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Introduction

Although the original motivation of this paper is to be found in the
Morse theory of closed geodesics, the results presented definitely belong into
the realm of self-adjoint systems of ordinary differential equations. I have,
therefore, written the main body of this paper purely in the context of this
latter discipline, but would like to start here with a short account of the
original problem as encountered in the Morse theory.

A closed geodesic g on a Riemannian manifold Misamapg:R—M
of the reals into M, which satisfies the usual differential equations of a
geodesic for all x € R, and is periodic. The n-th iterate g" of g is then defined
in terms of g as the map

(@) = glna), (== 1, £2--°), el

Thus g* represents the same geodesic as g; g1 represents the oppositely
oriented geodesic to g.

In (6] Morse assigns to each closed geodesic g two non-negative integers
A(g) and »(g); the index and nullity of the closed geodesic g respectively.
(A(g) represents, roughly, the number of negative characteristic roots of
the boundary value problem, associated to g, by Morse [6; p. 289]. v(g),
on the other hand, represents the multiplicity of the eigenvalue 0 of that
same problem. InSection 1 these notions are precisely defined, for a general
periodic operator L.) Our problem is to describe the nature of the sequences
(a@n); v} =12 )

The sequences are of interest because of the following result due to
Morse:

On a compact Riemannian manifold M the number of closed geodesics
with prescribed index k is greater than or equal toa topological invariant

*The work on this paper was partially supported by a H. H. Rackham School Summer
Faculty Research fellowship.
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172 R. BOTT

R*(M) of M (the k-th circular connectivity of M), provided the nullity of
all closed geodesics on M is zero.

This theorem then furnishes a counting of the closed geodesics on M
into which the nullity and index enter vitally. Since in this counting g®,
n > 1, counts as a distinct geodesic from g, the study of A(g"), »(g") is
of some interest for purely computational reasons. On the other hand,
if we consider g” in some sense equivalent to g, which is usual when we
speak of closed geodesics intuitively, the redundancy of the counting has
to be adjusted, and this can only be done by setting bounds to the com-
plexity of the sequence {i(g")}.

The results of Section 1, when transiated into this context can be
summarized in the following theorems:

THEOREM A.  Ewvery closed geodesic g delermines mon-negative inleger-
valued functions A, and N, on the unit civcle, |z| = 1, such that

Alg") = 2 Ay(w),
v(g") = ZNﬂ(w)

wheve w ranges over the n-th roots of + 1 or — 1, depending on whether g
15 orientable or nol.

Remark: g is orientable if the orientation of a coordinate system on M
is not changed by parallel translation along a fundamental period of g.
Otherwise g is non-orientable.

THEOREM B. The function N, [A,] of Theorem A is in turn completely
determined (delermined wp to an additive constanl) by a certain 2n X 2n
matriz P, , the Poincaré matriz of g. Here n 4 1 = dim. M.

The manner in which P, determines 4, is unfortunately rather com-
plicated and will not be discussed in detail here (see Theorems IIT and IV,
Section 1). We will oniy list a few of the properties of these functions
which follow from these theorems.

THEOREM C. The functions A, and N, have, among others, the following
properiies:

1. N,(z) = dimension of null-space of {P, — zI} (|z|=1).

2. A, (z) is constant at poinis at which N,(z) = 0, and the jump of
A, at z is always bounded in absolute value by N,(z).

3. A4,(2*) = A,(2); N,(2*) = N,(2)

(z* denoles complex conjugale of z.)

A real number g, such that N, (¢#*®) 5 0 is called an imaginary (Poin-
caré) exponent of g. By part 1 of Theorem C, g has at most 2z distinct
imaginary exponents mod 1. The following corollary to Theorems 4 and C
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-

is now an immediate consequence of the definition of a Riemann integral.
Alg™)

COROLLARY 1. A*(g) = lim is given by the formula

1 25
Q) =, [ A0 = 0y + Zavey

where the a, are integers, and {p,} is a complele system of smaginary Poincaré
exponents of g mod 1.
s’ = i "’(g“):ith 0 a6 = 0
W) =lim =5 = oo | N,(") .
If the imaginary exponents of g are all irrational, then the formula

of Theorem A can be given more explicitly, as can be easily verified and is
expressed in

COROLLARY II. If the imaginary exponents {o,} of g are all irrational,
then
Ag") = a_y + agn + Z a,[ne,]

where o, is again a complete system of imaginary exponents, and the a_,, a
(i =0, ) are integers, while [x] denotes the greatest inleger = .

In this case »(g") is clearly 0 for all .

These results augment, partly overlap, and partly generalize results
due to Hedlund [4], and announced results of Morse and Pitcher [7]. Hed-
lund restricts his discussion to dim. M = 2, and the ‘‘nondegenerate case”
i.e., »(g") = 0 for all n. Our formula does not add to his rather complete
discussion of this case, except for the following remark.

It follows at once from Corollary I, that since dim. M = 2,

o A*(g) = ag + a0 + ay(— 0) = + (4 — @)o,
or
A*(g) = ap

depending on whether g has the imaginary exponents ¢ and — g, or has
none at all. Hence if A*(g) is rational, but not an integer, then g must have
an imaginary exponent p, which is also rational and not an integer, and
»(g") must be different from zero for some values of #». Hence the con-
ditions of theorem IV, case 1 in [4] are incompatible.

The Proceedings note of Morse and Pitcher, treating the n-dimensional
nondegenerate case, announces among other results the existence of the
limit *(g) and that A(g") is determined by P, and A(g). The formula of
Corollary I is foreshadowed there by the proposition that if all the imaginary
exponents of g are rational then A*(g) is also.
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That these authors restricted themselves exclusively to the non-
degenerate case, »(g") = 0, is explained by the fact that in the classical
Morse theory A(g) has “local topological significance” only if »(g) =0.
However, if g is contained in a compact manifold of closed geodesics, say
o, and if dim. o =#(g) for all ge o, then A(g) is again topologically signifi-
cant, as is shown in [2]. I was therefore interested in freeing the discussion
from the hypothesis of nondegeneracy.

Theorem A is essentially proved (modulo the translation into differential
geometry) in Theorem I of Section 1. The main idea of this simple proof
is the transition from the given problem which can be, and usually is,
treated over the real numbers, to a Hermitian problem. Theorem B on
the other hand I have found quite difficult, and it is to the proof of this
theorem that the bulk of this paper is devoted. To solve it we introduce,
what I will call, the “Sturm intersection theory”. Briefly stated, its main
idea is the following: From the problem Ly = Ay, where L is a self-adjoint
differential operator of the second order, we go over to the standardly
associated first order matrix equation

d

%,
The fundamental solution of this equation, normalized by the condition
X,(0) = I (all real 1), then defines a map X" of the ¢, A-plane into a certain
subgroup § of the full linear group. On the other hand, a self-adjoint
boundary condition B is seen to define a cycle yg in 9. Itis then shown
that the spectrum of Ly = Ay subject to B at £ =0 and ¢t = a > 0, cor-
responds precisely to the intersection (in a topological sense) of the
curve A — X%(a, ) with y5 . Once this is established, standard deforma-
tion arguments yield Theorem B.

This “Sturm intersection theory” is, I hope, of some independent
interest, and I have therefore developed it here for general self-adjoint (or
Hermitian) boundary-conditions, rather than for the special case needed in
Theorem B. Having done this I also indicate, in Sections 8 and 9, how it
can be used to prove (a) the general existence theorem of an infinite but
discrete spectrum for a regular problem, (b) the continuous dependence
of the spectrum on the boundary conditions, (c) a generalization of the
oscillation theorem of Sturm and the focal point theorem of Morse. All
these theorems seem to be consequences of the fact that the intersection of
two cycles, of which one is homologous to zero, is again homologous to zero.

The proof that the topological intersections of the curve: A— X, (a),
with y, correspond to the spectrum of Ly =4y is complicated by the fact
that some points of the spectrum may have a multiplicity greater than one.
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This phenomenon reflects itself in the carrier B® of yp. In general, this
set is not a submanifold of §. To construct yz, we are therefore led to
introduce the “resolution of B in Section 4. This is a submanifold B
in the cartesian product of § with a complex projective space G. Under
the canonical projection f1: § x G —§, BY then maps onto Be,
and it is the image of the fundamental class of B® under f which is
defined as yg.

1. Periodic Hermitian Systems

Let E, be the unitary space of complex n-tuples # = {;, - -+, @,},
equipped with the Hermitian inner product

n
(-’E, y) = z Ty yt-
1

Here the star of a complex number denotes its complex conjugate. In
general, if : E; — E, is a linear transformation p* shall denote its adjoint.
Thus
(b, y) = (z, p*y) all @, ye E, .

In any unitary cordinate system on E,, the matrix of p* is therefore the
complex conjugate transpose of the matrix of . Throughout we will denote
by »(p) the dimension of the null space of a linear transformation p. S!
shall stand for the circle |z | = 1, and R shall denote the real line.

Set E = E, ® E,. The inner product in E is derived from the one
in E; by the formula

(, v) = (@, ) + (1 Y2)
if w=1{x,, 4} v="_{2, b, @, Ys¢ E; (1 =1,2).

