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THE STABLE HOMOTOPY OF THE CLASSICAL GROUPS 

BY RAOUL BOTT* 

(Received November 17, 1958) 

1. Introduction 

Throughout this paper M shall denote a compact connected Riemann 
manifold of class Co. Let i2 = (P, Q; h) be the triple consisting of two 
points P and Q on M together with a homotopy class h of curves joining 
P to Q. We will refer to such triples as base points on M. 

Corresponding to v = (P, Q; h) we define Md to be the set of all geodesics 
of minimal length which join P to Q and are contained in h. 

There is an obvious map of the suspension of M,' into M: one merely 
assigns to the pair (s, t), s e M-; t e [0, 1], the point on s which divides s 
in the ratio t to 1 - t. (For fixed small t > 0, this map is 1 to 1 on M" 
and serves to define a topology on M>.) The induced homomorphism 
of wk,(MV) into 7krl(M) will be denoted by v*. 

Let s be an arbitrary geodesic on M from P to Q. The index of s, 
denoted by X(s), is the properly counted sum of the conjugate points of 
P in the interior of s. We write I I I for the first positive integer which 
occurs as the index of some geodesic from P to Q in the class h. In 
terms of these notions our principal result is the following theorem. 

THEOREM I. Let M be a symmetric space. Then for any base point 
v on M, Ma is again a symmetric space. Further, v, is onto in positive 
dimensions less than I v I and is one to one in positive dimensions less 
than I v i-1. Thus: 

(1 . 1) 1rk(M)= zck + 1(M) < k < |v|- 

As an example, let M be the n-sphere, n > 2, and let v =(P, Q) consist 
of two antipodes. (Because Sn is simply connected the class h is unique.) 
Then M- is the (n - 1)-sphere, and v*: 7rk(Sl-1) -+ Wkl(Sn) coincides with 
the usual suspension homomorphism. The integers which occur as indexes 
of geodesics joining P to Q, are seen to form the set 0, 2(n-1), 4(n-1), 
etc. Hence I v = 2(n - 1), and (1.1) yields the Freudenthal suspension 
theorem. If v (P, Q) with Q not the antipode of P, then Ma is a single 
point, while I v I is seen to be (n - 1). In that case (1.1) merely implies 
that wrk(S?) 0 0 for 0 < k ? n - 2. 

At first glance the evaluation of IL I may seem a formidable task. 
* The author holds an A. P. Sloan Fellowship. 
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However on a symmetric space (see section 5) every pair of points (P, Q) 
is contained in a maximal flat geodesic torus T, and every index X(s) 
already occurs as the index of a geodesic joining P to Q on T. Further, 
for such a geodesic, X(s) is equal to the number of times s crosses the 
"singular" subtori of T. The disposition of these singular tori is well 
known. The computation of I v I is therefore a routine matter. 

Theorem I yields new results in the following manner: In view of the 
fact that with M the space Mv is again symmetric, one may repeat the 
procedure of passing from M to Mv. To facilitate the use of this iteration 
we will agree to call a sequence of symmetric spaces ... - * M1, 9- * - . 
a >-sequence if at each step AI'I=M>?1 for some appropriate base point 
i2 in M-i+1. For example, the sequence ... Sn Sn+* S-, S*. 2 is a 
>-sequence, 

THEOREM II. The following are three >-sequences with the value of I I 
indicated at each step. 

(1.2) U(2n)/U(n) x U(n) U(2n) 

(1.3) 0(2n)/O(n) x O(n) > U(2n)/0(2n) 
2n+1 4n+2 

Sp(2n)/U(2n) Sp(2n) 

(1.4) Sp(2n)/Sp(n) x Sp(n) 2 U(4n)/Sp(2n) 
8n-2 8n-2 

SO(8n)/U(4n) > SO(8n) 
Here we have used the standard notations and inclusions. 

Notice that I v I tends to oo with n at each step of these sequences. On 
the other hand it is well known that for each of the symmetric spaces 
involved, Wk becomes independent of n > k. (We will indicate these 
stable values of Wrk by dropping the subscript n and using bold face type. 
For example, wck(U/O) = wck{U(n)/O(n)} for n > k.) Finally, recall that 
in this notation WrA(U) = 7rk+l(U/U x U), wk(O) = w,+1(O/O x 0) and wk,(Sp)= 
kl(Sp/'Sp x Sp) (k = 0, 1, ---), because in each instance the space on 

the right hand side represents the universal base space of the group in 
question. Combining these three observations with Theorem I, we 
obtain the following corollary to Theorem II. 

COROLLARY. The stable homotopy of the classical groups is periodic: 

Wrk(U) = 7k+2(U) 

(1.5) Wrk(O) =7k + 4(SP) 

r,.(Sp) = w7+4(0) k - 0, 1, *-- 
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The groups 7k(U) are 0, Z for k = 0, 1. Hence 0, Z is the period of 
11*(U). In the case of Sp, one has the groups 0, 0, 0, Z, for k = 0, 1, 2, 3 
respectively. For 0 these first four groups are Z2, Z2 0, Z. Hence the 
period of wr(0) is Z2, Z2, 0, Z, 0, 0, 0, Z. Applying (1.3) and (1.4) one 
also obtains the stable homotopy of the other symmetric spaces. Thus: 

(1.6) k(SP/U)-I' wk[(Sp) k 0, 1, 2 ... 
iJk(U/0) = 7rk+2(SP) k _ 0,1, 2 ... 

while 

(1.7) wJ(0/U) = 
wk-+ I(0) 

k -0 1, 2. 
- 

w,7(U/Sp) = '7k+2(0) k - 0, 1, 2... 

(In the third formula we have replaced SO/U by O/U to obtain the correct 
value of 7w0.) 

The formulas (1.5) to (1.7) were already announced in [4]. The unitary 
groups were discussed by a different method in [5], where the unstable 
group r2B{U(n)} was also evaluated as Z/n!Z. 

The proof of Theorem I is summarized in this fashion: Let v = (P, Q; h) 
be a base point, and let &?,,M be the space of path from P to Q on M in 
the class h. We then construct a CW-model for i2,M which is of the form 
K = Ma U e, U e, etc., where the ej are cells of dimension greater than or 
equal to I It l. 

The existence of such a K follows readily from the Morse theory. For 
instance the deformations given in Seifert-Threlfall [10, pp. 34, 35] and 
can be interpreted us follows: Suppose that a smooth function f defined 
on a compact manifold N has a single nondegenerate critical point p, of 
index k in the range a <f < b, a <f(p) < b. Let N- respectively Nb be 
the sets f a and f < b on N. The assertion is, that then Nb is obtained 
from N" by attaching a k-cell, e,, to Na. In symbols, Nb = Na U ek. (This 
point of view is also emphasized in notes by Pitcher [9], and R. Thom 
[12].) 

To prove our theorem this interpretation of the Morse theory is first 
extended in two ways: 

(A) The loopspace problem is reduced to the manifold problem. 
(B) The notion of nondegeneracy is extended. 

Thereafter it is shown that on a symmetric space the critical sets in the 
loopspace are nondegenerate for every choice of a base point. 

The step (A) is already essentially contained in Morse [8]; while the 
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notion of a nondegenerate critical manifold (step B) was introduced in 
[2]1. 

