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Spectrum of plane curves via knot theory

Maciej Borodzik and András Némethi

Abstract

In this paper, we use topological methods to study various semicontinuity properties of the local
spectrum of singular points of algebraic plane curves and spectrum at infinity of polynomial
maps in two variables. Using the Seifert form, the Tristram–Levine signatures of links, and
the associated Murasugi-type inequalities, we reprove (in a slightly weaker form) a result
obtained by Steenbrink and Varchenko on semicontinuity of the spectrum of singular points
under deformations and result of Némethi and Sabbah on semicontinuity of the spectrum at
infinity regarding families of polynomial maps. We also relate the spectrum at infinity of a
polynomial map with the collection of the spectra of singular points of a chosen fiber.

1. Introduction

The Hodge spectrum of a local isolated hypersurface singularity f : (Cn+1, 0) → (C, 0) can be
derived from the mixed Hodge structure of the vanishing cohomology of the singular germ
[1, 36, 37, 40, 41]. Usually, it is not topological, it is one of the finest analytic invariants
of the germ. Although it does not characterize the singularity completely, it gives extremely
strong information about it. As was conjectured by Arnold [1], and proved by Varchenko [40,
41] and Steenbrink [37], the spectrum behaves semicontinuously under deformations, which
makes it, for example, a very strong tool in attempts to solve the adjacency problem (that is,
to determine which singularities can specialize to a given one).

A more precise picture is the following: the algebraic monodromy acts on the vanishing
cohomology, which supports the Seifert form (which can be identified with the variation
map) and the mixed Hodge structure polarized by the intersection form. The equivariant
Hodge numbers were codified by Steenbrink (see [36]) in the spectral pairs; if one deletes
the information about the weight filtration one gets the spectrum/spectral numbers Sp(f).
They are (in some normalization) rational numbers in the interval (0, n + 1). In the presence
of a deformation ft, where t is the deformation parameter t ∈ (C, 0), the semicontinuity
guarantees that |Sp(f0) ∩ I| � |Sp(ft�=0) ∩ I| for certain semicontinuity domains I. Arnold
in [1] conjectured that I = (−∞, x] is a semicontinuity domain for any x ∈ R, Steenbrink
and Varchenko proved the statement for I = (x, x + 1], which implies Arnold’s conjecture.
Additionally, for some cases, Varchenko verified the stronger version, namely semicontinuity
for I = (x, x + 1) (see [40]).

The semicontinuity property (with any domain) cannot be extended to the spectral pairs.
Therefore, in studies targeting these kinds of applications one usually works with the spectrum
only. This is what we will do in the present article as well.

On the other hand, one of the strongest topological invariants of f is its Seifert form, for
terminology see, for example, [2]. The relation between the Hodge invariants and the Seifert
form was established by the second author in [24], proving that the collection of mod 2 spectral
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pairs are equivalent with the real Seifert form. In this way, the real Seifert form is in strong
relationship with the mod 2 spectrum, that is, with the collection of numbers xmod 2 in (0, 2],
where x runs over Sp(f). Clearly, for plane curve singularities, that is, when n = 1, by taking
mod 2 reduction, we lose no information.

Our primary goal is to extend the above correspondence for an arbitrary link (S3
R, L), where

S3
R is the boundary of some ball with radius R in C2, and L is the intersection of S3

R with some
affine algebraic curve C in C2. The primary interest is the link at infinity of such affine curve
(hence R � 0), but we also wish to develop a method to study any general (S3

R, L), for which
the available methods in the literature are rather sparse.

Let us consider a complex polynomial map F : C2 → C. For its topology at infinity, see
Neumann’s article [31]. Our first main result recovers the spectrum at infinity associated with
the limit mixed Hodge structure at infinity (supported by the cohomology of the generic fiber)
from the real Seifert form of the regular link at infinity associated with F . In particular, we
reobtain the spectrum at infinity topologically in a pure link-theoretical language.

The key bridge which connects the link-theoretical language and invariants with the
Hodge theoretical spectrum is the Tristram–Levine signatures [18, 39]. For example, for the
weighted homogeneous singularity given by {xp − yq = 0} with p and q relative prime integers,
the spectrum is Spp,q = {i/p + j/q, 1 � i � p − 1, 1 � j � q − 1}, while the Tristram–Levine
signature function of the (p, q)-torus knot, evaluated at e2πix with x ∈ (0, 1), pqx �∈ Z, is
equal to 2 · |Spp,q ∩ (x, x + 1)| − (p − 1)(q − 1), see, for example, [19]. In [6], we made this
relation rigorous, showing a direct translation between the spectrum of singularities and
Tristram–Levine signatures of their links.

In this correspondence, what is really surprising, and this is the second main message of
the article, is the fact that the semicontinuity of the mod 2 spectrum is topological: it can
be recovered independently of analytic (Hodge theoretical) tools, it follows from pure link
theory. More precisely, we prove that length 1 ‘intervals’ intersected by the mod 2 spectrum,
namely sets of type Sp ∩ (x, x + 1) and (Sp ∩ (0, x)) ∪ (Sp ∩ (x + 1, 2]), for x ∈ [0, 1], satisfy
semicontinuity properties, whenever this question is well-posed.

In this article, we exemplify this by three cases: we recover the semicontinuity (in the
above form, with certain weak assumptions) for deformations of local plane curve singularities,
corresponding to the above-mentioned results of Varchenko and Steenbrink, and we also prove
the semicontinuity of the spectrum at infinity associated with a family of polynomials in two
variables, in the spirit of [28]. The third case targets a new phenomenon: in the context of an
affine curve C ⊂ C2, we show a semicontinuity property which connects the local spectrum of
the singularities of C with the spectrum at infinity of C.

In all these cases, the key link-theoretical ingredient is a Murasugi-type inequality, which
controls the modification of the Tristram–Levine signatures under those types of surgeries which
appear when we pass from C ∩ S3

r to C ∩ S3
R via Morse theory (r < R). This was studied by

the first author in [5].
The article is organized as follows. In Section 2, we review the theory of hermitian variation

structures (HVS) from [24], their relation with the spectrum, and the methods how one
associates such a structure to a link [6]; furthermore, we connect the spectrum with the
Tristram–Levine signatures [6]. We also recall some of the main results of [5] about surgery
inequalities of links of type S3

R ∩ C. Section 3 contains the study of the spectrum at infinity of
a polynomial map in terms of the Seifert form at infinity. In Section 4, we prove semicontinuity
results regarding the spectrum.

For a finite set A, we denote by |A| the cardinality of A.

2. Hermitian variations structures of links

In Section 2.1, we recall the definition of an abstract hermitian variation structures and its
spectrum, while in Section 2.2 the definition of the HVS and the spectrum associated with
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links in a 3-sphere. Section 2.3 reviews the definition of mixed Hodge structures and their
‘Hodge’ spectrum. Finally, in Section 2.4, we draw a relationship observed in [6] between the
spectrum and Tristram–Levine signatures of links. In Section 2.5, we recall some results from
[5] which are crucial ingredients in the proof of the semicontinuity results of the last section.

2.1. Hermitian variation structures

These structures were introduced in [24], they generalize the ε-symmetric isometric structures.
Here, we review the minimal basics, for more details, see [24, 25].

Recall that a structure (U = Cn; b, h), where b is an ε-symmetric hermitian form on U
preserved by the automorphism h of U , is called an isometric structure (for ε = ±1). The
classification of isometric structures when b is non-degenerate was established by Milnor [21]
(see also [29, 30]). Any ε–hermitian variation structure (in short ε–HVS) can be regarded as
an isometric structure together with an operator V : U∗ → U such that

V ∗ = −εV h∗ and V ◦ b̃ = h − Id, (2.1)

where b̃ is the form b regarded as a map from U to U∗. We denote it by V = (U ; b, h, V ). Here
·∗ denotes passing to the dual space, while ·̄ the complex conjugation.

Definition 2.1. We say that the isometric structure (U ; b, h) can be completed to an HVS
if there exists V : U∗ → U such that (2.1) is satisfied.

If b is non-degenerate, then the isometric structure can be uniquely completed to an
HVS: V = (h − Id) ◦ b̃−1. In general, not every isometric structure can be completed (see,
for example, (3.7)(c)). Moreover, if a completion exists, in general, it is not unique (even if we
restrict ourselves to non-degenerate matrices V , see, for example, [24, (2.7.7)]).

An HVS is called simple if V is an isomorphism. The classification of simple HVSs is
established in [24]. Each simple variation structure is a direct sum of indecomposable simple
variation structures. Indecomposable structures can be listed: for each positive integer k, and
for each λ ∈ C such that 0 < |λ| � 1, there exist:

(1) a unique simple indecomposable variation structure V2k
λ if |λ| < 1;

(2) two simple indecomposable structures, denoted by Wk
λ(+1) and Wk

λ(−1), if |λ| = 1.

This classification is a refinement of the Jordan block decomposition of the matrix h (or
of Milnor’s classification of non-degenerate isometric structures). More precisely, the matrix h
corresponding to Wk

λ(±1) is a single Jordan block of size k and eigenvalue λ, while the one
corresponding to V2k

λ has two Jordan blocks of size k: one with eigenvalue λ, the other with
eigenvalue 1/λ. For their precise form, see [24].