DEFINITION 1.1: A Hermitian periodic operator L shall be defined as a
second order differential operator on the vector functions t—y(f) e Eq
(t e R) of class C", given by.

(1.1) Ly=—{ty'+ a9} + 0¥ +y.

Here, (as throughout the paper) the prime denotes differentiation with respect
to t and p(t), q(t) and »(t) are continuously differentiable matriz functions
defined on R, which satisfy the following conditions:

(@) p(t), q(t) and r(t) are of period 1,

(6) p*(t) = pE); () = r(t) (all 1),

() (p(t)u, w) > 04f u £ 0 (all £) (i.e., p s positive definite — also
denoted by p > 0). We reserve the symbol L for operators of the above type.

Let

He, yt={—y =}, x, ye k.
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If y is a vector function from R to E, of class C"" and L is given, u, shall
always stand for the map of R into E defined in terms of the coefficients
of L by

(1.2) u,(t) = {y(t), )y’ () + 9ty ()}
The Hermitian character of L is then brought out by the following
well-known identity, valid if y(¢), =(¢f) are of class C":

(1.3) (Ly, z) — (y, Lz) = (Ju,, )" .
We will study the eigenvalue problem
(1.4) Ly =2y

subject to a family of boundary conditions [#, 2] (=41, & 2 etc;
z€S!.) Here a function y(f) € E, of class C" satisfies [», z] if and only if

u,(t + n) = zu,(f) all Ze R.

With (1.4) subject to any boundary condition B we associate the spectral
multiplicity function ®%. % is defined on the complex A-plane by the
condition

(1.5) @%5(4) = number of linearly independent solutions of
Ly = Ay subject to B.

The-points at which @%(4) # 0 are called the spectrum of (1.4) subject to B.

Since each condition B of the family {[#, z]} described above is self-
adjoint, or Hermitian as we will call it, (1.4) subject to B e {[n, z]} has
the following well-known properties.

PROPOSITION 1.1. If Be{[n, 2]}, then OF(R) = 0 if A is not real. On
the veal axis @% is a finite valued function which is different from zero only
on an infinite discretes subset of R which is bounded from below.

The following continuity theorem also holds. It can be found in the
literature (see for example, [6]; p. 91) but will also follow from subsequent
arguments in this paper (see Section 7).

If 7 is an interval on R which is bounded from above, we set
(1.6) [0: 7] 212 O5(4)-

€T
By proposition (1.1) this number is always finite. If the end-points of v
do not lie on the spectrum of (1.4) subject to B, 7 shall be called admissible
with respect to @}.

The continuity theorem which we are after can now be stated as follows:

PROPOSITION 1.2. If 7 is an admissible interval with respect lo 6%
then there exists a neighborhood U of z on S' such that
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[TERATION OF CLOSED GEODESICS 177

(1)  is admissible with respect to Of, ,y for all ze€ U,
@) (O 7] = CARHRIE z, weU.
Having put these preliminaries down we can proceed to our first
problem, which is to find the relations between the functions @, ; when
L is kept fixed and #, z are allowed to range over their respective domains.
To simplify the notation we therefore drop the superscript L, and write
O, for 0, We then have the following Fourier Theorem, which is the
basis of Theorem A of the introduction.

rueoreM 1. The spectral multiplicity funmctions O, ) 0f (1.4) subject
to [n, 7] are given by 0,=0, ., according to the formula

(1.7) o, z] = 3 0,

where w ranges over the n-th roots of z.
Proof: Every y(¢) subject to [n, z] admits the unique Fourier expansion

y(t) = 2 o¥a(t)

1
where @ ranges over the n-th roots of z, and y,(f) = -1-1- Y o ty(t+s— 1).
Now ’

(1.9 gt +1) = 3 oty +9)

If we set k = s + 1, the right hand side of (1.8) becomes

sea———m s

n—1
2ljl',ou—"y(t-l—ﬁe— 1) + o "yl +n— 1)}.

n

i
i
i
i
!
|
Iy

“ %{%lm"‘y(t+k—l)+y(t—l)}

since @ is an n-th root of z and y(t + n) = 2y (t)- Hence ¥,,(t + 1) = 0Y,(t);
i.e., y,(t) satisfies [1, w]. Since L commutes with translations of length 1,
Ly, again satisfies [1, »]. Hence y is a solution of (1.4) subject to (n, z]
if and only if each component ¥, () is subject to [1, ®]. The theorem now
follows.

Following Morse, the index and nullity (denoted by Azand N% , respec-
tively) of the problem (1.4), subject to a Hermitian boundary condition
B, is defined by

A = [05: R7], R-={A|lA< 0}
N = 65(0).
Clearly Theorem I has the following
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COROLLARY. The index and nullity of Ly = Ay subject to [n, 2] are
given by

Hoi =3 A,

Nth.s] = %Nﬁ.wl

where @ ranges over the n-th rools of z as before.

The sequence {i(g")} of the introduction is now seen easily to be
identical with the sequence Af, ,; or Af, _;; of the Hermitian operator L
associated with g by Morse via the second variation. (The two cases correspond
to the orientability of g.) We embark therefore on a detailed study of
A(z) = Af ., N(z) = N[, ,; as functions on S,

PROPOSITION 1.3. The functions A(z), N(z) defined above have the
following properties:

(1) Both functions are non-negative integer valued functions on S*.

(2) The inequality

(1.9) lim A(z) = A(z)
' gz
holds. '
(3) N(z) = 0 except at at most 2n points {z,, -, 2} eS*.

(4) The equality holds in (1.9) if z, is not one of these points {z,} (re-
ferved tor as the Poincaré points of L). Furthermove, A is constant in the
vicinity of points other than the Poincaré points and the jump of A at any
point z € S* is bounded in absolute value by N(z).

(5) The sum Y N{z} extended over the Poincaré points of L does not
exceed 2n.

(6) If L is real, then A(z) = A(z*¥), N(z) = N(z¥%).

Proof: (1) and (6) are clear from the definition of the functions. (2) is
a consequence of the continuity theorem — Proposition 1.2. For, if 0 is
not in the spectrum of (1.4) subject to [1, z,], then, by that proposition, 4
is constant in some vicinity of z,. If 0 is in that spectrum, we can, because
of the discreteness of the spectrum, define A4(z) by

Alzy) = [0, Rl Re={A|A = — &},
for sufficiently small e > 0. Let # = {A| — e = A< 0}. Then, since Ry
is admissible with respect to 6f ,,,
Az) = A(z) + [0f,n: 7]
in some vicinity of z,. Since the last term on the right is only capable of

positive values, property (2) follows. This argument clearly establishes
(4) as well, since N(z,) can be defined by

N(zg) = [0 , 18] with 6 = (4| —e =1 = ¢}
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for sufficiently small ¢, and hence

N(z) = [05,4° 1)-
To establish (3), we make the usual transformation of the second order
problem (1.4) over E, into a first order problem over E. Asis easily checked,
the equation
is quite equivalent to
(L.10) wy(t) = Ay(t) 1y 0
where 4, () is the 2z X 2n matrix constructed from the coefficients of L
in the following manner:

— p7 () g (), ()

1.11 A,(t =l
(L A= —prmpean —1, 080,
From this point of view A(z) and N(z) are reinterpreted as:

A(z) [N(z)] = number of linearly independent solutions of #'(f) =
A, (t)yu(t) with A< 0 [A= 0], subject to u(t + 1) = zu(t).

Let X,(¢) be the fundamental matrix solution of (1.10), normalized by
the condition
(1.12) X,;(0) = I (identity on E) for all 4;
then every solution of (1.10) is of the form

u(t) = X,(t)v

where v is a constant vector of E. Hence, recalling our convention that
»{ } denotes the complex dimension of the null space of the matrix { },
we obtain the formula

(1.13) “ 6L ., = v X, (1) — 2I}
and in particular
(1.14) N(z) = v{Xo(1) — ).

However, this interpretation of N (z) clearly establishes properties (3) and
(6) of Proposition 1.2.

The matrix X,(1) was originally introduced by Poincaré in his study
of periodic systems. We denote it by PE or just P in this paper and will
refer to it as the Poincaré matrix of L. Thus the Poincaré points of L are
precisely those characteristic roots of P which are of absolute value 1.

By (1.14) P completely determines N(z). In view of Proposition 1.2,
it therefore seriously restricts the behavior of 4 on S'. Actually, however,
the following stronger proposition holds:
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THEOREM I1. The Poincaré matriz P* of L determines N (z) completely
and specifies A(z) wp to an additive constant.

It is this theorem which yields Theorem B of the introduction. The
precise mechanism by which P determines A is described below.

For real numbers {¢, 0}, set

P(t, 8; z) = R(t)P — 2”1

where R(t) = exp. (J*t) = ( cos ¢, sin t)

— sin £, cos ¢

(each entry representing an # X » diagonal matrix).

