#Σ ∩ (x, x + 1) + #Σ.Lemma 2.5 ([Li℄). If ζ = e2πix is not a root of the polynomial (tpq − 1)(t −
1)/(tp − 1)(tq − 1), then the Tristram�Levine signature of the torus knot Tp,qat ζ is equal to sp,q(x).Therefore, 
omputing the ρ�invariant of a torus knot boils down to 
om-puting the integral of the fun
tion sp,q(x). Before we do this, let us show,how one 
an 
ompute the Tristram�Levine signatures of an iterated torusknot. We shall need another lemma from [Li℄.Lemma 2.6. Let K be a knot and Kp,q be the (p, q)−
able on K. Then forany ζ ∈ C, |ζ| = 1, we have

σKp,q(ζ) = σK(ζq) + σTp,q(ζ).



4 MACIEJ BORODZIKThis allows a re
ursive 
omputation for an iterated torus knot. Namely,let for r > 1
sp,q;r(x) = sp,q(⌊rx⌋).Corollary 2.7. Let K be an iterated torus knot of type (p1, q1, . . . , pn, qn).Let x ∈ [0, 1] be su
h that e2πix is not a root of the Alexander polynomial of

K. Denote by rk = q1 . . . qk−1. Then
σK(e2πix) =

n∑

k=1

spk,qk,rk
(x).The 
ore of this se
tion isTheorem 2.8. For any β ∈ C whi
h is not an integer divisible by r we have(2.2) ∫ 1

0
eπiβxsp,q,r(x) dx =

2eπiβ/2 sin πβ
2

πβ
np,q;r(

πβ

2
),where

np,q;r(t) = cot
t

pqr
cot

t

r
− cot

t

pr
cot

t

qr
.In parti
ular, by taking a limit β → 0 we get

∫ 1

0
sp,q,r = −

1

3
(p −

1

p
)(q −

1

q
).Remark 2.9. The fun
tion np,q;r(t) will be 
alled normalised Fourier trans-form.We prove Theorem 2.8 in Se
tion 3. Now we pass to 
orollaries.Corollary 2.10. The ρab invariant of an iterated torus knot is equal to

−
1

3

n∑

k=1

(pk −
1

pk
)(qk −

1

qk
).Apart of this 
orollary, Theorem 2.8 has its interest of its own. In fa
t, itmight help to study possible 
obordism relations between iterated torus knot.For example, Litherland showed in [Li℄, that the 
onne
ted sum of knots T2,3,

T3,5 and a (2, 5)-
able on T2,3 has the same Tristram�Levine signature as a
T6,5. It might be possible that normalised Fourier transforms of torus knots
an help studying similar phenomena. This 
ould be done as follows.Lemma 2.11. Let us be given two �nite sets I and J of triples of integers
{p, q, r}. Then the di�eren
e(2.3) ∆IJ(x) :=

∑

i∈I

spi,qi;ri
(x) −

∑

j∈J

spj,qj ;rj
(x)is almost equal to zero for x ∈ [0, 1], if and only if the di�eren
e(2.4) ∆̂IJ(t) :=

∑

i∈I

npi,qi;ri
(t) −

∑

j∈J

npj ,qj;rj
(t)is equal to zero on some open subset in C.



A ρ�INVARIANT OF ITERATED TORUS KNOTS 5Sket
h of proof. The 'only if' part is trivial. To prove the 'if' part we observethat ∆̂IJ(t) · t
et sin t is, up to a multipli
ative 
onstant, and up to res
aling ofthe parameter t, the Fourier transform of ∆IJ(x), when we extend ∆IJ(x)by 0 to the whole real line. On the other hand, vanishing of ∆̂IJ(t) on someopen subset of C implies that it is everywhere 0. �Proposition 2.12. The 
ondition that ∆IJ(x) is almost equal to zero isequivalent to the fa
t, that two following 
onditions are satis�ed at on
e(a) ∑i∈I(pi −

1
pi

)(qi −
1
qi

) =
∑

j∈J(pj −
1
pj

)(qj −
1
qj

).(b) For any t0 su
h that πrkt0 ∈ Z for some k ∈ I ∪ J the residuum at
t0 of ∆̂IJ(t) is zero.Remark 2.13. If T is the least 
ommon multiplier of pkqkrk for k ∈ I ∪ J ,then Tπ is the period of ∆̂IJ(t). It follows that the 
ondition (b) involvesonly �nitely many equations.Proof of Proposition 2.12. Vanishing of ∆̂IJ(t) 
learly implies (b). The equal-ity in (a) is equivalent to 3∆̂IJ(0) = 0. We shall prove that (b) implies that