Let us write a simple variation structure V as the unique sum of the indecomposable ones:

V =
⊕

0<|λ|<1
k�1

qk
λ · V2k

λ ⊕
⊕
|λ|=1

k�1, u=±1

pk
λ(u) · Wk

λ(u) (2.2)

for certain non-negative integers qk
λ and pk

λ(u). Here, we write m · V for V ⊕ . . . ⊕ V (m-times).
The numbers {qk

λ}|λ|<1 and {pk
λ(±1)}λ∈S1 are called the H-numbers of the HVS V.

Using H-numbers we can define the spectrum of V. Sometime, in order to emphasize the
source of the definition, we call it HVS-spectrum.
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Definition 2.2 ([23] or [6, (2.3.1)–(2.3.3)]). Consider the H-numbers {qk
λ}|λ|<1 and

{pk
λ(±1)}λ∈S1 of V. The extended spectrum ESp is the union ESp = Sp ∪ ISp, where

(a) Sp, the spectrum, is a finite set of real numbers from the interval (0, 2] such that any
real number α occurs in Sp precisely s(α) times, where

s(α) =
∞∑

n=1

∑
u=±1

(
2n − 1 − u(−1)�α�

2
p2n−1

λ (u) + np2n
λ (u)

)
, (e2πiα = λ);

(b) ISp is a subset of complex numbers from (0, 2] × iR, ISp ∩ R = ∅, such that z = α + iβ
occurs in ISp precisely s(z) times, where

s(z) =

⎧⎪⎨
⎪⎩

∑
k · qk

λ if α � 1, β > 0 and e2πiz = λ,∑
k · qk

λ if α > 1, β < 0 and e2πiz = 1/λ̄,

0 if α � 1 and β < 0, or α > 1 and β > 0.

Since the dimension of the vector space supporting V2k
λ is 2k and of Wk

λ(±1) is k, one obtains

|ESp| = dim U = deg det(h − t Id). (2.3)

2.2. The HVS and the spectrum of a link

The variation structure and H-numbers of a link in S3 were defined in [6]. Let us review shortly
how the construction is performed.

Let S be a Seifert matrix of a link L. (For the conventions used in its definition, see Section
3.2.) By Keef’s result [16] S is S-equivalent either to an empty matrix, or to a matrix S′, which
can be decomposed into a direct sum

S′ = S0 ⊕ Sndeg, (2.4)

where S0 is a zero matrix and Sndeg is non-degenerate, that is det Sndeg �= 0. Moreover, any
two such non-degenerate models Sndeg of the same link are congruent over Q. The size of S0 is
also determined by L (it is equal to dim(ker S ∩ ker ST )), we call it the irregularity of L, and
we denote it by

Irr = Irr(L) := size(S0). (2.5)

Let n be the size of Sndeg. The quadruple V = (U, b, h, V ), where U = Cn, V = (ST
ndeg)

−1,
h = V S, b = S − ST , constitutes an HVS with the sign choice ε = −1. (Here ·T denotes the
transposition.) As changing a Seifert matrix results in congruency of Sndeg, which leads to an
isomorphism of variations structures, the structure V does not depend on the choice of a Seifert
matrix, so it is a well-defined link invariant, called VL. Additionally, VL is simple. Note that
VL is defined over the rational numbers Q. The characteristic polynomial Δh = det(h − t Id)
of h will be called the characteristic polynomial of the link. Its connection with Alexander
polynomials is as follows (see, for example, [6, § 4]):

Lemma 2.3. Let VL be as above. If the Alexander polynomial Δ of L is non-zero, then
Δ = Δh up to multiplication by an invertible element of Q[t, t−1]. If the Alexander polynomial
is zero, then Δh is proportional to the first higher Alexander polynomial Δk, which is not
identically zero: Δk = 0 for 0 � k < Irr and ΔIrr = Δh (up to an invertible element).

Definition 2.4. Consider the integers {qk
λ}|λ|<1 and {pk

λ(±1)}λ∈S1 provided by the direct
sum decomposition (2.2) of VL. They are called the H-numbers of the link L. The associated
(extended) spectrum is called the (extended) spectrum of the link.
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From (2.3) one has |ESp| = deg Δh. Moreover, Sp \ Z is symmetric with respect to 1.

2.3. Mixed Hodge structures and their spectrum

The name of the spectrum in Definition 2.2 is motivated by the fact that if L is an algebraic
link, that is, the link of (local) isolated plane curve singularity, then ISp is empty and Sp is the
‘classical’ spectrum associated with the mixed Hodge structure of the vanishing cohomology
(for this see, for example, [17, 22, 36, 37, 40]).

More generally, let f : (Cn+1, 0) → (C, 0) be the germ of an analytic function with an isolated
singularity at 0, and let Y be the Milnor fiber and U = H̃n(Y, R). (For details regarding the
Milnor fibration, see, for example, [2, 20, 24].) One takes the monodromy operator h : U → U ,
the intersection form b : U × U → R and the variation operator V : U∗ → U . One checks (see,
for example, [2] or [24, § 5]) that the complexification of (U ; b, h, V ) constitutes a (−1)n-HVS.
If S is the Seifert matrix of the Milnor fibration, then at the level of matrices V = (ST )−1.
Since S is unimodular, V is an isomorphism, hence the variation structure is simple. For plane
curves, one has ε = −1, hence h = (ST )−1S and b = S − ST . The structure (U ; b, h, V ) ⊗ C is
called the ‘homological HVS’ of the germ.

There is a dual HVS as well, the ‘cohomological HVS’ associated with the germ, which is
supported on H∗ := H̃n(Y, C). Additionally, H̃n(Y, C) carries a limit mixed Hodge structure
with Hodge filtration F and weight filtration W such that the semisimple part h∗

ss of the
cohomological monodromy operator acts on (H∗, F,W ). They define spectral pairs. In order to
eliminate any confusion about the existing different normalizations, we provide some details.

One considers the generalized λ-eigenspaces U∗
λ for all the eigenvalues λ of the Gauss–Manin

monodromy operator hGM = (h∗
ss)

−1 and the equivariant (Gauss–Manin) Hodge numbers
hp,q

λ := dimGrp
F GrW

p+qU
∗
λ .

Then these numbers can be codified in a different way in the collection of Hodge spectral
pairs of (U∗, F,W ;h∗

ss). This is a collection of pairs (α,w) from R × N defined by

SppGM(f) =
∑

(α,w)

h
n+[−α],w+s−n−[−α]
exp(−2πiα) (α,w) ∈ N[R × N], (2.6)

where s = 1 if λ = exp(−2πiα) = 1 and s = 0 otherwise.
This can be transformed in several ways. If, by some geometric reason, one wishes to

emphasize more the cohomological monodromy operator h∗
ss (instead of hGM ), one considers

Spp∗(f) =
∑
(α,w)

h
n+[−α],w+s−n−[−α]
exp(2πiα) (α,w) ∈ N[R × N]. (2.7)

If one forgets the weight filtration, then from the equivariant Hodge filtration one can read
the Hodge spectrum, namely

Sp∗(f) =
∑

α ∈ N[R] (the sum over the spectral pairs (α,w) of Spp∗(f)). (2.8)

Any such spectral number α is in the interval (−1, n). Another normalization of the spectrum
defines the spectral numbers in the interval (0, n + 1): SpMHS(f) is the collection of numbers
(α + 1), where α runs over the entries of Sp∗(f).

The identification of the Hodge invariants with the associated HVS goes through the
crucial polarization property of the mixed Hodge structure. In this way, the cohomological
HVS of f can be obtained from (U∗, F,W ) by collapsing the Hodge filtration mod 2, having
the collapsed spectral numbers in (−1, 1]. The corresponding H-numbers are, in fact, the
equivariant primitive Hodge numbers of (U∗, F,W ) under this collapsing procedure. Usually,
the homological and cohomological HVSs do not agree; in the case ε = (−1)n = −1, they differ
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by a sign: Vcoh = −Vhom. This explains the two slightly different definitions of the spectral
numbers (Definition (2.2)(a)) and (2.7). Nevertheless, one has the following identification:

Proposition 2.5 [24, (6.5)]. The HVS-spectrum SpHVS is a mod 2 reduction of the Hodge
spectrum SpMHS considered in (0, 2]. In other words,

SpHVS = {x mod 2: x ∈ SpMHS}.

Therefore, for a germ of an isolated plane curve singularity one gets SpHVS = SpMHS. This
means that the Hodge spectrum can be described completely in terms of the (real) Seifert form
of the link. This is the model of our further investigation.

2.4. Spectrum of a link and the Tristram–Levine signatures

The Tristram–Levine signatures (defined first in [18, 39]) turn out to be a knot-theoretic
counterpart of the spectrum of singular points. We recall how they can be explicitly expressed
from the spectrum of the link.

Definition 2.6. Let L be a link and S its Seifert matrix. The Tristram–Levine signature
function is the mapping from S1 \ {1} = {ζ ∈ C : |ζ| = 1, ζ �= 1} to Z given by

σL(ζ) = signature[(1 − ζ)S + (1 − ζ)ST ].