The final step follows easily from the results of [6]. 
It is clear from this rough plan of the proof that considerable reviewing 

of more or less known material will be necessary to make the account 
intelligible. Because the theory of a nondegenerate function on a smooth 
manifold is by now well known, while some mystery still seems to hang 
over Morse's extension of this theory to loop spaces, we will review step 
(A) in greater detail than the other two steps. 

2. Review of the Morse theory. A reduction theorem 

Let -e (P, Q) be any two points of M. The space of paths from P to 
Q on M is denoted by !I2.M and is defined as follows: 

DEFINITION 2.1. The points of Q2,M are the piecewise differentiable 
maps c: [0,1]->M which are parametrized proportionally to are length, 
take 0 into P, and map 1 onto Q. The distance between two points c and 
c' in f2,, M is given by: 

Pl(c, c') = maxtE[ol] p{c(t), c'(t)} + I J(c) - J(c') I 

where p is the metric on M, and J denotes the length function on t2,, M. 
The advantage of this definition of QMijI is that J(c), the length of c, is 

a continuous function of &2,,M. On the other hand t2,,M is not complete. 
If a is a real number, the subset of Q,,.M on which J < a, is denoted by 

21AM, and is referred to as a half space of 72,LM. Such a half space is 
called regular if f2aM contains no geodesic of length a. 

Let F be a continuous real valued function on a compact manifold N. 
The set {x e N; F(x)<a} will be denoted by FaN, or just Na if the func- 
tion is understood, and is also called a half-space for F on N. The half- 
space is called regular if F is of class Co in some neighborhood of FaN, 
and if F has no critical points at the level a. (In other words dF(x) 0 if 
F(x) = a.) 

The aim of this section is to show that every regular half space of 
&,M, is of the same homotopy type as a regular half-space of a 
manifold. 

It turns out that if one steers a middle course between Morse and 
Seifert and Threlfall such a "model" for &2aM is easily constructed. We 
have just defined 12,,M according to Seifert and Threlfall; for the rest 

1 The applications given in [2] are false, as was pointed out to me by A. S. Schwartz 

[11]. A distressingly simple example shows that the assertion [2, p. 253] to the effect 
that V1t,k is a manifold is wrong. This mistake invalidates the computations for the 
circular connectivities of the n-sphere. 
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we follow, in spirit at least, Morse's account of thirty years ago. 
Let pm: Mn-OR, be the function from the nWI cartesian product of M 

with itself, which assigns to (x) = (x1, *--, Xn) the number: 

Pn(x) = p2(P, x) + p2(x1, x2) + - - - p(Xn, Q). 
were p(x, y) denotes the distance between x and y on M, as before. 

REDUCTION THEOREM I. Let a be a positive number. Then there exists 
an integer n such that f&?M is of the same homotopy type as the half 
space qpM~n Of qn on M"ff'1, where b = a'/n + 1. Thus, 

(2.1) /. -- M'/ . 

The statement (2.1) is new, although quite implicit in Morse's account. 
He, of course, did not have a definition of ?2,,M on which the length func- 
tion was continuous. A slightly surprising technical phenomenon is that 
the function q,, alone suffices to define a model for f2aM. In Morse's 
original account, he essentially shows that f?aM is of the same homotopy 

type as the subset of Mn characterized by ((xi, xi+,) < P; A, ,I Xin) 
<a. (Here x,=P; xn+ Q). 

PROOF OF (2.1). There exists a number p3 > 0 such that two points of 
MkE with distance less than P have a unique shortest geodesic joining 
them. This shortest geodesic then varies smoothly with the end points, 
in particular p2(x, y) is a Co function of x and y as long as p(x, y) < p. 

Suppose now that n is chosen so large that: 

(2.4) a/-v n + < P. 

Under this condition on n we define maps a: S2T'M -p M and ): (pIM' 
f2aM which constitute a homotopy equivalence. (For convenience we 

write , for rp, and denote qpbMn by M* in the sequel.) 

DEFINITION OF (v. Let c e f2aIM. Then a(c) e Mn is to be the point: 

a(c) {c(t), c(t2) ***, c(tn)}; t, = i/n + 1; 

Clearly a is a continuous function from &NaM to Ml. Next, p(ac) 

-^p {c(t'), c(ti+ )}. Each term of this sum is <(a/n+ 1)2 because c is 
parametrized proportionately to arc-length. Hence <f((ac) < (a/n + 1) -b. 
The map a therefore take values in Ml. 

DEFINITION OF he. If x = (xl, - - *, xn) is a point of M* = 'pbMn, then each 

of the numbers, {p(P, xl), P(x1, x2)- Pp(xn+ 1 Q)} is less than a/Vt//n+1, 

hence less than P. The unique geodesics joining consecutive points of the 
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array P, x1, *--, xn, Q are therefore well defined and combine to yield a 
curve, c, in &2,,M. By the Cauchy inequality the length of c does not 
exceed a. The correspondence x c defines the map (3. 

LEMMA 2.1. There exists a homotopy D,, 0 < t < 1 of flaM on itself 
8uch that Do is the identity, and Di 1 /- o a. 

The needed deformation is given explicitly in [10, p. 51]. One deforms 
the segment of c between t, and ti+,, into the geodesic chord joining c(ti) 
to c(ti+3). The intermediate curves are geodesic segments from c(t,). 
c(ti + s) followed by the original curve from t, +? to t,+,. 

LEMMA 2.2. There exists a homotopy At, 0 < t < 1, of MI on itself, 
such that A, is the identity, and, A, = a oWe 

This homotopy is to be found in Morse [8, p. 217]. If x e M*, p3(x) is a 
polygonal curve joining P to Q. Let c: [0,11- M the parametrization of 
A3(x) which is proportional to arc length. Let 0 < a1, < ***, a <1, be the 
pre-images under c of the points x = {xl, - - -, xn} on ,8(x). The {a,} 
then correspond to the parameter values of the original vertices on /3(x). 
The composition a o /3 takes x into {c(t1), c(t2),... *c(t,)} where t= i/n+1. 
Hence if a,=ti, then the ao4(x)=x, and what is needed is a "universal" 
homotopy which takes the points a, into the points ti. The natural way of 
constructing this homotopy is to dispatch a, on its way to t, at a linear 
speed proportional to the distance to be traversed. In formulas, let 

a, - 0 
anT- a,(1 T -) + Tr 0 ( < '1; i-n*** 

aTp, + L1 

The homotpy A, assigns to x the point {c(aT)} where c = i(x). Clearly the 
a, vary continuously with x for x e MI, so that A, is a proper homotopy. 
It remains to be checked that A. keeps MAI invariant. For this purpose 
it is sufficient to prove that p(Avx) < p(x); 0 < z ? 1. 

Let J(x) be the length of ,8(x), and set 8i = J(x) (a, - ai-J. Thus 

8i = J(x), while By',+138--p(x). We also write {xa} for the co- 

ordinates A7x. Then: 

r)(xT, xT+1) < &,+](l -) + z-(J(x)/n+1) 

because /,(x) is parametrized proportionally to arc length. Hence: 

(P(A7 X) < t [t1 i(l- z) 4- z(J(x)/n+ 1)12 

After expanding, the right hand side is seen to equal 
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p(x) - 2z,(p(x) - {J2(x)/n + 13) + 2(rp(x) _ {J2(x)/n + 1}) 
By the Cauchy inequality Cp(x) - J2(x)/n + 1 > 0. Hence in the range 
0< z < 1, 'p(ATx) < cp(x). This completes the proof of the lemma, and 
hence of (2.1). 

