
HOMOTOPICAL LOCALIZATIONS OF SPACES

By A. K. BOUSFIELD

Abstract. For a map f of spaces, Dror Farjoun and the author have constructed an f -localization
functor, where a space Y is called f -local when map( f , Y) is an equivalence. This very general
construction gives all known idempotent homotopy functors of spaces. The main theorem of this
paper shows that f -localization functors always preserve fiber sequences of connected H-spaces
up to small error terms. For instance, the localization with respect to the nth Morava K-theory
preserves such fiber sequences up to error terms with at most three nontrivial homotopy groups. This
implies, for example, that a K(1)-homology equivalence of H-spaces must induce an isomorphism
of v1-periodic homotopy groups. Results are also obtained on the A-nullification or A-periodization
functors, which are just the f -localization functors for the maps f from spaces A to points. Two
spaces are said to have the same nullity when they give the same nullification functors, and it is
shown that arbitrary sets of nullity classes have both least upper bounds and greatest lower bounds.
The A-nullifications of nilpotent Postnikov spaces are completely determined.

1. Introduction. During the past two decades, great progress has been
made toward a global understanding of stable homotopy theory, showing that
some major features arise “chromatically” from an interplay of periodic phe-
nomena arranged in a hierarchy (see [Ra]). These phenomena have been quite
effectively exposed using localizations of spectra with respect to periodic homol-
ogy theories such as the Morava K-theories K(n)�. We would like to similarly
expose periodic phenomena in unstable homotopy theory using localizations of
spaces. Some encouraging progress in this direction has been made by Mahowald
and Thompson ([MT]), Dror Farjoun and Smith ([DFS]), the author ([Bo 7]), and
others, and a powerful general theory of unstable homotopical localizations has
begun to emerge. In this paper, we investigate that theory and prove a general
fibration theorem showing, for instance, that K(n)�-localizations preserve fiber
sequences of connected H-spaces up to error terms with at most three nontrivial
homotopy groups.

To describe our results, we first recall the very general notion of an f -
localization of spaces, and we initially work in the pointed homotopy category
Ho� of CW-complexes. For a fixed map f : A! B of spaces, we say that a space Y
is f -local when f �: map(B, Y) ' map(A, Y). As shown by Dror Farjoun ([DF 1])
and the author ([Bo 3, Corollary 7.2]), each space X has a natural f -localization
X ! Lf X. The f -localization generalizes both the E�-localization X ! XE for a
homology theory E� and the A-nullification X ! PAX for a space A, which may
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respectively be obtained using a suitable huge E�-equivalence f and the trivial
map f : A ! �. We give a brief general account of f -localizations in Section 2,
and refer the reader to [Bo 8], [Ca 1], and particularly to Dror Farjoun’s book
([DF 3]) for additional background information. We remark that Dror Farjoun’s
earlier paper ([DF 1]) helped to stimulate widespread interest in f -localizations.

For a map f and space A, we consider the localization class h f i consisting of
all maps giving the same local spaces as f , and the nullity class hAi consisting of
all spaces giving the same null spaces as A. The collections Locs of localization
classes and Nuls of nullity classes have obvious partial orderings (see [Bo 7],
[DF 2], [DF 3]), and we prove that they are actually small-complete large lattices
in the sense that their (small) subsets have greatest lower bounds and least upper
bounds (see 4.3 and 4.5). Moreover, we prove that each localization class h f i
has a best possible approximation by a nullity class hA( f )i such that PA( f ) and
Lf have the same acyclic spaces (Theorem 4.4). Thus PA( f ) is related to Lf in the
same way as Quillen’s plus-construction is related to the H�(�; Z)-localization
functor. For each map f , we also obtain a closed model category structure for
spaces, where the “weak equivalences” are the Lf -equivalences (Theorem 4.6).
Thus each localization class h f i determines its own brand of homotopy theory.
Versions of this result have been obtained by Dror Farjoun ([DF 3]), Hirschhorn
([Hi]), Smith, the author ([Bo 2, Appendix]), and others. Our present approach
actually shows the existence of F-localizations and associated homotopy theories
for many large classes of maps F .

Our main result is a general fibration theorem. For a map f of connected
spaces, we prove that the localization functors LΣf and Lf Ω preserve homotopy
fiber sequences up to error terms whose p-completions have at most three non-
trivial homotopy groups for each prime p (Main Theorem 9.7). This generalizes
a fibration theorem of Dror Farjoun and Smith ([DFS]) for the localization func-
tors LΣ2f and Lf Ω2, which in turn partially generalizes the fibration theorems of
[Bo 7] and [DFS] for the nullification functors PΣA and PAΩ. These results all
depend on a key lemma (Lemma 5.3) which we originally proved in [Bo 7, 6.9].
The crux of our present proof is in Section 6, where we show that the homotopy
fiber of an LΣf -equivalence of spaces is “almost” LΣf -acyclic (Theorem 6.2), and
where we find a very convenient expression for the LΣf -error term of a homotopy
fiber sequence (Theorem 6.4). Our main proof is completed in Section 9 after
we have determined the nullifications of nilpotent Postnikov spaces and of other
nilpotent “generalized polyGEMs” (see Theorems 7.5 and 8.8).

In Section 10, we develop general homological consequences of the preced-
ing work and show that K(n)�-localizations, and other E�-localizations, “almost”
preserve homotopy fiber sequences of H-spaces (Theorem 10.10). This also ap-
plies to various cohomological localizations including those with respect to stable
cohomotopy theory (see 2.6 and 10.12). Finally, in Section 11, we introduce the
notion of a virtual E�-equivalence, defined as a map of spaces �: X ! Y such
that ��: �i(ΩX)E ! �i(ΩY)E is an isomorphism for all sufficiently large i. We
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find that the virtual E�-equivalences are much more “durable” than ordinary
E�-equivalences. For instance, in a map of fiber sequences, if any two of the
component maps is a virtual E�-equivalence, then so is the third (Theorem 11.4).
We show that each E�-equivalence of H-spaces is a virtual E�-equivalence (The-
orem 11.3), and each virtual E�-equivalence of spaces induces an E�-equivalence
of sufficiently highly connected covers (Theorem 11.7). We deduce that if an
H-space is E�-acyclic, then so are all of its connected covers and all of its Post-
nikov sections (Theorem 11.9). Turning to K-theory, we show that the virtual
K=p�-equivalences (or virtual K(1)�-equivalences) of spaces are the same as the
v�1

1 ��(�; Z=p)-equivalences (Theorem 11.11), and conclude, for instance, that
each K=p�-equivalence of H-spaces is a v�1

1 ��(�; Z=p)-equivalence (Corollary
11.12). This generalizes a result of Thompson ([Th], [Bo 7, 11.9]), and is needed
for the author’s subsequent work on K=p�-localizations and v1-periodizations. We
also obtain some results on virtual K(n)�-equivalences of spaces for n > 1. We
show that if a map of spaces is a vj-periodic homotopy equivalence for 1 � j � n,
then it is a virtual K(n)�-equivalence (Theorem 11.13). This implies, for exam-
ple, that if X is a space with trivial vj-periodic homotopy groups for 1 � j � n,
then the Postnikov map X ! Pn+1X is a K(n)�-equivalence (Corollary 11.14).
This should help to make K(n)�X more accessible, and extends a similar result
of Hopkins, Ravenel, and Wilson ([HRW]) for infinite loop spaces.

This paper generalizes the fundamental results of Dror Farjoun and Smith
([DFS]), and we have benefited from their ideas.

We work simplicially so that “space” means “simplicial set.” However, to
make the presentation more accessible, we frequently work in the pointed homo-
topy category Ho�.

2. The basic homotopical localization theory. In this section, we recall
the basic theory of f -localizations of spaces and discuss some general examples.
We refer the reader to [Bo 8], [Ca 1], and [DF 3] for additional background
information and results. A thorough account of the basic theory is being developed
by Hirschhorn ([Hi]) in a general model category setting.

For pointed spaces X, Y 2 Ho�, let map�(X, Y) 2 Ho� and map(X, Y) 2 Ho�
respectively denote the pointed and unpointed mapping spaces from X to a fibrant
representative for Y , and recall that �0map�(X, Y) �= [X, Y]. For a map f : A! B
and space Y in Ho�, we consider the orthogonality conditions:

(H1) f �: [B, Y] �= [A, Y];

(H2) f �: map�(B, Y) ' map�(A, Y);

(H3) f �: map(B, Y) ' map(A, Y).