∆̂IJ(t) is bounded on C. This is done as follows.Observe that, in general, ∆̂IJ(t) 
an have poles only at su
h t0's, that
πrkt0 ∈ Z, for some k ∈ I ∪ J . Moreover, these poles are at most of order
1: in fa
t, it is a matter of simple 
omputation, that np,q;r does not havea pole of order 2. Therefore, 
ondition (b) implies that the ∆̂IJ(t) extendsholomorphi
ally a
ross points n

πrk
, where k ∈ I ∪ J and n ∈ Z. As thisfun
tion is periodi
 with real period, for any δ > 0 it is bounded on the strip

| Im t| ≤ δ by some 
onstants, depending of 
ourse of δ.A uniform bound on ∆̂IJ(t) for | Im t| ≥ δ results from the standardestimate | cot t|2 ≤ 1 + 1
(Im t)2

. Hen
e, if (b) holds, then the fun
tion ∆̂IJ(t)is a bounded holomorphi
 fun
tion, by Liouville's theorem it is then 
onstant.The 
ondition (a) implies then that it vanishes at 0, so it is zero everywhere.
�3. Proof of Theorem 2.8To make 
omputations at least a bit more transparent, let us �rst assumethat r = 1. The fun
tion sp,q 
an be expressed as the sum

sp,q(x) = 2
∑

α<1/2
α∈Σp,q

χ(α,1−α)(x) − 2
∑

α∈(1/2,1)
α∈Σp,q

χ(1−α,α)(x),where χ(a,b) is the 
hara
teristi
 fun
tion of the interval (a, b). Therefore(3.1) ∫ 1

0
sp,q(x)eπiβxdx = −

2

πiβ

∑

α<1
α∈Σp,q

eπiαβ − eπiβ(1−α).



6 MACIEJ BORODZIKWe have
∑

α<1
α∈Σp,q

eπiαβ =

p−1∑

k=1

q−1∑

l=1
l<q(1−k/p)

eπiβ(k/p+l/q).The internal sum on the right hand side is the sum of geometri
 series (herewe use the assumption that β is not an integer) and 
an be expressed as
1

1 − eπiβ/q
(eπiβk/p − eπiβ(k/p+lk/q)),where lk satis�es

k/p + lk/q > 1 > k/p + (lk − 1)/q.So we have(3.2) ∑

α<1
α∈Σp,q

eπiαβ =

p−1∑
k=1

eπiβk/p −
p−1∑
k=1

eπiβ(k/p+lk/q)

1 − eπiβ/q
.The �rst sum in the denominator is again a geometri
 series. As to these
ond one, let us denote

γk = k/p + lk/q.Then γk's have the following obvious properties(a) γk's are all di�erent;(b) 1 + 1
pq ≤ γk ≤ 1 + p−1

pq ;(
) ea
h γk is of the form 1 + ak/pq with ak an integer.By the Diri
hlet prin
iple the set {γ1, . . . , γp−1} is the same as the set {1 +
1/pq, . . . , 1 + (p − 1)/pq}. Therefore, the se
ond sum in the denominator(3.2), upon reordering, 
an be expressed as

p−1∑

m=1

eπiβ(1+m/pq),whi
h again is a geometri
 series. Putting things all together we get(3.3)
∑

α<1
α∈Σp,q

eπiαβ =
1

1 − eπiβ/q

(
eπiβ/p − eπiβ

1 − eπiβ/p
−

eπiβ(1+1/pq) − eπiβ(1+1/q)

1 − eπiβ/pq

)
.On the other hand, we have

∑

α<1
α∈Σp,q

eπi(1−α)β = eπiβ
∑

α<1
α∈Σp,q

eπiα(−β),



A ρ�INVARIANT OF ITERATED TORUS KNOTS 7and the sum on the right hand side is just (3.3) with −β substituted in pla
eof β. Substituting this into (3.1), and applying the formula eπia − eπib =

