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ON THE SIGNATURES OF TORUS KNOTS

MACIEJ BORODZIK AND KRZYSZTOF OLESZKIEWICZ

ABsTRACT. We study properties of the signature function of the torus
knot T 4. First we provide a very elementary proof of the formula for
the integral of the signatures over the circle. We obtain also a closed
formula for the Tristram-Levine signature of a torus knot in terms of
Dedekind sums.

1. PRELIMINARIES

Let K be a knot in S3 with a Seifert matrix S. Let also z € S*, 2 # 1 be
a complex number. The Tristram—Levine signature o(z) is the signature of
the hermitian form

(1-2)S+(1-2)87T.

This is obviously an integer-valued piecewise constant function. It does not
depend on a particular choice of Seifert matrix. If we substitute z = —1 we
get an invariant o,.q4, which is called the (ordinary) signature. We define
also the integral I

1
IK:/ o (e*™) dz.
0

Signatures are very strong knot cobordism invariants, which can be used
to bound the four-genus and the unknotting number of K. The integral Iy
of the signature function is one of the so called p invariants of knots (see
[COT2]) and is of independent interest.

For a torus knot T, 5, where ged(p, ¢) = 1, the signature function can be
expressed in the following nice way (see [Li] or [Kau, Chapter XII|)

Proposition 1.1. Let

(L.1) E:{ﬁ+£:1§k§p—1,1glgq—1}.
p q

Then for any x € (0,1) \ ¥ we have

(1.2) o (™) = |2\ (z,z +1)| — |2 N (x,z + 1)),
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where |-| denotes the cardinality of a set. In particular ooq = |X\(1/2,3/2)|—
XN (1/2,3/2)].

The explicit formulae for 0,4 and Ix of torus knots have been known in
the literature for quite a long time. In fact, 0,4 by a result of Viro (see
[24)) is equal to 7o, which was computed in [HZ| for p and ¢ odd, and
(denoted as o(f + 22)) in [Nem| in general case. On the other hand, Kirby
and Melvin [KM| Remark 3.9] and [Nem| Example 4.3] provided a formula
for Ir. Nevertheless all the above-mentioned results are related more to
singularity theory and low-dimensional topology, than to knot theory itself.

After the discovery of p invariants, the interest of computing I for various
families of knots grew significantly. Two independent new proofs of the
formula for I of torus knots [Bol [Co] appeared in 2009. In particular [Bol
provided a bridge between the Ix and cuspidal singularities of plane curves.

In this paper we present an elementary proof of the formula for I (Propo-
sition 2.1)). We also cite a formula of Némethi and draw some consequences
from it. In Section @] we use a theorem of Rosen to obtain the explicit value
of the signature o(z) of a torus knot not only for z = —1, but also for any
z € S*\ {1} (Proposition [£2]). This result seems to be new. In Section [§ we
show that the formula for o,,4(T} ;) cannot be written as a rational function
of p and gq.

2. FORMULA FOR THE INTEGRAL

Proposition 2.1. For a torus knot T, ; we have

]

This proposition was first proved in [KM, Remark 3.9]. Refer to [Nem),
Bo, [Co for other proofs.

Proof. Let f(z) = —o(e*™*) and J = fol f(z)dx = —I. Then

F@) = 1y (@) = D Iy yen (@)

yeD yeD

(Here, for a set A C R, 14 denotes the function which is equal to 1 on A
and 0 away from A.) Hence

1
J = Z/o (1(y—1,y) (z) — 1R\(y—17y)($)) de = Z(l — 2y —1)).

yeX yeY

It follows that

=55 (i)
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As for any u,v € R we have 1—2|u+v—1| = 2min(1—w, v)+2 min(u, 1—v)—1,

- ZZZmn< 1)+ 555 min (2 —l) ~p-1(-1)=

k=11=1 k=1l=1
p—1lg—1 p 1g—1
= 422 min (— —) (p—1)(g—1) = —ZZ min(gk, pl)—(p—1)(g—1).
k=11=1 k 1l=1

Now, obviously,

=> {{1,....,p=1} x{1,...,¢ = 1}: ¢k > s and pl > s}| =

pq—

Z —1—s/q])(q¢—1—|s/p)).

5=0
We can multiply the expression in parentheses. Then, as 25161 ls/p] =
1
1
PXisgl = 5palg — 1) we get

pq—1

S 1 Ls/al)(a— 1~ [s/p)) = palp—1)a—1) ~ gpalp—1)(a 1)~

s=0

pq—1 pq—1
Jpalp = (= 1)+ Y Ls/p] ls/a) = 3 Ls/v) Ls/al.
s=0 s=0

It remains to compute qu:f]l Is/p| [s/q]. To this end let us denote by
R,(s) the remainder of s modulo p. We then have

pg—1 pg—1
S Ls/pl ls/a) = 3 ( —l). S‘qRq) -

s=0 s=0
pg—1 pq—1 pq—1 pg—1
(Zs — Z b(S) — Zqu(s) + ZRP(S)RQ(3)> =
s=0 s=0 s=0
oo, 11 1 1 Lo, 1
T I T i M v A U

where we used the fact that Y270 R, (s)Ry(s) = SP_ 527"kl by the Chi-
nese remainder theorem.
Putting all the pieces together we obtain the desired formula. O