It is easy to show

LEMMA 2.1. (H3)) (H2)) (H1) and, when Y is connected, (H2), (H3).
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We adopt (H3) as our main orthogonality condition in Ho�. For a fixed map
f : A ! B in Ho�, a space Y 2 Ho� is called f -local when f �: map(B, Y) �=
map(A, Y); a map u: X ! X0 in Ho� is called an f -local equivalence when
u�: map(X0, Y) �= map(X, Y) for each f -local space Y; and a map u: X ! X0 is
called an f -localization when it is an f -local equivalence to an f -local space X0.
By Lemma 2.1, an f -localization u: X ! X0 is an initial example of a map from
X to an f -local space in Ho�, and is a terminal example of an f -local equivalence
out of X in Ho�. Thus the f -localizations are unique up to equivalence in Ho�,
and by [Bo 3, Cor. 7.2] or [DF 1], we have

THEOREM 2.2. For each map f : A ! B and space X in Ho�, there exists an
f -localization of X.

Hence, there is an idempotent functor Lf : Ho� ! Ho� giving a natural f -
localization u: X ! Lf X for X 2 Ho�.

2.3. The functor Lf on spaces. The idempotent functor Lf : Ho� ! Ho�
is actually induced from a coaugmented functor Lf : S ! S on the category
S of spaces (i.e. simplicial sets). Roughly speaking, for X 2 S , Lf X may be
constructed from X by expressing f as an inclusion of spaces A � B and taking
all possible pushouts from the pairs (∆n, ∆̇n) � (B, A) with n � 0 and the pairs
(∆n, ∆n

k) with 0 � k � n > 0, where ∆n denotes the standard n-simplex with
boundary ∆̇n and kth horn ∆n

k . This construction is continued over an appropriate
section of ordinals to achieve the extension property with respect to the above
pairs and to create Lf X as a colimit. More elaborate versions of this construction
in [Bo 5], [Bo 7], and [DF 3] produce a functor Lf which is simplicial in the
sense of Quillen ([Qu, II.1]) with Lf (�) = � for a point �.

We refer the reader to Casacuberta and Peschke ([CP]) for an analysis of the
f -localization in the illuminating basic case where f is a self-map of S1; we now
turn to some other important general examples.

2.4. Nullifications. For a space A 2 Ho�, the localization with respect to the
trivial map f : A! � is called the A-nullification or A-periodization; the functor
Lf is denoted by PA; the f -local spaces are called A-null or A-periodic; and the
f -local equivalences are called A-periodic equivalences or PA-equivalences. For
connected spaces A, Y 2 Ho�, note that Y is A-null if and only if map�(A, Y) �= �.
Thus the Sn+1-nullification functor on Ho� is equivalent to the nth Postnikov
functor. Many other interesting nullifications are discussed in [Bo 7], [Bo 8], [Ca
2], [Ch], [DF 3], and [Ne].

2.5. Homological localizations. For a spectrum E, the E�-localization func-
tor ( )E: Ho� ! Ho� of [Bo 2] may be viewed as an f -localization for a huge
E�-equivalence f . For instance, we may use the map f : _�A� ! _�B� obtained
by wedging representatives fA� � B�g� of all isomorphism classes of inclusions
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of pointed spaces with E�(B�, A�) = 0 and with cardinality #B� � #E�(pt) where
#B� denotes the number of nondegenerate simplices of B�. This follows since
the f -localization map u: X ! Lf X is an E�-equivalence by its construction and
since Lf X is E�-local by [Bo 2, Lemma 11.3].

2.6. Cohomological localizations. Let E be a spectrum whose mod p ho-
motopy groups ��(E=p) are all finite for each prime p. Then, following [Bo 4] or
[Ho] as explained below, there exists a spectrum G such that the G�-equivalences
are the same as the E�-equivalences for spectra and hence for spaces. Thus by
2.5, there is an E�-localization functor of the form Lf for spaces. To construct
G, recall that the (E=p)�-equivalences are the same as the c(E=p)�-equivalences
where c(E=p) is the Brown-Comenetz ([BC]) dual of E=p. Thus when the groups
��E are all Ext-complete (i.e. when Hom(Q,��E) = 0 = Ext(Q,��E)), we may
use G = _pc(E=p); and when the groups ��E are not all Ext-complete, we may
use G = HQ _ _pc(E=p) where HQ is the rational Eilenberg-MacLane spectrum.
We do not know whether localizations of spaces exist with respect to arbitrary
cohomology theories, although they do for all ordinary cohomology theories by
[Bo 1].

3. Localizations with respect to classes of maps. The notion of an f -
localization of spaces for a single map f can obviously be extended to that of an
F-localization for a class F = ff�: A� ! B�g� of maps in Ho�. In particular,
a space Y 2 Ho� is called F-local when f ��: map(B�, Y) �= map(A�, Y) for
each f� 2 F ; a map u: X ! X0 in Ho� is called an F-local equivalence when
u�: map(X0, Y) �= map(X, Y) for each F-local space Y; and a map u: X ! X0 is
called an F-localization when it is an F-local equivalence to an F-local space
X0. Let L(F) denote the class of F-local spaces in Ho�. When F = ff�g� is a
(small) set of maps in Ho�, there is a single map f = _�f� such that L( f ) = L(F),
and the f -localizations in Ho� immediately give F-localizations. In this section,
we develop machinery showing that many large classes of maps F = ff�g� can
similarly be replaced by single maps f with L( f ) = L(F). This will generalize
the prototypical example of E�-localizations (2.5) where the class of all E�-
equivalences is replaced by a single huge E�-equivalence. Our main applications
of this machinery will be given in Section 4. We remark that in every case where
we are able to show the existence of F-localizations in Ho�, we are also able to
replace F by a single map f . We shall need

3.1. Coherent functors. Let Sets� be the category of pointed sets; let S�
be the category of pointed spaces (i.e. pointed simplicial sets); and let

!

S�= S2
�

be the usual category of maps in S�. For such a map f : A ! B, write #f for
the number of nondegenerate simplices of A _ B, and call f 0: A0 ! B0 a submap
of f (denoted by f 0 � f ) when A0 � A, B0 � B, and f 0 = f j A0. Call a functor
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T:
!

S�! Sets� b-coherent for an infinite cardinal number b when each f 2
!

S�
has T( f ) = colim� T(�) for � ranging over the submaps of f with #� � b. This

is equivalent to saying that T preserves colimits of diagrams in
!

S indexed by
directed sets having upper bounds for their subsets of cardinality� b. Note that if

T is b-coherent, then it is b0-coherent for all b0 � b. Call a functor T:
!

S�! Sets�
coherent when it is b-coherent for sufficiently large b. For such a T , call a map

f 2
!

S� T-acyclic when T( f ) = �. For instance, for a spectrum E, the relative

homology functor E�:
!

S�! Sets� is coherent and the E�-acyclic maps are the
E�-equivalences.

LEMMA 3.2. If T:
!

S�! Sets� is a coherent functor, then there exists an infinite

cardinal number d such that for each T-acyclic g 2
!

S� and each � � g with

#� � 2d, there exists a T-acyclic � 2
!

S� with � � � � g and #� � 2d.

Proof. Assume that T is b-coherent and let d be a cardinal such that b � d

and #T(�) � d for all � 2
!

S� with #� � b. Then for each f 2
!

S� with
#f � 2d, there are at most (2d)b = 2d submaps � � f with #� � b, and hence

#T( f ) � d � 2d = 2d. Given a T-acyclic map g 2
!

S� and � � g with #� � 2d,
each element x 2 T(�) maps trivially to T(�0) for some �0 � g with � � �0 and
#�0 � 2d. Hence, there is a transfinite increasing sequence

� = �0 � �1 � � � � � �� � ��+1 � � � � � � = �

of submaps of g indexed through the first ordinal  of cardinality greater than
b, where each T(��) ! T(��+1) is trivial, where #�� � 2d for each � � , and
where �� = [�<��� for each limit ordinal � � . Since T is b-coherent, we
deduce that T(�) = colim�< T(��) = � and take � = � .