The nullity nL(ζ) is the nullity of the same form (1 − ζ)S + (1 − ζ)ST , while the normalized
nullity, ñL(ζ), is defined as nL(ζ) − Irr. For completeness, we extend the definitions for ζ = 1,
too. First, we set σL(1) = 0. Then note that, for any ζ �= 1, ñL(ζ) equals the multiplicity of
the root of Δh at ζ. We define ñL(1) by this characterization for ζ = 1.

We have the following relation between H-numbers, signatures and nullities of the link.

Proposition 2.7 [6, (4.4.6) and (4.4.9)]. Let Sp = SpHVS be the real part of the spectrum
as in Definition 2.2. Let x ∈ (0, 1) and ζ = e2πix. Then

σL(ζ) = −|Sp ∩ (x, x + 1)| + |Sp \ [x, x + 1]| +
∞∑

n=1

∑
u=±1

up2n
ζ (u),

ñL(ζ) =
∑
k,u

pk
ζ (u).

In particular,

− σ(ζ) + ñ(ζ) � |Sp ∩ (x, x + 1)| − |Sp \ [x, x + 1]|. (2.9)

Remark 2.8. In the cases x ∈ {0, 1}, the inequality (2.9) still holds. Indeed, σL(1) = 0,
and the right-hand side is zero, as well, because Sp \ Z is symmetric. Moreover, if 1 is not a
root of Δh, then (2.9) is an equality for x = 1.

Let us denote

D = |Sp ∩ {x, x + 1}| � 0.
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Assume that Δh, the characteristic polynomial of the link, has no roots outside the unit circle.
Then deg Δh = |Sp| = |Sp ∩ (x, x + 1)| + |Sp \ [x, x + 1]| + D, hence one also has

deg Δh − σ(ζ) + ñ(ζ) = 2|Sp ∩ (x, x + 1)| +
∑

k odd
u=±1

pk
ζ (u) +

∑
k even

2pk
ζ (−1) + D. (2.10)

For any x ∈ [0, 1], parallel to the set Sp ∩ (x, x + 1), we will also consider the set Sp \
[x, x+ 1] = Sp ∩ (0, x) + Sp ∩ (1 + x, 2]. These two types cover all the ‘length 1 open intervals’
of the mod 2 spectrum.

The following corollary will be used extensively in the sequel.

Corollary 2.9. Let L be a link and Δh its characteristic polynomial. Assume that Δh

has no roots outside the unit circle. If ζ = e2πix, for x ∈ [0, 1), is not a root of Δh, then

|Sp ∩ (x, x + 1)| = 1
2 (deg Δh − σ(ζ)) and |Sp \ [x, x + 1]| = 1

2 (deg Δh + σ(ζ)).

Moreover, for arbitrary x ∈ [0, 1] :

1
2

(
deg Δh − σ(ζ) + ñ(ζ)

)
� |Sp ∩ (x, x + 1)|,

1
2

(
deg Δh + σ(ζ) + ñ(ζ)

)
� |Sp \ [x, x + 1]|. (2.11)

2.5. Morse theory of plane curves

For any ξ ∈ C2 and r > 0, let B(ξ, r) be the ball centred at ξ and with radius r, also S3(ξ, r) :=
∂B(ξ, r). For an algebraic curve C sitting in C2, we write (C ∩ B(ξ, r))∧ for the normalization
of C ∩ B(ξ, r), and the genus of C ∩ B(ξ, r) is the genus of its normalization.

For any link L, we denote by cL its number of components, and we set

wL(ζ) := −σL(ζ) + 1 − cL + nL(ζ),
−uL(ζ) := σL(ζ) + 1 − cL + nL(ζ).

Remark 2.10. The convention used in [5] is that nL is the dimension of the kernel of
(1 − ζ)S + (1 − ζ)ST increased by 1, this explains the formal differences compared with [5].

We also fix ζ ∈ S1 \ {1}. Let us begin by citing a result from [5].

Proposition 2.11 [5, Proposition 6.8]. Let ξ be a generic point of C2 and r0 < r1

two values such that the intersections Li := C ∩ S3(ξ, ri) are transverse (i = 0, 1). With the
notation ci = cLi

, gi = the genus of Ci := C ∩ B(ξ, ri) and ki = the number of connected
components of Ci

∧, one has

wL1(ζ) −
∑

wLsing
k

(ζ) − wL0(ζ) � −2(g1 − g0 + c1 − c0 − k1 + k0),

−(uL1(ζ) −
∑

uLsing
k

(ζ) − uL0(ζ)) � −2(g1 − g0 + c1 − c0 − k1 + k0),
(2.12)

where Lsing
k are the links of singularities of C, which lie in B(ξ, r1) \ B(ξ, r0).

We use Proposition 2.11 in two special cases.
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Corollary 2.12. Let C0 and C1 be as in Proposition 2.11. If C01 = C1 \ C0 is smooth,
then

−σL1(ζ) + nL1(ζ) − (−σL0(ζ) + nL0(ζ)) � χ(C01),
σL1(ζ) + nL1(ζ) − (σL0(ζ) + nL0(ζ)) � χ(C01).

Proof. Use the definition of w, (2.12) and C01
∧ = C01 for the first inequality. For the second

one, we use −u instead of w.

The other important application is in the case when r0 is small, hence L0 is an unknot.

Proposition 2.13. Fix r such that the intersection C ∩ S(ξ, r) is transverse, and set
L := C ∩ S(ξ, r). Let Csmooth be the smoothing of C ∩ B(ξ, r) (for example, if C is given
by F−1(0) for some reduced polynomial, then Csmooth can be taken as F−1(ε) ∩ B(ξ, r) for ε
sufficiently small). Let z1, . . . , zk be the singular points of C ∩ B(ξ, r) with links Lsing

1 , . . . , Lsing
k ,

Milnor numbers μ1, . . . , μk, number of branches c1, . . . , ck, and signatures σ1(ζ), . . . , σk(ζ).
Then

−σL(ζ) + nL(ζ) + (1 − χ(Csmooth)) �
k∑

j=1

(−σLsing
j

(ζ) + nj(ζ) + μj),

σL(ζ) + nL(ζ) + (1 − χ(Csmooth)) �
k∑

j=1

(σLsing
j

(ζ) + nj(ζ) + μj).

(2.13)

Proof. We prove only the first part, in the second one, we use −uL instead of wL.
Let rmin be minimal with C ∩ S(ξ, r) non-empty, and set r0 := rmin + ε for ε sufficiently

small. Then L0 is an unknot with wL0(ζ) ≡ 0, c0 = k0 = 1, thus (2.12) gives

−σL(ζ) + nL(ζ) + 1 − cL �
k∑

j=1

(−σj(ζ) + nj(ζ) + μj)

−
k∑

j=1

(μj + cj − 1) − 2g(C) − 2cL + 2k1.

The proof is completed by applying the genus formula 2(g(Csmooth) − g(C))=
∑k

j=1(μj + cj − 1),
the fact that b1(Csmooth) = 2g(Csmooth) + cL − 1 and observing that b0(Csmooth) � 2k1 (it is
even bounded by k1 alone).

Remark 2.14. The cited result (that is, Proposition 2.11) does not really require
Morse theoretical arguments, although they are very convenient. We could deduce it, with
approximately the same amount of work, from the Murasugi inequality [15, Theorem 12.3.1],
too. The argument is that C01 = C ∩ (B(ξ, r1) \ B(ξ, r0)) induces a cobordism between the
links L′

0 := L0 � Lsing
1 � . . . � Lsing

j and L1. In this way, we do not use anywhere that C is a
complex curve, only that its genus is the difference of the genera of the minimal Seifert surfaces
of L1 and L′

0.

3. The Seifert form and the MHS of a polynomial at infinity

In this section, we compare the Hodge spectrum associated with the limit mixed Hodge
structure of a polynomial map at infinity with the HVS-spectrum provided by its regular
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link at infinity. In this way, we recover the Hodge-spectrum from the ‘Seifert form at infinity’.
For results concerning the limit mixed Hodge structure (MHS) and the Hodge spectrum at
infinity the reader might consult [7, 9, 11, 13, 35].

3.1. Basic definitions

Let F : C2 → C be a reduced polynomial with critical values x1, . . . , xN . Since C2 is not
compact, the topology of a fiber F−1(y) can be different for different regular values y of F .

Definition 3.1 [31]. The fiber F−1(c) is called regular at infinity if there exists a (small)
disk D � c in C and a (large) ball B ⊂ C2 such that F restricted to F−1(D) \ B is a C∞ trivial
fibration. The fiber is called irregular at infinity if it is not regular at infinity.