A rectangle [ of the £,0 - plane shall be called admissible with respect
to Patz,if [Jis given by —6 =t =0, —e=0=¢ (3, ¢ >0)and P(¢, 6; )
is nonsingular:

(a) on the side t = — 4,
(b) on the side ¢ = 0 with the possible exception of the origin (0, 0).
With an admissible [] we associate the numbers '

Shzes )= X #{P(t & 2)},

—8=t=0

Selz; )= X »{P(t, — & )}

—a=t=0

Theorem II is now made precise by the following result.

“THEOREM 111, The numbers St (zy; () are independent of the admissible
rectangle [ chosen. They are, therefore, completely determined by P and can
be denoted by St (z,). With this understanding, the function A(z) satisfies
the condition

(1.15) lim A(ze") = A(z) + S (2).
6->04
We call the numbers S# (z) the splitting numbers of P at z. Under
certain conditions on P and z they can be computed by an infinitesimal
method. Precisely, the following is true:

THEOREM 1v. If the Hermitian form (V' —1 J u,u) restricted to the
null-space of {P — zI}, is nondegenerate, then S}(z) and Sp(z) are equal to
the number of negative and positive characteristic roots of that restricted form,
vespectively. In particular, if the null-space of {P — zI} is trivial, S (z) = 0.

As remarked in the introduction, the proof of these theorems seems
to necessitate the “Sturm intersection theory” which we develop in the next
few sections. The theorems are established in Section 6.

We close this section with two examples which will be put to use in a
subsequent paper on the closed geodesics of homogeneous spaces.
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gxaMPLE 1. P =1. In this case
St(z) =0if z 51,
SE(1) = S3(1) = .
(Recall that the complex dimension of E is 2n.) In this example Theorem
IV is applicable since V—1 ] is nondegenerate on E.
EXAMPLE 1. P = ({) no I20'I ,.) (I, = identity on E,), ¢ # 0 and real.
Here
Stzy=0 ifz#l
Y e _[nife>0
Sp) = Sz(1) = {o if o< 0.

We have to use Theorem III at z = 1, since (V=1 Ju, u) is completely
degenerate on the null space of {P — I}. The result stated follows fairly
simply from the evaluation:

det. P(t, 6, 1) = [2¢"{cos 6 — V1 + a®cos (1 + @)}]"

where @ is the angle between -+ n/2 whose tangent is o.

2. The Sturm Intersection Theory

For ¢, A € R the matrix X,(#) of (1. 12) is easily seen to be nonsingular.
The correspondence
t, 2) > X,()

therefore defines a map of the ¢, A-plane, 4, (4 real) into the full linear
group GL(n; C) [3]. We denote this map by X" and refer to it as the map
of L. In this context a well-known existence theorem yields

PROPOSITION 2.1. The map X*:A— GL(n; C) is differentiable and,
for fized t, real analytic in A.
The following proposition is vital for our purposes.

PROPOSITION 2.2. If L is Hermitian, the image of A under X" is
contained in the Lie sub-group 9 of GL(n; C) which is characterized by the
condition
(2.1) X*JX =].

Proof: By definition X, satisfies, as a function of ¢, the differential
equation

(2.2) X,=A,X,
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with the initial condition

(2.3) X,(0)=1.
Hence
(2.4) (XFTXY = X3{AYT + JAB X,

However, it is easily checked that the Hermitian character of L implies
that the relation

(2.5) JA; + A7) =0

holds identically in 4 and ¢ (4 real from now on!). Hence X} JX, is in-
dependent of ¢ and reduces to J at ¢ = 0. This proves the proposition.
In § let B°(z) be the subset characterized by

(2.6) w{X — zl} # 0.
It is then evident in view of (1.13) that the spectrum of Ly = Ay subject
to [1, z] corresponds precisely to the intersections of the curve

A-» XE(Q)

with the set B(z) in . It is the whole purpose of the next two sections to
establish the spectral theory of L as an intersection theory in the topological
sense. _In particular, we wish to show that if appropriately oriented, the set
BO(2) carries a locally finite cycle yg, such that for any compact admissible
interval v on the A-axis,

(2.7) [@ﬁ,:f 7] = [Vpw* Tlp

where the right-hand side of (2.7) is to be interpreted as the topological

intersection number of the cycle y, and the positively oriented curve
A— XEk), Aert,

n 9.

Since the proposition turns out to be true for any Hermitian boundary
condition imposed at ¢ = 0, and since { = a 7 0, we will give a precise
formulation of our results in the general case. For this purpose we use a
parametric representation of the most general Hermitian boundary con-
ditions.

DEFINITION 2.1. A Hermitian pair {M, N} is an ordered pai of linear
maps {M, N} of E into itself having the following properties:

(2.8) My=Nv=0=v=0
(2.9) M*JM = N*JN.
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Two such pairs {M, N} and {M, , Ny} shall be called equivalent if there exists
a nonsingular T such that

(MT, NT} = {M,, Ny}.

An equivalence class of Hermitian pairs shall be called a H ermitian boundary
condition.

DEFINITION 2.2. We say wu(t) is subject to the Hermitian boundary
condition BD {M, N} at t = 0, and t = a # 0, if there exists a v e E such
that

(2.10) u(0) = Mv, u(a) = Nv.

We notice that in this convention all the conditions [#, z] are represented
by the pair {Z, zI}. They are, however, imposed at different places, depending
on n.

DEFINITION 2.3. If B is a Hermitian boundary condition vepresented
by {M, N}, the carrier of B is the subset B® of © defined by

(2.11) B ={X e |v{XM — N} # 0}.

We are now in a position to state Theorem V which constitutes the
central result of this paper. We remark that the assumed periodicity of L
as defined in Section 1 is no essential restriction, since every regular operator
on a finite interval of the f-axis can be extended to a periodic one.

THEOREM V. If B is a self-adjoint boundary condition, the set B® carries
a (2n)? — 1 dimensional, integral, locally finite cycle yg. yp has the property
that if @% is the spectral multiplicity function of the problem

Ly =}y

subject to B at t = 0 and t = a, and if © is a compact admissible interval with
respect to OF, then

[@%5: t] = [yp: Tl
where the vight hand side represents the topological inlersection number of

yp and the curve
A— X5(a), et

The theorem is proved in Sections 4 and 5.

We digress here for a moment to make a remark about the set B,
of all Hermitian boundary conditions. Every self-adjoint boundary con-
dition (as defined above) defines a complex 2n-dimensional subspace of
E ® E. Namely, if B is represented by{M, N} the plane associated with 5
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is the image of the map E —~ E @ E defined by
v — {Mv, Nu}.

Condition 2.8 now implies that this map is an isomorphism. This cor-
respondence is easily seen to be 1 to 1 and by it the set B of all Hermitian
boundary conditions is imbedded in the space G of complex 2n-planes in
complex 4n-space. This Grassmann variety G carries the usual topology
and we can therefore topologize 8 by virtue of the imbedding B CG.

THEOREM VI. The set B of Hermitian boundary conditions (in the
topology described above) is homeomorphic to U(2n), the growp of isometries
of E.

Proof: On E ® E define the Hermitian form ¢({u,, v}, {4y, va}) =
(x/——l Juy, wy) — (\/i—l Jvy, vy). One checks easily that B cG
consists precisely of those 2n-planes in E @ E on which ¢ completely
degenerates. Now it is seen that in a suitable decomposition of E @ E
into isomorphic factors F® & F®, the form ¢ is given by

(u, v) if u, ve F!
pu, v) =10 if weF1, veF?
—(u, v) if u, veF%

Let ¥ : E® E -~ F® (i =1,2) be the orthogonal projections on
F®_ Then, if h: E— E ® E defines a 2n-plane on which ¢ completely
degenerates, the correspondence

U,
POh(v) — pDh(v), ve E,

defines an isometry of pWA(E) onto p®h(E). Tt follows that the kernel of
pWh must coincide with that of p*4, whence, since h is an isomorphism,
they must both be trivial. U, therefore defines an isometry of FY onto
F® which completely characterizes the image of E under 4. Conversely,
every isometry U of F® onto F® defines a plane in Ft) ® F® on which
@ completely degenerates by the map

hy : FO > {FW, UFW}.

Remark. The group § is not compact. On the other hand, the pair
{I, X} (X €9) is seen to be a Hermitian pair. Furthermore the correspon-
dence - B given by

X > {I, X}

is seen to be a homeomorphism. By this device § is, therefore, imbedded
in the compact space B = U(2n) and thus defines a compactification of 9.
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3. @ Curves on 9.

Theorem V is easily seen to imply that if X* is the map of L and B
is a Hermitian boundary condition, then the curve

A= X5(a), a+#0,

intersects BO at a discrete set of A-values. In this section we bring the
a-priori reason for this. It turns out that the “direction” of the curves
4 — XL(a) is strongly restricted by the form of A,(t) (see (1.11)). In
particular, the direction of such a curve must always lie in a certain cone K,
the “@® cone’” of , while tangent directions to B?never intersect this cone.

Let Q be the real vector space of linear maps A: E — E for which

(3.1) JA + A*] = 0.

The map 4 — JA4 thus sends £ isomorphically onto the set H of Hermitian
maps on E. We will use the word dimension from now on to mean real
dimension unless specially indicated. With this understanding, the dimen-
sion of H, and therefore &, is easily seen to be m?, where m = 2n.