For a coherent functor T:
!

S�! Sets�, let A(T) denote the class of all maps
in Ho� represented by T-acyclic maps in S�.

THEOREM 3.3. If T:
!

S�! Sets� is a coherent functor, then L
�
A(T)

�
= L( f )

for some wedge f of T-acyclic maps. Hence, A(T)-localizatons exist in Ho� and
are given by f -localizations.

Proof. Let d be an infinite cardinal given by Lemma 3.2. Then each T-acyclic
map � in S� is the colimit of the directed system of all T-acyclic submaps � � �

with #� � 2d, and thus � is weakly equivalent to a homotopy colimit of these
submaps by [BK, p. 332]. Hence, L(A(T)) = L(W) whereW is a set containing a
representative of each isomorphism class of T-acyclic maps � in S� with #� � 2d.
Thus we may let f be the wedge of all maps in W .
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Note that this theorem gives another proof of the existence of E�-localizations

in Ho� (see 2.5) using the relative homology functor E�:
!

S�! Sets�. Before
turning to our main applications, we must formulate a nonconnected Whitehead
theorem (Lemma 3.4) and derive a partial converse (Theorem 3.5) to the above

theorem. Let Ho
!

S� be the homotopy category obtained by inverting the termwise

weak equivalence in
!

S� (see e.g. [BF, A.3]).

LEMMA 3.4. A map of pointed spaces �: X ! Y is a weak equivalence if and
only if the natural function hn: �0X ! [in,�] is onto for n � 0 where [in,�] consists

of the morphisms from in: ∆̇n [ � � ∆n [ � to � in Ho
!

S�.

Proof. We can assume that � is a fibration of the fibrant spaces. Then the
surjectivity of the functions hn is equivalent to the right lifting property of � with
respect to the map in, and this is equivalent to the weak equivalence property.

THEOREM 3.5. For each map of pointed spaces f : A ! B, there exists a co-

herent functor Tf :
!

S�! Sets� whose acyclic maps are the f -local equivalences
in S�.

Proof. By Lemma 3.4, a map of pointed spaces �: X ! Y is an f -local
equivalence if and only if hn: �0Lf X ! [in, Lf�] is onto for each n � 0. For
an infinite cardinal number b � #f , each space X has Lf X = colim�Lf X� where
fX�g� are the subspaces of X of cardinality � b. Thus a suitable functor Tf is

Tf (�) =
1_
n=0

[in, Lf�]
�

im hn.

Note. The definitions and results of this section have obvious versions for
unpointed spaces with S in place of S�.

4. The lattice of localization functors and closed model category struc-
tures. Using the preceding machinery, we now prove several fundamental re-
sults on homotopical localizations: that the possible localization functors form a
small-complete large lattice; that each localization functor has a best possible ap-
proximation by a nullification; that the nullity classes also form a small-complete
large lattice; and that each localization functor determines a closed model cate-
gory structure for spaces, and thus determines its own brand of homotopy theory.

For a class F of maps in Ho�, we let E(F) denote the class of all F-local
equivalences in Ho�. In general, F � E(F) and
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LEMMA 4.1. If the following conditions are satisfied, then F = E(F):

(i) for each space X 2 Ho�, there exists a map X ! X0 in F such that X0 is
F-local;

(ii) each equivalence in Ho� belongs to F;

(iii) if a composition gf is defined in Ho� and if any two of f , g, gf are in F ,
then so is the third.

Proof. A map f : X ! Y in Ho� induces a map f 0: X0 ! Y 0, where X ! X0

and Y ! Y 0 are F-localizations given by (i). If f 2 E(F), then f 0 is an equivalence
in Ho� and hence f 2 F by (ii) and (iii).

THEOREM 4.2. For a set ff�g� of maps in Ho�, there exists a map f such that
E( f ) =

T
� E( f�).

Proof. By Theorem 3.5, for each �, there is a coherent functor Tf� :
!

S�! Sets�

with A(Tf�) = E( f�). These combine to give a coherent functor T:
!

S�! Sets�
with T(�) = _�Tf�(�), where A(T) =

T
� E( f�). By Theorem 3.3, there is a map

f 2
T
� E( f�) with E( f ) = E

�T
� E( f�)

�
. Since f is an f�-equivalence for each �,

so are the f -localization maps, and E
�T

� E( f�)
�

=
T
� E( f�) by Lemma 4.1.

4.3. The lattice of localization functors. Two maps f and g in Ho� give
equivalent functors Lf ' Lg if and only if L( f ) = L(g). The resulting equivalence
classes h f i form a partially ordered collection Locs, where h f i � hgi means
L( f ) � L(g) or equivalently E( f ) � E(g). Each (small) set fh f�ig� in Locs
has a least upper bound h_�f�i and has a greatest lower bound h f i given by
Theorem 4.2. Hence, Locs is a small-complete large lattice. For h f i � hgi in
Locs, the idempotent localization functors Lf and Lg on Ho� are related by a
canonical transformation Lf ! Lg giving LgLf ' Lg.

A space X is called Lf -acyclic or f -acyclic when Lf X ' �, and X is called
PA-acyclic or killed by A when PAX ' �.

THEOREM 4.4. For each map f in Ho�, there exists a space A( f ) 2 Ho� such
that PA( f ) and Lf have the same acyclic spaces.

Proof. Let Tf :
!

S�! Sets� be a coherent functor whose acyclic maps are the
f -equivalences. Then by Lemma 3.2, there exists an infinite cardinal 2d such that
each f -acyclic space X is the colimit of a directed system of f -acyclic subspaces of
cardinality � 2d. Thus A( f ) exists as a wedge of representatives of isomorphism
classes of pointed f -acyclic spaces of cardinality � 2d.

For example, if Lf is the H�(�; Z)-localization functor, then PA( f ) is the
Quillen plus-construction functor by [Ca 1] or [DF 3].
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4.5. The lattice of nullity classes. Two pointed spaces X, Y 2 Ho� give
equivalent functors PX ' PY if and only if the X-null spaces are the same as
the Y-null spaces. The resulting equivalence classes hXi are called nullity classes
(see [Bo 7, x9], [Bo 8], [Ch], [DF 2], or [DF 3]), and form a partially ordered
collection Nuls, where hXi � hYi means that the Y-null spaces are X-null or
equivalently that X is killed by Y . There is an inclusion Nuls � Locs where
hXi is identified with hX ! �i. For each h f i 2 Locs, Theorem 4.4 gives a
greatest member hA( f )i 2 Nuls with hA( f )i � h f i. Thus each set fhX�ig� in
Nuls has a least upper bound h_�X�i and has a greatest lower bound given
by 4.3 and 4.4. Hence, Nuls is a small-complete large lattice. In addition, Nuls
has the obvious finite smash products. For hVi � hWi in Nuls, the idempotent
nullification functors PV and PW on Ho� are related by a canonical transformation
PV ! PW giving PWPV ' PW .

Finally, we show that each map f in Ho� determines a closed simplicial model
category structure on S�, and thus determines a homotopy theory. Versions of this
result have been obtained by Dror Farjoun ([DF 3]), Hirschhorn ([Hi]), Smith,
the author ([Bo 2, Appendix]), and others. We call a map � in S� an f -trivial
cofibration when it is both an f -local equivalence and a cofibration, and we call
� an f -fibration when it has the right lifting property for the f -trivial cofibrations.

THEOREM 4.6. For each map f in Ho�, the simplicial category S� of pointed
spaces has a closed simplicial model category structure with “weak equivalences,”
“fibrations,” and “cofibrations” respectively defined as f -local equivalences, f -
fibrations, and ordinary cofibrations.

Proof. First note that a map � is an ordinary trivial fibration if and only if
it is both an f -local equivalence and f -fibration, where the “if” part follows by
factoring � as ji for a cofibration i and trivial fibration j, then deducing that i is
an f -trivial cofibration, and concluding that � is a retract of j. The theorem now
follows from Lemma 4.7 below and a direct check of Quillen’s condition SM7(b)
([Qu]).

LEMMA 4.7. Each map �: X ! Y in S� can be factored as � = ji for an f -local
equivalence i and f -fibration j.