The statement (2.1) has a refinement which will be formulated next. 
Its purpose is to relate certain geometric properties of the geodesics in 
fsaM with the critical points of q on Mb . Recall first the notion of the 
index of a critical point. If p is a critical point of the smooth function 
jp on the manifold N, the Hessian of p, denoted by H,,cp, is the bilinear 
symmetric function on the tangent space Np of N at p, which in terms 
of local coordinates is defined by Hp(a/ax,, a/axe) =a2p/a9X ,5x. The 
index of p as a critical point of y) is by definition the dimension of a 
maximal subspace of N, on which the Hessian is negative definite. This 
integer is denoted by X\(p). Finally we briefly review the notion of a 
conjugate point on a geodesic. For details the reader is referred to [8] 
and [6]. 

If s(x, t) is a smooth family of geodesics, depending on a parameter af, 
then the vector field as(a, t)/icaay, along s(0, t) is called a J-field along 
S = s(0, t). The totality of such vector fields along s, forms a vector space 
J, over the real numbers. If the length of s is less than p, every V in J.T 
is uniquely determined by its values at the end-points of s. In general, if 
P and Q are two points of s, Q is called a conjugate point of P (along s) 
of multiplicity k if the subspace of Js, consisting of the fields which 
vanish at both P and Q, is of dimension precisely k. 

REDUCTION THEOREM II. The homotopy equivalence a: faM M- 

constructed in the proof of (2.1) has the following properties: 
(2.2) Under a the geodesics of f?,JM are mapped one to one onto the 

critical points of p on Ma. 
(2.3) If s is a geodesics of &2aM and p is its image under a, then: 
The dimension of the nullspace of H,?p equals the multiplicity of Q as 

a conjugate point of P along s. 
The index \,,(p) is equal to the number (counted with mnultiplicities) 

of conjugate points of P in the interior of s. 
Except for a minor technicality, (2.2) and (2.3) are the content of 

Morse's index theorem. See [8, p. 911. The technicality in question is 
the following one. Let J be the function p(P, X1) + p(X1, X2) + ?-- + 

p(Xn, Q). This function is smooth provided that no two consecutive co- 
ordinates coincide. Thus, except in a trivial case, the function If is 
smooth near the point p of (2.3), and, as will be shown in a moment, p is 
also a critical point of fl. If in (2.3) we replace ',\,,(p) by x,(p) we obtain 
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the statement of Morse. Note however that (2.2) with 'p replaced by e 
is not true. Indeed, the critical sets of %Jr are cells obtained by sliding 
the vertices along a given geodesic. 

To prove our theorem it is therefore sufficient to establish (2.2) and the 
equality of \<(p) with X,(p). 

PROOF OF (2.2). If s is a geodesic segment of fItM then 1 o 0a(s) =s. 
Hence a imbeds this set of curves in M*, and it remains to identify 
the critical points of p on this set. Let x e M4, let X be a tangent vector 
to Mn at x, and consider the derivative Xp of (p in the direction X. The 
point x is critical if and only if Xp = 0 for all X in the tangent space 
at x. Suppose that x has the coordinates (x1, - - *, x,) and that X has the 
corresponding components (X1, *--, Xn) in the natural product structure 
of the tangent space to Mn at x. Let si denote the geodesic segment 
from xi to x,+1, where we now set Xo =P, xn+1 = Q, and let so, respectively 
s be the unit tangent vector of si, at xi,, and x,. By the well known 
first variation formula: 

X _ p2(xi, xi+1) = 2 i I 1{<91, Xi+1> -<A'X7>}, 

where <, > denotes the inner product of the Riemannian structure, and 

si I denotes the length of Si one obtains the expression: 

Xcp = 2 E 'K=- < I Si - Si+ I |S+Xi+I > 

The components Xi of X are independent. Hence Xcp 0 0 for all X if 
and only if 99 = s J,31i s i= si+ 1; i = 1, ** ,n-1. In other words x 
is a critical point if and only if /3(x) is a geodesic, and a o ,3(x) = x. This 
completes the proof of (2.2). 

PROOF OF (2.3). Let A be the tangent space Ml!Wp. By varying the vertices 
of p along s, we single out a subspace At of A on which Hcp is clearly 
positive definite. It therefore suffices to study the restriction of Hcp9 to 
a suitable complement of Ad in A. Such a complement is furnished by 
the elements X {XJ} in A with each Xi perpendicular to s. Let this 
complement be denoted by Al, and suppose X, Ye AO. For each seg- 
ment Si choose J-fields UJ and V7. so that at the end points Si, Uj coincides 

with X,-1 and X&, while Vi coincides with Y> l and Y,. We write this 
condition in the form Us+ ==X+1; Uj- = Xi, etc. Because Ki I < p, the Ui, 
Vi are uniquely determined by X and Y. Now by the second variation 
formula, 

Hjp(X, Y) -kE <A U+ -A UT-+1, V7+> 

where A U, denotes the covariant derivative of U1 along s, and k is equal 
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to (2/n+ 1) x length of /3(x). For the function Xfr we obtain similiarly the 
expression 

HPfr(X, Y) = <AUi - AU+1, Vt> 

Thus on Al these two Hessians differ only by a positive factor. On the 
complementary subspace Hazer vanishes. Hence X \(p) = X,,(p) as was to 
be shown. 

REMARK. These formulas immediately prove the first part of (2.3). 
Indeed, a vector X is in the null space of Hp if and only if the J-fields 
U, along si fit together to form a global J-field along s which vanishes at 
both P and Q. In this manner Morse obtains the formula for the null 
space of Hop. Concerning the index formula, let me just remark that 
Morse obtains it by deforming Q along s into P, and observing that the 
index form H,)# does not change during this deformation except when Q 
passes through conjugate points of P. At such points the index is 
shown to decrease by precisely the multiplicity of the conjugate point. 

The two reduction theorems complete our original program of assigning 
to every regular half space of f2aM a regular half space of a compact 
manifold which is of the same homotopy type. (The fact that regularity 
is preserved under a follows from (2.2)). We will call the set M* con- 
structed in this section a model for &21M. If . = (P, Q: h) is a base point, 
![2,M denotes the component of h in &f?lM and the image of la2M under at 
will be called a model for flaM. It is clear that the reduction theorem 
holds equally well in this new setting. 

3. Review of the Morse Theory. The nondegenerate case 

The classification of critical points according to index and nullity has 
topological implications which are usually expressed by the Morse 
inequalities. Actually however this "homology formulation" is proved 
by homotopy arguments. It is better therefore to state these implications 
in the language of CW-complexes [13]. In this manner homology con- 
sequences are easily accessible while the homotopy implications are not 
lost. (See [9] and [12].) 

