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NONDEGENERATE CRITICAL MANIFOLDS

By RaouL Borr
(Received February 4, 1953)

Introduction

Let J be a smooth' function defined on an open set U of Euclidean n space
E, . A point z e U is called a critical point of J if the gradient of J vanishes at
x.” The nullity and index of a critical point z of J are defined as the dimension
of the null space and the number of negative characteristic roots of the Hessian®
of f evaluated at z, respectively.

It is a basic result of the Morse theory [1] that if x is a critical point of nullity
0, then for all sufficiently small neighborhoods V of z (in U) the following iso-
morphisms hold:

IO He (J.aV,Jia V)~ Hi, ()

In this formula J.[J:] denotes the subset of U on which J < J(2) [J < J(z)],
while A; is the index of . H, (J.nV, J,n V) and Hy(z) (k = 0, 1, ---) refer
to the kth singular homology group [9] of the pair (J.nV, J. n V) at the left
and of the point z at the right. The coefficients are immaterial; however, we shall
assume throughout the paper that all homology groups considered are computed
mod 2.

The purpose of this paper is the proof and application of the following ex-
tension of (I).

DerinNiTION. Let M < U be a compact manifold smoothly imbedded in U
such that (a) all points of M are critical points of a smooth function J, defined
on U, and (b) the nullity of all x e M equals the dimension of M; then M will
be called a nondegenerate critical manifold of J on U.

THEOREM I. If M is a nondegenerate critical manifold of J on U, then for all
sufficiently small neighborhoods V of M

(I*) He (JunV, Jun V)~ Hi,, (M)

where J y[J y) refers to the subset of U on which J < J(x) [J < J(x)] x e M, and
A\ u denotes the index of some x e M .4

As an application we compute the “sensed circular connectivities’’ of the
n-sphere. Our result is the following one: (see §2 for exact definitions) if we de-

! The term “‘smooth’ will mean “‘at least three times continously differentiable’’ through-
out the paper.

2ie. 8J/oxi(x) =0 (i =1---n).

3 The Hessian of J is the n X n matrix of second partial derivatives of J with respect to
ri(t=1:--n).

Ay and Jyr, [Ji] are independent of x ¢ M, as our conditions guarantee that J and the
nullity are constants on M.
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note by M(S™; 2) = D& pe2* the formal power series with p; equal to the kth
sensed circular connectivity of S” we show that

(I1) M(S™52) = P(Ghas2) 2" (L= 2070)

where P(G%_; ; 2) is the Poincaré polynomial of the mod 2 Betti numbers of the
Grassmann manifold of oriented 2-planes in Euclidean n + 1 space. For example,
MSHe) =0 +2)@E+824+2"-0).

Our method also yields a formula for the circular connectivites p; of the n-
sphere, namely :

(III) M(S™;2) = P(Ghay;2) 2" (1 — 20y

where now M (8";2) = ZB" 7r2*, while G%_; stands for the Grassmann manifold
of unoriented 2-planes in £, .

In [1] Morse characterised p; as the number of solutions of certain diophantine
equations ([1]; p. 349). It appears therefore that in his classic derivation of
M(S™; z) Morse obtained the Betti numbers of G_; as a byproduct.

The factorization of It and M as given by II and III is not without a certain
intuitive appeal. Recall that Morse introduced the numbers 7, for the purpose
of counting closed geodesics on manifolds. On the other hand the n-sphere in
its usual representation in ¥, ; admits a continuum of closed geodesics, which in
a rather obvious topology is homeomorphic to G%_; if the geodesics are taken as
oriented, and to G_; if they are taken as unoriented. Furthermore, a given
geodesic can be traversed an integral number of times; this would then account
for the factor 2" (1 — 22"™V)7\

The sensed circular connectivities p; introduced here can be shown to have
the same relation to the ‘“‘nonreversible problem” that the p; have to the “re-
versible problem” considered by Morse. This relationship and some of its ap-
plications will be reported at another time.