Proof. Let Tf :
!

S�! Sets� be a coherent functor whose acyclic maps are
the f -local equivalences. Then by Lemma 3.2, there exists an infinite cardinal
2d such that each f -trivial cofibration � is the colimit of a directed system of
f -trivial subcofibrations of cardinality � 2d, and hence � is equivalent to the
homotopy colimit of these subcofibrations. Consequently, an ordinary fibration �

of fibrant spaces is an f -fibration if and only if � has the right lifting property
for the f -trivial cofibrations of cordinality � 2d. Thus, by a transfinite inductive
construction, we may factor the composite of �: X ! Y with e: Y � Ex1Y to
give e� = j0i0 for an f -local equivalence i0 and f -fibration j0, where e is Kan’s
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weak equivalence to a fibrant space Ex1Y . A pullback now gives the required
factorization of �.

Note. Theorem 4.6 and its proof can immediately be modified to show that
a map f actually determines a closed simplicial model category structure on the
category S of unpointed spaces.

5. Acyclic spaces and their loop spaces. We now let f : A! B be a fixed
map in Ho� and consider the f -localization u: X ! Lf X of a space X. The reader
should keep in mind the case of a (co)homological localization (see 2.5 and 2.6)
which will be studied more fully in Sections 10 and 11. We say that a space X
is f -acyclic when Lf X ' �, or equivalently by Theorem 4.4 when PA( f )X ' �.

The f -acyclic pointed spaces are closed under homotopy colimits and under
fiber extensions, but are not closed under most homotopy inverse limits. However,
the following key theorem will show that the loopspace of an f -acyclic H-space
is “almost” f -acyclic. A space M 2 Ho� is called a GEM when M is connected

and M '
1Q
n=1

K(�nM, n) with �1M abelian.

THEOREM 5.1. If Y 2 Ho� is a connected f -acyclic H-space, then LΣf Y is a
GEM, as are the components of Lf ΩY.

This will be proved in 5.6 after some preliminaries, and will imply the related
results of [Bo 7], [Bo 8], and [DF 5]. For each space Y 2 Ho�, the loop space
ΩLΣf Y is f -local, and thus Ωu: ΩY ! ΩLΣf Y induces a map �: Lf ΩY ! ΩLΣf Y .
A fundamental result of Dror Farjoun ([DF 3]) and the author ([Bo 7]) is

THEOREM 5.2. If Y 2 Ho� is a connected space, then �: Lf ΩY ' ΩLΣf Y.

Thus, in Theorem 5.1, it suffices to show that LΣf Y is a GEM. Our main tool
from [Bo 7, Cor. 6.9] will be

KEY LEMMA 5.3. For connected spaces X, Y 2 Ho�, if map�(X, Y) is homo-
topically discrete and if �1Y acts trivially on [X, Y], then the inclusion X � SP1X
induces an equivalence map�(SP1X, Y) ' map�(X, Y).

The infinite symmetric product SP1X is a GEM with ��SP1X �= eH�(X; Z)
by Dold-Thom, and we may obtain other GEMs by

LEMMA 5.4. If M 2 Ho� is a GEM, then so are its homotopy retracts.

Proof. For a homotopy retraction r: M ! N with homotopy fiber i: F ! M,
choose a map h: M !

Q
n K(�nF, n) such that h�i�: ��F �= ��F, and deduce that

F is a GEM with M ' F � N. Then reverse the roles of F and N to conclude
that N is a GEM.
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To show that map�(X, Y) is homotopically discrete, it is generally not suffi-
cient to check that its base component is contractible (see e.g. [DM]). However,
this difficulty disappears when Y is an H-space.

LEMMA 5.5. For connected spaces X, Y 2 Ho�, if map�(X, ΩY) ' �, and if Y
is an H-space, then map�(X, Y) is homotopically discrete and �1Y acts trivially on
[X, Y].

Proof. Since Y is an H-space, there is a Hopf fibration Y ! Y�Y ! ΣY whose
fiber inclusion is nullhomotopic (see e.g. [St, p. 5]). Hence, �1map�(X, ΣY) acts
transitively on the components of map�(X, Y), and they must all be contractible
since the base component is.

5.6. Proof of Theorem 5.1. LΣf Y is an H-space since LΣf preserves products
in Ho�, and LΣf Y is Lf -acyclic since Lf LΣf Y ' Lf Y ' �. Thus map�(LΣf Y , ΩLΣf Y)
' � since ΩLΣf Y ' Lf ΩY is f -local, and hence LΣf Y is a retract of SP1LΣf Y by
Lemmas 5.5 and 5.3. Now LΣFY is a GEM by Lemma 5.4.

The GEMs in Theorem 5.1 have a special “transitory” property which we
now introduce. Recall that an abelian group G is called Ext-complete when
Hom(Q, G) = 0 = Ext(Q, G), and that such a group decomposes as

G �= Ext(Q=Z, G) �=
Y

p

Ext(Zp1 , G)

where p ranges over all primes ([BK]). For a set J of primes, G is called Ext-J-
complete when it is Ext-complete with Ext(Zp1 , G) = 0 for each p =2 J.

LEMMA 5.7. For abelian groups G and H, the condition Hom(G, H) = 0 =
Ext(G, H) holds if and only if there exist complementary sets of primes J and J 0

such that: (i) G is J0-torsion and H is J-local; or (ii) G is J0-local and H is Ext-J-
complete.

Proof. This follows by [Bo 7, 5.5] and [Bo 1, 2.3].

COROLLARY 5.8. For abelian groups G and H, if Hom(G, H) = 0 = Ext(G, H),
then K(H, n) is K(G, m)-null for all m, n � 1. Conversely, if K(H, n) is K(G, m)-null
for some m, n � 1 with n � m + 1, then Hom(G, H) = 0 = Ext(G, H).

Proof. By 5.7 and [Bo 2, 4.3], there exists a set J of primes such that: (i)
K(G, m) is HZ(J)�-acyclic and K(H, n) is HZ(J)�-local; or (ii) K(G, m) is
H(
L

p2J Z=p)�-acyclic and K(H, n) is H(
L

p2J Z=p)�-local. Hence, K(H, n) is
K(G, n)-null by [Bo 2, 12.2]. The converse follows since K(H, m + 1) must be
K(G, m)-null.

A graded abelian group G� will be called transitory when Hom(Gm, Gn) = 0
for n � m + 1 and Ext(Gm, Gn) = 0 for n � m + 2.
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PROPOSITION 5.9. For a GEM M, the homotopy ��M is transitory if and only if
map�(M, ΩM) ' �.

Proof. This follows from Corollary 5.8 since map�
�
K(�mM, m), K(�nM, n)

�
'

� for all m > n if and only if map�(M, ΩM) ' �.

A GEM M will be called transitory when ��M is transitory

Remark 5.10. By Lemma 5.7 and [BK], if M is a transitory GEM, then the
homotopy groups ��Fp1M of its p-completion are trivial except in two successive
dimensions mp and mp +1 with �mp+1Fp1M torsion-free. In general, we may view
the transitory GEMs as “small abelian spaces,” using the language of [DFS].

We now obtain a stronger version of Theorem 5.1.

THEOREM 5.11. If Y 2 Ho� is a connected f -acyclic H-space, then LΣf Y is a
transitory GEM, as are the components of Lf ΩY.

Proof. This follows for LΣf Y by 5.1 and 5.6, and then follows for Lf ΩY by
5.2 and 5.9.

A space X 2 Ho� is called simple when X is connected with abelian �1X
acting trivially on �nX for n � 2. We need

PROPOSITION 5.12. If X 2 Ho� is a simple space with P2X a GEM and with
��X transitory, then X is a GEM.

Proof. Assume inductively that the nth Postnikov section PnX is a GEM where
n � 2. Then eH�(Pn�1X;�n+1X) = 0 by Corollary 5.8 and eHi�K(�nX, n);�n+1X

�
=

0 for i � n and i = n + 2, where the vanishing of

H4�K(�2X, 2);�3X
� �= Hom(Γ�2X,�3X)

follows using the exact sequence

�2X 
 �2X �! Γ�2X �! �2X 
 Z=2 �! 0.

