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The manuscript was put into production on March 28,1969, These are the terse notes for a graduate seminar

this volume was published on June 15, 1969
which I conducted at Harvard during the Fall of 1963.

By and large my audience was acquainted with the
standard material in bundié theory and algebraic topology
and [ therefore set out directly to develop the theory of
characteristic classes in both the standard cohomeology

theory and K-theory.

Since 1963 great strides have been made in the study

s

of K(X¥), noctably by Adams in a series of papers in Topology.
Several more modern accounts of the subject are available.
In particular the notes of Atiyah, '"Notes on K-theory' not

only start more elementarily, but also carry the readexr

further in many respects. On the other hand, those notes

W. A. BENJAMIN, INC.
New York, New York 10016

deal only with K-theory and nof with the characteristic

vil
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classes in the standard cohomology.

The main novelty of these lectures is really the
systematic use of induced representation theory and the
resulting formulae for the KO-theory of sphere bu;'ldles.
Also my point of view toward the J-invariant, 8(E} is
slightly different from that of Adarms. I frankly like my
groups HI(Z+; KC{X)) and there is some indication that

the recent work of Bullivan will bring them into their own.

Reprints of several papers have been appended to
the notes. The first of these is a proof of the pericdicity
for KU, due to Atiyah and myself, which is, in some ways,
more elementary than our final version of this work in
"On the periodicity theorem for complex vector bundles™

(1964), Acta Mathematica, vol. 112, pp. 229-247.

The second paper, on Clifford modules, deals with

the Spincr groups f{rom scratch and relates them to K-theory.

Finally, we have appended my original proof of the

periodicity theorem based on Morse theory.

The research of this work was supported by

Naticnal Science Foundation Grants GP-1217 and 6585.

Harvard 1969
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LECTURES ON K{X)

§1. Introduction. Two vector bundles E and F
over a finite CW-complex X are called J-equivalent if
their sphere bundles B{E) and B(F) are of the same fibei-
homotopy type. If they become J-equivalent after a suitable
nu;nber of trivial bundles is added to both of them, they are
called stably J-invariant, and the stable J-equivalence

classes of bundles over X is denoted by J{X)

The primary aim of these notes is to discuss a
J-invariant of vector bundles 6{E), which is computable
once the group of stable bundles over X, - that is- K{X)
is known. The invariant 8(E) is clearly suggested by the
recent work of Atiyah-Hirzebruch [4}, [5] and especially
F. Adams {l]. In fact 8(E) bears the same relation to the

Adams operations as the Whitney class, @ known J-invariant



2 Raoul Bott

bears to the Steenrod operation. Further Adams' beautiful
solutions of the vector-field problem may be interpreted as
the explicit computation of the order of 8(E) where E is

the line-bundle over real Projective space.

The guiding principle of these notes is then to
construct the analogue of the theory of characteristic classes
in the K-theory and as this analogue is much simpler in the
KU-theory, (complex stable bundles) this case is taken up
first, in Sections I te 8. For the KO-theory I had to be
considerably less elementary, in the sense that used
some explicit results from representation-theory, especially

of the Spinor groups.

The contents of the notes may be summarized as
follows: Sections 2 to 4 are devoted to the standard material
on Chern classes ete. of complex vector-bundles. I have
here essentially specialized Grothendieck's account in the

Seminar Bourbaki, to the topological case.

In Section 5, K(X) is defined and its first properties
are derived, again following Grothendieck's point of view,
especially in the definition of the exterior powers. These,
in turn lead to an easy definition of the Adams operations.
Ialso very briefly recount the c¢ohomological Properties of

K(X) in this section. Here as well as in Section 6 the

IL.ectures on K(X)

appropriate reference is Atiyah-Hirzebruch [5] .

Section 6 introduces the periodicity theorem for the
KU-theory and deduces the first consequences from it. In
Section 7 the KU-analogue of the Thom isomoerphism between
the cohomology of the base-space and the compact reduced
cohomology of the total-space of a vector-bundle is defined.
Section 8 then employs this Thom isomorphism to construct
and in some sense compute the obstruction, 8(E), to a fiber
homotopy trivialization of a sphere-bundle derived from a
complex vector-bundie E . In Section 8, this 8 is used
to obtain the results of Kervaire-Milnor on the classical

J-homomorphism.

Section 9 discusses the complex representative ring
of 2 Lie group, RU(G) and relates it to the representative
ring of one of its maximal tori. I here state some of the
classical results of representation theory, and go into
considerable detail for the groups Ul(n}, SU{n), SC(n) and
Spin{n} . In Section 10 the real representative ring is
compared to the complex one, especially for the Spinor-
groups. Section 1l gives some basic isomorphism in the
theory of fiber-bundles, and induced representations which

lead to a different interpretation of some of the results on

the KU-theory. In Section 12 the periodicity for KO is
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stated and used to identify the generators of KO(S_, ) as
8n

bundles induced by certain Spin-representations.

Section 13 finally brings the KO analogue of the
invariant 8 and derives some of its Properties. Section 14
reinterprets the results of 13 in terms of the Thom-iso-
merphism in the KO-theory,

the Gysin-sequence for the KO-theory.

When KO[X) has no torsion, the invariant 8(E) is
squivalent to a J-invariant (HE) € KO{X) @ ©/KO(X) . The
definition of G and the proof of this equivalence is carried
oat in Section 16, while in Section 17 we show that the

character of Q(E)} is essentially the 4 genus of E as

defined by Hirzebruch.

Section 18 deals with the projective space bundle

associated to a vector bundle. In Section 19 we sketch two

methods fo i i
¥ computing KO(Pn) where Pn is the real

Projective space, and th
en compute J(Pn) . We also sketch

the way in which the i i
isomorphism KQ(Pn} ~ J(Pn) implies

the solution of the vector-field problem on spheres., Section

20 is a technical appendix on the difference element

while Section 15 goes on to give

5 Lectures on K(X)

§2. Totation and some preliminaries. We write

U for the category of finite CW -complexes and % for the
category of finite CW -complexes with base points, and will
in general follow the notation of {5]. If E is a vector
bundle over X € Y% {the dimension of the fibers may vary,
on the components of X) we write D{E) for the unit disc
bundle of E (relative to some Riemann structure) and
denote its boundary by B(E) . The pair (ID(E), 5(E)) as
well as the quotient space ID{E}/B(E) will be denoted by
XE . In the latter interpretation, XE will be thought of

as an element of 51 B(E} playing the role of the base point.
When dim E = 0, it is convenient to set XE =X Up where
p is a disjoint point playing the role of base point. We
also have occasion to use the object IP(E} whose points
are the I-dimensional subs’i)aces of the fibers Ex’ x € X .
Thus P(E) ——>X 1is a fibering over each component of

X , the fibers being (n - 1)dim projective spaces .

n = dim E,\: .
The constructions we have just described make
sense both, for real and for complex vector bundles and
have certain pretty clear functorial properties, e.g., if
f:Y =X is a map one has induced maps cf EP{f_lE) into

IP(E) . In addition the following ''tautologous’ bundles are

canonically defined over P{E):
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Sg - the sub line-bundle, whose fiber over £ € P(E)

consists of the points of the line JZX < Ex

Q_. ~-the guotient bundle, whose fiber over !ZX € IP(E)

E

Y

consists of the vector space Ex/ﬂx .
If 7:1P(E)~ X denotes the projection, then we
clearly have the exact sequence:

(2.1) 0—>SE—-W—>1r_1E——w>QE—m~>O

It is for many purposes useful to study the space XE as a
quotient of IP{E + 1) . (1 denotes the trivial bundle relative
to the field over which IP(E)} is constructed, endowed with
the canonical section x = (x,1).) This identification proceeds

via the following map
n: DE) — P(E + 1)

: oy 2
defined by: ’n(ex) = line generated by {ex —{1. - [eX{ }1x}
in (B + L)y - {Here !eX[ denotes the Riemann length of e,

and L, is the value of the canonical section of 1 at x .)

Clearly 7 is a homeomorphism of ID(E) - 8(E) onto
IP{E + 1} - IP(E), and maps $(E) onto IP(E) by the Hopf

fibering. Thus IP(E + 1)/IP(E) = X© under 1

Note also that for e € ID{E) ~ B(E), the projection

7 Lectures on K{X)

£ > (E + 1), /n(e,)

is an isomorphism, and further that under this projection

e, maps into a positive mulitiple of the coset of lx .

The first observation implies that the map 1 induces

an isomorphism:

{2.2) Trl_lE gn”lo( over D(E) - 5(E)

E+l)

where ™ denotes the projection D(E)~X. Now the injection

D(E) -~ E may be interpreted as a section of w{lE which
is non~vanishing on D(E) - X . We call this the tautologous
section of ﬂ{lE . On the other hand the section "I of

.

'ET—]-(E + 1) projects onto a/section of QE 7;

may now be interpreted as asserting that the isomorphism

the second remark

(2.2) takes this section into a positive multiple of the tau-

tologous section in 'rrl'l(E) .

83. The Chern classes and allied functions on

bundles. Throughout this section we will only consider

complex vector bundles. We recall that the complex line

bundles over X € ¥ are classified by their first obstruct-
ions which are contained in HZ(X;Z). If 1. is a line-~

bundle, this obstruction for L is denoted by CI(L} . One



Raoul Bott 8

has cl(L ® 1) = cl(L) + cl(L'), cl(L*) = - CI(L) . {*denotes
the dual operation.) Recall also that if E is a vector
bundle over a point (i.e., a complex vector space) then

x = cl(SE) generates HZ(IP(E)) » and hence ;he powers

Lx, -, xnml, n = dim E, give a free additive basis for

= Ip(E)} . Finally x" = 0. More generally the following

holds:

PROPOSITION 3.]. Let E - X, be a vecior bundie

T B . 5t
hen as an H*(X;Z)-module, 4 {IP(E}} is freely generated

by 1, ... .n-1 gk
by Lixp., »¥m > n=dim E, where X € HZ(IP(E)) is

equal to CI{S;;;) .

Proof: As the restrictions of X;E > 1=0,-- (n-1)
to a given fiber ]Px(E) of IP{E) over X form a base for
H'“(PXE), the fiber is totally non-homologous to zero and
the proposition is a standard consequence of the Leray

Spectral sequence. Q.E.D.

COROLLARY 1. There exist unique classes

2i
Ci(E) CH(X;Z), i= 0, -, dim E = n CG(E) = 1, such

that the equation

(3-1) ZXE o (E) = 0
k=

holds in HY(IP(E)) -

9 Lectures on Ki{X)

We call this relation the defining

equation of IP(E) .

This is clear. The Ci{E) are called the Chern

classes of E, and one defines c<(E) by:

c(E) = Zci(E)

Thus c{E) is ar element of 1+ H(X) the multiplicative

" 6]
group of elements in H*(X) which start with 1 € H (X) .

The functorial properties of E - IP(E) now easily
yield the following:

COROLLARY 27 If ¥ -f5 X is a map, then

f*c(E) = c(f_iE) for any bundle E over X .

PROPOSITION 3.2. I E is the direct sum of line

bundies: E = L + --+ L . Then c{E} = nc(Li) . Thus,

the defining equation of P(E} is given by

H(XE + Cl(Li)) = 0,

Proof: Consider G- SE - n_lE - QE -+ 0. Tensor-
ing by sE we obtain 0 -1- (‘rr_iE) ®s; » Qg ®s; -0

e
b

Thus (ﬂ_iE) ® SE = er L. ®SE has a nonvanishing section

s . Let s be the projection of s on L. ®S§ , and let

U, ©X be the closed set on which s; = 0. Then
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. - - _ |
‘projection. if we coutinue this process: Set B4 QE_
=1, i = , we finally obtain &
over IP{En) , n=1, , dimE = m

Tspace P(E_) over X, with the property that when lifted
as s is nonvanishing . Now it follows from obstruction 5P m

rr2 o P(E_), E splits into a direct sum of line bundles, and
theory that ¢ (L, ® SE) can be pulled back to H'(X; X - ). .

HY{X) is imbedded in H{P(Em)} by the projection. We
Hence .

: turality of the Chern

I denote T(E_) by IF(B). By the natorality
. ® 8 | o
ll-i CI(LI SE} " class, and Proposition 3.2, c(E} will therefore split into

2

" linear factors:
can be pulled back to H o

(%, UfX - u)) . However this

group is 0, as U{X - Ui}= X . Now c(B) = Te(L) in H{IE‘(E)}

1

C(Li ® Sg) =

—
— s

i 3.2} is now the
{C(Li) * XE} . An easy consequence of this fact and (3.2) 1

general Whitney formula

Hence the defining equation of IP(E) is as given in the

c(E+ F) = ¢(E) - c(F)
proposition. But this equation defines <¢(E) uniquely and i’

. - . . . in x
so implies the special Whitney formula More generally, let F(x)} be a formal power series in

- with coefficients in A . Then T can be extended to an
I e(L) = <(E)
1

sdditive function from bundles on X fo H(X; A) by

The splitting principle: We have already seen that setting:
when lifted to IP(E)} the bundle E splits off a line bundle 1. K1) = F{Cl(l")} 1, a line bundle.
SE - Further H'(X) is imbedded by =™ into H{B—:’(E)} . 2. F(E) = EF{CI{L;'L)}> where L, are the

Set E; = Q. over IP(E) and consider }P(El) over IP(E). components of E

lifted to IF(E) .
When E is lifted to ]P(El) it splits off 2 line bundles and

it is still true that H™(X) is imbedded in H:':(El)) by the (Note, the F(E) can be expressed in terms of the Ci(E)’




Raoul Bott 12

by expressing F(Xl) +oreet F(Xm), m = dim E in terms of
the elementary symmetric functions in the Xi , and then

replacing these by the ci(E).)

"

The Whitney formula now shows that FE + E')
= F(E) + F(E'), i.e., that F is additive. Similarly we
may extend F to a multiplicative function from bundles to

HY(X; A .

Cne defings:

FE) HF{CI(Li)} , where E = I L. on F(E)

Examples of this construction are:

1 If Flx) = 1+ x, then the multiplicative
extension of ¥ is c(E).
2 I Flx) = ——, then the multiplicative

l-e exXtension of F is called the
"Todd class of E", and is
denoted by T(E) .

3. If  F(x)

I
1¢]

then the additive extension
of F is called the character

of E, and is denoted by ch(E).

In these examples A= Z in the first case, and A= @ in

the other two .

PROPOSITION: If E and E' are bundles over X,

then

ch(E®E') = ch(E) - ch(E")

13 Lectures on K(X)

Proof: By the splitting principle we may assume
! —
that E-‘—ZLi, E!:ELi whence E@E'—ELiﬁng.

Therefore Cl(Li®L3')
ch(E®E') = X e

1

i)

L oe
E(ecl(Li)) . ecl(L}))

¢h(E) - ch(E")

cl(L.)+c1(L

1

1

Q.E.D.

§4. The Thom isomorphism in H¥X; ZZ)} . Consider

E

the sequence IP(E) Lo 1) By where B is

E

induced by the identification 1 : X~ ~ IP(E + 1}/IP(E) of

Section 2. We assume X connected in the following,

however the extersion to the general case is obvious.

PROPOSITION 4.1. In cohomology with integer

coefficients we have the exact sequence

0 <—H {P(E)} o HP(E + 1)} il o xPy «— 0

Further im 8 = ideal generated by U in H*(IP(E + 1))

where
n
_ n-k = : E
U = Z E(B+1) Ck(E} n = dim
=1
and x 0.

2
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Proof: Clearly QP*X(EH) = X . Hence by Propo-
sition 3.1 & is onto. This proves the exactness of the

sequence in question. Now let g = 25’1 aixé‘EH) be an

element of the kernel of ¢ . Then in HYIP(E)} we have

sha L o- o .
0% *g = Y - But the defining equation of IP(E) is

n
no_ n-i
| g Z o (E)xg
e 1
Th = a, - i =
us we have 0 a; - a Cn—i(E)’ i=0,---, n -1, and so

i
24 n-ilE) fEe) T U

a9
r
= [~10

Thus the kernel of @ is a free module of rank one over

H'(X) with generator U . Thus U generates the image

of B% over H™(X). It remains to show that X(E+1)U =0,

The defining eguation for IP(E + 1} is

Z K-k ck(E +1) =0

But by i =
ut by "Whitney" Ck(E +1) = ck(E) whernce Cn-‘rl(E +1)=0,

Therefore the defining equation of P(E + 1) is Precisely

X(E""l)' (8] =O. Q-E-D.

We now define the Thom isomorphizm

15 Lectures on K(X)

i, H (X)) —> H(x®)

by the formula 8 °i,a=a- U, in H{IPE)}. By

Proposition (4.1) i, is a bijection.

§5. The functer K(X) . We consider the additive
functions from bundles over X into abelian groups, i.e.,
functions E ~ F(E) with values in g, so that F(E + E")
= F(E) + F(E') . There is then 2 minimal universal object
K(X) - which solves the universal problem posed here, i.e.,
K(X) is an abelifin group with a natural additive function,
¥, from bundles to K{X) such that if F is any additive

/

function as abov"e, then F induces a unique hormomorphism
Ffs E K(X) — g

with the property: F{E) = F*{}'(E)} .

Indeed one may take for K(X) the free group
generated by the bundles over X meodulo the subgroup
generated by the following relations; whenever 0 - E - E?
-+ E'" - 0 is an exact sequence of bundles over X, and [E],

[Et], [E"] are respective generators in the free group, then

[E'] - ([E]+ [E"])
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precisely Y(E). We will, for the most part, omit the

symbol ¥, and write E for both a bundle and its class in
K(X) unless the confusion caused by this convention becomes.
unmanageable. The elements of K(X) are sometimes called

virtual bundles.

Elementary properties of K(x)

5.1, K(X} is a contravariant functor from % to

the catagory.of Abelian groups. (If f:Y ~ X, is a map,

and E a bundle over X , then f—lE is a bundle over v .

As this operation is additive it induces a homomorphism

1
K(Y) = K(X) which is denoted by £ .)

5.24. There exists an {infinite) CW complex, K

which represents the functor K, i.e., there is a natural

isomorphism between K(X) and =#[X ; K] denotes homotopy

classes of maps of X into K . Further K may be

endowed with an H-~structure which induces the additive

structure on K(X) . (This propesition follows readily from

the following facts:

3. The functor gn : X 1 plane bundles over X

is representable.

b. gn(x) =)

=nti

(X) for n>>dim X .

c. If E is a bundle over X , then there exists a

bundie E*+ over X so that £ + gt

K is isomorphic
to a trivial bundle. )

17 Lectures on K(X)

5.3, Let X € 4 , with base point Py - One defines
K(X) as the kernel of the natural projection: Z =~ K(pX)

<— K{X), which we denote by dim. Thus K(X)corresponds
to the virtual bundles of dim 0 . K{(X) is thus an ideal in
K(¥X). It is also a direct summand as the homomorphism

induced by projection X — Py splits the exact seguence:

0 <— K(py) <— K(X) <— K(X) <0

The trivial zero-dimensional bundle corresponds to
a point in a suitable component of K . If we consider this
point the base point of K , then for objects in %, K(X) is

represented by\wn-[X, K] where now w[X,K] denotes

homotopy classes of basepoint preserving maps.
5

In a sense K : U ~~> g, is the more basic functor.
Indeed, if A s X isa pair in ¥ (or ¥} one defines

the relative groups

K(X,A) = (X, A) as R{X/A)

where X/A is considered as an element of 3 with base-

point A . If A is vacuous X/A is defined as the space

X+ = X union a disjoint point Py which plays the role of

basepoint. Thus

K(X) = R(X")



Raoul Bott 18

and K on ¥ is seen to be the composition of the functor

X -X" ana E.

5.4. As K is representable one now has an exact

sequence:

1 I

(5.4.1)  R(A) < B(X) <do B(X, A) for (X, A)a pair in &

and more generally if we define

T

Ki(X,A) by K(X/A 5)3('”} , i< 0,

(El denotes the i-sphere with basepoint, ¥ denotes the

product in A}, then the Puppe exact sequence which extends

{5.4.1) holds:
RHa) — B (x)— Bix, )< '8 Ay« ...

We write K™ for the graded functor R, i< 0. This

functor shares many properties with the functor H¥

more or less by definition: they are exactness, and excision.

K™ differs at this point from H” in that it is not defined
for all integers, and that K@ of the C-sphere s? in @

not trivially computable.

5.5. The graded ring structure on R*(X). The

functor K” has various elementary properties which are

the consequence of the definition of K(X) as a solution of

19 Lectures on K(X)

a universal problem, rather than of the representability.
The first of these is the ring structure induced on RK"(X)

by the tensor product of bundles.

If E and E' are bundles over X and ¥ € ¥
respectively then E ® E' is a bundle over X X Y . This

operation is seen to define a natural transformation
K(X) @ K(Y)— KX xY)

which we still refer to as the {exterior) tensor product and

denote by @®.

When X\: Y , the diagonal map &4: X+ X X X,

defines a ring structure on K(X)} by:

a v’j: 250 ® v) u € K(X), vexrX .

This is the interior tensor produact and is usually written
with a dot. Clearly this operation converts K(X) into a
comrutative ring. To extend this operationto K on ¥,

one needs the following fact:

PROPOSITION 5.1. Let X, Y €%, and let X X¥

be their Cartesian product, and consider the sequence:

0 —>XVY Lo Xxy-—3>X $Y —> 0

where X VY = pX XY UX X pY . Then the seguence
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. L L
0 <KX v ¥} KX x Y)<io KX 4V)<—0, i<0

is exact.

Proof: Let TTl:XXY"’X, TTZCXXY_’Y and

m:X xY Py X Py be the natural projections. We have

KXV Y)~EK(X)® R(Y)

and K(X vV Y) ~R(X) ® K(Y) © K(py X p)

Now define 0 : K(X VY) =~ K(X x Y) by:

H
*

t
slatB+y) = matmBeny,

1 o € K(X),

B € K(Y).
¥ € Klpy X py).

It is then clear that i’ + 0 = identjty. Now the Puppe exact

sequence yields the result.

It is easy to see that if u € R(X) and v € B(Y) then
b=u®v€R(X xY) is in the kernel of i- . Hence there
is a unique element (again written) u ® v € B(X #7Y) which

i H
maps inte b under j. This is the extension of the tensor
product to K on ¥,

We have R'(X)=R(x $37%), ®(y)~R(y $27).

Hence Kl(X)®K}(X) is paired to K(X ﬁ}:‘,mi v #E‘i) by

21 IL.ectures on K{(X)

our product. Now X ix7 sy g~ (x 2y ﬁ):‘(l'f"J)) by
the homotopy commutativity of the product in % . Hence

our product extends to a pairing,
Be &(y) — B (x #v).

This is the extended {exterior) tensor product. By the
diagonal construction one now deduces a graded ring
structure on K*(X) and this product turns out to be

commutative, lL.e.:

e ) L R uwe BP(x), veRYy).

Remarks: 1). If X € %, one defines K™ (X) by
T o~
R¥(X7T) and if (X, A) is a pair in % (or %) K*(x, A) is
defined as K¥(X/A) . 2) Observe that K*(X, A) isa
graded K*(X) module, as the diagonal map X ~ X/A 5%
factors through X /A in the obvious manner. 3) The
O-sphere SO .acts as a unit in ¥:X #s” = x . Hence
K*X) is in a natural way a graded K*(SO) module . In
fact X¥(p) — as we may call K*(SO) acts on all the functors
KH(X), B¥(X), K*(X, A} etc. in a natural way and commutes
with the natural transformations linking them. For a more

detailed exposition of the material covered in this section

consult [5] .
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. multiplicative group of elements in K(X)[[t]] which start
The operations At on R(X) .

with 1. If E is a bundle, define

n
1 N = ®...®V -
If V is a module (over €, or Rland ¥ =V At(E) €1+ ROO[E]]

{n factors) then the permutation group 6n acts on V" in

the obvious manner. JLet QC V" be the subspace generated
TJ

by the elements g - w - (~1}Gw, weEVY, o E@n (=) =+ 1,

-1, according to the parity o . The quotient space VH/Q Now {5.4) implies that

is denoted by )Ln(V) and is called the nth exterior power of

ME) - M (EY) = A (E + EY)

V. We set )LO(V) - base field. The X' are clearly co-

Hence, E -'At(E) 15 an additive function from bundles to
varient functors from the category of modules to the

1+ R(X)[[t]] . Hence by the universal property of K{(X),
category of modules.

there is a“unique operation
They further satisfy the identity:

A, © K(K) = 1+ REO[[H]]
(5.4) VW) = ) A V) ew)
i+j=n which "agrees' with A, as defined on bundles:

We can now extend the Al as operations on vector bundles X (‘)JE) =) (E)
t i

in the obvious way. If E is a bundle over X, VE will

; The component of 3 {E) whose coefficient is ti is
be the bundle over X whose fiber at x € X is klEx . P t( ) 1o mew

defined to be )\,l(E) .
Further the identity (5.4) will still be valid in the broader

context, and one may use it to define natural transformations Examples. A (L) = 1+tL if L is a line bundle.
At K(X) - K{X) in the following manner.

A (-L) S L R

H

1-tL,
Consider K{X)[[t]], the formal power series in ¢

with coefficients in K(X), and let 1+ B(X)[[t]] be the Note that in general X _(x), x € K(X), a € Z , is not a well
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defined element of K{X). However if x = yY(E) then )H:(E)
is a polynomial in t, and J\a(x) is well defined, by sub-

stituting a2 for t . In factin thatcase a may be taken

to be an element of K{X) and of course )\_a(x-i- y) = ka(x) . A_a(y).

x = ¥(E), y=¥(E"), a € KX).

The Adams Operations

We have just seen that the A" define operations in

K(X) subject to the relation

A vy = A - Ady) %,y € K(X) .

We now define operations P, : KXy R{X), i=1,--. in

termse of the A_i which will be additive:

B lxry) = 000+ ly)

1

2 \
To do this, set z,bt(x) = ti,bl(x) + ¢ a‘bz(x} Toeee, X € K{X) and

define u}t by the formula:
(5.5)  p_0x) = -t - ¢/de X G/AR) = ~Ex{x)/A(x)

Because )\,t(x) =1+t )Ll(x) ++-- the R.H.S. is a well

defined element of K(X)[[t]] and so determines P, -

L.et us now compute zb_t(x + y) . This eguals:
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ol ) /gt ) = AL+ A GO AL) - A0}

= Y[+ ¢ (y)

Thus the a;'Ji are additive as asserted, and these are the
operations Adams introduced recently. They are in many
ways more tractable than the )\i » principally because they
will be seen to be ring homomorphisms of K(X) . If one
solves for the §, in (5.5) explicitly one obtains the
following formulae, which may serve if one wishes as a

definition of the qbi :

gy -x = 0

by ~¥y - e’ = o

by by A rd AT -37 = 0
b -8 At Fix" = 0

Note: 1. The expression txlt/kt can be written td/dt log ),
Now as At behaves multiplicatively, log ).t will behave
additively and hence its derivative also. This point of view
makes the definition of ;L\t quite plausible. The operation
,’bt is to be preferred to just log At because the latter has
meaning only over rationals, due to the rational numbers

which occur in the expansion of log(l + x) .
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2. The formulae are precisely the ones linking the
elementary symmetric functions with the power sums,
(Newton's formula), and the precise analogues of the §, in
the framework of characteristic classes was\used quite

frequently.

3. The following formula is one of the main reasons

why the l‘bi are so useful:

PROPOSITION: Let L be a line-bundle. Then

- k
Proof: (L) =1+ tL, theref = th
roof: J\t = s erefore zb_t = TTin
. k
whence g L= =L , Q.E.D.

§6. The ring K*(p). The properties of K* and
% which we have reviewed in the last section are direct
consequences either of the representability of these functors,
or of the fact that the functorial operations of linear algebra
extend in a natural way to vector-bundles. These properties

are shared by the '"real’ and the ''complex" K .

In this section we discuss the implications of the

periodicity theorem on the complex K-theory.

We write simply § for the virtual bundles (Sg - 1)

over IP(£), dim E =2 . Thus § is an element K(S,)=K "p)
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PERIODICITY THEOREM I. K¥{p)~ Z[E]. This

theorem will be assumed. For a proof see [6] .

2

COROLLARY 1. Let £, : K{X)~ K “(X) denote

the operation of & € K™(p) on K¥(X). Then &. is a

bijection.

Proof: £y may be thought of a natural transforma-
tion of one cohomology theory into another which induces an
isomorphism on points. Hence &x 1is bijective in U by
general nonsense.

COROLLARY 2. £, also induces bijections R{X)

= ®74x), X €3 and KX, A) » KX, &), for (X, A) a

~

pair in ¥ or %.

Same proof.

One may now define K(X) = KO(X) + K_I(X) . Using
£x ., K(X) is made into a graded ring (over Z,) in the
obviocus manner. §;l(u - v), is in KO(X) when u, v & KFE(X).
Similarly we convert our other constructions to operations
on K, K etc. In terms of this functor the periodicity

theorem then states that:

®(X) ® K(S') ~ (X #S1), X €%, S' the i-sphere in 3,

where on the left we mean the graded tensor product.
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Similarly one obtains

K(X) @ K(S) ~ K(X x8), K€%, 5" the i-sphere in .

Now, as I'K(Si) = Z for i>0, we seethat K and K
satisfy all the axioms of Eilenberg, Steenrod, for a co-
homology and reduced cohomology theory, provided we
assume these axioms are asserted for a graded thecory

indexed by the group of order 2 .

First consequences.

THEOREM 6.1. Let gn generate K(Szn), and let

= _
u gengrate H (SZn) then (ch(-;,n), un) =+ 1

Zn

Proof: For &€ (i.e., the case n = 1) this proposition

is clear. Now m: 5, X+ x5, =5, #--'ﬁszzszn maps

@n onto E@®... ®E, and if ch(E) = x where x generates

HZ(SZ}’ then ch(€ ® ---®E)=x®-+- @ x whichis w* ofa

generator of HZH(SZU) . 0.E.D.

COROLLARY 1. A class u € HZH(X, Z) is

spherical only if for all & € K(X), {ch(§),u} is an integer.

Clear.

We may extend ch to a homomorphism ch : K(X)

- H:::(X) by setting <k on E{-i(X) equal to the composition
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1y -1
Z('x) R g ) AE ) s mx) .

COROLLARY 2. ch: K(X)~H¥"X) is a ring

homoemorphism.

Proof: This is clear on K(X}. For u€ Kvl(X} ,
v € K{X) it is also easy. If v &€ K~1{X), then u - v in
(X)) is the class %;1 u- v . Hence it has only to be shown
that ch § = EZ ch' where EZ is the suspension in co-
homology. But this is clear because ch is multiplicative

and ch & generates HZ(SZ) .

§7. The Thom homomorphism for K(X). Let

E -+ X be a complex vector bundle, and consider the

sequences:

(1) EEE) <2 kipE + )} Bk

N W,

0

The following is an analogue of Proposition 3.1,

THEOREM 7.1. a) K{P(E)} is a free module

over K(X) with generator, 1, Egr "t %;ﬁl, n = dim E,

ES £ ! E
where §p = S_-1€ K {IP(E)} . Further x_SE- ™ EY =0
whence we have a defining relation of the form:
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n-l

g%+gE 'Cl(E)-F- .+ CHE)=0

i 0 . .
where the C(E) are elements of K (X) expressible in

terms of the AME* . In particular cHE) = Aml(E'J'C) .

b) The sequence (7.1) has 6 =0 and 8™ imbeds

t e
]K(XE} onto the ideal generated by U = )\_S{ T E" in
B+1)

K{P(E + 1)} .

The proof is broken up into several stages:

i A
LEMMA 1. The element X”SE - TET in

KLP(E)} is 0.

Proof: We have the sequence of bundles over E .

1
0—'SE"'1T E—*QE—*O

If we duzlize we obtaln:

x [ %
O<———SE<—~*—TT E <——QE<«-— 0

Apply )\,E to obtain:

T E

Qp = A

(1+ tSE) e

set t= —SE . Then the first factor vanishes. Q. E.D.

LEMMA 2. The theorem is true where X a

peint p .
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Proof: Assume the theorem for dim E <n, and
consider the sequence (7.1) with dim E = n . In this

situation X© = S,, - Hence (7.1) goes over into

0 é—E{OﬂP(E)} L IKO{1P(E + 1)}<ﬁ3~ .'Z@—O,IK_I(]HE +1)= 0.

Now, U= g - ®!E¥ maps onto 0 under ! by

©e1)
Lemma 1. Hence U=8") " §n where A€ Z and gn is
our generator of K(Szn) . We next show that ) is +l by

applying the character t{o both sides. To sez this we will

prove the more general formula:

PROPOSITION 7.1. Let U be as defined in

Theorem (7.1) . Then
. -1
chU = i, - T YE)

where 1, denotes the Thom isomorphism of Section 2 and

T the Todd class also defined in that section.

Preooi: By the splitting principle we may assume
that £ = E,, whence E* = EET. Let £ = Cl(Ei) .

Then:

U = 0Q-85,,"E.)
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whence

chU = I - e_{x+£i))

ng -t oy (x+2) .

i
Mi{x + f:i)

(Here x = X(E_H}) .

On the other hand i,(1) = H{x + Ei) and ({i,l) - x = 0.

