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A p—-INVARIANT OF ITERATED TORUS KNOTS

MACIEJ BORODZIK

ABsTRACT. We compute p—invariant for iterated torus knots K for the
standard representation m1(S® \ K) — Z given by abelianisation. For
algebraic knots, this invariant turns out to be very closely related to an
invariant of a plane curve singularity, coming from algebraic geometry.

1. INTRODUCTION

A von Neumann p-invariant (also called L?-signature, or L?-eta invari-
ant) of a real closed 3-manifold M is a real number p4(M) associated to
every representation ¢ : (M) — I', where I" is any group satisfying PTFA
condition (see [COTI] Definition 2.1]). As a special case, if K is a knot
in a 3-sphere, and we consider representations of the fundamental group of
the manifold S3(K) (i.e. a zero surgery on K), then we can talk about the
p-invariants of knots. In particular, the representation ab : (S \ K) — Z,
given by abelianization, gives rise to the representation ab : m(S3(K)) — Z
and the corresponding invariant, pg,(K), turns out to be the integral over
normalised unit circle of the Tristram—Levine signature of a knot.

The p-invariants for knots have been introduced first in [ChG]. They were
then deeply studied in [COTI]. In their seminal paper, the authors observed
that they are a very subtle obstruction for some knots to be slice. Namely, let
us be given a knot K bounding a disk D in the ball B4. Let Y = 9(B*\v(D)),
where v denotes the tubular neighbourhood. Then Y is canonically isomor-
phic to S3(K), and, for any representation ¢ : m(Y) — T that can be
extended to ¢ : m(B*\ v(D)) — T, the corresponding p-invariant must
vanish. This allows to construct examples of non-slice knots, undistinguish-
able from slice knots by previously known methods as the Tristram—Levine
signature or the Casson—Gordon invariants.

The difficulty of computability of p-invariants is the cost of their sub-
tlety. Only in the first nontrivial case of the representation given by ab,
there is a general method of computing this invariant, namely integrating
the Tristram—Levine signature. In papers [COT2|, [Hal|, and others, these
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invariants were computed also for some other representations of the knot
group. But there, the choice of knots is very specific.

In this paper we focus on pg—invariant and compute it for all iterated
torus knots. The computation consists of integrating the Tristram-Levine
signature, which is not a completely trivial task. In fact, we do even more:
we compute the Fourier transform of the Tristram—Levine signature function
of iterated torus knot. This transform can be expressed by a surprisingly
simple formula. In particular, this method can be used to detect knots,
which are connected sums of iterated torus knots and which have identical
Tristram—Levine signature.

What we find most interesting and striking about p,p of algebraic knots,
is its relation with deep algebro-geometrical invariants of the plane curve
singularity. We state this relation, in terms of a uniform bound (see Proposi-
tion [L.6)) but, honestly speaking, we are far from understanding it. Moreover,
this relation is not that clear for algebraic links, as we show on an example.

The structure of the paper is the following. In Section 2 we recall, how to
compute the Tristram—Levine signature for iterated torus knots and formu-
late Theorem 2.8 Then we deduce some of its corollaries. In Section 3 we
prove Theorem 2.8 In Section 4 we recall definitions of some invariants of
plane curve singularities and compare them to p,p for algebraic knots. We
end this section by computing the pg, for a (d, d) torus link, i.e., the link of
singularity z¢ — ¢y = 0.

We apologise the reader for not giving a definition of the p-invariant.
A precise definition from scratch, including necessary definitions of twisted
signature of a 4—manifold, would make this paper twice as long. Instead we
refer to [COTIl Section 5|, or, for more detailed treatment, to a book by
Liick [Lul.

We end this introduction by remarking that the p invariants were also
studied in the context of mixed Hodge structures of hypersurface singular-
ities. The 7 invariant, defined, for instance, in [Nell Section I], is closely
related to the p,p, invariant in the case of plane curve singularities. We refer
to Ne3| for the detailed study of this invariant.

2. TRISTRAM—LEVINE SIGNATURE OF TORUS KNOTS

We begin this section with some definitions, which we give also to fix the
notation used in the article.