DEFINITION 3.1. (See [2].) Let V be a smooth connected submanifold 
of the regular half space N"t = faN. Such a manifold is called a 
nondegenerate critical manifold of f on Na if: 

(3.1) Each point of V is a critical point of f. 
(3.2) For any p e V, the nullspace of Hpf is the tangent space of V 

at p. 
An immediate consequence of (3.2) is that Af(p) is a constant on V. 
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This integer is the index of V, and is written X V). If V reduces to a 
point, H1,f is non-singular by the condition (3.2). The present notion 
therefore generalizes the classical definition of a nondegenerate critical 
point. 

Let V be a nondegenerate critical manifold of f on Na. We define the 
negative bundle, T,, over V in the following manner. 

Let a Riemannian structure be defined on N. At each point p e V the 
form HJf then uniquely determines a linear self-adjoint transformation 
T, on the tangent space of N at p, by the formula, 

(3.3) <TPX, Y> = Hpf(X, Y) X, Ye N7, 
These transformations combine to define a linear endomorphism, T, of 
the tangent space to N along V. By condition (3.2) the kernel of T is 
precisely the tangent space to V. Thus T is an automorphism of the 
normal bundle of V in N. 

Now let t, be the subbundle of this normal bundle which is spanned 
by the negative eigendirections of T. Thus the fiber of t, at p e V is 
spanned by the normal vectors to V at p, for which TV Y = X Y, X < 0. 
The fiber of t, therefore has dimension Xf( V). If Xf (V)=0, we set t, equal 
to V. The bundle E, is independent of the Riemannian structure used. 

Finally, recall the notion of attaching a vector bundle &, to a space Y 
to form the space Y U I. 

In general if aY: A-- Y is a map of a subset Acm X one forms the space 
Y U X by identfying a e A c( X with a(a)s Y in the disjoint union Y with 
X. 

This attaching construction has the following elementary properties: 
(3.4) The homotopy type of Y U.] X depends only on the homotopy 

type of (Y. 
(3.5) If (X1, A1) is a deformation retract of (X, A) and if cu1=a( I A, 

then Y U ,X, is of the same homotopy type as YU gX. 
When X is an n-cell en, and A is the bounding sphere of en, Y U ae,e is 

referred to as Y with the cell en attached. If 0 is an orthogonal n-plane 
bundle, we form the space Y U #, by taking, in the above procedure, X 
equal to the set Dt of vectors of length < 1 and setting A equal to 
St = &Dt. In this case we speak of Y with 0 attached, and if a is not 
explicitly in evidence just use the notation Y U 4. If d is a 0-dimensional 
vector-bundle Y U t stands for the disjoint union of Y with the base- 
space of d. 

With this notation and terminology understood, the principal result of 
the nondegenerate Morse theory can be stated as follows: 
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THEOREM III. Suppose that N"' c N' are two regular half-spaces of 
the function f on the compact manifold N. 

(3.6) If f has no critical point in the range a < f < b then N" is a 
deformation retract of N'. 

(3.7) If f has a single nonde generate critical manifold V in the range 
a < f < b, then N' is of the same homotopy type as Na' with the negative 
bundle of f along V attached: 

Nb = Na U A: 

where t, is the negative bundle of f along V. 

Immediate consequences in homotopy, [13], are: 

COROLLARY 1. Under the assumptions of (3.7): 

(3.8) Nb=NaUelU... U es 
where the cells e>, i = 1, * - *, s, have dimension > Xf ( V). In particular. 

(3.9) wr(Nb, Na) = 0 for 0 < r < X(V) 
Using excision and Poincare duality (3.2) implies: 
COROLLARY 2. Under the assumptions of (3.7) 

(3.10) H"(Nb, Na; G) t Hc(0V; G) =Hr-A(V; G') N = f(V)- 

Here the subscript c denotes compact cohomology, and by G' we mean the 
tensor of the coefficients G by the orientation sheaf of d. 

REMARKS. In [2] we derived (3.10) with G specialized to Z2. In this 
paper we will need only (3.9) but it seemed to me that (3.7) summarizes 
the situation better than any of the other versions. Remark that (3.10) 
implies (3.9) if Na is assumed to be simply connected. On the other hand 
(3.8) yields (3.9) without this troublesome hypothesis. 

The restriction that V be the only critical set of f in the range from 
a to b is not essential. If all the critical sets are nondegenerate, they are 
necessarily finite in number, so that if we denote them by VT: i = 1...s; 
then Theorem III is easily modified to yield the formula 

Nb=NaU tVU Uvs. 

If Na is triangulated, the attaching map of cell ek can be deformed 
into the (dim e, - 1)-skeleton of Na. In this way Nb becomes a CW- 
complex. 

The case when V is a point, p, is completely treated in [10]. The 
present extension is best summarized by saying that what is done for a 
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neighborhood of p in [10] can equally well be done in a normal neigh- 
borhood of V in the present case. On each fiber of such a neighborhood 
one encounters the nondegenerate critical point problem. 

PROOF OF 3.6. Let N' be endowed with a Riemann structure and 
denote the gradient of f corresponding to this structure by Vf. If 
p e Nb - Na, LX, shall denote the integral curve of - vf through p in its 
natural parameter. Because df * 0 on this set L, is well defined. Further 
because Nb - Na is compact, i vf I > so > 0 on this set. Hence each L/, 
intersects f -(a) at some point, say h(p), and the function p -* h(p) 
defines f -(a) as a retract of Nb - Na. By assigning to p the point h,(p) 
on L,) which divides the segment from p to h(p) in the ratio 1: 1-t, f -'(a) 
is seen to be a deformation retract Nb - Na. Hence (3.6) is true. 

NOTE. The critical values of f form a closed set. Hence Nam- is again a 
regular half-space of f when s > 0 is small enough. Using this additional 
space it is easily seen that under the conditions of (3.6) Nb and Na are in 
fact homeomorphic. 

PROOF OF 3.7. We may assume that f(V) =0, and that f has no criti- 
cal points in the range [(-so, 0); (0, s,)]. It is also sufficient to prove 
that under these conditions N3 = N- U Ad for some 0 < s < so. 

We have already defined t d. as the negative bundle of f along V. 
Let 0+ be the negative bundle of function - f along V. Then, clearly, 
the normal bundle C of V in N is the direct sum id with S. 

(3.11) C 

We let r: rin be the natural projection. The length of a vector 
X e C is denoted by I Xl and the function X-* I X12 is denoted by p. 

Let p: r;-*N be the exponential map. This map is a homeomorphism in 
the vicinity of V included in C as the zero cross-section. Thus p induced 
a Riemann structure (,) on this vicinity. The function fop will be 
donoted by f;. 

The condition that V is a nondegnerate critical manifold of f clearly 
implies that the function f* restricted to any fiber of C has a non- 
degenerate critical point. More precisely the following is true: 

(3.12) The function f*, restricted to any fiber of d [e], hasa non- 
degenerate minimum [maximum] at 0. 

An easy computation now yields the following consequence: 
(3.13) The function (df*, d9), restricted to any fiber of ?+[0] has a 

non-degenerate minimum [maximum] at 0. 
The geometric interpretation of this remark is in turn 
(3.14) If s>O is small enough the set ff* <s on a fiber of i is star- 
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shaped with respect to 0, and therefore linearly contractible. 

(3.15) If It > 0 is small enough, the gradient of -f* points out of the 
set p(X) < pa, at points with (p(X) =a, on any fiber of $. 