Hence

(1- e

L.
1

chU = I il = i*T_l{E). Q.E.D.

Now then, in our case E is the trivial bundle.
Hence T(E) = 1. It follows that ch U generates

HZ(IP(E F 13 :ch U = ( ¥'. However ch(ﬁ’!’%n) also

B
equals )* . This proves Lemma 2 .

{x
E+1
The theorem in general now follows from the
functorial nature of the constructions we are performing in

Z stages.

Stage 1. Take X € %, E trivial over X . To establish :

the theorem in this case one has to extend the Kunneth
theorem from (7.1} to K{X x IP(E)} = K(X) ® K{iIP(E)},

which is easily done by induction on the dim of E .

n
Stage 2. Take a finite covering {Ui}i-l on X so

that E[Lfi is trivial. Assume the theorem for E over
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o = - .
" Un_lon ¥., and prove it for Xk4r
lilik
Vietoris sequence.

1 by the Meyer

Remarks. In my lectures I outlined a different proof
for this theorem. Essentially I started with different state-
ment of the periodicity theorem, namely with the assertion
that when p is a point, then a generator of K(8, ) goes
(under the B! of 7.1) over into U = }\_S . E¥ . That

{(E+1)
is, I described an explicit trivialization of U on P(E)
and thus a bundle on XE » which I asserted to be the
generator of K(Szn) . One may of course work backwards
from this assumption to the periodicity theorem as stated

here. The present analysis works because, as we now see,

a posteriori, it does not matter how one trivializes U on

IP(E); the result will always generate K(Szn) . ( The
difference of two elements in K(X/A) obtained by trivializ-
ing a bundle E on ACX, is in the image of 6: K (A)

- K({X/A) and in this case K_l(A) =0 .)

DEFINITION 7.i. Let E - X be a complex vector

bundle over X . Define

by the relation

u € K(X)
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where

B: B + 1) —> X, and U= g

This additive homomorphism will be referred tb as the

" Thom homomorphism'" .

THEOREM 7.2. The Thom homomorphism

e

i K(X) —> K{XE)

H
is a bijection. Further if i’ lK{XE) - K({X) is induced by

the inclusion X — XE , then :
(7.2) itiu o= (A«IE":) - u .

We also have:

(7.3) chiu = i*T_l(E)- chu ,

where T denotes the Todd class of Section 3 .

Except for the last two formulas, this theorem is a
clear consequence of Theorem 7.1. The last formula
follows from Proposition 7.1. To see (7.2) we observe
that by the remarks in Section 1, i= B8 0 where O is the
map ¥ — IP(E + 1) induced by the trivial section of 1 . Now

1
it is ¢lear that © (SEH) = 1. Hence
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1
ii,u

t | e e
O"',B'i, u = U'(A_S ‘rrl'E')u zkulE'- v. Q.E.D.
- E+1

Note: If we compare this with i*i*u = cn(E)u in the
H¥ case, we see that A_l(E*) plays the role of the n-th
Chern class of the n-dimensional bundle E . By the way,
i, could equally well have been defined so that i il= A_l(E),

however the present definition ¢oincides with the usual

sign conventions which come from algebraic geometry.

COROLLARY 1. (The splitting principle). Let IF(E}

1
be defined as in Section 2, w: F(E)~- X . Then ® imbeds

1
K(X) in ]K{lF(E)} further # E splits into & sum of line

. ,
bundles 7 E = ELi . Hence w A'E = ELl @--- ® Li the

ith elementary function in the Li . Thus the rernarks

concerning the extension of functors from line bundles to

H¥*(X)} apply equally well to the extension of functors from

line bundles to K(X) .

COROLIARY 2. The Adams coperations zbk are

ring homomorphisms: K(X) = K(X) .

We have already seen that if L is a line bundle,

then:

p (L) = LF
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Eence if E= Z 1., E' = EL.% are direct sums of line
1

bundles, then {(7.7) Bts(E) = &tQS(E) . Bt(E) {cocycle condition).

1 ! - k K
wk(E ®E'") !,bk(EL.l@)L.j) = Z(Li) ®(Lj)

)k_l , when

Proof: Bk(L) S L+E+ 1)+ -+ {E+1

k WKy 1
(E(Li) )®(HLj) )=y k(E)®¢k(E ) € = 1,-1. Hence dim Bk(L) =k . As Sk is multiplicative

we obtain {7.6) . Finally, (7.7) is again trivial for line
By the splitting principle this special case now implies the
bundles:
general one. Q.E.D.
Lts _Lt~1 Lt

Lt L -1 L -1 ’

The natural guestion arises of how i, commutes

with the operations A and z,bk . We will answer this

) o ) is preserved under multiplication, and hence holds in
guestion for the gbk—which being additive and ring~homo -

o . . general.
morphisms -~ are much easier to handle. With this end in

view we introduce the multiplicative functions Gk, from Note that BZ(E) = AI(E) .

bundles to K(X), defined by :
THEOREM 7.3. Let i, : K(X) = B(XT) be the

_ : # :::k—l . . .
(7.4) ek(L) =l+ L7+ -t L if I is 2 line bundle Thom isomorphism. Then

(7.5) 8 (E+ F) = 8 (7.8) R R W o0

By the splitting principle, B6,(E) is uniquely determined by . .
k . {7.9) wkl,‘ u =, Gk(E)tﬁk(u) u, v € K(X)
these two conditions.

PROPOSITION 7.2. The function E —-Bk(E) has

% Proof: (7.8) is a consequence of the fact that

in addition to 7.4, and 7.5, the following properties:

_ % n 2 *
U=,B + + &g, » Hence U =3 |E U. Now

1 ” =
B8 (i,u- i v)= Uzu v =Ux .E uv whence B!'i A ETuv

(7.6) dim 8, (B) = k3™ B o ! o
k Lucsoiv. Q.E.D.
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For {7.9) we argue as follows: as z.bk is a ring homomorph- the first two formulae. Now the last follows from the

- ; i ; i j -
ism it is sufficient to show that wk i, 1 =1 ek(E) ] relations between A and by which whenever the mulfi

plication is trivial reduce to:
We may, as usual, assume that E = 2 Ly - Then

k k-1
1. e o k k = (_l) dJk -
B111=U:?{1-SL1), S =8g,4
Hence

_ ok, Fk 8.  Applications: The obstruction fo coreducibility.
b, U = 1;1(1 SL )
-, ::: Tol | k-l If E—-X is a{complex) bundle over a connected

= U-H{l+81. ++--+8 L, ).

i i

. X €% then E is called coreducible if the sequence

On the other hand over P(E + 1} we have

E E, E
Py~ X X7 fpg

AGET+1)=0=( -85 gE¥=0 E E
splits: i.@., if there exists & map {: X~ — Py so that

which implies that SU = U . Hence f. ] = identity.

p U = U- OO+ Lz°+ P e )

E is called $-coreducible if (B + m - 1} is co-
i
i

reducible for some u . The first positive integer n for

{1

H
U - w'Bk{E) . Q.E.D.
- which »E is S-coreducible is called the J-order of E .

Note: This f is the precise analogue of the
=== Le proot ® or g (This integer is the order of the J-class of E under the

proof for the formula of Proposition 7.1 : ch(i, 1) = i‘._T—I(E). : ) .
’ ' generalized J-homomorphism J : K(X) = J(X) . (See {13.)

COROLLARY 3. If £ € K(sS

If Zn) then:

THEQREM 8.1. Let ¥ be a complex vector bundle

5 over X & % where we now assume that X 1s connected.

g% =0, 5 =1, Kag = ()7

4,2

hen E is coreducible only if there exists an invertible

‘element u” € K+(X} so that for all k€ Z T,

Proof: Interpret SZn as XE with X a peint,

dimE =n. Then A ,E =0, and §.(E)=Xk" . This yields




Raoul Bott 40

(8.1) 6. (8) = k&ME

” . zbku'" .

Proof: Assume that XE is coreducibte. Then we
E E .o .
have a map: f: X - Py such that { - j = identity.

Consider the commautative diagram:

1

Rpf) I — r(x")
e Il
;| i\
K(py) <— T2 K(x)

and define u € K(X) by

1 2 T
Then j'i,.u = i1 1 whence dim u=1. Further as l‘bki{l

. .'l
- dmE 11 by (7.7), it follows from (7.9) that

kcllrn E .

i

Thus 8,(E} - ¢, {u) u . Now it is easy to see
that the elements of K{X), X € U which are invertible are
precisely the elements with dim 1., Clearly e,bk maps

these elements into themselves. Hence our condition may

be written in the form:
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dimE

Bk(E) = k . u/¢k(u) , dim u = 1.

Finally if w* = 1/u, we obtain:
0, (E) = kTE Ly uF T Q.E.D.

For the stable theory the '"obstruction' to

S-coreducibility may be put in this form:

DEFINITION 8.1. Let %+ denote the multiplicative

.!_
monoid of the positive integers. A function {: Z - K(X)

will be called a cocycle if:

(8.1) Hts) = pf(s) - £(t) s, €zt

n(f)

(8.2) o dimf(s) = s where n(f) € z" .

Clearly the cocycles form a monoid under pointwise
multiplication. We call two cocycles 1, g equivalent if

there exist n, m & Z+ such that

.{..
s € ZE -

These equivalence classes form a monoid under multiplica-

tion, and we call these the stable cocycles.,
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PROPOSITION 8.1. The stable cocycles form an

Abelian group.

Proof: Let R(X)=m be the ideal of elements of
dim 0 . From the fact that X has finite category, it

follows that K(X) is nilpotent:

K(X) = mom® se.-om® = 0,
Now let f be a cocycle. Thus
s} = s+ a(s), a(s) € K .

Let fl(s) = s" - a{s} . This will again be a cocycle. Hence

We now replace f by the cocycle f - fl and perform the
same operation. After a finite number of steps one obtains
a cocycle g(s) so that

o3

f(s) - gls) = s= .

Hence the stable cocycle represented by g determines an

inverse to the one represented by £ . Q.E.D.

DEFINITION 8.2. A stable cocycle which is

represented by a function of the form: t = z{)tu:':/u*, where

u* is an invertible element of K(X) is called a stable co-
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boundary. The group of stable cocycles modulo stable co-

boundaries is denoted by

+

mi(z" ; K(x))

There is now a natural homomorphism
1+
&: R(X)~H(Z ; KX)

defined as follows: If E is a bundle over X then t - Gt(E)
defines a cocycle, and we define @(E} to be its class in

1
H(Z"; K(X)) .

(As et(E +nl) =t" - 8(E), we see that

t
€ E) depends only on the stabie class of E .)

Ong has GE + F}) = @E) + &F) by (7.5). Hence 0
is additive, and therefore extends to a unique homomorph-
ism

®: K(X) ~ ui(zZ"; ’(x)) .

The image of K(X} under © will be denoted by €X) .

THECREM 8.2. The kernel of J : K(X) = J(X) is

contained in the kernel of @&: K(X) ~ &@X) . In other words

© factors through J, and so induces a surjection

@, : I(X) » e(X)

‘Thus €X) furnishes & lower bound for J{X).
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Proof: S-coreducibility of a bundle E means that
for some n, E +n- |l be coreducible. QCur necessary
condition for this is then that there exist an integer n and

an invertibie u¥® in K(X) so that

_ dlmE £ B3
g (E+n-1) = k by u Ju
i.e.,

dim E b

Bk(E) = k d)ku TfaF

That is, the stable cocycle represented by k - BR(E)

should be 0 in EX). Q.E.D.

Example: The classical J-homomorphism

m+2n(sm)’ m 2z n .

J: K(Szn) - J(SZn) cw

We recall that K(S, )= Z , and g u = k"a for

u € ﬁ(SZn) . Let & be a generator of this group, and as a

first step to determining the group HI(Z+; K(Szn)), consider_':\

the form which a stable cocycle must take. As there is no
torsion, we may extend to the rationals and write every

cocycle in the form:
- O c
ey = t"{i+alt)- 8), alt)e@, talt)e zZ.

The cocycle condition then yields:

f(ts) = (t5)7(1 + a(ts)g) = P £(s) - 1(t)

s7(1 + a(s)t%g)(1 + a(t)g)” ,
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so that, a(ts) = a{s)t” + a(t) . On the other hand a(ts)

= a{st) whence:

a(s)t™ + a(t) = a(t)s” + a(s)

a(sft™ - 1) = a(t)ds™ -1) .

It follows that f is completely determined by ¢, and a(2)},

(or indeed any a(k}) would do with k > 1.)

We set A(f) = a(2)/(2" - 1). Thus f is determined by the
pair {0’, A_(f)} , and clearly equivalent cocycles differ only
in their g-component. Thus the stable class of f is
determined by the rational number A(f) . This number is
not arbitrary. We have to have : 7 - a(s} €z, (large ¢)
or:

AlF) + T(s™ - 1Y€ Z for all s € AR large .

Now the greatest common factor of s°{s” - 1)
{o large} is a well defined integer p(r) . Hence the stable
cocycles may be identified with the integral multiples of
i/p(n) in @. Now, A(f) will represent 0 in @(SZn) if

and only if there exists integers p, A so that

s a(6)g) = 71 - )L - "))




Raoul Bott 46 47 Lectures on K(X)

i.e., if and only if :
i.e if an nly 1 Thus the problem reduces to computing ,\tg . Recall now

(Corollary 3 of Theorem 7. 3} that b, 8 = k"2 , whence

Akﬁ - (wl)k_l

or n-1 k -
(795, k>1. Thus a5 =1- (B (4% h

- 1) @ A(f) is an integer. k.n-
) ) g *£. Or gon(t) = Z{-t) k" 1 - This implies

1.+ o
Thus: H (Z ; K{SZH)} = Zp(n) . tol (t) = ¢ (t)
n n+l

Determination of QSZH)

Then the above goes over into

From the preceding it is clear that we only need to
q (u) = 9 ,4(u) and  lim e, (t) = q (0).

choose a representative cocycle for () a generator of t-1 n

K(Szn) say f, and then determine the value A(f), which , whence

we denote by A{£) . This amounts to choosing a bundle

: - - -1
E with E-dimE - 1=£ and determining eZ(E) = 3 (), qn(U) = {n - 1)t x coefficient of u® in ql .

=

Now We next/observe that:

dimE
ME) = xf8) - (L )T
9 +1/2 = 1/2 tanh (u/2)
Write At(g) =1 - (’Dn(t) where (pn(t) is a power series in (
. 2k-1),,2k
and that 1/2 t 2 = - 2k-1
Mit]] . Because /2 tanh u/ z2 (2 1){321(/(2}()[}('-1/2)
where B, &re the Bernoulli #'s . Hence anul(O) =0,

lim A (E) exists, lim (t) will have to exist, _ i2n
o t( ) B Cn ) q_?.n(o) = (277 -1) - an/Zn » Whence finally

whence
. A0 : -
6,() = 2°{1 - tljﬁgon(t). g} . Alg) = B, /2u .

. . Thus we obtain:
Now comparing this to A{f) we see that -

AlE) = lim gon{t)/Zn -1 .
1
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where d(n) is the denominator of an/Zn one carries out this determination in the present case one

Remarks 1. This lower bound was first obtained by obtains the same lower bound on m .

Milnor and Kervaire by rather geometric wnethods. Cue 2. The lower bound which we described can be

obtains the same bound if one applies the character improved by a factor of 2 with the aid of the real K-theory,

criterion {Theorem 6.1}, The argument would be as follow i.e., the K-theory obtained by starting with real vector-

follows: Suppose that XmE is coreducible, m € Z, E-din bundles. This theory will be denoted by KO, and it is the

mE

E generating K(SZH) . Now as 2 CW complex X purpose of the next sections to prove the KO-analogues of

i

= SZm U eZ(m+n) - Hence coreducibility = the theorems we have developed for X . In particular we

seek an i, : KO(X) = I’{JO(XE) when E is any real

xME - g ‘

v 8
2 2 : R
= (o n) vector bundle. Unfortunately such an i, does not exist in

(Splitting off the top cell is called coreducibility, and, as general, and [ know of no way to extend the elementary

we see, over the spheres the two conditions are equivalent; arguments of the preceeding section to define i, even

. . when it does exist. We will therefore have to switch our
Consider now the bundle i, 1€ K(X™F) | We have

the implication: th ducibility of x™F peint of view a little and discuss the Lie~group phenomena
1 ion: the coreducibility o

which underly the construction of i,

= top cocycles of XmE spherical .

7 chi, lis integral on this cycle (Theorem 6.1) §9. The representative ring of a group. In the

='iA._(T—1E)m is integral on this cycie by (7.3 i i i
ycie by {7.3) following G will denote a compact Lie group. By a

~1 mo. .
= {T7(®)}™ is integral on the top cycle of S, . G-module we mean a vector space W {(over the field R or
€) together with an action of G as a group of continuous

Now we know by {Theorem 6.1) that ch(E) = dim E + u
n

where u, generates Hzn(S

automorphisms of W . Two such modules are called

).
Zn isomorphic if there is a2 isomorphism between them which

However it is clear from the earlier discussion that commutes with the G zction.

. -1
ch{E} determines T "(E) in a purely algebraic way, If
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One denotes by RU(G) the free group generated by . locally this action corresponds to the right transiations of
-

the irreducible isomorphy classes of complex G -modules G on U X G . Suppose now that E is such a G-bundle

and by RO(G) the corresponding group OVer the real

~

over X , and that ¥ is a space on which G acts on the
numbers. We write simply R(G) when either of these will left. Then we have the mixing diagram:

do and use the symbols KU(X), KO(X), K(X) corresponding- ‘

“— K X F ———> F

E
(9_ 1) -rr\k T
X

v W
———FE X F—> P
G

ly. There are several additional structures on R{G) . Thex
tensor product of modules induces a commutative ring

structure on R(&) and the exterior powers AW of 2

i 9
G-module extend  to operations X R(G) =~ R(G) by the

inciple used in the K-theory. This becomes clea -
same principie used an he cory i i where T is obtained by identifying eg X g Y with e xf
if one uses the alternate definition of R(G) as the ring _ ) o ) )
in EXF. Thus E xF ~ X is a locally trivial fibering
obtained from the category of G-modules via the K-constru G
with F as fiber.

ion, i.e., as the solution of a universal problem. These

Now in the case when F is a G-module E X F 1is

G

two definitions coincide because every G-module is a )
a vector bundle over X, which we denote by o(E,F) or

direct sum of irreduncible G-modules in view of the

compactness of G aE(F) or F(E). The linear extension of this function

.defines the functor .
The rings R{G) are useful because the ''mixing

followi i i i :
process! defines a functor The following are quite obvious properties of € :

{92) For fixed E, the homomorphism o

a f—homomorphism of the two rings.

a: HYX ; G) X R(G) —> K(X) : R(G) ~ K(X)

from principal G-bundles over X - HE(X ; G)-cross R(G), :
to K(X). To see this recall that a (principal) G-bundle E {9.3) The following diagram is commutative:

over X is a space on which G acts on the right so that
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rU {o(1)} = Z[x % .

HY(X:G) x R(G) ———ZF—> K(X)

Thus in this case RU is the ring of finite Laurent series
in .

O

* R K(Y) - More generally let T = U(l}x --- xU(1) be a toras,
and let £: T = U{1), i=1, -+, k, be the various project-
Here i: H~ G is a homomorphism of groups, \
. 1 . ions. Then x, = £x € RU(T) and
H'(X; H) » B{X;G} the induced homomorphism, i’ R(G)

- R(H) the restriction homomorphism, f: X~ Y, a map,

RU{T) = Z‘[Xi’ xi_l] izl ., k.

_ ]
and f 1 and {° the induced homomorphisms of f in
These facts are quite elementary. The following two

HI{X; B and K(Y) respectively.
- theorems are not.

In the next section certain elements of R{G) wiil
THEOREM I : Let T = U(i}x --- x U{l), k factors,

have to be singled out when G is one of the classical group
be a maximal torus of G . Let W = W{G,T) be the group

For this purpose we review some of the basic facts concern / ‘ ,
- of automorphisms of T induced by inner automorphisms

ing R(G). All of these are essentially due to E. Cartan.

‘of G. Then W acts on RU(T) and we let RU(T}W denote

- the ring of invariants under this action. We also denote the

PROPOSITION 9.1. Every irreducible complex

restriction homomorphism from RU{G) to RU(T) by ch,

(1) module is one dimensional. Hence RU{U(l)}E group-

ring of Hom {U{1), C*} . :
- { In this notation ch induces a bijection of RU(G)

W
Here, of course, VU{l) denotes the circle group of onto RU(T)

w

complex numbers of norm 1. ch: RU(G) =RU(T) .

COROLLARY. Let x denote the € module of U(l THEOREM II . If G is compact connected and

given by the inclusion U(l} = C" . Then simply connected, then RU(G) is a polynomial ring.
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(9-6)

In view of Theorem I one may describe the elements)
of RU{G) in RU(T) once W{G,T) is known. In the
following section we make certain standard.choices for T

in G and describe the action of W(G) on a standard basis .

for RU(T) .

THE UNITARY GROUP U, and SU_ .

We intgrpret Un as the n X n matrices with
complex coefficients which satisfy the identity:

(9.7)

SUn is the subgroup with determinant 1.

The diagonal matrices in Un form a maximal torus
T(Un) . Let X, be the character on T : x, T= (I'* » whick
assigns to t € T(Un) its ith diagonal entry. We also let x
stand for the element in RU{T(UH)} determined by the T(Uﬁ;.
structure defined on € via: t- z = xi(t) -z,
Thus

RU{T(U )} = Z[x,, xi"l}

We have further:

{9.4) W(U,) acts as the permutation group of the x; in
RU{T(U, )} -
(9.5) RU(Un) = (under ch) the finite invariant Laurent

series in X,, ~«», X .

Thus SO
n

Lectures on K(X)

Let o be the standard representation of U, on

@’ . Then ﬂpn:x oot and hence

1

. 2 n_n ~1
RU(U ) = zZ[p, Xp .-+ 2" A 1]

Remarks:

L. The implications (9.4} = {9.5) = (9. 6) are quite

straightforward.

2. The len are irreducible because ch A,zpn

consists of "one orbit' of the action of W .

n-~l

2
RU{SUH} = Z[p, Xp. o A ]

with )\npn =1. Here p denotes the restriction

of the standard representation to SUT1 .
THE GROUPS 5O,
Th{;s group is a subgroup of U~ on which
A=A, det A =1, AEUn.

consists of the real n X n matrices subject to

t

A<A =1, detA=1 .

© We now have to treat these groups separately depending on

the parity of n .

Case 1. The odd orthogonal groups, SO{2k+1). We

may imbed SO(2) X -+ x80(2) (k factors) in SO(2k + 1) as

the k diagonal boxes:
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- . -1 .
T = T{Spin{n)} as = T{SO(n)}. We now have, setting

s0(2) !
T = T{SO(n)} .

sO(2)

t
{9.11) The homomorphism #«° : RU(T)} = RU(T) extends to
SO(2)

a bijection of RU(T){U.}/(u2 =y y'k) onto RU{T),

(i.e., RU(T) is a quadratic extension over RU(T))

this i hi i tibl i
collowed by a 1 Thie will be our standard maximal torus: Further this isomorphism is compatible with the
O .

action of the W of the two groups on the respective
T(SO ). We now choose isomorphisms y, * s0{2) ~ C
s - ; rings.
and let y. € RU(T{SO{2k + 1)} be the corresponding classes.
i
; . /2 1/2
Thus It 1s customary to write AU Yy for the
_l 1 = a » u
(9.8) RU(T{SO(Zk ¥ 1)}) = %[Yi;yi ] Bt K element o . With this understood, we define Azin € RU(Spin(2n})
Further

and 4, .. € RU{Spin(Zn + 1)} by:
(9.9) wi{so(2k + 1 )} acts as the group generated by

€ € n
permutations of the V3 and transformations ¥ y ch f-\;n -y yll o ynn, - s ? . - l/Zn
€. =+1i.

1 ) - Ei €n n n
Case 2. The even orthogonal groups. We include (_:_}iazn = 5 e v € = + 1/2, ?61 - L1z
SO(2k) in SO(2k + 1) as the matrices with last ] )

n
diagonal entry 1. Then T{S50(2k)} = T{SO(2k + 1} cha, =Ty LS s e - ey
_ n+i 1 1, 1 —_ 1 i T

{9.10) W{SO(Zk} acts as the group generated by epermuta—
tions of the ¥y and transformations vy, 7 y; L,

1
€ =+l nll\“'izl'

THE SPIN-GROUPS

These are the so-called spin-representations of the Spin-
groups. Under restriction it is clear that AZ 4+ goes over

: + - . + - :
into A2n+/_\.2n while AZn and AZn restrict to AZn-l .

From {9.9), (9.10) and (9.11) one concludes that:

The double covering of SO{n) is denoted by Spin(n

Let = : Spin{n) » SO(n) be the projection and choose

(9.12) RU{Spin(2n + 1)} = Z[p,---, \ 0, byl
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Conversely we may pass from a complex G-module to the

+
2n’

(9.13) RU{Spin (20)} = Zp,---, kn_lpi 4 Aén] underlying real G-modale, thus obtaining an additive

homomorphism

T > E
where now p denotes w  of the [P and Py resiricted:
€, : RU(G) » RO(G} .

to SO(2n + 1) and SO(2n) respectively.

Exercise: Let Z,C Spin(n) x U(1) be the subgroup These two operations are linked by the standard identity

Al e
3 b

ated by € X (-1) where ¢ enerates the Kernel of
genetr y (-1) & (10.1) €,°€ W = 2ZW; € e, V=V+ V" .

w : Spin(n) = SO{ri}~» This group is in the center of Spin(n)

% U(l) and the guotient Spin(n) x U(l}/zz is denoted by From the fact that R(G) is a free module it now follows

Spin“{n) . Give a description of RU{Spinc(n)} . Also show that:
: . C b4

that there exists a homomorphism @ : U{n} ~ Spin (2n) (10. 2) Both ¢': RO(G) ~ RU(G) and ¢, : RU(G) ~ RO(G)

which makes the following diagram commutative: are injective.

We already know a considerable amount about RU(G) . It

SpinC(Zn) P
is therefore natural to consider RC(G) as imbedded in
@ m RU(G) via €* and this will be our point of view. We next
Uln) i »50(2n) describe a criterion for an element x of RU(G) to be
1

contained in RO(G) € RU(G) .

where i is the usual imbedding,
CRITERION: The class of a complex G-module W

510 The RO of a compact Lie-group. If V isa is contained in RO{G) if and only if W admits a non -

real G-module V ® € is in an obvious way a complex degenerate G-jnvariant guadratic form ¢ .

R .
G-module. This operation defines a )Ll—ring homomorphis

Proof: Let V be a real G-module, Because G is

. compact we int t iti ini
¢* . RO(G) ~ RU(G) . P may integrate a positive definite form over G

and en AhfFoin o meend mv s m s - faae o e e - .- -
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:V-R. The complexification of § thenis s form with wtegc-w

the same properties on €V .

given, by the C-structure of W is a bijection of G-modules
Conversely assume that W is a complex G-module

. : and so exhibits W as 6"‘W+ . O.E.D.
with nondegenerate quadratic form ¢ . Choose an invariant

positive definite hermitian form on W and denote the inner COROLLARY 10.1. If W =¢ V, then wiew

product it defines by {u, v COROLLARY 10.2. Let W be an irreducible

Consider the R-linear map T : W — W, defined by: complex G-module with W¥2=W . Then W = €*V, wWhere

V is a {necessarily irreducible) G-module over R , if and

(Tx,yy = 9xvy) . 2 . .
only if A W does not contain the trivial representation.
Clearly we have:
_ Proof: By Schur's lemma W™ ® W contains the
(10. 3) Tax = ATx. LEC, x €W
trivial G-module precisely once. Now, as W' =W , we
(10. 4) T is nonsingular, and commutes with the actic have:

Of G . f/' W::: ® W =W ® W o= SZVJT:F @ A-ZW
Properly speaking, T is thus defined on €,W . Now the

2
where S (W) denotes the second symmetric product of W7

formula {x, y} = {x, vy + (%X, vy defines a positive definite

: . ¥ We see then that the trivial G-module occurs either in S°W™
inner product on €, W and it is easily seen that T 1s selt-

2 .
orin AW . In the former case W will have a {necessarily
adjoint with respect to it.

noundegenerate) guadratic form. In the latter case it will
Let W+ ce,W be the subspace spanned by the .
- not.

O.E.D.
eigenvectors of T corresponding to the positive eigenvalu

Similarly, define W . Then these spaces are real Thus if one knows the cxpansion of )\ZW N

G-modules and span €, W by (10.4) . On the other hand by of the irreducible G-modules one may decide the question

+ - pes
(10, 3) we see that W . J-I =W~ . Hence the natural map of whether W is in ¢ RO(G) .




Raoul Bott 62 63 Lectures on K(X)
CORQLLARY 10.3. Let A denote the set of n
isomorphism classes of irreducible G-modules {W} for (10. 5) (Ai % _ AZn if n is even
which W # W, andlet B denote the complementary set. . Azn if n is odd .
Let AI/Z denote a "fundamental domain® for the action of
¥ in A, i.e., of every pair w, w¥, let Al/Z contain 2 ) #n-l X o
+ ) n z Pon i={n+2) mod 4
precisely one member. Let B denote those modules in i=0
B, for which A.ZW does not contain the trivial representa- ] .
i=n-
tion, and set B+~= B - B+ . Then an additive base for (10. 6) A;n . Aén - Z )\ipzn i = (n+1) mod 4
¢*RO(G) is given by: i=0
" + _ + i=3_1—1 ‘
{W+W'“]WEA1/Z}U{W|W€B Pufewlwes™} . 2 ca - Z klpZn+AipZn’ = (n) mod 4 .
i=0 -

Thehproof should be clear.

. 2 .
An example: RO{Spin(n)} CRU{Spin(n)} . In the last formula, S$7 denote the symmetric sguare,

and )\Epzn dre the two pPieces into which Anpan splits:

Te study this inclusion we will use the notation of :
Thus if we set

Section 9 and also abbreviate RU{Spin(n)} to RU(n) .

F¢3
1 -
Similarly  RO(n) denotes RO{Spin (n)}. Recall then that: I;I Irty)l+uy’) = Z A.ljtluj ,
1 : then
- ! - = & n— - -
RU(zn) = Z[x pZn’ > A pZn’ AZn : AZn} N a
. g}:&)u P z Aij’ i even .
Now p, and hence klpzn are clearly in RO(2n) . Hence i+j=n

the only question which remains is when the spin representa
These formulae are relatively straightforward

tions A% are in RO(2n) .
2n . . . - . -1

 combinatorial identities in Zfy.,y. | .
i774

To apply our criterion we need the following facts:
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h i
PROPOSITION 10.1. The elements AZn > A Po, e

j<n-lare represented by irreducible Spin(2n)-modules.

This result is nontrivial - for instance one has to
construct the spin—representations. We will assume this

statement. [See [10]].

Applying these formulae to our criterion we conclude:

+ +

(16. 7) g €RO(8n) . Bgnig

" ¢ RO(Bn + 4) -

We turn next to the odd case. Recall then that

+ _
ch(bynyy) = SR8y, ¥ 4gy)
_@(Pzrﬂ.l) Smk,}.(pZn + }“)

Hence one may again use the formulae 10.5, 10. 6, to obtain:

n-1

i
z A Pzarl
1=1

i=n+3 orntl mod

7
— i - i o= +1m0d4
S °A2n+i = ZK(DZn%-l 1} i=norn
i

and thereby conclude that:

(10.8) 82041

cRO(Zn + 1) only if n =0, 3{mod 4}.:
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In particuiar then, combining (10.7) with (10. 8), we

have:

(:0.9) RO(n) = RU(n) for n= -1, 0, 1 mod 8.

!
PROPOSITION 10.2. Let [ : RO(8n + 1) »RO{8n)

be induced by the inclusion Spin(8n) = Spin{8n + 1). Then

T

{10. 10} L” is an injection

(10.11) RO(8n) iz freely generated by 1 and Agn over ROBn+l)..

From this last observation we conclude immediately that:

PROPOSITICN 10.3. There are unique elernents

A, B, 8, I € RO(8n + 1) which satisfy the equations:

.‘E. r 1
(a’) = (¢ A)A++L'B, A+:A‘E§n
(10.12) N ' . '
{?,bkﬂ ) o= (¢ Gk)A + ¢ I"k )
Further one has:
) 2n
_ _ . _ 2i-1
O =A=lgy s BT DR (Pgpy ~ 1)
i=1

4n
ch 6, = ll-I {Y(ik-l)/z e y;(k-l)/z}

We conclude by tabulating our results concerning the

real spin representations in terms of the complex ones:




Raoul Bott 66
RO{n}|Rezl Spin Representations a, -their dimension K?)(Sn)
1 &, 1 z,
2 2%+ 4] 2 z
2 2 2
3 Zﬂ.3 4 C
4 -
4 24 Jr 2&4 4 Z
5 265 8 ¢
& by Tiby 8 O
7 A.? 8 O
+ -
8 AS’ A 8 8 z
This table is periodic in the sense that a_, o = lba

and that the pattern 1s preserved in the first and last column,

Note that comparison with the last column gives us the

empirical fact that

1

an/an+l -

if KO(S.)=0
o}

1/2 if Kb(sn) # 0

This strange relation between the integers {ai} - the so-

called Radon-Hurwitz numbers and KO(S_} was noticed by

Shapiro and myself last year.