Consider all the values y1, . . . , yM such that F−1(yk) is not regular at infinity. Set ρ ∈ R

with ρ > maxk,l{|xk|, |yl|} and set γ = {z ∈ C : |z| = ρ}. Then F restricted to F−1(γ) is a C∞

locally trivial fibration, called the fibration of F at infinity. It will be denoted Fib∞. The fiber
of Fib∞ is the (generic) fiber Y∞ := F−1(ρ) of F . The induced algebraic monodromy over γ,
called the monodromy of F at infinity, will be denoted by

h∞ : H1(Y∞, Z) −→ H1(Y∞, Z). (3.1)

Furthermore, we also consider on H1(Y∞, Z) the intersection form b∞. Already this isometric
structure (H1(Y∞); b∞, h∞) contains important information about the behaviour of F at
infinity, nevertheless, we will enhance it in two different ways. The first is topological: we
investigate the possibility of extending the pair (b∞, h∞) to a variation structure (this, strictly
speaking, in general, is only ‘partially’ possible). The candidate for the variation operator is
the inverse transpose of the Seifert matrix of the link at infinity. The second is algebraic: one
lifts the pair (b∞, h∞) to the level of a polarized mixed Hodge structure by considering the
limit mixed Hodge structure of F at infinity.

First, we start with the topological part.
Fix a fiber F−1(c) which is regular at infinity. For sufficiently large R the intersection F−1(c)

with ∂B(R) is transverse. This link F−1(c) ∩ ∂B(R) ⊂ ∂B(R), denoted by L∞
reg, is independent

(up to an isotopy) of R and c. It is called the regular link at infinity of F .
According to [31, Theorem 5], we can associate with L∞

reg the so-called fundamental multilink
at infinity Lfund, which is fibred. This means the following: there exists a link Lfund with
components {Lfund, i}ν

i=1 and positive multiplicities n = {ni}ν
i=1 such that there is a fibration

φ : S3 \ Lfund → S1 with the following property: for any closed loop τ ∈ S3 \ Lfund, φ∗([τ ]) ∈
H1(S1) = Z equals the linking number of [τ ] with

∑
i niLfund,i. Furthermore, the closure Yt of

the fiber Yt = φ−1(e2πit) (t ∈ [0, 1]) is not a manifold with boundary, but homologically Yt \ Yt

is the multilink
∑

i niLfund,i.
Finally, the connection between the multilink Lfund and the link at infinity L∞

reg is the
following. Let T = T (Lfund) be a closed small tubular neighbourhood of Lfund. Then L∞

reg is
the intersection of a fiber Y0 with ∂T (Lfund).

Lemma 3.2. For any i ∈ {1, . . . , ν}, let li be the linking number

li = lk

⎛
⎝Lfund,i,

∑
j �=i

njLfund,j

⎞
⎠

and n′
i the (positive) greatest common divisor of ni and li. Then the number of components of

Y0 ∩ ∂T (Lfund,i) is exactly n′
i. Hence, L∞

reg has
∑ν

i=1 n′
i components. Moreover, the components

of Y0 ∩ ∂T (Lfund,i) are cyclically permuted by the geometric monodromy of φ.
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Proof. See [12, § 3 and 4].

Another important point about Lfund is that its fiber Y0 can be identified with the generic
fiber Y∞ of the polynomial F [31, Theorem 4]. In fact, by Bartolo and Cassou-Noguès
[3, Theorem 1.1], one has:

Lemma 3.3. The multilink fibration S3 \ Lfund → S1 associated with (Lfund,n) and the
fibration Fib∞ of F are isomorphic.

By [12, p. 37], Y0 has d = gcdi{ni} connected components. In the sequel, we will assume
that d = 1, that is, the generic fiber of F is connected.

3.2. The multilink Seifert form of Lfund

The surface Y0, the fiber of the multilink (Lfund,n), is a generalized Seifert surface of the
multilink, cf. [12, pp. 28–29]. In the sequel, we refer to it as the multilink Seifert surface. Using
this surface, one can define the multilink Seifert form associated with Y0, cf. [12, § 15]. It is
a bilinear form on H1(Y0, Z) defined similarly as the classical Seifert form, namely Sfund(α, β)
for α, β ∈ H1(Y0, Z) is the linking number lk(α, β+), where β+ is the push-forward of β in the
positive direction.

If all the multiplicities {ni}i equal 1, then Lfund is a fibred link, and Sfund is its classical
Seifert form, hence it has determinant ±1. In the case of general multiplicity system n this is
not the case anymore. In fact, Sfund can be even degenerate. Nevertheless, some parts of the
classical theory survive.

Lemma 3.4. Let H∗ denote the dual of H, T o the interior of T, and Ȳ[a,b] :=
⋃

a�t�b Yt.

(a) The groups H1(Y0, Z) and H1(Y0, Z)∗ are isomorphic. In fact, one has the following
sequence of isomorphisms, denoted by s:

H1(Y0)
∂−1

−→ H2(S3, Y0)
(1)−→ H2(S3, Y [0,1/2])

(2)−→ H2(Y [1/2,1], Y1/2 ∪ Y1)
(3)−→ H2(Ȳ[1/2,1], Y1/2 ∪ Y1 ∪ (T ∩ Ȳ[1/2,1]))

(4)−→ H2(Ȳ[1/2,1] \ T o, ∂(Ȳ[1/2,1] \ T o))
(5)−→ H1(Ȳ[1/2,1] \ T o)∗

(6)−→ H1(Y1 \ T o)∗
(7)−→ H1(Y1)∗ = H1(Y0)∗.

(b) Let j : H1(Y0, Z) → H1(Y0, Z) be induced by the inclusion. Then the composition

H1(Y0, Z)
j−→ H1(Y0, Z) s−→ H1(Y0, Z)∗

can be identified with the multilink Seifert form Sfund.
(c) Identify the isometric structure (b∞, h∞) with the intersection form and monodromy of

H1(Y0) (by 3.3). Then, in matrix notation,

b∞ = Sfund − ST
fund and ST

fundh∞ = Sfund.

In particular, h∞ is an automorphism of Sfund, that is, hT
∞Sfundh∞ = Sfund.

Proof. In the sequence of isomorphisms ∂−1 comes from the exact sequence of the pair;
(1), (3), (6) and (7) are induced by deformation retracts; (2) and (4) are excisions, while (5)
is provided by duality of the manifold with boundary Ȳ[1/2,1] \ T o. Parts (b) and (c) follow by
similar argument as in the classical case, see, for example, the survey [27, (3.15)].
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In the above composition, although s is an isomorphism, j in general is not. Since, by our
assumption H̃0(Y0, Z) = 0, the morphism j can be inserted in the following long exact sequence:

0 −→ H2(Y0) → H2(Y0, Y0) −→ H1(Y0)
j−→ H1(Y0) −→ H1(Y0, Y0) −→ 0. (3.2)

Lemma 3.5.

(a) H2(Y0, Y0, Z) =
⊕

ν
i=1Zn′

i−1,

(b) H1(Y0, Y0, Z) =
⊕

ν
i=1(Z

n′
i−1 ⊕ Zni/n′

i
).

In particular, H2(Y0, Z) = 0 and

dim ker j =
ν∑

i=1

(n′
i − 1). (3.3)

Proof. By excision and deformation retract argument Hq(Y0, Y0) = ⊕iHq(Ai, Bi), where

(Ai, Bi) := (Y0 ∩ T (Lfund,i), Y0 ∩ ∂T (Lfund,i)).

Note that the homotopy type of Ai is Lfund,i, while of Bi is n′
i copies of S1. Each of these copies

maps (via the inclusion Bi ↪→ Ai) onto Lfund,i as the ni/n′
i-covering. Therefore, the inclusion

Bi ↪→ Ai at H1-level is Zn′
i → Z, {a1, . . . , an′

i
} �→ (ni/n′

i) ·
∑

k ak. This gives (a) and (b). The
rest follow by rank computation argument from (3.2).

Next, we will consider another compactification Ỹ0 of Y0. Denote Y o
0 := Y0 \ T (Lfund)o, the

complement of the interior of the tube. The boundary ∂Y o
0 consists of

∑
i n′

i copies of S1. Let
Ỹ0 be obtained from Y o

0 by gluing to each boundary circle a 2-disc, in this way, obtaining a
compact smooth surface. In fact, the fibration at infinity F over γ can be compactified (even
algebraically) to a fibration F̃ over γ with smooth compact fibers Ỹ0, where in this language
the compact fiber consists of Y0 with additionally

∑
i n′

i ‘points at infinity’. This point of view
is used in Hodge theoretical computations, see, for example, [8] or [9, § 3].

One has the following exact sequence:

0 −→ Z −→ ⊕iZ
n′

i −→ H1(Y0, Z) −→ H1(Ỹ0, Z) −→ 0. (3.4)

Above,
⊕

i Zn′
i is generated by the discs, their images in H1(Y0) are the classes of the circles

∂Y o
0 . The group Z from the left is H2(Ỹ0); its image is generated by ∂Y o

0 . The monodromy
extends to H1(Ỹ0) (or to F̃ ) (and will be denoted by h̃∞), and also to the discs/points at
infinity: it acts trivially on Z, on Zn′

i acts by permutation of the base elements (denoted by
hper).

Let b̃∞ be the intersection form on H1(Ỹ0).

Lemma 3.6. (a) The monodromy operator h̃∞ has no eigenvalue 1, and all its Jordan
blocks have size not larger than 2.