Now, let X,, be the subset defined by: 

(3.16) X= {X e C f(X) < S; nop W r(X) f It} 

Then we can as a consequence of (3.14) and (3.15), find positive numbers 
and It with the following properties: 
(a) We have s < an 

(b) The map p is a homeomorphism on X,,. 
(c) If A'1 c X,1 is the subset of X,1 on which n) o r(X) = 4te, then the 

pair (X,1f na, A,3 n a) is a deformation retract of (X,,, A,). 
(d) The gradient of -f points out of the set p(X,,) at the points of 

p(A3). 
Assume in the sequel that s, ,u have been chosen in the above manner. 

Also let Y,- N - p(X3). From (b) we conclude that NM= Yy U X 
with attaching map a = p I A,,. From (c) it follows that NE = Y,8 U . 

(Clearly the pair (DE, SE) is equivalent to the pair (Xt n a, Au n 4).) 
Finally, from (d) we conclude that at the boundary points of Y, the 
gradient -Vf points inward. Further there are no points with Vf = 0 
on this set in the range - s < f, in view of (a). Hence N- is a defor- 
mation retract of Y,3 by the argument used in -the proof of (3.6). Thus 
N2 is of the same homotopy type as N-e U e as was to be shown. 

REMARKS ON (3.8). This result follows from (3.7). One triangulates V 
and uses the preimages of these cells under the map Dt -- V as the cells 
en. 

The following is a different argument which proves (3.8) under the 
weaker hypothesis that (3.7) holds if V is a point. Let g be a function on 
V which has only nondegenerate critical points on V. Extend g to a func- 
tion g on a normal neighborhood, B, of V in N by making 

A constant 
along the fibers, F, of B. Finally smooth A out to 0 inside a slightly 
bigger normal neighborhood. There results a Co function A on M. Now 
consider the function f = f + 'E, with s > 0. For s sufficiently small f 
will have only nondegenerate critical points in the range a < f < b, and 
these will be precisely the critical points of g on V. Note that this part 
of the argument holds without the nondegeneracy hypothesis. All that is 
needed is that V be an isolated critical manifold. However, under such a 
general condition nothing can be said a priori about the indexes of the 
critical points of f. Under the nondegeneracy condition, Hpf and Hpg 
have complementary nullspaces at all critical points of f. Hence the 
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indexes add, and are therefore >?xf(V). 
We close this section with the following easy corollary of Theorem I, 

corresponding to the case xf(V) = 0, i.e.. when 0,7= V. 

COROLLARY 3. Let f be a smooth function on the compact manifold M. 
Assume that the critical set of f consists entirely of nondegenerate 
critical manifolds. Let M* be the set on which f takes on its absolute 
minimum, and let If I denote the smallest index of the critical points 
of f on M - M*. Then M is obtained from M* by successively attach- 
ing cells of dimension no less then If 1. Thus: M = M, U e U ... U e,; 
dim e, > I f io 

4. The suspension theorem 

Le v be a base point on M. The space ?2,M is called nondegenerate if 
the set of geodesics in f2?VM is the union of nondegenerate critical 
manifolds. Precisely, this condition should be formulated as follows: t2,M 
is nondegenerate if, given any regular half-space 2WM, with model 
M*, then the critical set of p on M' is the (necessarily) disjoint union of 
nondegenerate critical manifolds. 

Combining the reduction Theorem III the following proposition becomes 
evident: 

SUSPENSION THEOREM. Let &2VM be nondegenerate. Let CV CvC,(M) be 
the collection of critical manifolds in i2M. 

Let CV be well ordered, CV= { V1, V2, * * }, compatibly with the partial 
order defined on V by the length of the geodesics, and let dv. = 0i be 
the negative bundle of Vi. Then nM has the same homotopy groups as 
the CW-complex: 

(4.1) K = , U a2 U 3U *-- 

We call this the suspension theorem because (1.1) follows from it trivially. 
Indeed, if I I i > 1, then only one of the critical manifolds V? can have 
index 0, because i,2M is connected, (whence K is connected) and attach- 
ing a vector bundle of fiber dimension >1 does not change the number 
of components. Hence in this case V, has index 0 while all other Vi have 
index > I v 1. It follows that MV = V,. Thus going over to the corollary 
of Theorem III, K is of the form: 

(4.2) K-Ma U e1 U e2 U.. dime, > I 1 . 

Let i: Ma 1&?M be the inclusion and let v* denote the suspension (in 
homotopy) from (2,M to M, Then a* o i wk(MV) -rk+1(M) agrees with 
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the definition of X, given in the introduction. Hence by (4.2) we obtain 
the corollary: 

COROLLARY (4.1). Under the hypothesis of the suspension theorem, 

(4.3) * w,(MV) 5.+1(M) 0 < r < I 1- 

is an isomorphism onto. 
For completeness, we state an immediate cohomology consequence 

of (4.1): 

COROLLARY (4.2). Under the hypothesis of the suspension theorem, 
H-(QM; G) admits a spectral sequence Er which converges to a graded 
group of H*(f2,M; G) and whose E1 term is given by: 

(4.4) El ,H (z; G) 

where t, ranges over the negative bundles dv; V c Cal (The subscript c 
denotes cohomology with compact supports.) 

By PoincareI duality one has further that (in the notation of (3.10)): 

(4.5) Hr(#F; G) = Hr-(V; G'), X = X(V) 

REMARKS. Recall that nondegerate f2,M exist for every manifold M 
of the type we are considering. In fact nearly every base point, V gives 
rise to an &2,M in which the geodesics are nondegenerate critical points. 
In that case (4.3) is quite uninteresting, however (4.4) is still useful; in 
particular, El will then be free if G is taken as the integers. For 
instance, if M is a compact group, El=E,, is was shown in [3], while 
for compact symmetric spaces, in general, E1 = E. at least mod 2. [6]. 

5. The proof of Theorem I 

Theorem I follows from the suspension theorem of the last section 
once it is proved that: 

(5.1) If M is a symmetric space then Q,,Iis nondegenerate for every 
base point v on M. 

(5.2) With M, M"' is again a symmetric space for every base point v 
on M. 

Recall that the manifold M is called symmetric if the following condi- 
tion is satisfied: 

(5.3) For every P e M, there exists an isometry L4, of M which keeps 
P fixed and reverses the geodesics through P. 

From the second condition it follows that I,2=identity for every Pe M. 
Another equivalent definition can be given in terms of the group of 
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isometries of M. This group, which is known to be a compact Lie-group, 
will be denoted by G in the sequel. Using the fact that any two points 
of M can be joined by a geodesic one easily derives the following conse- 
quences of (5.3). 

(5.4) The e-component G' of G acts transitively on M. 
(5.5) If K, e G is the stability of Pe M, then K,. is pointwise fixed 

under the automorphism A,: k -* IpkIj' of G. 
(5.6) The e-component KA coincides with the e-component of the fixed 

point set of A, in G. 
The converse of (5.6) yields the alternate definition of symmetric 

spaces: 
(5.7) If G is a compact group, and A is an involution of G, then in an 

invariant Riemannian structure, the coset space GIK is called a symmetric 
space if K' coincides with the e-component of the fixed point group of 
A. 

