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ON THE SIGNATURES OF TORUS KNOTS

MACIEJ BORODZIK AND KRZYSZTOF OLESZKIEWICZ

Abstract. We study properties of the signature function of the torus
knot Tp,q. First we provide a very elementary proof of the formula for
the integral of the signatures over the circle. We obtain also a closed
formula for the Tristram–Levine signature of a torus knot in terms of
Dedekind sums.

1. Preliminaries

Let K be a knot in S3 with a Seifert matrix S. Let also z ∈ S1, z 6= 1 be
a complex number. The Tristram–Levine signature σ(z) is the signature of
the hermitian form

(1− z)S + (1− z̄)ST .

This is obviously an integer-valued piecewise constant function. It does not
depend on a particular choice of Seifert matrix. If we substitute z = −1 we
get an invariant σord, which is called the (ordinary) signature. We define
also the integral IK

IK =

∫ 1

0
σ(e2πix) dx.

Signatures are very strong knot cobordism invariants, which can be used
to bound the four-genus and the unknotting number of K. The integral IK
of the signature function is one of the so called ρ invariants of knots (see
[COT1, COT2]) and is of independent interest.

For a torus knot Tp,q, where gcd(p, q) = 1, the signature function can be
expressed in the following nice way (see [Li] or [Kau, Chapter XII])

Proposition 1.1. Let

(1.1) Σ =

{

k

p
+

l

q
: 1 ≤ k ≤ p− 1, 1 ≤ l ≤ q − 1

}

.

Then for any x ∈ (0, 1) \ Σ we have

(1.2) σ(e2πix) = |Σ \ (x, x+ 1)| − |Σ ∩ (x, x+ 1)|,
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where |·| denotes the cardinality of a set. In particular σord = |Σ\(1/2, 3/2)|−
|Σ ∩ (1/2, 3/2)|.

The explicit formulae for σord and IK of torus knots have been known in
the literature for quite a long time. In fact, σord by a result of Viro (see
(2.4)) is equal to τ2, which was computed in [HZ] for p and q odd, and
(denoted as σ(f + z2)) in [Nem] in general case. On the other hand, Kirby
and Melvin [KM, Remark 3.9] and [Nem, Example 4.3] provided a formula
for IK . Nevertheless all the above-mentioned results are related more to
singularity theory and low-dimensional topology, than to knot theory itself.

After the discovery of ρ invariants, the interest of computing IK for various
families of knots grew significantly. Two independent new proofs of the
formula for IK of torus knots [Bo, Co] appeared in 2009. In particular [Bo]
provided a bridge between the IK and cuspidal singularities of plane curves.

In this paper we present an elementary proof of the formula for IK (Propo-
sition 2.1). We also cite a formula of Némethi and draw some consequences
from it. In Section 4 we use a theorem of Rosen to obtain the explicit value
of the signature σ(z) of a torus knot not only for z = −1, but also for any
z ∈ S1 \ {1} (Proposition 4.2). This result seems to be new. In Section 5 we
show that the formula for σord(Tp,q) cannot be written as a rational function
of p and q.

2. Formula for the integral

Proposition 2.1. For a torus knot Tp,q we have

(2.1) I = −
1

3

(

p−
1

p

)(

q −
1

q

)

.

This proposition was first proved in [KM, Remark 3.9]. Refer to [Nem,
Bo, Co] for other proofs.

Proof. Let f(x) = −σ(e2πix) and J =
∫ 1
0 f(x) dx = −I. Then

f(x) =
∑

y∈Σ

1(y,y+1)(x)−
∑

y∈Σ

1R\(y,y+1)(x).

(Here, for a set A ⊂ R, 1A denotes the function which is equal to 1 on A
and 0 away from A.) Hence

J =
∑

y∈Σ

∫ 1

0

(

1(y−1,y)(x)− 1R\(y−1,y)(x)
)

dx =
∑

y∈Σ

(1− 2|y − 1|).

It follows that

J =

p−1
∑

k=1

q−1
∑

l=1

(

1− 2

∣

∣

∣

∣

k

p
+

l

q
− 1

∣

∣

∣

∣

)

.
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As for any u, v ∈ R we have 1−2|u+v−1| = 2min(1−u, v)+2min(u, 1−v)−1,

J = 2

p−1
∑

k=1

q−1
∑

l=1

min

(

p− k

p
,
l

q

)

+2

p−1
∑

k=1

q−1
∑

l=1

min

(

k

p
,
q − l

q

)

− (p− 1)(q− 1) =

= 4

p−1
∑

k=1

q−1
∑

l=1

min
(k

p
,
l

q

)

−(p−1)(q−1) =
4

pq

p−1
∑

k=1

q−1
∑

l=1

min(qk, pl)−(p−1)(q−1).