Definition 2.1. A knot is called an iterated torus knot if it arises from
an unknot by finitely many cabling operations. An iterated torus knot is of

type (p1, 41, - - -, Pns qn) if it is a (p1, q1) cable of (p2, g2) cable of ... of (pn, ¢n)
cable of an unknot. Fore example, a torus knot 7}, ; is an iterated torus knot

of type (p, q).

Definition 2.2. Let K be a knot, S its Seifert matrix. Let ¢ € C, |¢| = 1.
The Tristram—Levine signature, o () is the signature of the hermitian form
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given by
(2.1) (1-¢0S+1-¢)sT.

It is well-known that the form (2.I)) is degenerate (i.e. has non-trivial
kernel) if and only if ¢ is a root of the Alexander polynomial Ag of K.
The function ¢ — ox(({) is piecewise constant with possible jumps only at
the roots of the Alexander polynomial Ag(¢). The value of ox at such
root can a priori be different then left or right limit of ox at that point.
However, there are only finitely many such values and they do not influence
the integral. As we do not want to take care of this values, we introduce a
very handy notion.

Definition 2.3. We shall say that two piecewise-constant functions from a
unit circle (or a unit interval) to real numbers are almost equal if they are
equal at all but finitely many points.

We would like to compute pgp for an iterated torus knot. We will use
Proposition 5.1 from [COT2|, which we can formulate as follows.

Proposition 2.4. For any knot K C S® we have

1
pab(K):/ or (e dz.
0

Therefore, what we have to do, is to compute the integral of the Tristram—
Levine signature for an iterated torus knot. We begin with recalling results
from [Li], where the function o is computed for iterated torus knots.

Let p,q be coprime positive integers. Let = be in the interval [0,1]. Con-
sider the set

ko1
E:Enq:{]—?%-;: 1§k:<p,1§l<q}c[0,2]ﬂ(@.
The function s, 4(x) is defined as

Spq(T) = =2#X N (x,x + 1) + #X.

Lemma 2.5 ([Li]). If ¢ = €2™ is not a root of the polynomial (t*4 —1)(t —
1)/(t? —1)(t? —1), then the Tristram-Levine signature of the torus knot T), 4
at ¢ is equal to spq4(x).

Therefore, computing the p-invariant of a torus knot boils down to com-
puting the integral of the function s, ,(z). Before we do this, let us show,
how one can compute the Tristram-Levine signatures of an iterated torus
knot. We shall need another lemma from [Li.

Lemma 2.6. Let K be a knot and K, 4 be the (p,q)—cable on K. Then for
any ¢ € C, |¢] =1, we have

OKp,q (C) = UK(Cq) T 0Ty, (C)
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This allows a recursive computation for an iterated torus knot. Namely,
let for r > 1

Spair () = spq([r7]).
Corollary 2.7. Let K be an iterated torus knot of type (p1,q1,---,Pn,qn)-

Let x € [0,1] be such that 2™ is not a root of the Alexander polynomial of
K. Denote byr, =q1...qx—1. Then

n
UK(G%ZI) = Z Spai,ry (T)-
k=1

The core of this section is

Theorem 2.8. For any 3 € C which is not an integer divisible by r we have

L 2e™0/2 gip 8 w05
T 2
(2.2) /0 € Zﬁzsp,q,r(l") de = Tnp,q;r(7),
where
t t t
Np q:r(t) = cot — cot — — cot — cot —.
pqr r pr qr
In particular, by taking a limit § — 0 we get
1
1 1 1
S »q, =73 p - q A
| snar =50 = 20

Remark 2.9. The function ny, 4..(t) will be called normalised Fourier trans-
form.

We prove Theorem 2.8]in Section Bl Now we pass to corollaries.
Corollary 2.10. The pg invariant of an iterated torus knot is equal to

1

1 — 1
3 ];(pk - p_k)(% - %)-

Apart of this corollary, Theorem 2.8 has its interest of its own. In fact, it
might help to study possible cobordism relations between iterated torus knot.
For example, Litherland showed in [Li], that the connected sum of knots 75 3,
T35 and a (2,5)-cable on T5 3 has the same Tristram-Levine signature as a
T 5. It might be possible that normalised Fourier transforms of torus knots
can help studying similar phenomena. This could be done as follows.