In the sequel we assume M is a symmetric space with Kp the stability 
group of P e M. The e-components of groups will be denoted by a dash, 
e.g., Kp. 

The action of Kp on M was discussed in [6], and was shown to be 
variationally complete. 

As a consequence the following is true: (see [6, chapter II].) 

PROPOSITION 5.1. Let s be a nontrivial geodesic on M starting at P. 
Let Q be any point of s, and set KPQ respectively Ks, equal to the sub- 
group of Kp which keeps Q, respectively s, pointwise fixed. Then the 
multiplicity of Q as a conjugate point of P is equal to dim KpQ!KS. 

The statement (5.1) is an immediate corollary of this proposition. 
Indeed, let v = (P, Q; h) and let the set of geodesics in &2,M be denoted by 
SM. Clearly KP Q acts on S>M, the orbit of s e SM, being homeomor- 
phic to KpQ/K'. In any model, M*, for &2aM these orbits are certainly 
imbedded as smooth submanifolds. Now we see by Proposition 5.1 and 
(2.3) that the nullity of any point on such an orbit is equal to the dimen- 
sion of the orbit. This is precisely the second condition for nondegener- 
acy. (see (3.2)). 

There remains the statement (5.2). To prove it, we show that each 
orbit of KpQ on M" is a symmetric space. Let then V be the orbit of 
s e M%. We may assume that s does not degenerate, for then M"' reduces 
to a point. Thus V = KpQ/KS and we have to produce an involution A 
of KPQ whose fixed point set contains Ks as e-component. Because s is a 
minimal geodesic in the &2VM, no conjugate point of P occurs in the 
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interior of s. In particular, the midpoint R of s is not conjugate to P 
along s. Hence K' - Kr, by Proposition 5.1. 

Now I,1P = Q, and IRQ = P. Hence if k e Kpq, then IRkIH1 c Kim. 
Thus A: K4, Kp,, defined by A(k) = IIkI-' is an involution of KPQ. On 
the other hand, the e-component of the fixed point set of A is precisely 
K'p,. This proves (5.2) and completes the proof of Theorem I. 

For future reference we close this section with the following theorem, 
which is a straightforward generalization of Theorem I of [6]. 

THEOREM IV. Let v be any base point on the symmetric space M. Then 
the spectral sequence, (4.2), attached to 7,?M by the decomposition (4.1), 
is trivial over the integers mod 2. Thus: 

(5.8) H*(Iv1M1![; Z2) = HC* (; Z2) V Ei(2C(M) 

In the group case (5.8) holds with integer coefficients. 
NOTE ON THE PROOF. The spectral sequence (4.2) is derived from the 

filtering of K = do U &, U *--, by the subcomplexes K, - t0 U ... U &? 
Let a: St, -- KI , be the attaching map of 4i. The problem is to show that 
ar induces a trivial homomorphism in homology. Let s e V? and consider 
the K cycle V, as defined in [6]. This is a manifold fibered over V with a 
section a: V -' F. One has a map of 1' K?, which transforms Ei into 
the normal bundle of a(V) in 1F. Thus F = I"' U Hi corresponds to 
KI = KI, U Hi and in P' the attaching map a* is always homologically 
trivial mod 2 (because Ei is the normal bundle of a section). If the fiber 
of r over V is orientable a* will also be trivial over the integers. 

The simplest application of Theorem IV is obtained by considering (5.8) 
in dimension 0. Because n2,M is always connected for any base point v 
on M, (5.8) implies that M' is connected. This fact will also be apparent 
in the explicit computations of sections 7 and 8 which evaluate the inte- 
gers I v I of Theorem II. 

Before proceeding to the proof of this theorem we have to review the 
basic conjugacy theorems for symmetric spaces which make the explicit 
computations possible. This is done in the next section. 

6. The roots of a symmetric space 

In this section G is to be a compact connected Lie group, in a left and 
right invariant metric, which an involution A. The full fixed point set 
under A is denoted by K, while the e-component of K is written K'. (Note 
that K thus plays the role of K, in section 5.) 

Let g be the Lie algebra of G, and let 
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- = f + III 

be the decomposition of g into the fixed point set of A, (this is t, the Lie 
algebra of K) and its orthogonal complement. Let ton be a maximal 
abelian subalgebra of m, and let b ID tm be a Cartan subalgebra of g. 

Let r: G-+G be defined by: r(g) g-A(g-1). Then 7(gk) -(g) so that 
r, is constant along the left cosets of K and in this manner defines a map 

zjy,2: G/K- G. We also let M be the image of iit under the exponential 
map. Thus 11- ent. Then it is known [1], [7], that r, is a homeomor- 
phism of G/K onto M. Further the natural action of K on G/K now 
translates into the adjoint action of K on G restricted to M. In the sequel 
we will therefore always think of the symmetric space GIK as the 
subset M c G. 

Let Tm be the image of tm under the exponential map. This is'a torus 
in M which is geodesically imbedded. Any torus of this form is called a 
maximal torus of M, and its dimension is the rank of M. 

We write W(G, K) or W(M) for the group of automorphisms of Tn 
which are induced by inner automorphisms of K'. The following are basic 
properties of maximal tori: (see [1], [6], [7]) 

(6.1) If T and T' are two maximal tori of M, then there exists a k e K' 
so that T = kT'k-1. 

(6.2) If X is a subset of Tm and k e K has the property kXk-l' c Tm, 
then there exists an element a of W(G, K) so that a(x) = kxk-1, for all 
x e X. 

(6.3) Every point of M lies on a maximal torus of M. 
We also have: 
(6.4) The geodesics of M through e coincide with the one-parameter 

groups of G which lie in M. 
(6.5) If x e m, then the index of the geodesic segment: 

i(t;) -- etz0 < t < l. 

in M is computed as follws: 

Let 4(G) = {OJ, i = 1, *--, m, be a system of positive roots of G on 
if. Also if a is any real number, let II a II denote the number 0 if a - 0, 
otherwise let 11 a 11 be the greatest integer < i a 1. With this understood, 
the index in question is given by: 

(6.6) \(Z) - Ol(X) II 
REMARKS. 

( 1 ) The formula (6.6) is to be found in [6], except for a factor 2 in the 
definition of the exponential map. This discrepancy is explained by the 
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fact that the inverse of :GIK -K M, is not given by the projection 
M- G/K induced by the natural map r: G G/K. Rather, one has 
xy V(pWz(l p ) where for p e M, V p is any point of M with (t/ p )2p 
That this factor 2 could be done away with by considering M rather than 
GIK was pointed out to me by A. Borel. 

( 2 ) We can find distinct non-trivial forms poiJ, i - 1, m i', on lit 

such that each 0 e `(G) restricts to some ? pi on int. Such a system of 
forms is called a root system for M', and is denoted by 2;(M). For each 
(p e :(M1I) let nap be the number of forms in ?4G) which restrict to ? p on 
Otj. These integers are the multiplicities of the root forms of M. In terms 
of them, (6.6) is expressed by: 

(6.7) \(x) - - E n, I If(x) 1p e(M). 

This formula has the following geometric interpretation: Consider the 
set of planes on which one of the root-forms ap e N (G/K) has an integral 
value. Then X(x) counts how many of these planes the line-segment 
tx, 0 < t < 1, crosses, each crossing being counted by the appropriate 
multiplicity. 