(b) The exact sequence (3.4), together with the algebraic monodromy action on it, splits.
That is, h∞ has no Jordan block of size 3, and the blocks of size 2 of h∞ and h̃∞ agree. In
other words, over Q, one has a direct sum decomposition:

(H1(Y0); b∞, h∞) = (H1(Ỹ0); b̃∞, h̃∞) ⊕ (⊕iQ
n′

i/Q; 0, hper). (3.5)

Moreover, (b̃∞, h̃∞) is a non-degenerate isometric structure.
(c) All roots of h∞ are roots of unity.
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Proof. The statements follow from the mixed Hodge theory of the degeneration at infinity
of F and F̃ . Part (a) is proved, for example, in [8, 9]. Part (b) follows from the spectral pair
computation of the mixed Hodge structure carried on H1(Y0, C). More precisely, there is a
cohomological analogue of the sequence (3.4) which carries mixed Hodge structure compatible
with the action of the monodromy, see again [9, § 3]. The number of Jordan blocks of size
2 correspond to those spectral pairs (α,w) for which w = 0. These are computed for both
H1(Y0, C) and H1(Ỹ0, C) in [7], and their numbers agree. For (c) use the Monodromy Theorem
for F̃ at infinity.

Finally, we summarize the properties of Lfund in the following proposition. As usual, if
h is an automorphism of the vector space V , then Vλ=1 denotes the generalized eigenspace
corresponding to eigenvalue 1, while Vλ�=1 is the direct sum of the other generalized eigenspaces.

Proposition 3.7. Set U := H1(Y0, Q) and let b∞ and h∞ be the intersection form and
the algebraic monodromy induced by the multilink fibration φ : S3 \ Lfund → S1.

Then the following facts hold.

(a) The surface Y0 is the minimal multilink Seifert surface of the multilink (Lfund,n), and
all minimal multilink Seifert surfaces of (Lfund,n) are isotopic to Y0.

(b) One has a direct sum decomposition (Keef decomposition, cf. (2.4)):

(U, Sfund) = (U0 ⊕ Undeg, Sfund,0 ⊕ Sfund,ndeg) (3.6)

such that Sfund,0 = 0 of size Irr =
∑ν

i=1(n
′
i − 1), and Sfund,ndeg is non-degenerate.

A possible free generator set for U0 is the collection of the cycles L∞
reg,i,k − L∞

reg,i,k+1 (1 �
i � ν; 1 � k < n′

i), where {L∞
reg,i,k}n′

i

k=1 are the components of Y0 ∩ ∂T (Lfund,i).
(c) The compatibility of the decompositions (3.6) and (3.5) is the following:

(c.1) (Undeg)λ�=1 = H1(Ỹ0). On this space, (Sfund,ndeg)λ�=1 completes the non-degenerate
isometric structure (b̃∞, h̃∞) to a simple (−1)-variation structure.

(c.2) (
⊕

i Qn′
i/Q; 0, [hper]) = ((Undeg)λ=1; 0, Id) ⊕ (U0; 0, h∞|U0) (and this is an eigenspace

decomposition).
(c.3) (Undeg)λ=1 has dimension ν − 1, on it the restriction of b∞ is trivial, the restriction

of h∞ is the identity, and this degenerate isometric structure is completed by
(Sfund,ndeg)λ=1 to a simple variation structure.

(c.4) On U0, the restrictions of b∞ and Sfund are trivial (hence all the equivariant signature-
type invariants including the Tristram–Levine signatures of restrictions of Sfund and
(b∞, h∞) are the same). Nevertheless, the restriction of h∞ is non-trivial (in fact, it
has no eigenvalue 1), hence the isometric structure cannot be completed to a variation
structure. The characteristic polynomial of the restriction of h∞ is

det(h∞|U0 − t Id) =
∏

i

tn
′
i − 1

t − 1
.

Proof. (a) follows from [12, (4.1)]. For (b) note that the generators listed are in the
kernel of j. For this use, for example, the proof of (3.5), where {L∞

reg,i,k}n′
i

k=1 are exactly the
components of Bi. Another possibility is a direct verification of the fact that Sfund(L∞

reg,i,k −
L∞

reg,i,k+1, β) = Sfund(β,L∞
reg,i,k − L∞

reg,i,k+1) = 0, for any β. Indeed, if T is a sufficiently small
tubular neighbourhood, then it does not intersect β, on the other hand, inside of T the
circles L∞

reg,i,k and L∞
reg,i,l are homologous. For part (c) use Lemmas 3.4(c) and 3.6; for the

characteristic polynomial use the fact that the components {L∞
reg,i,k}k are cyclically permuted,

cf. Lemma 3.2.
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The multilink structure (Lfund, Sfund) now will be used in two different aspects. First, it can
be related with the link L∞

reg; in fact, one can recover it from L∞
reg, see (3.3). On the other hand,

the multilink fibration of Lfund can be identified with the fibration at infinity Fib∞ of F , cf.
Lemma 3.3. In this way, Lfund creates the bridge between L∞

reg and Fib∞.

3.3. The Seifert form of L∞
reg

Set Y o
0 := Y0 \ T (Lfund)o as above. Obviously, Y o

0 ↪→ Y0 admits a deformation retract, hence
H1(Y o

0 , Z) = H1(Y0, Z) canonically.

Lemma 3.8. One has the following facts.

(a) The surface Y o
0 is the minimal Seifert surface of L∞

reg, and all minimal Seifert surfaces of
L∞

reg are isotopic to Y o
0 .

(b) The Seifert form Sreg of L∞
reg associated with Y o

0 is identical with Sfund (under the
identification H1(Y o

0 , Z) = H1(Y0, Z)). In particular, all the result listed in Proposition 3.7
about Sfund are valid for Sreg as well.

(c) Let hreg be the monodromy of the variation structure associated with Sreg,ndeg =
Sfund,ndeg (as in Section 2.2). Then the higher Alexander polynomials Δk of L∞

reg satisfy the
following identities: Δk ≡ 0 for 0 � k < Irr, ΔIrr(t) = det(hreg − t Id).

(d) All the roots of the (higher) Alexander polynomial ΔIrr of L∞
reg are roots of unity.

Proof. (a)–(c) follow from Proposition 3.7 and from the construction of Y o
0 . For (d), use

either Lemma 3.6(c) or note that the multilink fibration of Lfund can be represented by a
splice diagram [31, 32], hence the characteristic polynomial of hfund is a product of cyclotomic
polynomials by Eisenbud and Neumann [12, Theorem 13.6].

3.4. The HVS-spectrum of the regular link at infinity, L∞
reg

For local isolated plane curve singularities, we have the following classical result (consequences
of the Monodromy Theorem and polarization properties), which in the language of H-numbers
pk

λ(±1) and qk
λ of their local links can be formulated as follows (see, for example, [24,

Proposition 6.14] or [6, Proposition 3.1.5, Lemma 3.1.6], compare also with [42]).

Proposition 3.9. Let L be an algebraic link and pk
λ(±1), qk

λ its H-numbers. Then

(a) qk
λ = 0 for all k > 0 and |λ| < 1; moreover pk

λ(±1) = 0 unless λ is a root of unity;
(b) pk

λ(±1) = 0 for all k > 2. Moreover p2
1(±1) = 0;

(c) p2
λ(−1) = 0 and p1

1(−1) = 0.

The fundamental mulitlink at infinity Lfund, or the regular link at infinity L∞
reg, in general,

cannot be realized by a local algebraic link. However, their H-numbers share similar properties
as the H-numbers of local links.

Proposition 3.10. For the H-numbers of L∞
reg the following facts hold:

(a) qk
λ = 0 for all k > 0 and |λ| < 1, moreover pk

λ(±1) = 0 unless λ is a root of unity.
(b) pk

λ(±1) = 0 for all k > 2, and p2
1(±1) = 0.

(c) p1
1(−1) = 0.

(d) p2
λ(1) = 0 for λ �= 1.
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Proof. (a) and (b) follow from Lemma 3.6. Next, we prove (c). First, we recall that
W1

1 (±1) = (C; 0, Id,∓1), hence we have to show that the restriction of Sfund on Uλ=1 is negative
definite. This follows from the more general Proposition 3.17 of Section 3.7.

(d) By Neumann and Rudolph [31, 33], Lfund can be represented by a splice diagram where
all edges determinants are negative. Thus, Lfund has uniform twists (all positive) (see [12,
Chapter 14]). Therefore, by the discussion in [29, Section 2], we have, for each x ∈ Uλ,

Sfund(λx, (h∞ − λ)x) � 0.

This shows that p2
λ(+1) cannot occur.

Let SpHVS(L∞
reg) be the HVS-spectrum associated with the link L∞

reg.

Corollary 3.11. (a) The HVS-spectrum of Uλ=1 consists of (ν − 1) copies of (1).
(b) All elements of SpHVS(L∞

reg) are situated in (0, 2), and SpHVS(L∞
reg) is symmetric with

respect to 1.

Remark 3.12. The proofs of Propositions 3.9 and 3.10 rely on some key properties of the
splice diagrams of the corresponding links. The common properties (which imply the common
p1
1(−1) = 0) are that in both cases the ‘multiplicities of the nodes’ and the ‘(near) weights’

are positive. The crucial difference between the diagrams is that in the local case the edge
determinants are positive, while for the diagram at infinity they are negative. This implies the
sign difference in the p2

λ(±1)-vanishing. For more detail, see Section 3.7.