Now, obviously,

p−1
∑

k=1

q−1
∑

l=1

min(qk, pl) =

=

∞
∑

s=0

|{{1, . . . , p− 1} × {1, . . . , q − 1} : qk > s and pl > s}| =

=

pq−1
∑

s=0

(p − 1− ⌊s/q⌋)(q − 1− ⌊s/p⌋).

We can multiply the expression in parentheses. Then, as
∑pq−1

s=0 ⌊s/p⌋ =

p
∑q−1

l=0 l =
1

2
pq(q − 1) we get

pq−1
∑

s=0

(p− 1−⌊s/q⌋)(q− 1−⌊s/p⌋) = pq(p− 1)(q− 1)−
1

2
pq(p− 1)(q− 1)−

1

2
pq(p− 1)(q − 1) +

pq−1
∑

s=0

⌊s/p⌋ ⌊s/q⌋ =

pq−1
∑

s=0

⌊s/p⌋ ⌊s/q⌋ .

It remains to compute
∑pq−1

s=0 ⌊s/p⌋ ⌊s/q⌋. To this end let us denote by
Rp(s) the remainder of s modulo p. We then have

pq−1
∑

s=0

⌊s/p⌋ ⌊s/q⌋ =

pq−1
∑

s=0

(

s−Rp(s)

p
·
s−Rq

q

)

=

1

pq

(

pq−1
∑

s=0

s2 −

pq−1
∑

s=0

sRp(s)−

pq−1
∑

s=0

sRq(s) +

pq−1
∑

s=0

Rp(s)Rq(s)

)

=

1

3
p2q2 +

1

4
pq −

1

4
p2q −

1

4
pq2 −

1

12
p2 −

1

12
q2 +

1

12
,

where we used the fact that
∑pq−1

s=0 Rp(s)Rq(s) =
∑p−1

k=0

∑q−1
l=0 kl by the Chi-

nese remainder theorem.
Putting all the pieces together we obtain the desired formula. �

Let us now present another proof, due to Némethi [Nem], see also [Br, HZ].
Before we do this, let us recall some facts from topology.
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Assume that the knot K is drawn on S3 = ∂B4 and consider a Seifert
surface F of K. Let us push it slightly into B4 and for an integer m let
Nm be the m fold cyclic cover of B4 branched along F . Then the quantity
τm = σ(Nm) (here σ is a signature of a four-manifold) is independent of
the choices made. We have the formula essentially due to Viro (see [GLM,
Section 2] or [Vi]).

(2.2) τm =

m−1
∑

k=1

σK(ξk),

where ξ is a primitive root of unity of order m. In particular, since σ is a
Riemann integrable function, we have

(2.3) I =

∫ 1

0
σ(e2πix), dx = lim

m→∞

1

m
τm.

On the other hand

(2.4) τ2(K) = σord(K).

If K is a torus knot Tp,q and m, p, q are pairwise coprime, then the m-fold
cover of S3 branched along K is diffeomorphic to the Brieskorn homology
sphere B(p, q,m) (see [Br], [GLM, Section 5]). Then τm turns out [HZ,
Section 10.2 and 11] to be the signature of the manifold Xp,q,m defined as
the intersection of zp1 + zq2 + zm3 = ε with B(0, 1) ⊂ C

3. In this context τm
was computed by [HZ, Formula 11 on page 122] and by [Nem, Example 4.3].
Especially the last formula is worth citing (Némethi uses m(S(f)) to denote
the limit (2.3)).

(2.5) I = −4(s(p, q) + s(q, p) + s(1, pq)).

Here s(a, b) is the Dedekind sum (see Section 3). As by elementary com-

putations s(1, pq) =
(pq − 1)(pq − 2)

12pq
, we get that

s(p, q) + s(q, p) = −
I

4
−

(pq − 1)(pq − 2)

12pq
.

Now we can look at the above equation as defining I in terms of s(p, q) +
s(q, p), but if we know I, we know s(p, q) + s(q, p). In other words we get
the following observation.

Corollary 2.2. Any proof of Proposition 2.1 provides a proof of the Dedekind
reciprocity law.
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3. Lattice points in the triangle

Let us recall basic definitions. For a real number x, ⌊x⌋ denotes the integer
part and {x} = x−⌊x⌋ the fractional part. The sawtooth function is defined
as

〈x〉 =







{x} −
1

2
x 6∈ Z

0 x ∈ Z.