It essentially expresses the

fact that the generators of KO(Sn) are given by induced

representations [8] .
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§11. Induced representations. Let i: H = G be the

inclusion of a closed subgroup of G . Thus G acts on G/H
on the left, and we may, by the mixing construction,
interpret G/H as a functor from G-bundles over X to
spaces over X on which a certain H-bundle is singlied out.
For example, if G = U(n), H = U{n - 1) x U(1) this construct-
ion will specialize to our earlier P - functor E - IP(E}.

For this reason we will, in general, denote this construction
by IP. Precisely: Iif E is a G-bundle over X, IP(E) is

defined by

P(E)=E x G/H
G

In other words IP(E) is the associated bundle to E with

fiber G/H .

The following three theorems are standard in the
theory of fiber bundles. As they express different ways of

looking at the same thing I propose to call them tautoleogies.

TAUT. 1. Consider the guotient space E/H . There

is a natural isomorphism E/H = I1P(E) as spaces over X .

Proof: Cilearly E = E X G . Dividing both sides by

G
H we obtain’ E/H = (E x G)H =E x G/H. 0. E. D,
G

G
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Thus we have the following diagram:

E P »E/H = IP(E)

N

where each map is a fibering, and p exhibits E as an

H-bundle over IP{E). This bundle is denoted by E .

TAUT. 2. In the situation envisaged above thereisa

canonical isomorphism:

X G
H
In words we have: The G-extension of ﬁ is

isomorphic to the inverse image of E under o .
1

Or again,
¢ E admits a cancnical reduction to the H-bundle E .
Proof: By the definition of GélE one has the ''exact

sequence'’:

_ w'
0—>¢ iE———:>~E><E/H:6::3 X

where 7' :E xE/H=E =X and o' projects the other way.

Now define f: E XG~E XE by f(e,g)= (eg, e} . Then f

induces amap {: E x,; G~ E X E/E which may be lifted
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to CF_EE . Using local triviality one easily constructs an

inverse,

Q.E.D.

Note: In the context of our ""old" IIP(E)} this
proposition corresponds to the fact that when lifted to IP(

E became the direct sum of SE and QE .

TAUT. 3. The G-bundle E can be reduced to an

H-bundle if and only if P(E) 2> X admits a section.

Proof: Let s : X = IP(E) be a section.

Taut. 1, st 1

Then, by

o cr'lE =5
1

(EXHG) . Thus, as 0 =-5=1, we
obtain E = {8 E) %G and SWEE is an H-reduction of E.
Conversely, assume that E = I XHG where F is an
H-bundlejlpver X . Then we have IP(E)=F XHG XGG/H
=F xHG/H, angd the identity coset of G/H in each fiber
yields a section of IP(E)

over X . Q.E.D.

We next relate this situation with the functors
discussed in Section 9. Fixing E, G and H, we have the

following three homomorphisms canonically defined:

ap : R(H) — K{IP(E)}

Cp

H
.

i+ R(H)—> R(G)

R{G) — K{X)

E},
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Remarks: When X = p is a point, P(E) is just

Apart from the obvicus functorial relations between these

there are two identities connecting them: The first we will G/H over p . In this case the permanence 18 equivalent to

call the permanence law: the statement that if W is a G-module, then G X,W = G/H

is the trivial bundle over G/H . In this case
PERMANENCE. Let x € R(H), v € R{(G) and denot

the projection IP(E) =X by ¢ . Then

Qg R{H) - K(G/H)

t t
QE(X - ity) = OCE(X) - O'.QE(Y) . may be considered as a localized form of the induced
representation iy : R(H) = R{G) defined for finite groups.
There is a more palatable form for this identity. We may
! Indeed, in our terminology, i,U, where U is an H-module
consider R(H) as an R(G) module via i° , and also '

! can be defined as the G-module of sections of G X U~ G/H.
consider K{IP(E)} as an R(G) module via ¢° o ap . Witk
{When G 1is finite this space is finite-dimensional. )} In this

this agreed the premanence states simply that ,

context i,(x - i'y)=1i,(x)+ y is still valid, however i,

O - R(H) - K{IP{E)} is only an additive homomorphism.

e
The second identity involving O describes the

behavior of this homomorphism under the action of the

is an R(G)-homomorphism.

Proof: Using a somewhat sloppy notation the steps

-1
: normalizer of H in G . Thus let N(H) = {g € GlgHg < 243
are as follows: Assume that V is an H-module and that W

d deii ¥) as NH)}/H.
is 2 G module. Our probiem is to identify the following and define M) (1)/

two bundles over IP(E): Each n & N(H} acts on H by sending h " n an !

1 and so induces an action of N{H} on R(H), which factors
A=og (E XGW}®(E xHV), B=E XH(V®W) .

through N(H), because two modules which differ by an

- inner autcemorphism are isomorphic. In short R{H) is
Now A ={{o lE) XWI®(E XHV) by natarality. Hence by P ? o)

_ canonically a N{H)-module.
Taut. 2, A={E %G XGW}® (E x4V) . But E % G X W -

= E X,W whence A= (E XHW) ®(E x H(V®W) =B.Q.E.D,
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Next let E be a G-bundie. Then if n € N(H) the § 12. The periodicity theorem for KO . We let

right translation of E by n, e > e - n preserves the H KO" denote the cohomological extension of the functor KO.

cosets of E and hence induces a map of IP(E) = IP{E), Thus

which again only depends on the H coset of n in N(H) . kKo® - Z Kol

Thus N(H) acts on IP{E) and hence on K{IP(E)} . With i<0

. . . ) 0
this agreed we have the plausibie: with KO = KO and this functor shares all the general

EQUIVARIANCE. The induced representation properties of KU .

The starting point of its more special properties in

fa: R(H) ~ K{IP(E)
£ ) { } the following periodicity theorem:

commutes with the action of N(H) on these two rings.

PERIODICITY THEQREM II. The tensor product

Proof: Let V be an H-module, and let n & N{H) . of bundles induces a bijection:

Now define V™ as the H-module with the same underlying

8 8

vector-space but the new action h*v = 1‘1hn_1 - v . This {12.1) e Koa’c(x) ® KO(S) — KO:F(X X 5

).

module then represents the action of n on V € R(H) . Als

This is the Kunneth formulation. The corre di
let £f: E - E be the right translation e e - n. Then our sponding

_ _ relative theorem may be stated as follows:
problem is to construct an isomorphism of the bundles

n -1
E X, V' and f (E Xiy

find an isomorphism i , which makes the following sequenc

-8
V) . In other words we have to Let T‘g € KO “(p) bea generator . Then multiplica-

ion with 7 induces an isomorphism of KOi(X) with

i-8 ’
exact -KO (X) .

E % Vn___l.b_)_ P(E) x (E x_ V)T —=IP(E)

o The ring KO (p) is also known: It is generated by

_ - I and elements 1, € KO"i(p), i=1, 4, 8 which j
Define zp:Ean—*Ex(EXV) by dlesv) = (e, e+ n X v) i ich are subject

to

Then @ 1is easily seen to induce the desired ¥ . Q.E.D
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periodicity theorem as stated in [6] asserts that U/O

3 2
2, =0, N = 0, My=4ng - EQ‘EBO . Heunce the fibering above gives rise to an exact
sequence:
The pertinent references here are ({e]. [7D). q

e

4 —~ .-1 - & — i o
One may compare KO and KU by means of the (12.2) «-- Kot (X) - xoh I(X) ~§—>KU1 I{X)-'KOHI(X}-' .

complexification of bundles : € : KO(X) - KU(X) , and then

from which one immediately concludes that
disregarding of the complex structure: €, : KU(X) ~ KO{X),

S

32

and just as in Section 10 these two operations are related by £ KU(s

(12.3) KO(s

81’1) 8n) )

by: _

e s For our purposes we will require the follewing
e o €,u = u+t u¥ description of the generators of KU(Sgn) and KO(SSn) .
just as in RO and RU .

?, THECREM Jil. Let Hl‘l = Spin (Zn), Gn kS Spin(2n+l)
*x) = {KUHX mod 2 —

Hence we see that KO™(X) = {KU(X)} 89 that Gn/Hn =85, - Let /_\.‘*1_'l € RU(HD} be one of the
primary material, if the superscript ZZ denotes the

Spin representations and let Vo © Qé{A;) be the induced

fixed elements under the conjugation automorphism of

element in Kt}(Szn) . Then 1 and Vi form a base for

KUT(X) - Ku(s, ) .

A slightly more detailed lock at the periodicity

Proof: T.et n and m be fixed and set
theorem yields a more detailed relation between these two .

et G = Spin (Z{m +nt 1}) . Also let Wm+n = G/H . We
functors. Indeed if B, and B, denote the classifying

U
spaces of KU and KO , the map ¢¥ is realized by a

{m+n)
may arrange the varicus inclusions involved here so that

‘the following diagram is commutative:
fibering

U/O”B,O”BU

imni i d th
with U/O = limit Un/on as fiber. On the other han e
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aou

1
We first propose to compute £ Ym + By the

fn
naturality of the inducing procedure this amounts to

understanding

r

o RU(Hm+n) - RU(Hm X Hn) zRU{Hm) ® RU(HH) .

Now, from our discussion in Section 10 it is apparent that

+

= -a)eal -an)

Thus there is an induced map

s —w Hence if £, Isthe bundle induced by (A+m - A;n} over S
£: SZm X Zn m+n .
s » and we set £ equal to the bundle induced over
Zrm m+n
is fi ( -sph s over S + AT :
Now W 1is fibered by SZ(m+n) Spnere 2(m+n)+l Woin PY & in A 4n We obtain
. i :
— represents the fiber. It
and G /H Wontn TEP .
. . - f° = & s
follows that there exists a map g : SZm X SZn Gm+n/Hm+n §m+n §m §n
which makes the following diagram homotopy commautative: whence . i .
g gm+n - gm gn E
g =85
> (G H 1
S2m X524 m+n/ asigs] 2(m+n) because i’ £ = g - On the other hand using the
m+tn m+n

permanence law and the fact that A::n + A;ﬂ is in the image

of KU{G_ ) we have:
m

mtn

U
1

Z(ym - dim ym) -

Furthermore it is not difficult to see that g has degree 2, Hence if we assume our theorem for m and 1, §m and

)

be the bundle induced

- - t o~
Next, let ¥ € KG(W __ §, are twice the generators of KTJ(SZH) and KU(S

+n) 2m
+

m+

! .
by & . € RU(Hm+n) . Then clearly i’ Y a7V as respectively.

+n

defined in the theorem.
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1
Now the formula g’ §m+n = <§m ® @n proves the

same assertion for §m+n hecause of the periodicity

theorem for KU and the fact that g has degree 2 . O.E.D.

Remark. If one is familiar with theory of character-
istic classes it is not difficult to compute the characier of.

y_ directly and so prove Theorem 3. See [11] .
n

COROLLARY 1. KO(SSn) is generated by 1, and

the bundle induced by the real spin representation

2% ero{Spin(8n)} -

Proof: Clear in view of 12.3, Theorem III and 10. 6.

COROLLARY 2. If y denotes the bundle induced

by A" in KO(SSn)’ thern the 8n'th component of chy

8
generates H n(SSn) .

Proof: By Corollary 1 of Theorem 6.1, the character

~ ’n
of a generator of KU{SZn) always generate H (Szn} .

Hence Corollary 1 and (12. 3} prove the assertion.

§13. Sphere-bundles. Consider the following

situation:

G

Spin(8n + 1)
H = Spin(8n)

B = a principal G-bundie over X .
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In this case IP(E) is therefore a sphere bundie over
X . Precisely: Let p& RO{Spin(Sn + 1)} be the standard
representation. Then ch(p) is a vector bundle, V, over

X, and its unit sphere-bundle may be identified with P(E):

By our general remarks, there is an H-bundle E defined

over IP(E). We let y € KO{IP(E)} be the induced bundle:
..i..
¥ = aﬁ(& )

where 41 is one of the real Spin representations in RO(H).
We now have the foliowing extension of the periodicity

theorems:

THEOREM A. In the situation envisaged above,

KO¥B(V)} is a free module over KO™X) with generators

l and vy .

Proof: When X = point, this theorem reduces to

Corollary | of Theorem III . Hence by the Kunneth formula

(12.1), the theorem is true when E is a trivial G-bundle.

But the Meyer Vietoris argument, together with the co-

homological property of KO™ proves the general case.
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. . 1 ents in The proof is clear. We note that we have here the
CORCLILARY 1. There exist unique elem

id i . Znd part of the cocycle condition of Section 8. The first
KO(X) which make the following formulae valid in KO{S(V)}.

part still has no analogue, as we do not know how to "compute

yo = A(E) - y+ B(E)

the invariants GS(E) - The following theorem solves this

{13.1)

H

by Bk{E) -y o+ I"k(E) preblem:

] THECREM B. Consider the elements A, B, ek’ rk
This is clear. One thus has four invariants of E in KO(X).

in RO{Spin(8n + 1)} defined in Proposition 10.5. Then the

COROLLARY 2. Suppose that E and E' are

invariants of (13.1) are given by:
two Spin(8n + 1) bundles over X . Then IP(E)} and IP(E")

A(E)

6, (E)

are of the same fiber-homotopy type only if:

It
o
3

w
B

= ag(B)

oL (B)

i
QR
1

H
i

{13.2) 8 (E)= Gk(E') . ;Dku/u u € KO(X), dim u=

b
Proof: This is a clear consequence of the permanence

Proof: Let f: IP{E) - IP(E') be z fiber homotopy law. For instance:

E * . %
equivalence. Then f : KO*IP(E')) » KO*IP(E)} is a KO

e

i
T . . -
isomorphism. Hence f v = ay + b, with dim z = 1. Thus

by =g 9,7 + ¥y b = (9,2) 8, (B)y + $ b+ I, (E) . Onty

other hand fi't,bky, = f"{ek(E’)y‘ + Tk(E’}} = a Bk(El)Y + Gk{E Ja

yoo= QE(A+)2 = aa(s® - A+ i'p)
= aglA) -y - ap(B) . 0. E. D.

COROLLARY 4.  dim 6, (E) = K4
+ l”k(E) . D.E.D.
Proof: ch 91{ = r[l4n(y(k_1)/2+ et Y”(k"l)/z) k> 2

COROLLARY 3. The invariants Bk(E) have the - .

whence dim ch g =k Q. E.D.
properiy: '

COROLLARY 5.

S(V) has the same fiber homotopy
(13. 3) {tkaS(E)}ek(E) = 8 (®)

type as the trivial sphere-bundle only if
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8 invariant can only be defined for it if V is of the

gk(E) = k4n¢ku/u dirn u = I, u €& KO(X) . form p{E) for some principal Spin(8n + 1) bundle. On the

other hand if p(Ei) = p(E,) as vector bundles, then 1P(El)
Here we now have a complete analogue of the formula (8.1), = 1B(k,) whence B(E,) - 8(E,) . Thus 8 does depend only
developed for the KU-theory. There we obtained this on V, provided V is of the form P(E) . Vector bundles
criterion for the coreducibility of a Thom-complesx, here it of this type are said to have a Spin reduciion, and V has a

sviali e-bundle. However,
arises from the J-triviality of a spher spin~reduction if and only if WI(V)’ wz(v} =0 as is well-

these are closely related: known.

~

E . .

. th e is coreducibl
If E isa real vector bundle, then ' In short, B{V) mav be thought of as the second
f o ; type.
@ B(E + 1) has trivial fiber homotopy tyP obstruction to trivialization of the fiber-homotopy type of

We may now precisely mimic the construction of 5(Vv), Wl(V) + WZ(V) denote the first two Whitney classes of

1ot
(8.2), and so define the group. H(Z ; KO(X)) - v .

Further the function k = ak(E) defines a cocycle and If we let K Spin(X) = subgroup of KO(X)} on which

hence 2 class B(E) € HI(Z+; KO{X)) . Hence Corollary 1 w. and w

1 5 = 0, then it is easily seen that 6 extends toa

implies that: homomorphism

| P i . S P
PROPOSITION 13.1. The element 8(E) € H (2 ;K0 8 : K Spin{X) -~ H (X", KO(X)) .
e bt et T e

is an invariant of the stable fiber homotopy type of IP(E)

We return now to the computation of the Sk(E) .
= B(V) .

PROPOSITION 13.2. Let A(E), «--, ?k(E) be the

¢ invariants of E described by (13.1). Alsc let V = p(E).

Note: Our 8 in the complex case was defined

directly on the vector bundle. The construction of the

Then in KO(X) these invariants are given by universal
present § depends on the principal G-bundie E and not e

ol . . i s
only on its ssociated vector-bundle V . Thus if we star polynomials in the X'V, and an auxiliary element, A(V),

th where A(V) satisfies the equation:
with a real {&n+ 1) dimensional bundle V, over X, :
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while in general GR(E) may be computed by the fellowing
2 3 -
(13. 4) . 2A(VY = ll(V) - algorithm:

Let L = Z[zi; z.l_l], i=1, +++, 4n be the ring of

5

Proof: We set 8(V) = aE(A} where A is the spin-

finite Laurent series. Define elements 'yl, w, N, in L by:

k
representation in RO{Spin{8n + 1)} . Then, as we know that ..

- 4n
i - . l 1 _ 2 -2
RO{Spin(8n + 1)} = Z[\'p:nl, i < 4n it follows that the z Vi s (14 ) 1_11 o+ b W14 ta, )
- - O
elements A, B, 6. I, of this ring can be expressed as | . 1
' i i w = I (z, + 2z
polynomials inthe )\lp and & . Applylng G we obtain the__: X ( ; : )

i t of the proposition. ) .

first part © P n, = H{zgk 1)+~'-+z(k 1)}

To obtain the identity (13.4) recall that

M 71(: Pk(ﬁfl, w) where Pk is a polynomial. Then
i

6, (E) = P, (AV: &(V)) .

4n

1/2 ~1/2

chﬂ.:l'l (Y1/+Yl/)
1

whence Proof: This should be clear in view of our results

4n !
-1 i
(ch A}Z =0 (y,+2+y; ) on KO{Spin(8n + 1)} . We have really just disguised the
- 1
isomorphism ch, and replaced y; by Zf to make the
4n . . .
_ - computations directly in I, .

This algorithm is clearly quite difficult to carry out
1

= _c_hwkl(p-l}Z (wz—)xlp Q.E.D

‘in general. However if additional information about V is

We give now some explicit examples: at hand the computations are much easier.

For us the

PROPOSITION 13. 3. following example is of special importance.

A(E) = 8,(E) = &(V) PROPOSITION 13.4. Let V = 8aL + 1 where L is
Zn . )
21-1 ‘2 line-bundle. Then w (V) = w,(V} =0 and we have:
BE) = ) 27NV - ! 2 ——
i=1
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e /2y _ _x =1
£ \{1 Y4n} }— €'l. Hence, under f', the element
4o 8. = \1'{4n(y§k“1)/2+ ot y._{(k_l)/z} goes over into
kén + k (L _ 1) k even k /.’; 1 1 4 1
2 T e I SR
= V = . -
(13.3) 6,(V) in ‘{k‘ln -1 } (L - 1) k odd .
k L 4n
(s + sm) k=25
~l
'8 =
k 4n -
Proof: Let £ be the principal Z,-bundle of L, (#7571 + sm) kelsil

and let 7 be the one-dimensional representation in RO(ZZ),
n

Let o= - 1. Then 0'2' = - g . Hence the ldentl‘ty
= 8n + 1 . Put differ-
so that L = ag(n) . Sothen V 55'{( n+ Unt

i ding the generator
ently, let Z, = SO(8n) be defined by sending

m m
i i : Ao, 2 S50(8n + 1
of Z, into minus the identity, and let f: Z, { )
be this homomorphism followed by the inclusion. Let f*g holds. It follows that
e this hom
i 1). Then V =a,. «(p) .
be the extension of & to SO{8n + 1) £.E (25)4n + (LZSL— y -
i tation of SO(8n + 1) . B
where p is the standard representat: f1 Bk ] )
i i ifted to ]
Now, because we are in dim(8n + 1}, f can be lifte | (2o + 1)411 ) {M%_J_}U L
Spin{8n + 1):

- Spin(8n + 1)

L

2

f
\O{Sn + 1)

1 . o ‘
and our problem is to compute {° : RO Spin(8n + 1) RO(ZZZ)

Now applying ag we obtain 13, 5,

Exercises. 1. Let BtC(V), where V is a complex

bundle, denote the Bt of Section 7 . Thus 8::: is
characterized by: SE(LQ =1+ L+ -v. 4 Lt“I for line bundles

and Bz(v + VY = ei(v) . ef(vz) .

! Now suppose that dim V = 4n, and XénV =1. Then
= = T . On the othe
indeed we have: Gk(E) = Od%-*g{ak) ocg(f Gk) n

he real bundle €.V will have a Spin
hand one sees quite easily that, in terms of the notation :

g =y t= e while

(8n) reduction, so

hat 8.(e,V) is well-defined.

Prove the formula:
introduced in Section 9, f
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€¥0,(€,V) = 6 (V) -

2. Using the invariant 6, of the KQO-theory and in
particular formaula {13.4) refine our earlier estimates on
I KO{Sén) ~ 3(8,,) by a factor of 2.

3. Prove the analogue of Theorem A, B stc. when
E is'a Spin®{2n+ 1) bundle, H= Spin©(2n), and KO is

replaced by KU .

§14. The Thom isomorphism. We adhere to the

notation of the last section but assume that in addition
E = i.E' where E' is a principal Spin(8n)-bundle --- that
The corresponding

is to say E' is an H-reduction of E .

section of P(E) is denoted by S . We thus have the split

exact sequence of spaces:

(14.1) b__> X :_Z—> P(E) s p(E)/s(X) —> 0 .

In terms of the associated vector-bundles over X one has:

W = pgn(E‘) = th(pgn), Vo= me,_l(E) sothat V=W +1,

and hence (14.1) goes over into

his -
- W
(14.2) 0—>X T B(W+1) >X" —>0.
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i.e., IP(E)/sX may be identified with XW

Because (14. 2) splits K'E)*(XW) may be identified
ey i - !
with its image under i  and hence with the kernel of si'

in the KO(X)-module KO (IP(E)). With this understood,

~a W
let z € KO(X ") be the element vy - sl'y where vy is the

bundle of the previous section. Then we have:

S W
THEOREM C'. KUX") is freely generated by z

over KO¥(X). Further,

2
po =

BE) - afED) - 4
and

zpkz = Bk{E) -z

N

\.
N

where Bk’;E RO{Spin(8n + U} is given by Theorem B . “

f

The proof is trivial, one just computes in KO™P(E)

whose ring and tl.tk—structure are given by Theorems A and B
Let i: X - XW i i
: be the imbedding given by 5, the

antipodal section s, followed by j. We associate the

additive homomorphism x = -z . x, x € KO{X) with iand

denote it by i, » With this terminology Theorem C' may

be stated as follows:

THEOREM C" . Let W he a 8n-dimensional

“vector-bundle which admits a reduction to Spin(8n) . Then
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] o t
ni Thus a’y = -y + A[E) . Hence s (y - s'y)
the homomorphism

[ '
=s’a’(y - s'y)

1 T -
=8 -y + &(E) - s7y) = 67(F) - A¥(F) . This formula now
yields the relation in question directly.

is a bijection, and satisfies the formulae:

Exercise. Follow -up Exercise 3 of Section 13 in

(i, u)(3i,v) = i!AwI(W) Tt v the present context.

815. The Gysin sequence. We now assume that W

i

i A (WY - u is an n-dimensional vector-bundle over X, and let B(W)

denote the associated sphere-bundle,
' (w),

i + -
(Here we have abbreviated A (F) - & (F) to 4

i

M 5. .
< e )
and 8 (E) to 6 ( vy ), Where F 18 t}le PYr 111(:1pa1 Sp}_zl( 8[}. I IiEOR E: 1

If W admits a reduction to

bundle associated to W and E is its Spin(8ntl)-extension. Spin{m), then the following Gys

in sequence is valid:

Only the iasf: statement needs verification. For this purpose

<— KOP ™™y KOP{B (W)} <1

consider the action of N(H)/H (see Section 1l) in our case. .

P -m
: + KOP(X) < KOP™™(x) < |
This group is Z, and acts on RO(H) by exchanging A (xX) (xX) pE€Z

and A~ and it acts on B(V) as the antipodal map. Let us

where now KOP ig defined for all integers by the period-

1
write a: 3(V) - 8(V) for this map . Clearly a° isa

icity: KoP™® L xoP .
KO*(X) automorphism of KO™S(V)}. Hence by the equi-

Proof: Let (W
variance property (see Section 11} we have: (W)

denote the unit disc ~bundle of

W as in Section 1 . Then as we saw there, one has the

! ' ) = aala”
a’y = a aﬁ(ﬂ ) = &E(A ) - exact sequence of spaces:

Cn the other hand by the permanence law, (W) —> D(W) f > XW

ap(87) = - ax(a’) + a(E) .

- which gives rise to the exact sequence:




Raoul Bott

3

f
KoPH(x™) « KOP{E(W)} - KOP(X) <

~

We will therefore be done once XO
xOPTUXK) -
Choose an integer k>0, so that m +

Then W+ k-1 is an 8n-dimensional bundle

92

~ W
KOP(x" ")~ -

Pix"y is identified with

5

k= 8n .

which admits

2 reduction to Spin{8n). Hence the Thorn isomorphism:

" ROP(X) e KMOP(X(W+k

is well defined. On the other hand
X{w+k.1) _ kaw

whence

KoP(x

Composing these two isomorphisms one obtains the

isomorphism:

o +k
gP(x"y -~ koFT(K)
which goes over into

roP(x") ~ KOPTTHX)

by applying the periodicity law n-times.

Note that when dim W = 8n, we have already

- . . p
determined the homomorphism d: &: KO

(wi- 1y RoP R ")

1))

(x) - koP H(x

Dt(l) < KO{X) . Hence under our finiteness assumption «

annikilates a high encugh power of I . It follows that &
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is multiplication by A_l(W) = £\+{W) -4 (W), as follows
from Theorem C''. It seems a reascnable conjecture that

& is always given by multiplication with (1) € KO™(X) .

§16. The rational J-invariant derived from &V) .

In Section 13 we defined the cocycle k — Qk(V} for an
(8n + 1) dimensional bundle with a Spin~reduction, and
showed that the J-type of V was trivial only if there exists

a u€ KO{X), dim u=1 such that:

{16.1) Gk{V) = k4n¢ku/u forall k€ z"

e

PROPOSITION 16.1. The equation (16.1) can always

be solved for u in KO(X) @ Q.

In KO(X) (16.1) can of course have no solution as
examples; show. This proposition depends vitally upon the
nilpotence of KAC’)(X) i.e., upon the finiteness of X . To
see the implications of this assumption consider the general
situation of Section Il. Thus E = X is a G-bundle and

o R{G) " K{X} the corresponding homomorphism. Also

let IcR{G) be the ideal of elements of dimension 0 . Then

E

i

extends uniquely to the I-adic completion 'R(G) of R{(G) .

‘Ian other words, if X a; is an infinite series of elements
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in R(G) with N
T
a.EZl, lim n, = o
1 R
indeel

Now ch extends to a homomorphism

' ; tin K(X) .
then aE(Z ai} is a well defined elemen

\ RO - 1,
Consider now the cocycle k = ek where which identifies RAO with the formal power series in the

By € ROSpin(En + D} are the elements defined by 10.13, M; Wwhich are invariant under permutations and the opera-
. - l ] . H-l
i.e., by tions 1 -1, T-Wy (corresponding to X 7%, ) . Hence

4,% (D2 A1/}

the element {1 determined by

We will construct an element Q€ RO{Spin(8n + e o (16.3)

Chﬁ = éﬂ {71_-1.1-j_—.= 10g {}_ — n_)}
\ _ 1 'T‘ii 1

5,

with the property that:

is a2 well detefrmined element of Rb .

4n ezt .
(16.2) dim =1, 6 =k ;,bksa/n, all k

We have ¢k .

.

y; = Y]; whence ¢kni =1-{ - ﬁi)k
If such an element can be found, Proposition 16.1

I h-ex Efore
\Rrjl} clear ha‘re been pr(}w‘ed one S]mpi sets u = ﬂ,

-1 -m)f

where E is the principal Spin{8n + 1) bundle of V. ch g, @ = {__WZ-  log(t - ﬂl)} |

To describe elements in RO of G= Spin(8n + 1, and

W w n il kje k/2
4n {1-mn,) / -{1-1n) /
e start with the imbedding 4

ch$ Y/Q= kM I 1 _ s 4n

= ch Bk
- ’ﬂi}ml/z -1 - ﬂi)l/z

ch -1 . . 4
rofso(en + 1)} —=——> Zly,y; ] i=1---,4n

L 2:1011 0. FOI convenience we abbrevlate

descrlbed 1 SEC ].

:il to () a.[ld f:hE: . [- S. to L- I[l t}le 1deal e element
e LHS R. R - L g Lls:uSS]_O[]_ Oi ii]

8§ we bring another application of the fact that o

= extends
. i ated by the N
which corresponds to I(T) — RO(T) is gener ’ to RO(G) .

-1 .
glement (:><i - 1) and {Xi -1). We se
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THEOREM 16.i. Let Mpc KO(X} ® @ be the sub-

space on which z,bk acts by multiplication with kP . Then,

KO(X)® @ = f M
p=0 P

is a direct sum decompositicn.

Proof: It will be sufficient to decompose every
bundle W into its components in M4P . Lt then W be
given, and let E be the principal SO(2n) bundle associated
to 2W . (Note that 2W always has a reduction to 50 .)
Thus 2W = p(E) = aE(p) where p & RO{SO(Zn)} is the

standard representation.

Now in E{O{SO(Zn)} ® @ we have, in our earlier

notation, the following obwious identity:

ch p = {eiog(l—ni) . e—log(lwm}}

s

Hence if we define P € RO{80(2n)} ® © by

n
chp, = —plT ), oz - “i)}P v {10 ll—ﬂi}p]
]

Then
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Hence in KO(X) ® @ we have

W= —;— Z aE(Pp)

p=0

giving the desired decomposition of W . Of course we see

also that Mp = 0 if p is odd.

To continue with our class . Note first that an

element §} may be defined in each of the rings RO {SO(Zn)}

by the formula:

4n mn.
_ 1
Chﬂ—l;:[ TTM—I—ﬂ_lOg(lwﬂl) i:l,...,n‘

1

Hence for any SO(2n)-bundie E we obtain a well determin-

ed element Q(E) €1 + KO(X) ® @ . Further it is clear that
QE + E') = QE)- g(r") .
Hence {1 extends to a homomorphism
f: KO(X) -1+ KO(X)®® .
{Note. If W is an SO(n) bundle, define Q(W) as JQWY.)

THEOREM 16.2. Let W and W' be two vector-

~bundles over X . Then W and W' are stably J-equivalent

~only if
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QW)= QW) - U, UEKOX), dimU=1

Thus QW) €1+ KO(X) ® @/1 + KO(X) is a stable

J-invariant of W .

Proof: Assume first that dim W = dim W' = (8n+1)
and that they admit spin-reductions. Then W and W'
are of the same stable J-type only if there exists a U €1
+ KO(X) so that |

1

W) =
kén

g, (W') - {zpktj"/ti‘}“in CKO(X) ® ©.

This implies P, Q(W)/Q(W) = p jamw) - Ul/(w)- U
and hence by Theorem 16.1, that (W)= Q(W') - U.

This settles this special case. In general, suppose
W and W! are J-equivalent without necessarily having a
Spin ~reduction. Choose W' so that W + w' is a trivial
bundle of dimension (8n + 1). Then W'+ W' will be _
J-equivalent to the trivial bundle and hence have a Spin-
reduction, So then Q(W') - Q(Wi) €1+ KO(X) which

implies (W) = Q(W') mod 1 + KO(X) . 0.E.D.

§17. The i class. In the last sections we have

found the analogues in the KO-theory of the & which we

had constructed in the complex case by elemeniary
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considerations. It is now natural to try and find an analogue
for the Todd class which was encountered there. The

purpose of this section is to discuss this question.

We continue to use the notation of Section 13. We

also recall that ch : KO(X) = HY(X ; @) is defined as the
composition KO(X) ——> KU(X) -S> u¥(x; @), and

ch O(X) c F(X; @)

as the image of this homomorphism.

THECREM A’ . Consider the sphere bundle 5{V)

- X of Section 13, and let Y = Chgn(Y) be the 8n-th

component of the character of y . Then H (8(V); @) is a

free module over H™(X; @) with 1 and Y as generators.

Prooft When X is a point, Corollary 2 of

Thecorem 3, Section 10 proves this assertion. Hence it is

true always by the usual Meyer-Vietoris argument.

COROLLARY 1. There exist elements unique in

H*(X; @) which make the following equations valid in

HYB(V): @):

.
i

a(B)YY + B(E)

UE)Y + &(E)

ch y
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COROLLARY 2. Let E and E' be two

Spin (8n + 1)-bundles over X . Then their associated

fiber
sphere-bundles IP(E) and IP(E') are of the same

homotopy type only if

wE) - U(EN} € cn ox)

Proof: Assume f: P(E}~1P(E'} is a fiber -
LA
homotopy equivalence. Then £y =ay+ b where =&,

b € KO(X), dim a =1, by Theorem A .

