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Morse theory for plane algebraic curves

Maciej Borodzik

Abstract

We use Morse theoretical arguments to study algebraic curves in C2. We take an algebraic curve
C ⊂ C2 and intersect it with spheres with fixed origin and growing radii. We explain in detail
how the embedded type of the intersection changes if we cross a singular point of C. Then
we apply link invariants such as Murasugi’s signature and Tristram–Levine signature to obtain
information about possible singularities of the curve C in terms of its topology.

1. Introduction

By a plane algebraic curve we understand a set

C = {(w1, w2) ∈ C2 : F (w1, w2) = 0},
where F is an irreducible polynomial. Let ξ = (ξ1, ξ2) ∈ C2, and r ∈ R be positive. If the
intersection of C with a 3-sphere S(ξ, r) is transverse, it is a link in S(ξ, r) � S3. We denote it
by Lr.

If ξ happens to be a singular point of C and r is sufficiently small, Lr is a link of a plane
curve singularity of C at ξ. On the other hand, for any ξ ∈ C2 and for any sufficiently large r,
Lr is the link of C at infinity.

Links of plane curve singularities have been perfectly understood for almost 30 years (see [10]
for topological or [39] for algebro-geometrical approach). Possible links at infinity are also well
described (see [28, 29]). The most difficult case to study, as it was pointed out in a beautiful
survey [35], is the intermediate step, that is, possible links Lr for r neither very small nor very
large.

Our idea is to study the differences between the links of singularities of a curve and its link
at infinity via Morse theory: we begin with r small and let it grow to infinity. The isotopy type
of the link changes, when we pass through critical points. If C is smooth, the theory is classical
(see, for example [14, Chapter V] or [22]), yet if C has singular points, the analysis requires
more care and is a new element in the theory.

To obtain numerical relations we apply some knot invariants. Namely, we study changes
of Murasugi’s signature in detail and then pass to Levine–Tristram signatures, which give
a new set of information. Our choice is dictated by the fact that these invariants are well
behaved under the 1-handle addition (this is Murasugi’s Lemma, see Lemma 4.2). From a knot
theoretical point of view, Morse theory provides inequalities between signatures, which are
very closely related to those in [16, 17] (cf. Corollary 5.22 and a discussion below it). What
is important, are the applications in algebraic geometry. In this paper, we show only a few of
them. First of all, we present an elementary proof of Corollary 5.19. The only known proof up
to now [5, 6] relies heavily on algebraic geometry techniques. This result is of interest not only
for algebraic geometers, but also in the theory of bifurcations of ODEs (see [6, 9] and references
therein). We also reprove Varchenko’s estimate on the number of cusps of a degree d curve in
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CP 2 (see Corollary 6.10). Corollary 5.21 and Lemma 6.9 show also a different, completely new
application of our method. We refer to [1] for a brand new application in studying deformations
of singularities of plane curves.

We also want to point out that the methods developed in this article have been used in [3]
to show various semicontinuity results for singularities of plane curves, including establishing
a relationship between a spectrum of a polynomial in two variables at infinity and spectra of
singular points of one of its fibres, in a purely topological way. The application of (generalized)
Tristram–Levine signatures in higher-dimensional singularity theory is also possible, even
though the details somehow differ from those developed in the present paper. This latter
work is in progress.

Although Tristram–Levine signatures turn out to be an important tool for extracting data
about plane curves, they are surely not the only one. One of the main messages of the article
is that any knot cobordism invariant can be used to obtain global information about possible
singularities which may occur on a plane curve. Altough the s invariant of Rasmussen [34] and
the τ invariant of Ozsváth–Szabo [30] apparently do not give any new obstructions (they are
equal to the four genus for positive knots) and Peters’ invariant [31] seems to be very much
related to the Tristram–Levine signature at least for torus knots, the author is convinced that
the application of full Khovanov homology in this context will lead to brand new discoveries
in the theory of plane curves.

Convention 1.1. Throughout the paper, we use the standard Euclidean, metric on C2.
The standard ball with centre ξ and radius r will be denoted B(ξ, r). We may assume, to be
precise, that it is a closed ball, but we never appeal to this fact. The boundary of the ball
B(ξ, r) is the sphere denoted S(ξ, r).

2. Handles related to singular points

Let C be a plane algebraic curve given by equation F = 0, where F is a reduced polynomial. Let
ξ ∈ C2. Let z1, . . . , zn be all the points of C such that either C is not transverse to S(ξ, ‖zk − ξ‖)
at zk, or zk is a singular point of C. We shall call them critical points. Let

ρk = ‖zk − ξ‖.
We order z1, . . . , zn in such a way that ρ1 � ρ2 � . . . � ρn. We shall call ρ1, . . . , ρn critical
values. We shall pick a generic ξ which means that

(G1) ρ1 < ρ2 < . . . < ρn, that is, at each level set of the distance function

g = gξ(w1, w2) = |w1 − ξ1|2 + |w2 − ξ2|2 (2.1)

restricted to C there is at most one critical point (this is not a very serious restriction
and it is put here rather for convenience).

(G2) If zk is a smooth point of C, then g|C is of Morse type near zk.
(G3) If zk is a singular point of C, we assume the condition (2.4) holds.

Generic points always exist. Obviously G3 and G1 are open-dense conditions. For G2 see, for
example, [22, Theorem 6.6].

We want to point out that we assume here tacitly, that the overall number of critical points is
finite. This follows from the algebraicity of the curve C (see Remark 3.3). If C is not algebraic,
this does not hold automatically, because even the number of singular points of C can be infinite
and the link at infinity may not even be defined; consider, for example, a curve {(z1, z2) ∈
C2 : z1 sin z2 = 0}. Using methods of Forstneric, Globevnik and Rosay [11, Proposition 2], one
can produce other amusing, albeit not explicit, examples.
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Remark 2.1. From the condition G3, we see in particular that if ξ does not lie on C, then
z1 is a smooth point of C. Indeed, g|C attains local minimum of z1, so the tangent space Tz1C
is not transverse to Tz1S(ξ, ρ1). If z1 is not smooth, this violates G3.

It is well known that, if r1 and r2 are in the same interval (ρk, ρk+1), then links Lr1 and Lr2

are isotopic, where

Lr = C ∩ S(ξ, r) ⊂ S(ξ, r).

The next definition provides very handy language.

Definition 2.2. Let ρk be a critical value. The links Lρk+ and Lρk− (or, if there is no risk
of confusion, just L+ and L−) are the links Lρk+ε and Lρk−ε with ε > 0 such that ρk + ε < ρk+1

and ρk − ε > ρk−1. We shall say, informally, that the change from L− to L+ is a crossing or a
passing through a singular point zk.

The following result is classical. It can be found e.g. in [14, Chapter V].

Lemma 2.3. Assume that zk is a smooth point of C. Then Lρk+ arises from Lρk− by
addition of a 0-handle, an 1-handle or a 2-handle according to the Morse index at zk of the
distance function g restricted to C.

A 0-handle corresponds to adding an unlinked unknot to the link. A 2-handle corresponds
to deleting an unlinked unknot. The addition of a 1-handle is a hyperbolic operation, which
we now define.

Definition 2.4 (see [15, Definition 12.3.3]). Let L be a link with components
K1, . . . ,Kn−1,Kn. Let us join the knots Kn−1 and Kn by a band, so as to obtain a knot K ′.
Let L′ = K1 ∪ . . . ∪Kn−2 ∪K ′. We shall then say, that L′ is obtained from L by a hyperbolic
transformation.

The hyperbolic transformation depends heavily on the position of the band, for example,
by adding a band to a Hopf link we can obtain a trivial knot, but also a trefoil and, in fact,
infinitely many different knots.

Remark 2.5. Assume again that ξ �∈ C. We know that z1 is a smooth point. As for r < ρ1

the link Lr is empty and for r > r1 it is not, the first handle must be a birth. In particular, for
r ∈ (ρ1, ρ2) the link Lr is an unknot.

Lemma 2.6. If C is a complex curve, there are no 2-handles.