Finally, we recall the following facts: 
(6.8) Let A, be the lattice of those x e t)nt, for which the segment 

x(t) = etl, 0 < t < 1, represents a closed curve which is homotopic to zero 
in M. Then A, is generated by elements it, 'p) e :2(M), characterized by: 

t)l, is perpendicular to the plane p) = 0, and rp(f,) = 2 

(6.9) The representation of W(M) on ntj is generated by the reflections 
in the planes 'p = 0 for 'p e L(M). 

These propositions enable us to survey the possible indexes of elements 
in SM entirely in terms of the roots of G on ). Indeed, by (6.3) no 
generality is lost if we assume that the base-point -(P, Q; h) is 
of the form P= e; Q e Tnt. According to (5.1) the set SM will consist 
of the cllection CVVM of nondegenerate critical manifolds. If s is a geodesic 
of Ve G7(K--M, then V consists precisely of the set of geodesics ksk-' 
where k is in the subgroup of K' keeping Q fixed. Hence, by (6.1), (6.2) 
and (6.4), each V contains geodesics which lie on Tnt, and join e to Q. 
Further two such geodesics lie in the same V precisely if they are conjugate 
under W(G, K). 

We will adhere to the convention that if x e 1t)it, then x represents the 
geodesic elx, 0 < t < 1, in M. Because the geodesics on Tnt can be lifted 
into tllt in the obvious fashion, our earlier conclusions can be summarized 
as follows: 
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PROPOSITION 6.1. Let x) e tent be any point with c, e f2,,M. Then if 
x e x, + A* there is a unique critical manifold Vx c SAI which contains 
X. This manifold is homeomorphic to K'/K,, where K, is the centralizer 
of xin K'. 

The function x - V, maps x, + A* onto the set CV,,M, and if V, = V, 
X, y, e X, + A*, then x and y are conjugate under the action of W(G, K) 
on lm. 

COROLLARY. The set of indexes X(s), s e SM, consists of the integers 
X(x), computed according to (6.7) as x ranges over the points of x) + AN. 

In the next sections this proposition is applied to compute the values of 
LI I given in Theorem II, case by case. 

7. Computations when M is a group 

If the compact connected group G is to be considered as a symmetric 
space, M, we must, to follow our general procedure, consider M as the 
subset (g, g-'), g e G, in G x G. Then M = G, while kilt corresponds to 
the anti-diagonal in h x h. Thus in this case E(M) is a positive root 
system for G each root being counted with multiplicity 2. The group K 
then corresponds to G acting on M by the ad joint action. 

In each case to be considered, we will choose orthogonal coordinates in 
0t11, and so identify t)n with RI, the space of l-tuples of real numbers with 
the usual inner product ((x, y)= x, -y,, where xi, yi are the coordinates 
of x and y respectively). The form which assigns to x e RI its au"' co- 
ordinate will always be denoted by wlg. The exponential map then gives 
rise to a map RI -- M, which will be denoted by p. We will define this 
map in each case, and then give the root-system of M as it is expressed 
by the forms ah. 

(7.1) The unitary groups, AI = U(2n). Let d,, be the diagonal 2n x 2n 
matrix with atlh entry 2vLtZ/', and all other entries 0. Then p: R2 n-, U(2n) 
is given by: 

p(x) =exp {Ia o#(x) d} x e R2n. 

and the root-forms of M= U(2n) are: 

(1(M): @,8-At, 1 < ?a < /? < 2n. 

It follows that W(M) is permutation group of the coordinates in R2n, and 
that A* is generated by 1, -1, 0, 0,. - , 0} and its transforms under 
W(M). 

Let x, e R2n be the element: 
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x,, { -,0, O ..., 0; 1, 1, ..., 1} (n entries 0, n entries 1) 

and let i = (P, Q; h) be the unique base point containing the curve a 
(Note that then P = Q identity). Thus KPQ (in the sense of section 5) 
is equal to U(2n) and Kx = U(n) x U(n), whence V,, = U(2n)/U(n) x U(n). 

The points of x., + A, are of the form: x ={a, *--, a21} with a, e Z; 
E a, = n. Let b, < b, - - - < b, be the different integers which occur 
among the {ai}, and assume that bk occurs nk times. Then according to 
(6.7): 

2 , nXn(a - b - 1) . 
We conclude: 

( 1 ) If x e x, + A*, with x(x) 0 then x is conjugate to x.a under 
W(M). 

( 2 ) The next lowest value of X on x. + A* is 2(n + 1). Up to conjuga- 
tion by elements of W(M) this value is taken on only at the points: 

{0, *. ,0;0, 1,1,^...1,2} and {-1,0,0, ,, 1;1, 

Hence: 
(7.2) In this case, MA = V= U(2n)/U(n) x U(n), while I I 2(n + 1). 

COROLLARY. The sequence (1.2) is a >-sequence. 
(7.3) The orthogonal groups, M= SO(2n). Let 0, be the 2n x 2n 

matrix with only entry the diagonal box 27rwv'-1(_ 0) at the kth level. 

Now p: Rbt - SO(2n) is given by: p(x) exp {I o),(x)O}J, and we have: 

L~(M): cads (" c; 1 < a 3 < 1 < n. 

Further W(M ) is generated by the permutations wo. -* o,, and n,-* -,, 
a < 13; and A* is generated by the element {1, -1, 0.**, 01 as a W(M) 
module. 

Let x) - {1/2, 1/2, - - *, 1/2}, and let v be the base point determined by 
x,. Then Va = SO(2n)/U(n). By, (6.7) we see that X(x) = 0, x in x,, + A* 
implies x conjugate to x,, under W(M), while I v I is given by 2(n - 1). In 
fact the index of { ? 1/2, 1/2, 1/2, ..-, 3/2} is precisely 2(n - 1). Thus, 

(7.4) In this case MJ = SO(2n)/U(n), while I I I = 2(n - 1). 
(7.5) The symplectic groups, M = Sp(n). Let U(n) c Sp(n) be a 

standard inclusion, and let p: Rn -+ Sp(n) be defined by the map Rn -; U(n) 
as in (7.1), (with n replaced by 2n) followed by the inclusion. Then: 

'_`~_((M): ,, co,; 2(o,,, 1?a<f <n. 
W(M): All signed permutaions. 

A*: Generated by {1, -1, 0, *--, 0} as a W(M)-module. 
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Again, we choose x, = {1/2, *--, 1/2}. Then Vxa = Sp(n)/U(n) as is 
easily seen. As before V1 / Mv. However now ,\({1/2, 1/2, ***, 3/2}) = 
2(n +- 1), and this is the value of I v 1. Thus: 

(7.6) In this case, M- = Sp(n)/U(n) with I 1 2(n + 1). 