The next identity will often be used in the sequel.

Corollary 3.13. If Y∞ is a regular fiber of F, then 1 − χ(Y∞) = deg ΔIrr(L∞
reg) + Irr.

Proof. By Lemma 3.8(a), the size of Sreg is equal to 1 − χ(Y∞). On the other hand, deg ΔIrr

is equal to the size of Sndeg by Lemma 3.8(c). The difference of the sizes of the two matrices is
equal to Irr by Proposition 3.7(b) (cf. also Lemma 3.8(b)).

3.5. The Hodge spectrum of the fibration of F at infinity.

Let SpMHS,∞ be the spectrum associated with the limit mixed Hodge structure of F at infinity
defined in a similar way as in Section 2.3. The main result of this subsection shows that
SpMHS,∞ can be recovered from the rational Seifert form of L∞

reg and from the integers {n′
i}i.

Conversely, SpHVS(L∞
reg) is the maximal subset of SpMHS,∞, which is symmetric with respect

to 1.
More precisely, in Z[Q] one has:

Theorem 3.14.

SpMHS,∞ = SpHVS(L∞
reg) +

ν∑
i=1

(
1
n′

i

)
+ . . . +

(
n′

i − 1
n′

i

)
.

Proof. Let us consider the decomposition given in Proposition 3.7:

(U0; 0, h∞|U0) ⊕ ((Undeg)λ=1; 0, Id) ⊕ ((Undeg)λ�=1; b̃∞, h̃∞). (3.7)
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The last component carries a limit mixed Hodge structure which is polarized by b̃∞, and
it extends to a simple HVS with (Sfund,ndeg)λ�=1. In such a situation, the HVS-spectrum
agrees with the Hodge spectrum. The proof is absolutely the same as in the local case, see
Proposition 2.5, or the original source [24, (6.5)] (or the affine polynomial case in [14]).

For the middle component both the HVS and Hodge spectra consist of (ν − 1) copies of
(1): in the HVS case, see Corollary 3.11 as a consequence of Proposition 3.10(c), while for the
Hodge case, see [7] or [9].

These two components provide the contribution from SpHVS(L∞
reg). The remaining part,

provided by the first summand, is computed in [7], and it is the sum on the right-hand side of
the identity of Theorem 3.14.

Example 3.15. Recall that F is ‘good at infinity’ if and only if L∞
reg is a fibred link, that

is, ni = 1 for all i, cf. [33, Theorem 6.1]. By our result, in such a case one has SpMHS,∞ =
SpHVS(L∞

reg).

Corollary 3.16. For any x ∈ [0, 1], one has

|SpHVS(L∞
reg) ∩ (x, x + 1)| � |SpMHS,∞ ∩ (x, x + 1)| � |SpHVS(L∞

reg) ∩ (x, x + 1)| + Irr

and the analogous inequality holds for Sp \ [x, x + 1].

3.6. An example

The above discussion might have been technically quite involved. We want to illustrate the
occurring phenomena by investigating one example, the Briançon polynomial, which appeared
in [4, 7, 9, 10] (we remark that in [3, Example 4.14] there is a different polynomial called the
Briançon polynomial, which has a different link at infinity and different irregular fibers).

The splice diagram of the fundamental link at infinity is as follows:

32
−7−1

(3)(2)

(1)(1)

(4) (1)
root

Here, the numbers in parentheses are the multiplicities of the vertices and arrowheads (link
components). The numbers not in parentheses denote the weights of corresponding edges (those
omitted are equal to 1). We have n1 = 4, n′

1 = gcd(4, 6) = 2, and n2 = n′
2 = 1.

Computing the Euler characteristics of a minimal Seifert surface of Lfund (as in [12]), we get
that this surface is a three times punctured torus (3 is the number of components of Lfund).
The rank of H1(Y∞) is 4, while the ranks of U0 and (Undeg)λ=1 are 1. The monodromy at
infinity permutes L1,1, L1,2 and fixes L2. The characteristic polynomial of the monodromy
on boundary components is therefore t2 − 1. The Alexander polynomial of Lfund, hence the
characteristic polynomial of the monodromy at infinity, is (t2 − 1)(t2 + t + 1).

The equivariant signatures (which correspond to jumps of the Tristram–Levine signatures)
of Lfund can be computed using [30, Theorem 5.3 and Section 6]. Using [30, Theorem 5.3]
for the left-most splice component, we compute that σ−

e2πi/3 = −1 and σ−
e−2πi/3 = 1 so the

jumps of the Tristram–Levine signature function are, respectively, −2 and 2, in other words,
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p1
e2πi/3(+1) = 0, p1

e2πi/3(−1) = 1, p1
e−2πi/3(+1) = 1, p1

e−2πi/3(−1) = 0 (compare [7, Sections 3.5,
3.6]). On the other hand, a straightforward computation shows that the right splice component
does not contribute to the equivariant signature at all. Hence, the non-trivial H-numbers are
p1

e2πi/3(−1) = p1
e−2πi/3(+1) = p1

1(1) = 1.
Concluding, the spectrum at infinity is equal to {2

3 , 4
3 , 1

2 , 1} (cf. [9, Example 3.6(ii)]), where
{2

3 , 1, 4
3} is the contribution from L∞

reg.

3.7. The definiteness of ‘linking matrix’: the proof of Proposition 3.10(c)

We wish to prove that the restriction of Sfund on Uλ=1 is negative definite. This follows from
a more general combinatorial result, which we now state.

Let Γ be a rooted Eisenbud–Neumann diagram, cf. [31]. For an edge, we call the weight
which is closer to the root vertex the near weight and the other one the far weight. For any two
nodes v and w, if the geodesics connecting w and the root vertex contain v then we say that w
is beyond v. We allow more than one near weight at each node to have weight different than
1. The linking numbers and multiplicities are determined from the diagram as in [12, § 10,11].
The arrowhead vertices will be denoted by L1, . . . , Lν , their multiplicities are n1, . . . , nν .

Let Qν be the Q-vector space generated by {Li}i. The linking matrix {lk(Li, Lj)}ij is defined
as follows: for i �= j, it is the standard linking pairing, while the self-linking lk(Li, Li) is defined
via the identity lk(Li,

∑
j njLj) = 0. Equivalently,

lk(niLi, niLi) = −
∑
j �=i

lk(niLi, njLj). (3.8)

In particular, the null-space of the linking matrix is at least one-dimensional.

Proposition 3.17. Let Γ be a rooted connected graph with the following properties.

(a) All near weights are positive and no far weight is allowed to be zero.
(b) If the far weight at a node v is negative, then all far weights of nodes beyond v are also

negative (this property is weaker than negativity of edge determinants).
(c) The multiplicities of all arrowhead and non-arrowhead vertices are positive.

Then, the linking matrix lk(Li, Lj) is negative semi-definite with one-dimensional null-space.

Proof. We begin with a following special case.

Lemma 3.18. The statement of Proposition 3.17 holds if lk(Li, Lj) > 0, for all i �= j.

Proof. The reasoning is exactly as in [29, § 3]: for L =
∑

�jnjLj , one has

lk(L,L) =
∑
i<j

2�i�j lk(niLi, njLj) +
∑

i

�2i lk(niLi, niLi).

Substituting (3.8), we get

lk(L,L) = −
∑
i<j

(�i − �j)2 lk(niLi, njLj). (3.9)

Hence, lk(L,L) is zero if �1 = . . . = �n, and negative otherwise.

In general, if some far weights are negative, some of the linking numbers lk(Li, Lj) might be
negative as well; in these cases the proof is more involved.
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Lemma 3.19. If ν � 2, then the self-linking number lk(Li, Li) is negative for any i.

Proof. For each i, let vi be a node supporting Li, αi denotes the far weight at vi and
βi1, . . . , βiki

the near weights at vi, with βi1 the near weight on the edge supporting Li.
If lk(Li, Lj) > 0, for all j �= i, then the statement follows from (3.8). Hence, assume that

lk(Li, Lj) < 0, for some j. Assume that Li and Lj are supported by nodes vi and vj , respectively
(the case vi = vj is also possible). Let γ be a path in Γ joining Li to Lj . Since lk(Li, Lj) < 0,
one of the vertices lying on γ, call it vγ , must have a negative weight. This, by assumption (a),
must be a far weight, hence there is a unique vγ along the path with this property. Now, if vi

is beyond vγ , then by (b), we have αi < 0. Otherwise, vi = vγ and αi < 0 by the definition of
vγ . Next, let Mi be the multiplicity of vi, namely

Mi =
∑

j

lk(vi, njLj) = αiβi2 . . . βiki
ni +

∑
j �=i

lk(vi, njLj).

But, for j �= i, one has lk(vi, njLj) = βi1 lk(Li, njLj), hence

− lk(Li, Li) =
1

βi1ni

∑
j �=i

lk(vi, njLj) =
Mi

niβi1
− αiβi2 . . . βiki

βi1
> 0 (3.10)

as Mi > 0.

Corollary 3.20. If the diagram has one or two arrowheads, then the statement of
Proposition 3.17 holds.