Proof. A 2-handle corresponds to a local maximum of a distance function (2.1) restricted
to C. The functions w1 − ξ1 and w2 − ξ2 are holomorphic on C, hence |w1 − ξ1|2 + |w2 − ξ2|2
is subharmonic on C, and as such, it does not have any local maxima on C.

1-handle might occur in three forms.

Definition 2.7. Let C− = C ∩B(ξ, ρk − ε). A 1-handle attached to two different con-
nected components of the normalization of C− is called a join. A 1-handle attached to a single
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component of the normalization of C− but to two different components of L− is called a
marriage. And finally, if it is attached to a single component of L−, it is called a divorce.

If the point zk is not smooth, the situation is more complicated.

Definition 2.8. The multiplicity of a singular point z of C is the local intersection index
of C at z with a generic line passing through z.

Proposition 2.9. Let zk be a singular point of C with multiplicity p. Let Lsing be the
link of the singularity at zk. Then L+(= Lρk+) can be obtained from the disconnected sum of
L− (= Lρk−) with Lsing by adding p 1-handles.

Proof. This is the most technical and difficult proof in the article. First, we shall introduce
the notation, then we shall outline the proof, which in turn consists of four steps.

Introducing the notation. Up to an isometric coordinate change we can assume that ξ = (0, 0)
and zk = (ρk, 0).

Let G1, . . . , Gb be the branches of C at zk. By Puiseux theorem (see, for example,
[39, Section 2]), each branch Gj can be locally parametrized in a Puiseux expansion

w1 = ρk − βjτ
pj , w2 = αjτ

pj + . . . , τ ∈ C, |τ | 	 1, (2.2)

that is, it is a topological disk. Let ψj : {|τ | 	 1} → C2 be the parametrization given by (2.2).
The (generalized) tangent line to Gj at zk is the line Zj defined by

Zj = {(w1, w2) ∈ C2 : αj(w1 − ρk) + βjw2 = 0}. (2.3)

The tangent space to C at zk is then the union of lines Z1, . . . , Zb. By genericity of ξ, we may
assume that

αjβj �= 0 for any j. (2.4)

This means that neither the line {(w1, w2) : w1 − ρk = 0} nor {w2 = 0} is tangent to C at zk.
In other words, we can choose ε, λ and μ in such a way that the following conditions are
satisfied.

(S1) The intersection of each tangent line Zj with S(0, ρk − ε) is non-empty (we use βj �= 0).
(S2) The intersection B(0, ρk − ε) ∩B(zk, με) is non-empty and omits each tangent line Zj

(that is, μ > 1, μ is very close to 1 and we use αj �= 0).
(S3) The two-sphere S(0, ρk − ε) ∩ S(zk, λε) is not disjoint with Zj (this is a refinement of

(S1)).
(S4) λε is sufficiently small (in the sense which will be made precise later).
(S5) In particular, if we choose

r̃ =
√
ρ2

k + λ2ε2,

then zk is the only point at which the intersection of C with S(0, r) is not transverse, for
r ∈ [ρk − ε, r̃].

It is important to note that the two conditions αj �= 0 and βj �= 0 are of a different nature.
Namely, if for some j, βj = 0, the proposition fails. On the other hand, the condition αj �= 0
is used only to make the exposition clearer and easier to understand. The proof given below
works if for some j, αj = 0, but we would have to use less transparent arguments in two places.
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Figure 1. Schematic presentation of the proof of Proposition 2.9. The curve C (not drawn on
the figure) is intersected with boundaries of shaded sets providing links L−, L1, L2, L3, and,

finally, L+.

Let us define the following sets:

B− = B(0, ρk − ε) B+ = B(0, r̃) L2
s = C ∩ ∂(B− ∪B(zk, sε)),

S± = ∂B± L1 = L2
μ L3 = C ∩ ∂(B(0, r̃) ∪B(zk, λε)).

Here s ∈ [μ, λ] is a parameter.
Outline of the proof. The proof of the proposition will consist of the following steps.
Step 1. The link L1 is a disconnected sum of L− and the link of singularity Lsing;
Step 2. The link L2

λ arises from L2
μ by adding p 1-handles;

Step 3. The link L3 is isotopic to L2
λ;

Step 4. The link L+ is isotopic to L3.
The most important part is Step 2, all others are technical. The notation L1, L2 and L3

suggests in which step the given link appears (Figure 1).
In proving Steps 2–4 we will use the following lemma, which is a slight generalization of a

standard result about isotopies. For the convenience of the reader, we also present a sketch of
proof.

Lemma 2.10 (Transverse isotopy). Let S3 = WN ∪WS be a decomposition of S3 into upper
‘northern’ and lower ‘southern’ closed hemispheres and let S2

eq = WN ∪WS be the ‘equator’.
We denote by W o

N and W o
S the interiors of WN and WS , respectively. Assume that φs : S3 → C2

is a family of embeddings with the following assumptions:
(Is1) φ : S3 × [0, 1] → C2 × [0, 1] given by φ(x, s) = (φs(x), s) is continuous, that is, φs is a

continuous family;
(Is2) φs is a smooth family when restricted to WN and to WS , in particular it is smooth

when restricted to S2
eq;

(Is3) the image φs(W o
N ) and φs(W o

S) is transverse to C;
(Is4) (the crucial in our applications) the image φs(S2

eq) is transverse to C.

Then the links φ−1
0 (C) and φ−1

1 (C) are isotopic.

Proof of Lemma 2.10. If φs is C1 smooth, the statement is standard. The proof in this case
is slightly more technical, but follows the same pattern. Namely, we shall prove that for any
s ∈ [0, 1] and for any s′ sufficiently close to s, the links φ−1

s (C) and φ−1
s′ (C) are isotopic and

the statement shall follow from compactness and connectedness of the interval [0, 1].
Let us then consider a particular s ∈ [0, 1]. Recall that C was given by an equation {F = 0}.

Let S3
reg, respectively, S2

eq,reg, be the set of points x ∈ S3 (respectively x ∈ S2
eq) such that φs(S3)

(respectively φs(S2
eq)) is transverse to F−1(F (φs(x))) at φs(x).
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Now for each x ∈WN ∩ S3
reg, we can choose a vector vN

s (x) such that

DF ·
(
∂φs

∂s
+ vN

s (x)
)

= 0 (2.5)

(here DF means the derivative regarded as a 4 × 2 real matrix). This property means that
F ◦ φs is constant along the integral curves of the (non-autonomous) vector field vN

s . Now
two different vectors vN

s (x) and ṽN
s (x) satisfying (2.5) differ by a vector which is tangent

to (F ◦ φs)−1(F (φs(x))). In particular, we can pick vN
s (x) to be a smooth vector field, and,

whenever x ∈ S2
eq,reg, we can make vN

s (x) tangent to S2
eq. As each fibre F−1(F (φs(x))) which

is transverse to S2
eq intersects S2

eq in finitely many points, we see that the vector fields vN
s are

then uniquely defined on S2
eq,reg.

Similarly, we construct a vector field vS
s (x). The two vector fields vS

s and vN
s agree on S2

eq,reg

and therefore they can be glued to produce a vector field vs defined on U = (S3
reg \ S2

eq) ∪
S2

eq,reg. As vS
s and vN

s are smooth, vs is locally Lipschitz. By Cauchy’s theorem, vs can be
integrated to a local diffeomorphism. This diffeomorphism maps fibres of F ◦ φs to fibres of
F ◦ φs′ , for s′ sufficiently close to s.

Now the assumptions (Is3) and (Is4) guarantee that φ−1
s (C) lies in the interior of U .

Therefore, φ−1
s (C) is isotopic to φ−1

s′ (C) for s′ close to s and we conclude the proof.

Before we pass to the core of the proof of Proposition 2.9, let us make an obvious, but
important, remark. The order of tangency of each branch of Gj of C to Zj (see (2.3)) is, by
(2.2), pj � 2. Therefore, a point z ∈ C sufficiently close to zk, the tangent space TzC is very
close to Zj for some j. In particular, if we can show transversality of some space X ⊂ C2 to
all of Zj , we can often claim the transversality of X to C.