The defining relations (3.1) of £ are obtained from the defining relations
of §, (2.1), by differentiation at the identity. Hence & can be identified
with §;, the tangent spaces [3], to $ at I. We can compare directions
globally on § by first left-translating them to I. In this identification of
the tangent space at I, the direction of a curve X (f) € § at £ ={, is there-
fore given by the element X-1(ty) - X' (ty) € 8.

The @ cone K of &, mentioned above, is defined as the subset of
A € @ for which J4 is positive definite. K is convex and does not contain
the origin.

DEFINITION 3.1. A smooth curve X (t) on Dis a & curve if its divection
is contained in K for all t in its range of definition.

proposITION 3.1. If L is Hermitian and a is a non-zero real number,
then the curve
A—>XE(A, a), — o< A<,
is a @ curve.
PROPOSITION 3.2. If Bisa Hermitian boundary condition, the dirvection
of any smooth curve on B® is never contained in K.
Proof of Proposition 3.1: Let (4, ?) — X,(t) be the map of L, and

consider, for fixed 4 and &, the expression X3 /X, as a function of &.
Differentiation yields

(X TX ) = WEEI0X, 0 =(_7 o)
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whence
(X3 X (@) — (X Xy (0) = [ XFTX, () da
where
1 0
T=J0= (0 0).

Due to (1.12) the second term of the left hand side reduces to /. Due to
the definition of § it can therefore be replaced by X[ JX, (z). Dividing
by h and passing to the limit % — 0 after this substitution, yields

dX X
[X:' J E‘—‘} () or equivalently [ [X;{‘ﬁ] (a) for the left hand side.
Hence we obtain the evaluation
axX a
(3.2) j{X; —%} () :J X¥TX,(«) da.
da 0

We have to show that the left hand side is positive definite. Let therefore

v 7 0 be an element of E. Then there exists a unique y(¢) € E, such that
w,(t) = X;(t)v, i.e., y solves Ly = Ay nontrivially. Evaluating the quadratic
form in v on the right we obtain j:(y(a), y(«))de; this expression is > 0

since @ # 0. This proves the assertion.
We proceed now to the proof of Theorem V. Proposition 3.2 will
become clear on the way.

4. The Construction of y; .

Let {M,N}eB be a fixed representation of a fixed Hermitian
boundary condition B. For X e we set 0g(X) = »{XM — N}. Then
B® = {X | 05(X) = 1}. If 05(X) were equal to 1 for all X e B® Theorems
IIT to V would be quite straightforward. However, to deal with the
singularities of B rigorously, I seem to need the following construction.

For each integer & = 1, set G'® equal to the Grassmann variety of
complex k-planes in E. W® shall denote the product space  x G,
Set f® : W™ — § equal to the canonical projection of § x G onto
its left factor. For p ¢ G'*, E(p) shall stand for the orthogonal complement
of the plane p in E. Finally 0, shall denote the null-space of { XM — N}.

DEFINITION 4.1, The k-resolution, B'™, of B® is defined as the subset
of points {X, p} e W® for which p C Ny.

PROPOSITION 4.1. If B is a Hermitian boundary condition, then for each
k =1, its k-resolution B™ is either vacuous, or a (m* — k%) dimensional
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veal analytic submanifold of W®, (Recall that m = on = complex dimen-
sion of E.)

Proof: In suitable coordinate systems over W the defining relations
of B® will be algebraic. It is sufficient, therefore, to show that if B®
contains a point ¢, then the tangent space to B® at ¢ is (m® — k*) dimen-
sional.

Throughout the paper we will denote the tangent space to a manifold
(say V) at a point ¢ by the subscript ¢ (i.e., Va)-

The differential @ft* of f* maps B into i where X = f*(q).
Proposition 4.1 therefore is a consequence of the following two lemmas.

LEMMA 4.1, Therestriction of df® to B® maps By onto a {m*—205 (X)k-+E%}
dimensional plane of Hx. Here e B® gnd [®(q) = X.

LemMA 4.2. The kernel of af® imtersects B in a subspace of dimension
2(0,(X) — Bk (1®(g) = X).

We introduce now, what we will call the standard identification of the
tangent space W (g€ W®). 9y (X €9) was already identified with the
fixed vector space & in Section 3. G® will now be described in terms of
“standard neighborhoods” of p. If peG®isa k-plane of E, a standard

neighborhood U of $ is given once a unitary basis {2y, " , )} of P is
chosen. U consists of the space
F(p) = E(p) X E(@p) x - X E(p) (k factors)

together with the map
U: F(p) > G*

defined by Ufvy, " v, = the plane spanned by {uy + v1, """ e + vy}
(v;e E ). A standard neighborhood U of therefore defines an iden-
fication of G® with F(p). Finally W® is identified with Hx x G®, where
g = {X, p}

Under this identification, B goes over (once U is chosen) into the
subspace of & X F(p) characterized by the following conditions:

(4,0} (A8 v= {v} € F(p)) is contained in B® under U, if and
only if
(4.1) _ XAMu, = {XM — N}uv,, i=1,,k
Here ¢ = {X,#}, and U = {thy,* "+, i} iS 2 unitary base of p.

dft™ maps {4,v} onto A. Hence we have to study the condition
imposed on 4 by (4.1). Clearly this condition is equivalent to the demand

that XAM map the plane p into the range of {XM — N}, or equivalently
that XAMp be orthogonal to 9%, the null-space of {XM — N}*. Now
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(2.8) and (2.9) are seen toimply that /XM maps Ry isomorphically onto Nk .
~ Hence 4 € is in the image of df® B® if and only if (XAMp, JXMNRy) =0,
r equivalently

4.2) (JAMp, MRy) = 0.

By the definition of €, JA is Hermitian, and conversely, for any Hermitian
'H, J*H 2. Hence the subspace of £ characterized by (4.2) coincides in
dimension with the subspace of Hermitian matrices which map Mp c MRy
into the orthogonal complement of MR, . Let {u,, -, u,} be a unitary
base of E such that {u,,---, u} spans Mp and {u, -, Uprs)
(k + s = 05(X)) spans MRy . In such a coordinate system a Hermitian
" matrix H having the above properties is precisely characterized by the
condition that its entries &, and ,, be zerofori=1, - -+, k;7=1,--", k+s.
Hence (4.2) represents k% - 2sk real independent conditions on 4. Since
the dimension of @ is m?, Lemma 4.1 follows. Lemma 4.2 is more im-
mediate. Clearly the intersection of R, and E () has dimension 2{0,(X) —k}.
Hence the kernel of df® intersects B® in a k{20,(X) — 2k} dimensional
~ plane.
As a corollary to Lemma 4.1 we obtain a proof of Proposition 3.2.
For, as is self-evident from (4.2), we have the following

COROLLARY 1. The image of BY under df'* never intersects the & cone
Kel. -

Recall now that Proposition 3.2 states that the direction of a smooth
curve c(t) on BY never lies in K. Since the direction of such a curve would
have to lie in the image of BY under df", the Corollary above implies:

COROLLARY II. Proof of Proposition 3.2.

PROPOSITION 4.2. BW is an orientable submanifold of W

An orientation of a real vector space V is an equivalence class w(V)
of bases of V which are related by the transformation of a positive deter-
minant. As usual, we set — (V) equal to the orientation opposite to
w(V). If Vy, V,CV are subspaces of V, with V,NVy=0, orientations
w(V,) (=1,2) of V, induce an orientation

w(Vy) X (V)

on V, + V,, which is defined as the class of any basis {vly,- - -, v},
vhy, o, v} of ViV, for which {vfy, -, vijtew(ly), ¢=1, 2
Clearly o (V,) X @(V,) = (— 1) ((Vy) X o(V,).

B% becomes oriented if an orientation is assigned to each tangent
space of B in a continuous fashion.

Now G carries an intrinsic orientation @(G™) due to its complex
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structure. Namely, for any line p C E, w(E(p)) is defined as the class of
any real base {u;, 14y %, g} v s W1 Uy} (i=\/—_1 here) where
{s4g, %" u,,_,} is a complex base of E(p).

With this understanding, every orientation of § induces an orientation
on W® by the formula o(W{) = (©x) X w(GY), ¢ ={X, B}

Note. Here, as subsequently, Hx[GP] is identified with the subset
Hy X 00 x GI'] of Hx X GV,

For A € K let T4 denote the distribution on W which assigns to each
g={X, p} ¢ W the subspace T4 of W spanned by G® and the vector
A at X. We orient the l-space generated by 4 by choosing 4 as a basis,
and T# by the formula w(T4) = w(4) X w(GP). It is now easily checked
that if ¢ = {X, p} is a point of B with 04(X) =1, then BY) and o
span W, At such points then, an orientation of § induces an orientation
of BM, by requiring the formula

(4.3) w(BY) x o(T§) = o (W)

to hold. Since K is convex this orientation is seen to be independent of the
particular 4 ¢ K chosen.

Let BY be the subset of B which consists of points g = {X, p} with
05(X) = 2. Formula (4.3) defines an orientation on BW — BY which
we refer to as the induced orientation on B™ — BY.