1. Proof of (I*)

We recall from [1] that the proof of (I) is constructed as follows: Consider the
linear manifold E, of vectors x + y passing through the critical point x, spanned
by those vectors ¥ which are linear combinations of the characteristic vectors
associated with the negative characteristic roots of the Hessian of J at x. The
dimensionality of this manifold is A, . The formula (I) is established by the
construction of a homotopy retraction of the pair (J,, J,)n V. onto the pair
(E., E, — z)nV valid for all sufficiently small spherical neighborhoods V.
of z (see [2] p. 34).

To prove (I*) we first surround M by an & neighborhood V. so small that the
mapping p: V. — M defined by the orthogonal projection of points of V. onto
M is well defined and constitutes a fiber decomposition of V., with base space
M, and fiber the orthogonal cells F, of dimensionn — dim M. Thus ¥, can be con-
sidered as the mapping cylinder of the normal sphere bundle of M. For each
2 ¢ M the manifold E, is well defined and will, as a consequence of condition b,
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be completely orthogonal to M at x. et A, C V. be the subbundle of V, con-
sisting of those x ¢ V, for which z € K, . A, is thus a bundle whose fibers F,
are A\ y-cells. M is imbedded in A, . We set A~ equal to A, — M. Now compare
the pair (4., A7) with (Jy, Ju)n V.. Clearly (4., A,) € (Ju, Ju)n V,
for sufficiently small e. However, the following much stronger proposition holds:

ProrositioN. For 0 < ¢ small enough (A, , A,) is a fiber preserving deforma-
tion retract of (Ju, Ju)n V..

In particular, therefore

HA(Ju,Ju)a V) ~H,(A,, A)

for small enough ¢.

Proor. The proof proceeds in entire analogy to that of (I) given in [2. p. 34].
We set V equal to the “abstract’” normal bundle [8]) of M < U. E.,xeM isa
well defined subspace of the fiber of V at x. Let D, be the complementary sub-
space to E, and let E, D denote the subbundle consisting of U,y E, , U,y D,
respectively. We set H* and H™ equal to the projections defined on V which map
the normal space at & into D, and E, respectively. H* and H™ are continuous
fiber mappings of V onto D and E respectively. Consider now the following de-
formation which establishes E as a fiber and norm preserving deformation re-
tract of V — D. This deformation will be paramftrized by 7/4 £ 6 £ 7/2, and
cos 0H y + sin 0H y
| cos 0H+y + sin 6Hy | |y | fory =0,
and y, = y for y = 0. (We use a Euclidean metric in the fiber and | y | denotes
the length of a vector y.)

On each fiber this deformation reduces to the one used by Seifert and Threlfall
in [2].

Now for small enough ¢ we can identify V and V., so as to take radial lines into
radial lines. Then the restriction of J to a given fiber F will have a critical point
of index 0 at the intersection of F and M. Hence the argument of [2] applies and
for sufficiently small ¢ the proposition to be proved will be true on each individual
fiber. By continuity and compactness it follows that the proposition as stated
is correct.

Hence (I*) will be demonstrated if we prove that Hy(A., A;) & Hi_x, (M).
As we are using mod 2 coefficients throughout, it is sufficient to prove the equality
of the ranks of the groups in question.

Consider now the exact sequence of the pair (4., 4,):

assigns to each y ¢ V the element y, =

(1.1) — H,(A,) > H,(A,) > H, (A, A,) > H,1(A;) —

A% is a bundle with fiber deformable into a Ay — 1 sphere. Accordingly we have
the exact Gysin, Thom, Chern — Spanier [3] [4] [5] sequence of A as follows:

(1.2) — H, (A7) > H,(M) — H,»,, (M) —> H,_1(4,) —.
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Comparing the two sequences it is easily seen that H, », (M) and H,(A., A;)
are equivalent group extensions and therefore have the same rank. (We merely
have to establish the commutativity of the square

H.(4;) — H.(4.)

T T
H.(4.) — H.(M)

which of course is well known [4]. We might add that in Thom’s abstract [4] of

the proof of (1.1) the isomorphism H,,_»,, (M) b n(A:, A7) is stated as the
basic lemma and (1.2) deduced from it. The Thom result asserts the isomorphism
in question to exist for a suitable local system of coefficients on M.)

REMARK. The local nature of the whole problem makes it clear that the theorem
is equally true if we replace the imbedding space U by an open subset of an
arbitrary Riemann manifold.