Since H1(Pn�1X;�n+1X) = 0, the Serre spectral sequence now shows that
Hn+2(PnX;�n+1X) = 0, and thus Pn+1X is a GEM. Hence, X is a GEM by in-
duction.

This leads to an easy proof of the following slightly enhanced theorem of
Dror Farjoun and Smith ([DFS]).

THEOREM 5.13. If X 2 Ho� is a space with LΣf X ' �, then LΣ2f X is a transitory
GEM.
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Proof. Since LΣf X ' �, X must be simply connected with Lf ΩX ' � by The-
orem 5.2. Hence, LΣf ΩX is a transitory GEM by Theorem 5.11, and its classifying
space LΣ2f X is also a transitory GEM by Proposition 5.12.

Finally, for later use, we need

PROPOSITION 5.14. If F is the homotopy fiber of a map of simply connected
spaces X ! Y and if ��F is transitory, then F is a transitory GEM.

Proof. By Proposition 5.12, it suffices to show P2F is a GEM. Let Y ! Y
be a map such that: �iY �= �iY for i � 2; �3Y is the cokernel of �3X ! �3Y;
and �nY = 0 for n > 3. Construct a fiber sequence

P2F ! K(�2X, 2)! Y

by taking a Moore-Postnikov section of X ! Y . The k-invariant of Y corresponds
to a homomorphism �: Γ�2Y ! �3Y vanishing on the image of Γ�2X ! Γ�2Y .
Using the exact sequence

�2Y 
 �1F �! Γ�2Y=Γ�2X �! Γ�1F �! 0,

we find that � = 0 since �3Y � �2F and Hom(�1F,�2F) = 0. Hence Y and P2F
are GEMs.

6. General fibration theorems. For a map f : A ! B of pointed spaces,
we shall show in Section 9 that the functors LΣf and Lf Ω “almost” preserve
homotopy fiber sequences. In preparation, we now develop a series of general
fibration theorems.

THEOREM 6.1. For a homotopy fiber sequence F ! X ! B of pointed con-
nected spaces, there is a natural homotopy fiber sequence LΣf F ! LΣf X ! Y 0 and
a natural diagram

F ���! X ���! Y
??yu

??yu
??yu0

LΣf F ���! LΣf X ���! Y 0

such that u0: Y �! Y 0 is a Σf -local equivalence and Y 0 is Σ2f -local.

The proof is in x6.8. We view u0 as a “mixture” of the Σf -localization and
the Σ2f -localization of Y . Generalizing a result of Dror Farjoun and Smith ([DFS,
Theorem A]), we now obtain

THEOREM 6.2. For a homotopy fiber sequence F ! X ! Y of pointed con-
nected spaces, if X ! Y is a Σf -local equivalence, then LΣf F is an f -acyclic
transitory GEM.
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Proof. In the homotopy fiber sequence LΣf F ! LΣf X ! Y 0, the first map is
nullhomotopic since the second composes with Y 0 ! LΣf Y 0 ' LΣf Y to give an
equivalence. Thus LΣf F is an H-space by a theorem of Sugawara (since LΣf F is
a homotopy retract of ΩY 0), and is f -acyclic by [Bo 7, 4.8(ii) and 4.12] since
X ! Y is a Σf -local equivalence. Hence, LΣf F is a transitory GEM by Theorem
5.11.

The above theorem may be viewed as a partial converse to the following
result of [Bo 7, 4.8 and 4.12] or [DF 3].

THEOREM 6.3. For a homotopy fiber sequence F ! X ! Y of pointed con-
nected spaces, if F is f -acyclic, then X ! Y is an f -local equivalence.

For a homotopy fiber sequence F ! X ! Y and localization functor L, the
homotopy fiber of the map

LF ! fiber (LX ! LY)

is called the L-error term. It measures the failure of LF ! LX ! LY to be a
homotopy fiber sequence. Note that the Lf -error term of ΩF ! ΩX ! ΩY is
the loop space of the LΣf -error term of F ! X ! Y . The following theorem will
help to make these LΣf -error terms accessible.

THEOREM 6.4. For a homotopy fiber sequence F ! X ! Y of pointed con-
nected spaces, the LΣf -error term is naturally equivalent to Ω fiber (LΣ2f Y

0 !

LΣf Y 0), where Y 0 is given by Theorem 6.1.

Proof. This follows by taking vertical fibers in the diagram of homotopy fiber
sequences

LΣf F ���! LΣf X ���! Y 0 ' LΣ2f Y
0

??y
??y

??y
fiber ���! LΣf X ���! LΣf Y ' LΣf Y 0.

We now turn to the proof of Theorem 6.1, and start by recalling

THEOREM 6.5. For a homotopy fiber sequence F ! X ! Y of pointed spaces
with X and Y connected, there is a natural homotopy fiber sequence Lf F ! X !
LΣf Y and a natural diagram

F ���! X ���! Y
??yu

??yu

??yu

Lf F ���! X ���! LΣf Y

such that u: X ! X is an f -local equivalence and X is Σf -local.
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Proof. This follows by [Bo 7, 4.1 and 4.12] using ΩX ' fiber (Lf ΩY ! Lf F)
to show that X is Σf -local.

We view u as a “mixture” of the f -localization and the Σf -localization. It
takes the latter form in the following case.

LEMMA 6.6. If F ! X is nullhomotopic in the above homotopy fiber sequence,
then u: LΣf X ' X.

Proof. In the diagram of homotopy fiber sequences

ΩX ���! ΩY ���! F
??yΩu

??yu
??yu

ΩX ���! Lf ΩY ���! Lf F,

it suffices to show that Ωu is an f -local equivalence. This follows since Lf pre-
serves products and since the principal fiber sequence ΩX ! ΩY ! F is equiva-
lent to a projection sequence ΩX ! ΩX�F ! F because it has a cross-section.

For a fibration X ! Y , we let Pow(X=Y) denote the simplicial space (i.e. bisim-
plicial set) with

Pow(X=Y)m� = X �Y � � � �Y X

given by the fiber product of m + 1 copies of X over Y , and with horizontal sim-
plicial operators given by the usual formulae ([Ma, 1.4]). Applying the diagonal
functor diag(�) to the natural augmentation map Pow(X=Y)0� ! Y , we obtain

LEMMA 6.7. For a fibration X ! Y, there is a natural weak equivalence
diag Pow (X=Y) ' Y.

Proof. This follows by [BK, p. 335] or [BF, B.2] since the augmentation map
Pow(X=Y)�n ! Yn is a weak equivalence in each vertical dimension n.

6.8. Proof of Theorem 6.1. For the homotopy fiber sequence F ! X ! Y ,
there is a natural square

Pow(PF=F) ���! Pow(X=X)
??y

??y
Pow(PF=�) ���! Pow(X=Y)

of pointed simplicial spaces, which restricts to a homotopy fiber square in each
horizontal dimension m, where PF ! F is the path fibration on F. Since
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Pow(PF=�) is weakly equivalent to a simplicial point, we may identify Pow(PF=F)
with the homotopy fiber of Pow(X=X)! Pow(X=Y) and obtain a diagram of ho-
motopy fiber sequences

diag Pow(PF=F) ���! diag Pow(X=X) ���! diag Pow(X=Y)
??y�

??y�
??y

diag Lf Pow(PF=F) ���! diag Pow(X=X) ���! diagLΣf Pow(X=Y)

by Theorem 6.5 and [BF, B.4]. The top sequence is weakly equivalent to F !
X ! Y by Lemma 6.7, and � is equivalent to u: X ! LΣf X by Lemma 6.7
since Pow(X=X) is constant at X. We claim that Pow(PF=F) is equivalent to the
pointed simplicial space ΩbisF with

(ΩbisF)m� = map�(∆
m=sk0∆m, F)

for m � 0 as in [Bo 7, 3.3]. This follows since the weak equivalences of pointed
cosimplicial spaces

fC sk0∆m=sk0∆mgm  � f∆m [ C sk0∆mgm �! f∆m=sk0∆mgm

are carried by map�(�, F) to weak equivalences relating Pow(PF=F) and ΩbisF,
where C is the unreduced cone functor. Since diagΩbisF ! diagLf ΩbisF is weakly
equivalent to u: F ! LΣf F by [Bo 7, 3.4 and 3.6], so is � in our diagram. We now
let u0: Y ! Y 0 correspond to . It is an LΣf -equivalence since it is a homotopy
colimit of LΣf -equivalences by [BK, p. 335]. Finally, Y 0 is Σ2f -local since ΩY 0 '
fiber (LΣf F ! LΣf X).