Rather than Proposition 4.2 (which can be proved in a much simpler
fashion) we really need the following refinement of that assertion:

PROPOSITION 4.3. The induced orientation o BW — BY can be
extended to all of BY.
Proof. Let BM = {g={X, #}|0s(X) = j}. Then BY = %B}“.
i

Now B is seen to be a manifold of dimension m? — 1 — (j — 1)?, either
by a tangent space argument, or more simply, by observing that B can
be fibered over a subset of BY! into 2(j — 1) dimensional fibers. Hence the
induced orientation on B —BY) extends to ‘LéJsB}" because the dimension

of these sets is too low. It remains to consider this extension to B{". For
this purpose we consider a regular curve c(t), —e St <eonBH—U B
§z8

which intersects B§? only at ¢ =0, and there in such a fashion that its
direction is transversal to B{". Equation (4.3) then defines an orientation
of BY), for ¢ 0 and hence limiting orientations of B, as we approach
£ —0 from the right and the left. Our extension theorem is clearly equivalent
to the proposition that these two orientations coincide.

Let ¢ be given by t >¢,= {X,, p}, and let u e Ebe a regular covering

of p,; i.e., for each ¢in the domain of definition of ¢(t), %, € E is of unit length
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and spans p, (over the complex numbers). #, thus defines a standard
neighborhood of p,, and a corresponding identification of W' with
¢ x E(p,). Using this identification, and choosing 4 = J* e K, the
distributions T/% and B} have the following description:

TJ% = subspace of 8 x E(p,) of the form {o]*, v} p real,

o

ve E(py).
BW, = subspace of & x E(p,) defined by
— X, AMu, = (X,M — N}v, A8, veE(p,)

We have furthermore that w, spans the null-space Ny, for £ #0, and that at
t = 0, My, has a unitary basis {1, #o}. Hence T* N B = 0 along c(t)
for ¢ # 0, and at ¢ = 0, this inteisection is spanned by {0, 1o},

Finally, the fact that ¢(¢) lies in B implies that the direction of X, ,
ie., X7'X,, has the property

(4.4) (JX7' X Mu,, MRx,) = 0

while the transversality of ¢ to Bf’ at ¢ = 0 implies that

(J X" Xo Mg, M%y,)

does not vanish identically, and hence in particular,

(4.5) (J X5 Xy Mity , Mitg) # 0.

‘We now have the following lemma, which characterizes the intersection
of the two distributions, 7J* and B, along c(¢), as, what T will call,
a first order intersection.

LEMMA 4.3. Let @, = W® — TJ* be any linear C® projection, and
q" ag ag y T

let m be a nonvanishing C* vector-field along c, with the following properties:
(@) meeBY,
(b) nge B NT{*.
Then lim (n, — @¢m,)/¢ # 0.
t=>0

Proof: Suppose ¢, — {4, v} is the representation of #, in the identi-
fication of W{ defined by u, above. Then

(4.6) X,A,Mu, = {X,M — N},

and
{d,, v} = {0, Auo}

(A # 0, a complex number).
If relation (4.6) is differentiated at ¢ = 0 one therefore obtains

X, ALMuy, = XeMisy + {XM — N}v,,.
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Multiplication by Xg/ on the left yields
JALMuy = (JX3"Xo) Miig + X3 J{XoM — N}ug.
Now if we take the inner product with M, on the right, the last term
drops out (see (4.2)) and we end up with
(4.7) (JdgMuy, MRy,) = (JXg* XoMity, Mty,)-

It is easily checked that if the lemma is true for one C” projection
@, it is true also for all such projections. In our case we can therefore
choose for @, the projection which, in our description of W&’, is given by

A
@ {4, v} »{Trace (%) i, v]-
The lemma will then be demonstrated if it is shown that
) Aq
A, — Trace (]Tng) J* =0.

Arguing by contradiction we assume that A} = aJ*, with « some real
number. Under this hypothesis (4.7) reduces to

(4.8) w(Muug, MRty,) = A(JX5" XoMiiq, Mty,).

If in this expression Ny is replaced by %, and #, (which together span Ry )
one obtains in turn

(4.9) a(Mug, Mug) = MJX5" XoMitg, Muy),

(4.10) a(Muy, Mig) = A(JX5" XoMity , Mitg).

The right hand side of (4.9) equals A( TX7'X, Mu,, M) since JXg' X
is Hermitian.

However, this expression is zero by(4.4). Hence a= 0. (Recall that
Mu, # 0, since M is an isomorphism on N,!) But then (4.10) contradicts
(4.5) since 4 # 0.

With the aid of Lemma 4.8 Proposition 4.3 is proved in the following
manner:

Let n={n}, -+, 7}, s=m?—1, be a family of C* vector fields
along ¢ such that

@) {nt,--,n}} span By (over the reals),

©) (b o) span BYOT
Furthermore let y = {y}, -+, % (k= 2(m —1)+1) be a family
of C® vector fields which span T7*. These frame-fields taken in their
natural order define orientations w(BY) and w(T{*). Since, moreover,
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for t# 0, B® and T{* span W, the frame {n, y} = {n}, - - -, wi; 72, " * -, vi}
defines the orientation w(W‘”) = o(BY) X (T{*) for t # 0. Our ongmal
- assertion is clearly equivalent to the prop051t10n that the limiting orientations
on W, defined by the frame {3, y} as ¢ > +0 should be the same. To see
that thls is indeed the case, consider the frame

{n}—w—‘tﬁ, n?—q"Tm. e, M Ve Ve |
- where g, is the projection introduced earlier. This frame is in the same class
as {n, y}, and, by our construction, the limit of each individual vector
exists as £ — 0. Also the limiting frames still span W, by Lemma 4.3.
These limiting frames as ¢ — 0 from the positive and negative side, therefore,
define the limiting orientations on W which we are after. Since these
two frames are identical, except that the first two vectors are opposite
in sign, they define the same orientation on W{'. This concludes the proof
of Propositions 4.3 and 4.2.
The orientation of B obtained by extending the induced orientation
of B® — B will be referred to as the induced orientation of B®. (It
is, of course, induced by an orientation of §.) I'y shall denote the locally
finite fundamental integral homology class defined by this orientation.
The map f: W — § is proper (that is f~(C) is compact if C is
compact). It therefore induces a homomorphism f,, in locally finite
homalogy, of H(BW) into H (B°). The image of I' under the homomorphism
shall be denoted by y5 . yp is carried by B® and coincides with the yp
of Theorem V. We shall refer to yz[I'g] as the class (resolved class) of the
boundary condition B.
Remark: The construction of I'y and y is admittedly rather tedious.
To show that just yp is a cycle one could proceed in a much simpler fashion.
For, since [®(B{) is a subset of at least 3 dimensions less than
B = f0(BW) (see Lemma 4.1), the cycle on B® — BY) goes over into
the cycle y5 under f§'. However, our whole intersection argument in the
next sections is based on the idea of working with I'y rather than with yp.
It is for this reason that we had to show that the induced orientation of
B® — BY has an extension to BW,

We close this section by describing certain positional properties of
BW C WW which will be needed subsequently. T4 shall denote the distri-
bution on WM defined earlier. For X e, V* shall stand for the set
fO-1(X) N BM It is then clear that ¥* is a complex projective space of
complex dimension 05(X) —1 (X e B'?).

PROPOSITION 4.4. Let X € BY; geVX. Then
(4.11) BOYNT4 =VX
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This relation generalizes the relation BM N T4 = 0 for X with 0,(X) =1
used earlier. The proof follows easily from our descriptions of B{" and T,
the salient fact being that 4 e K «— J4 >0.
Let T(V¥) = deVf be the tangent bundle of V* [8]. We also define
qe

the “transversal bundle over VX with respect to 4, as the bundle of vector
spaces over V¥ whose fiber over ¢ VX is the quotient space W /(B + T¢).
Let this bundle be denoted by A (V¥).

PROPOSITION 4.5. T (VX) and A(V¥) are isomorphic bundles over V*
(i.e., there exists a map

ya: AVX) > T(VF),

whose restriction to the fiber over g in A (V) is a linear isomorphism onto V7 ).

Proof: To make the notation simpler we will drop the superscript X
during the proof. By (4.11) the dimension of each fiber of 4 (V) is equal
to the dimension of V,. Hence y, can certainly be constructed at a given
geV. The point of the proposition however is that y, exists globally.
Let W (V) be the bundle U W® over V. The map y, is then equivalent

to a map §,: W(V) - T(V) with the property that at any point geV,
#, maps W, linearly onto V, and its kernel is precisely (B{’ + T7).
Since the various 4 (V) (A €K) are all easily seen to be isomorphic, it is
sufficient to construct a ¢: W (V) — T'(V), whose kernel will have the desired
properties for some A e K. We construct ¢ in the following fashion:

For ¢ = {X, p} € V, a unitary base  of p identifies W with x E(p)
and V, with %, N E(p). In this identification ¢ is represented by

(4.12) wip{4, v}=M-1{of the orthogonal projection of J A Mu on M{Ry NE (p).}}

(Since M is an isomorphism on Ry, M~ is uniquely defined on M - {Ny}-)

It is easily checked that (4.12) defines an intrinsic map ¢: W, — vy
Furthermore ¢ is onto. For, as 4 ranges over £, JAMu ranges over a
subspace of E which includes E(Mp) (i.e., the orthogonal complement of
Mu). But E(Mp) projects onto M{RN, N E(p)}.