2. The circular connectivities

The mt" circular connectivity .. of a Riemann manifold R is defined by Morse
[1] as the rank of the limit group IM,.(R) of the m* mod 2 homology groups of
a directed system of pairs [9] { (7, Ar); h}. #(R) (written # when there is no
danger of confusion!) is defined as follows: In R = RX --- XR (k factors) con-
sider the subset of points (x) = {x; - - - 2x} such that the distance between con-
secutive points in the array z;, x2, - -+ &, , &1 on R is less than the elementary
length p of geodesics on R. (See [1] p. 196.) We denote this subset in R* by II, .
A point (x) of II; uniquely determines a closed geodesic polygon on R, namely the
polygon obtained by joining consecutive points of the above array by elementary
geodesics. If in II;, we identify those points which differeither by a cyclic permuta-
tion of the factors of R*, or by a reversal of the order of the factors of R*, we
obtain the space 7 (i.e. (w1, -+, xx) ~ (@, &1 - To1) ~ (Xk, Th1, -+ T1)
in 7). The points of #; therefore correspond to closed unsensed k edged geodesic
polygons on R, none of whose vertices are distinguished.

By introducing s equally spaced vertices on each of the sides of a polygon
(z) e 7+ a new polygon with sk vertices is obtained. This subdivision operation
gives rise to maps h, of 7 into #, which make the family #; into the directed
system {7 ; h}. If we now set A; equal to the diagonal in 7, , (that is, the set of
points of the form (z) = (x, x, --- x)) we obtain the desired family of pairs
{7, Bi); b}

The length of a polygon is a continuous function J defined on all #, . We
clearly have J(x) = J(h:()), x € 7 (all s); hence if 7; [#% | denotes the subspace
of #+(R) on which J < ¢[J < ¢]; ¢ = 0, h restricted to 7 [#; | makes the family
{#%, Ak; B} [{#%, Be; h}] a directed system. The group M(J.; R) [M(J.—; R)]
is defined as the limit homology group of {(#, &:); h} [{(F% , Aw); R}

By the symbol M(J. , J., ; R) ¢ > ¢’ we will mean the limit relative homology
group of the family of pairs {#f, #f ; h}. '
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RemARK. The definition of M(R) seems to be dependent on Riemann structure
of R. However, Morse showed that I (R) is a topological invariant of R. [See
[1] p. 297.] His proof can easily be modified to yield also the topological in-
variance of the group M (R) defined in the next section:

3. The sensed circular connectivities

In the previous construction #:(R) was obtained from IIx(R) be identifying
on II.(R) points which were images under the group of cyclic permutations, or
reversal of order. Let m,(R) be the space obtained from Ix(R) by only identifying
those points which are cyclically equivalent. Then if we replace #x by =, in the
construction of §2, we obtain the “sensed” counterparts of JM(R) etc. which
we denote by M(R), etc. We will adhere to the notation that the barred letters
stand for the equivalent in the ‘“unoriented” theory of the unbarred letters in
the “oriented” theory.

4. On the computation of I (S*, 2)

Let S™ be represented by the subset 21" 2l = 1/(2n)* in Euclidean n + 1
space. The metric induced on 8" by the Euclidean metric makes S" into an
analytic Riemann manifold. It is well known that then the closed geodesics on
S™ “are” the intersection of 8" with two-planes E*  E"*'. The length of these
geodesics is ¢, ¢ being the positive integral value of the number of times the point
set E* — 8" is traversed. For p we take the number 1.

The computation of M(S™; z) is broken up into two steps. First we compute
the group By = 2 7M(J., J.1) (direct sum). E; will turn out to be finitely
generated in each dimension.

Next let E, = >.7D./D,; (direct sum) where D, is the image of M(J,) in
M (R) under the inclusion map induced by the inclusions (mh, A) = (m, A). As
7y = A and mx = m for sufficiently large ¢, we have

The second step of the computation consists of showing that E; and E_, are iso-
morphic in a dimension preserving fashion. It follows then that IM.(R) is also
finitely generated in each dimension and as we are working over a field of co-
efficients E_ is (unnaturally) isomorphic to I%(R) in a dimension preserving
fashion. The procedure of going from E; to E, is of course the basic method of
the classical work of Morse as well as of the modern spectral theory of Leray.
E, is obtained by local considerations while the step from E, — E usually in-
volves arguments “in the large”. In the case under consideration however, it
turns out very fortuitously that E; =~ E for purely ‘“dimensional” reasons.