Hence chfy’ = ch(a) E)Y + K, , K € H'(X; @) .

Bt b . )
On the other hand fFchy' = ¥(B") - £7Y + K, , K, €H(X;0)

Now when E is a point it follows from Corollary 2 of

Theorem III , Section 12, that %(E) = 1. Hence the constant

term of U(E)=1. In other words:
WE) = 1+ YE)  HE) € H(X; @)
Also, because dim a =1, we have:.

cha=1l+cha cha€ f89X0)
Hence

1 r B4 .
£y :Chnfy:Y+K3’ K3EH(X,®)

8

Now if we compare coeificients of Y , we obtain

ch (a) - E) = UE) . Q.E.D.
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Thus the invariant corresponding to 8 in H*(X;(D)

is the element U(E) € H¥(X; @)/ch O(X) . In view of the

results of the preceding section it is not surprising that
U(E) should be related to the invariant §4 of the preceding

section:

THECREM. Let V = pn(E) be the vector bundle

associated to E by the regular representation. Then

ch (V) = U(E)

Proof: We will first show that the coboundary of

UE) is the cocycle:

6, (E)

k4n

k= c¢ch

. 2
Precisely let ¥, operate on H n(X;{D) by multiplication by

k™ . With this understood we have:

PROPOSITION 17.2. Let Bk(E) be the cocycle of

E . Then

(17.1) ch 8, (B) = L b, 8B} /u(E)

Proof: We have by = Gk{E)y + Fk(E) . Hence

ch gy = ch Gk(E) - chy+ch Fk{E) = ch ek(E} UE) - ¥ + K

1
where K € H*(X: D) .

On the other hand g,bkch = ¢h "bk as

follows directly from the splitting principle for KU. Hence
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In other words if the last formal power series is expressed

ch tbky = &kCh y = ¢k{%(E)Y} + %bk@(E)

in terms of the elementary symmetric functions of the

2
4 Y:, Pyp-*"s Py, » 2andthese are then replaced by the

Pontryagin classes of V we obtain U(E) .

Comparing coefficients of Y we obtain: This recipe is thus the analogue of Proposition 13. 3.

4 In their work [4, 5], Atiyah and Hirzebruch use the class
ch 8 (E) = k “zpk UE)/UE) Q.E.D.

m_l(E) = ch QWI(V) and denote it by %(V). Their derivation

To return to the proof of the theorem: Combining of the algorithm relating the Pontryagin class of V to #(V)

(16.2) and (17.1) we see that UE)/ch Q(E) is invariant under, is quite different from ours. They were led to the study of

gy - As both these expressions start with one, we may Y(V) through their investigation of the cohomology of G/U

conclude that Y(E) = ch Q(E) . where U is a subgroup of maximal rank in G [11]. Ina

One may express U(E) in terms of ch(V), {(V = p(E)) sense, their computation is the proper analogue in the

or, as is usually done in terms of the Pontryagin classes H(X; ©) theory of our derivation of a recipe for GR(E) .

p. of V. (Recall that pi(V)= (—1)1c2i(e*V) where c; is £
i

Exercise. J.et X ——> Y be a smooth inclusion of

the ith Chern-class of V.) Indeed, we know that if the compact oriented differentiable manifolds. Let N he the

Chern-class c(€*V) is represented formally by H(l%—inlvyl; normal bundle of X in Y, andlet j: Y = x™ be the

then ch(V) is represented by natural projection. Assume now that N has a Spin-

4n reduction, so that we have the Thom isomorphism:
1+ Z {eyi + e“yi}
1

¢« KO(X) - Ko™(xY) n=dim N .
and hence ch{Q(V)} by
Oune defines the "Umkehrungs' homomorphism {, in the
e'yi/z ) 4n sin h(yi/Z)

i-e
I | U —w7—
1 Yi 1 yi/“

1

KO-theory by:

fu = jo(u)
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Thus f,: KO(X) ~ RKO(Y) .

Y
Prove the formula f,(uf v) = {f,v) - v, and the

Riemann-Roch formula:

chif, u} = L fUN) - ch u} u € KO(X) .

This formula may also be written in the form

{en £, ()} %’_F‘(ty) = £, {ch(u) - ai'l(tx)} . u€ KO(X),

t ty the respective tangent bundles of X and Y . Using
8n
(

this expression, an imbedding of X <35 high n) and the

periodicity theorem define- f, for any map X =Y for

H
which § ty -t admits a Spin-reduction and show that the

above formula persists. This is the differentiable Riemann

Roch theorem of [4] .

Carry out the analogue for the KU theory also

using the Spin®(n) bundles.

§18. Real projective bundles. Consider the exact

seguence

)
(18.1) Spin(n) - Spin(n) = Z,

N
where Spin(n) is the normalizer of Spin{n) in Spin (n + 1}

The nontrivial Zz-module then pulls back to an element

7
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n € RU{Spin(n)} .

-\
PROPOSITION 18.1. Let @ : Spin{n) — Spin(n + 1);

n > 3 be the inclusion, and let 2%, 47 be the Spin repre-

sentations of Spin(n+ 1) . (We set AT = AT i n4 1 is

odd. ) Then

(18.2) (@'afyon = o's’ .

Proof: The sequence (18.1) is obtained by covering

the corresponding sequence

(18. 3) SO(n) — s<§G) — Z,

which exhibits S({(\n) as Ofn), by the way. To obtain a
splitting of {18.1) we proceed as follows. Given = + 1

integers {ei} = ¢ let d{€) be the diagonal matrix in Of{n+1)

with ith entry (-1)61 . Then SOC{n) «—> SO(n + 1) is the

subgroup which commutes with the element &(l,---,1; -1).

Let
a = a(1, - +-,1; -1, -1, -1, 1) € SOfn + .

‘This element is clearly in SO(n) . Further w a generates

, - Hence a splits (18.3). Let a be a lifting of a to

N
;Spm(n) . Then we assert that az = identity in Spig(\;l) .
Indeed the shortest closed l-parameter group in SO(n + 1)

containing a as its midpoint represents the trivial element
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] _ LN R . -
of -rrl{so(n + 1)} and hence lifts to a closed curve in Spin(d). @' 4 then a acts by +1 x identity and &' A" is described

. —
O.E.D. on V by changing the action of Spin{n) only at a, namety

Thus a Spin(n) module, V, is specified by the by letting a actas -1. But this action is precisely the one

H
: Lt
action of Spin(n) on V and the action of the element a glven by a4 @m. 0. E.D.

on V. Suppose next that n + 1 is odd. Then otlA, A= at=gm

Suppose now that {n + 1) is even. Then A" and A~ ¢an be described in this manner. Let V be a representa-

. A
are distinct elements of RU which both restrict to the tion space for A, € RU Spin(n} , and define an action of

irreducible module & of RU{Spin(n)}. Further, the Spin{n}) on V +V by setting

restriction of A" to the group generated by a can be _ 3
glepey) = (gey agae,) g € Spin(n)
computed:

epeg) = (egrey)
We choose the "obvious" maximal torus T C Spin(ntl

containing a and write y, for the characters on T as This is true because the automorphism induced by a on

. ) .
before. Then for a proper choice of the numbering and Spin(n} exchanges A, with A . Now then wo'4 ® N will

orientations of the v, We have: be given by the same representation on Spin(n) however

a will now send (ei’ e,) into —(ez, el) . The problem is

0o ie12 therefore to show that these two actions are equivalent
vila) = 1 i i 71,2 ' is wi |
- aud this will be demonstrated, once we construct an

while /y Ty _Ta) =+ 1. element ¢ inthe center of Spin(n) with the property that

it follows that ch r_\.+(a) =dima’ - +1, ch 4 '(a) =

= dim 4~ + (-1) or more precisely the restrictions of a'

) where ¢ generates the k i -+
and & to the subgroup generated by a are respectively g ernel of Spin{n) SC(n). Indeegd,

B in each spin representation a -
dim &% x trivial representation and dim 4 X the repre- TS Byl sothat the

sentation 7 . Thus if V is a representation space for
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the second one.
Let ¢ = d{(-1,---, -1,1). This element is in the
center of SO{n). We set c egual to a lifting of c . Then

v

if 2m = nn we have:

as follows from the fact that the shortest closed l-para-
meter subgroup of SO{n + 1) containing <, respectively
ca represents m times respectively {m - 1) times the

generator of 'irl{SO(n +1)} . Hence

2
ca-ca = ¢ €

or egulvalently

COROLLARY 1. The formula (18.2) holds in

P -
RO{Spin(n)} when the AT A7 are interpreted as the real

spin representations of RO{Spin(n + 1)} ;

This is clear from the results of Section 10 because

n is the complexification of & real bundle.

if we apply the permanence law to these relations

we obtain the following theorem.
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THEOREM 18.1. Let E be a principal Spin(n+l)

N
bundle over X. Let Spin{ny~*Spin(n + 1) be the inclusion

and consider the projective space bundle P(E) over X

associated to this subgroup. Then if st ¢ RO{Spin(n+1)}—

are the Spin representations and 7 € KO{X) is the sub-~

bundle over IP(E) (see Section 1}, the following relation

holds in KO{IP{E)} :
(18. 4) sfEY®n=a"(E) .

Proof: All that is needed is to identify M{E) with
the sub-bundle 7 over IP{E) and then to apply the

permanence law.

COROLLARY: Consider Pn = real projective

space of {n - 1) dimensions, and let 1 € KO(P_} be the
Pk st iy n! = T

sub-bundle. Then if a = dim A; where L‘.‘.+ is the real
e D —— n —————— e

spin representation of Spin(n), we have

1
W
—

am

n 23

or

1
jan]

an(l -1}

Proof: Just let X be a point in the previous

theorem.
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REMARKS. 1. The same result of course helds in one is the following procedure of Milnor. By the spectral

. +
KU(PH) : one has (1- N®C) - dim. A = 0 where we now

let A+ be the complex spin representation.

sequence for KU(X), see [5], it is clear that KU(P ) has
n

order b and that KU'I(PH) =Z if n is even and is 0

2. We have carried out the proof of Proposition 18.1 otherwise. To prove that KAfJ(Pn) is in fact cyclic one

only for n > 3. When Spin(n) is properly defined for n=2 uses the universal coefficient theorem which gives rise to
as the double covering of SO(2) everything is still valid in an exact sequence:

that case also. i+1 i .
0 Tor (KU (X);Z,) - KU (X;Z,) - KU'(X) ® Z, - 0

§19. Someé examples. In view of the last proposition

where KU*(X;%Z) is defined as KU™(X #P.). P, being

I Section 18 the following is not quite surprising.
of Section g q P g the Moore-space for the group Z, . Now there is a

THEOREM 19.1. Let P_ denote the real projective spectral sequence covering to KU'(X; Z,) with E, term

EY(X; KU:"(P; %2)), and KU*(p;ZZ) is seen to be Z, in

space of dimensjon n - 1. Then
every dimension. Finally it turns out that already the
~ . . : 2
(19.1) KU(Pn) - an first differential operator, d3 = SqISq + SqZSq1 » Kkills the
_ ~ spectral sequence yielding K’TJ(X;ZZ) = Z, . Thus KU(P)
(19. 2) KO(Pn) z Za ) _ _ sl
; a is cyclic. That § is a generator then follows by induction.

To get at KO(P_) Mil
where a  and b_ are the dimensious of the Spin represent & (Py) Milnor now uses the sequence (12.2)

: relating KU and .
tions in RO{Spin(n)} and RU{Spin(n)} respectively. Furthe & nd KO

KO(P_) is generated by £ =1 -1 and KrE)(Pn) by (1-m)@C One may arrange this sequence in the following

k18

where 1 is the sub-bundle over P_. Thus, as nz =1, manner,

we have §2 = »2E .,

This theorem has several proofs, none of which are

really quite satisfactory. In a way the most straightforward
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Another approach is to systematically use the Spin
representations to build bundles on the spaces Pn/Pk and
then to use a double~induction. This was the point of view
used by A. Shaprio and myself in [8]. The gist of the
argument is as follows: Let M, < RO{Spin(k)} be the
additive subgroup generated by the Spin-representations in
RO{Spin(k)}. Thus My =Z for k#4n, and M, =Z + Z
for k = 4n . We further have natural restriction homo -

morphisms: Mk - Mk—r

Now, let 1 be the sub-bundle over Pn . and consid
consider Pkc Pr . Then on Pkak - M is isomorphic to a
trivial bundle by the corollary to Theorem 18.1, In fact
every spin representation on RO{Spin{k)} is seen to define

a definite trivialization of an on Pk and thus a bundle on

Pn/Pk - This construction then extends to a homomorphism
M, - KO(Pn/Pk}

and our result, which we proved by a double induction and

a product formala yields the theorem:

THEOREM 19.2. The sequence

Mn - Mk - Kc(pn/Pk) -0

~where the first homomorphism is the restriction, is exact.
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The same result holds over the complex numbers if M, is

defined as the subgroup generated by the complex Spin

representations in RU{Spin(n)} .

The details of either of these proofs are a. little too

long to be given here. Adams' account of these computa-

tions can be found in "Vector fields on spheres!, Ann., of
Math. (2) 75 (1962), 603-632,

Noteworthy coroliaries are:

COROLLARY 19.1. Consider the sequence

)y - KO(S )

0= KO(Pn) - KO(Pn-l-l n

Then the generator of K’\(J)(Sn} is mapped onto a % GKCX%H}-

In particular K“é(sn), n=1, 2 {8} is injected into KO(PH‘E‘I,'

COROLLARY 19.2. The operation of §, on KO-

and hence on K?)(Sn}, n=1, 2 (8) is given by:

. it
w2k+i identity

ka

Proof: Recall that 1 is the sub-bundle of Pn .

Hence, in particular, a line bundle. Thus )\tT} =14 tn,

T] ) = d =1 . Now
T ,S0 that Yy N=n an z,bZkT]

€=1-17 generates KFE)(PH) .

whence $1 =
Q.E.D.
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The following gives the crucial result in the Adams

solution of the vector-field-problem.

THEQOREM 19.3. K’b(Pn)eg(Pn)

Proof: We have to show that if b . N is J~aquivalent

to zero, then b is a multiple of ar1 For n=1,..., 9,
the Whitney class gives the correct result. Indeed for
b . 1 to be J-trivial w(‘ﬂ)b has to equal 1. Further,
because w(7) =1+ x where x penerates Hl(Pn) we may

check explicitly that the lowest power of b which will solve

the equation (1 + x)b =1 is precisely a, -

Consider the case n > 9 next. As J(Pn) is a
quotient of '}(Pn-ém) a2 possible value of b will have to be
a multiple of 8, say 8m . Now 8mY admits a Spin-re-
duction, so that the cocycle Bk(Sm M) is well defined. In

fact we have already computed this cocycle in Section 13

and found that

4m
4
km—% (- n k even
8, (8_m) =
Km Am ’k4m—1}
-JL-—M~§—~ {1 -mn) k odd .

. Now by Corollary 2 of Theorem B in Section 13 we obtain as

; @ necessary condition for the J-triviality of 8m % that
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6, (8mm) = kg u/u

where u is an invertible element of KO(PH) . But for k
odd, we have seen that zpk acts as the identity on KO(Pn)

so that the condition reduces to

4m {k “l}g:km k odd

4m -1
Hence we must have R

=0 mod a for odd k.
Now a little number theory shows that this condition implies
that 4m is divisible by an/Z , i.e., that 8m is divisible

by a_ . However this is also the condifion for stable
n

J-triviality, which reads as follows:

4m+ s

n = . u u/u for some s.

=)
k Bk{Bm

Wt

Hence for odd k one still has e =0 mod an.Q.E.D.

COROLLARY 19.3.

Proof: We have 0~ Kﬁé(Sn) -~ KO(P ~ (P

n+1) n+1)

whence J{Sn) £0. Q.E.D.

Let me conclude by sketching the path, ala James,
Atiyah, from this theorem to the vector-field problem on

the spheres. The theorem of Adams [1], [2] may be stated

KO(S )=1(S ), n=1,2 mod8.
n n
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as follows:

THEOREM: Let On K denote the space of ortho-

no al k-f i , d -
rm rames in En and let On,k On,l be the

projection. Then this fibering has a section, if and only if

n is a multiple of the Hurwitz-Radon nurnber =a

K
One considers the fibering:

T
On-l, k-1 On, k On, 1 7

Also let Pnc: On be the projective space imbedded in O
n

by a assigning to a l-space, e, in En the reflection in

the corresponding orthogonal hyperplane. The sequence

above then gives rise to a sequence
—> P /P

Pn—l/pn —_> P /P

n-1

and one checks that in the stable range w has a section if
and only if w' has a section. N = p (0-K)m
v oW pn/Pn~k Pk as

Hence if P(n~k)1’} -5

is easily checked. I -] Das a section s,

the S-dual of this map will determine a map S -*Pk(nn+nll}
m 2

n+tn' = m, which yields a coreduction of P%{n“mrn‘l) ~— or,

quite equivalently, a J-trivialization of o . (One here

~uses the duality theorem [3] which asserts that if X is a

~manifold with normal bundle N in some imbedding of
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XcE_, andif E isany bundle over X, then (B+N)

represents the dual of XE in the Spanier-Whitehead sense,

The pertinent references here are [3], [12], [13].

§20. The difference element. Although I have

avoided the Udifference'’ construction of bundles in these
notes, it is such a useful device that a short discussion of

it seems advisable. The situation is as follows:

Let E and F be bundles over X, and let § be an
isomorphism of their restriction to a subcomplex A CX .

Thus

¥:ElAa-~FlA

We wish to construct an element d(E, F) € K(X, A) which

is the analogue of the difference cocycle. For this purpose :

let ¥ = Xl UA XZ be the space obtained from the disjoint
union of two coples of X, say Xl and X,, by gluing them
together along A< Xi . We now construct a bundle E U F

over Y in the plausible manner: We take E over Xi’ F

over XZ and glue thern together via 7 over A .

Note that we have a natural projection Y —T>x
given by the identity on each factor, also that we have two .

a:
inclusions X —* > Y onto the two factors Xi Y, 1=
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2, and finally that

S.
X <
ki3

Y—3w->Y/XiE-: X/A

exhibits X/A as a quotient of an exact sequence which
splits. Thus we may identify K(X/A) with the kernel of

I
s; in K(Y) and this will be done in the subsequent discyss-

ion.

With this understood one defines dg(E, F) € K(X/A)
as the class of E U;B’ F-mF in K(Y)}. This element is
in the kernel of 5!2 as sjz(E UQ F)=F and siz 'n'"F =F.
To simplify the notation we consider K(Y) as a module
over K{(X) — i.e., suppress the = — so that dg(E,F)

=B LbF - F in R(Y/A) cK(Y).

The following proposition is easily verified by an

explicit check:

PROPOSITION 20.1. The construction E U

QF

has the following properties:

{20.2) EUF = EUF

—Q( g

{20. 3) EUF+ E'UF = (E+E" U,(F+F"

g ¥ d+¢
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' E a principal! G-bundle over X ; 1P =1PE)=E/H; and
(20.4) (EUFE'UF)=E-E U F-F P i (E) /

g Geg

finally M ~T>X the mapping cylinder of IP . We then have

(20.5) NE U NFE=AEUF) the diagram
Ay 4 _
Recalling that K(X) is defined by homotopy classes of maps K(IP) < K (M) < %(M/1P)
of X into K , we see further that:
B H
R(H) <— R(G) ¢——-— R(G, H)

(20.6) E UF depends only on the homotopy class of § .

I
. where R{G, H) denotes the kernel of 1" and the vertical
An immediate application of this formula is:

I
homomorphisms are G and 7 e O respectively. Now

(20.7) EUF+F U E=E+F .
¢ g'l

by the use of the difference construction we may complete

this diagram with a compatible Al - homomorphism

Indeed the LHS is given by E + Fg U, F+E d: R(G, H) = R(M/IP), at least for the KU-theory. Indeed
+

while the RHS is given by E+ F U E+ F . However
1+1
¥+ g_l can be deformed through isomorphisms into 1+ (-}

et A and B be two complex G-modules. Then by the

T 1
permanence formula « -« QEA and Tr'O{EB, when restricted

. 1
whence by (19. 2), the relation (19.7) follows. As another to 1P, become canonically isomorphic to aﬁ(i'A) and

. I ¥ T
application we cite the formula: aﬁ(i'B) respectively. Suppose now that i" A=i"'B and

2 that @ is an H-isomorphism of these two H-modules. Then
{20, 8) dle, FYE - F) = d(E, F)

i 1
dﬁf(A’ B) = dgr(-n" ° QL A, ﬂ'aEB} is a well defined element of
which may be derived similarily. K(M/1P) . Now if we are working with complex modules it

With the aid of the difference construction one may is easily seen that the set of possible H-isomorphisms

1 i
get at the Thom-complex of a bundle directly. In fact f:i"A - i B is connected. (The group of H-automorphisms
consider the following general situation envisaged in of an H-module is just a product of full linear groups. QED)

Section 11: H —+>G, the inclusion of a closed subgroup;
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is in thi een to de d onl G-ext i _
Hence dg(A,B) is in this case s pend only extension of E', and set IP* = E'/H', 1P = E/H. I

n

t H
on A and B. In fact dﬁ(A’ B} = dg(A', B') if A-B=A-B this situation we therefore have the comrmutative diagram:

in RU(G). This follows from: A+ B =A'+ 3B, as

G-modules, =d(A +B', A'+BY=0=4d(A, B)+d(B',A")=0 RU(G') «——0 RU(G)
= d(A, B) = d(A', B'). Q.E.D.
A2

(Here we have suppressed the § because it is RU(H') «<—— RU(H)

unique. )
Construct d so as to complete the following commutative

Every element x € R{G, H} may be written in the .
diagram:

form A - B where A and B are G-meodules which have
isomorphic restrictions to R{H), and one defines d(x) as

KU(P') <  KU(P) <0 KU(1P /10")
A

dA, B).

Over the real numbers the construction of a canonical: '

Cyas T’ aE] D o d
a: RO(G, H) » KO(M/IP) is not so clear. In this case the E
group of H-automorphisms of an H-module may have R(H!} R( t
——R(G) @ R(H)<——R(G,G|H H)<
. G H, 0
R(G) )

several components and it is not guite clear to me that the
consequent choices may be constructed compatibly. How-
ever in simple cases --- such as G = Spin{2n), H = Spin(2n-)
there is no difficulty in the real case either. :

Exercise 1. Obtain the formulae of Theorem C' ,.

Section 14, directly by using the difference construction.

Exercise 2. Let f:(G',H") = (G H) bea homo-.
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can be modified so as to determine K(X x SZ) over K(X)

APPENDIX I §2. Preliminaries. We assume familiarity with

the elementary theory of vector bundles and the definition
ON THE PERIODICITY THEOREM

and elementar roperties of the funct
FOR COMPLEX VECTOR BUNDLES ¥ Prop unctor K(X} on the

category, U, of finite CW-complexes, see for example {l].

By In particular, we will need the following "clutching®

M. Atiyah and R. Bott construction of vector bundles on the union of two spaces.

Let X=X1UX2, with A:XIQXZ, where the

§ 1. Introduction. The periodicity theorem for the X,, X and A are all objects of % . Assume also that

Ei are vector bundles over Xi’ and that ¢ : ElfA - E,{A

21

is an isomorphism of the bundles Ei restricted to A .

infinite unitary group [2], is most usefully expressed by

the Kunneth formaula:

These data then define a bundle E1 U‘P EZ on X which is

(1.1) K(x x5%) = K(X) ® K(s%) s
obtained by gluing El and E2 together via ¢ on A.

where K(X) denotes the group of virtual complex vector Elementary properties of this construction are the following:

bundles over X . In this formula X is a finite complex, (2.1) If E is a bundle over X and E. = EIX.
i i’

and S2 denotes the Gauss sphere. then the identity defines an isomorphism 1A : El[A - E, [A

This note is devoted to a direct proof of (1.1) using and
only the quite elementary properties of the functor K. El %‘EZ =E .
Qur proof arose out of a proposition which we needed (2.2) 1f 31 . Ei - E; are isomorphisms on X,
i
in the study of well posed boundary conditions for elliptic then

1 1 -
;EZEEI U E, with @' =8, °po g .
@

cperators, and its basic principle is that the polynomial
2
)

B

approximation which leads to the determination of K($
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r -
(2.3) If (Ei’ @) and (E_l,(,o') are two ‘'clutching
data'' on the Xi then:

, ~ ' aE.L)
E.UE.®E U E}, =(E ®E]) U (E,9E;
1 2 l{,Dl 2 1 ‘P@‘pl

Ty oz : & E! .
(EIUE2)®(E1U:EZ)—(EI®E1) U (B, ®E)

® P P B!
These properties are immediate consequences of the
definitions and the notion of isomorphism of bundles. From
the fact that homotopic maps induce isomorphic bundles, it

foliows further that:

(2.4) E U E, depends only on the homotopy class
of the isomorphism §: EiiA - EZiA .

¥ E and F are bundles over X and Y, then

E ® F — their exterior product — iS & bundle over X X ¥ .

This is the operation which induces the homomorphism

2

L K(X) ® K(s7) ~ K(X x57)

which is to be shown to be an isomorphism. This is of

course the basic temsor-product, in the sense that the

ninterior! tensor product of two bundles E and ¥ onthe

same space, thatis, E®F, 1s defined by: E®F =A{E®FH,

with A: X - X x X the diagonal inclusion.

129 Lectures on K(X)

§3. Bundles over X X S‘2 . Let S2 be thought of

as the compactification of the complex numbers € and let
D* denote the disc izi < 1, while D" shall stand for the

opposite disc Iz] >1.

Weset X, =X xD' and X, =X xD ; A=X XS
where S=D' ND" is the unit circle. The natural
projections of these spaces on X are denoted by o, Ty
and A respectively, while the map X - A sending X

into (X, 1} will be denoted by s .

PROPOSITION 3.1. Let E be a bundle over

X x $° and let F = s*E be the bundle on X induced by the

map s from ¥ ., Then there is an automorphism f

f: TfiZ-F - wlF unique up to homotopy, such that

(3.2) =3 F UrSF and
17 2 idkiaha
{3.3) £|X X1 is homotopic to the identity.

Proof: We consider s as a map of X into X1 .

Then s ° ™ Xl - X1 is a homotopy equivalence. Hence

the natural isomorphism E|X x 1 mnzFlX X1, may be

e

extended to an isomorphism £ E|X1 =g F . Further,

1

any two such extensions differ by an automorphism & of
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w;:cF which is the identity on v{F[X #® 1 and therefore homo-

topic to the identity on all of X, . Thus the homotopy
class of fl is well determined. Similarly one defines an

B3

isomorphism fZ : EIXZ = T F and now the profaosition

-1

follows by taking f ={, ° fl

The clutching function f
satisfying (3.2) and {3.3) is called a normalized clutching

function for E .

We next describe an especially simple class of
clutching data for X XS?' . Suppose then that ¥ is a
bundle over X, and consider an automorphism ¢ of wAF
Clearly such a ¢ amounts to a function which in a continu-

ous fashion assigns to each pair (x,z), x€X, z€ 5, an

automorphism:

o(x,z) F 2F_ .

Now given a seguence a.s i € Z of endomorphisms of F
(i.e., continuous sections of the bundle Hom(F, F))

consider the expression:

For each x € X and 2z € T, f{x,z)=2|i|ENai(x}zl is

then an endomorphism of F_ . Hence if f(x, z) is an
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isomorphism for each x, and z € 3, then f defines an

automorphism - also denoted by f - of 'Ir;;F , and therefore

a bundle rr?‘F UTI;:F on X X S2 .
£

For obvious reasons we call an expression of the

type (3.3) 2 Laurent series of endomorphisms over F, and

call such a Laurent series proper if f(x,2z) is nonsingular
for z€8 . If no negative powers of z occur in f, then

f is called a pelynomial. Finally, if { is a proper Laurent

series over F then the bundle Trzl:F U ‘IT;:F on X X S2 ,

f
will be denoted by: {F, f, F), and will be said to have been

obtained from F by a Laurent construction.

As an example consider the finite proper Laurent-
series f{z) = z " x (Identity). This "universal' series
applies to all bundles F over X . In particular if X is
a point, and F is the trivial bundle, then (F,z , F)} is
a bundie on SZ which we denote by H”. For n=1 one
obtains the "hyperplane' bundle H and it is clear by {2.3)

k

that HE @ 1° = g7 S

« More generally it follows from
{2.3) that for any bundle E over X , the bundle E ® H"

-

2
on X XS" is described by (E, z , E}.

Our first step towards a proof of (1. 1) is the

foliowing proposition:
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PROPOSITION 3.4. Let E bhe a bundle over

X x S'2 , and let 5 : X ~+ X X 82 be the constant map

x = (x,1). Then E is obtained from the bundle F = s*E

by a Laurent construction.

Proof: By Proposition 3.1 there is a cluiching

function f for F, so that E = ﬂ'fF U w3F . Consider
f
now the Fourier series of f: EOOOO ak zk, where Ay is the

gection of Hom{F, F) defined by the integral:

o
ay(x) = o=

J‘ z_kf(x, z)dez/z .
S

_ «k i _ , n
We set 5 =27, a,2 , and f_ = (1/n+ 1) Z,S, . Thus f
is the n‘th partial Cesaro-sum of the Fourier series, and
so by an easy extension of Fejer's theorem, fn is5 seen
to converge to { uniformly in z, and in X - the latter

. . 2
hecause f 1is uniformly continuous on X XS5 .

It follows that for n large enough fn will be
arbitrarily close to f and hence, in particular, proper.
Finally because close maps are homotopic, it follows that

E=(F, fn,/F) for n large enough, Q. E.D.

Cur next aim i1s to classify the Laurent bundles over
2 R
X X5 . Because every Laurent series is of the form

-n . . . . ]
z p where p is a polynomial, the essential complications
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of the Laurent construction already occur in the polynomials.
Using an operation analogous to the one which transforms
an n'th order differential equations into a number of first

order ones, we first present a linearization procedure.
Consider a polynomial p(z) = Z?:o a z , of degree
<n, over F . One then defines L"(p) as the linear

pelynomial over LYF)=F®---@F (n+ 1, copies) given

by:
n
L%p)(z) - {fg - -0 £}
{3.5) n
2
= i:ZO af, -afy i, -efy + e, waf 4L

In matrix-notion, L (p) F® - @F - F&---@F

-

[ "

o+l T+l
is therefore described by the matrix

r ) h
2y, 2 a
-z, i, G 0
n
(3.5) Lp) = 3 ~z,1 :
0 0
-z, 1
- W,

PROPOSITION 3.7. Let p be a proper polynomial

of degree < n over F . Then L%(p) is a proper linear

polynomial on Ln(F), and
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It is ther clear that if p is proper then L?(p) will

(3.8) (F,p, F) + (Ln_i(F), 1, LH_E(F)) = (L™F),L(p), LY(®). be proper for all t, so that this family furnishes a canonical

homotopy from p at t=0, to L'(p) at t=1. Q.E.D.

Proof: Let p: L™(F) = L™F) be given by

. From (3. 6) some easy homotopies of proper linear
B(zHEge -+ - fn} = {p(=)z,, £ fn} . Then the LHS of (3. 8)

n ~ n pelynomials lead one to:
is clearly isomorphic to (L (F), p, L (F)) . Hence we

will be done once it can be shown that p and Ln(p) can LEMMA 3.9. Let p be a proper polynomial of

be deformed into each other through proper polynomials. degree <n on ¥ . Also write LNF,p, F) for

. m m m
For this purpese define L:(p) by the formula: {L(F), Lp), L™(E)} . Then,

. _ n+l e n
ool agh . 1a2 — (3.10) LVH(F,p, F) = LYF,p, F} + (F, LF)
. “tz, 1, (3.11) LPUE, 2p, ) = L(F, b, F) + (F, 2, F)
L (p) =
-tz, i, 0
0 -tz 1 - For example the family of matrices
and observe the identity: a, st a a0
0 n-1 n
n n-1
P, tpps t pyeectp ) fL -z, 1,
1, oo ~tz, ]., -z, 19
L (p) =
t I, -tz, 1, -(1-1t)z, 1
1 1

proves (3.10) .
where ___pr(z) are polynomials defined inductively by
As explicit instances of these identities we have:
2 2
L7, 27, 1) = Ll(l, z,1) + (1, 2,1) by {3.11), whence by (3. 8),

(L2210 + 20,11 = (L2, 1) + (L1, 1) + (1, 1). Thas

p.(z) = ot a zi_r .

I iTr 1




Raoul Bott 136

; -1
(3.12) Hliz2= 2ty .

We note that this is the basic relation of the hyper-

plane bundle.

PROPOSITION 3.13. let p be a proper linear

pelynomial on F . Then F decomposes into a direct sum:

2
F=F,®F , suchthaton X X587,

(3.14) (F,p.¥) = (F,2 F)+(F_, 1, F)

The bundles F, and ¥ are called the + and - bundles
= TR Yy S Rl

of pon F.

The decomposition of F which we need here is

given by the following theorem in linear algebra.