Step 1. By condition (S2) above, the intersection of B− and B(zk, με) is disjoint from C.
Therefore, C ∩ (S− \B(zk, με)) = C ∩ S− = L− and C ∩ (S(zk, με) \B−) = C ∩ S(zk, με) =
Lsing

k . Thus the intersection of C with ∂(B− ∪B(zk, με)) is indeed a disjoint sum of L−
and Lsing

k .
Step 2. For any s ∈ [μ, λ], C is transverse toB(zk, sε) (because each of Z1, . . . , Zb is transverse

and ε is sufficiently small). We are in a situation covered by Lemma 2.10: ∂(B− ∩B(zk, sε))
can be regarded as an image of a piecewise smooth map from S3 to C2, which maps S3

S to S−,
S3

N to S(zk, ε) and S2
eq to S− ∩ S(zk, ε). Nevertheless, as the links L2

μ and L2
λ are non-isotopic,

some of the assumptions of Lemma 2.10 must fail. Indeed, we shall show below that (Is4) is
not satisfied (see Remark 2.11) and we accomplish Step 2 by studying the intersection of C
with S− ∩ S(zk, sε).

Consider a branch Gj of C (see (2.2)). The idea is that up to terms of order τpj+1 or higher,
the image of the branchGj is a pj -times covered disk, which lies in Zj , so the situation described
in Figure 2 happens precisely pj times, which gives pj 1-handles. Since the multiplicity of a

Figure 2. Toy model in three dimensions, which should help us to understand Step 2. Two
balls B1 and B2. A plane C intersects the boundary of ∂(B1 ∪B2) in two disjoint circles (left

picture). If we push the ball B2 inside B1, this intersection becomes one circle. This is precisely
a one-handle attachment that occurs in Step 2.
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Figure 3. Schematic presentation of notation used in Step 2. The branch in question as
multiplicity pj = 3. For clearness of the picture, we draw only one disk Dja and do not label all

objects. We also draw only a part of ∂Rs2, the whole ∂Rs2 is the full circle.

singular point is equal to the sum of multiplicities of branches, this will conclude the proof
(Figure 3).

To be more rigorous, consider a disk

Gj ∩B(zk, λε),

which can be presented as ψj(Rλ), where ψj is the parametrization of Gj (see (2.2)) and

Rλ = {τ ∈ C : (|βj |2 + |αj |2)|τ |2pj + . . . � λ2ε2},
where . . . denotes higher order terms in τ . Let

Γ = ψj
−1(B−) ∩Rλ

and for s ∈ [μ, λ], let

Rs = ψj
−1(B(zk, εs)) ∩Rλ.

Observe that

ψj
−1(L2

s) = ∂(Γ ∪Rs). (2.6)

It is also useful to have in mind the following fact.

Remark 2.11. The intersection of the branch Gj with S− ∩ S(zk, sε) is not transverse
(and so the condition (Is4) of Lemma 2.10 is not satisfied, and so one may expect a change of
topology of link L2

s) if and only if ∂Γ is not transverse to ∂Rs.

Using the local parametrization, we can see that Rs, up to higher order terms, is given by

|τ |2 �
(

s2ε2

|αj |2 + |βj |2
)1/pj

+ . . . ,

that is, this is, up to higher order terms, a disk. In particular, it is a convex set
(see Remark 2.12). On the other hand, we can compute explicitly the parametrization of
∂Γ. By plugging (2.2) into the condition |w1|2 + |w2|2 = (ρk − ε)2, and neglecting the terms of
order pj + 1 or higher in τ (and with ε2), we get

∂Γ = {τ : Re βjτ
pj = 1

2ερk}.
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Figure 4. Passing through sja. The picture presents ψ−1
j (B− ∪B(zk, sε)) ∩Rλ = Γ ∪Rs, lying

inside the disk Dja. On the left s < sja and Γ is disjoint from Rs, on the right s > sja and
Γ ∩Rs �= ∅. The boundary of Γ ∪Rs is mapped onto link L2

s : we see that the topology changes
by the 1-handle addition as s crosses sja.

Chosing ηj such that ηpj

j = βj , and writing in polar coordinates (r, φ) on Rλ

ηj
−1τ = r(cosφ+ i sinφ),

we finally obtain

∂Γ = {(r, φ) ∈ Rλ : rpj cos pjφ = 1
2ερk}, (2.7)

modulo higher order terms. We can see that ∂Γ consists of pj connected components, indeed,
for cos pjφ < 0 equation (2.7) cannot hold. It follows that Γ has also pj connected components,
let us call them Γj1 . . . ,Γjpj

. Each set Γja is convex. This follows from (2.7) and a simple
analytic observation, which we now state explicitly.

Remark 2.12. In general, the convexity of the connected subset of a disk given by {f � 0}
for some f depends only on second derivatives of f . So if a function g is C2-close enough to
f , and the set {f � 0} is convex, then {g � 0} is convex, as well. Since the terms we neglect
in the discussion above are of order τpj+1 and pj � 2, the convexity of Rs follows from the
convexity of a disk of radius ε(|αj |2 + |βj |2)s1/pj and the convexity of Γja follows from the
convexity of the set with boundaries parametrized by (2.7) without higher order terms. Here
we use implicitly condition (S4).

Now consider a single a ∈ {1, . . . , pj}. By conditions (S2) and (S3) above, Γja ∩Rμ = ∅ and
Γja ∩Rλ �= ∅. Thus, by convexity, there exists a single s = sja such that ∂Γja is tangent to
Rsja

. In particular, there are pj points on Rλ such that ∂Γ is tangent to Rs for some s. Let
us call them yj1, . . . , yjpj

. Let us pick a very small disk Dja near yja. Then for s < sja close
to sja, ψ−1

j (L2
s) ∩Dja (cf. (2.6)) consists of two arcs: one on ∂Γ and the other on ∂Rs, see

Figure 4. On the other hand, for s > sja close to sja, ψ−1
j (L2

s) ∩Dja consists of two arcs, each
lies partially on ∂Γ and partially on ∂Rs. It follows that a 1-handle addition occurs in Dja

when s passes through sja.
Step 3. We isotope the ball S− = S(0, ρk − ε) to S+ = S(0, r̃) and use Lemma 2.10. More

precisely, consider a family of sets

B3
s := B(zk, λε) ∪B(0, s),

where s ∈ [ρk − ε, r̃]. We can easily find a piecewise smooth family of maps φ3
s : S3 → ∂B3

s , such
that φ3

s(WN ) → S(0, s), φ3
s(WS) → S(zk, λε) and ψ3

s(S2
eq) = S(zkλε) ∩ S(0, s) (notation from

Lemma 2.10). Now φ3
s(W o

N ) is transverse to C. Indeed, this follows by (S5) and the fact that
zk is not in the image φ3

s(W o
N ). Obviously φ3

s(W o
S) is transverse to C, because C is transverse
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Figure 5. Step 3. We explain why the condition (S3) is important. Sμ is shorthand for
S(zk, με). The dotted ellipse represents S− ∩ Sλ. On the right-hand side, there is one branch of
C, namely G3, which does not intersect S− ∩ Sλ, if we start enlarging S−, the intersection of
S− ∩ Sλ will eventually become non-empty, so we shall meet a non-transversality point. If we

choose λ large enough, then all non-transversality points are dealt in with Step 2.

Figure 6. Step 4. A schematic presentation of an isotopy of φ4
s. The consecutive images

φ4
s(WS) are drawn with dashed lines, only φ4

0(WS) and φ4
1(WS) (not labelled on the picture) are

bold solid lines. The lines Z1 and Z2 are examples of possible tangent lines to C, they are all
transverse to images φ4

s(WS) for s ∈ [0, 1].

to S(zk, λε). Therefore, condition (Is3) of Lemma 2.10 is satisfied. We need to show (Is4). But
observe that

S(0, r̃) ∩ S(zk, λε) = S(zk, ε) ∩ {w2 = 0}. (2.8)

Each tangent line Zj (see (2.3)) is in fact transverse to S(zk, λε) ∪ S(0, s) for all s ∈ [ρk − ε, r̃].
(This follows from elementary geometric argument which we leave as an exercise. Figure 5
explains the key point of the argument, namely that λ has been chosen large enough.) Then
by choosing ε small enough we can ensure that C is transverse to S(zk, λε) ∪ S(0, s) so (Is4)
is satisfied and the step is accomplished.