5. Computation of E,

Let fix [ue] denote the subset of Iy [m:], each point of which representsa polygon
whose & edges are equal in length. A point z € f [u4] is called critical if it repre-
sents a closed geodesic. Clearly in our case J takes on only integral values on
critical points of fix [ur]. We set &, [0:x] equal to the totality of critical points
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of length ¢ in i [uc]. As p = %, &, [0,4] Will be nonvacuous for ¢ < 3k, and we
assume in the following that this condition is always satisfied.

It is shown by Morse ([1], Theorem 5.1, p. 261) that for sufficiently small
neighborhoods V4 of &, in @, V. isan analytlc manifold (in the subset topol-
ogy induced by the imbedding of gx < ). As points of V..« are well away from
the diagonal in Il the projection #; — m; induces a manlfold structure on the
image Vi of Vi .

The following basic proposition due to Morse establishes the local character
of E;. (We have phrased it to fit into our context.)

TreoreEM A. (Morse) Let V. be any family of sufficiently small nexghborhoods
of ook C wi (t < 3k), such that hs:Vip C Vi and let ViVizl be the subset of
Vi on which J = t, [J < t]. Then

Wn(J s, J 1) = limg, {Hm(Vtk , Ve hi.

REeMARK. Theorem A can be deduced roughly in the following fashion: One
first shows that Mn.(J;, Jim1) = Ma(J:, J.—) using the fact that there are no
critical points of J between ¢ and ¢ — 1. Next one shows that for any system of
neighborhoods V, of ¢, on m; with hVii © Vike,

WS o, Joo) = lime {Hoa(Vie, Vir); b}

(here the * and ™ superscript have the same meamng as in Theorem A). Finally
for a sufﬁmently small famlly Vi, the pair (Vie, Vx) can be J deformed into
(Vt,k ’ Vt,k) n Uy = (Vt,k, Vik).

All the deformations needed to carry this program out are given by Morse
in [1]. (p. 250-270.) T am planning to give a more detailed expository account
of this phase of the Morse theory in the near future.

With the aid of Theorem A the computation of E; is reduced to the study of
the groups H,.(Vix, Vii) and the homomorphisms

Rgxt Hm(Vtky Vir) — Hm(Vtks, Viks)

induced by the restriction of A, to V.

It is clear that if we choose V, , small enough ¢, will be the only critical set of
the function J on V,; . We propose to show that o, is a nondegenerate critical
manifold of J on V,; in the sense of §1.

If we assign to each oriented closed geodesic « € o, the oriented two plane
in which it lies, we obtain a representation of o, as a 1-sphere bundle over

% . the Grassmann manifold of oriented 2 planes in E™*'. The dimension of
ok 18 therefore 2n — 1.

Now let x be a point of ¢.x . As a critical point of J on V. « has a well defined
index and nullity.

LemMA. The nullity and index of any point x ea, (t < 3k) are respectively
given by

NE) =2n —1
AMz) = (n— 1) (@2t — 1).
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It follows that o, is a nondegenerate critical manifold of V.. and hence by (I*)

H,(Vi, Vir) & Hu i (00)

for sufficiently small neighborhood V. .

Proor. In the neighborhood of ¢, , 7 is an analytic manifold on which I is
well defined. uy is smoothly imbedded in 7 . Every point « of ., is a critical
point of J on m; as well as of J on u, . It follows that N (x) and A(z) can be inter-
preted as the nullity and number of negative characteristic roots of the Hessian
of J as a function on = restricted to the tangent space of ux in m¢ at z.