Proof. Use Lemma 3.19 and the fact that the null-space is not trivial.

The proof of Proposition 3.17 is based on induction via reduction of the diagram (via two
operations).

Definition 3.21. Let Γ be a rooted graph. Assume that the supporting node vi of the
arrowhead vertex Li has the following properties: it is not the root vertex, there is no node
beyond it, Li is the unique arrowhead supported by vi. Hence, all its adjacent vertices except
Li and another one (in the direction of the root) are leaves. As above, denote the valency of
vi by ki + 1 (see the picture given below).

αi βi1

βi2

βi3βiki

Li (ni)
L′

i (βni)
Collapse

A collapse of vi is a graph Γ′ with vi replaced by an arrowhead vertex L′
i with multiplicity

niβ, where β = βi2 . . . βiki
and all other weights and multiplicities are unchanged.
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Lemma 3.22. The linking matrices of Γ and Γ′ are congruent. Moreover, if Γ satisfies the
assumptions (a)–(c) of the proposition, then so does Γ′.

Proof. We shall use the notation lkΓ and lkΓ′ for the linking forms on Γ and Γ′.
For any vertex v (node or arrowhead), different from the deleted ones, we have lkΓ(v, Li) =

lkΓ′(v, βL′
i). We claim that lkΓ′(βL′

i, βL′
i) = lkΓ(Li, Li). This follows from (3.8) applied for Γ

and Γ′, and from the fact that in Γ′ the relation βniL
′
i +

∑
j �=i njL

′
j = 0 holds. Thus, the linking

matrix of Γ written in the basis L1, . . . , Li, . . . , Lν is the same as the linking matrix of Γ′ in the
basis L1, . . . , βL′

i, . . . , Lν . This proves the first part. As for the other part, the multiplicities of
all vertices (besides the deleted ones) are preserved. This shows that if Γ satisfies (c), then so
does Γ′, while (a) and (b) are obvious.

Definition 3.23. Let v0 be a node with no other node beyond it. Let L1, . . . , Lk be the
arrowheads adjacent to v0 (k � 2), denote their multiplicities by n1, . . . , nk. The node v0 might
have several adjacent leaves as well. We denote by β the product of their near weights. Assume
that the overall number of vertices of Γ is at least 3.

A squeeze of Γ is a graph arising from Γ by replacing two arrowheads supported by v0 (say,
L1 and L2) by a single one, denoted by Ls, with multiplicity defined as

ns := n2β1 + n1β2

and the near weight βs := β1β2.

α

(n1)

β1

(n2)β2

(nk)

βk

α
(ns)βs

(n3)

β3

(nk)

βk

Squeeze

Lemma 3.24. Let Γ′ be a squeeze of arrowheads L1 and L2 from Γ. If Γ satisfies the
assumptions (a)–(c) of the proposition, then so does Γ′. Moreover, the rational linking matrix
of Γ is a direct sum of the linking matrix of Γ′ and a negative definite one-dimensional matrix.

Proof. As for the first part, we observe that βs and ns were chosen in such a way that all
multiplicities of vertices are preserved. Moreover, by construction, we have

lkΓ′(Li, Lj) = lkΓ(Li, Lj) if {i, j} ∩ {1, 2} = ∅ and i �= j,

lkΓ′(nsLs, Lj) = lkΓ(n1L1 + n2L2, Lj) if j � 3.
(3.11)

We claim that lkΓ′(Lj , Lj) = lkΓ(Lj , Lj) for j � 3. Indeed, this follows from (3.11) and (3.8)
applied for both graphs. Now, let us define,

Λ1 = β1L1 − β2L2 and Λ2 = xL1 + yL2,
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where the rational numbers x and y will be determined later. By definition,

lkΓ(Λ1, Lj) = 0 for any j � 3.

The self-linking of Λ1 is equal to

lkΓ(Λ1,Λ1) = β2
1 lkΓ(L1, L1) + β2

2 lkΓ(L2, L2) − 2αββ1β2 . . . βk.

If α > 0, then the above expression is negative, because lkΓ(L1, L1) and lkΓ(L2, L2) are negative
by Lemma 3.19. If α < 0, we use (3.10) to show that lkΓ(Λ1, Λ1) = −Mv0(β1/n1 + β2/n2) < 0,
because the multiplicity of Mv0 is positive. Hence, in all cases, lkΓ(Λ1, Λ1) < 0.

Since lkΓ(Λ1,Λ1) < 0 and lkΓ(L1, L2) �= 0, there exist x and y such that lkΓ(Λ2, Λ1) = 0 and
Λ1,Λ2 are linearly independent. Such x and y are determined up to a multiplicative constant.
To choose it, observe that

lkΓ(Λ2, Lj) = x lkΓ(L1, Lj) + y lkΓ(L2, Lj) =
(

x + y
β1

β2

)
lkΓ(L1, Lj)

and lkΓ′(Ls, Lj) = (1/β2) lkΓ(L1, Lj). We normalize the rational numbers x and y so that
x + y(β1/β2) = (1/β2). Then, we have for all j � 3

lkΓ(Λ2, Lj) = lkΓ′(Ls, Lj). (3.12)

Finally, we show that lkΓ(Λ2,Λ2) = lkΓ′(Ls, Ls). This is done as follows. First, on Γ we have
the relation n1L1 + n2L2 +

∑
njLj = 0, which can be rewritten as

λ1Λ1 + λ2Λ2 +
∑
j�3

njLj = 0

for some λ1 and λ2. On the other hand, on Γ′ we have nsLs +
∑

j�3 njLj = 0. Now, taking
the linking numbers with Lr, for some r � 3, we obtain

0 =
∑
j�3

nr lkΓ(Lr, Lj) + λ2 lkΓ(Lr, Λ2) =
∑
j�3

nr lkΓ′(Lr, Lj) + ns lkΓ′(Lr, Ls).

Now, by (3.11), since r � 3 the above equation simplifies to

λ2 lkΓ(Lr,Λ2) = ns lkΓ′(Lr, Ls).

From (3.12) and lkΓ′(Lr, Ls) �= 0, it follows that ns = λ2. But then we have

lkΓ(Λ2, λ2Λ2) = −
∑
j�3

lkΓ(Λ2, njLj) = −
∑
j�3

lkΓ′(Ls, njLj) = lkΓ′(Ls, nsLs).

As ns = λ2, we conclude that lk(Λ2,Λ2) = lk(Ls, Ls). Hence the linking form on Γ restricted
to Λ2, L3, . . . , Ln is the same as the linking form on Γ′ written in basis Ls, L3, . . . , Ln, while
the element Λ1 splits out completely as an orthogonal summand.

Finishing the proof of Proposition 3.17. By applying collapses and squeezes to Γ, we end up
with a diagram, for which no further collapse or squeeze is possible. This diagram has one or
two arrowheads and we conclude the proof by Corollary 3.20.

Remark 3.25. If we assume that the multiplicities of nodes of Γ are only non-negative (not
just positive), we can still prove semidefiniteness of the linking matrix, possibly with higher
dimensional null-space. We omit the details.
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4. Semicontinuity results

Now, we are ready to prove various semicontinuity results. In Section 4.1, we recover (in a
slightly weaker form) the classical semicontinuity results valid in the local case of algebraic
plane curve singularities (proved by Varchenko [40], see also [37]). Next, in Section 4.2, we
analyse the behaviour of the spectrum under a degeneration of affine plane curves in the spirit
of [28]. Finally, we consider an affine plane curve, and we relate its spectrum at infinity with
the spectrum of its local singularities, see Section 4.3. This type of comparison is unknown in
Hodge theory.

4.1. Semicontinuity of the local singularity spectrum

Recall that in the local case SpMHS = SpHVS (cf. 2.5), which will be denoted just by Sp.
Let us consider now the following situation. Let ft(x, y) be a smooth family of holomorphic

functions in two local coordinates depending on a local parameter t. Assume that f0(x, y) = 0
has an isolated singularity at the origin. Let us introduce the following notation.

(1) We fix a small ball B centered at the origin such that f−1
0 (0) is transverse to ∂B and

f0(z)/|f0(z)| : ∂B \ f−1
0 (0) → S1 is a Milnor fibration.

(2) We denote by L0 = f−1
0 (0) ∩ ∂B the link of f0 at 0, and Sp0 the spectrum of the link.

(3) The parameter t �= 0 and |t| is sufficiently small so that f−1
t (0) ∩ ∂B is a transversal

intersection, and this link is isotopic in ∂B to L0.
(4) Set C = f−1

t (0) ∩ B.
(5) We denote by z1, . . . , zk the singular points of C, Lsing

1 , . . . , Lsing
k the corresponding local

links of these singularities, and Sp1, . . . ,Spk denote the spectra of Lsing
1 , . . . , Lsing

k respectively.