Step 4. Let B4
0 = B(0, r̃) ∪B(zk, ε). With the notation of Lemma 2.10, let us consider

a family of maps φ4
s : S3 → C2 such that φ4

s(WN ) = S+ \B(zk, ε) (in fact, we may assume
that φ4

s|WN
does not depend on s), φ4

0(WS) = S(zk, ε) \B+ and φ4
1(S3) = S+. Then the

transversality of φ4
s(W o

N ) and of φ4
s(S2

eq) to C (part of condition (Is3) and the condition (Is4)
is obvious). It is not difficult to choose φs so that φ4

s(W o
S) is transverse to C. For example, one

can observe that, for any s = [0, 1], the sphere

Ss = S(s · zk,
√

(1 − s)2ρ2
k + λ2ε2)

passes through the intersection of S(0, r̃) ∩ S(zk, λε), for s = 0, we have S0 = S(zk, λε) and
for s = 1, S1 = S(0, r̃). Then we can easily construct φ4

s such that φ4
s(WS) lies on Ss. It is a

matter of direct computations to check that φ4
s(WS) is transverse to each tangent line Zj (see

(2.3)) so, if ε is small enough, also to C. See Figure 6.



Page 10 of 25 MACIEJ BORODZIK

Figure 7. Curve {x3 − x2 − y2 = 0} intersected with a sphere S((−1, 0), 0.95) on the left and
S((−1, 0), 1.04) on the right. For radius r = 1, we cross an ordinary double point. The trivial
knot (on the left) becomes a trefoil after a change of one undercrossing to an overcrossing.

(Figures 7 and 8 have been drawn using a C++ computer program written by the author. The
author can provide the source code.)

Figure 8. Swallowtail curve (given in parametric form by x(t) = t3 − 3t, y(t) = t4 − 2t2)
intersected with a sphere S((0, 0), 2.15) on the left and S((0, 0), 2.5) on the right. We cross two
A2 singularities at r =

√
5. The two external circles on the left twist around the middle one,

after crossing a singular point.

Figure 9. The transformation of links shown on Figures 7 and 8 explained as taking a sum
with a Hopf link (respectively torus knot T2,3) and gluing two 1-handles to the result. The bold

parts of links represent places where the handles are attached. Remark that on Figure 8 the
procedure is applied twice, because we cross two singular points at one time (that is, (0, 0)

violates the genericity condition G1 in this case).

Let us fix an arbitrary ordering of 1-handles at a given singular point once and for all. We
shall then denote them H̃1, . . . , H̃p. We can think of the procedure described in Proposition 2.9
as follows: first we take the disconnected sum of L− with Lsing. After that we glue the handle
H̃1, then H̃2 and so on. In this setting H̃1 is a join handle and others are divorces or joins or
marriages. Such handles will be called fake joins, fake divorces and fake marriages, respectively.
The total number of such handles at a point zk will be denoted fk

j , fk
d and fk

m. These
numbers can be computed by studying changes of the number of components and the Euler
characteristics between C− and C+ and between L− and L+ (see the proof of Proposition 5.8)
and, as such, they are independent of the ordering of handles.

Example 2.13. If zk is an ordinary double point (locally defined by {xy = 0}), then L+

arises from L− by changing a negative crossing on some link diagram to a positive crossing
(see Figure 7 and its explanation in Figure 9).
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3. Number of non-transversality points

This section is auxillary in the sense that it provides some control over the number of non-
transversality points, which might be useful in the future. We use only one result from this
section, namely the finiteness of critical points of an algebraic curve.

Let us consider a curve C = {F = 0} in C2, such that F is a reduced polynomial of degree d.
Let ξ = (ξ1, ξ2) ∈ C2 be a fixed point (a ball centre). Let Sr = S(ξ, r) be a three-sphere of
radius r centred at ξ. Let w = (w1, w2) be an arbitrary point in C ∩ Sr. Assume that C is
smooth at w.

Lemma 3.1. The intersection C ∩ Sr is transverse at w if and only if the determinant

Jξ(w) = det

⎛
⎝ ∂F

∂w1
(w)

∂F

∂w2
(w)

w1 − ξ1 w2 − ξ2

⎞
⎠

does not vanish.

Proof. Assume that C is not transverse to Sr at w. This means that

TwC + TwSr �= C2.

Since TwSr is a real three dimensional, TwC + TwSr = TwSr, thus

TwC ⊂ TwSr.

Taking the orthogonal complements of these spaces we see that

NwSr ⊂ NwC.

But NwC is a complex space. Thus i ·NwSr ⊂ NwC and by dimension arguments we get that

NwSr ⊗ C = NwC.

Now NwSr ⊗ C is spanned over C by a vector (w1 − ξ1, w2 − ξ2). The lemma follows (the above
reasoning can be reversed to show the ‘if’ part).

If w is a singular point of C, Jξ(w) = 0 by the definition.

Corollary 3.2. For a curve C of degree d and a generic point ξ ∈ C2 there are d(d− 2)
such points (counted with multiplicities) w ∈ C where the intersection

C ∩ S(ξ, ‖w − ξ‖),

is not transverse at w.

Proof. For a fixed ξ, Jξ(w) is a polynomial of degree d− 1 in w and 1 in w̄. Intersecting
{Jξ = 0} with C of degree d yields d2 − 2d points (counted with multiplicities) by generalized
Bézout theorem (see, for example [8, Theorem 1]).

Remark 3.3. The number of intersection points can be effectively larger than d2 − 2d: as
the curve {Jξ = 0} is not complex, there might occur intersection points of multiplicity −1.
Anyway, this number is always finite, because both C and Jξ are real algebraic.
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The local intersection index of C with {Jξ(w) = 0} at a singular point z can be effectively
calculated. We have the following lemma.

Lemma 3.4. Assume that 0 ∈ C2 is a singular point of C. The local intersection index of
C with {Jξ = 0} at 0 is equal to the Milnor number μ of C at 0 minus 1.

Proof. This follows from Teissier lemma (see [33] or [12]), which states that

(f, J(f, g))0 = μ(f) + (f, g)0 − 1,

where (a, b)0 denotes the local intersection index of curves {a = 0} and {b = 0} at 0 and J(f, g)
is the Jacobian

∂f

∂w1

∂g

∂w2
− ∂f

∂w2

∂g

∂w1
.

We shall apply this lemma to the case when f = F is the polynomial defining the curve C,
whereas g is the distance function:

g(w1, w2) = |w1 − ξ1|2 + |w2 − ξ2|2.
Then (f, g)0 = 0. In fact, intersection of {f = 0} and {g = 0} is real one dimensional. But if
we perturb g to g − iε, the intersection set becomes empty.

The issue is that the Teissier lemma holds when f and g are holomorphic. To see that nothing
bad happens, if g is as above, we have to skim through a part of the proof of Teissier lemma
(see, for example [33]). Assume for a while that the curve {f = 0} can be parameterized near
0 by

w1 = tn, w2 = w2(t),

where w2(t) is holomorphic and n is the local multiplicity of {f = 0} at 0. (The case of many
branches does not present new difficulties.) Then

∂f

∂w1
(tn, w2(t)) · ntn−1 +

∂f

∂w2
(tn, w2(t)) = 0,

∂g

∂w1
(tn, w2(t)) · ntn−1 +

∂g

∂w2
(tn, w2(t)) =

d

dt
g(tn, w2(t)).

(3.1)

The first equation follows from differentiating the identity f(tn, w2(t)) ≡ 0. The second is
simply the chain rule applied to its right-hand side. On its left-hand side, we could have terms
with (∂g/∂w̄2)(∂w̄2/∂t). But they vanish, as w2 is holomorphic.

From (3.1), we get

ntn−1J(f, g)(tn, w2(t)) = −dg(tn, w2(t))
dt

· ∂f
∂w2

(tn, w2(t)). (3.2)

Now we can compare orders with respect to t. On the left-hand side of (3.2), we have

(n− 1) + (f, J(f, g))0,

whereas on the right-hand side, we get

(f, g)0 − 1 +
(
f,

∂f

∂w2

)
0

.