2ieπi(a+b)/2 sin π(a−b)
2 several times, we arrive �nally at

∫ 1

0
sp,q(x)eπiβdx =

2eπiβ/2 sin πβ
2

πβ
(cot

πβ

2pq
cot

πβ

2
− cot

πβ

2p
cot

πβ

2q
).To 
on
lude the proof in the 
ase r > 1 we observe that

sp,q;r(x) =2
∑

α<1/2
α∈Σp,q

r−1∑

k=0

χ(α+k
r

, 1−α+k
r )(x)+

−2
∑

α∈(1/2,1)
α∈Σp,q

r−1∑

k=0

χ( 1−α+k
r

, α+k
r )(x)Thus(3.4) ∫ 1

0
sp,q;re

πiβx =
−2

πiβ

∑

α<1
α∈Σp,q

r−1∑

k=0

eπiβ(α/r+k/r) − eπiβ(1−α/r−k/r).Now, for �xed α we have
r−1∑

k=0

eπiβ(α/r+k/r) = eπiα(β/r)
r−1∑

k=0

eπiβk/r = eπiα(β/r) 1 − eπiβ

1 − eπiβ/r
.Therefore, returning to (3.4) we get

∑

α<1
α∈Σp,q

r−1∑

k=0

eπiβ(α/r+k/r) =
1 − eπiβ

1 − eπiβ/r

∑

α<1
α∈Σp,q

eπiα(β/r).We 
an use (3.3) again, substituting β/r in pla
e of β. Similarly we 
andeal with a sum of terms eπiβ(1−α/r−k/r). Now straightforward but long
omputations yield the formula (2.2).4. Relation with algebrai
 invariantsThe setup in this se
tion is the following. Let (C, 0) ⊂ C2 be germ ofa plane 
urve singularity with one bran
h. This means that there exists alo
al parametrisation C = (x(t), y(t)), with x and y analyti
 fun
tions in onevariable with x(0) = y(0) = 0. Let us assume that the Puiseux expansion of
y in fra
tional powers of x written is the multipli
ative form (see [EN, page49℄) is

y = xq1/p1(a1 + xq2/p1p2(a2 + . . . + xqs/p1p2p3...ps(as + . . .))),with q1 > p1 (otherwise we swit
h x with y), gcd(qi, pi) = 1 and pi, qi >
0. The pairs (p1, q1), . . . , (pn, qn) are 
alled 
hara
teristi
 pairs (or Newton



8 MACIEJ BORODZIKpairs) of the singularity. They 
ompletely determine the topologi
al type ofthe singular point.Lemma 4.1 (see e.g. [EN℄). Put a1 = q1 and ak+1 = pk+1pkak +qk+1. Thenthe link of the singularity (C, 0) is an iterated torus knot. More pre
isely, itis a (pn, an) 
able on (pn−1, an−1) 
able on . . . on (p1, a1) torus knotRemark 4.2. The ordering of 
ables in [EN℄ is di�erent than in [Li℄. A
-
ording to De�nition 2.1, the link of the singuarity (C, 0) above would be aniterated torus knot of type (pn, qn, pn−1, qn−1, . . . , p1, q1).Corollary 4.3. The ρab invariant of an algebrai
 knot is equal to(4.1) ρab = −
1

3

n∑

k=1

(
akpk −

ak

pk
−

pk

ak
+

1

pkak

)
.It is on purpose that we wrote formula (4.1) in a di�erent shape that inCorollary 2.10.Let us now resolve the above singularity. This means that we have a map

π : (X,E) → (U, 0), where U is a neighbourhood of 0 in C2, E is the ex
ep-tional divisor and X is a 
omplex surfa
e. We require the stri
t transform
C ′ to be smooth, C ′ ∪ E to have only normal 
rossings as singularities andthe resolution to be minimal, so that we 
annot blow-down any ex
eptional
urve without violating one of the two above assumptions.Put K = KX the 
anoni
al divisor on X and let D = C ′+Ered. Here, thesubs
ript 'red' means that we take a redu
ed divisor, i.e. 
oe�
ients withall 
omponents are equal to 1.Lemma 4.4 ([OZ℄). Using the notation from this se
tion, we have(4.2) (K + D)2 = a1p1 −

⌈
a1

p1

⌉
−
⌈p1

a1

⌉
+

n∑

k=2

(
akpk −

⌈
ak

pk

⌉)
,where (K + D)2 denotes the self-interse
tion of the divisor K + D, and

⌈x⌉ = min(n ∈ Z, n ≥ x).On the one hand (K + D)2 has a very natural meaning. Namely, at leastfor unibran
hed singularities, this is the sum of the Milnor number µ and so
alled M̄ number of singularity. The latter, introdu
ed in [Or℄ and studiedin [BZ℄, 
an be interpreted as a parametri
 
odimension of a singular point,i.e. the number of lo
ally independent 
onditions, whi
h are imposed on a
urve given in parametri
 form, by the appearan
e of the singularity of giventopologi
al type.On the other hand there is an apparent similarity of left hand sides offormulae (4.1) and (4.2). To make it even more similar, let us take a Zariski�Fujita [Fuj℄ de
omposition of the divisor K + D. We have then
K + D = H + Nwith H nef (its interse
tion with any algebrai
 
urve in X is non-negative),

N e�e
tive and N2 < 0, H · N ′ = 0 for any N ′ supported on suppN .