LEMMA. Let a and b be endomorphisms of a

vector space V, and let ' be a closed curve in the com

complex plane for which p(z) =az+ b; z €7, is non-

singular. Then the following holds:

— 1
The operators P = L j\p(z) dp(z)

and Q=
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are projection operators which satisfy the identity

(3.16) p(A) + P = Qp(p) forall AE€C.

For X outside T', p{)A) maps PV onto QV isomorphically
{3.17)
For Ainside T', p()) maps (1-P)V onto (1-QV isomorphically

This lemma clearly applies to each fiber of our
situation, with [ the unit circle, and so defines two
continuous projection operators P and @ on F . In

terms of these define:

(3.18) pt(z) = Ofaz + th)P + (1 - Q)(taz + b}t - P).

It then follows directly from (3.15) and (3. 16) that pl(z)
= p{z) ; while (3.17) implies that, in addition, p, is proper
for each t. Hence (3.18) deforms p into the clutching

function
(3.19) Py = zQaP+ (1-Qb(l-p) .
Thus:

(3.20)  (F,p,F) ~(PF,za, QF) + (1 - PJF, b, {1 - Q)F) .

Now, define F, as PF, and F_ as (1 - P)F. Then
applying the isomorphism a b QF ~ PF and b ' (1~ QF

= (l - P)F in the second factors of these clutching formulae,
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3 u.tClllIlg iun.ctlon j
mor

over F on ¥ . Let fn be the Cesarg means of its Fourier

S E) 1: F »
{3.21) (F.p,F) = (F+’ 2 F+) * (F— - Series, and put P, = znfn - Then for o large enough, P,
We finally compine (3.9) with {3.21) in a stralight— is a Polynomial clutching function (of degree < 2n) over F.
e finally .
btain the following: : Consider now the element yn(f) n K(X) ®K(SZ) defined
forward way to obtain the ' .
by:
oly-
PROPOSITION 3.22. Let p ?e_a.iiom,_ _K _

- n I B B £ ) B RN PYLI.

nomial over F of degree < n » 2nd let L(F,p, F)+ M ' " i "
e n "LYF). Then:
* bundles of L "(p) on' L {F) = where [E] denotes the element of K(X) determined by the
bundle g .
n
LNE R E), = LE b,
We assert first of all that v_{f) =y f) for la

{3, 23) ntl n n( ) n+1( ) rlarge

LOFpF) = LNF,p,F) + 7 :

- enough n. Indeeq if n is large enough, the linear Segment
while n joining Poy to =z . P, Pprovides a hornof:opy' of polynomia]
B LnH(F, zp, F)+ = L(F,p, F)+ + F )

clutchmg functions of degree < Z{n + 1) . Hence, by the
(3. 24) LR, 20, F) = L)

continyous dependance of L_?(F, P.F) on p, we have:

2 2 Lin+2(F, Poip F) = Lim"z(z?, zp_, F)
8 4. The proof of K(X x587) = K(X) ® K(s ). The
. Zn+l
pbroposition of the last section may be assembled to construct = L 7 (F, zp_, F) by (3.23)

a homomorphism

~ 1n
TR G TN o by (3. 24),

U

Zn n n-] +1
Yy (6) L+ Flefuh _ b+ [F] @t

which will turn out to be an inverse to H and so establish

(1.1).

[Lin] LA [F]lop®

T £V

i
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Hence for large =, Vn{f) is independent of n and
so depends only on f. We write it as v{f) . Now if g is
a clutching function over F sufficiently closeto f and n
is sufficiently large, then the linear segment joining fn < to
g, provides a proper polynomial homotopy and shows that
v(f) = v(g) . Thus p{f) is a locally constant function of f
and so depends only on the homotopy class of . Hence if
E is any bundle cver X XSZ and f is a normalized
clutching function for E as given in (3.2), then we can

define

and YE) will depend only on the isomorphism class of I.
Since V(E) is clearly additive for direct sums, V induces
a homomorphism v : K{X X SZ) ~K(X)® K(SZ) .

This is the desired inverse to ¥ . Indeed the

isomoerphisms

n

E=(F,f,F) = (F, £ ¥y = (F,pn, Fle(,z 1)

show by (3. 8) and (3.14) that Wy is the identity on K{X x SZ):

By (3.8) we have

(5, F)] = [L°(F,p_, F)] - 2n[F] 81

and by (3.14) we have, after eliminating L%H(F, P F)
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Zn n
(L™ (F,p , F)] = [Lf (F,p,,F)]® (n7t. +(2n+)[Fl®1.

o that adding these two expressions one obtains [E] =yp[E]

Finally the composition yp - K is quite directly

secn tao be the identity on elements of the form [F] ® [1]

or [F]®[1]. Further, taking X to be a point, we see

from the identity Ky =1 that every K-class over SZ is
representable in the form a[H] + b[1]. Hence Ve W ois

also 1.
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CLIFFORD MODULES

M. F. ATivas, R. BOrT and A. SHAPIRG

{Recelved 23 Sepiember 1963)

INTRODUCTION

THIS PAPER developed in part from an earlier version by the last two authors. ¥t is presented
here, in its revised form, by the first two authors in memory of their friend and collaborator
ARNOLD SHAPIRO.

The purpose of the paper is to undertake a detailed investigation of the role of Clifford
algebras and spinors in the KO-theory of real vector bundles. On the ome hand the use of
Clifford algebras throws considerable light on the periodicity theorem for the stable ortho-
gonal group. On the other hand the use of spinors seems essential in some of the finer points
of the KO-theory which centre round the Thom isomorphism. As far as possible we have
endeavoured to make this paper self-contained, assuming only a knowledge of the basic
facts of K- and KO-theory, such as can be found in [3]. In particular we develop the theory
of Clifford algebras from scratch. The paper is divided into three parts.

Part 1 is entirely algebraic and is the study of Clifford algebras. This contains nothing
essentially new, though we formulate the resuls in a novel way. Moreover the treatment
given in §§ 1-3 differs slightly from the standard approach: our Clifford group {Definition
(3.1)) is defined via 2 “twisted’ adjoint representation. This twisting, which is a natural
consequence of our emphasis on the grading, leads, we believe, to a simplification of the
algebra. On the group level our definitions give zise in a natural way to a group} Pin(k)
which double covers O(k) and whose connected component Spin(k} double covers SO(k).
This group is very convenient for the topological considerations of §§ 13and 14. In §4 we
determine the structure of the Clifford algebras and express the results in Table 1. The
basic algebraic periodicity (8 in the real case, 2 in the complex case) appears at this stage.
In § 5 we study Clifford modules, i.e. representations of the Clifford algebras. We introduce
certain groups 4,, defined in terms of Grothendieck groups of Clifford modules, and tabu-
late the results in Table 2. In § 6, using tensor products, we turn A, = ¥ 4.0 A, into a graded
ring and determine its structure. These groups 4, are an algebraic counterpart of the
homotopy groups of the stable orthogonal group, as will be shown in Part 11

Part I, which is independent of Part I, is concerned essentially with the ‘difference
bundie’ construction in K-theory. We give a new and mo:2 complete treatment of this topic
% This joke is due to J-P. Serre.
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(see [4} and [7] for earlier versions) which includes a Grothendieck-type .deﬁnition of dt]he
relative groups K(X, ¥) (Proposition (9.1)) and a product formula for difference bundles
(Propositions {14.3) and (10.4)). -

In Part ]Il we combine the algebra of Part | with the topology of Part 1. We define in
§ 11 a basic homomorphism -,

op: A, KO(XT)
v

where £ is a principal Spin(4)-bundle over X, V= P x s,,in(,h.]R“, and X .ES the Thom ccmp_lex
of . One of our main results is a product formula for «, (Proposition {11.3}). Applying
this in the case when X is a point gives rise to a ring homomorphism

aidy— ¥ KO Hpoint).
LY

tsing the periodicity theorem for the stable orthogox:aai group, as mﬁze'dhmhfiz.’s\:;;;?

verify that « is an isomorphism {Theorem (1 I_.S)). It is this theorem w mh s o the sig
nificance of Clifford algebras in K-theory and it strongly s‘uggesg that one s Ou-tt ore
roof of the periodicity theorem using Clifford aigebras. _Sznce this paper was written a p

, these lines has in fact been found by R. Woodf. It is to be hoped that Theorem (11.5)

S;]n be given a more natural and less computational prf)of. ‘

Using «p for general X gives us the Thom isomorphism (Theore:r: {12.3)) mtlevelry Sp,rc;
eise form. Moreover the praduct formula for «p asserts that the. funda;nen ;hc as s
multiplicative~~just as in ordinary cohomology theory. .De-velopmﬁ stuc tamt ir:have
morphism with zll the good properties was one of our main aims. The reatmer Ve bave
given is, we claim, more elementary, as well as more complete, than earlier versions wl
involved heavy use of characteristic classes. . -

In [7} another approach to the Thom isomorphis-m is gxlven which has certau; aldc;rantag:si
over that given here. On the other hand the muijtiplicative property of the fun ax;xin tz;
class does not come out of the method in [7]. To be able to use thc? adv.ant;ges of bo
methods it is therefore necessary to identify the fundamental classes given in the two cases.

is 1 ne in §§ 13 and 14,
e :i:::iy in § ?S we discuss some other geometrical interpretations of Chfford modules.
These throw considerable light on the vector-field problem for spheres. '

Although the main interest in this paper lies in the KO-theory, m(?st of what wedo apphe;
equally well in the complex case. It is one of ﬂ"le features of the Clifferd module approac
that the real and complex cases can be treated simultaneousty.

PART ¥

§1. Notation
Let k be a commutative field and let O be a quadratic form on the k-module E, Let
T(E) Zm TE=k@ESE®E® ... be the tensor algebra over E, and let () be the
= Lai=0 - . .
“two-sided ideal generated by the elements x®x — Q(x)-1 in T{E). The quotient algebra

T See also the proof given in: J. MiLnoRr: Morse Theory, Amn. Math, Stud. 51, (1963).
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T(EXIQ) is called the Clifford algebra of @ and is denoted by C(Q). We also define
ig: E—C(Q) to be the canonical map given by the composition E-» T(E)— C{Q). Then
the following propositions relative to C(Q) are not difficult to verify:

(L1} ig: E~C(Q) is an injection.

(1.2) Let ¢: £ 4 be a linear map of £ into a k-algebra with unit A, such that for all
xek, the identity $(x)® = Q)1 is valid. Then there exists a unique homomorphism
& : C(0) - B, such that $rig= . (We refer to § as the ‘extension’ of )

(1.3) C(Q) is the universal algebra with respect to maps of the type described in (1.2).

(1.4) Let FE)=Y . o TE be the filtered structure in T(E). This filtering induces a
filtering in C(E), whose associated graded algebra is isomorphic to the exterior algebra
AE on E. Thus dim,C(Q) = 25, and if {e} (i=1, -2 1) is 2 base for iy(E), then I
together with the products €, € €, ) <y < L, <k, form a base for age)n

(1.5} Let C%Q) be the image of Yize T(E)in C(Q) and set CYQ) equal to the image

of 38 T*™*(E) in C(Q). Then this decomposition defines C(Q) as a Z,-graded algebra,
That is:

@ o= 3 cloy

(b) If %6 C(Q), y,& CHQ), then
xip, € CHOY, k=i+jmod2

That the graded strocture of C(Q) should not be disregarded s maybe best brought ouf
by the folicwing:

Prorosrrion (1.6), Suppose that E= E, @ Es is an orthogonal decomposition of E
relgtive 1o Q, and let Q. denote the resiriction of @ to E;. Then there is an isomorphism
YO0y = C(Q,) @ C(0,)
k
of the graded tensor-product of C(Qy) and C(O,) with C(O).

Recall first, that the graded tensor product of two graded algebras 4 = Y amoaA4%
B, 0.5 is by definition the algebra whose underlying vector space is Z&.ﬂ:O,,A“ ® B,
with multiplication defined by:

@ xf)'(}’j @) = (— I)U“.Vj ® x;v, x;€ Ci(Q), yie CJ(Q)-
This graded tensor product is denoted by 4 & B; and is again z graded algebra-
(ASB\=YA4'@8 (i+;= E{2)).
Proof of the proposition. Define v E-CO)&CQ,) by the formula, Yley =
k

2 @1 +1®e,, where ¢, and e, are the orthogonal projections of ¢ on Eand E,. Then

VY =(e;®1+1®e)’ = [0,(e)) + Cxe}I ® 1) = QX1 @ 1),

Hence if extends “ranalgebra homomorphism i : D - oD@ C( @,).by(1.2). Checking
the behavior of ¥ on basis elements now shows that ¥ is a bijection. Note that the graded

structure entered through the formula (e @1+1®e,) = eIl +1 ®&eZ which is valid
as ¢; € CH{ Q).
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The algebra C(Q) also inherits a canonical antiantomorphism from the tensor algebra

T(E). Namely if x = x; ® X3 ... @ x,eT*E), then the map x — x', given by

R . @xn—40.. Ox®x
clearly defines an antiautomorphism of T(E), which preserves I(Q) because
{x@x - 0(x}-1Y =x®x — Q(x)1. Hence this operation induces a well defined anti-
automorphism on C{() which we also denote by x — x* and refer to as the transpose. The
transpose is the identity map on iy(E) < C(Q).

The following two operations on C(Q) will also be useful:

DepaitionN (1.7). The canonical awtomorphism of C(Q) is defined as the ‘extension’ of
the map « : E— C(Q), given by afx) = —iy(x). (It is clear that {a(x)}* = Q(x)1 and so « is
well-defined by (1.1)). We denote this automorphism by a.

Dermvrrion (1.8). Let x — X be defined by the formula x — o(x'). This ‘bar operation” is
then an antioutomorphism of C(Q).

Note. (1) The identity o(x*) = {a(x)}* holds as both are antiautomorphisms which
extend the map E - C(Q) given by x — —jy(x);

{2} The grading on C({) may be defined in terms of a: C{Q) = {xe C(OYal(x) =
(—1)x}, i=0, L.

§2. The aigebras C,

We are interested in the algebras €(Q,), where 0, is a negative definite form on k-space
over the real numbers. Quite specificaily, we let R* denote the space of k-tuples of real
numbers, and define Qu(x;, ..., )= — ¥, x}. Then we define C, as the algebra ()
and identify R* with i, R* < C, and R with R-1 = C,. For k=0, ;=R

ProposITION (2.1). The algebra C, is isomorphic to C (the complex numbers) considered
as an algebra over R. Further

C2CRC,®..OC, (kfactors).

Clearly C, is generated by 1 and e, where 1 denotes the real number [ in R!., Hence
ef = —1. The formula C; =2, ® ... @ C, now follows from repeated application of
Proposition (1.6).

We will denote the k-tuple, (0, ..., 1, ..., 0) with 1 in the ith position by e;. The ¢,
i € k then form a base of R* = C,.

CoroLLARY (2.2). The e, i=1,....k, generate C, multiplicatively and satisfy the
relations
2.3 e} = 1, e, + e;e, =0, HE- 8
C, may be identified with the universal algebra generated over R by a unit, 1, and the symbols
e, i=1k, ..., k, subject 1o the relations (2.3).

§3. The groups, I",, Pin(k), and Spin (%)
Let ¢ denote the multiplicative group of invertible elements in C,.
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DErmsteion (3.1}, The Clifford group T, is the subgroup of those elements xe Cy for
which yeR* implies a(x)yx~teR%
It is clear enough that I, is a subgroup of C,, because « is an automorphism. We also

write a(x)R*x ™! < R* for the condition defining I",. As « and the transpose map R* into
itself, it is then also evident that we have:

PROPOSITION (3.2). The maps x — (x), x — x* preserve T, and respectively induce an
automorphism and an anticutororphism of T,. Hence x X is also an antiautomorphism
of T,

The group I, comes to us with a ready-made homomorphism p : I, «» Aut(R¥), By
definition p(x}, for xe T, is the linear map R* — R* given by p(x)'y = a{x)yx~!. We refer
to p as the twisted adjoint representation of T', on R%, This representation £ turns out to be
nearly faithful.

PrOPOSITION (3.3). The kernel of p: Ty > Aue(R¥) is precisely R¥, the multiplicative
group of nonzero multiples of 1& C,.

Proof. Suppose xeKei(p). This implies

(3.4) o(x)y = yx for all y e R¥,
Write x = x® + x!, x'e ¢} Then (3.4) becomes

(3.5) x%y = yx®

(3.6) xly = —yxl.

Letey, ..., ¢, be our orthonormal base for R, and write x° = ¢® + e, B in terms of this basis.

Here %€ € does not involve e, and »' & ¢! does not involve ;. By setting y = ¢, in (3.5)
we get a® + ¢,bt = e;ae ' + elble;t = ay ~ e;b'. Hence b = 0. That is, the expansion
of x° does not involve ¢, Applying the same argument with the other basis elements we see
that x* does not involve any of them. Hence x°isa muliiple of 1. Next we write x! in the
same form:x' = g* + ¢,5"and set y = ¢,. Wethen obtaing® + ad° = —{e,ater ! + e2b% 1}
=a' — ¢,p°. We again conclude that x* does not involve the €. Hence x' is a multiple
of 1. On the other hand x* ¢ C} whence »' =0. This proves that x = XyeRand as xis
invertible x e R*. Q.ED.

Consider now the fanction N: G, — C, defined by
3T N{x) = x-X.

If x e R, then N(x) = %(—x) = —x% 22 = Gilx). Thus N{x) is the square of the length
in R” relative to the positive definite form — 0.
PROPOSITION (3.8). If x & [, then N(x) € R*.

Proof. We show that N(x) is in the kerpel of p- Let then x & I, whence for everv
y e R* we have )
wxyx~r=y, y = px)veRS
Applying the transpose we obtain: (as y* = ¥
7 e = alxyxt
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whence ya(x')x = x'¢(x)y. This impties that «(x")x is in the kernel of p, and hence in R*
by (3.3). 1t follows that x'«(x) € R*, whence N(x") & R*. However x — x' i5 an antiauto-
morphism of T, by (3.2). Hence NT}) < R*.

PROPOSITION (3.9}, N : I, = R* is a homomorphism. Moreover N(ax) = N(x).

Proof. N(xy) = xy §% = x N(p)E = N(x)- N(»), N(a(x))} = a(2)x" = aN(x) = N(x).

PropositioN (3.10). o(I) is contained in the group of isometries of R,

Proaf. Using (3.9) and the fact that R* — {0} = T, we have

N(p(x) y) = Nla{x)y x71) = N{l)NING™) = N()-
Q.E.D.

TreoreM (3.11). Let Pin(k) be the kernel of N: T, —R*, k= 1, and let O(k) denote
the group of isometries of R:. Then p|Pin{k) is a surjection of Pin(k) onto O(k) with kernel
Z,, generated by —1e€,. We thus have the exact sequence

1-Z,—+Pink) % 0(k) - 1.

Proof. We show first that p is onto. For this purpose consider e, € B°. We have

N(ey) = —eey = +1,and .
-1 [e if i=1

dedees” =1 it il
Thus e, £ Pin(k), and p(e;) is the reflection in the hyperplane perpendicular to ¢, Applying
the same argement to any orthonormal base {e;} in R¥, we see that the unit sphere

{xe RFN(x) = 1}

is in Pin{k) whence all the orthogonal refiections in hyperplanes of R* are in p{Pin(f)}.
But these are well known to generate O(k). Thus p maps Pin(k) onto O(k). Consider next
the kerzel of this map, which clearly consists of the intersection Ker p ) {N(x) = 1}. Thus
the kernel of p|Pin(k) consists of the multiples -1, with N{il) = I. Thus 2* = +1 which
implies 2 = &1,

DEFNITION (3.12). For k 2 1 fet Spin(k) be the subgroup of Pindk) which maps onto
SO(k) under p.

The groups Pin(k) and Spin(k) are double coverings of O(K) and SO(k) respectively.
As such they inherit the Lie-structure of the latter groups. One may also show that these
groups are closed subgroups of Cf and get at their Lie structure in this way.

PROPOSITION (3.13), Let Pin(k) = Pin(k) N\ €l Then Pin(k) = Ujmo, PIEY, . and
Spin{k) = Pin(k)°.

Proof. Let x € Pin(k). Then p(x) is equal to the composition of a certain number of
reflections in hyperplanes: p(x} = R, o ... o R,. We may choose elements x; e R¥, such that
p(x;) = R, Hence, by (3.11), x == +x,x, ... x, and is therefore either in C} or in Ci.
Finally x is in Spin(k) if and only if the number » ir the above decomposition of p(x} is
even, i.e. if and only if x € Pin(k)°.

PROPOSITION (3.14). When k = 2, the restriction of p to Spin(k) is the nontrivial double
covering of SO(k).
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Prooj} It is sufficient to show that +1, —I, the kernel of p{Spin(k), can be connected
by an arc in Spin{k). Such an arc is given by:
41808 T+ 8N 1rege, O0<tgn
CoroLLARY (3.15). Whenk = 2, Spin(k} is connected and, when k > 3, simply-connected.

- This is clear from the fact that SO(%) is connected for & 2 2, and that 7 {SO()} =Z
Hhkz3 ’

We rote finally that Spin(1} = Z,, while Pin(l) = Z,.

All the preceding discussion can be extended to the complex case. We define «, 7 on
C,®pCby ’

x@=w(x)®z
xRzY=x"®z
and we take the bar operation and N to be defined in terms of o, ¢ as before.

Dermvrrion (3.16). T¢ is the subgroup of invertible eleme ;
nts x€ C, @y C for
y e R* implies a{x)yx—' g R*, $OuC Jor which
Propositions (3.2)-(3.10) go through with R* replaced by C* and (3.11) becomes:

THEOREM (3.17). Ler Pin“(k) be the kernel O N: T5—-C* k
sequence:

= 1, then we have an exact

(3.18) 1= U(1) - Pin‘ (k) — O(k) = 1
where U(L) is the subgroup consisting of elements 1 @ ze C, @ C with fzf = 1.
COROLLARY (3.19). We have o natural isomorphism
Pin(k) % 4, U(1) — Pin(k).
where Z,, acts on Pin(k) and U(1) as {+13,
Progf. The inclusions Pin(k) < C,, U(1) = C induce an inciusion
Pin(k) >, U1) —» C, @, €,
and it follows from the definitions that this factors through a homemorphism:
2 Pin(k) x5, U(1) - Pin(k).
Now we have an obvious exact sequence

(3.20) 0 — U(1) - Pin{k) %z U} = Pin(k)/ 5, — 1

and lp’ iﬂduces a homomurphism of (3 2.0) il]t(} (3 18 he 5-16][ ma a now ¢ -
. . T d (3
- ) It ( o I 1} Ov Q-

We define Spin“(k) as the inverse image of SO(%) in the homomorphism
Pin*(fy — O(k).
Then from (3.19) we have
Spin‘(k) = Spin(k) x 5, U(1).

“(k) are particularly relevant to an undezstanding of the relationship
149
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proceed to explain. The natural homomor-

we
hetween spinors and complex structure, as

phism j 2 Uiy — SO(2K)
one casily verifies. However the homo
1: Uy — SOk » U(1)

morphism
does not lift to Spin(2k), as

defined K= J{T) = det T

from elementary topological considerations and

does ift to Spin“(2k). This foliows at once

the fact that st U .

induces an isomorphism of fundamental groups.

ficitly the lifted map
e 71 Uk — Spin°(2K)

en as iouows' Let d Uik be EKPIESS 1z "'Sf
€ ( ) ed: !elatl\'e to an OEthOﬂOI[nal basef k

is giv :
of €%, by the diagonal matrix
exp ity
exp iz
exp ity
i 2k g0 that
Let e gy DG the corresponding base of R, s0
1 07 3 L
ezj»-1=fj ez;”‘lfj

Then . @)
=11 (cos 12+ sin tjp'?.-ezj_lezj) x expl =

i=1

ination of the algebras Cy
o ively for the real, complex and
R C. ot s, £ he full r % r matrix

ne of these fields, F(n) will be U
Gentities among these:

In the following we wiil wnfite
uarternsion number-felds. If Fisany o ‘
gigebra over F. The foliowing aré well known 1
Fim 2 R@) O f. R(n) @ R(m) = R(nm)
C@,C=CaC

@-1) H®,C =C2)
nene o 4 niversal
T mpute the algebras Cy one now proceeds ?s foltows: Le; _S;t;z tg; \ielations

Real e%fiogeierated by a unit and the symbols e; { = 1, ,12 21(1 ,,JQ 8
(ejizg P1;efe) +ee =01 j- Thes C; may be identified witl .
T A F ]

Proposizion (4.2). There exist isomorphisms:
C, @ = Crez
(*2) C,®gC2 2% Crrar
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Proof. Dencte by R* the space spanned by the ¢} in C[.

Consider the linear map ¢ : R*¥2 - C, ® €} defined by

ez ® ele} 2gisk
U®el 1<i<2,
Then it is easily seen that ¥ satisfies the universal property (1.1) for C; and hence extends to
an algebra homomeorphism ¢ : Ci ..y — C, ® C;. As the map takes basis elements into basis
efements and the spaces in question have equal dimension, it follows that ¢ is a bijection.
If we now replace the dashed symbols by the undashed ones and apply the same argument
we obtain the second isomorphism.

Yle) =

Now it is clear that

C,=C, Ci=ROR
C.=H, C;=RQ).

Hence (4.1) and repeated application of (4.3) yields the following table:

FABLE 1
k Cr Cx Ce @pC = Cr@al
1] c RoR PP
5w PR @)
3 H&H 2y B o co
4| HE HE) oD
A HO @ HO) | O @ CW
v Hi% (8
7 R(@; @ RE) 8 &8 @ C@)
8 | RU6) R(6) 0

Note that {4.2) implies Cy & €45 Cpvg = G B €5 Crag = €, @ Gy further G = R(16),

whence if C, 2 F(m) then, Cy ;¢ = F{16m). Thus both columns are in a quite definite sense
of period 8. If we move up ecight steps, the field is left unaltered, while the dimension is
multiplied by 16. Note also the considerably simpler behavior of the complexifications of
these algebras, which of course can be interpreted as the Clifford algebra of O, over the
complex-numbers. Over the complex field, the period is 2.

§5.  Clifford modules

We will now describe the set of R~ and C- modules for the algebras C,. We write
M(Cy) for the free abelian group generated by the irreducible Z;-graded C,-moduies, and
N(CP)y for the corresponding group generated by the (ungraded) C2-modules. The cor-
responding objects for the complex algebras &, @g C are denoted by M(C,) and N(CP).

PROPOSITION (5.1). Lef R: M M® be the funcror which assigns to a graded Cy-module
M =MD M the Ci-moduie M®. Then R induces isomorphisms
(3.2) M{C,) = N(CD).
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Proof. If M° is a Cl-module, let
S(M®) = C, ® co M°.
The left action of C, on C, then defines S(M°) as a graded C-module. We now assert that
S s« Rand R, S are naturally isomorphic to the identity. In the first case the isomorphism iIs
induced by the ‘module-map’ C, & M° — M, while in the second casethemap M° - 1 ® M°
nduces the isomorphism.
We of course also have the corresponding formula:
{5.3) Me(CY = N (CD.

ProrosivION (5.4). Let ¢ 1 R¥— 0, be defined by dle) =egpeq. i==1, ...k Then
¢ extends to yield an isomorphism C, = CP ..

Proof. ¢le)® = eieps, 080, = —1. Hence ¢ extends. As it maps distinct basis elements
ento distinct basis elements the extension is an isomorphism.

In view of these two propositions and Table 1, we may now write down the group
M(C,) etc., explicitly. This is done in Table 2, where we also tabulate the following
Guantities: '

Let i:C,— C.,, be the inclusion which extends the inclusion R R*** let
i*: M(Cp;,) — M(C) be the induced homomorphism, and set 4, = cokernel of /*. Simi-
larly define 4§ as MYCH/IF{M(C,.,)} and finally define afaf] as the R{C}-dimension of
M® when M is an irreducible graded module for C\[C, ®g Cl.

TABLE 2

k Cr MI{Cy) A a, MA(Cy) A a,
1 Cit) z Zz 1 z o] 1
2 H(by Z Zs 2 rASYA Z 1
31 HO @ HD z o | s z 0 2
4 H(2) LZHZ z 4 ZDE Z 2
5 @) z 0 8 z ¢ | 4
6 R(S) z 0 s | zoz z | 4
7 | R@® @ RE z ¢ |8 z c | 8
8 R(16) zesZ | z |8 | zaz i z | 8

Mg = M, Aprg 2 A, a, .5 = 164,

CM, = M, ALz = AL ag s = 245

Most of the entries in Table 2 follow directly from Table 1, because the algebras F{n)
are simple and hence have only one class of irreducible modules, the cne given by the
action of F(;r} on the n-tuples of elements in F. The only entries which stiil need clarification
are therefore A, and A35,.

Before explaining these entries observe that if M = M°@® MY, then M* = ' © M°.
i.¢. the module obtained from M by merely interchanging iabels, is again a graded modaule.
This operation therefore induces an involution on M(C,) and M9(C,) which we again
denote by *.
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ProposITION (5.5). Le

rxarzd‘berhcseo Wi I
) ; ( ) ¥ e classes of the ¢ o distinct I educible graded
( - ) =¥ y =
5.6 X R = X.
OOROLI.ARY (5. 7)_ Ad.n =7

Indeed if z generates M
z Cinsr)s then 2%
module for C, | ;- Hence as (z""z)iJl

To prove (5.5) we r
be left to the reader,
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i wdentifying
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6.5y Ifi*: M(C - M(Cy_;) is the restriction homomorphism, as defined in §5, then

ity = i%(u-v) k=1
The formulac (6.3) and (6.5} follow immediately from the definitions.
Proof of (6.4). We have the diagram:

C.&C <2,

T %

/
/

C® G
where T is the isomorphism x@y— (- 1y ®x, xe Cf, ye CL Now the composition
it o T o bzt Crsr— Cpyyds an automorphism o of Cy.;, which clearly is the linear ex-
tension of the map which permutes the fizst & elements of the basis {¢;} with the last /
elements
L Igigk

G(ei)_{ei_k k<i<k+l
Thus o is the composition of inner automorphisms by elements in R* — {0} It Follows
therefore from (5.9) that the effect of ¢ on M(C)) is equal to the effect of the operation (*)
applied k7 times. If we combine this with the fact that T*(NW @ &) = M & N, whence

AN @ M) = 0¥ o 1y (M B ),

we obtfain the desired formula.

CoroLrary (6.6). Let A& M(Cy) be the class of an irreducible module of Cyq. Then
multiplication by L induces an isomorphism: M{C) = M{Cyig)-

Progf. This follows from our table of the a,, in ali cases except when & = 45, In that
case let x, y be the generators corresponding to the two irreducible graded modules of C,.

Then we know that x* = y. NowA-x € M{C, ) is the class of one of the irreducible graded

modules of C,, ¢ by a dimension count. Hence by (6.4) 1y = A(x*) = (Ax)* corresponds to
the other generator,

CoROLLARY (6.7). The image of i¥: M, — M, is an ideal, and hence the quotient ring
Ay = 38 A, inkerits a ring structure from M.,

This follows from (6.5). The element A above projects into a class—again called i—
in Ag, and we clearly have:

PrOPOSITION (6.8) Multiplication by A induces an isomorphism A, = 4,0, k
The compiete ring-structure of 4, is given by:

= 0.

THEOREM (6.9). A, is the anticommutative graded ring generated by a unit 1 € 4,
and by elements E€ Ay, pe Ay, A€ Ag with relations: 26 =0, £ =0, g = 44,
Proof. As d; 2 Z, it is clear that 2§ = 0. From the fact that o,=1, and a,=2, we
conclude that £2 generates A,. There remains the computation of x®. To settle this case we
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introduce a notion which will be of use later in any case. Let £ =4dn, and let @ = ¢ ... eqn-
Then as we have already remarked, the centre of C% is generated by | and o, whence, as
@* = 11, the projection of C2 on jts two ideals is given by (IF «)/2. It follows that if &
is an irreducible graded C-moduie, then @ acts on M as the scalar £ = +1. In general we
call 2 graded module for C, an e-module, (¢ = + 1) if @ acts as ¢ on M°. Now because
e 7= ~we;, it follows immediately that if A is an e-module, then M* is a (—e&)-module,
i.e., w acts as —e on M*, and finally, that if A is an g-module and M” an &'-module for
C, then M & M is an s¢'-module for Cyy

With this understood, let u be the class of an irreducible Cp-module M in 4,. Then
Misof typee. Hence M@ M is of type e® = + 1 in Cg. Now if A e 4, is chosen as the class
of the irreducibie (+ 1}-module ¥ of Cy it follows that Af & M sz 41 by a dimension count,
and so finally that p® = 44,

The corresponding propositions for the complex modules are clearly also valid. Thus
we may define M% and 4%, and now already the generator u° corresponding to an irreducible
C, ®pC-module vields periodicity. In fact the following is checked readily.

THeOREM {6.10). The ring A;fis isomorphic to the polynomial ring Z[pc).