And we use another lemma, also due to Teissier, that (f, (∂f/∂w2))0 = μ(f) + n− 1. This can
be done directly as f is holomorphic.
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4. Signature of a link and its properties

Let L ⊂ S3 be a link and V a Seifert matrix of L (see, for example [14] for necessary definitions).

Definition 4.1. Let us consider the symmetric form

V + V T . (4.1)

The signature σ(L) of L is the signature of the above form. The nullity (denoted n(L)) is 1
plus the dimension of a maximal null-space of the form (4.1).

The signature is an important knot cobordism invariant. Unlike many other invariants,
signature behaves well under a 1-handle addition. More precisely, we have the following.

Lemma 4.2 (see [23]).

(a) Let L and L′ be two links such that L′ can be obtained from L by a hyperbolic
transformation (see Definition 2.4). Then

|n(L) − n(L′)| = 1 and σ(L) = σ(L′); or

|σ(L) − σ(L′)| = 1 and n(L) = n(L′).

(b) Signature is additive under the connected sum. The nullity of a connected sum of links
L1 and L2 is equal to n(L1) + n(L2) − 1.

(c) Let L be a link and L′ be a link resulting in the change from an undercrossing to an
overcrossing on some planar diagram of L. Then either

σ(L′) − σ(L) ∈ {0,−2} and n(L) = n(L′); or

σ(L′) = σ(L) − 1 and |n(L) − n(L′)| = 1.

(d) The nullity n does not exceed the number of components of the link.
(e) The signature and nullity are additive under the disconnected sum.

The signature of a torus knot was computed for example in [14, 21].

Lemma 4.3. Let p, q > 1 be coprime numbers and Tp,q be the (p, q)-torus knot. Let us
consider a set

Σ =
{
i

p
+
j

q
, 1 � i < p, 1 � j < q

}

(note in passing that this is the spectrum of the singularity xp − yq = 0, see [2] for a detailed
discussion of this phenomenon). Then

σ(Tp,q) = #Σ − 2#Σ ∩ ( 1
2 ,

3
2 ). (4.2)

This means that σ counts the elements in Σ with a sign −1 or +1 according to whether the
element lies in ( 1

2 ,
3
2 ) or not.
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Example 4.4. We have

σ(T2,2n+1) = −2n,

σ(T3,n) = 4
⌊n

6

⌋
− 2(n− 1),

σ(T4,n) = 4
⌊n

4

⌋
− 3(n− 1).

(4.3)

Moreover, for p and q large, σ(Tp,q) = −pq/2 + . . . , where . . . denotes lower order terms in p
and q.

Lemma 4.3 holds even if p and q are not coprime (see [14]): then we have a torus link instead
of a knot.

Next result is a direct consequence of the discussion in [26]. It holds, in fact, for any graph
link with non-vanishing Alexander polynomial.

Lemma 4.5. Let L be an algebraic link. Then n(L) = c(L).

The following result of A. Némethi (private communication) will also be useful.

Proposition 4.6. Let f be a reduced polynomial in two variables such that the curve
{f = 0} has an isolated singularity at (0, 0). Let f = f1 · f2 be the decomposition of f locally
near (0, 0), such that f1(0, 0) = f2(0, 0) = 0. Let L, L1 and L2 be the links of singularities of
{f = 0}, {f1 = 0} and {f2 = 0} at (0, 0) and σ, σ1 and σ2 be its signatures. Then we have

σ � σ1 + σ2.

We could use the proof from [24]. Nevertheless, we shall show a topological proof at the end
of the next section.

Lemma 4.7. Let L be a link of a plane curve singularity with r branches. Then σ(L) �
1 − r. Moreover, the equality holds only for the Hopf link and a trivial knot.

Proof. Let G be a germ of a singular curve bounding L. Let μ be the Milnor number of
the singularity of G and δ = 1

2 (μ+ r − 1) be the δ-invariant of the singular point. There is a
classical result (see, for example [25]) that −σ(L) � δ. This settles the case if r = 1. If r > 2, we
use the inequality δ � 1

2r(r − 1) > r (which holds because 2δ �
∑

i�=j(Ci · Cj), where (Ci · Cj)
is the intersection index of two branches at a given singular point) and we are done. If r = 2,
we know that δ � 1, with equality only for an ordinary double point.

Corollary 4.8. Let L = K1 ∪ . . . ∪Kn+1 be a link of a plane curve singularity with n+ 1
branches. Then

σ(L) � σ(Kn+1) + 1 − n.

Proof. Let L′ = K1 ∪ . . . ∪Kn. By Proposition 4.6, σ(L) � σ(L′) + σ(Kn+1). By
Lemma 4.7, σ(L′) � 1 − n.
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5. Changes of signature upon an addition of a handle

In order to study the behaviour of some invariants of knots let us introduce the following
notation. Here, r ∈ R, r > 0 and r �∈ {ρ1, . . . , ρn}:

(1) Lr is the link C ∩ S(ξ, r);
(2) Cr is the surface C ∩B(ξ, r) and Ĉr is its normalization;
(3) k(Cr) is the number of connected components of Ĉr;
(4) c(Cr) or c(Lr) is the number of boundary components of Cr;
(5) χ(Cr) is the Euler characteristic of Cr;
(6) pg(Cr) is the genus of Cr, which for smooth Cr satisfies 2k − 2pg = χ+ c;
(7) σ(Lr) is the signature of Lr

(8) n(Lr) is the nullity of Lr.

If Cr is singular, we are interested in the geometric genus of Cr, that is, the genus of
normalization of Cr. This explains the notation pg for a genus.

Table 1 describes the change of the above quantities upon attaching a handle.

Table 1. Changes of c(Cr), k(Cr), χ(Cr), pg(Cr), σ(Lr) and n(Lr) upon crossing a smooth
non–transversality point.

Name Index Δc Δk Δχ Δpg Δσ Δn

Birth 0 1 1 1 0 0 1
Death 2 −1 0 1 0 0 −1
Join 1 −1 −1 −1 0 s s′
Divorce 1 1 0 −1 0 s s′
Marriage 1 −1 0 −1 1 s s′

Here s, s′ ∈ {−1, 0, 1} and |s| + |s′| = 1 by Lemma 4.2 (a).
Let

w(L) = −σ(L) + n(L) − c(L),
u(L) = −σ(L) − n(L) + c(L).

(5.1)

Lemma 5.1. If L is a non-trivial link of singularity, then u(L) > 0 and w(L) � 0. Moreover,
w(L) = 0 if and only if L is a Hopf link.

Proof. We use Lemma 4.7 to prove this for w(L). For u(L), we use the fact that the signature
is negative and Lemma 4.2(d).

For a knot, by Lemma 4.2(d), we have w(L) = u(L) = −σ(L). In the general case of links
we have

− σ(L) + (c(L) − 1) � u(L) � −σ(L) � w(L) � −σ(L) − (c(L) − 1). (5.2)

Lemma 5.2. The invariants w(L) and u(L) are additive under the disconnected sum.

Lemma 5.3. Attaching a birth, death, marriage or join handle does not decrease w(L).

Proof. Only the case of 1-handles requires some attention. The number of components
decreases by 1 and either the nullity or the signature can change, and only by 1.
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Remark 5.4. The divorce handle might decrease the quantity w(L) at most by 2.

Lemma 5.5. Attaching a birth, death, marriage or join handle does not increase u(L). The
divorce might increase u(L) at most by 2.

Lemma 5.6. Let zk be a singular point of C, Lsing
k the link of its singularity and fk

d the
number of fake divorces (see comment after the proof of Proposition 2.9) at zk. Let, for ε > 0
small enough L± = Lρk±ε, where ρk = ‖zk − ξ‖. Then

w(L+) � w(L−) + w(Lsing
k ) − 2fk

d,

u(L+) � u(L−) + u(Lsing
k ) + 2fk

d.

Proof. We use the notation from the proof of Proposition 2.9. We have

w(L1) = w(L−) + w(Lsing
k ) step 1

w(L2) � w(L1) − 2fk
d step 2

w(L+) = w(L2) steps 3 and 4.

In the middle equations, we have used the fact that a fake divorce can lower the invariant at
most by 2. The proof for u is identical.