Sometimes 〈x〉 is denoted ((x)). We prefer this notation because it does
not lead to confusion with ordinary parenthesis. We can now define the
functions (below p, q and m are integers and x, y are real numbers):

s(p, q) =

p−1
∑

j=0

〈

j

q

〉〈

pj

q

〉

s(p, q;x, y) =

p−1
∑

j=0

〈

j + y

q

〉〈

p
j + y

q
+ x

〉

.

These functions satisfy the following reciprocity laws (see [RG, HZ]). If
m, p and q are pairwise coprime, then

s(p, q) + s(q, p) =
1

12

(

p

q
+

q

p
+

1

pq

)

−
1

4
(3.1)

s(p, q, x, y) + s(q, p, y, x) = −
1

4
d(x)d(y) + 〈x〉 〈y〉+

+
1

2

(

q

p
Ψ2(y) +

1

pq
Ψ2(py + qx) +

p

q
Ψ2(x)

)

(3.2)

Here

d(x) =

{

1 if x ∈ Z

0 otherwise

and

Ψ2(x) = B2({x}) = {x}2 − {x}+
1

6
is the second Bernoulli polynomial. Now for a fixed C ∈ [0, 1) and p, q

coprime, let

A(p, q;C) = {(k, l) ∈ Z
2
≥0 : 0 ≤

k

p
+

l

q
< 1− C}

and

N(p, q;C) = |A(p, q;C)|.
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We have the following result due to Rosen [Ro, Theorem 3.4].

Proposition 3.1. In this case

N(p, q;C) =
(1− C)2

2
pq +

(1− C)

2
(p+ q) +

q

12p
+

p

12q
+K−

− s(p, q;Cp, 0)− s(q, p;Cq, 0) + 〈Cp〉+ 〈Cq〉+

+ (1− C) 〈Cpq〉 − (
7

8
δ0 +

3

8
δ1 −

1

8
δ2) +

1

4
,

(3.3)

where

K =











1

12pq
−

1

8
if Cpq ∈ Z

1

2pq
Ψ2(Cpq) otherwise

And for r = 0, 1, 2, δr is the number of non-negative integers k, l such that
k

p
+

l

q
+ C = r.

This proposition admits an important corollary [Ro, Corollary 3.5].

Corollary 3.2. If p and q are odd and coprime, then

N(p, q;
1

2
) =

pq

8
+

p+ q

4
+

q

6p
+

p

6q
+

1

24pq
− s(2p, q)− s(2q, p).

If p and q are coprime and q is even, then

(3.4) N(p, q;
1

2
) =

pq

8
+

p+ q

4
− s(2p, q) + 2s(p, q).

We shall use these results to compute the signature of the torus knots.
We need a following trivial lemma

Lemma 3.3. The number of points (k, l) ∈ A(p, q;C) such that kl = 0 is
equal to

Z(p, q;C) = ⌊(1− C)p⌋+ ⌊(1 −C)q⌋+ 1− d((1 − C)p)− d((1− C)q),

where d(x) again is 1, if x ∈ Z, and 0 otherwise.

If Cp and Cq are not integers,

Z(p, q;C) = (1−C)(p + q)− 〈(1− C)p〉 − 〈(1− C)q〉 .

4. Explicit formulae for the signatures

We begin with computing the value of the ordinary signature. As it was
already mentioned, σord = τ2 (see (2.4)) so the first result below is in general
known [HZ, Nem], but not necessarily in the context of knot theory.
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Proposition 4.1. If p and q are both odd and coprime, then the ordinary
signature of the torus knot Tp,q satisfies

σord(Tp,q) = −
pq

2
+

2p

3q
+

2q

3p
+

1

6pq
− 4(s(2p, q) + s(2q, p))− 1,

where s(x, y) is the Dedekind sum (see Section 3 or [RG]) (compare with
[HZ, Formula 11 on page 122]). If p is odd and q > 2 is even, then

σord(Tp,q) = −
pq

2
+ 1 + 4s(2p, q)− 8s(p, q).

Proof. Let us consider the torus knot Tp,q and let Σ be as in (1.1). We can
write σord as

(4.1) σord = 4|Σ ∩ (0,
1

2
)| − |Σ|.

Since |Σ| = (p− 1)(q − 1), we need to find a closed formula for

(4.2)

S(p, q) = |Σ| ∩ (0,
1

2
) =

∣

∣

∣

∣

{

k

p
+

l

q
<

1

2
, 1 ≤ k ≤ p− 1, 1 ≤ l ≤ q − 1

}
∣

∣

∣

∣

.

From the definition we get immediately that

S(p, q) = N(p, q;
1

2
)− Z(p, q;

1

2
).