We consider again the element @ = ¢, ... e, € C,. For k =2/ we have w® = (-1
Hence if M is an irreducible complex graded C-module then w acts on M° as the complex
scalar & = -+i'. We call a complex graded C-module an e-module if @ acts as ¢ on M°,
Let uf e MY(C,,) denote the generator given by an irreducible #-module. Then uf = (1)
where u§ = p

Comparing our conventions in the real and complex cases we see that if M is a real
e-module for C,, then M &y Cis a complex {— I)" e-module for C,. Now we choose pe Ay
to be the class of an irreducible (- 1)-module. Then in the homomorphism 4, — 4% given
by complexification g — 2(¢)*. From (6.9) and (6.10) we then deduce

6.1 A= (ue)*

under compiexification.

PART X1
§7. Sequences of hundles

In this and succeeding sections we shall show how one can give a Grothendieck-type
definition for the relative groups X(X, ¥). This will apply equally to real or complex vector
bundles and we will just refer to vector bundles. For simplicity we shall work in the cate-
gory of finite CH-complexes (and pairs of compiexes).

For ¥ < X we shall consider the set %¥.(X, ¥) of sequences

E=(0-E 23 E,y — .= E;, -2 E,—0)
where the E; are vector bundles on X, the o; are homomorphisms defined on ¥ and the

sequence is exact on Y. An isomorphism £ -+ E' in &, will mean a diagram
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Ei = Ei-‘l

n

v M
i o
—s E T E_,—

in which the vertical arrows are isomorphisms on X and the squares commute oo Y.
An elementary sequence in %, is one in which
E =E._., o;p=1 for some |
E;=0 forjs£i,i—1.
The direct sum E @ F of two sequences is defined in the obvious way. We consider now the
following equivalence refation:
Deeramion (7.1). E ~ Fethere exist elementary sequences P', 0 € €, so that
EOP ®. . @P=2F30'9...00

In other words this s the equivalence relation generated by isomorphism and addition of ele-
mentary sequences. The set of equivalence classes will be denoted by L(X, ¥). The operation
@ induces on L, an abelion semi-group structure. If ¥ =5 we write L{X) =T (X, 29,

If £ %, then we can consider the sequence in %, ., obtained from E by just defining
E, ., = 0. In this way we get inclusions

C o E—r Gy
and we put € =¥, = lim%,. These induce homomorphisms

Li»Ly—».. =L, —~
and it is clear that
L=L,=limL,
—

is obtained from ¥ by an equivalence relation as above applied now to sequences of finite
but unbounded length.

Levma (1.2). Let E, F be vector bundles on X and f1 E—+ F a monomorphism on Y.
Then if dim F> dim E + &im X, f can be extended to a monomerphism on X and any two
such extensions are homotopic rel. Y.

Progf. Consider the fibre bundle Mon{E, F) on X whose fibre at x ¢ X is the space of
all mopomorphisms E,— F,. This fibre is homeomorphic to GL{)/GL{n — m) where
n=dim F, m = dim E, and 50 it is (n —m — I)-connected. Hence cross-sections can be
extended and are ail homotopic if

) dmX<€<n—m—1=dimF—dimE—1.
But a cross-section of Mon(E, F) is just a global monomorphism E-+ F.
Lemua (7.3). L(X, Y) = L, (X, ¥} is on isomorphism for n > 1.
Froof. Let %"’,,H denote the subset of ¥,,; consisting of sequences £ such that
dim E, > dim E ey +dim X, (1)
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If n > | then given any E<€,,, we can add an elementary sequence to it so that it will
satisfy (1), Hence ©,,, — L, is surjective. Now let £&%,.,, then by (7.2) 0,4, can be
extended to a monomorphism o7, on the whole of X. Put Ej = Coker 0., let P denote
the elementary sequence with P, = P, = E,.;, and let

E=(0—E2ZE -2t E_,— ... -2 Eg—0),
where 2/, is defined by the commutative diagram on ¥:

E————

A splitting of the exact sequence on &
0— Epoq -T2 B, Ep 0 0
then defines an isomorphism in %, ..,
POE =E.

If ", is another extension of o, leading to a sequence E”, ther by (7.2) E; = E; and
this isomorphism can be taken to extend the given one on 7, ie., the diagram

o
B ————— E, 4
1
b .
" Pn
E; — " Ep-y

commutes on Y. Hence E' ot E” in ¥, and so we have a well-defined map E E’ from the
isomorphism classes in €, ., to the isomorphism classes in ,. Moreover, if

Q=0 0y~ Q,—0), R=0—R—R,—0) (i<ny

are elementary sequences, then B

(E@QY=E, (EQR=E®R

Hence the class of E' in L, depends only on the class of Ein L, ,,. Since &,,, =L, is
surjective it follows that E— E’ induces a map L., - L,. From its construction jt is im-
mediate that its composition in either direction with L, —L,.; is the identity, and this
completes the proof.

From {7.3) we deduce, by induction on n, and then passing to the limit:

ProposrTioN (7.4). The homomorphisms L{X, Y}— LAX, Y) are isomorphisms for
isn=oo.
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§8. Ealer characteristics

DerNTION (8.1) An Euler characteristic for %, is a natural homomorphism (i.¢. anatural
transformation of functors)

1 LAX, V)= KX, T)
which for Y = {7 is given by
XE) = ZD(_l)iEi-

Remark. It is clear that, if ¥=¢j, E o Y(—1¥E, gives a well-defined map
LX) = K(X).

LeMMA (82). Let y be an Euler characteristic for €, then

1 Ly{X)— K(X)

is an isomorphism.

Pregf. y is an epimorphism by definition of K(X). Suppose y(E)=0, then
E, ® F 5 Ey ® Fior some F{in fact F can be taken trivial), Hence if

P:0sF-—F—=(

is the elementary sequence defined by F, £@ P is isomorphic to the elementary Sequence
defined by E, @ F. Hence E ~ 0in €,{X) and so E =0in L,(X). To conclude we need the
following elementary lemma:

Leavma (8.3). Let A be a semi-group with an identity element 1, B a group, ¢: A— B
an epimorphism with ¢ (1) = 1. Then ¢ is an isomorphism,

Proof. It is sufficient to prove that 4 is a group, i.e., has inverses. Let g€ 4, then
from the hypotheses there exists @’ € A so that

dlay = gla)™ .

Hence
$la-ay=gla) dlay =1,
and so a2’ = 1 as required.
Lewada (8.4). Let y be an Euler characteristic for ¥, and let ¥ be a point. Then
LX) KX, Y)
is an isomorphism.

Proof. Consider the diagram
0 s Ly(X, ¥y =2 Ly(X) -2 L(Y)

0— K(X, ¥) — K(X) — K(Y).
By (8.2) and (8.3) and the exaciness of the bottom line it will be sufficient to show the
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exactness of the top line. Now fx = 0 obviously and s we have to show

® a M0y =0;

@) if BE) =0 then Eelm a.
We consider (i) first. Since Y is & point, and y: L(¥) = K(¥), f(E) =0 is equivaient to

dim E,|Y = dim Eo|Y.
But then we can certainty find an isomorphism
a: E Y —— EolY,
showing that £ € Im(x). Finally we consider (). Thus let
E=(0— E, > Eq—0)
be an element of ¥,(X, ¥) and suppose a{E} =0 in L (X). Then yo(E) = 0 in K{X), and
hence, if we suppose dim E; > dim X (as we may), there is an isomorphism
1 Ep - By

on the whole of ¥. Then ot ™! e Aut(E,|¥}. Since Y is a point this automorphism is
homotopic to the identityt and hence can be extended to an element p e A_mt(Eo). Then
pt + By, — Eq is an isomorphism extending . This shows that E represents 0 in Li(X, Y) as

required.

Levva (8.5). Let  be an Euler characteristic for €y, then 3 is an equivalence of functors
L, —K

Proof, Consider, for any pair (X, ¥), the commutative diagram

L(X]Y, YiY)~ K(X[Y, YY)

¢ W

Ly(X, ¥}y i K(X, ).
Since ¥ is an isomorphism (by definition} and y on the top line_ is an isomorphism by
(8.4) it wili be sufficient (by (8.3)) to prove that ¢ is an epimorphism. Now any element
&'0f L{(X, ¥)can be represented by a sequence
] E = {0 —s E; =% Ey"——0)
where E, is a product bundle. But then we can define a ‘collapsed bundkj:’ E] = E /o over
¥!Y and a collapsed sequence E'& €,(X]Y, Y/ Y) defining an element £ & L,(X/Y, ¥/ 1),
Then ¢ = $(&') and so ¢ is an epimorphism.
Levva (2.6). Let y, ' be two Euler characteristics for €. Then =y -
Proof. Let T = ¥'x "t (whick is well-defined by (8.5)). This is a natural aut(?mo'rphism
of K(X, ¥) which is the identity when ¥ = . Replacing X by X/Y and considering the
exact sequence for {X]Y, Y/¥) we deduce that T=1, ie, that ' = y.

¥ This argument needs modification in the real case since GL(», R) is not conngeted: we replace Ey by
Ei@landa, rbyo @ L& (0.
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From (8.6) and (7.4) we deduce

Lespaa (8.7). There is a bijective correspondence (i, «—— ¥,) between Euler characrer-
istics for €, and €, such that the diagrom

Li———L,

7
e
Kt'

These lemmas show that there is at most one Euler characteristic. In the next seciion
we shall prove that it exists by giving a direct construction.

COmmMmuLes.

§9. The difference bundle
Given a pair (X, ¥Y)define X; = X » {i}i =0, 1, 4 = X, U, X, {obtained by identifying
y ¥ {0} and y x {1} for all y e ¥). Then we have retractions
A — A
so that we get split exact sequences:
.

0 — K(4, X)L K(d) £5 K(X)—> 0

e
Also, iff we regard the index [ € Z,, the natural map X — X, gives an inclusion

@1 (X, V3= (4, Xi29),
which induces an isomorphism
¢ KA, Kiv ) — KX, Y).
Now let Ee€,(X, Y),
E=@0—E SE—0),
and construct the vector bundle F on A by putting E; on X, and identifying on ¥ by o.
It is clear that the isomorphism class of F depends only on the isomorphism class of E in

@(X, ¥). Let F;=nf(E). Then F|X,= F; and so F — F, e Ker j¥*. We definc an element
dEYe KX, Y)by

PGS dE) = F— F,.
It is clear that d is additive:

d(E @ E = d(E) + d(E").
Also if £1s elementary F e F, so that d(£) = 0. Hence d induces a homomorphism

d: L{X, V- KX, Y
which is clearly natural. Moreover if Y=, 4= X, + X,, Fe=E, % {0} + E, x {1}
(disjoint sum}, F; = E; x {0} + E; x {1} and so
dE)=E,— E,.
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Thus 4 is an Euler Characteristic in the sense of §8. The existence of this d together with
the lemmas of §8 lead to the following proposition:

ProroSITION (9.1). For any integer n with | < n < co there exists a unigue natural homo-
morphism

1 L(X, Y)— K(X, Y)
which, for Y = (%, is given by
B = 3. (~1E:
s
Moreover y is an isomorphism.

The unique x given by (9.1) will be referred to as the Euler characteristic. From (8.6)
we see that we may effectively identify the y for different n.

Two eclements E, Fe € (X, Y) are cailed homotopic If they are isomorphic to the
restrictions to X x {0} and X x {1} of an element in (X x I, ¥ x I).

ProrosITiON (9.2). Homotopic elements in € X, Y) define the same elements in
L{X, Y).

Proof. This follows at once from (9.1) ard the homotopy invariance of KX, ¥).

Proposition (9.1} shows that we could take L {X, ¥) (for any n = 1) as a definition of
K(X, Y¥). This would be a Grothendieck-type definition.

We shall now give a method for constructing the inverse of j: L (X, ¥) = L{X,Y).
If £€%,(X, ¥), then by introducing metrics we can define the adjoint sequence E* with
maps o} - E;_; —+ E,. Consider the sequence
F=(—F, 5% F,—0)
where F;, =@ E,,, F,=®E,;,, and
i i

ey, €3, €5, .- ) = (0121, 65 €, + Os8y, 0% &5 + 0505, ... ).
Since, on ¥, we have the decomposition
— &
EZ[ - O-ZH' I(E25+1} @ ali(Ell'— I)

it follows that Fe €,(X, ¥). If Ee%, then £ = F. Since two choices of metric in E are
hometopic it follows by (9.2) that F will be a representative for j~ {(E).

§10. Products

In this section we shali consider complexes of vector bundles, i.e., sequences
00— E, -2 B, 20ty Eq— 0
in which 6;_,6; = 0 for all 7.
Lemma (10.1), Let Ey, ..., B, be vector bundles on X,
Ow—->E,,i>En_1———+...—>E0-—->O
@ complex on Y. Then the o, can be extended so that this becomes a complex on X.
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Proof. By induction on the cells of X' — ¥ it is sufficient to consider the case when X

is obtained from Y by attaching one cell. Thus let
X=Yu,é&
where f; $*7* = ¥ is the attaching map. If B* denotes the unit ball in R¥, with boundary
S$71, then X is the quotient of ¥ + B* by an identification map z induced by /. The bundle
#*E; is then the disjoint sum of EJY and 2 trivial bundle B* x ¥, The homomorphism
¢,: E;— E;_, on ¥ lifts to give a homomorphism 7,: 8% ' x ¥, =81 x V,_, ie a
map §*~' = Hom(¥,, V;_,). Extend each v; to B* by defining
(1) = fulioi(u) ueBt,

This induces an extension of the o, to X preserving the relations ¢,_, o; = 0, as required.

We now introduce the set 2,(X, ¥)of complexes of length » on X acyclic (i.e. exact) on
Y. Two such complexes ate homeotopic if they are isomorphic to the restrictions to X x {0}
and X x {I} of an element in @,(X x I, ¥ x [}, By restricting the homomorphisms to ¥
we get & natural map

DX, YY) F (X, ).

LemMa (10.2). @ : @, > ¥, induced a bijective map of homotopy classes.

Proof. Applying (10.1) we see that @ itself is surjective. Next, applying (10.1) to the
pair

(XxLXx{0uXx{llu¥xD
we see that
@(E) homotopic to P{F)=- E homotopic to F

which completes the proof.

H EFeg (X, Y), Fe@,(X,Y) then E@F is a complex on X x X’ acyclic on
X x ¥ u¥x X sothat
E@Fe?,, X xX XxYVuYxX).
This product is additive and compatible with homotopies. Hence it induces a bilinear pro-
duct on the homotopy classes. From (10.2) and (8.2) it follows that it induces a natural
product

LiX, N@®L (X, ¥) =L, (XxX,Xx YUY xX).
ProrosiTioN (10.3). The tensor product of complexes induces a natural product
LI, NRLX, YN =5 L, X xX X xY uYxX)
and
#ab) = da)(b) n
where y is the Euler characteristic.
Proof. The formula (1) is certainly true when ¥ = ¥’ = 4. Onthe other hand thereis

unique natural extension of the product K(X)® K(X") — K(X x X' to the relative case
(<f. [3]). Hence, by {9.1), formula (1) is also true in the generalcase.

Remark. This resuit is essentiatly due to Dovady (Séminaire Bourbaki (1961) No. 223).
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PrOPOSITION (10.4). Let
E=(0—E, 2> E;—0)e?,(X, 1)
E = (0 —— Ej —F Eq —— Me@ (X, Y)
and choose metrics in all the bundles. Let
F={(0—F, o Fy—a0NeZ (X x X, X x Y o¥x X"
be defined by

FI=E,®QE®E @F
Fo=E,®@E®E, @ E}
_(t@d, o®l
Tletel, ~1@a
where ¢, ¢"* denote the adjoints of ¢, 6" Then
#(F) = y(E) y(E).
Proof. By {10.3) y(E}-x(E") = x(E® E’}. Now the construction of §2 for the inverse
of j: Ly Lo tutns E® £ into F and so y(E @ E) = y(F).

PART I}
§11.  Qlifford bundies

In this section and the next we shall consider the Thom complex of a vector bundle.
If ¥ is a (veal) Fuclidean vector bundle over X (i.e. the fibres have a positive definite inner
product) we denote by X the one-point compactification of ¥ and refer to it as the Thom
complex of ¥. It inherits a natural structure of CH/-complex (with base point) from that of
X. An alternative description which is also useful is the foilowing. Let B(¥), S(¥) denote
the unit ball and unit sphere bundles of ¥, then X¥ may be identified with B(V)/S(F). A
technical point which arises here is that {B(V), S(¥)) is not obviously a CW-pair. However
the following remarks show that there is no real loss of generality in assuming that
(B(¥), S(¥V)) is a CW-pair.
1. If X is a differentiable manifold then (B(¥), S(V}) is a manifold with boundary
and hence triangulable.
2. Every vector bundle over a finite complex 1s induced by a map of the base space
into a differentiable manifold (namely a Grassmannian).

There are of course more satisfactory ways of dealing with this peint but a lengthy dis-
cussion would be out of place in this context.
With our assumption therefore we have the isomorphism
R(XYy = K(B(V), S(¥Y)
where K denotes K modulo the base point.

Since each fibre ¥, of ¥ is a vector space with a positive definite quadratic form O

Hxs

we can form the Clifford bundle C(V) of V. This will be a bundie of algebras whose fibre at
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x is the Clifford algebra C(— Q,}. Centained in C(V) are bundles of groups, Pin(¥) and
Spin(¥). All these bundies are associated to the principal Q(k)-bundle of ¥ by the natural
action of O(k) on C,, Pin(k), Spin(k).

By a graded Clifford module of ¥ we shall mean a Z,-graded vector bundle £ (geal
or complex) over X which is a graded C(¥)-module. In other words E = E° @ E” and we
have vector bundle homomorphisms

V@&gEC— E, V@gE'—E°
{denoted simply by v ® ¢ — v(e)) such that

o(v(e)) = —ivli’e L
For notational convenience we shall consider real modules only, The complex case is
entirely parallel.
Let E= E®°@ E' be a graded C(V)-module. Then E%is a Spin{¥)-module and by integration
over the fibres of Spin(}') we can give E° a metric invariant under Spin{¥). This can then
be extended to a metric on £ invariant under Pin(¥) and such that £° and £* are orthogonal

complements. If now ve ¥, and v# O then r/|lv]j € Pin(¥,). Hence we deduce, for all
veV, and e E,

fref = llof-ilel.
This, together with (1), implies that the adjoint of

s EX— EL s —v: B} EC
Let = B{(F)— X be the projection map and let
o(E): n*E* — n*E®

be given by multiplication by —v, i.e.

a(E) (&) = —uve.
Then
0 s EY S, e po >0 (2
is an element of Z,{B(}), S(¥}} and hence defines an element ,{£) of KO(B(VY, S(V)), or
equivalently an element of KO(X"). If the C(V)-module structure of F extends to a
C(V ® 1)-module structure (1 denoting the trivial line-bundle) then the isomorphism o(E)
extends from S(¥) to $*(F@ 1) the ‘upper hemisphere’ of S(¥@® 1). Since the pairs

(BV), S(¥)) and (S (V@ 1), S()) are clearly equivalent it follows that y,(E) wil}, in this
case, be zero.

Following §5, which is the special case X = point, we now define M(¥) as the Grothen-

dieck group of graded C(¥)-modules, and we let A(F) denote the cokernel of the patural
komomorphism

MV @ 1) — M(V).
Then the construction described above gives rise to a homomorphism

Iy T AV — EO(X).
This homomerphism is of fundamental importance in the theory, and our next step is to
discuss its multiplicative properties.
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Let ¥, ¥ be Euclidean vector bundles over X, Y respectively.
Then we have a natural homeomorphism

X ¥ X x YVEV
which induces a homomorphism (or ‘cup-product”)
KOy @ KD(7™) — KO(X = YV,
Ifae K‘E)(X"), be KA(')( ¥¥) the image of a ® b will simply be written as ab.
ProposiTION (11.1). The following diagram commutes
AN @ AV) LAV oW

Ay @y Xv@mw

KO(x") @ KO(Y"y —s KO(X x Yo%)
where W is induced by the graded tensor product of Clifford modules. Thus
1rew(E @ F) = 1 (E)inAF).

Proof. Let E, F be graded C(V)- and C(¥¥)-modules and let them both be given in-
variant metrics as above. Applying Proposition (10.2) it foillows that

AE) 1w(F)e KO(B(V) x B(W), B(V) x S(W) u $(¥) x B(W))
15 equal to x{G)} where
Ge?,(B(V) x B(W), B(¥) % S(W)}u S(V) % B(W))
is defined by
Gy~ n*(Eo RFI@E! ®F°)
Gy =7 E°Q@F° @ E'®@ F)
and 7: G, — Gy Is given by

Tﬂ(l@a(F), o'(E)@i)
Tl aEY®1, 1@ 6(F)

{since a(E)* = —a(E), 6(F)* = —o(F)). Thus, at a point v@ we ¥ @ W, v is given by the
matrix
(1@ —w, —0®1y _ {1 Niew @l )
Teew = y®L 1R —w )“ 0 —1/\v@1, -1 0w
where v, w denote module multiplication by #, w. Hence
1 0 -
=(y _j)ean )

On the other hand let B'(F @ W) denote the ball of radivs 2 and let
SFew)=B(VeW}-BYaew),

so that the inclusions

itBV@W),S(Ve W) BVaw),5(Vaew)
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J1B(Vy x BOW), B(V} x S{W) L S(V) x B(W}— B'(V @ W), S(vaew)
are both homotopy equivalences. Let
HeZ (B(V@ W), S(Va W)

be defined by 6(E & F). Then i*(H) defines the element yy o4 (E @ F), while (3) shows that
J¥(H ) and G define the same element of KO(B(V) x B(W), B(F) x S(Wyu S(V) = B,
Hence we have

(B wlF) = tvow(E® F)
as required.

Suppose now that Pis a principal Spin{k)-bundle over X, V= P x spin (o J% the associ-
ated vector bundle. If Afis a graded C,-module then E = P x o, 4o M will bea graded C(¥)-
module. Ir this way we obtain a homomorphism of groups

Be Ay — A(V)
Similarly in the compiex case we obtain
B : Af — AV,
Prorostrion (11.2). Ler P, P’ be Spin (k), Spin{/) bundles over X, X' and let

V=PxgunmBL V=P x spin(np B. Let P" be the Spinlk + D-bundle over X x X' induced
Jrom P x P by tke standard homomorphism

Spin: (k) » Spin {I) — Spin(k -+ D).
Then if ae A, be A}, we have
Be-(ab) = prp(a)Bp{b}.

A similar formula holds for ps.
The verification of this result is straightforward and is left to the reader.
Let o, 1 A, ~»KO(X") be defined by up = 485

Then from Propositions (11.1} and (11.2) we deduce
Provosrrion (11.3). With the notation of (11.2) we have

sp-(ab) = op(@)up(b),
and a sinyilar formula for «5.

I we apply all the preceding discussion to the case when X is a point {and P denotes
the trivial Spin(k)-bundie) we get maps

o Ay - Ig'b(s“) in the real case
@ Af — R(55 in the complex case.
Propesition (11.3) then yields the following corollary, as a special case:
CoroLLary (11.4). The maps

%1 Ay ¥ KO Hpoint)
+5%

aft A5 — ¥ K ¥point)
k=0
are ring homomorphisms.
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Now the rings 4, and A% were explicitly determined in §6 (Theorems {6.9) and (6.10)}.
On the other hand the additive structure of &, =¥ KO *point) and BE = ¥ K ~*point)
was determined in [5], while their multiplicative structure was {essentially) given in [6].
These resuits may be summarized as follows:

(i) Bg is the polynomial ring generated by an element x B3 corresponding to the
reduced Hopf bundle on P,(C) = §2;
(ii} B, contains a polynomial ring Z[y] with y ¢ Bg, and y — x* under the complexi-
fication map B, — BE;
(i) As a module over Z{y], B, is freely generated by elements 1, a, b, © where a & B,
be By, z e B,, subject to the relations 2¢ =0, 25 = 0.
If we use Sticfel-Whitney classes then a simple calculation shows that
wola®) # 0
where we regard a® & £{S?). Thus we must have a® = &,
Consider now the ring homomorphism
AL — Bg.
It is immediate from the definition of o that o (1) gives the reduced Hopf bundle on $2.
Hence from (6.10) we deduce that «° is an isomorphism.
Consider next the ring homomorphism
i Ay — B,
Because of the commutative diagram

A S By
]

&

ALt B

the results on = together with (6.11) and {ii} above imply that
7)==y,

Simifarly using {6.9) and (i) above we get

alp; = z.
It remains to consider o(&) and «(¢?). But as in the complex case it is immediate that x(Z)
is the reduced Hopf bundle on P(R) = S'. Since ¢ is the unique non-zero element of B
we must therefore have

i

&) = a.
Using (6.9) and {ii}, (iii} above it follows that « is an isomorphism. Fhus we have established
Taeorem (11.5). The maps
2: Ay — ¥ KO Npoint)

ke

(=

and
a1 AL — 3 K™ %pomt)
K50
are ring isomorphisms,
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As remarked in the introduction this theorem shows clearly the intimate relation
between Clifford algebras and the periodicity theorems. It is to be hoped that a less com-
putational proof of (11.5) will eventually be found and that the theorem will then appear as
the foundation stone of K-theory.

We shall conclude this section by taking up again the relation between Clifford and
Grassmann algebras mentioned in §3. Let ¥ be a complex vector bundle over X, A(¥) its
Grassmann bundle, ie, the bundle whose fibre at x € X is the Grassmann algebra A(V,).
Let m: ¥ -+ X be the projectior and consider the complex

Ay 1 —— AT = T ATTY))

where d is given by the exterior product:

'l

dw)=vAw ve ¥V, weA(V,).
Fhis is acyclic outside the zero-section and hence defines an element
WA eR(XY)
On the ‘'other hand, if we give ¥ a Hermitian metric, and use the homomorphism
) I: Uk — Spin“(2k) k = dim, V

we obtain 2 principal Spin(2k)-bundle P over X, and hence a homomorphism
@bt A%, — R(xY).
The relation_'between a% and y(Ay) is then given by:
ProrosiTIoN (11.6). 7(Ay) = aS({(u).
Proof. Applying the construction at the end of §9 for the inverse of
JeiLi—= Ly
to the complex Ay, we obtain a sequence
E=0—FE S E;—0)
where
Ey=a*A"@a*A" 2 .
E, =A@ a*A .
G, =d, + 0,.

In fact we could equally well have taken
Go=d, =5,

in §5. In view of (5.10), (5.11) and the final remark of §5 this shows that

Ay = ai{(1))
as required.

Remark. The multiplicative property of Grassmann algebras:
AV @ W)= AV @ AMW)
can be used directly to establish 2 produet formula for y(A,). This corresponds of course
to (11.3).
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§12. The Thom isomorphism

We begin with some brief remarks on the Thom isomorphism for general cohomology
theories.

Let F be a generalized cohomology theory with products. Thus F*(X) = Y F(X)isa
graded anti-commutative ring with identity and F*(X, ¥) is 2 graded F*(X}-module.
Moreover the product must be compatible with the coboundary in the sense that

8(ab) = &(a)-b + (—1)adb
where « = deg @ and 4, b belong to suitable F-groups.

In F"(S") we have a canonical element ¢" which corresponds to the identity element
1 = &" e Fo(point) = F2(8°} under suspension. F#(S") is then a free module over
F#(point) generated by ¢°.

Suppose now that ¥ is a real vector bundle of dimension » over X. We choose a metric
in ¥ and introduce the pair (B(¥), S(¥)} {or the Thom complex X*). For each point Pe ¥
we consider the inclusion

ip: PV — XV
and the induced homomorphism
iy F(xYy — F(p¥).
Suppose now that ¥ is oriented, then for each P e X we have a well-defined suspension iso-
morphism T
Sp 1 FO(PY— F(P").
We Jet 67 = Sp(1). We shall say that ¥ is Frorientable if there exists an element 4y & F(X")
such that, for all P &,
if;(#v) = Op.
A definite choice of such a g, will be called an Frorfentation of ¥, Then we have the fol-
lowing general Thom isomorphism theorem:

Treorem (12.1). Let V be an F-oriented bundle over X with orientation class py. Then
F#(x7) is a free F*(X)-module with generator liy.

Proof. Multiplication by py, defines a homomorphism of the F-spectral sequence of X
into the F-spectral sequence of XV whick is an isomorphism on E; (the Thom isomorphism
for cohomology) and hence on E,,. Hence

a— [ya
gives an isomorphism F*(X) -F*(X") as stated.t

Applying {12.1) to the special theories K, KO we obtainff:

TusoreM (12.2). Let ¥ be an oriented real vector bundle of dimension n over X. Then

() if n=0mod2 and there is an element p, & R{X") whose restriction to K(P") for

each P& X is the generator, then R*(X7) is a free K*(X)-module generated by uy;

T One can aiso use the Mayer-Victoris sequence instead of the spectral sequence.
Tt We use K*, KO* to denoie the sum of K9, KO over the period (2, or 8) in distinction with X% which is
the sum over all integers.
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(i) #f n=0mod & and there is an element py € KT)(X ¥) whose restriction to each
KO(PY) for each P & X is the generator, then KOH XYY is a free KO*(X)-module
generated by py.

Remark. Since K° (point) = KO®(point) % Z these groups are generated by the identity

element of the ring. This elemeat and its suspensions are what we mean by the generator.

Suppose now that ¥ has a Spin-structure, i.e., that we are given a principat Spin(n)-
bundle P and an isomorphism

VxPx Spin(n)Rn'
Then from §11 we have a homomorphism
wp: A, — KO(X").
Similarly if ¥ has a Spin®-structure, i.e. we are given a principal Spin“(r)-bundle P and an
1somorphism
V% P xSpin‘(n)R"
then we get a2 homomorphism
ol AS— K(XY).
In the real case assume # = 84 and in the complex case n = 2k, and put
sy = ap(A)
15 = a5,
Then by the naturality of «p, o and Theorem (11.1} we see that p,, p define KO and X
orientations of ¥ and hence (12.2) gives:

TreoreM (12.3). (i) Let P be a Spin(8k)-bundle V= P x 0 R%*. Then KO*(X") is a
free KO¥(X y-modide generated by py; (i) Let P be a Spin®(2k)-bundle, V' = P % g c02 R
Then B¥(XY) is a free K¥(X)-module generated by 1.

Remark. Tt Is easy to see, by considering the first differentials in the spectral sequence,

that the existence of a Spin (Spin®)-structure is necessary for KO{K)-orientability. Theorem
(12.3) shows that these conditions are also sufficient.

(12.3) together with {11.3) shows that, for Spin bundles, we have 2 Thom isomorphism
for KO and K with all the good formal properties. It is then easy to show that for Spin-
manifolds one can define a functorial homomorphism

fii KO (Y} — KO}y formaps [:Y— X,
and similarly for Spin®-manifolds in K-theory. This improves the results of 21

§13. The sphere

The purpose of these next sections is to identify the generator of KFB(X ) {for 2 ¥ with
Spinor structure and dim = { mod 8) given in §12 with that given in [7]. Essentially we have
to study the sphere as a homogeneous space of the spinor group. This actually leads to
simpler formulae {Proposition (13.2)) for the characteristic map of the tangent bundle
than one gets from using the orthogonal group.
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We recall first the existence of an isomorphism ¢ : C, — CF, (Proposition (5.2)) and
we note that, on CP, ¢ coincides with the standard inclusion C, — C,,,. We introduce
the following notation: K = Spin(k+1), H = ¢(Pin(k)) = H®+ H'. H® = ¢(Spin(k))
(where + here denotes disjoins sums of the two components).

S = unit sphere in R¥*?
S,=8n {20, S_=5nfng,, <0}
Sk—‘i = S+ A S_»

We consider $* as the orbit space of ¢,,, for the group K operating on R**! by the

representation p. Thus K/H° = S* and we have the principal #°-bundie

K 2S5 KHC,
Tet K, =7~ MS,), K_=n"Y(S_). We shall give explicit trivializations of X, and K.,
and the identification will then give the ‘characteristic map’ of the sphere.

We parametrize $, by use of ‘polar co-ordinates’:

(x,8) == CoS!.,y +Sint.x XES,-1a O < wf2,
Nowdefineamap 8, : 5, x H? -+ K. by
Balx, t, A% = {—Cos /2 + Sie 1/2.x e, )R°.
Since
p((—Cos 42 + Sin t/2.xe4 DR Ve
= (—Cos t/2 + 8in 42 . x¢,+ 1 )€+ (—Cos 42 + Bin /2. xe, . )7
= (—Cos /2 + Sin §2. %e+1) €4y
=Cost.g,, +Sint.x=(x1),
it follows that 8. is an H°-bundle isomerphism,
Similarly we parametrize S_ by
{(x,)= —Cosf.epy; +Sint.x xe8.,, 0<rg a2,
Note that for poinis of $,_, the two parametrizations agree (putting 1 = n/2). Now define
amapf_:S5. x H'=K_by
B_(x, t, BY) = (Cos 1/2 + Sin /2. xe, . ;).
Since
p((Cos 12 + Sin #/2.xe; 4 )i ersy
= (Cos 12 + Sin 1/2 . x¢+ )& )(Cos /2 + Sin /2. xe, . )"
= —(Cos #f2 + Sin #/2.%8, . Y &+1 = —Cos t.e,, | + Sinf.x,
it follows that B_ is an H -bundle isomorphism,
Putting 1 = 7/2 above we get
B+(x, nf2, B%) = (—Cos #/4 + Sin nj4 xe, . Ih"
B_(x, m/2, hY) = (Cos nf4 + Sin n}4.xe,, k.
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These are the same point of K, n K if
Bt = —(Cos n/4 — Sin n/4.xe,, )*h°
= Xeys H°.
Thus we have a2 commutative diagram

Sy X H B K AK

& 1
S, x H'—2 K nK_
where
5(x, B%) = {x, xe., J°). (1

Lemua {13.1). If we regard H® as (left) operating on both factors of 8, x H® and
S_ x H, then §. and f_ are compatible with left operation.
Proof ()} Paig(x t, %) =B.(g(x), 1, gh°)
= {~—Cos 1f2 + Sin #/2. gxg " *e;1 )gh°
=gf(x, 1, ho)
where g e H® and g(x} = py.,(9).x = gxg™".
(i) B.glx,t, k") = f_(Cos 42 + Sin 1/2.gxg " te., Dght
=gB_(x,t, B}).