7. Nullifications with respect to Moore spaces. Before continuing our
study of fibration theorems for LΣf , we must determine the A-nullification of
a nilpotent space X in two important cases: (i) when A is a wedge of Moore
spaces; and (ii) when X is a Postnikov space or other “generalized polyGEM.”
These nullifications act very much like classical localizations and completions,
transforming homotopy groups in an elementary arithmetic way. Our results ex-
tend those of [Bo 7], [Bo 8], and [Ca 2].

7.1. Nullifications of groups. A group M is called G-null or G-reduced
for a group G when Hom(G, M) = f1g. As explained in [Bo 7, 5.1] and more
generally in [Ca 2], each group M has a maximal G-null quotient group M==G
called the G-nullification or G-reduction of M. It is the initial example of a
homomorphism from M to a G-null group. The kernel of the quotient map M !
M==G is denoted by TGM and called the G-radical of M. Its G-nullification
TGM==G must be trivial, since the G-null groups are closed under extensions.
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The following general examples are easily verified:
(i) For a set I of primes, if G is an I-torsion abelian group with G=pG 6= 0

for each p 2 I, and if M is a nilpotent group, then M==G is the image of the
localization M ! M[I�1], and IGM is the maximal I-torsion subgroup of M.

(ii) For a set J of primes, if G is a uniquely J-divisible abelian group having
Z[J�1] as a direct summand, and if M is a nilpotent group, then M==G is the
image of the Ext-J-completion M !

Q
p2J Ext(Zp1 , G), and TGM is the maximal

J-divisible subgroup of M (see [BK, p. 177]).
The next three propositions will help to reduce the nullification theory of

nilpotent groups to that of abelian groups. Let abG denote the abelianization
of G.

PROPOSITION 7.2. For a group G and nilpotent group M with center Z1M, the
following are equivalent:

(i) M is G-null

(ii) Z1M is G-null;

(iii) M is abG-null.

Proof. Let fZnMgn�1 be the upper central series of M. By [Wa, 2.1],
Hom(Zn+1M=ZnM, Z1M) separates points of Zn+1M=ZnM for n � 1, and thus
Zn+1M=ZnM embeds as a subgroup of a product of copies of Z1M. Hence, M is
G-null if and only if Z1M is G-null, and the result follows since Z1G is abelian.

This implies

PROPOSITION 7.3. For a group G and nilpotent group M, M==G equals M==abG.

Let fΓsMgs�1 denote the lower central series of M.

PROPOSITION 7.4. For a group G and nilpotent group M, the following are
equivalent:

(i) M==G = 0;

(ii) (abM)==G = 0;

(iii) (ΓsM=Γs+1M)==G = 0 for s � 1.

Proof. The implications (iii)) (i)) (ii) are straightforward, and (ii)) (iii)
follows using the natural Lie bracket epimorphism

abM 
 � � � 
 abM �! ΓsM=Γs+1M.

By a Moore space M(G, n) 2 Ho� for G abelian and n � 1, we mean a
space equivalent to a pointed CW-complex whose only nonbasepoint cells are
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in dimensions n and n + 1, and whose only reduced integral homology is G in
dimension n. Thus we allow M(G, 1) to range over many different homotopy
types for a given abelian group G. For a sequence fGigi�1 of abelian groups,
let MG = _1i=1M(Gi, i) be a corresponding wedge of Moore spaces; let MG(n) =
_n

i=1M(Gi, i) be the subwedge for 0 � n < 1; and let Jn denote the set of all
primes p such that G1 � � � � �Gn is uniquely p-divisible. Generalizing results of
[Bo 7], [Bo 8], and [Ca 2], we have

THEOREM 7.5. For a nilpotent space Y 2 Ho�, the nullification PMGY is nilpo-
tent with natural isomorphism

�n+1PMGY �= (�n+1PMG(n)Y)==(G1 � � � � � Gn+1)

for n � 0. Moreover, for i � n + 1, there is a natural isomorphism

�iPMG(n)Y �= �iY 
 Z(Jn)

when G1, : : : , Gn are all torsion, and otherwise there is a splittable natural short
exact sequence

0 �!
Y

p2Jn

Ext(Zp1 ,�iY) �! �iPMG(n)Y �!
Y

p2Jn

Hom(Zp1 ,�i�1Y) �! 0.

The proof will depend on the following fundamental result of Dror Farjoun
which may be deduced from Theorem 6.5.

THEOREM 7.6. For A 2 Ho�, PA preserves each homotopy fiber sequence
F ! X ! Y of pointed spaces such that Y is A-null and connected.

7.7. Proof of Theorem 7.5. To determine PM(G,1)Y , we use the approach of
Casacuberta ([Ca 2]). Let eY be the homotopy fiber of the Postnikov map Y !
K(�1Y==G1, 1), and apply Proposition 7.2 and Theorem 7.6 to give a homotopy
fiber sequence

PM(G1,1)
eY �! PM(G1,1)Y �! K(�1Y==G1, 1).

Then �1PM(G1,1)eY = (�1eY)==G1 = � by Proposition 7.3, and PM(G1,1)eY is the HR�-
localization of eY by Lemma 5.7 and [Bo 2, 4.3], where R = Z(J1) for G1 torsion
and R =

L
p2J1

Z=p otherwise. Thus, �1PM(G1,1)Y �= �1Y==G1 and �iPM(G1,1)Y is
given by the arithmetic expressions of Theorem 7.5 for i � 2. Hence, �iPM(G1,1)Y
is a nilpotent �1PM(G1,1)Y-module, and PM(G1,1)Y is nilpotent. The theorem now
follows as in [Bo 7, x5] or [Bo 8, x4].
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We easily deduce

COROLLARY 7.8. A nilpotent space Y 2 Ho� is MG-null if and only if K(Z1�1Y , 1)
and K(�nY , n) are MG-null for each n � 2.

A space A is said to kill a space X when PAX ' �.

COROLLARY 7.9. For a nilpotent space Y 2 Ho�, MG kills Y if and only if it
kills K(Γs�1Y=Γs+1�1Y , 1) and K(�nY , n) for each s � 1 and n � 2.

Proof. By Theorem 7.5, MG kills Y if and only if it kills K(�nY , n) for
each n � 1. Given that MG kills K(�1Y , 1), let Γt�1Y be the smallest nontriv-
ial term in the lower central series of �1Y . Then Hom(Zp1 , Γt�1Y) is a direct
summand of Hom(Zp1 ,�1Y) for each prime p, since it is Ext-complete and the
quotient is contained in the torsion-free group Hom(Zp1 ,�1Y=Γt�1Y). Thus MG
kills K(Γt�1Y , 1) by Proposition 7.4 and Theorem 7.5. Hence, MG kills each
K(Γs�1Y=Γs+1�1Y , 1) by an inductive argument using Theorem 6.3, and the re-
sult follows easily.

Note 7.10. We cannot replace “s � 1” by “s = 1” in the above result. For in-
stance, M(Q, 1) kills K(abN, 1) but does not kill K(N, 1), where N is the nilpotent
group of [Wa, 5.2] with abN = Q� Q, Γ2N = Zp1 , and Γ3N = 0.

8. Generalized polyGEMs and their nullifications. In [DFS], Dror Far-
joun and Smith introduced the notion of a polyGEM to describe the LΣ2f -error
terms of fiber sequences. Roughly speaking, a polyGEM is built from GEMs in
the same way as a Postnikov section is built from Eilenberg-MacLane spaces.
We now introduce a class of generalized polyGEMs and determine their nullifica-
tions. This will be used in our study of LΣf -error terms and may be of independent
interest. Our results extend those of [Bo 8, x4].

Definition 8.1. A space X 2 Ho� is Z=p-Postnikov for a prime p, when �iX
is uniquely p-divisible for sufficiently large i. A space X 2 Ho� is a generalized
polyGEM when PΣK(Z=p,n)X is Z=p-Postnikov for each n � 1 and prime p.