Let K be the kernel of ¢ at ¢. Under our identification an element
{4, v} is in BY for some ve E(p) if and only if JAMp is orthogonal to
MRy (see (4.2)). Such an {4, v} therefore has a trivial projection on
MRy, let alone on M{Ny C E(p)}. Hence, BY CK. It remains to show
that T4CK for some A eK, for if this happens for 4,, say, then a
simple dimension-argument proves that K is spanned by B{ and Tg:.

We seek therefore an 4 € K for which JAMu will stand perpendicular
to M{NyN E(p)}. Since A eK «> JA Hermitian positive, such an 4
exists as a consequence of the following lemma:
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LEMMA 4.5. Let v+# 0 be an element of E, and let E be a complex
subspace of E which does not contain v. Then there exists a positive Hermitian
d

transformation H which maps v into the orthogonal complement of E.
v
Proof: Decompose v into v; + vy, with v, € E, (v,, v3) = 0. By hypo-
thesis v, # 0. If v, = 0, set H equal to the identity. If v, # 0, complete
{v, , vy} to a unitary base of E, say {v;, vy ; v, " ", v,}. Now define H by
Hv, = 1/2v; — 1{20,,
Hv, = — 1/2v;, + 3/2v,,

t (8}

This completes the proof of Proposition 4.5.

5. Clean Intersections of Manifolds; Proof of Theorem V.

We recall a few notions from the theory of intersection [5] adapted
to our needs. All manifolds will be assumed to be of class C* and para-
compact. We again denote the tangent space to a manifold at a point ¢
by the subscript ¢.

Let' U, W be manifolds of dimension » and m + #, respectwely Vv
shall be an n-dimensional compact manifold with boundary 14 (n=1).

Let f:U > W, g: V> W be maps with f(U)N (V) = 0 and f proper.
Under these circumstances orientations of U, V — V and W define an
 integer (properly speaking a zero-dimensional homology class) which we
will denote by [U, : V,]y , or with admitted ambiguity just by [U : V]y.
_ The integer [U,: V], is called the intersection number of U and V' in w
(under f and g).

Important properties of [U : V], are the following:

(1) A reversal in orientation of any of the three spaces involved
changes the sign of [U:V]y.

(2) Iffandgaredeformedbyf,,g, (0=¢<=1)keeping gt(V YO f,(U)
vacuous during the deformation, then [U, : V ]y is left invariant.

(3) If the image of the fundamental class of U (locally finite homology
if V is not compact) under f is homologous to zero in W — g(V), then
[U:V]y=0.

If f and g satisfy certain regularity conditions, then [U : V], can be
computed by an infinitesimal method. A point x = {p, g} € UXV will be
called a regular intersection of f: U—=W, g: V—>W (g(I/") NfU) = 01) if
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a) f[g] is regular in some neighborhood of ¢ [¢] in U [V],

b) f(#) = &)
(5.1) c) df(Uw) ndg(V\v) = 0.

(A map f is called regular on an open set if it is of class C" and if df
is an isomorphism into at all points of the set.) Note that (5.1) implies
that W, (y = /(p) = glg)) is spanned by df(U,) and dg(V.,).

With a regular intersection # we associate the intersection number
(U, :V,; #]y. This number is 41, and is determined through orientations

o(U,), o(V,), o(W,) by the relation
(5.2) w(W,) [U; V; 2]y = ofdf(U,)} x ofdg(Vl)}-
If U and V have only regular intersections {z} under f, g, then these

intersection points {«} are finite in number since V' is compact. Hence
the sum Y [U: V; ] makes sense.
x

(4) If f and g are maps with only regular intersections {m}, then
(5.3) U:Vip=2[U:V, zly.

We will need the following generalization of (5.1).

DEFINITION 5.1. A simply-connected compact submanifold VCUxV
is called a clean intersection of f:U — W, gV — W provided

(1) f[g] is regular in some neighborhood of the projection of VonU[V].
(2) (p) = glg) for (b, @} V.
(5.4) (3) di(V,) = dj(U,) "dg(V,) for w = {p, ¢} cv.

Note that a clean intersection V is a regular intersection if V is just a
point. It is plausible therefore, in view of (5.3), that the contribution of
a clean intersection ¥ to [U, V] should be computable in terms of local
considerations in the vicinity of V. This turns out to be the case, as we
describe below; dim. ¥V = 1.

On V, f and g are equal and so define an immersion (i.e., an every-
where regular map) F of V into M. Let T'(W) denote the tangent bundle
to W. Over V we now define the bundle I(V) which is a quotient bundle
of F-1T (W), the bundle induced from T'(W) by F over V. Precisely, the

fiber of I(V) over # = {p, g} €V is to be the quotient space
(5.5) S. = F~\(W,)|[F~(@fU, + dgV.). y = F(z).

(To simplify the notation we will denote I~ dfu, by U,, and F-dfV,
by V,.) S, is then, due to (5.4), of the same dimension as V,. Because
T is simply connected I(V) is orientable.
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Orienting a quotient space E/E’ is equivalent to orienting any com-
plement of E’ in E. With this in mind we say that orientations of U, ,
v, W,and V, define orientations of U,/[V, and S, by the following for-

mulas:

(5.6) w(U,[V,) X oV,) = o(U,),
(57) w(_V—z) X w(Vm/Vm} == CU(V,,),
(5.8) 0(S,) X 0(V,V,) = o(FW,).

Now, I(V) is a manifold of twice the dimension of V. Let O: V > I1(V)

be the imbedding which maps into the zero of S,. I(V), can then be
identified with V, x S,. Hence setting w(I(V),) = o(V,) X o(S,)
defines an orientation of I(V) which is seen to depend only on w(W,),

w(U,) and o(V,). We call this the induced orientation of I(V).
Consider now the self-intersection number of 0:V CI(V); ie.,
[V : V13 = [Vo: Volrw - This number depends only on the orientation

of I(V), since it is zero if dim. ¥ is odd. We now have

THEOREM vil, Let f: U — W, g: V — W be given. Then if the inter-
section of (U, f) and (V, g) consists only of clean intersection manifolds {V},
the intersection number of U and V is given by

(5.9) . [U:V]y= g, [Tf V) 1{v)

where each I(V) is assigned the induced orientation.
In particular, if each I (V) is isomorphic lo the tangent bundle of V,
in an orientation preserving fashion, then

(5.10) [U:Vlw=2 y(V)
v

where (V) denotes the Euler characteristic of V.

Although I know of no proof of this theorem in the literature, it will
not surprise anyone acquainted with these matters. I will, therefore, only
sketch a proof which, because of the condition: dim U + dim V = dim W,
can be given in quite an elementary and geometric form. A generalization
of (5.9) to higher dimensional intersections will be given elsewhere.

First one proves

LEMMA 5.1. I (V) admits a C*® cross section ¢ which vanishes only at a
finite number of points {x}, and is of the first order there.

The lemma is proved by first construction a C* cross section ¢;: V—I(V)
which vanishes at isolated points, say at most at the center of every k-
simplex (k = dim. V) of a suitable subdivision on V. This can be done
since dim V = dim S, (x € V), by standard obstruction theory. Then inside
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each simplex the zeros of ¢ are made of the first order by a purely local
argument.

For ¢ to be of the first order at its zeros is however quite equivalent
with the condition that ¢: ¥V — I (V) and 0: V — I(V) have only regular
intersection points. Hence [V :V] 1 can be computed by the formula

Z[_V—ozvo; x]!(ﬁ

Now let a fixed Riemannian structure be chosen for W. Once this is
done the quotient space W, [F, (where F, is some subspace of W) can be
identified with the orthogonal complement of F, in W,. Hence ¢:V—~I1(V)
can be construed as a C® function which assigns to every = {p, ¢} eV
a vector in W, (y = F(x)) perpendicular to both df(U,) and dg(V,). Now
it is easy to see that ¢ has an extension to some neighborhood of the pro-
jection of ¥ CU; i.e., there exists a C* function ¢y (V) which assigns to
every p e U a vector ¢y(p) in W, (y = f(p)) satisfying the following con-
ditions:

(1) ¢y(p) is perpendicular to df(U,),

(2) c¢y(p) vanishesoutside a prescribed e-neighborhood of the projection
of VCU.

(3) For points z eV, ¢y(x) = df c(x).

(A similar extension of ¢ can of course be found over V.) Consider now
the set {V} of clean intersection manifolds of the theorem. Each ¥ of this
set is surrounded by an e > 0 neighborhood, ¥ (e), so small that the V (¢)
are disjoint and that f and g are regular on the projections of V() on U
and V, respectively. For ¥ e {V} we choose a cross section ¢ as given by
the lemma and the corresponding extension ¢y of ¢ over U; ¢y = 0 outside
V(e). Consider a deformation f, of f:U — W in the direction of ¢p. It is
now checked that for a sufficiently small such deformation, (1) f,(U) will
remain free from g(V), (2) f,, (U) and g(V) will have only regular inter-
section points, namely those points of V e {V} at which ¢ = 0. Further-
more at any such point =, it is checked that

V.: Vo; i = U1V, 2w

if the induced orientation on I(V) is used. Hence (5.3) yields the desired
proof of the first part of Theorem VII. The second part now follows
easily; for, it is well known that the self-intersection of ¥ in its tangent
bundle is precisely x(V).