Since $(x) = xe, ., for x € R* formula (1) above can be rewritten
8(x, g) = (x, xg) xeR¥, ge Spin(k).
Summarizing our results therefore we get:
PROPOSITION (13.2). The principal Spin(k)-bundle Spir(k + 1) — §* is isomorphic to the
bundie obiained from the two bundles
S, x Pin(k) — §..
S. x Pin*(k)— S._
by the identification
(x, g} + (x, xg) for xeS71, gePin’k).
Moreover this isomorphism is compatible with left multiplication by Spin(k).
Here Pin®(k) = Spin(k) and Pin'(%) are the two components of Pink).

§14. Spinor bundles

Let P? be a principal Spin(k)-bundle over X and put
Pl = Po X gpin{k) Pinl(k), Q = Po xspin(k] Spm(k =+ 1)
T% = p® Xs;.;u(k)sk = T+ o T, where
T =P® XgpiamSer  To = P® XgginSo
Ty — X, 7. : T_ — X the projections.
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Consider now the two commutative diagrams

PO X il S+ % Pin®(k)) L -y

T as . ¥

4

PP x Spin(k)(.s—- S Plnl(k)) o -1

T > X.
where 3(p, 5, 9} = pg, p& P°, s€S8 ., g€Pin'(k), i = 0, L.
These allow us to identify the twe Spin(k) bundles occurring in the first column with
#%(PY) and 7 {P') respectively. Now because of the left compatibility in (13.2) we im~
mediately get

ProrosiTion (14.1). The principal Spin(i)-bundle Q — T* js isomorphic 1o the bundle
obtained from the two bundles
7t (PO s Ty, 7 (P} o T
by the identification
.5, 4) e (.5, 59)
for se 8870, g e Spin(k) and p e P°.
Now suppose that M = M° @ M is a graded C-module. Then we have a natural
isomorphism
MY = Pint(k) % gpimpM°.
Hence
p! Xspsn(i:)fwo = P X gpiny Pin* (k) XSpin{k)-MO
= P X g M
From (14.1) and this isomorphism we obtain:
Provosirion (14.2). The vector bundle § X gpinuM° over T* is isomorphic fo the bundle
obtained from the two bundles
zL(P° % Spin(k)MO) — T, =2 (PP XSpin(k]Ml) — 1.
by the identification
(p, 5, m) +— (p, 5, 5m)  for  peP seST meM’
Note. Here we have identified m¥(P%) with P° x 8, and #5(P% % gi,mM®) with
TE(P) X spiayM° etc.
Let us consider now the construction of §i1 which assigned to any graded C,-module
M and any Spin(c)-bundle P an element apo(M) € KO(B(V), S(V)) where ¥ = P % 51000 R"
This constraction depended on the *difference bundle’ of §9. In our present case the spaces
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A, Xy, X, of §9 can be effectively replaced by T%, T, T_ and we see from (14.2) (and the
fact that s* = —1 for se S,.;) that the bundle F of § is isornorphic to the bundle
O X spinp M ® Now from the split exact sequence of the pair (T¥, T_) and the isomorphisms
KO(T:, T_) = KO(T,, T*1) = KO(B(V), S(¥))
we obtain a natural projection
KO(T") — KO(B(V), S(¥)).
Then what we have shown may be stated as follows:

Turorem {14.3). Let P° be a principal Spin{k)-bundle, M a graded Cc-module,
0=P%x ssinyopintk + 1), ¥= POx Spin(k}Rk‘l T* = OfSpin(k), E%= 0 x Spin(k}M0>
p KO{TY — KO(B(VY, S(V) the natural projection, then

apo( M) = p(E).

If k=0mod$ and M is an irreducible (+ I)-module then p{£%) is the element of
KO(B(V), S(V)) used in [7] as the fundamental class. Thus (14.3) implies that this class
coincides with our class s, For some purposes, such as the behaviour under our definition
of ji, Is more cenvenient. For others, such as computing the effect of representations, the
definition in [7] is better. (14.3) enables us to switch from one to the other,

The proof of (14.3) carries over without change to the complex case, Spin being
replaced by Spin® throughout.

§15. Geometric intexpretation of Clifford modules

Consider the data of §11. Thus ¥ is a vector-bundle over X, C{}) the corresponding
Clifford bundle, and £ a graded real Clifford module for ¥. The construction of yy in that
section then depended on a particular geometric interpretation of the pairing
(15.1) V@®E'—E°
induced by the C(¥)-structure on £. More precisely we passed from {15.1) to the family of
maps
(15.2) S(V) x ELs EY  xeX,
which describe a definite isomorphism along S(#), of £%and E! lifted to B(}), and s¢ by the
difference construction a definite element x,{(E) e KO(B(V), S(V)).

There are two other geometric interpretations of (15.2) which we will discuss here
priefly. The first one leads to a rather uniform description of the bundles on stunted pro-
jective spaces, while the second one explains the relation between Clifford modules and
the vector field problem.

A. The generalized 3.

Let V be 2 Euclidean (real) vector bundle over X, S(J) its unit sphere bundle. The
group Z, then acts on S{¥)} by the antjpodal map, and we denote the projective bundle
S(VYZ, by P(¥). The projection P(V)— X will be denoted by =, and &(¥) shall stand for
the line bundle induced over P(¥) by the nontrivial representation of Z, on R':

E(V) = S(¥) % R
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Consider now the data at the beginning of this section, in particular the induced family
of maps:
S{(V.) x El-» E® xeX.
We can clearly divide by Z, on the left due to the bilinearity of the inducing map. Thus we
obtain maps
(15.3) S(V.} % g, EL — E xeX,
which may be interpreted directly as an explicit isomorphism
&V, E): &(¥V) @ n*(E") — 2NE%).

We now let W < V be a sub-bundle, and consider a graded C(#)-module £. The bundles
EFy®=*E' and n*E° then become explicitly isomorphic zlong P(W) = P{V) by means of
@(W, E), and so determine a well-defined difference element y(¥, W)E e KO(P(V), P(W)).

The linear extension of this construction now leads to a homomorphism,

{15.4) 1V, Wy M(W)— KO(P(V), PWy,
and an analogous homomorphism

2V, WY M(W) — K(P(V), P(W))
in the complex case. (15.4) is the desired generalization of the ¥, in §[1. Before justifying
this assertion, we remark that (¥, W) clearly vanishes on those C{W}modules which are
restrictions of C(V)-modules. Hence if we set A(V, B} equal 1o the cokernel of the restric-
tion map M(¥)5 M(W), then x(V, W) induces a homomorphism
{i5.5 AV, W) — KO{P(V), POFY.

To see that the operation x(¥, W) indeed generzalizes our earlier y, one may proceed as
follows: Let ¥ = W@ 1, and let /1 B(W) — P(V) be the fibre map which sends we W,
inte the line spanned by (w, (1 —wh®) in P(¥). Thus f induces an isomorphism of
B SO ) with P(¥)/P(I). Now one just checks that the following diagram is commutative:

M) -2, KOLP(Y), P(W))
(15.6) i r=ff
M) —2 s KO(B(W), S(W)).

It would be possible to extend a considerable portion of our work on y to x(W, V),
but this does not seem justified by any application at present. However we wish to draw
attention to the following property of x(V, W).

Prorosition {15.7). Let X be a point. Then the sequence
(15.8) M(V) s M(W) 220 KO(P(VIPOF)) — 0
is exact. A4 similar vesult holds in the complex case.

In other words, over a point, the relation A(¥, W)= KO(P(V)/P(W)) holds. As we
gave a complete survey of the groups Af, and their inclusions in §5, this proposition gives
the desired uniform description of the XO (and K) of a stunted real projective space. For
example, taking dim ¥ =k, dim W == 1, we obtain

KO((Py o) = KOy, PO) % Z,,
where a, is the ktl. Radon—Hurwitz number.
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We know of ro really satisfactory proof of proposition (15.7), primarily because we
know of no good algebraic description of the higher X0' of these spaces. On the other
hand it is easy to show that A(¥, W} - KO{P(V), P( W))is onto. For this purpose consider
the diagram associated with a triple of vector-spaces We Ve ¥

0 0
+

59 KO(P(V"), P(W)) — KO(B(V), P(W)) « KO(P(V), B(V"))

AV, W) — AWV W) — AW V)

whose horizontal rows are exact; the upper one by the exact sequence of a triple, the lower
one by the definition of the 4-groups. We know, by (15.6), that x(V, W) is a bijection if
dim J'— dim W < 1. Hence, arguing by induction on dim ¥ — dim W we may assurne that
the vertical homomorphisms of (15.9) are also exact. But then the middle homomorphism
must be onto, proving the assertion for the next higher value of dim W — dim ¥,

The proof of propesition (15.7) may now be completed either by obtaining a lower
bound for the groups in question from the spectral sequence of KO-theory, or by a detailed
analysis of the sequence (15.9), which unfortunately involves several special cases. In view
of the fact that a computation of KO(P(K)/P(D) is now already in the literature [1] we will
not pursue this argument further here.

B. Relation with the vector-field problem

‘We again consider the pairing

V x E® — E*
of §11, but now focus our attention on the induced maps:
(15.18) V. x,S(ED > B xeX.

Note that this is only relevant if £ is a rea/ modue.

The geometric interpretation of (15.10) is clear: if n: P(E®Y -+ X is the projective
bundle of £° over &, and & is the canonical line bundle over P(E %), then (15.10) describes a
definite injection:

{15.19) w(V, EY: &*V @ & —s n*E?,

It is possible to give (15.11) a more geometric setting if S(¥) admits a section, 5. One
may then use w(V, F)to ‘trivialize® a certain part of the ‘tangent bundle along the fibres’ of
P(E®). Recali first that this bundle, which we will denote by F:(E%), is described in the foi-
lowing manner. The bundle & = £(£°) is canonically embedded in 7*(E°), whence THENE
is well defined. Then we have
(15.12) THE®) = (" (EOH @ &

With this understood, let ¥ be the quotient of ¥ by the line bundle determined by s:

0=15 V-V 0
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and let 5, : £ - E' be the isomorphism induced by muttiplication by s{x) in E%. Ttisthen
quite easy to check that the homomorphism 55 -w(¥, E): 2V ® < — 7*E® induces an
injection
7V @ & " EVC

Tensoring this homomorphism with £, we obtain the desired injection:
{15.13) (s, V, E): 2%V — FHE).

Let us now again restrict the whole situation to a point. Then ifdim V= k,dim £° = m,
17 will be a trivial bundie of dimension k — 1, and F(E®) will be the tangent-bundle of pro-
jective {m — 1)-space P, .

Applying the results of §5 we conclude that the following proposition is valid:

ProvosiTioN (15,14}, Let m = Aa, where a, is the kth. Radon—Hurwitz number. Then
the tangent bundie of P,,.., (and hence of 8,1} contains a (i — 1)-dimensional trivial bundle.

The work of Adams [1], gives the converse of this proposition: if the tangent bundle
of §,,.., contains a trivial {# — [)-bundle, then m = Ag,.

We remark in closing that on the other hand the generalized vector-field question is
still open. This guestion is: let £ be the line bundie over P,, then what is the maximum
dimension of a trivial bundle in mé, m = n. Thus the vector field problem solves this ques-
tion for m = n. The general solution would, by virtue of the work of M. Hirsch, give the
most economical immersions of P, in Euclidean space.
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i. Introduction

Throughout this paper M shall denote a compact connected Riemann
manifold of class €. Let v = (P, @; h) be the triple consisting of two
points P and @ on M together with a homotopy elass A of curves joining
Pto . We will refer to such triples as buse points on M.

Corresponding to v=(P,Q; k) we define M to be the set of all geodesics
of minimal length which join P to @ and are contained in A.

There is an obvious map of the suspension of M7 into M: one merely
assigns to the pair (s, £), se M¥; £ {0, 1], the point on s which divides s
in theratio t to 1 — ¢. (For fixed small £ > 0, this map is 1 to 1 on M>
and serves to define a topology on M*.) The induced homomorphism
of 7 (M) into m..,(M) will be denoted by v.,.

Let s be an arbitrary geodesic on M from P to €. The index of s,
denoted by Ms), is the properly counted sum of the conjugate points of
P in the interior of 5. We write |v] for the first positive integer which
oceurs as the index of some geodesic from P to @ in the class k. In
terms of these notions our principal resuit is the following theorem.

THEOREM 1. Let M be a symmetric space. Then for any base point
v on M , M> is again o symmetric space. Further, v, 18 onto in positive
dimensions less than [v] and 45 one to one in positive dimensions less
than jv| — 1. Thus:

(1.1) Tl M) = 7o (M) 0<k<lvl~1.

As an example, let M be the n-sphere, n = 2, and let y=(P, @) consist
of two antipodes. (Because S” ig simply connected the class £ is unigue.)
Then M~ is the (n — 1)-sphere, and v: 7 (S*7) — 7,,.(S") coincides with
the usual suspension homomorphism. The integers which occur as indexes
of geodesics joining P to @, are seen to form the set 0, 2(n—1), 4n—1)
etec. Hence [v| = 2(n — 1), and (1.1} yields the Freudenthal suspensiozi
thgo:em.h};f z; :; (P, @) with € not the antipode of P, then M*is a single
point, while v is seen to be (n — impli
Poat 25 = 0 for 0 e o _('n2. 1}. In that case (1.1) merely implies

At first glance the evaluation of |v| may seem a formidable task.

* The author holds an A. P. Sloan Fellowship.
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However on a symmetric space (see section 5) every pair of points (P, ¢}
is contained in a maximal flat geodesic torus T, and every index (s}
already occurs as the index of a geodesic joining Pto @ on 7. Further,
for such a geodesic, \(s) is equal to the number of times s crosses the
“singular’” subtori of T. The disposition of these singular tori is well
known. The computation of |v| is therefore a routine matter. ‘

Theorem I yields new results in the following manner: In view of the
fact that with M the space M iz again symmetrie, one may repeat the
procedure of passing from M to M>. To facilitate the use of this iteration
we will agree to call a sequenee of symmetric spaces +-- M, — M, — M;-- -
a v-sequence if at each step M,=M7,, for some appropriate base point
v in M,... For example, the sequence ---S%-» S** _» 8. s a
v-gequence,

THEOREM 1I. The following are three v-sequences with the value of |vi
wmdicated at each step.

L2)  UEn)Um) x Um) 222 ven)
(1.8)  OERYOMm) x Om) 225 U(en)0(@n)
20} Sp(en)/ Utan) 223 Sp(2n)

(1.4)  Sp(2n)/Sp(n) x Sp(n) 2 U(4n)/Sp(2n)
2 3080/ Un) 222 80(8n)
Here we hove used the standard notaiions and inclusions,

Notice that | v] tends to « with # af each step of these sequences., On
the other hand it is well known that for each of the symmetric spaces
involved, m, becomes independent of # » k. (We will indicate these
stable values of 7, by dropping the subseript n and using bold face type.
For example, 7, (U/0) = n, {U®)/O(n)} for n » k.) TFinally, reeall that
in this notation 7 {U) = 7. (UUx U), m,(0) = 7,.(0/0x 0) and 7,{Sp)=
Tue{Sp/Sp x 8p) (k= 0,1, ---), because in each instance the space on
the right hand side represents the universal bage space of the group in
guestion. Combining these three observations with Theorem I, we
obtain the following corollary to Theorem IT.

COROLLARY. The stable homotopy of the clussical groups is periodic:
T {U) = 7 e(U)

(1.5) 70} = 7. {Sp)
7(8p) = 7. (O) B=901,-
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The groups 7. (U) are 0, Z for k = 0, 1. Hence 0, Z is the period of
74(U). In the case of Sp, one has the groups 0, 0, 0,2, fork =10,1,238
respectively. For O these first four groups are £, 2,0, Z. Hence the
period of 7,.(0) is Z.,Z,0,%,0,0,0, 2. Applying (1.3) and (1.4) one
also obtains the stable homotopy of the other symmetric spaces. Thus:

(1.8) 7ASp/t) = =, (Sp) k=0,12-..
=, (00} = 7, (Sp) B=0,1,2---

while
(.7 7 (Of) == 7, {0) k0,1, 2--
7(U/8p} = ,,.(0) =0, 1,2---

(In the third formula we have replaced SO/U by 0/U to obtain the correct
value of =,.)

The formulas (1.5) to (1.7) were already announced in [4]. The unitary
groups were discussed by a different method in [8], where the unstable
group 7@, {U{n}} was also evaluated as ZinlZ.

The proof of Theorem [ is summarized in this fashion: Let v = (P, @ &)
be a base point, and let ., be the space of path from P to Q@ on M in
the class 2. We then construct 2 CW-model for .M whieh is of the form
K= M"Je e, ete., where the ¢, are cells of dimension greater than or
equal to | |

The existence of such a X follows readily from the Morse theory. For
Instance the deformations given in Seifert-Threifall (10, pp. 34, 35] and
can be interpreted us follows: Suppose that a smooth function f defined
on 2 compact manifold N has a single nondegenerate critical point p, of
index k in the range a < f<b, a < fp)<b. Let N* respectively N be
the sets f £ @ and f < b on N. The assertion is, that then N*is obtained
fr(?m N* by attaching a k-cell, e, to N*. In symbols, N = N“e,. (This
[13;21;1‘3 of view is also emphasized in notes by Piteher [9], and R. Thom

To prove our theorem this interpretation of the Morse theory is first
extended in two ways:

{A) The loopspace problem is reduced to the manifold problem,

(B) The notion of nondegeneracy is extended.
Thereafter it is shown that on a symmetric space the eritical sets in the
loopspace are nondegenerate for every choice of » base point.

The step (A) Is already essentially contained in Morse [8}; while the

181




RAOUL BOTT

notion of a nondegenerate critical manifold {step B) was introduced in
2]

The final step follows easily from the results of {6].

It is elear from this rough plan of the proof that considerable reviewing
of more or less known material will be necessary to make the account
intelligible. Because the theory of a nondegenerate function on a smooth
manifold is by now well known, while some mystery still seems to hang
over Morse’s extension of this theory to loop spaces, we will review step
{A) in greater detail than the other two steps.

2. Review of the Morse theory. A reduction theorem

Let ¢ = (P, @) be any two points of M. The space of paths from P to
€ on M is denoted by £2,M and is defined as follows:

DEFINITION 2.1. The poinis of Q.M are the piecewise differentiable
maps ¢ [0,1]—=M which are parametrized proportionally to arc length,
take O inio P, and map 1 onto Q. The distance between twe points ¢ and
¢ wn 3, M is given by:

oide, €Y = maxepq i), ¢} + 1 JHe) — Jiet
where P 15 the metric on M, and J denotes the length function on Q. M,

The advantage of this definition of .M is that J(c), the length of ¢, is
a continuous funetion of £, M. On the other hand 3, M is not complete.

If @ is a real number, the subset of (3, M on which J < a, is denoted by
040, and is referred to as a half space of Q.M. Such a half space is
called regular if OtM contains no geodesie of length a.

Let ¥ be a continuous real valued function on a4 compact manifold N.
The set {xe N; F(x)<a} will be denoted by F°N, or just N* if the fune-
tion is understood, and is also called a half-space for F on N. The half-
space is called regular if F'is of class C~ in some neighborhood of FN,
and if F has no critical points at the level a. {In other words dF(x)#0if
Flz)=a.)

The aim of this section i1s to show that every regular half space of
O, M, is of the same homotopy type as a regular half-space of =
manifold.

It turns out that if one steers a middle course between Morse and
Seifert and Threlfall such a “model”’ for Q2M is easily constructed. We
have just defined M according to Seifert and Threlfall; for the rest

! The applications given in {2] are false, as was pointed cut to me by A. S. Schwartz
[115. % distressingly simple example shows that the assertion |2, p. 253] to the effect
that V. is a manifold is wrong, This mistake invalidates the computations for the
circular connectivities of the s-sphere.
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we follow, in spirit at least, Morse’s account of thirty years ago.
.Le‘% . M*—E, be the function from the n' cartesian product of M
with itself, which assigns to (2) = (z,, - - -, &,) the number:

r[)”(a;) - pz(Pa :EI) F" (Uz(mu Q:.‘.) + e pz(xm Q) .
were p(xf, y} denotes the distance between % and y on M, as before,

RF:DUCTION THEOREM 1. Let o be a positive number. Then there exists
an anteger n such that QM 1is of the same homotopy type as the half
space oM™ of @, on M, where b = a*ln 4 1. Thus,

2.1) QM =z b M

The statement (2.1) is new, although quite implicit in Morse’s account.
Ee, of course, did not have a definition of £, M on which the length fune-
tion was continuous. A slightly surprising technical phenomenon is that
the function ¢, alone suffices to define a model for Q2M. In Morse's
original account, he essentially shows that £4M is of the same homotopy
type as the subset of M* characterized by o, 2,.,) < B ool m,)
=a. (Herem=F; z,,, = Q). )

PROGF oF (2.1). There exists a number £ > 0 such that two points of
M with distance less than @ have a unique shortest geodesic Joining
*Fhem. This shortest geodesic then varies smoothly with the end points
n particular 0%, y) is a C= function of # and Y as long as p(x, ¥) < 5,
Suppose now that » is chosen so large that: ’ -

(2.4) Ve T1<E.

Under this condition on # we define maps «: QLM — P M and B po =
. . R ! n - L
— QLM which constitute g homotopy equivalence. {For convenience we

write ¢ for ¢, and denote p°® by MY in the sequel.)
DEFINITION OF . Let ce Q5 M. Then alc)e M is to be the point:
CE(G) = {c(tl}r C(t:!)’ b '1 c(t'n)} ’ ti - ’\i;,‘;‘n + 1;

Qlearly « is a continuous funection from Q4 to M»*. Next P(exe) =
2omotle(ty), o(t:..)}. Bach term of this sum is =Z({a/n +1) because ¢ ig
parametrized proportionately to arc-length. Hence placy={a*n+1)=15%
The map a therefore take values in W e a .

DEFINITION oF 3. If 2 = (@, -+ -, 2,) i3 2 point of MY = @"M*®, then each

;f the numbers,_ {o(P, a;i),. P2y, )= 0(0,.,, @)} iz less than aiV'nF1,
ence less than 0. The unique geodesies joining consecutive points of the
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array P, &, -+, T, @ 2re therefore well defined and combine to yield a
eurve, ¢, in QM. By the Cauchy inequality the length of ¢ does not
exceed a. The correspondence & — ¢ defines the map £.

LeMMA 2.1. There exists a homotopy D, 0=st=<1of QM on itgelf
such that D, is the identily, and Dy = ,(30. a.

The needeud deformation is given explicitly in [10, p. 51]. O1_rle. c.ieforms
the segment of ¢ between 1, and t,,,, into the geodesic chord joining ()
to ¢(t,+,). The intermediate curves are geodesic segments from elt.)-
eft, + € followed by the original curve from &, + & to £,4.-

LeEMMA 2.2. There ewists @ homotopy A,0tsl, of Mion itself,
t A is the identity, and, A, = e /3. '

Su%f;lfj %omlz)topy is to be found in Morse [8, p. 217]. Ifre Mi;,_ /a’(x') is ?
polygonal curve joining Pto Q. Let ¢ [0,1]— M the paramezlfa’gont}c;e
A{z) which is proportional to are length., Let 0 = a,, <+--, aan,h e{a :
pre-images under ¢ of the points % = {&, -+, fc,,} on /i(m‘). e X :
then correspond to the parameter values of the original vertices on / (wl}.
The composition a o 3 takes ® into {e(t,), e(ts),- - et} wﬁerit-b:_m[n—%i,.’
Hence if @,==t;, then the aof{x)=%, and what ¥s needed is & ‘‘universa ;
homotopy which takes the points o, into the poxn.ts t,. The natural wz’zzy 0
constructing this homotopy is to dispatch @, on its way o t, at a linear
speed proportional to the distance to be traversed. In formulas, let

a;=190
ar =l — )+ T, txrshi=1--""0
Apwr =1

The homotpy A. assigns to @ the point {o(a})} where ¢= A(z). Clearly the
a, vary continuously with for x & M4, sothat A, Is a proper l}omotopy.
IT; remains to be checked that A, keeps M invariant. For this purpose
it is sufficient to prove that @{A.x) = ey 0=7= 1. s
Let J(z) be the length of B(z), and set & = Jiz}{a, — @) 1
I, = J(x), while T o g(z). We also write {zi} for the co-
Pl i 4 fo
ordinates A.xz. Then:
.O(fCL m:’:-:—l) = 8v2+1(1 - T) + T(J(m)!’ﬂ—i—l) *

because #(x) is parametrized proportionally to arc length. Hence:
P Ax} S z:‘”" 150 - T A+ o{J(@) -+ 1.

After expanding, the right hand side Is seen to equal
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play ~ 2r(ple) — (@) + 17) + () — (JH@)n + 11)

By the Cauchy inequality ®(x) — J*¥x)in + 1 = 0. Hence in the range
0 7 =1, »(Az) < o). This completes the proof of the lemma, and
hence of {(2.1).

The statement (2.1) has a refinement which will be formulated next.
Its purpose is to relate certain geometric properties of the geodesics in
Qe with the critical points of ¢ on M4, Reeall first the notion of the
index of a eritical point. If pis a critical point of the smooth funetion
o on the manifold N, the Hessian of ¢, denoted by H,e, is the bilinear
symmetric function on the tangent space N, of N at p, which in ferms
of local coordinates is defired by H,p(6/6x., 8/0x,) = 8*¢{8x.0%,. The
index of p as a critical point of ¢ is by definition the dimension of a
maximal subspace of N, on which the Hessian is negative definite. This
integer is denoted by M,(p). Finally we briefly review the notion of a
conjugate point on a geodesic. For details the reader iz referred to [8]
and [6].

If s(ex, £) is 2 smooth family of geodesies, depending on a parameter «,
then the vector field &s(x, t)/fe|,., along s(0, {) is called a J-fleld along
5 = s{0, £}. The totality of such vector fields along s, forms a vector space
J, over the real numbers. If the length of s is less than g, every Vin J,
Is uniquely determined by its values at the end-points of 5. In general, if
P and @ are two points of s, @ is called a conjugate point of P (along s)
of muitiplieity & if the subspace of J,, eonsisting of the fields which
vanish at hoth Pand @, is of dimension precisely k.

REDUCTION THEOREM II. The homotopy eguivalence «: (32M — M2
constructed wn the proof of (2.1) has the following properiies:

(2.2} Under a the geodesies of QB are mapped one to one onto the
vritical points of @ on ML.

(2.3) If s is o geodesics of (M and p is its image under «, then:

The dimension of the nullspace of H,p equals the multiplieity of Q as
a conjugate point of Palong s.

The index \J{p) is equal to the number (counted with multiplicities)
of conjugate points of P in the interior of s.

Except for a minor technieality, (2.2) and (2.3) are the content of
Morse’s index theorem. See [8, p. 91]. The technicality in question is
the following one. Let «+ be the function o(P,x,) + oz, @) + --- +
&%, Q). This function is smooth provided that no two eonsecutive co-
ordinates coincide. Thus, except in a trivial case, the function I is
smooth near the point p of (2.3), and, as will be shown in 2 moment, p is
also a critical point of 4. If in (2.3) we replace \(») by Mi(p) we obtain

185



RAOUL BOTT

the statement of Morse. Note however that (2.2) with @ replaced by +
is not true. Indeed, the ecritical sets of +» are cells obtained by sliding
the vertices along a given geodesic.

To prove our theorem it is therefore sufficient to establish (2.2) and the
equality of r.(p) with A, (p).

PROOF OF (2.2). If 8 ig 2 geodesic segment of 02M then 5o a(s) =s.
Hence ¢ imbeds this set of curves in %, and it remazins to identify
the critical points of 4 on this set. Let z ¢ M*, let X be a tangent vector
to M™ at z, and consider the derivative X of @ in the direction X. The
point x is critical if and oanly if Xo = 0 for all X in the tangent space
at . Suppose that » has the coordinates {z,, - - -, x,) and that X has the
corresponding components (X, ---, X,) in the natural product structure
of the tangent space to M”" at x. Let s; denote the geodesic segment
from «; to %;.,, where we now set ©, =P, ,,, = @, and let §}, respectively
£%, be the unit tangent vector of s; at x.., and z;. By the well known
first variation formula:

X - P8, Tovy) = 215 {<3}, X’g+1> - <3:X5>} s

where <{, > denotes the inner product of the Riemannian structure, and
i s, | denotes the length of s, one obtains the expression:

X{{) = 22?::—1 < I 8 ! 3} —_ £3g+: ié{;q—lXH; > .

The components X, of X are independent. Hence X¢» = 0 for all X if
and only if & =§l.; 18| =ls:.bid=1,---,0~—1. In other words
is a criticzl point if and only if 3{z) is a geodesic, and @ o S(x) = x. This
completes the proof of (2.2).

PrOOF OF {2.3) Let A be the tangent space M*. By varying the vertices
of p along s, we single out a subspace A% of A on which H,p is clearly
positive definite. It therefore sufiices to study the restriction of H,» to
a suitable complement of 4% in 4. Such a complement is furnished by
the elements X = {X;] in 4 with each X, perpendicular to s. Let this
complement be denoted by 4% and suppose X, Ye A% For each seg-
ment s; choose J-fields U, and V,. so that at the end points g, U, coineides
with X,_, and X, while V, coincides with Y,_, and Y., We write this
condition in the form U;=X,,,; U; = X, ete. Because |s,| < g, the U,
V:; are uniquely determined by X and ¥. Now by the second variation
formula,

Hp(X, Y)Y = k) AU — AU, VD

where AU, denoctes the covariant derivative of U/, along 3, and % is equal
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to {2/n+1) x length of B(z). For the function  we obtain similiarly the
expression

H(X, Y) =3 <AU; — AU, VIS

Thus on A* these two Hessians differ only by a positive factor. On the
complementary subspace H,)- vanishes. Hence \(p) = M (p) as was to
be shown.

REMARK. These formulas immediately prove the first part of (2.3).
Indeed, a vector X is in the null space of H,¢ if and only if the J-fields
U, along s; fit together to form a global J-field along s which vanishes at
both Pand Q. In this manner Morse obtains the formula for the null
space of H,p. Concerning the index formula, let me just remark that
Morse obtains it by deforming @ along s info P, and observing that the
index form H - does not change during this deformation except when @
passes through conjugate points of P. At such points the index is
shown to decrease by precisely the multiplicity of the conjugate point.

The two reduction theorems complete our original program of assigning
to every regular half space of OfM a regular half space of a compact
manifold which is of the same homotopy type. (The fact that regularity
1s preserved under « follows from (2.2)). We wilt call the set M2 con-
structed in this section a model for Q¢M. If v = (P, Q: k) is 2 base point,
2,0 denotes the component of % in Q,M and the image of QM under a
will be called a model for ©¢M. It is clear that the reduetion theorem
holds equally well in this new setting.

3. Review of the Morse Theory. The nondegenerate case

The classification of eritical points according to index and nullity has
Fopological implieations which are usually expressed by the Morse
inequalities. Actually however this “homology formulation’ is proved
by homotopy arguments. It is better therefore to state these implications
In the language of CW-complexes {13]. In this manner homology eon-
sequences are easily accessibie while the homotopy implications are not
lost. (See [9] and [12].)

DEFINITION 8.1. (See [2].) Let V be o smooth connected submanifold
of the regular half space N = FeN. Such o manifold is called a
nondegenerate critical manifold of f on N° 1 S

(3.1) Each point of Vis a eritical point of f.

t(3.2) For any pe V, the nullspace of H,f is the tangent space of V
at ».

An immediate consequence of (3.2) is that A (p) is a constant on V.

187



RAOUL BOTT

This integer is the index of V, and is written » (V). If V reduces to a
point, H,/ is non-singular by the condition (3.2). The present notion
therefore generalizes the classical definition of a nondegenerate critical
point.

Let V be a nondegenerate critical manifold of 7 on N*. We define the
negative bundle, £,, over V in the following manner.

Let a Riemannian strueture be defined on N. At each point pe V the
form H,f then uniguely determines a linear seif-adjoint transformation
T, on the tangent space of N at p, by the formula,

(3.3) (T,X, Y = Hf(X, Y) X, YeN,.

Thesge transformations combine to define a linear endomorphism, T, of
the tangent space to N along V. By condition (8.2) the kernel of T is
precisely the tangent space to V. Thus T is an automorphism of the
normal bundle of Vin N.