Lemma 2.11. Let us be given two finite sets I and J of triples of integers
{p,q,r}. Then the difference

(2.3) Apy(x) == Z Spisqiiri (T) — Z Spj,q;ir; (%)
il jeJ
is almost equal to zero for x € [0,1], if and only if the difference
(2.4) Apg(t) = Z Tp,quiri (1) — anj,qg';rj (t)
icl jed
1s equal to zero on some open subset in C.
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Sketch of proof. The ’only if’ part is trivial. To prove the ’if” part we observe
that ﬁu(t) . ﬁ is, up to a multiplicative constant, and up to rescaling of
the parameter ¢, the Fourier transform of Aj;(z), when we extend Ajy(z)
by 0 to the whole real line. On the other hand, vanishing of Aj;(t) on some
open subset of C implies that it is everywhere 0. U

Proposition 2.12. The condition that Arj(x) is almost equal to zero is
equivalent to the fact, that two following conditions are satisfied at once

(0) Saer(pi = 2)ai = 1) = 5,05 — 2)(as — 2.
(b) For any ty such that writg € Z for some k € I U J the residuum at
to of Ary(t) is zero.

Remark 2.13. If T is the least common multiplier of ppqgry for k € T U J,
then T'w is the period of Ars(t). It follows that the condition (b) involves
only finitely many equations.

Proof of Proposition[2Z.12. Vanishing of As J(t) clearly implies (b). The equal
ity in (a) is equivalent to 3A;;(0) = 0. We shall prove that (b) implies that
Ary(t) is bounded on C. This is done as follows.

Observe that, in general, A; 7(t) can have poles only at such ty’s, that
wrpto € Z, for some k € I U J. Moreover, these poles are at most of order
1: in fact, it is a matter of simple computation, that n, .., does not have

a pole of order 2. Therefore, condition (b) implies that the A7;(t) extends
holomorphically across points 7rnTk’ where £k € TUJ and n € Z. As this
function is periodic with real period, for any § > 0 it is bounded on the strip
|Im¢| < 6 by some constants, depending of course of ¢.

A uniform bound on Aj;(t) for |[Im¢| > & results from the standard
estimate |cot |2 < 1+ m Hence, if (b) holds, then the function Aj(t)
is a bounded holomorphic function, by Liouville’s theorem it is then constant.
The condition (a) implies then that it vanishes at 0, so it is zero everywhere.

O

3. PrROOF OF THEOREM [2.§

To make computations at least a bit more transparent, let us first assume
that » = 1. The function s, , can be expressed as the sum

Sp,q(x) =2 Z X(a,l—oz)(x) -2 Z X(l—a,oz)(x)a

a<1/2 ae(1/2,1)
a€Xp q a€Xp q

where X(q4) is the characteristic function of the interval (a,b). Therefore

1
; 2 . )
3.1 / s T emﬁardx = —— E 6ﬂza6 _ emﬁ(l_o‘),
( ) 0 p#]( ) 71'2/3 2

a€3p g
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We have
p—1 q—1
D D D L)
a<l k=1 =1
€Yy 4 I<q(1—k/p)

The internal sum on the right hand side is the sum of geometric series (here
we use the assumption that 3 is not an integer) and can be expressed as

1

m(ewiﬁk/p — mBk/pH/0)y

where [, satisfies
k/p+l/a>1>k/p+ (I —1)/q
So we have

p—1 p—1
S emiBk/p S emifi(k/ptii/a)
miaf _ k=1 k=1
(32) Z € - 1 — emi6/q
a§1
aE2ip g

The first sum in the denominator is again a geometric series. As to the
second one, let us denote

W =k/p+ /¢
Then ~’s have the following obvious properties
(a) yx’s are all different;

1 p=1.
(b) 1455 < <1+ 55

(c) each 7y is of the form 1+ ay/pg with aj an integer.