At each vertex p; (i = 1 --- k) of x we introduce a local analytic coordinate
system v} - - - , % covering a neighborhood U; of p; in such a manner that the
point p on x, whose 51gned distance from p; is equal to d (recall that x is oriented)
has coordinates v1 = d; vy = v3 - - - v% = 0, for sufficiently small | d |. To empha-
size this choice of coordinates notationally we shall write d* for v} . Clearly a
neighborhood U of x in = is given by those polygons whose 7** vertex lies on
U; @ =1---k). (As we are working locally and away from the diagonal in
it is clearly ““all right” to number our vertices, starting at any vertex we please
and then adhering to the choice made.) Consider now the expansion of J in
terms of the local coordinates introduced. As J is independent of d* when v =

. = 9% = 0, all partials of J with respect to the d”’s are 0. Also as z is a closed
geodesic for any choice of the d' when vs = - - - = v% = 0, 8J /dv} = 8°J /ad '} =
0for (4,2 =1---k j =2---n). Hence J has an expansion which starts off
with J = J(x) + Q. , where Q. is a quadratic form in the variables (v, - vh)
(t=1---k) only.

This fact can also be expressed in the following fashion. Let W < U be the

submanifold of U given by the equations d* = 0 (i = - k). W is called by
Morse a proper SeLthIl of . Let f: U —> W be the pI‘OJGCthIl of U onto W defined
by f(vlyv2... 1)2’1)2 ..;... vl,”Z"' )_(0 1/2,.. 01)2...;...

0, v5 ---). The above result is then equivalent to the assertion that J(f(x)) and
J(x) coincide on U up to terms of the second order.

The index and nullity respectively of a geodesic x with respect to a proper
section W is defined by Morse (see [1], pg. 288) as

Nw(x) = nullity of Q.
(as a function of v} - - - v’ only!) and
Mw(z) = index of Q. .
Now the numbers Nw(x); Aw(x); N(x), A(z) are related in the following fashion
(5.1) N(z) = Nw(z) + 1
(5.2) Azx) = Ap(2).

This is seen as follows. To compute N (z) we have to consider the nullity of @,
in the tangent space of u; C m, at 2. However in the local coordinate systems
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which we have chosen, the tangent space of u; at x is clearly characterized by
the equations d' = d* = --- = d*. As the d”s do not occur at all in @, the formu-
lae (5.1) and (5.2) become self evident.

A fundamental result of the Morse theory is an invariance theorem (see [1],
p- 289) which in our context reads as follows.

THEOREM 6. (Morse) Let x € o,x, and let ' € o xs be the image of x under the
subdivision map h, (for s = 1, hy is the identity map). Let W be a proper section
of x and W' a proper section of «’. Then

(5.3) Nw(x) = Nw(.'lf,) and )\W(.'lf) = )\Wl(ll?,).

It follows that N (x) and N(x) are independent of the particular proper section used
and invariant under subdivision; i.e. independent of k.

We can therefore choose k = 4t for the explicit computations. This choice of
: makes the length between consecutive points of « equal to . We now compute
Nw(zx) and Ay (x) for a special proper section W, which in effect has already been
constructed by Seifert and Threlfall in another connection (see [2], p. 61).

We recall their construction briefly for the case of S°. Let x € o4, be repre-
sented by the polygon which starting at p, (the point where the x; axis intersects
S?), circles the sphere ¢ times in the (2, 3) plane. The second vertex of « will then
lie on the first intersection of x with the (12) plane, p; will be the antipode of
p1, ps the antipode of p; ete. To construct the proper section W we take open
intervals about the vertices of x on geodesics cutting these vertices at right angles
to x, and use as local coordinates {03} on these, the geodesic length. The well
known cosine law of spherical trigonometry then easily yields for Q. the quadratic
form

Q. = — w5 + o¥pi + -+ + 02 e + v2'va)
whose nullity is seen to be 2 and whose index is (2¢ — 1). Using the analogous
construction for S, @ is seen to take the form

12 2 2 4¢—1 4t 4¢ 1
Q: = —(vaws + vawi + -+ 02 vy + v209)

12 4¢—1 4t 4¢ 1
—(vavs + e + v vy + vsvy)
1 2 4¢—1 4t 4t 1
_(vnvn+ cet +vn Un +vnvn

whence its index is (2¢ — 1) (n — 1) and its nullity 2(n — 1). Hence
NE) =2n—1)+1=2n—1
and
ANz) = (2t —1)(n — 1).
This completes the proof of the lemma.