Lemma 5.7. Assume that C is smooth. Let pg be the genus of the curve C and d the
number of its components at infinity. Let also ab, am, ad, and aj denote the number of birth,
marriage, divorce and join handles. The following formulae hold:

am = pg,

ab + ad − aj − am = d,

ab − aj = 1.
(5.3)

In particular,

ad = d+ pg − 1. (5.4)

Proof. For r < ρ1, Lr is empty. Thus the first handle must be a birth and for r ∈ (ρ1, ρ2),
Lr is an unknot. It has pg = 0, c = 1 and k = 1. When we next cross critical points, these
quantities change according to Table 1. For r > ρn, we have the link at infinity and Cr is
isotopic to C.

Proposition 5.8. Let C be an algebraic curve in C2, not necessarily smooth. For a
generic point ξ, let S0 = S(ξ, r0) and S1 = S(ξ, r1) (with r0 < r1) be two spheres intersecting
transversally with C. For i = 0, 1, we define pgi = pg(Cri

), ci = c(Cri
) and ki = k(Cri

).
Let a01

d and f01
d be the numbers of divorces and fake divorces respectively, on C, which lie

between S0 and S1. Then

a01
d + f01

d � pg1 − pg0 + c1 − c0 − (k1 − k0).

Proof. Let π : Ĉ → C be the normalization map. The composition of π with the distance
function g (see (2.1)) restricted to C yields a function ĝ : Ĉ → R. This function does not have
to be a Morse function on Ĉ, but we can take a small subharmonic perturbation of ĝ on Ĉr1 ,
such that the resulting function is Morse in the preimage π−1B(ξ, r1). This perturbation we
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shall still denote by ĝ. Let âb, âd, âj and âm be the number of births, divorces, joins and
marriages of ĝ in U = π−1(B(ξ, r1) \B(ξ, r0)). We need the following result:

Lemma 5.9. There is a bound

âd � a01
d + f01

d . (5.5)

Proof. If zk ∈ C is a smooth point of C and critical point of g, then π−1(zk) is a critical
point of ĝ of the same index. Moreover, if zk is a divorce, join or marriage, then π−1(zk) will
also be, respectively, a divorce, join or a marriage.

Next we show that any fake divorce on C corresponds to a divorce on Ĉ. This is done by
comparing the changes of topology when crossing a singular point with the changes of topology
of normalization. So let zk be a singular point of C. Let us define

C± = C ∩B(ξ, ρk ± ε) and L± = ∂C±

Let Ĉ± be the normalization. Define also

Δg = pg(C+) − pg(C−), Δk = k(C+) − k(C−), Δc = c(L+) − c(L−).

Observe that from a topological (as opposed to smooth) point of view, passing through a
singular point of multiplicity p and r branches amounts to picking r disks and attaching them
to Ĉ− with p 1-handles. Analogously to (5.3), we then get fk

m = Δg, fk
d − fk

j − fk
m = Δc and

fk
j = Δk. Hence

fk
d = Δc + Δg − Δk.

The number of divorces on Ĉ that are close to π−1(zk) (denote this number by âk
d) can be

computed in the same way. Since the number of boundary components of Ĉ± is the same as
c(C±), and Δg measures also the change of genus between Ĉ+ and Ĉ−, we have

âk
d = Δc + Δg − Δk = fk

d.

Finishing the proof of Proposition 5.8. Let us consider the changes of the topology of
Ĉ ∩ ĝ−1((−∞, r2)) as r changes from r0 to r1. The number of components of the boundary
changes by c1 − c0, while the genus by g1 − g0 and the number of connected components of
normalization by k1 − k0. Using Table 1 (compare the argument in the proof of Lemma 5.7),
we get âd = g1 − g0 + c1 − c0 − (k1 − k0).

Remark 5.10. In most applications we will have k0 = k1 = 1, for example, in the case
when L1 is a link at infinity of a reduced curve and L0 is a trivial knot.

Example 5.11. Let C be a curve given by x3 − x2 − y2 = 0 (see Figure 7, but now the
centre is in a different place), ξ = (0, 0), r0 is small and let us take r1 large enough. Then L0 is
the Hopf link, L1 is the trefoil, pg1 = pg0 = 0 (C is rational), c0 = 2, c1 = 1, k1 = 1 but k0 = 2
(Ĉ0 consists of two disks). Then the number of divorces is bounded by 0 and, indeed, there is
only one critical value between r0 and r1 and the corresponding handle is a join.

Corollary 5.12. If C ⊂ C2 is a reduced plane algebraic curve and its link at infinity has
d components, then for any generic ξ the total number of divorces on C (including the fake
divorces) satisfies

ad + fd � pg(C) + d− 1.
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Proof. Let us pick a generic ξ and choose r0 ∈ (ρ1, ρ2) while r1 is sufficiently large. Then
S0 is an unknot, because the first handle that occurs when coming from r = 0, is always a
birth. Moreover, S1 ∩ C is the link of C at infinity and so it has d components. The statement
follows from Proposition 5.8

Theorem 5.13. Let C be a curve with link at infinity L∞ and with singular points
z1, . . . , zn, such that the link at the singular point zk is Lsing

k . Then

w(L∞) �
n∑

k=1

w(Lsing
k ) − 2(pg(C) + d− 1),

u(L∞) �
n∑

k=1

u(Lsing
k ) + 2(pg(C) + d− 1),

where d is the number of components of L∞.

Proof. The proof now is straightforward. Let us take a generic ξ. Then, for r ∈ (ρ1, ρ2), Lr

is an unknot (see Remark 2.5), so w(Lr) = u(Lr) = 0. Then, as we cross subsequent singular
points, w(Lr) and u(Lr) change (see Lemmas 5.3–5.6). We obtain

w(L∞) �
n∑

k=1

(w(Lsing
k ) − 2fk

d) − 2ad

and similar expression for u. The theorem now follows from Corollary 5.12.

Remark 5.14. Observe that the first inequality in Theorem 5.13 (as applications below
show, the more important one) ‘does not see’ ordinary double points, because if zk is an
ordinary double point, then w(Lsing

k ) = 0 (however u(Lsing
k ) = 2).

As the whole discussion leading to Theorem 5.13 was quite involved, we present some
examples.

Example 5.15. Consider a curve {x3 − x2 − y2 = 0}, see Example 5.11. An ordinary
double point at (0, 0) is the only singular point (it has wL = 0 and uL = 2). The link at
infinity is a trefoil with w = u = 2. The geometric genus of a curve is equal to 0.

Example 5.16. Let C be a swallowtail curve as in Figure 8. It has two ordinary cusps (the
corresponding links of singularities are trefoils) and one ordinary double point, its geometric
genus is 0 and the link at infinity is the torus knot T3,4, with w = u = 6. The inequalities in
Theorem 5.13 read 6 � 4 (the first one) and 6 � 6 (the second one) (Figure 9).

Example 5.17. Consider a curve parameterized by x(t) = t4, y(t) = t6 + t9. It has a
singular point at (0, 0). According to Eisenbud and Neumann [10], the link of this singularity
(let us call it L1) is a (15, 2) cable on the trefoil. The curve also has three other ordinary double
points (corresponding to t = 3

√
1 + i, which can be found by solving the equations x(t) = x(s),

y(t) = y(s), t �= s). The link at infinity Linf (see [28]) is a (4, 9) torus knot. According to
Lemma 6.6 below, σ(L1) = σ(T15,2) = −14. By Example 4.4, we have σ(Linf ) = −16. Hence
w(Linf ) = u(Linf ) = 16 and w(L1) = u(L1) = 14. Theorem 5.13 holds because 16 � 14 + 3 · 0
(inequality for w) and 16 � 14 + 3 · 2 (inequality for u).
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A good number of possible examples can also be found in [4, 7], where a detailed list of
plane algebraic curves with the first Betti number 1 is presented, and singularities are given
explicitly for each curve on the list. We provide one example (point (w) in the list of [7]), where
a divorce handle occurs.