By the Dirichlet principle the set {y1,...,7p—1} is the same as the set {1 +
1/pq,...,1+ (p — 1)/pq}. Therefore, the second sum in the denominator
(32), upon reordering, can be expressed as

1
eTiB(1+m/pq) ’

p

m=1

which again is a geometric series. Putting things all together we get

(3.3)
1 (67riﬁ/p _ e7ri;6 6mﬂ(l-l—l/pq) _ ewiﬁ(l—i—l/q))

miaf __
Z € - 1 — emiB/q

a<l
a€Xp q

1—embB/p 1 — emiB/pq

On the other hand, we have

3 emill-a)p _ gnio 3 gria(-p),

a<l a<l
a€¥y g a€¥y g
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and the sum on the right hand side is just ([3.3]) with —f3 substituted in place
of 8. Substituting this into ([B.I), and applying the formula e™® — ™ =

2iemi(a+b)/2 gip @ several times, we arrive finally at
! , 2emi8/2 gin 8
/ sp.q(2)e™Pdr = 2 (cot 0 cot ™ _ cot —ﬁcot ﬂ)
’ w3 2pq 2 2p 24

To conclude the proof in the case » > 1 we observe that

Sp,gsr (€ Z ZX ath 1-ath) (z)+

a<l1/2 k=0
a€Xp q

r—1
2D, DXk e

a€g(1/2,1) k=0

a€¥p.q
Thus
1
3.4 wifr miB(a/r+k/r) wiﬁ(lfa/rfk/r).
(3.4) /0 Sp,g;r€ mﬁ Z Z ¢
a<l k=0
a€¥p g
Now, for fixed a we have
r—1 r—1 1 T8
Z ewiﬁ(a/rJrk/r) _ eﬂia(ﬁ/r) Z eﬂiﬁk/r _ ewia(ﬁ/r)_i?.
k=0 k=0 1 —emblr

Therefore, returning to (3.4]) we get

Z Z mif(a/r+k/r) _ 11 _efmﬁir Z emia(B/r).

a<l k=0 a<l
a€Xp g a€Xpq

We can use (B3] again, substituting §/r in place of 3. Similarly we can
deal with a sum of terms e™#(1—a/7=k/7)  Now straightforward but long
computations yield the formula (2.2I).

4. RELATION WITH ALGEBRAIC INVARIANTS

The setup in this section is the following. Let (C,0) C C? be germ of
a plane curve singularity with one branch. This means that there exists a
local parametrisation C' = (z(t),y(t)), with z and y analytic functions in one
variable with z(0) = y(0) = 0. Let us assume that the Puiseux expansion of
y in fractional powers of x written is the multiplicative form (see page
49]) is

y = g0/P1 (a1 + xqz/plpz(a2 +..+ xqs/mpzps--.ps(as +..)),

with ¢ > p; (otherwise we switch z with y), ged(g;,p;) = 1 and p;,q; >
0. The pairs (p1,41),---, (Pn,qn) are called characteristic pairs (or Newton
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pairs) of the singularity. They completely determine the topological type of
the singular point.

Lemma 4.1 (see e.g. [EN]). Put ay = q1 and axy1 = pr+1pkar+qr+1- Then
the link of the singularity (C,0) is an iterated torus knot. More precisely, it
is a (pn,an) cable on (pp—1,an—1) cable on ... on (p1,a1) torus knot

Remark 4.2. The ordering of cables in [EN] is different than in [Li]. Ac-
cording to Definition 1] the link of the singuarity (C,0) above would be an
iterated torus knot of type (pn, Gn, Pn—1,qn—1,-- -, P1,41)-

Corollary 4.3. The pgp invariant of an algebraic knot is equal to

n

1 ag Pk 1
4.1 Pab = —7 <akpk____+ .
(4.1) ¢ 3 kZ:1 Dk Gk Drak

It is on purpose that we wrote formula (£]]) in a different shape that in
Corollary 101

Let us now resolve the above singularity. This means that we have a map
7: (X, E) — (U,0), where U is a neighbourhood of 0 in C2, E is the excep-
tional divisor and X is a complex surface. We require the strict transform
C’ to be smooth, C' U E to have only normal crossings as singularities and
the resolution to be minimal, so that we cannot blow-down any exceptional
curve without violating one of the two above assumptions.

Put K = Kx the canonical divisor on X and let D = C'+ E,.4. Here, the
subscript 'red” means that we take a reduced divisor, i.e. coefficients with
all components are equal to 1.

Lemma 4.4 ([OZ]). Using the notation from this section, we have
n
2
(42)  (K+D) =ap — [2] = 2]+ (awm — [2]),
k=2

where (K 4+ D)? denotes the self-intersection of the divisor K + D, and
[z] = min(n € Z, n > ).