We apply Theorem VII to our original problem in the following
fashion. Let ¢ : £ — X(t) (te [a, b]) be a regular curve in §. ¢ defines an
immersion g, : [@, }]X G - W, g, =¢X 1. [a,b] shall always be oriented
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in the positive direction, and we set
w{[a, b] % GV} = of[a, b]} X @{GM}

In this orientation [a, b] X G shall be denoted by V(a, b).

pROPOSITION 5.1, Let B be a Hermitian boundary condition, and let
¢ be a ® curve in  whose end points X, , X, do not lie on B®. Then the
intersection number of the immersions BW C W, g.:V(a, b) — waw | is

given by the algebraic formula

(5.11) Ty, V(a,b)lyw = 3 XM —N}.
astsb

.
é
i

W_
.

Here I'y is BV with the induced orientation.

Proof: Since the end points of ¢ miss B°, the intersection number is
well defined. Now one checks that the intersections of the two immersions
considered are all clean. They are points (0g(X) = 1) or complex projective

spaces (0g(x) > 1). This is an immediate consequence of (4.11), since the

tangent space of V[a, g] goes over into some T4 under dg, - Moreover

proposition 4.5, in our present context, then shows that each I(V) is iso-

morphic to the tangent bundle of V. (We leave the check that it is orien-

tation preserving to the reader.) But the Euler characteristic of a complex
projective space is precisely the complex dimension of the space + 1.
Hence g (V*) = 0p(X). Therefore applying Theorem VII proposition 5.2

is demonstrated.
If we put the various parts of our theory together, the following

“resolved” version of Theorem V emerges.

ot L be @ Hermitian operator, X* its map. Lel B be a
onsider the problem

THEOREM V R.
Hermitian boundary condition and ¢

Ly =My
— a. If @% is the spectral maultiplicity function of
B] is an admissible compact interval of the A-axis

3

subject to B at t = 0 and t
this problem, and © = [«,
(with respect to QL) then

Lg:V(r)]ww = (0% :T].

Here I'y is the oriented resolved cycle BY C W™ and V() is the manifold
[, B] X GV immersed in WW by the map (A, p) > {X%(a), B}

To prove Theorem V, proper, the intersection of f® : BM —>§ with
the curve 7 : A — X% (a) has to be computed. However, this intersection
number is seen to be the same as [I'g: V (a, B)]ww in the following fashion:
fo : BW —» § is not an immersion. However, the singularities of B°
form a set whose dimension is by 3 smaller than dim. B® (Proposition 4.1).
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Hence © can be deformed away from these singularities, and the local inter-
sections can be computed as before. However, at intersections of X with
05(X) = 1 the intersection of 7 with B° and V(«, B) with B® will both
be regular, and the intersection numbers will be equal thanks to our
orientations. Since [yp : 7]y in Theorem V should, and always will sub-
sequently, be interpreted as the intersection of f%:BW —§, and
¢:[a, f] — 9, Theorem V follows.

6. Proof of Theorems II to IV.

Recall the situation envisaged in Theorem II. The periodic operator L
defines the @ curve

A—>XE(1) = P(A), — <A< ®,
in § with Xk(1) = P. We have to study
(6.1) Az) = [@py : R7], ze S

B(z) here stands for the boundary condition represented by {I, zI} (z €S
and R-={4|4< 0}

In view of the boundedness of the spectrum of L, the compactness of
S1 and Theorem V,

A(z) = [y : Tl Where T 41— PQ), «a=4A=p(2) =0,

with « sufficiently negative and independent of z, while B(z) is sufficiently
close to 0. (In particular if P ¢ B°(z), then f(z) can be chosen to be = 0.)
We are interested in /(z) as a function on S* . Now if at a point z, , P ¢ BO(z),
A is constant in the vicinity of z,. It is sufficient therefore to study the
situation where P e B%(z,). In that case p(z) < 0. Let o be the curve
o: 4> P@)(B(z) =4 =0). For z sufficiently close to z , but not equal
to z,, P ¢ B(z), furthermore for z sufficiently close to z,, P(B(z)) ¢ B*(z).
Hence for z satisfying both these conditions

(6.2) A(z) = [vp : 9l + A(20)-

Since K is convex and does not contain the origin of £ all & curves are
locally equivalent as far as intersections with yp are concerned. Hence
the first term on the right hand side can be computed for the special @
curve with direction J* e K in some vicinity of 4 = 0. But this is precisely
what is done in Theorem III, with the aid of Theorem V.

It remains to explain Theorem IV. Here we need the resolved cycle
I'y(z,). Recall that

(6.3) BW() = {{X.p}; X B, p eGP | Xp = 2p}.
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Hence if ¢ : WW — W is the map sending {X, p} into {¢X, p}, then
¢® maps BW(z) onto BV (¢®z). The derivative of this motion defines a
vector field / on WM, At any point 2 = {X, p} e W, [ is given by /,,
where I, is represented (under any standard identification of W{’) by
{V/— 11, 0}. The manifold V(x, ¢) = [«, &] X G* imbedded in W by
AXGW 5> P@A) X GV (x=2=¢e>0) has, at 1 =0, a clean inter-
section with B®M)(z,) (we are here assuming that p e B°(zy) as before)
which is a point or a complex projective space ¥*. Our problem is clearly
to determine what happens to this clean intersection manifold as B™ (z))
is pushed in the direction of /. We will show that, under the hypothesis
that P be nondegenerate at z, , any deformation of B (z,) will, in general,
split the possibly high dimensional clean intersection of BW (z,) with
V (, €) at =0 into regular intersection points; the number of these points
lying over negative A-values is equal to the number of negative characteristic
roots of the Hermitian form given in Theorem IV. Once this is established
Theorem IV should, I hope, be evident.

As V(— ¢, &) will, for ¢ > 0 sufficiently small, be imbedded in W®
and BW(z) is already imbedded in W , we can identify the intersection
manifold of BM(z) and V(— e, &) with the actual intersection V =
W@ A V(—e, e), and this will be done throughout this section. The
tangent space to V(— ¢, ) along V is then the same as some distribution
T4 (A e K; see Section §). Now if at a point g€V, [, does not lie in the
space spanned by B{")(z,) and T4, a small motion of B®"(zy) in the direction
I will free ¢ from V(— ¢, €). If on the other hand /, € (BM (z) + T4), then
a motion of B (z,) in the direction / will displace the intersection ¢ in the
direction /4 on V(— e, &), where [ is the projection /, on T4 along B (z).
We will call points g e V for which , ¢ (B% (z,) + T) the A-critical points
of lonV. .

LEMMA 6.1. § = {X, ¢} €V is an A-critical point of 1 if and only if
there exists a veal o such that

(6.4) ({(V—1] — eJA} g, Mp) = 0.

Here Np = null-space of {P — 21}, geMNp.

Proof: If Iz € (BY + T#), then we can subtract from /z an element
of T4 so as to end up in BY). Using a standard description of W this
implies the existence of at least one (o4, v) (4 €8, veE (g)) such that

(V—=11, 0} — {o4, v} ¢ BY.

By (4.2) this relation can be satisfied if and only if (6.4) holds.
Since A ¢ K, JA defines a nondegenerate positive form on R,. Hence
(6.4) has at most s(= complex dim. % p) different solutions in p which
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must be real. If now it is known that 4/—1 J is also nondegenerate on RN
then none of these solutions is 0. Furthermore by varying 4 ¢ K we can
arrange it so that (6.4) has precisely s distinct non-zero solutions g, , - * - , @, -
Then the corresponding eigen directions ¢, -, * *, ¢, are well defined, span
Np, and are precisely the A-critical points of L on V. Moreover at such a
critical point g, , Z, L, projects on {g,A, v} via B (z,). Hence the intersection
g, will be moved in the direction {p,4, v} along V(— e, &) by a motion of
BM (z,) in the direction /. After such a small deformation the intersections
will have to be regular as is checked readily.

Since we already know that the total contribution of ¥ to [B®)(z,),
V(—e, €)]y is (V), the intersection numbers will have to be + 1 (in order
to add up to x(V)). But then the number of these intersections which occur
over A-values < 0 is clearly the number of the negative p, . This is precisely
the statement of Theorem IV.

This completes the proofs of the theorems enunciated in Section 1.
In the next section we discuss some general questions concerning the
Sturm intersection theory, in particular, the comparison and oscillation
theorems. Finally, the homology class of y; is computed.

7. The Comparison Theorem.

Let (,L (i =0, 1) be two operators as in Section 1. Let (,X;(f) =
(A1) X;(¢) be the differential equation of their maps. We define X (¢)
(0 =u = 1) as the solution of

(7.1) X'(t) = {(1 — u) @4s(t) + w4, ()} X ()
subject to
(7.2) X=Iatt=0for —0o<i<o 0=u=1.