Example 5.18. Consider a curve parameterized by x(t) = t2 − 2t−1, y(t) = 2t− t−2. It has
three ordinary cusps and no other singularities. It follows that

∑
w(Lsing

k ) =
∑
u(Lsing

k ) = 6.
The curve has two branches at infinity, corresponding to t→ ∞ and t→ 0. Each branch is
smooth at infinity and tangent to the line at infinity with the tangency order 2. An application
of the algorithm of [28] shows that the link at infinity can be represented by the following
splice diagram.

Then, the algorithm of Neumann [27] shows that the signature of the link at infinity is
equal to −5, so w(L∞) = 4 and u(L∞) = 6. There is one divorce handle, and indeed w(L∞) =∑
w(Lsing

k ) − 2.

From Theorem 5.13, we can deduce many interesting corollaries. First of all, we use it in
showing that some curves with given singularities might not exist. The point (a) of the corollary
below is almost a restatement of the result of Petrov [32], which can be interpreted as in [5]
as a bound for k with p = 3. The point (c) gives the same estimate as in [6], but we use here
only elementary facts, not the BMY inequality.

Corollary 5.19. Let x(t) and y(t) be polynomials of degree p and q with p and q coprime.
Let C be the curve given in the parametric form by

{w1 = x(t), w2 = y(t), t ∈ C}. (5.6)

Assume that the singularity of C at the origin has a branch with singularity A2k (that is, A2k

is a singularity of a parametrisation). Then 2k is less than or equal to the signature of the
torus knot Tp,q. In particular,

(a) k � q − 1 − 2�q/6� if p = 3;
(b) k � 3

2 (q − 1) − 2�q/4� if p = 4;
(c) k �∼ pq/4 in general.

Proof. Let L0 be the link of singularity of C at 0. Let c(L0) be the number of its components.
By assumption, one of its components is a link T2,2k+1 with signature −2k. By Corollary 4.8

−σ(L0) � 2k + c(L0) − 1.

Hence

w(L0) � 2k.

The link at infinity L∞ is a knot Tp,q. Hence w(L∞) = σ(L∞) = σ(Tp,q). This, in turn, is
computed in Lemma 4.3. The result is then a direct consequence of Theorem 5.13, since pg(C) =
0 by assumption (see (5.6)).
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Remark 5.20. Corollary 5.19(c) holds even if p and q are not coprime. We can compute
the signature of the knot at infinity by Lemma 6.6.

The next result is somewhat unexpected, especially if we compare it with [36, Proposition 87]
stating that no invariant coming from a Seifert matrix of the knot, including the signature,
can tell whether a link is a C-link.

Corollary 5.21. If a C-link L with m components bounds an algebraic curve of geometric
genus pg, then

−σ(L) � 2 − 2m− 2pg.

In particular, if a knot bounds a rational curve, its signature is non-positive.

Now we can rephrase Theorem 5.13 in a Kawauchi-like inequality.

Corollary 5.22. Let C be as in Theorem 5.13. Let b be the first Betti number of C (that
is, the rank of H1(C; Q). We stress here that we consider the homology of C ⊂ C2, not of its
compactification in CP 2). Then∣∣∣∣∣σ(L∞) −

n∑
k=1

σ(Lsing
k )

∣∣∣∣∣ � b+ n(L∞) − 1.

Proof. Let rk be the number of branches of the link Lsing
k and d be the number of branches

at infinity. By Theorem 5.13 and the fact that w(Lsing
k ) � −σ(Lsing

k ) − (rk − 1), we get.

−σ(L∞) − d+ n(L∞) � −
∑

σ(Lsing
k ) −

∑
(rk − 1) − 2(pg(C) + d− 1).

Denoting R =
∑

(rk − 1), we get

σ(L∞) −
∑

σ(Lsing
k ) � 2pg +R+ d+ n(L∞) − 2 = b+ n(L∞) − 1,

as b = 2pg +R+ d− 1. The inequality in the other direction is proved in an identical way,
using the invariant u instead of w.

With not much work, Corollary 5.22 can be deduced from [16, 17] (see [15, Theorem 12.3.1]),
without ever using the holomorphicity of C. Roughly speaking, we pick a ball B ⊂ C2 disjoint
from C and pull (by an isotopy) all the singular points of C inside B, so as to get a real surface
C ′ with the property that C ′ ∩ ∂B is a disjoint union of links Lsing

1 , . . . , Lsing
n . Then C ′ \B

realizes a cobordism between this sum and the link of C at infinity. Then [15, Theorem 12.3.1]
provides Corollary 5.22.

The main drawback of that approach is that C ′ is no longer holomorphic. In short, it works
for the signature (and Tristram–Levine signatures as well), but if we want at some moment
to go beyond and use some more subtle invariant, holomorphicity of C might be crucial. At
present we do not know any such invariant, but we are convinced that without exploiting
thoroughly the holomorphicity of C we cannot get a full understanding of the relation between
the link at infinity and the links of singularities of C.

We finish this section by showing a topological proof of Proposition 4.6. For the convenience
of the reader we recall the statement.



MORSE THEORY FOR PLANE ALGEBRAIC CURVES Page 21 of 25

Proposition 5.23. Let f be a reduced polynomial in two variables such that the curve
{f = 0} has an isolated singularity at (0, 0). Let f = f1 · f2 be the decomposition of f locally
near (0, 0), such that f1(0, 0) = f2(0, 0) = 0. Let L,L1 and L2 be the links of singularities of
{f = 0}, {f1 = 0} and {f2 = 0} at (0, 0) and σ, σ1, σ2 its signatures. Then we have

σ � σ1 + σ2.

Proof. Let r > 0 be small enough, so that L = {f = 0} ∩ S(0, r) is the link of the singularity
of f . For a generic vector v ∈ C2 sufficiently close to 0, the intersection of S(0, r) with C =
Cv = {Fv = 0} is isotopic to L, where Fv(w) = f1(w)f2(w − v). By definition, C = C1 ∪ C2

where
C1 = {f1(w) = 0} ∩B(0, r) and C2 = {f2(w − v) = 0} ∩B(0, r).

Let ε	 r. The link C ∩ S(0, ε) is clearly the link L1 of the singularity given by {f1 = 0}.
Consider a change of the isotopy type of C ∩ S(0, s) as s increases from ε to r.

Claim. There are neither divorce nor fake divorce handles on C for s ∈ [ε, r].

The claim follows from Proposition 5.8: we put r0 = ε and r1 = r. Then pg1 = pg0 =
0, indeed, the normalization of C is a union of disks. Moreover, in the notation from
Proposition 5.8, c1 = k1 and c0 = k0. In fact, to show c0 = k0 we observe that C ∩ S(0, ε)
is the link of singularity, and both c0 and k0 are the numbers of branches of the singular point.
The same argument shows that c1 = k1 is equal to the number of branches of singularity of f
at (0, 0). This shows the claim.

Now the Morse theoretical arguments show that

w(L) � w(L1) +
∑

k

w(Lsing
k ),

where we sum over all singular points of C, which lie in B(0, r) \B(0, ε). These singular points
are easy to describe. Indeed, there are no singular points which lie only on C1, there is one
singular point, at v, that lies only on C2 and the corresponding link is the link L2. Moreover,
there are double points arising as intersections of C1 with C2. The number of these double
points can be effectively computed as the local intersection index of {f1 = 0} with {f2 = 0},
alternatively as the linking number of L1 with L2, but we content ourselves by pointing out
that for each double point w(Lsing

k ) = 0 (see Remark 5.14). Therefore, we get

w(L) � w(L1) + w(L2).

And the statement of proposition follows from Lemma 4.5, because then w(L) = −σ(L),
w(L1) = −σ(L1) and w(L2) = −σ(L2).

6. Application of Tristram–Levine signatures

The notion of signature was generalized by Tristram and Levine [19, 38]. The Tristram–Levine
signature turns out to be a very strong tool in the theory of plane algebraic curves. In what
follows ζ will denote a complex number of module 1 and different than 1.

Definition 6.1. Let L be a link and S be a Seifert matrix. Consider the Hermitian form

(1 − ζ)V + (1 − ζ̄)V T . (6.1)

The Tristram–Levine signature σζ(L) is the signature of the above form. The nullity nζ(L) is
the nullity of the above form increased by 1.
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The addition of 1 is a matter of convention. This makes the nullity additive under
disconnected and not connected sum.