Now Z(p, q;
1

2
) =

1

2
(p + q) if p and q are both odd and

1

2
(p + q − 1) if q is

even and q > 2. Hence, for p and q odd we have

S(p, q) =
pq

8
−

p+ q

4
− s(2p, q) + 2s(p, q),

while for q even we have by (3.4)

S(p, q) =
pq

8
−

p+ q

4
+

1

2
− s(2p, q) + 2s(p, q).

and using (4.1) we complete the proof. �

To express explicitly the values of Tristram–Levine signatures at other
points let us assume that Cpq is not an integer. Define

M(p, q;C) = N(p, q;C)− Z(p, q;C) =
(1− C)2

2
pq −

(1− C)

2
(p + q)

+
q

12p
+

p

12q
− s(p, q;Cp, 0)− s(q, p;Cq, 0) +

1

4
−

−
1

2
(〈Cp〉+ 〈Cq〉) + (1− C) 〈Cpq〉+

1

2pq
Ψ2(Cpq).
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Now it is a trivial consequence of Proposition 1.1 that if C ∈ [0, 1) and
e2πiC = z, then

σ(z) = −(p− 1)(q − 1) + 2M(p, q;C) + 2M(p, q; 1 − C).

Now, since for any integer k and real x we have 〈(1− x)k〉 + 〈xk〉 = 0, the
formula for M(p, q;C) +M(p, q; 1− C) can be simplified to

1− 2C + 2C2

2
pq−

1

2
(p+q)+

q

6p
+

p

6q
+(1−2C) 〈Cpq〉+

1

pq
(〈Cpq〉2−

1

12
)+

1

2
−

− s(p, q;Cp, 0)− s(q, p;Cq, 0)− s(p, q; (1− C)p, 0)− s(q, p; (1− C)q, 0).

Hence we prove the following result.

Proposition 4.2. If z = e2πiC where C ∈ [0, 1) is such that Cpq is not
an integer, then the signature of the torus knot Tp,q can be expressed in the
following formula.

σ(z) = −2(C − C2)pq +
q

3p
+

p

3q
+ (2− 4C) 〈Cpq〉+

2

pq
(〈Cpq〉2 −

1

12
)−

−2 (s(p, q;Cp, 0) + s(q, p;Cq, 0) + s(p, q; (1 −C)p, 0) + s(q, p; (1 − C)q, 0)) .

In particular we see rigorously that for large p and q the shape of the
function σ(e2πix) resembles that of the function 2pq(x2 − x).

5. Expressing σord(Tp,q) as a rational function

Proposition 5.1. There does not exist a rational function R(p, q) such that
for all odd and coprime positive integers

R(p, q) = σord(Tp,q).

Proof. Assume that R(p, q) = σ(Tp,q). Then S(p, q) =
1

4
(R(p, q)+(p−1)(q−

1)) is also a rational function and

S(p, q) =

∣

∣

∣

∣

Σ ∩ (0,
1

2
)

∣

∣

∣

∣

=

∣

∣

∣

∣

{

k

p
+

l

q
<

1

2
, 1 ≤ k ≤ p− 1, 1 ≤ l ≤ q − 1.

}
∣

∣

∣

∣

(cf. formulae (4.1) and (4.2)). If p|(q − 1) the value of S(p, q) can be easily
computed:

S(p, q) =

p− 1

2
∑

k=1

⌊

q

2
−

qk

p

⌋

=

p− 1

2
∑

k=1

⌊

q − 1

2
−

(q − 1)k

p
+

p− k

2p

⌋

=

=

p− 1

2
∑

k=1

(

q − 1

2
− k

q − 1

p

)

=
(q − 1)(p − 1)2

8p
.
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Since for infinitely many values (p, q) with q = np + 1 with p odd and

n even, we have p|(q − 1), it follows that S(p, q) = (q−1)(p−1)2

8p on each line

q = np + 1. Since these rational functions agree on infinitely many lines,
they must be equal.

But now assume that p = nq + 1 for some even n. Similar arguments as

above show that S(p, q) must also be identical to the function (p−1)(q−1)2

8q .

This leads to a contradiction, since these two rational functions are different.
�

Remark 5.2. We can also compute values of S(p, q) in many other cases, like
q = np− 1, q = p + 2. With more care we can prove that e.g. S(p, q) −

⌊

q
p

⌋

is not a rational function.

The proof carries over to show that no such rational function exists for
the case p even and q odd. We leave the obvious details to the reader.

Acknowledgements. The authors wish to Andrew Ranicki for many remarks
during preparation of the paper and to Julia Collins, Stefan Friedl and An-
drás Némethi for their interest and comments concerning this article.
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