PROPOSITION 8.2. If a space X is a GEM, then it is a generalized polyGEM.

Proof. This follows since PΣK(Z=p,n)X is a ΣK(Z=p, n)-null GEM by [Bo 8,
2.11].

PROPOSITION 8.3. In a homotopy fiber sequence F ! X ! Y of pointed con-
nected spaces, if any two of the spaces are generalized polyGEMs, then so is the
third.

Proof. This follows since the PΣK(Z=p,n)-error term of the fiber sequence is of
the form K(G, n) by [Bo 7, 8.1].

The following four propositions on generalized polyGEMs now follow easily.
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PROPOSITION 8.4. The generalized polyGEMs are closed under homotopy re-
traction.

PROPOSITION 8.5. A connected Postnikov space is a generalized polyGEM.

PROPOSITION 8.6. For i � 0, a connected space X 2 Ho� is a generalized
polyGEM if and only if its i-connected section Xhii is a generalized polyGEM.

For a nilpotent space Y 2 Ho�, the homotopy fiber of the localization map
Y ! Y[1=p] is called the p-torsion component of Y and denoted by �pY .

PROPOSITION 8.7. For i � 1, a connected space X 2 Ho� is a generalized
polyGEM if and only if �p(Xhii) is a generalized polyGEM for each prime p.

We now determine the A-nullification of a nilpotent generalized polyGEM
X, for an arbitrary connected space A. Let MHA = _1i=1M(HiA, i) be a corre-
sponding wedge of Moore spaces where M(H1A, 1) is chosen so that there is
an H1-equivalence M(H1A, 1) ! A mapping �1 surjectively. Then MHA kills
A, since it successively kills the homology groups of A. Thus there is a natural
transformation PA ! PMHA by 4.5.

THEOREM 8.8. For a connected space A and a nilpotent generalized polyGEM
X, there is a natural equivalence PAX ' PMHAX, and PAX is a nilpotent generalized
polyGEM.

The proof is in x8.16. This theorem shows that ��PAX �= ��PMHAX is given by
the arithmetic expressions of Theorem 7.5. Moreover, it combines with Corollaries
7.8 and 7.9 to give

COROLLARY 8.9. A nilpotent generalized polyGEM X is A-null for a space A if
and only if K(Z1�1X, 1) and K(�nX, n) are A-null for n � 2.

COROLLARY 8.10. A space A kills a nilpotent generalized polyGEM X if and
only if A kills K(Γs�1X=Γs+1�1X, 1) and K(�nX, n) for each s � 1 and n � 2.

By Theorem 4.4, this implies

COROLLARY 8.11. A nilpotent generalized polyGEM X is f -acyclic for a map
f : A! B if and only if K(Γs�1X=Γs+1�1X, 1) and K(�nX, n) are f -acyclic for each
s � 1 and n � 2.

For instance, this shows that a nilpotent Postnikov space X is E�-acyclic
for a generalized homology theory E� if and only if K(Γs�1X=Γs+1�1X, 1) and
K(�nX, 1) are E�-acyclic for each s � 1 and n � 2.

To prove Theorem 8.8, we need four lemmas.

LEMMA 8.12. If X is a nilpotent generalized polyGEM, then so is PMHAX.
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Proof. Since PMHAX is nilpotent by Theorem 7.5, it suffices by Proposi-
tion 8.7 to show that �pPMHAXh1i is a generalized polyGEM for each prime
p. If eH�A is uniquely p-divisible, then the nullification map X ! PMHAX is
an HZ=p�-equivalence of nilpotent spaces and consequently induces an isomor-
phism �i�pXh1i �= �i�pPMHAXh1i for i � 2. In this case, �pPMHAXh1i must be
a generalized polyGEM because �pXh1i is. If eH�A is not uniquely p-divisible,
then �i�pPMHAXh1i = 0 for sufficiently large i by Theorem 7.5. In this case,
�pPMHAXh1i is a generalized polyGEM by Proposition 8.5.

LEMMA 8.13. For n � 2 and a nonzero p-torsion abelian group G, K(G, n) kills
each (n � 1)-connected generalized polyGEM X with p-torsion homotopy groups
and with �nX=p = 0 when G=p = 0.

Proof. Since PΣK(Z=p,n+1)X is a Postnikov space with p-torsion homotopy
groups and with the same (n+1)-Postnikov section as X, K(G, n) kills PΣK(Z=p,n+1)X.
Since K(G, n) also kills K(Z=p, n + 1) and ΣK(Z=p, n + 1), it must kill X.

LEMMA 8.14. For n � 2 and an abelian group G with G
Q 6= 0, K(G, n) kills
each (n� 1)-connected rational space X.

Proof. Since K(G, n) kills K(Q, i) for i � n, it kills the rational sphere Si
Q for

i � n, and thus kills the Moore spaces M(HiX, i) for i � n. Hence, K(G, n) kills
X.

LEMMA 8.15. If X is a generalized polyGEM, and if a space W kills K(�iX, i)
for each i, then W kills X.

Proof. Choose n � 2 such that either �iX
Q = 0 for each i > n or �kX
Q
6= 0 for some k with 2 � k � n. Since W kills the Postnikov section PnX,
it suffices by Theorem 6.3 to show that W kills the n-connected section Xhni.
By Lemma 8.14, W kills ΩK(�iX, i)Q for i > n and kills XhniQ. Hence, for
each prime p, W kills �pK(�iX, i) for i > n, and we must show that it kills the
generalized polyGEM �pXhni. This follows easily from Lemma 8.13.

8.16. Proof of Theorem 8.8. The homotopy fiber F of the nullification
map X ! PMHAX is a nilpotent generalized polyGEM by Lemma 8.12 and
Proposition 8.3. Since MHA kills F by Theorem 7.6, it kills K(Γs�1F=Γs+1�1F, 1)
and K(�nF, n) for each s � 1 and n � 2 by Corollary 7.9. Since SP1A '
SP1MHA, the space A must also kill these abelian Eilenberg-MacLane spaces
by [Bo 8, 3.2]. Hence, A kills F by Lemma 8.15, and X ! PMHAX is a PA-
equivalence by Theorem 6.3. Since MHA kills A, we conclude that PMHAX is
A-null and that X ! PMHAX is the A-nullification.

9. The main fibration theorem. Our Main Theorem 9.7 will show that the
functors LΣf and Lf Ω “almost” preserve homotopy fiber sequences. To understand
the error terms, we require some preliminaries.
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A graded abelian group G� will be called k-transitory for a positive integer
k when Hom(Gm, Gn) = 0 for n�m � k and Ext(Gm, Gn) = 0 for n�m � k + 1.
Note that “1-transitory” means “transitory” in the sense of Proposition 5.9.

PROPOSITION 9.1. For a simple space X, the homotopy ��X is k-transitory if
and only if X is a generalized polyGEM with map�(X, ΩkX) ' �.

Proof. If ��X is k-transitory, then X is a generalized polyGEM by Lemma 5.7
and Proposition 8.7, and map�(X, ΩkX) ' � by an inductive argument using
Corollaries 8.9 and 5.8. Conversely, if X is a generalized polyGEM with
map�(X, ΩkX) ' �, then K(�i+kX, i) is X-null for i � 1 by Corollary 8.9. Since X
kills itself, it also kills each K(�jX, j) by Corollary 8.10. Consequently, K(�i+kX, i)
is K(�jX, j)-null for i, j � 1, and ��X is k-transitory by Corollary 5.8.

Definition 9.2. A space X 2 Ho� is a k-transitory polyGEM if:

(i) X is the homotopy fiber of a map of simply connected spaces; and

(ii) ��X is k-transitory.

Condition (i) implies that X is simple, and (i) holds when X is simply con-
nected or when X is a connected H-space (and thus has a Hopf fiber sequence
X ! X � X ! ΣX). By Proposition 9.1, a k-transitory polyGEM is a generalized
polyGEM, and by Proposition 5.14 we have

PROPOSITION 9.3. A space X 2 Ho� is a 1-transitory polyGEM if and only if X
is a transitory GEM.

By Proposition 9.1, a k-transitory polyGEM X is ΣkX-null and has a Postnikov-
like decomposition

X ' PΣkXX �! PΣk�1XX �! � � � �! PΣXX �! PXX ' �.