The next step in the computation of E; is the investigation of the subdivision
homomorphism

heot HVEe, Vi) = HViee, Vigs)-
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The Thom construction of the isomorphism ¢« of (I*) makes it evident that ¢«
can be so chosen that commutativity holds in the following diagram:

HVE, Vi) 0 HVE, Vie)
(5.4) l‘ \ l|¢*

Hoy) —lelods | pe .

Hence it is sufficient to study the limit group of the directed system
{Hm(oek), (b | oei)s} (¢ fixed!).

It is convenient at this point to transfer the computation to cohomology in
order to exploit the multiplicative properties of the cohomology ring of o, .
As the underlying coefficient system is the compact field of integers mod 2 the
direct limit homology groups and inverse limit cohomology groups will be iso-
morphic, assuming the limit groups to be finite.

We recall that o, is a 1-sphere bundle over the simply connected manifold
G%_1 . Let G%_, be the Stiefel manifold of two-frames in E**' (i.e. the tangent
bundle of S™). G%_, is also a 1-sphere bundle over G%_; . We further have a bundle
map of
é2n_1 — Ok
which is constructed by assigning to each tangent vector v on S”, the z e o,
which has one of its vertices at the base point of » and which lies in the two-plane
determined by v and the origin of E**'. This map is fiber preserving and induces
the identity map of the base spaces. (It is in fact a covering projection.)

If p', - - -, p* are the vertices of x € o, then only a, of the points p° will be
distinct, where a,,; is defined as the numerator of k/¢ written in its lowest terms.
Hence in the mapping G% 1 — o, the fiber 8" of G%_; is mapped onto the fiher
S' of o, with degree a, .

Consider now the Leray spectral sequence of the bundle o, — G ;. (See
Serre [6] in particular p. 470.) Using cohomology with mod 2 coefficients and
Serre’s notation and terminology throughout, we have the canonical ring iso-
morphism

E? o) =~ HY(G) @ HY(SY.

We define ¢, ¢ H (G4 1) as the class d:a where a generates H'(S"). We let
¢ e H(G%_)) be dya in Eo(G_y). The mapping

Py

Otk — G2n—1
induces a homomorphism of E¥'“(G%_,) — E¥'“%(s,,) which is the identity on
H(G%_)), has degree a, , on H(S"), and commutes with d, . (See [10], p. 130, also

[11].) It follows that ¢, = a.rc. In particular if a, is even ¢, = 0. Hence in
that case ds is trivial in all of E,(s,,) and, as the higher differentials are trivial
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for dimensional reasons, E (o:x) =~ E2(s:x). We have therefore established the
following proposition:
ProprosITION. If a,x ts even

E2%(oi) =~ H*(G1) ® HY(S) (ring isomorphism).

RemARK. Recall that the additive structures of E_(c:x) and of -H (o, ) are
(unnaturally) isomorphic as we are dealing with a field of coefficients.

The evaluation of the inverse limit lim; H(o.,x) now proceeds in two steps.
First we replace the directed system I (the integers ordered by divisibility) over
which k ranges, by I, the subset of I for which a., is even. For any fixed ¢ I,
is cofinal with 7.

Next we compute the inverse limit lim;, E (s, ), and show that the additive
structure of this group and lim;, H(o; ) are, again unnaturally, isomorphic.
(The groups E_, (o.x); k I, become an inverse system by means of the homo-
morphisms E%2%(o;4:) — E%(o:x) induced by the fiber mappings hsioer —
ours .) Thanks to the proposition above this inverse system can be described in
detail: Each group of the family is isomorphic to H (@3 ® H(SY) and hY is
the identity on H(G3™") ® H°(S"), while k¥ (e ® a) = s(e ® a). (Here e generates
H'(G7™) and a generates H'(S") as above.) As we are working mod 2 it follows
that no element of the inverse limit can have a component in any group which
is of the form e ® a. As the homomorphisms involved are ring homomorphisms,
neither can a component of the type u ® a (u # 0eH (G31) occur. It fol-
lows that only components contained in H(Gs ') ® H °(8’) occur, whence
lim; E2%0.x) =~ H’(Gs™") and lim; E2%s,4) = 0 for ¢ > 0. It remains to
prove the additive isomorphism of the two groups. lim; E, (s:+) and
lim; H(ok).