The correspondence

(t, 2, w) > X()
is therefore a map of 4 x [0,1] - § which reduces to the map of (,L on
4 x [{] (¢=0,1). Let B be a fixed Hermitian boundary condition im-
posed at ¢ = 0 and ¢ = a # 0, and set @ (¢ = 0,1) equal to the spectral
multiplicity function of ,Ly = Ay subject to B.

COMPARISON THEOREM (vim). If v= [A-< A< A¥] is a bounded
interval of the A-axis which is admissible with respect to both @y and 05,
then
(7.3) (10p:7] — [@p:7] = [yp:C*] — [yp:C7]
where C* is the curve u — X;*(a) (0 =u = 1) and yg is the cycle of
B in §.
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Proof: Consider the map (¢, 4, u) — ,X,(¢) restricted to the rectangle []
of the £, A, u-space; the coordinates of the vertices in the order of orien-
tation are:

(@, A=, 0), (a, &+, 0), (a, 4+, 1), (a, 4=, 1), (a, 4, 0).

Since our map is defined on all of AxI, the image of [7] is homologous
to zero is . Hence the total intersection of [ with yp is zero. But this is
precisely the content of the formula in the theorem where we have evaluated
the intersections along the sides of [ which are parallel to the A-axis by
means of Theorem V.

Notice that the vertices of [] are not on y because v is admissible
with respect to both ;@ and (»@. Since we know already by Theorem V
that any @ curve meets yj in a discrete set of A-values this is no serious
restriction on 7.

We write L, < L, if, for all 4, ¢, 44,(t) — 14,(/) e K. Under the ad-
ditional hypothesis that L, < L,, it is easily checked (by the obvious
analogue of the proof in Section 3) that the curves C+ and C~ of the above
Theorem are @ curves. Hence in particular [yp : C*] = 0. An immediate
consequence is the

COROLLARY. If L, < L, and if the spectrum of L, is unbounded above
(bounded below), then the same is true for L, .

Remark. This corollary can be used to prove part (a) of Proposition
1.1 in the following fashion. We construct an L, < L with constant coef-
ficients. For L, , however, the positive definiteness of p easily yields the
boundedness of the spectrum from below and the unboundedness from
above.

Proposition 1.2 on the other hand is an immediate consequence of the
invariance of intersections under restricted deformations.

8. The Oscillation Theorem
Here we envisage a single operator L and compare the problems
(1) Ly = Ay subject to B at t =0, { =a,
(2) Ly = Ay subject to Bat t=0,t=¢>0 (e < a).

Let @ and @° denote the spectral multiplicity functions of these two
problems. C, shall stand for the curve : { - X;(f) (e =¢ = a).

OSCILLATION THEOREM (Ix). Let v = [A=< A< A*] be an admissible
interval with respect to @ and @° . Then in the notation introduced above.

(8.1) [@:7) = [yg: Caslp — {[€°:7] — [¥s: Ci-lgth-
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Proof: Apply X* to the rectangle [] of the ¢, A-plane, 4, whose vertices
in order of orientation are:

(@, A7), (a, &%), (e, A1), (&, 47), (a, A7)

X* ([) is again homologous to zero in § as X* is defined on all of A. Counting
the contributions to the intersection of ¥ and [] on the sides of [] yields
formula (8.1).

This theorem is called the oscillation theorem for the following reason.
Since the spectrum of

Ly = Ay, subject to B at t =0, t =2, 0I=x=a

is bounded from below for each z, A~ can be chosen so negative that
[yp:Cilg =0 Nowifeis small enough, the term [yp: Ci ]y represents
the oscillation of Ly = Aty as ¢ goes from 0 to a. Formula (8.1) then
represents a relation between ‘“‘the number of characteristic roots” of the
original problem less than A* , and the number [y ! C+]g Which generalizes
the classical notion of the “number of zeros” of the general solution of
Ly = Aty in the interval e £t = a.

The interpretation of [yg: C;,] is not quite obvious, we will, therefore,
discuss it in greater detail below, and show that for a certain class of Her-

mitian boundary conditions — the focal conditions — [yg:C;] can be
evaluated by the algebraic formula
(8.2) r:Cilg= 2 v{C,(t)M — N}.

estsa

In general, of course, no such formula holds; as a matter of fact C,(¢) need
not even intersect B? in a discrete set of points.

9. Focal Boundary Conditions

Recall that a Hermitian boundary condition B is represented by a

pair of maps {M, N} of E into itself satisfying the two conditions
My=Nv=0¢&=v=0,
M*JM = N*]N.

Furthermore E=E{ +E® , as defined in Section 1. In this representation
J maps {z, y} into {—y, 2} (@eE), yeEY ; {x, y} e E).

DEFINITION 9.1. A Hermitian boundary condition B D {M, N} shall
be called focal if and only if
(9.1) N(E)CE® .

The important feature of the focal boundary conditions is given by the
following proposition:
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LeMMa 9.1. Let L be as in Section 1, and let (X3)'(t) = A,(t) X5 () be
the differential equation of its map. If {M, N} represents a focal boundary
condition, then

(9.2) (JA,(t)Nv, Nv) > 0 unless Nv = 0 (A, t, arbitrary).
Proof: JA,(t) has the form

(= o)

Hence by (9.1) the lemma is clear, because p~(f) is assumed positive
definite.

PROPOSITION 9.1. Let B={M, N} be focal, andlet C:t—>X5(t) (aSt=p)
be a positively oriented curve whose end points do not intersect B (X* s
the map of a Hermitian L as above.) Under these conditions
(9.3.) [yp:Clsg = sg:s:{Xﬂt)M — N}.

Proof: Let, for the sake of brevity, Xj(¢) = X;(¢). The direction of
C at { is then given by X7*(f) - A,(t) - X;(¢). If C intersects yp at ¢, i.e.,
if {X,0)M —Npp=0 (v 0) then

(JX7TL(E) A, (t) X3 (t) Mo, Mv) = (JA,(t)Nv, Nv) > 0

by (9.2). Hence C is never tangent to yg. Suppose now C intersects
VB at ty -
Define:

Cuit—Xy,0)- {Xu (o)} X (0) (w0 real).

Then each C, passes through X;(f) and the direction of C, at £, is given by
X7 (t) - Asullo) = Xilto)-

But for u sufficiently large X5 (o) Ay (te) Xa(fo) € K as is easily checked.
If we consider % as a deformation parameter this shows that C can, in the
vicinity of #,, be deformed (through curves which are never ‘‘tangent”
to B at ¢) into a @ curve through ¢. C therefore behaves like a @ curve
in respect to yp if B is focal. Theorem V now yields (9.3).
A completely similar argument shows that for e small enough and B
focal, the term [@*° : 7]y in (8.1) is zero. In that special case (8.1), therefore,
simplifies to
(9.4) [@:t]g= X v{X5 ()M — N}

0<t=a
if A- is sufficiently negative. This formula, when appropriately reinterpreted,
is precisely the focal point theorem of M.Morse [6, p. 58]. We make
the translation into his terminology for a special focal boundary condition
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B described below. It will serve at the same time to justify the claim that
[vg : Clg represents oscillation.
The focal boundary condition B which we have in mind is described by

0 o0 0 0
=g I)' N=(I 0)'

(This is equivalent to (0) = y(a) = 0 and is the classical Sturm condition.)
Now if XE(f) = {;g;gg; } | then »{XE() M — N} — »{f(t)}. In this
case therefore the right hand side of (9.4) can be interpreted in the following
fashion:

Let %, , - -+, ¥, be # linearly independent solutions of Ly = A*ty which
vanish at £ = 0. Let $(f) be the matrix whose columns are the ;. Then

if B(a) is nonsingular, the sum Y »{8(f)} equals the weighted sum of eigen-
0<tsa
values (of Ly = Ay subject to our particular B at { = 0 and ¢ = a) less

than A+,
This is precisely the focal point theorem of Morse for our B.

10. The Homology Class of yg

It is natural, for a topologist at least, to inquire what the homology
class of the cycle y5 in § is. It is clear that y, is not homologous to zero;
for, a closed @ curve will have nontrivial intersection number with yg.
However, to describe the class y precisely, we have to find out how often
yg intersects curves generating H,(9; I) (finite cycles).

We will only state our results. They are easily proved using Theorem V,
and the proposition that the set, 8, of Hermitian boundary conditions is
homeomorphic to U(2#x), the unitary group — in particular that B is
connected.

THEOREM x. The cycles yy of all Hermitian boundary conditions are
homologous. Their common class y is a locally finite integral class which,
due to the Poincaré duality in 9, is completely described by its inlersection
classes with H,(D; I) (fimite integral homology).

THEOREM x1. H,(9; I) = Z + Z (is the divect sum of two copies of the
integers). The classes a, be H,(D; I) represented by

a: St 9; alz) =2,

b: S' > §; blexpi0) = exp (0]*)
generate H,(H; I) and

[¥:alg =0, [y:blg= 2n
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