Proposition 4.1. Fix x ∈ [0, 1] such that e2πix is not a root of the Alexander polynomial
of L0. Then

|Sp0 ∩ (x, x + 1)| �
∑

j

|Spj ∩ (x, x + 1)|,

|Sp0 \ [x, x + 1]| �
∑

j

|Spj \ [x, x + 1]|.
(4.1)

Proof. Assume x �= 0, 1. We shall prove only the first inequality, the second one is completely
analogous (in Section 2.5 all inequalities are given in pairs, we use the first one to prove results
about Sp ∩ (x, x + 1), the other one to prove results about Sp \ [x, x + 1]). As Lsing

j is an
algebraic link, μj is the degree of the Alexander polynomial of Lsing

j . Hence, μj − σLsing
j

(ζ) +
nLsing

j
(ζ) � 2|Spj ∩ (x, x + 1)| by Corollary 2.9.

By assumption nL0(ζ) = 0. Since L0 is also an algebraic link, 1 − χ(Csmooth) is the degree
of the Alexander polynomial of L0. Thus, again by Corollary 2.9, one gets −σL0(ζ) +
(1 − χ(Csmooth)) = 2|Sp0 ∩ (x, x + 1)|. Then we conclude by the inequality (2.13).

Next, assume that x ∈ {0, 1}. The assumption that e2πix is not a root of the Alexander
polynomial means that L0 is a knot and |Sp0 ∩ (0, 1)| = |Sp0 ∩ (1, 2)| is the delta invariant δ0.
For any singularity link, hence for Lsing

j , δj = |Sp ∩ (0, 1]| � |Spj ∩ (0, 1)|. Hence the statement
follows from δ0 �

∑
δj .

4.2. Semicontinuity of spectrum at infinity of families of affine curves

The methods described in this paper allow us also to prove the results on semicontinuity of
the spectrum at infinity in the sense of Némethi and Sabbah [28].
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Let Ft : C2 → C be a smooth family of polynomials with a local deformation parameter t.
Let Spt be the corresponding Hodge spectrum at infinity and Irrt be the irregularity of the
link at infinity L∞

t,reg associated with Ft.
Note that, over a small punctured disc D∗ � t, the spectrum Spt is constant.

Theorem 4.2. Fix x ∈ [0, 1] such that {x, x + 1} ∩ Spt = ∅ for t ∈ D∗. Then

|Spt ∩ (x, x + 1)| + Irrt � |Sp0 ∩ (x, x + 1)|

and the same statement holds for Sp \ [x, x + 1] instead of Sp ∩ (x, x + 1).

Proof. Let us assume first that x is not an integer. We write ζ := e2πix ∈ S1 \ {1}.
Let us choose c such that C0 = F−1

0 (c) is smooth and regular at infinity. Furthermore, choose
ξ and r0 such that S3(ξ, r0) ∩ C0 is the regular link of F0 at infinity, denoted by L0. By openness
of the transversality condition, there exist D, an open neighbourhood of 0, and Wc, an open
neighbourhood of c, such that, for any w ∈ Wc and t ∈ D, the intersection F−1

t (w) ∩ S3(ξ, r0)
is transverse and isotopic to L0. Let us take any t ∈ D∗ and choose w ∈ Wc such that Ct =
F−1

t (w) is smooth and regular at infinity. Finally, choose rt such that Lt := S3(ξ, rt) ∩ Ct is
the regular link at infinity of Ct.

Since Ct ∩ B(ξ, r0) is isotopic to C0 ∩ B(ξ, r0), by Corollary 2.12, we get

−σLt
(ζ) + nLt

(ζ) + 1 − χ(Ct ∩ B(ξ, rt)) � −σL0(ζ) + nL0(ζ) + 1 − χ(C0 ∩ B(ξ, r0)).

By assumption, ζ is not a root of ΔIrrt
(Lt). Hence, applying Proposition 3.13, for Ft and F0,

we obtain

−σLt
+ deg ΔIrrt

(Lt) + 2 Irrt � −σL0(ζ) + ñL0(ζ) + deg ΔIrr0 + 2 Irr0 .

Then Corollary 2.9 implies

|SpHVS(Lt) ∩ (x, x + 1)| + Irrt � |SpHVS(L0) ∩ (x, x + 1)| + Irr0 .

Finally, Corollary 3.16 provides the result. To show the statement for Sp \ [x, x + 1], we use
the same argument.

If x = 0 (or x = 1) and x satisfies the assumption of the theorem, then for any t �= 0, and
for any θ > 0 sufficiently small, we have

|Spt ∩ (θ, 1 + θ)| = Spt ∩ (0, 1)|.

On the other hand, for θ > 0 sufficiently small, we have |Sp0 ∩ (θ, 1 + θ)| � |Sp0 ∩ (0, 1)| (we
have an equality if and only if Sp0 ∩ {1} = ∅). Hence the statement of the theorem for x = 0, 1
follows from the statement for x ∈ (0, 1).

4.3. Spectrum at infinity of a singular curve

Let C ⊂ C2 be an irreducible plane algebraic curve given by zero set of a reduced polynomial
F . Let z1, . . . , zk be its singular points and Sp1, . . . ,Spk their (Hodge or HVS) spectra. Let
Sp∞ be the Hodge spectrum of F at infinity. Similarly, let L∞

reg be the regular link of F at
infinity, SpHVS(L∞

reg) its HVS-spectrum and Irr be as defined in (3.3).
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Theorem 4.3. With the above notation, for all x ∈ [0, 1] such that e2πix is not a root of
the Alexander polynomial of L∞

reg, we have

|SpHVS(L∞
reg) ∩ (x, x + 1)| + Irr �

∑
j

|Spj ∩ (x, x + 1)|,

|Sp∞ ∩ (x, x + 1)| + Irr �
∑

j

|Spj ∩ (x, x + 1)|.
(4.2)

Moreover, the analogous statement holds if we replace Sp ∩ (x, x + 1) by Sp \ [x, x + 1].

In the good case, if the regular link at infinity is fibred (for example, if it is a knot), then Irr =
0 and the second inequality of (4.2) takes the form |Sp∞ ∩ (x, x + 1)| �

∑n
k=1 |Spk(x, x + 1)|.

Proof. First, we assume that x ∈ (0, 1). We focus on the case Sp ∩ (x, x + 1); the case
Sp \ [x, x + 1] is analogous.

If C is regular at infinity, the inequality (2.13) reads as

− σL∞
reg

(ζ) + nL∞
reg

(ζ) + (1 − χ(Csmooth)) �
∑

j

(−σj(ζ) + nj(ζ) + μj), (4.3)

where Csmooth is the smoothing of C. Since each link Lsing
j is algebraic, −σj(ζ) + nj(ζ) + μj �

2|Spj ∩ (x, x + 1)|. On the other hand, by Proposition 3.13, we get

1 − χ(Csmooth) = Irr + deg ΔIrr. (4.4)

By Lemma 3.8(d), Δh
L∞

reg
has no roots outside the unit circle, hence Corollary 2.9 applies. Since

ζ is not a root of Δh
L∞

reg
, ñ(ζ) = 0, hence

− σL∞
reg

(ζ) + deg Δh
L∞

reg
= 2|SpL∞

reg
∩ (x, x + 1)|, (4.5)

and n(ζ) = Irr (see Section 2.4). Then (4.3)–(4.5) prove the statement in this case.
If C is not regular at infinity, we argue as follows. We take an r0 such that C ∩ S3(ξ, r0) is

the link of C at infinity, denoted by LC . Then (2.13) yields

− σLC
(ζ) + nLC

(ζ) + (1 − χ(Cr0
smooth)) �

∑
j

(−σj(ζ) + nj(ζ) + μj), (4.6)

where Cr0
smooth := Cε ∩ B(ξ, r0) is the smoothing of C in B(ξ, r0). Here, Cε := F−1(ε) is smooth

and regular at infinity (for ε non-zero and sufficiently small). Moreover, we can assume that
the links C ∩ S3(ξ, r0) and Cε ∩ S3(ξ, r0) are isotopic. Let r1 be such that Cε ∩ S3(ξ, r1) is the
regular link of F at infinity. Corollary 2.12 applied to Cε yields

− σL∞
reg

(ζ) + nL∞
reg

(ζ) − (−σLC
(ζ) + nLC

(ζ)) � χ(C01), (4.7)

where C01 = Cε ∩ (B(ξ, r1) \ B(ξ, r0)). A combination of (4.6) and (4.7) yields

−σL∞
reg

(ζ) + nL∞
reg

(ζ) + (1 − χ(Cε)) �
∑

j

(−σj(ζ) + nj(ζ) + μj).

This inequality is identical to (4.3) and we proceed further as in the previous case.
Assume that x = 0. Then, by the assumption, 1 is not a root of the Alexander polynomial of

L∞
reg, hence L∞

reg is a knot (because Uλ=1 is trivial, but its dimension is ν − 1 by Proposition 3.7).
Therefore, the link at infinity is good, Irr = 0 and SpHVS(L∞

reg) = Sp∞.
For θ > 0 sufficiently small |Sp∞ ∩ (0, 1)| = |Sp∞ ∩ (θ, 1 + θ)| (because 1 �∈ SpHVS(L∞

reg) =
Sp∞). On the other hand, in the local case, |Spj ∩ (0, 1)| � |Spj ∩ (θ, 1 + θ)|, hence the
statement follows from the case x ∈ (0, 1).

The case x = 1 follows by the same argument with θ < 0.
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