8. The remaining computations. Proof of Theorem 11 

(8.1) The space M= S0(4n)/U(2n). Let Q be the field of quaternions 
x0.1 + x- i + x2-j + x3.lk; x, e R1, where the 1, i, j, k are the usual 
quaternion units. We define the following endomorphisms of R41,: E. the 
identity; E, is to take the at" coordinate into minus the (a + 2n)t1' coordi- 
nate, while it takes the (a + 2n)tl coordinate into the at" one (1 < a < 2n). 
The endomorphism E, is to be represented by the matrix 

1? +*** +on-O - -on,2n 

where 0,, is as defined in (7.3). The assignment 1 - Eo, i -- E,1 j -E,, 
defines a representation of Q on R411. Because 1, i generate a field isomor- 
phic to the complex numbers, we see that the elements of SO(4n) 
which commute with E, form a subgroup U(2n) c SO(4n). The elements of 
this subgroup which commute with E, in turn define Sp(n) c U(2n). 
Hence if we set G = SO(4n), and let A be the inner automorphism by 
E1, then A2 is the identity and the fixed point set, K, of A is U(n). Thus 
GIK = M is a symmetric space. 

Let R2n - SO(4n) be defined as in (7.3) with n replaced by 2n. Then 
R2n corresponds to the Cartan algebra, t), of section (6), and we have to 
determine the inclusion tlt, c t). It is not hard to see that this inclusion 
corresponds to a map R I R2n given by 

(X, 
* * * - , Xn) (Xt I * .. S Xn/; -X1, .. XIr) 

Restricting the forms of (7.3) to this subspace, we obtain the following set 
of forms for L(M): wd ? wA; (1 < a < a3< n); 2Wc. (1 ? a < n) Further 
the multiplicity of wd + wk; (a * 18) is 4, while that of 2wo, is 1. Schema- 
tically we denote this set of forms by: 

>M:(mj 4-#)2 2(o, < (r < /18 < n 
4 1 

(Thus the integer below the form denotes its multiplicity. This notation 
will be used throughout the sequel.) W(M) and A*(M) are therefore the 
same as in (7.3) 

Choose x, = {1/2, ..., 1/2}, and let v be the determined by a. Note 
that x,(t) -exp (wov-1 t E2). It follows that in this case Kp,, U(2n), 
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while K = Sp(n). Thus Va = U(2n)/Sp(n). Just as previously, Va s 
actually M-, while I v I is the index of {1/2, ..*, 1/2, 3/2}, and thus given 
by 4n - 2. We conclude: 

(8.2) In this case MJ = U(2n)/Sp(n) with I 4n - 2. 
(8.3) The space M = U(4n)/Sp(2n). Let E, be the matrix described in 

the last section. Then it is well known that the subgroup of U(4n) whose 
elements satisfy the identity UtE, U = E1, form the linear symplectic 
group Sp(2n) c U(4n). Let A be the automorphism of U(2n) which takes 
U into E1 UET1. (Here the bar denotes complex conjugation.) Then A2 
is the identity, and because Ut = U-1, the subgroup of U(2n) fixed under 
A is precisely Sp(n). Let R2n R4n be the map: 
(8.4) (X, *.. X2n) -+ (Xi, * * * , X2n, Xi, * * * , X2n) . 

Then this map followed by the map R4n __ U(4n) described in (7.1) describes 
p in this case. Restricting the forms of U(4n) according to (8.4) we obtain 
the following array for L2(M): 

E(M): < a < -8 < 2n. 
4 

Hence W(M) and A* are as described in (7.1). Accordingly choose 
x, = {O, * * *, 0, 1, * * *, 1}, just as in (7.1), and let v be determined byx.; 
This is then a closed curve in M. Thus KPQ is represented by Sp(2n). The 
centralizer of x,, in U(4n) is clearly U(2n) x U(2n). Hence the centralizer 
in Sp(2n) is precisely Sp(n) x Sp(n). Thus Va is homeomorphic to 
Sp(2n)/Sp(n) x Sp(n). Just as in (7.1) we see that M" = Vx>. However 
I I I is now given by 4(n + 1), because each root has weight 4 instead of 
2. To summarize: 

(8.5) In this case M) = Sp(2n)/Sp(n) x Sp(n) while I = 4(n + 1). 
If we combine (7.4) with (8.2) and (8.5) we obtain the 

COROLLARY. -The sequence (1.4) is a >-sequence. 
(8.6) The space M = Sp(n)/U(n). We will now interpret Sp(2n) as the 

group of n x n nonsingular matrixes with entries from Q which keep the 
symplectic product invariant. We also write ifj] for the diagonal matrix 
i x Identity [j x Identity]. Consider the subgroup of Sp(n) which 
commutes with j. Because the elements of Q which commute with j e Q 
form a field isomorphic to C, this subgroup will be isomorphic to U(2n). 
Hence if A denotes the inner automorphism with j, then the fixed-point 
set of A is U(n). By a similar argument, the subgroup commuting with 
both i and j is the group 0(n) c U(n). 

Let p: Rn -_ Sp(n) be defined as in (7.1), except that V-1 is to be 
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replaced by i e Q, and 2n is to be replaced by n. Then Ap(x) = p(-x) 
Further the image of p is a maximal torus of Sp(n) as is seen from (7.5). 
This is therefore a case when lnm = t. If follows that the root system, 
L(M), identical with 1(Sp(n)), except that each root has multiplity 1. Thus 

E(M): Wd?W . 2wog 1 ? / a < /3 < n. 
1 1 

We chose x, as in (7.5), and v correspondingly. If follows that the 
endpoint of x,, is minus the identity, whence KPQ = U(n). The centralizer 
of xa must commute with j. Hence K., = 0(n). Thus Vx, = U(n)/O(n). 
Using the results of (7.5) it follows that: 

(8.7) In this case Ml = U(n)/O(n) with I v 1 = (n + 1). 
(8.8) The space M = U(2n)/0(2n). It is clear that here the automorphism 

in question is the complex conjugation. We let p: R2n __ U(2n) be defined 
precisely as in (7.1). We then see that this is again where fm = ). Thus 

1(M): ad-Mob 1 < a < , < 2n. 

We choose xa just as in (7.1), whence Vx= 0(2n)/O(n) x 0(n). By divid- 
ing the answer in (7.1) by 2, we finally obtain for I > I the integer (n + 1). 
Thus: 

(8.9) In this case Mv = 0(2n)/O(n) x 0(n), and 1 v I = (n + 1). 
Now combining (7.6) with (8.7) and (8.9) we obtain the 

COROLLARY. The sequence (1.3) is a >-sequence. 
This then completes the proof of Theorem II. It might be useful for 

later reference, to summarize the computations of the last two sections 
in terms of the suspension theorem of section 4. In this summary, the 
symbol X = Y U ek - - will be interpreted to mean that X is obtained 
from Y by attaching cells of dimension > k. With this understood we 
have shown that: 

i2,,U(2n) U(2n)/U(n) x U(n) U e2,+2 *.. 
(8.10) f2,S0(2n) SO(2n)/U(n) U e2-2 - 

f2,Sp(n) Sp(n)/U(n) U e2n+2... 

Further, 

(8.11) f2,Sp(n)/U(n) U(n)/O(n) U e l 
... 

( ) QU(2n)/0(2n) 0(2n)/O(n) x 0(n) U en+1 ... 

and 
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(8.12) fQnSO(4n)/U(2n) U(2n)/Sp(n) U e4-I2* * (8.12) fQaU(4n)/Sp(2n) Sp(2n)/Sp(n) x Sp(n) U e4..4--- 
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