Now let &, be the subbundle of this normal bundle which is spanned
by the negative eigendirections of 7. Thus the fiber of &, at pe V is
spanned by the normal veetors to Vat p, for which T,- Y =2Y, A < 0.
The fiber of £, therefore has dimension \ (V). If x, (V)=0, we set &, equal
to V. The bundle £, is independent of the Riemannian structure used.

Finally, recall the notion of attaching a vector bundle £, to a space T
to form the space ¥ U £.

In general if a: A--Y is a map of a subset A< X one forms the space
Y U. X by identfying a ¢ A < X with afa)e Y in the disjoint union Y with
X.

This attaching construetion has the following elementary properties:

{3.4) The homotopy type of ¥ (U, X depends only on the homotopy
type of a.

{3.5) If (X,, A)is a deformation retract of (X, 4) and if w,=n|A,
then Y U, X, is of the same homotopy type as YU .X.

When X is an n-cell ¢,, and A4 is the bounding sphere of ¢,, ¥ U, e, is
referred to as Y with the cell e, attached. If £is an orthogonal n-plane
bundle, we form the space Y U, by taking, in the above procedure, X
equal to the set Dy of vectors of length <1 and seiting 4 equal to
8; = 80;. In this case we speak of Y with £ attached, and if « is not
oxplicitly in evidence just use the notation Y u & If £ is & 0-dimensional
vector-bundle ¥ U £ stands for the disjoint union of ¥ with the base-
space of £,

With this notation and terminology understood, the prineipal resuli of
the nondegenerate Morse theory can be stated as follows:
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TaroreEM 111, Suppose that N C N are two regular holf-spaces of
the function f on the compuact manifold N.

(3.8) If f has no critical point in the range o X f = b then N is ¢
deformation retract of N*.

(3.7) If f has a single nondegenerate critical manifold Vin the range
a % f 5 b, then N* is of the same homotopy type as N* with the negative
bundle of f aleng V attached :
NP = N* U &
where £, 1s the negative bundle of f along V.
Immediate consequences in homotopy, [13], are:

COROLLARY 1. Under the assumptions of {8.7):

{3.8) Nt=N*Uet)- ---Ue,
where the cells ¢, 1 =1, -+, 5, have dimension = \ V). In particular.
(3.9) AN, N*) =0 for 0 £ » < MV).

Using excision and Poincaré duality (3.2) implies:
COROLLARY 2, Under the assumptions of (3.7)

(3.10) H'(N®, N G) = Hi&; &) =HMV; &) A= a(V)

Here the subseript ¢ denotes compact cohomology, and by G we mean the
temsor of the coefficients & by the orientation sheaf of £;.

REMARKS. In [2] we derived {3.10) with G specialized to Z,. In this
paper we will need only (3.9) but it seemed to me that (3.7) summarizes
the situation better than any of the other versions. Remark that (3.10)
implies (8.9) if N" 1is assumed to be simply eonnected. On the other hand
{3.8) yields (3.9) without this troublesome hypothesis.

The restrietion that V be the only critieal set of f in the range from
a to b is not essential. If all the critical sets are nondegenerate, they are
necessarily finite in number, o that if we denote them by Viidi=1.-.5;
then Theorem II1 is easily modified to vield the formula

Nt = NU & U -2 U &y,

if N*is triangulated, the attaching map of cell ¢, can be deformed
into the {dim ¢, — 1)-skeleton of N® In this way N°® becomes a CW-
complex.

The case when V is a point, p, is completely treated in [10]. The
present extension is best summarized by saying that what is done for a
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neighborhood of p in [10] can equally well be done in 2 normal neigh-
borhood of ¥V in the present case. On each fiber of such a neighborhood
one encounters the nondegenerate critical point problem.

Proor OF 3.6. Let N° be endowed with a Riemann structure and
denote the gradient of f corresponding to this structure by vf. If
pe N° — N* L., shall denote the integral curve of —vy through p in its
natural parameter. Because df 0 on this set L, is well defined. Further
hecause N* — N° is compaet, | v/ | > & > 0 on this set. Hence each L,
intersects f-'(a) at some point, say A(p), and the function p -— i{p)
defines f'(a) as a retract of N* — N By assigning to p the point h{p)
on L, which divides the segment from p to A{p) In the ratioc 1:1-¢, f'(a)
is seen to be a deformation retract N* — N°. Henee (3.6) is true.

Note. The eritical values of f form a closed set. Hence N**isagaina
regular half-space of f when ¢ > 0 is small enough. Using this additional
space it is easily seen that under the conditions of (3.6} N* and N*® are in
fact homeomorphie.

Proor oF 3.7. We may assume that f{V)}=0, and that f has no eriti-
cal points in the range [(—g, 0); (0, &)]- It is also sufficient to prove
that under these conditions N = N~-SU§, for some 0§ < & < ¢,

We have already defined £=£, as the negative bundile of f along V.
Let £* be the negative bundle of funetion — f along V. Then, clearly,
the normal bundle » of Vin N is the direct sum &7 with £

We let w: 7 — £ be the natural projection. The length of a vector
X & % is denoted by | X| and the function X —{ X |* is denoted by .

Let o: »—N be the exponential map. This map is a homeomorphism in
the vieinity of V included in % as the zero cross-section. Thus o induced
a Riemann structure (,) on this vieinity. The function fop will be
donoted by f..

The condition that V is a nondegnerate critieal manifdd of f clearly
implies that the function f, restricted to any fiber of » has a non-
degenerate eritical point. More precisely the following is true:

(3.12) The function f,, restricted to any fiber of &%, [£], hasa non-
degenerate minimum [maximum] at 0.

An easy computation now yields the following consequence:

(8.13) The function (df,, d®), restricted to any fiber of £+[£] has =
non-degenerate minimum [maximum] at 0.

The geometric interpretation of this remark is in turn :

(3.14) If £>0is small enough the set f, <& on a fiber of £* is star-
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shaped with respect to 0, and therefore linearly contractible.

(3.15) If z2 > 0 is small encugh, the gradient of —f, points out of the
set p(X) = u, at points with @(X) = ¢, on any fiber of £°.
Now, let X be the subset defined by

(3.16) X=X epifdX)SaoemX)=s .

Then we can as a consequence of (3.14) and (3.15), find positive numbers
¢ and ¢ with the following properties:

{2} We have ¢ < &,

(b) The map ¢ is a homeomorphism on X,

(¢} If A% C X is the subset of X on which @ o n(X) = g, then the
pair (XN g, 4N 8isa deformation retract of (X,i_, Al '

(@) The gradient of —f points out of the set o(X]) at the points of
o{AL). _

Assume in the sequel that ¢, ¢ have been chosen in the above manner.
Also let ¥:= N — o(X.). From (b) we conclude that N°= Y, U. X}
with attaching map « = @] Al From (c) it follows that Nt= ¥ U &
(Clearly the pair (D, S¢) is equivalent to the pair (X,? Mg, AL 0 E)L)
Finally, from (d) we conclude that at the boundary points of Y[ the
gradient — V7 points inward. Tarther there are no points with Vf =0
on this set in the range — ¢ < f, in view of (a). Hence Nt is a defor-
mation retract of Y by the argument used in the proof of (3.6). Thus
N is of the same homotopy type as N™° U £ as was 10 be shown.

REMARKS ON (3.8). This result follows from (3.7). One triangulates V
and uses the preimages of these cells under the map Dy — V as the cells
.

1‘ The following is a different argument which proves (3.8) undgr the
weaker hypothesis that (3.7) holds if V is a point. Let g be a function on
¥ which has only nondegenerate critical points on V. Extend g toa func-
tion ¢ on a normal neighborhood, B, of V in N by making g cor}stant
along the fibers, ¥, of B. Finally smooth & out to 0 inside a slightly
bigger normal neighborhood. There results a C~ function § on M. Nov»:
consider the function f = f 4 ¢§, with ¢ > 0. For ¢ sufficiently small f
will have only nondegenerate critical points in the range a = f&b, and
these will be precisely the critical points of g on V. Note that this pax:t
of the argument holds without the nondegeneracy hypothesis. All thatls
needed is that V be an isolated eritioal manifold. However, under such 2
general condition nothing can be said @ priori about the indexes of the
eritical points of f. Under the nondegeneracy condition, H,f and H,g
nave complementary nullspaces at all critieal points of f. Hence the
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indexes add, and are therefore =AAV).
We close this section with the following easy corollary of Theorem 1.

corresponding to the case AV} = 0, i.e.. when &=V,

COROLLARY 3. Let fbea smooth funetion on the compact manifold M.
Assume that the critical set of f eonsists entirvely of nondegenerate
critical manifolds. Let M, be the set on which f takes on its absolute
minimum, and let | f | denote the smallest index of the critical points
of fon M~ M. Then M is obtained from Msx by successively attach-
ing cells of dimension 1o less then |F1. Thus: M= M, e U e

dime. = [ F1.

4. The suspension theorem

. Le v be a base point on . The space (2, i8 called nondegenerate if
the set of geodesics In Q. M is the union of nondegenerate eritical
manifolds. Precisely, this condition should be formulated as follows: .M
is nondegenerate if, given any regular half-space e, with model
M, then the eritical set of ¢ on M i& the (necessarily} disjoint union of
nondegenerate critical manifolds.

Combining the reduction Theorem IT1 the following proposition becomes
evident:

SUSPENSION THEOREM. Let ,M be nondegenerate. Let <17 = CI2(M) be
the eollection of eritical maonifolds in M.

Tet G be well ordered, V= Vi Vi ooob, compatibly with the partial
order defined on V by the length of the geodesics, and let & = & be
the negative bundle of V,. Then QM has the same homotopy groups as

the CW-complex:
(41) K:§:U§2UE3U"'

We call this the suspension theorem because (1.1) follows from it trivially.
[ndeed, if jv| > 1, then only one of the critical manifolds V can have
index 0, because Q.M 18 connected, (whence K is connected) and attach-
ing a vector bundle of fiber dimension >>1 does not change the number
of eomponents. Hence in this case V, has index 0 while all other ¥, have
index = vl It follows that M* = V,. Thus going over to the corollary
of Theorem III, K is of the form:

(42) K::M"Ueluer“' dimeigivl.

Let 42 M — &, M be the inelusion and let o, denote the suspension {in
homotopy) from Q.M to M. Then 0, o 1. (M) — T, M) agrees with
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t,he deﬁnition Of v given in the lntl‘o ucti()n €I ¥ W
. d . -
: % H ce b (4.2) e Obtaln

COROLLARY (4.1). Under the hypothesis of the suspension theorem

- (4.3} v (M) = T (M) 0< r<iv)—1
1s an isomorphism onto.
For completeness, we stat 1 i
e ate an immediate cchomology consequence
CoROLLARY (4.2). Under the hypothesis of the suspension theorem

H :51(_(_)_“ M' G) a-d’m.ilﬂs [ Spe t?’ ¥ 3
v 1 Ci aJ, Sequ,ence E wh%ah CONVE ]E() gr e{i'
gTO’tép O_}‘ H (u()_-_lw: (;) a'ﬂd ﬂ-‘hose EJ} te? m 1‘3 gi VEN by:

{4.4) B, =} H¥E: G)
where &, ranges over the negative bundles &.; V < CI7. (The subscript ¢

denotes c‘ohomology with compact supports.)

By Poincaré duality one has further that (in the nototion of (8.10)):
(4.5) : Hitr; G) = H NV, &Y, r=MT)
Ofl:gii.zflcs. Recall tha{;; nondegerate G, M exist for every manifold M

ype we are considering. In fact nearl i

: : . . : y every base point, v gives
1I~1si };aotan Q.M in .whlc?a the geodesics are nondegenerate crifzeal pcillnts
n t_a lcase Fgé‘:.S) 1s quite uninteresting, however (4.4) is still useful; in-
particular, Z, will then be free if G is s the i ’
] . ; taken as the integers. Fo
;nstanee, 1i Mis ac?mpact group, £, =K. is was shown in [3] Whilz
or compact symmetric spaces, in general, F, = £, at least mod é [61

5. Ihe pl‘oof Of Iheorem I
Theorem I f()iIOWS fI‘Om h

(8.1) If Mis a symmetric s
ace th ) :
base point v on M. p en 2,5 is nondegenerate for every

(5.2) With M, M* s agai ;
B2 gain a symmetric space for every base point v

Recall that the manifold M i ic 1
oeca that U is called symmetric if the following condi-

(5.8) For every P e M, the ; )
, re exists an isometry L !
P gxed and reverses the geodesics through P Y e o M wohich kaces
Arorix;lhthe se(fond condition it follows that I} =identity for every Pe M
nother equivalent definition can be given in terms of the group of.
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isometries of M, This group, which is known o be a compact Lie-group,
will be denoted by & in the sequel. Using the faet that any two points
of M can be joined by a geodesic one easily derives the following conse-
quences of (5.3).

(5.4) The e-component G’ of G acts transitively on M.

(5.5) If K.e (G is the stability of Pe M, then K, is pointwise fixed
under the automorphism A4, k— ILEIZ* of G.

(5.6) The e-component K coincides with the e-component of the fixed
point set of A, in G.

The converse of (5.6) yields the alternate definition of symmetric
spaces:

(5.7} If G is a compact group, and A is an involution of &, then in an
invariant Riemannian structure, the coset space G/X is called a symmetric
space if K’ coincides with the e-component of the fixed point group of
A.

In the sequel we assume M is a symmetrie space with K, the stability
group of Pe M. The e-components of groups will be denoted by a dash,
e.g., K.

The action of K, on M was discussed in [6], and was shown to be
variationally complete.

As a consequence the following is true: {see [8, chapter 1I].)

PrROPOSITION 5.1. Let s be a nontrivial geodesic on M starting af P.
Let @ be any point of 8, and set K., respectively K., equal to the sub-
group of K} which keeps @, respectively s, pointwise fized. Then the
multiplicity of @ as a conjugate point of Pis equal to dim Kp/K..

The statement (5.1) is an immediate corollary of this proposition.
Indeed, let v = (P, @; ) and let the set of geodesies in .M be denoted by
S, M. Clearly K%, acts on S,]M, the orbit of s € S, M, being homeomor-
phic to KL,/K:. In any model, M%, for QiM these orbits are certainly
imbedded as smooth submanifolds, Now we see by Proposition 5.1 and
(2.8) that the nullity of any point on such an orbit is equal to the dimen-
sion of the orbit. This is precisely the second eondition for nondegener-
acy. (see (3.2)).

There remains the statement (5.2). To prove it, we show that each
orbit of K, on M~ is a symmetric space. Let then V be the orbit of
s € M. We may assume that s does not degenerate, for then M~ reduces
to a point. Thus V = K, /K, and we have to produee an involution A
of K5, whose fixed point sef containg K[ as e¢-component. Because sis a
minimal geodesic in the Q,M, no eonjugate point of P occurs in the
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interior of s. In particilar, the midpoint B of s is not coniugate to P
along s. Hence K = K/, by Proposition 5.1,

Now IP =@, and I,Q = P. Hence if & ¢ K., then LkI;'C Kp,
Thus A: K, > K, defined by A(k) = IkI;? is an involution of Ky, On
the other hand, the e-component of the fixed point set of 4 is precisely
K5, This proves (5.2) and completes the proof of Theorem 1.

For future reference we close this section with the following theorem,
which is a straightforward generalization of Theorem I of [6].

TaroreMm IV. Let v be any base point on the symmetric space M. Then
the spectral sequence, (4.2), attached to O, M by the decomposition (4.1),
s triviel over the ntegers mod 2. Thus:

(5.8) HYQ,M; Z,) = 3 Hi(E; Z) Ve (M) .

In the group case (5.8) holds with integer coefficients.

NOTE ON THE PROOF. The spectral sequence (4.2) is derived from the
filtering of K = £, U £ U---, by the subcomplexes K, == E U - UE.
Let a: S_gi — K., be the attaching map of &,. The problem is to show that,
« induces a trivial homomorphism in homeology. Let se V, and consider
the K eycle T, as defined in [6]. This is a manifold fibered over V with a
section : V' - 1. One hag a map of I"— K, which transforms £, into
the normal bundle of o(V) in I Thus ¥ = I i & corresponds to
K. = K,., U & and in 1V the attaching map «, is always homologically
trivial moed 2 (because £, is the normal bundle of a section). If the fiber
of [' over V is orfentable a, will also be trivial over the integers.

The simplest application of Theorem IV is obtained by considering (5.8)
in dimension 0. Because £,3 is always connected for any base point v
on M, (5.8) implies that M~ is connected, This fact will also be apparent
in the explicit computations of sections 7 and & which evaluate the inte-
gers | v | of Theorem IJ.

Before procesding to the proof of this theorem we have to review the
basic conjugacy theorems for symmetric spaces which make the explicit
computations possible. This is done in the next section.

6. The roots of a symmetric space

In this section & is to be a compact connected Lie group, in a left and
right invariant metric, which an involution 4. The full fixed point set
under A4 is denoted by K, while the e-component of X is written K. (Note
that K thus plays the role of X, in section 5.)

Let g be the Lie algebra of 7, and let
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g=Ft+m
be the decomposition of g into the fixed point set of A, (this is I, the Lie
algebra of K) and its orthogonal complement. Let bw be a maximal
abelian subalgebra of m, and let § D hu be a Cartan subalgebra of g.

Let 7: G — G be defined by: n(g) = g- A(g~"). Then w{gk) =7(g) so that
77 is constant along the left cosets of K and in this manner defines a map
5. GIK — G. We also let M he the image of m under the exponential
map. Thus M = en. Then it is known [1], [7], that 7. is & homeomor-
phism of GYK onto M. Further the natural action of K on G/X now
translaies into the adjoint action of K on & restricted to M. In the sequel
we will therefore always think of the symmetric space G/K as the
subset M < G.

Let Tw be the image of bw under the exponential map. This is a torus
in M which is geodesically imbedded. Any torus of this form is called a
maximal terus of M, and its dimension is the rank of M.

We write W(G&, K) or W{(A4) for the group of automorphisms of Tu
which are induced by inner sutomorphisms of K’. The following are basic
properties of maximal tori: (gee 1}, [6], [7])

{6.1) If T and 7" are two maximal tori of M, then there existsa ke K’
so that T == kT'k.

(6.2) If X is a subset of Tw and ke X has the property Xk ' Ty,
then there exists an element ¢ of W(G, K) so that o(x) == kek™', for all
ze X.

(6.8) Every point of M lies on a maximal torus of J.

We also have:

{6.4) The geodesics of M through e¢ coineide with the one-parameter
groups of G which lie in M.

{6.5) If « € m, then the index of the geodesic segment:

(1) = et” 03

it
iA
[

in M is computed as follws:

Let X(G)y = {8}, 1 =1, ---, m, be a system of positive roots of G on
. Also if « is any real number, let {|a !} denote the number 0 if a = g,
otherwise let || a |} be the greatest integer < |a|. With this understood,
the index in question is given by:

(6.6) AE) == 3T 0z}

REMARKS.
{1} The formula (6.6) is to be found in |8}, except for a factor 2in the
definition of the exponential map. This discrepancy is explained by the
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fact that the inverse of 7,.:G/K — M, is not given by the projection
M~ G/K induced by the natural map =:G — G/K. Rather, one has
7 (#)=7(1 p) where for p € M, v'p isany point of M with (1, “F) = p.
That this factor 2 could be done away with by considering M rather than
(/K was pointed out to me by A. Borel,

{2) We can find distinct non-trivial forms {®.}, ¢ =1, -.. m’, on bu
such that each ¢ € I(() restricts to some = ¢, on bw. Such a system of
forms is called a root system for A/, and is denoted by Z{H). For each
v & X(M) let n,; be the number of forms in X(G) which restrict to + @on
bm. These integers are the multiplicities of the root forms of 3. In terms
of them, {6.6) is expressed by:

(6.7) MEY = 3w, Lty i e X{M).

This formula has the following geometrie interpretation: Consider the
set of planes on'whiceh one of the root-forms ¢ = X(G/K) has an integral
value. Then M#) counts how many of these planes the line-segment
tv, 0 = t = 1, crosses, each crossing being counted by the appropriate
multiplicity.

Finally, we recall the following facts:

(6.8) Let A\, be the lattice of those x ¢ bw, for which the segment
#E) = e, 0 £ t £ 1, represents a closed curve which is homotopic to zero
in M. Then A, is generated by elements b, o € X(M), characterized hy:

), 1s perpendieular to the plane ¢ = 0, and w(B,) = 2 .

(6.9) The representation of W(M} on by is generated by the reflections
in the planes 9 = 0 for ¢ & M.

These propositions enable us to survey the possible indexes of elements
in S,M entirely in terms of the roots of & on 0. Indeed, by (6.3) no
generality is lost if we assume that the base-point v — (P, Q; h) is
of the form P = ¢; Q ¢ Tw. According to (5.1) the set S, M will eonsist
of the cllection <, 3 of nondegenerate critical manifolds. If s is a geodesic
of Ve VM, ther V consists precisely of the set of geodesics ksk™
where k is in the subgroup of K’ keeping Q fixed. Henece, by (6.1), (6.2)
and (6.4), each V contains geodesics which lie on T, and join e to @Q.
Further two such geodesics lie in the same V precisely if they are conjugate
under W(G, K).

We \'vﬂl adhere %o the convention that if & € hu, then Z represents the
geodesic e, 0 ¢ < 1, in M. Because the geodesics on T can be lifted

into bw in the obvious fashion, our earkier conclusions can be summarized
as follows:
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PROPOSITION 6.1. Let @, € hu be any point with %, € Q.M. Then if
e x, + A\, there iz a unique critical manifold V, < S, M which contains
#. This manifold is homeomorphic to K'|K,, where K, is the centralizer
of x in K'.

The function  — V, maps x, + A, onto the set CULM, and of V.=V,
2, Y, € %, + Ay, then & and y are conjugate under the action of W(G, K)
On b

CoroLLary. The set of indexes As), s € S, M, consists of the ntegers
MT), computed according to (6.7) as x ranges over the poinis of ., -+ A,.

In the next sections this proposition is applied to compute the values of
v given in Theorem II, case by case.

7. Computations when M is a group

If the compact eonnected group & is to be considered as a symmetric
space, #, we must, to follow our general procedure, consider M as the
subset (g, g7, ¢ € G, In& x (7. Then M = 7, while Hu corresponds to
the anti-diagonal in 2 x k. Thus in this case 3 (M) is a positive root
system for G each root being counted with multiplieity 2. The group ¥
then corresponds to & acting on A7 by the adjoint action.

In each case to be considered, we will choose orthogonal coordinates in
b, and so identify bw with B!, the space of [-tuples of real numbers with
the nsual inner product ((%, ¥)=3_ z;-¥,, where «,, ¥, are the coordinates
of ® and y respectively). The form which assigns to z € R its @ co-
ordirate will always be denoted by w,. The exponential map then gives
rise to a map R’ — M, which will be denoted by p. We will define this
mayp in each case, and then give the root-system of M as it is expressed
by the forms w,.

(7.1) The unitary groups, M = U{2n). Let d, be the diagonal 2n x 25
matrix with @ entry 27 - 1, and all other entries 0. Then o0 B — U(2n)
is given by:

o(x) = exp {3 0 w) d,} x e £,
and the root-forms of M = Ui2n) are:
(M) wp — w, 1z e B Ein.

It follows that W(M) is permytation group of the coordinates in B*, and
that A, is generated by {1, ~-1,0,0,---,0]! and its transforms under
WM.

Let x, ¢ R*™ be the element;
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@ =1{0,0,---,0; 1,1, ---, 11 (n entries 0, n entries 1)

and let v = (P, &; k) be the unique base point containing the curve 7,
{Note that then P = @ = identity)., Thus K., (in the sense of section 5)
is equalto U(2n)and K, = U(n) x U{n}, whence V,, = U(2n)/U(n) x Uln).

The points of x, + A, are of the form: z = {a,, +++, ¢} witha, € Z;
S a.=mn. Let b < b,--- < b, be the different integers which oceur
among the {a;}, and assume that b, oceurs », times. Then according to
(6.7):

MZ) = 237, mampl@y — bo — 1)

We conciude:

{1} Ifx e o + A,, with M#) = 0 then z is conjugaie to x, under
W(M).

(2) The next lowest value of Aonx, + A, is 2(n + 1). Uptoconjuga-
tion by elements.of W{Af) this value is taken on only at the points:

{0,"',0; 0- 17 }-. "',1, 2} and {'—1) Or 0: "'701 1; lr }', "'rli -

Hence:
(7.2) Inthiscase, M = V., = UZn)/U(n) x Uln), whilejv| = 2(n 4 1).
COROLLARY. The sequence {1.2) is a v-seguence.

(7.3} The orthogonal groups, M = S0(2n). Let O, be the 2n x 2n

matrix with only entry the diagonal box 271 ?1( _(1) (1)> at the k* level.
Now 01 R* — S0{2n) is given by: p(z) = exp {27 @.f2)0.}, and we have:
(MY wg + @, l=a<cBgn

Further W{M)is generated by the permutations e, — @y, and @, — — Wg,

« < f; and A, Is generated by the element {1, —1, 0, -- -, 0} asa W(M)
module.
Let @, = {1/2, 1/2, ..., 1/2}, and let v be the base point determined by

¥,. Then V, = S0@n)/U{n). By, (6.7) wesee that M) = 0, z in @, 4 AL
implies = conjugate to x, under W(M), while | v | is given by 2(n —1). In
fact the index of {+1/2, 1/2, 1/2, -, 3/2} is precisely 2(n — 1). Thus,
(1.4) In this case M~ = SO2n){U(n), while |v| = 2(n — 1).
(7.5) The symplectic groups, M = Sp{n). Let Uln) < Sp(n) be a
standard inclusion, and let o: B* — Sp(n) be defined by the map B* — Ufn)
as in (7.1), (with % replaced by 2n) followed by the inclusion. Then:

(M) o + w,; 20, ,
W{M): Al signed permutaions.
A.t Generated by {1, —1, 0, --+, 0} as a W(M)-module.

lfa< B8
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Again, we choose ¥, = {1/2, ---, 1/2}. Then V. = Sp(n){U(n) as is
easily seen. As before V, = M*. However now M{1/2,1/2, ---, 3/2}) =
2(n + 1), and this is the value of | v{. Thus:

(7.6) In this case, M* = So(n){U{n) with | v = 2(n + 1).

8. The remaining computations. Proof of Theorem 11

(8.1) The space M = SOEn)[U(2n). Let Q be the field of quaternions
el + mod 4 @a-g + ek 2, € B, where the 1,4, 7, k are the usual
quaternion units. We define the following endomorphisms of R™: E, the
identity; F. is to take the ' coordinate into minus the (v 4+ 2n)™" coordi-
nate, while it takes the (@ + 2n)" coordinate into the & one {1 = «v < 2n).
The endomorphism E, is to be represented by the matrix

{Ol"‘r .- —in,,L——OhH_. e O'_’:r}

where O, is as defined in (7.3). The assignment 1 — E, 41— K, j— B,
defines a representation of  on B™. Because 1, ¢ generate a field isomor-
phic to the complex numbers, we see that the elements of SO{4n)
which commute with E, form a subgroup U(2n) < S0(4n). The elements of
this subgroup which commute with E, in turn define Sp(n) ¢ U2n).
Hence if we set G = SO{4n), and let 4 be the inner automorphism by
E,, then A" is the identity and the fixed point set, K, of A is Uin). Thus
GIK == M is a symmetric space.

Let E* -» 30{4n) be defined as in (7.3) with n replaced by 2s. Then
I eorresponds to the Cartan algebra, 0, of section (6), and we have to
determine the inclusion by <7 9. It is not hard to see that this inclusion
corresponds to a map E”* -~ E* given by

(o, ~oe, ) (G, ome, m —&, e, )
Restricting the forms of {7.2) to this subspace, we obtain the following set
the multiplicity of w, + w,; (@ = 2) is 4, while that of 2, is 1. Schema-
tically we denote this set of forms by:

MY g o, 2w, 1wl 3 <dn
4 1
{Thus the integer below the form denotes its multiplicity. This notation

will be used throughout the sequel.) W{M) and A, (M) are therefore the
same as in {7.3)

Choose w, == {1/2, .-+, 1/2}, and let v be the determined by 7. Note
that Z,(¢) = exp (7v =1 ¢t E). Tt follows that in this case K, = U(2n),
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while K, = Sp(n). Thus V., = U(2n)/Sp(n). Just as previcusly, Ve, is
actually M, while | v| is the index of {1/2, ---, 1/2, 3/2}, and thus given
by 4n — 2. We conelude:

(8.2) In this case M’ = U{(2n)/Sp(n) with |v| = 40 — 2.

{8.8) The space M == U{dn)/Sp(2n). Let K, be the matrix deseribed in
the last section. Then it is well known that the subgroup of U(4n) whose
elements satisfy the identity U*E\U/ = E,, form the linear symplectic
group Sp(2n) C U4n). Let A be the automorphism of U(2n) which takes
U into E, U E;. (Here the bar denotes complex conjugation.) Then A
is the identity, and because U'* = U -, the subgroup of U(2n) fixed under
A is precisely Sp(n). Let R — R be the map:

(84) (& ey To) = (2, o0, Logy Ty + 20y Bay) -

Then this map followed by the map R* — U(4n) deseribed in {(7.1) describes
@ in this case. Restricting the forms of U(4n) according to (8.4) we obtain
the following array for S(M):

I(MYy: wy— w, 12a< i <2n.

4
Hence W(M) and A, are as described in (7.1). Accordingly choose
# = {0, --+,0,1, ..., 1}, just as in (7.1), and let v be determined by 7.

This is then 2 closed curve in M. Thus X o is represented by Sp(2n). The
centralizer of Z, in U(4n) is clearly U(2n) x U{2r}. Hence the centralizer
in Sp(2n) is precisely Sp(n) x Sp(n). Thus V., i& homeomorphic to
Sp(2n){Sp{n) x Sp(n). Just as in {7.1) we see that M’ = V., However
tv!is now given by 4(r + 1), because each root has weight 4 instead of
2. To summarize:

(8.5) In this case M* = Sp(2n)/Spln) x Sp(n) while | v | = 4(n + 1).

If we combine (7.4) with (8.2) and (8.5) we obtain the

COROLLARY. The sequence (1.4) iz o v-sequence.

(8.6) The space M = Sp(n)/U(n). We will now interpret Sp(2n) as the
group of n x % nonsingular matrixes with entries from @ which keep the
symplectic product invariant. We also write i[4] for the diagonal matrix
1 x Identity |5 x Identity]l. Consider the subgroup of Sp(n) which
commutes with 7. Because the elements of @ which commute with j e @
form a field isomorphic to C, this subgroup will be isomorphic to U(@2n).
Henee if A denotes the inner automorphism with 4, then the fixed-point
set of A is U(n). By 2 similar argument, the subgroup commuting with
both ¢ and j is the group O(n) ¢ Tin).

Let p: RB* — Sp(n) be defined as in (7.1), except that v =T is to be
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replaced by ¢ € Q, and 2n is to be replaced by #. Then Ap(z) = o —x).

Further the image of £ s a2 maximal torus of Sp(n) as is seen from {7.5).
This is therefore a case when Hm = 5,

If foliows that the root system,
Z(3), identical with Z(Sp(n)), except that each root has multiplity 1. Thus

M) wy+w, 20,
1 1

lfa< s

We chose %, as in (7.5), and
endpoint of #, is minus the identi
of &, must commute with 7. He
Using the results of (7.8) it follo

(8.7) In this case M-

(8.8) Thespace M =
in question is the comp
precisely as in (7.1).

v correspondingly. If follows that the
ty, whenece X #e == U(n), The ecentralizer
nee K, = O(xn). Thus V., = Umn)iO(n).
ws that:

= U(n){O(n) with |v] = (n + 1).

U{2n)/0(2n). Ttisclear that here the automorphism
lex conjugation. We let ©: B* > U(2n) be defined
We then see that this is again where i = b, Thus

EMy: wy — w,
1

We choose z, just as in (7.1), whence V%

ing the answer in (7.1} by 2, we finally ¢
Thus:

(8.9) In this case i~
Now combining {7.6)

l2a<p=on

= (2n)/O(n) x O{n). By divid-
btain for | v | the integer (n + 1).

= O(2n){O(n) x O(m), and |v| = (n + 1).

with (8.7) and {8.9) we obtain the
COROLLARY. The sequence (1.3) is g v
This then completes the proof of Th

later reference, to summarize the comp

in terms of the suspension theorem of section 4. In this summary, the
symbol X = ¥ €: +-- will be interpreted to mean that X is obtaj

from ¥ by attaching cells of dimension = k. With this understood
have shown that:

-sequence,

eorem II. It might be useful for
utations of the last two sections

ned
we

Q,U(2n) = U2n)/Um) x Uln) U e

(8.10) 0.80(2n) = SO@n)/Un) U ey, - - - .
Q,Sp('ﬂ) = Sp(’n)/Uf%) U Conrn * - »
Further,
0,8p(n){Un) = Um)Om) U e,., ---
{8.113
Q,U(2n)j0(2n) = 0(2n)/0(n) x Om) U €ney
and
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Q.80(4n)[U(2n) = U2n)/Sp(n) U €os - -

(8.12) ©,U(4n)[Sp(2n) = Sp(2n)/Sp(r) > Sp(R) U €mes *
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