Let us now present another proof, due to Némethi [Nem], see also [Br, [HZ].
Before we do this, let us recall some facts from topology.
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Assume that the knot K is drawn on S® = 0B* and consider a Seifert
surface F' of K. Let us push it slightly into B* and for an integer m let
N,, be the m fold cyclic cover of B* branched along F. Then the quantity
Tm = 0(Np,) (here o is a signature of a four-manifold) is independent of
the choices made. We have the formula essentially due to Viro (see [GLM,
Section 2] or [Vil).

m—1

(2.2) Tm = > ox(£"),

k=1

where £ is a primitive root of unity of order m. In particular, since o is a
Riemann integrable function, we have

1
, 1
(2.3) I:/ o(e¥™®) dx = lim —7,,.
0

m—oo m

On the other hand

(2.4) To(K) = 04ra( K).

If K is a torus knot 7T}, , and m, p, ¢ are pairwise coprime, then the m-fold
cover of S3 branched along K is diffeomorphic to the Brieskorn homology
sphere B(p,q,m) (see |Br], [GLM| Section 5|). Then 7,, turns out [HZ,
Section 10.2 and 11| to be the signature of the manifold X, ;,, defined as
the intersection of 2! + 24 + 25" = ¢ with B(0,1) C C3. In this context 7,
was computed by [HZ, Formula 11 on page 122] and by [Nem| Example 4.3].
Especially the last formula is worth citing (Némethi uses m(S(f)) to denote

the limit (23))).

(2:5) I'=—A(s(p,q) + s(q,p) + 5(1,pq)).
Here s(a,b) is the Dedekind sum (see Section [B]). As by elementary com-
(g —1)(pg — 2)
12pq

putations s(1,pq) = , we get that

_ I (pg—1)(pg—2)

s(p,q) +s(a,p) = —7 200 :
Now we can look at the above equation as defining I in terms of s(p,q) +
s(q,p), but if we know I, we know s(p,q) + s(q,p). In other words we get

the following observation.

Corollary 2.2. Any proof of Proposition[2.1 provides a proof of the Dedekind
reciprocity law.
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3. LATTICE POINTS IN THE TRIANGLE

Let us recall basic definitions. For a real number z, || denotes the integer
part and {z} = z — |z] the fractional part. The sawtooth function is defined
as

1
{x}—§ x €7
0 x €.

Sometimes (x) is denoted ((x)). We prefer this notation because it does
not lead to confusion with ordinary parenthesis. We can now define the
functions (below p, ¢ and m are integers and x,y are real numbers):

wn-£(2)

J=0

p—1 , . .
ity\/ ity
8(p,q;w,y)=z< p ><p . +x>-

J=0

() =

These functions satisfy the following reciprocity laws (see [RGl [HZ]). If
m, p and ¢ are pairwise coprime, then

(3.1) S@ﬂHwWW%=%<§+%+£>—i
(0,0, ,9) + 5(0,p,,) = ~3d(@)d(y) + {x) () +

(3.2) +%<%Wﬂw+jiwﬁmr+wﬂ+gwﬂ@>

ﬂ@:{lihfz

0 otherwise

and

Ws(a) = By({a}) = (o} ~ o} + ¢

is the second Bernoulli polynomial. Now for a fixed C' € [0,1) and p, ¢
coprime, let

A(p,q; C) = {(k,1) €Z2>0:0§§+é <1-C}

and

N(p,q;C) = |A(p,q; C)|.
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We have the following result due to Rosen [Rol Theorem 3.4].

Proposition 3.1. In this case

1-C)? 1-C
Np,q;C) = ¢ . S pg + - )(p+q)+é+%1+1(—

(3.3) — 5(p,¢;Cp,0) — s(¢q,p; Cq,0) + (Cp) + (Cq) +

7 3 1 1
+ (1= C){Cpq) — (550 + §51 - §52) + 1

where

1 1
—_—— = if Cpq € Z
K — 12pg 8

—Ws(C'pg otherwise
597 (Cpq)

And forr =0,1,2, §, is the number of non-negative integers k,l such that

E—I—£+C’:r,
p q

This proposition admits an important corollary [Ro, Corollary 3.5]|.

Corollary 3.2. Ifp and q are odd and coprime, then

1 pq ptq q D
N L) = 22 = - -
(P ai5) =5+ + 5, T 60 21pg

If p and q are coprime and q is even, then

—5(2p,q) — s(2¢,p).

Ly _pg  ptq
(34) Npa5) =5 + =7 = s(2p,a) +2s(p, 0).

We shall use these results to compute the signature of the torus knots.
We need a following trivial lemma

Lemma 3.3. The number of points (k,1) € A(p,q;C) such that kl = 0 is
equal to

Z(p,q;C) = [(1 = CO)p) + [(1 = O)gq] +1—d((1 - C)p) — d((1 - C)q),
where d(z) again is 1, if v € Z, and 0 otherwise.