A ρ�INVARIANT OF ITERATED TORUS KNOTS 9Lemma 4.5 ([OZ℄).(4.3) H2 = a1p1 −
a1

p1
−

p1

a1
+

n∑

k=2

(
akpk −

ak

pk

)
.In the 
ase of unibran
hed singularity, the quantity H2 is the sum ofMilnor number and so 
alled M -number (without a bar) of singular point.Its importan
e lies in the fa
t that the sum of M -numbers of all singularpoints of an algebrai
 
urve in CP 2 
an be bounded from above by globaltopologi
al data of the 
urve, as genus and �rst Betti number (see [BZ℄).These bounds involve very deep Bogomolov�Miyaoka�Yau inequality fromalgebrai
 geometry.Thus the following result seem to be a very mysterious and shows a deeplink between knot theory and algebrai
 geometry.Proposition 4.6. Let ρab be the integral of the Tristram�Levine signatureof an algebrai
 knot (see (4.1)) and H2 be like in (4.3). Then

0 < −3ρab − H2 <
2

9
.Proof. It easy to observe that

∆ := −3ρab − H2 =
1

a1p1
+

n∑

k=2

(
1

akpk
−

pk

ak

)
.On the one hand

∆ ≤
n∑

k=1

1

akpk
.Re
all that ak+1 = akpk+1pk + qk+1, so ak+1pk+1 > akpkp

2
k+1 ≥ 4akpk.Hen
e

∆ ≤
1

a1p1

n−1∑

k=0

1

4k
<

4

3a1p1
.But a1p1 ≥ 6, so one inequality is proved.To prove in the se
ond one, let us reorganise terms of ∆ as follows

∆ =

n−1∑

k=1

(
1

akpk
−

pk+1

ak+1

)
+

1

anpn
.But

1

akpk
−

pk+1

ak+1
=

1

akpk
−

pk+1

akpkpk+1 + qk+1
>

1

akpk
−

pk+1

akpkpk+1
= 0.

�



10 MACIEJ BORODZIKWe end up the 
hapter with the simplest example of multibran
hed sin-gularity, i.e. with a singularity de�ned lo
ally by xd − yd = 0 with d ≥ 2.Its link at singularity is the torus link Td,d. Let us 
onsider a set
Σd = {

i

d
+

j

d
, 1 ≤ i, j ≤ d − 1}.Here the element k/d appears in Σd pre
isely d − 1 − |d − 1 − k| times,a

ording to possible presentations k = i + j, 1 ≤ i, j ≤ d − 1. Let sd(x) bethe fun
tion 
omputing the elements of Σd in (x, x + 1) with a '−' sign andthe others with '+' sign. Then sd is almost equal to the Tristram�Levinesignature of link Td,d. We have the formula

sd = 2
∑

k<d/2

(k − 1)χ( k
d
, d−k

d ) − 2(k − 1)
∑

k>d/2

χ( d−k
d

, k
d ) − (d − 1).The �nal term, −(d−1), 
omes from the d−1 elements of the set Σd of type

d/d. They belong to any interval (x, x + 1). Thus, the integral of sd is equalto
∫ 1

0
sd = −2

d−1∑

k=1

(k − 1)
2k − d

d
− (d − 1).But an elementary 
al
ulus shows that

d−1∑

k=1

(k − 1)(2k − d) =
d(d − 1)(d − 2)

6
.Hen
e

∫ 1

0
sd = −

1

3
(d − 1)(d + 1).On the other hand, in order to resolve the singularity of C we need onlyone blow-up. The ex
eptional divisor E 
onsists of single rational 
urvewith E2 = −1. Then K = KX = αE and C ′ = βE (as E spans se
ond(
o)homology of blown-up spa
e) and K(K + E) = −2 by genus formula, so

K = E and C ′ ·E = d, so C ′ = −d·E. Thus K+D = K+C ′+E = (2−d)E.Moreover, this divisor is nef, so its Zariski�Fujita de
omposition is trivial,
H = (2 − d)E, N = 0, so in this 
ase

H2 = (d − 2)2.This shows that, in 
ase of general links, a trivial analogue of Proposition 4.6does not hold.A
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