On the one hand (K + D)? has a very natural meaning. Namely, at least
for unibranched singularities, this is the sum of the Milnor number y and so
called M number of singularity. The latter, introduced in [Or] and studied
in [BZ], can be interpreted as a parametric codimension of a singular point,
i.e. the number of locally independent conditions, which are imposed on a
curve given in parametric form, by the appearance of the singularity of given
topological type.

On the other hand there is an apparent similarity of left hand sides of
formulae (1)) and [A2]). To make it even more similar, let us take a Zariski—
Fujita decomposition of the divisor K + D. We have then

K+D=H+N

with H nef (its intersection with any algebraic curve in X is non-negative),
N effective and N? < 0, H - N’ =0 for any N’ supported on supp N.
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Lemma 4.5 ([OZ]).
(4.3) H2—a1p1—ﬂ——+z<akpk——>

In the case of unibranched singularity, the quantity H? is the sum of
Milnor number and so called M-number (without a bar) of singular point.
Its importance lies in the fact that the sum of M-numbers of all singular
points of an algebraic curve in CP? can be bounded from above by global
topological data of the curve, as genus and first Betti number (see [BZ]).
These bounds involve very deep Bogomolov—Miyaoka—Yau inequality from
algebraic geometry.

Thus the following result seem to be a very mysterious and shows a deep
link between knot theory and algebraic geometry.

Proposition 4.6. Let py, be the integral of the Tristram—Levine signature
of an algebraic knot (see (&1)) and H? be like in (E3). Then

2
0 < —3pap _H2 < 5
Proof. 1t easy to observe that

1 & 1
A= —3py—H>=—+ ( —p—k>.
2

On the one hand

Agz 1

o
i3 OkDk

Recall that agi1 = axPr1Pk + Qht1s SO Ghp1Ph1 > QkPrPriq = ki
Hence

1 4
A< — — < .
aipy kzo 4k " 3aip

But a1p; > 6, so one inequality is proved.
To prove in the second one, let us reorganise terms of A as follows

— 1
_ Z < pk+1> N .
APk ak+1 anPn

But

1 1 1
_ Pr+1 _ Pk+1 > __Pr1

GkPr  OQk+1  OkDk  OkPEDk+1 + Qk+1  OkPEk QkPEkDk+1




10 MACIEJ BORODZIK

We end up the chapter with the simplest example of multibranched sin-
gularity, i.e. with a singularity defined locally by z? — y¢ = 0 with d > 2.
Its link at singularity is the torus link 7j; 4. Let us consider a set

Sa={5+%. 1<ij<d-1}.

Here the element k/d appears in ¥, precisely d — 1 — |[d — 1 — k| times,
according to possible presentations k =i+ j, 1 <4,j <d— 1. Let sg(x) be
the function computing the elements of ¥4 in (z,z + 1) with a '—’ sign and
the others with '+’ sign. Then s, is almost equal to the Tristram—Levine
signature of link T;; ;. We have the formula

Sd:2 Z (k—l)X(g,d%dk) —2(]{3—1) Z X(%%) —(d—l).
k<d/2 k>d/2

The final term, —(d — 1), comes from the d — 1 elements of the set ¥, of type
d/d. They belong to any interval (z,z 4 1). Thus, the integral of s4 is equal
to

1 d—1
2k —d
sq=-2> (k—1) —(d—-1).
Jyrem oS
But an elementary calculus shows that
d—1
d(d—1)(d -2
(h—1)(2% — ) = W=D =2)
k=1

Hence
1 1
/ sg=—=(d—=1)(d+1).
0 3

On the other hand, in order to resolve the singularity of C' we need only
one blow-up. The exceptional divisor E consists of single rational curve
with E2 = —1. Then K = Ky = aF and C' = BE (as E spans second
(co)homology of blown-up space) and K (K + E) = —2 by genus formula, so
K=FandC'""E=d,s0C'=—d-E. Thus K+ D=K+C'+E = (2—d)E.
Moreover, this divisor is nef, so its Zariski—Fujita decomposition is trivial,
H=(2-d)E, N =0, so in this case

H? = (d—2)°.

This shows that, in case of general links, a trivial analogue of Proposition
does not hold.
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