Recall that the fibering of o, over G5~ induces a filtering of H (o) whose
associated graded group ®H (o) is canonically isomorphic to E, (s:4). The
homomorphisms k, preserve the filtration and thereby induce the maps on E_
which we have been discussing above. We can introduce a filtration in
lim; H(o. ) by taking the filtration of a limit element to be <p if the filtra-
tion of every one of its components is <p. We denote the associated graded
group & lim; H(o, ). As all groups in question are finite dimensional vector
spaces over a field, Theorem 5.7, p. 226 of [9)° yields a canonical isomorphism
of limy E_(¢,) = lim; ®H(o,x) onto & lim; H(s, ). It follows that the ad-
ditive structure of H(o, ;) is (unnaturally) isomorphic to lim; E_ (o). Assem-
bling these results with Lemma I and reverting to homology we obtain the eval-
uation:

; * — 2 6
lim; Ho(Vig, Vig) & Hm—@enymn(Gn1).
5 This theorem states that inverse limit operation preserves exactness in the category
of finite dimensional vector spaces over a field.
6 T am indebted to the referee for pointing out an error in the original derivation of this
formula, as well as suggesting a remedy—which has been essentially followed.
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Hence by the Morse result (Theorem A)
WMon(J ,Je1) & Hm—(2t—1)(n—1)(G2n—1)-

6. The step from E; to E_

The group E, is a direct sum of the groups M..(J,, J:1);¢ = 1. We set
Ef’q = WED+Q(JD1 Jp—l) P = 11 21 te
E?* =0forp = 0.

Thus E, becomes the direct sum of the groups ET'? over all p, q. From the
evaluation of Mn(J,, J.1) and the fact that G%_; has dimension (2n — 2)
it is seen that E7'? is trivial except possibly when

(6.1) 0=p+qg—Cp—1n—-1) 2£22n—1)
or equivalently for fixed p > 0 when ¢ lies in the range:
(6.2) @n—3)p—(n—1)Sgs @n—3)p+0—1).

Let @, be the interval of integers characterized by the above inequality.
We observe that Q,n @, consists of just two elements, namely ¢ =
2n —3)p —(n—1)andg= 2n — 3)p — (n — 1) 4+ 1. In general the differ-
ence of the lowest point of @, and the highest point of @,_. is given by
r(2n — 3) — 2(n — 1). Hence if we raise the interval @, by r — 1 units it fails
to intersect @,—, , for r > 1.

An obvious transcription of this result is the following proposition with
r>1.

ProposiTION. If d, is an endomorphism of E, which maps E?'* into E?~" ¢!
then d, annihilates all elements of E7°.

Actually this proposition is equally valid for » = 1 because of the simple
connectedness of G%_; . The vanishing of the first and therefore by the duality
in manifolds the vanishing of the (2n — 3)™ homology groups of G%_, implies that
EPCn8p=(ntDHL g pPhCr®r=(mD g6 trivial. Hence in the only range
of ¢ where d; could be nontrivial (i.e. for the two values of ¢ where @, and Q,_,
overlap) once the image and once the range of d; is trivial. Therefore d; again
annihilates every element of E7 .

Now let A denote the limit singular chain groups of the directed system
{7, h}. Let D C A be the limit chain group of the set {A, h}. If we now define
A, C A as the limit chain groups of the system {(xf, h}, we get a grading of
A/D in the sense of Leray. (We are again using the notations and conventions
as given in Serre [6].) In the resulting spectral sequence Serre’s ET'? [EZ"] is
easily identified with our ET'? [EZ?]. Above we have just shown that d; must
be trivial in ET'?. Hence E; = E.. But d; must again be trivial by our dimen-
sion argument. Hence E3 = E; . Proceeding in this fashion we see that £, =~ E, .

’



NONDEGENERATE CRITICAL MANIFOLDS 259

Hence, as pointed out earlier, the rank of H,.(4/D) equals the rank of the
m-~dimensional elements of Ef'? (that is, the sum of all the ranks of ET'* with
p + g = m). It follows that

M(S™; 2) = P(Ghy;2) 200 — 20

REeEMARK 1. For readers not acquainted with the Leray spectral sequence it
should be pointed out that the use of this powerful tool in the last section can
be circumvented in a sense just because all the differentials d, are trivial. Es-
sentially, the ‘“Liickenverfahren” of Seifert and Threlfall (see [2], p. 73) ap-
plies. Thus the statement that all the d,’s are trivial is equivalent to the state-
ment in the Morse terminology that the critical manifolds are of ‘‘increasing
type”, or again, equivalently, the “linking cycles” can be extended ‘below”
the critical level.