Remark 6.2. For a link L, let us define n0(L) as a minimal number such that the
n0(L)th Alexander polynomial is non-zero. Let Δmin(L) = Δn0(L)(L). Then, it is a matter
of elementary linear algebra to prove that nζ(L) � n0(L) + 1 and nζ(L) > n0(L) + 1 if and
only if Δmin(ζ) = 0 (we owe this remark to A. Stoimenow, see [2] for a thorough discussion).

Example 6.3. For ζ = −1, we obtain the classical signature and nullity.

We have, in general, scarce control on the values of nζ if ζ is a root of the Alexander
polynomial. However, many interesting results can be obtained already by studying invariants
σζ and nζ when ζ is not a root of the Alexander polynomial. To simplify the formulation of
these results let us define the functions σ∗

ζ and n∗ζ as

σ∗
ζ =

⎧⎨
⎩
σζ if ζ is not a root of Δmin,

lim
ρ→ζ+

σρ otherwise. (6.2)

Here ρ→ ζ+ if we can write ρ = exp(2πiy), ζ = exp(2πix) and y → x+. Similarly we can define
n∗ζ . By Remark 6.2, n∗ζ ≡ n0(L) + 1, but we keep this function in order to make the notation
consistent with previous sections.

Tristram–Levine signatures share similar properties to the classical signature.

Lemma 6.4 (see [19, 38], compare also [37]). Lemma 4.2 holds if we exchange σ(L) and
n(L) with σ∗

ζ (L) and n∗ζ(L).

Litherland [21] computes also the signature of torus knot Tp,q:

Lemma 6.5. Let p and q be coprime and Σ as in Lemma 4.3. Let ζ = exp(2πix) with
x ∈ (0, 1). Then

σ∗
ζ (Tp,q) = #Σ − 2#Σ ∩ (x, 1 + x]. (6.3)

The choice of the closure of the interval (x, 1 + x] in formula (6.5) agrees with taking the
right limit in formula (6.2). Indeed, if xk → x+, then the number of points in Σ ∩ (xk, xk + 1]
converges to the number of points in Σ ∩ (x, x+ 1].

The signature of an iterated torus knot can be computed inductively from the result of [21].

Lemma 6.6. Let K be a knot and Kp,q be the (p, q)-cable on K. Then, for any ζ, we have

σζ(Kp,q) = σζq (K) + σζ(Tp,q).

This allows recursive computation of signatures of all possible links of unibranched
singularities. In the case of an arbitrary singularity one uses results of Neumann [26, 27].

Because of Lemma 6.4 we can repeat the reasoning from Section 5 to obtain a reformulation
of Theorem 5.13, Corollary 5.21 and Corollary 5.22.



MORSE THEORY FOR PLANE ALGEBRAIC CURVES Page 23 of 25

Theorem 6.7. Let C be an algebraic curve with singular points z1, . . . , zn, with links of
singularities Lsing

1 , . . . , Lsing
n . Let L∞ be the link of C at infinity. Let also b be the first Betti

number of C. Then ∣∣∣σ∗
ζ (L∞) −

∑
σ∗

ζ (Lsing
k )

∣∣∣ � b+ n0(L∞). (6.4)

The proof goes along the same line as the proof of Corollary 5.22. We introduce the quantities
wζ = −σ∗

ζ (L) + n∗ζ(L) − c(L) and uζ = −σ∗
ζ (L) − n∗ζ(L) + c(L) and study their changes on

crossing different singular handles. We remark only that n∗ζ(L∞) = n0(L∞) + 1.
Using the same argument as in Proposition 5.8 we obtain a result which relates the signatures

at two intermediate steps.

Proposition 6.8. For any generic parameter ξ, let r0 and r1 be two non-critical
parameters. For i = 0, 1 let Li and ci be, respectively, the link C ∩ S(ξ, ri) and its number
of components. Let Δpg be the difference of genera of C ∩B(ξ, r1) and C ∩B(ξ, r0) and Δk
the difference between numbers of connected components of corresponding normalizations. We
have then

wζ(L1) −
∑

wζ(Lsing
k ) − wζ(L0) � −2(Δpg + c1 − c0 − Δk),

−(uζ(L1) −
∑

uζ(Lsing
k ) − uζ(L0)) � −2(Δpg + c1 − c0 − Δk),

where we sum only over those critical points that lie in B(ξ, r1) \B(ξ, r0).

Corollary 5.21 generalizes immediately to the following, apparently new result.

Lemma 6.9. If K is a C-knot bounding a rational curve, then σ∗
ζ (K) � 0 for any ζ.

Another application of Theorem 6.7 is in the classical problem of bounding the number of
cusps of a plane curve of degree d, see [13] for the discussion of this problem. Our result is a
topological proof of Varchenko’s bound.

Corollary 6.10. Let s(d) be a maximal number of A2 singularities on an algebraic curve
in CP 2 of degree d. Then

lim sup
s(d)
d2

� 23
72
.

Proof (Sketch). Let C be a curve of degree d in CP 2. Let us pick up a line H intersecting
C in d distinct points. We chose an affine coordinate system on CP 2 such that H is the line at
infinity. Let C0 be the affine part of C. Then C0 can be defined as a zero set of a polynomial
F of degree d. Let z1, . . . , zs be the singular points of C0 of type A2.

Case 1. C0 has no other singular points.
Then, by the genus formula, b1(C0) = d2 − 2s+O(d). Let us take ζ = eπi/6. Then

σ∗
ζ (Lsing

i ) = 2. On the other hand, the link of C0 at infinity is the torus link Td,d and its
signature

σ∗
ζ (Td,d) = 2d2 · 1

6 (1 − 1
6 ) +O(d) = 5

18d
2 +O(d).
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(For ζ = e2πix we have asymptotics σ∗
ζ (Td,d) = 2d2x(1 − x) +O(d) by results [26, 27].) Then

(6.4) provides

2s− 5
18d

2 � d2 − 2s+O(d).

Case 2. C0 has other singular points. Let ξ ∈ C2 be a generic point of C2 and let r∞ be
sufficiently large, so that the intersection of C0 with a sphere S(ξ, r∞) is transverse. Let G be a
generic polynomial of very high degree vanishing at each of zk with up to order at least 4 (that
is, generic among polynomials sharing this property). For ε > 0 small enough this guarantees
that the curve

Cε = {F + εG = 0}
has singularities of type A2 at each zk, is smooth in B(ξ, r∞) away from z1, . . . , zs and its
intersection with the sphere S(ξ, r∞) is the same as the intersection of C0. Now we can repeat
the proof in Case 1.

The above estimate is very close to the best estimate known to the author, that the limit is
bounded from above by (125 +

√
73)/432 (see [18]).

Theorem 6.7 can be used together with results (especially Lemma 3 and Theorem 3) in [21].
We can get another proof of classical Zajdenberg–Lin theorem (see [20]), if we put b = 0 (we
defer the details to a subsequent paper). It is, presumably, possible to go beyond this theorem
and classify all plane curves with small first Betti number (compare [4, 7]). We can also hope to
prove some results concerning the maximal possible number of singular points of the algebraic
curve with given first Betti number, the problem that is known as the Lin conjecture.
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H. Żo�la̧dek for carefully reading the manuscript at the early stage of its preparation. The author
would also like to thank A. Stoimenow and P. Traczyk for patiently explaining some elements
of knot theory obscure to the author. He is also grateful to A. P�loski for many stimulating
discussions and to L. Rudolph for his interest in this work.

References

1. M. Borodzik, ‘Deformations of singularities of plane curves. Topological approach’, Preprint, 2009, arxiv:
0907.4129.

2. M. Borodzik and A. Némethi, ‘Hodge-type structures as link invariants’, Preprint, 2010, arxiv:1005.2084,
to appear in Ann. Institut Fourier.

3. M. Borodzik and A. Némethi, ‘Spectrum of plane curves via knot theory’, Preprint, 2011, arxiv:1101.5471,
to appear in J. of London Math. Soc.
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Parametric lines’, Pacific J. Math. 229 (2007) 307–338.
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