If Cp and Cq are not integers,
Zp.;C)=(1-C)p+q —((1-C)p) = (1 -C)q).

4. EXPLICIT FORMULAE FOR THE SIGNATURES

We begin with computing the value of the ordinary signature. As it was
already mentioned, o,.q = T2 (see ([2.4))) so the first result below is in general
known [HZ, [Nem]|, but not necessarily in the context of knot theory.
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Proposition 4.1. If p and q are both odd and coprime, then the ordinary
signature of the torus knot T), , satisfies

Uord(Tp,q) =0ttt = 4(8(2]97 Q) + 3(2Q7p)) - 17

where s(z,y) is the Dedekind sum (see Section[3 or [RG|) (compare with
[HZ, Formula 11 on page 122|). If p is odd and q > 2 is even, then

Uord(Tp,q) = _Ig +1+ 43(2]7, Q) - 88(]), Q)‘

Proof. Let us consider the torus knot 7}, , and let ¥ be as in (I.I)). We can
write g,.q as

1
(41) O-ord:4|2m(07§)|_|2|'

Since |X| = (p —1)(¢ — 1), we need to find a closed formula for

(4.2)
S( )—yzm(ol)— E+£<1 1<k<p-1,1<1<qg-1
p,q) = o) = R >p y 16> ¢q .
From the definition we get immediately that
1 1
Sp.a) = Np.a:35) = 2, ¢ 5)-

1 1 1
Now Z(p, q; 5) = §(p—|— q) if p and ¢ are both odd and §(p—|— g—1)if g is

even and g > 2. Hence, for p and ¢ odd we have

rqg pP+tgq
Swa) =" -~ —s@p.a) +2s(p,9),
while for ¢ even we have by (3.4)
pg _ptgq 1
Spq) =% === +5—s52p,q) +25(p, q).
8 4 2
and using (A1) we complete the proof. O

To express explicitly the values of Tristram—Levine signatures at other
points let us assume that C'pq is not an integer. Define

a-cy2 (1-0)

M(p,q;C) =N(p,q;C) — Z(p,q;C) = 5P (p+4q)
qg p . B . 1
+ Top + 197 5(p,q;Cp,0) — s(q,p; Cq,0) + 1

_ %((CM +{(Cq¢))+ (1 —C)(Cpq) + ﬁ‘l’z(cp@-
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Now it is a trivial consequence of Proposition [[L1] that if C' € [0,1) and
e?™C = 2 then
0(z) = =(p—1)(¢—1)+2M(p,q;C) + 2M(p,¢;1 = C).
Now, since for any integer k and real = we have ((1 — z)k) + (zk) = 0, the
formula for M (p,q;C) + M(p,q;1 — C) can be simplified to

1—-2C +2C? 1 q p 1 o 1.1
——pg——= —+—+(1-20) (C —{C ——)4=—
5 pq 2(p+Q)+6p+6q+( ) PQ>+pq(< Pa) =~ 15)*5
= s(p,¢;Cp,0) = 5(q,p; Cq,0) — s(p, q; (1 = C)p,0) — s(q,p; (1 — C)q, 0).
Hence we prove the following result.
Proposition 4.2. If z = €™ where C € [0,1) is such that Cpq is not
an integer, then the signature of the torus knot T, , can be expressed in the

following formula.
2 1
— 2(C — (2 S S, N - 2o -
a(z) (C—C%)pq + 3 + 30 + ( C) (Cpq) + pq((C’pq) 12)

—2(s(p,q;Cp,0) + s(q,p; Cq,0) + s(p, q¢; (1 — C)p,0) + s(q,p; (1 — C)q,0)) .

In particular we see rigorously that for large p and ¢ the shape of the
function o(e?™®) resembles that of the function 2pg(x? — x).

5. EXPRESSING 04rq(Tp,q) AS A RATIONAL FUNCTION

Proposition 5.1. There does not exist a rational function R(p,q) such that
for all odd and coprime positive integers

R(p, Q) = Jord(Tp,q)-

1
Proof. Assume that R(p,q) = 0(Tp4). Then S(p,q) = Z(R(p, Q)+ (p—1)(g—

1)) is also a rational function and
1 E 1 1

) 5)
(cf. formulae [@I)) and (£2)). If p|(¢ — 1) the value of S(p,q) can be easily

computed:

2N (0
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Since for infinitely many values (p,q) with ¢ = np + 1 with p odd and

n even, we have p|(¢ — 1), it follows that S(p,q) = (q_l)s(ﬂ
g = np + 1. Since these rational functions agree on infinitely many lines,
they must be equal.

But now assume that p = ng + 1 for some even n. Similar arguments as
above show that S(p,q) must also be identical to the function %.
This leads to a contradiction, since these two rational functions are different.

O

on each line

Remark 5.2. We can also compute values of S(p, q) in many other cases, like
g=mnp—1, ¢ =p+ 2. With more care we can prove that e.g. S(p,q) — L%J
is not a rational function.

The proof carries over to show that no such rational function exists for
the case p even and ¢ odd. We leave the obvious details to the reader.
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