ReEmMARK 2. The circular connectivities (as distinguished from the sensed
circular connectivities!) of the n-sphere, are obtained in a precisely analogous
fashion. If we bar all the letters in §§4 and 5 these sections can as a matter of
fact be read in that context.

The only essential difference occurs in §6. Here the d,’s are trivial for r > 1
as before, but as G%_; is not simply connected it is not a priori obvious that d;
is trivial. Nevertheless d; turns out to be trivial, and we therefore get the fol-
lowing formula for M(S”; 2):

M(S™;2) = P(Grr52) 2" (1 — 27

Remarxk 3. It might be of interest to compare the procedure given here with
that of Morse in [1].

Morse uses for his model of S™ ellipsoids on which certain closed geodesics
are completely isolated. We on the other hand exploit precisely the degeneracy
of the n sphere in its usual representation. This avoids first of all the study
of geodesics on ellipsoids. In particular, in the Morse treatment no fized model
will do for the computation in all dimensions. (On any fixed ellipsoid, for in-
stance, the indices of the iterates of certain geodesics behave regularly only for
a finite number of iterations.)

Secondly we avoid the explicit construction of the linking cycles Ai; (see [1],
p. 323. As mentioned earlier their existence is equivalent to the vanishing of
all the d,’s.

Thirdly, the computation of I(J., J._) differs from that of Morse. The
notion of a nondegenerate critical manifold enters essentially here, as even if
o e u; represents only a single isolated geodesic it will still be a 1-sphere of
critical points.

These then are roughly the main deviations. They are of a more or less tech-
nical nature. The extent to which the present derivation of IR(S"; 2) is based
on the Morse theory is amply given by the basic theorems which we quote
from Morse’s treatise.
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7. The general theory

It is evident that in certain parts of our computation no reference was made
to the special case of the n-sphere which we had in mind. The purpose of this
section is to abstract from the preceding pages those features which are valid
in general. We state the result as a theorem and corollary.

TarEoREM II. Let R be a Riemann manifold. Let TI(R) - - - etc. and J be defined
as in §2 and let ;. - - - etc. be defined as in §5. Let {,,} be critical sets of J on
I (R) (for k sufficiently large) such that hs 5, — Giks , onwhich J = t. Suppose
Sfurther that (a) o,x 28 a nondegenerate critical manifold of Jur(R), of index \¢ .
(b) o,k can be fibered by one spheres S* in the obvious fashion. (S* acts on o, by
rotating the closed geodesics.) Let the base-space of this fibering be of = a1 .

Then if {V i} is a sufficienily small family of neighborhoods of o, x(hV ik C Viks)
mn ﬂk(R) and V:k = r;tc(R) n Vt,k 5 V,;k = r;i_(R) n Vg_k

limk Hm(V;kk , V:k) ~ Hm_)\,(a?‘)

CoROLLARY. Let R be a Riemann manifold such that:

a. The critical values of J (on any #:) form a countable sequence of numbers
n < ny < ngete.

b. The critical set corresponding to n. on ux is a nondegenerate critical manifold
on, .k Of tndex N, , satisfying condition b above.

Then M(R) has an associated graded group OIM(R) (see [6]) which is the

terminal group E of a spectral sequence E1, Es --- E_ of which the first term
E; is determined by the formula:
EY = Hp+q—>\n,(°':p)a p>0
1= ¢,

provided ET'? is finitely generated in each dimension (i.e., for p + q = constant).

ReEMARK. A given Riemann manifold may of course give rise to quite different
groups E; when in different metrics. The passage from E,; to E differs corre-
spondingly. Thus for instance if we take a nonspherical ellipsoid for our model
of 8™ the vanishing of all the d,’s in the resulting E, is by no means a priori
obvious, and is, as a matter of fact, never true. The proof of this proposition is
connected with the study of the ‘Iteration of closed geodesics” (see [7], and
will be treated at another time.
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