PROPOSITION 9.4. If X is a k-transitory polyGEM, then the homotopy fiber Fi

of PΣiXX ! PΣi�1XX is a transitory GEM for 1 � i � k.

Proof. Since ΩFi is Σi�1X-null and since Σi�1X kills Fi by Theorem 7.6,
we have map�(Fi, ΩFi) ' �. Since X is a homotopy fiber of a map of simply
connected spaces, so is F1 by Theorem 6.5. Thus, since Fi is (i� 1)-connected,
Propositions 9.1 and 9.3 show that Fi is a transitory GEM.

In 9.16 we shall prove

THEOREM 9.5. For a map f : A ! B with f�: �0A �= �0B and for a connected
space X in Ho�, the homotopy fiber of LΣ2f X ! LΣf X is a 2-transitory polyGEM.

Remark 9.6. By Lemma 5.7 and [BK], if M is a 2-transitory polyGEM, then
the homotopy groups of its p-completion ��Fp1M are trivial except in three
successive dimensions mp, mp + 1, and mp + 2 with �mp+2Fp1M torsion-free.
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Theorem 9.5 immediately combines with Theorems 6.4 and 5.2 to give

MAIN THEOREM 9.7. For a map f : A ! B with f�: �0A �= �0B and for a
homotopy fiber sequence F ! X ! Y of pointed connected spaces, the LΣf -error
term is the loop space of a 2-transitory polyGEM, and the Lf Ω-error term is the
double loop space of a 2-transitory polyGEM. In particular, the components of
these error terms are 2-transitory polyGEMs.

Recall that the LΣf -error and Lf Ω-error terms are the homotopy fibers of the
maps

LΣf F �! fiber(LΣf X �! LΣf Y)

Lf ΩF �! fiber(Lf ΩX �! Lf ΩY).

The theorem shows that LΣf almost preserves a homotopy fiber sequence F !
X ! B, while Lf almost preserves ΩF ! ΩX ! ΩB. Before turning to the proof
of Theorem 9.5, we shall refine our main theorem to show that the components
of the above error terms are often GEMs.

LEMMA 9.8. A connected H-space X is a GEM if and only if the p-completion
Fp1X is a GEM for each prime p.

Proof. This follows by a straightforward arithmetic square argument ([DFDK]).

LEMMA 9.9. For a map f : A ! B with f�: �0A �= �0B and for a connected
space X, let F be the homotopy fiber of u: LΣ3f X ! LΣ2f X. Then the Hopf map
�: Ω2F ! Ω3F is null-homotopic.

Proof. This follows since the f -equivalence Ω2u: Ω2LΣ3f X ! Ω2LΣ2f X has
the left lifting property with respect to the map Ω3u: Ω3LΣ3f X ! Ω3LΣ2f X of
f -local spaces.

9.10. Refinements of Main Theorem 9.7. For a map f : A ! B with
f�: �0A �= �0B and for a homotopy fiber sequence F ! X ! Y of pointed
connected spaces, it is now straightforward to show that the following spaces
have GEM components: the LΣf -error term localized at odd primes; the Lf Ω-
error term localized at odd primes; and the Lf Ω2-error term. However, we do
not know whether the LΣf -error term and the Lf Ω-error term always have GEM
components.

We devote the rest of this section to proving Theorem 9.5. Let f : A! B be
a fixed map with f�: �0A �= �0B.

LEMMA 9.11. For a connected space X, the homotopy fiber F of LΣ2f X ! LΣf X
has the following properties: (i) F is the homotopy fiber of a map of simply connected
spaces; (ii) F is f -acyclic; (iii) LΣf F is a GEM; and (iv) F is Σ2f -local.
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Proof. Property (i) follows since �1LΣ2f X �= �1LΣf X; properties (ii) and (iii)
follow from Theorem 6.2; and property (iv) follows since LΣ2f X and LΣf X are
Σ2f -local.

Our main task will be to show that a space F with the above properties is a
generalized polyGEM. We shall use

LEMMA 9.12. Let F0 ! F ! F00 be a homotopy fiber sequence of connected
spaces such that F is Σ2f -local and F0 is Σf -acyclic. If F00 is a generalized polyGEM,
then so is F.

Proof. In the fiberwise localization diagram

F0 ���! F ���! F00
??y

??y
??y

LΣ2f F
0 ���! F ���! F00

(see [Bo 7] or [DF 3]), LΣ2f F
0 is a GEM by Theorem 5.13 since F0 is Σf -acyclic.

Hence, F is a generalized polyGEM by Proposition 8.3. Since F ! F is a Σ2f -
equivalence and F is Σ2f -local, F is a retract of F, and the lemma follows by
Proposition 8.4.

LEMMA 9.13. Each K(Z=p, n) is either f -acyclic or f -local.

Proof. Since K(Z=p, n) is the infinite loop space of an HZ=p-module spectrum,
Corollary 2.11 of [Bo 8] shows that Lf K(Z=p, n) ' K(V , n) for a Z=p-module V .
If V 6= 0, then K(Z=p, n) is a retract of K(V , n) and is f -local.

9.14. The natural map F ! JF. For p prime, let np � 0 be the largest
integer such that K(Z=p, np) is f -local, or let np = 1 when K(Z=p, i) is f -local
for all i. We call np the mod p transitional dimension of Lf . For a simple space
F, we let JpF be the modified (np + 2)-Postnikov section of Fp1F with

�iJpF =

8><
>:

�iFp1F for i < np + 2
�iFp1F for i = np + 2
0 for i > np + 2

where �iFp1F is the maximal torsion-free Ext-p-complete quotient of �iFp1F
(see [BF, p. 182]). We construct JF as a homotopy pullback in the square

JF ���!
Q
p

JpF
??y

??y
FQ ���! (

Q
p

JpF)Q

and we let F ! JF be the induced map.
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LEMMA 9.15. If F is an f -acyclic simple space, then JF is a generalized polyGEM
and Ω0JF is a GEM, where Ω0 is the connected loop functor.

Proof. Since F is f -acyclic and K(Z=p, i) is f -local for i � np, eHi(F; Fp) =
0 for i � np. Thus Fp1F is np-connected, and the conclusions follow from
Proposition 8.7 and Lemma 9.8.

LEMMA 9.16. If F is an f -acyclic simple space such that LΣf F is a GEM, then
F ! JF is a Σf -local equivalence whose homotopy fiber eF is Σf -acyclic.

Proof. A comparison with the arithmetic square of F shows that �iF �= �iJF
for i � 1. Thus, to show that F ! JF is a Σf -local equivalence, it suffices by
Theorem 5.2 to show that Ω0F ! Ω0JF is an f -local equivalence. Ω0JF is a
GEM by Lemma 9.15. Since K(Z=p, np + 1) is f -acyclic, if M is an f -local GEM,
then �iM is p-torsion-free for i = np + 1 and uniquely p-divisible for i � np + 2
by Corollary 5.8. Hence, Ω0F ! Ω0JF is a map�(�, Fp1M)-equivalence as
well as a rational equivalence and is therefore a map�(�, M)-equivalence. Thus
Ω0F ! Lf Ω0JF is the universal map in Ho� from Ω0F to an f -local GEM, since
Lf Ω0JF is a GEM by [Bo 8, 2.11] or [DF 3]. Since LΣf F is a GEM, the map
Ω0F ! Lf Ω0JF has the same universal property, and therefore Lf Ω0F ' Lf Ω0JF.
Consequently, F ! JF is an LΣf -equivalence, and LΣf

eF is a GEM by Theorem
6.2. Since K(Z=p, np + 2) is Σf -acyclic, �iLΣf

eF is p-torsion-free for i = np + 2 and
uniquely p-divisible for i � np + 3, and hence JLΣf

eF ' LΣf
eF. Since JeF ' �, we

find that eF ! LΣf
eF is nullhomotopic and therefore LΣf

eF ' �.

9.17. Proof of Theorem 9.5. It will suffice to show that a space F, satisfying
the conditions of Lemma 9.11 (i)-(iv), is a 2-transitory polyGEM. In the homotopy
fiber sequence eF ! F ! JF, the space eF is Σf -acyclic by Lemma 9.16, and JF
is a generalized polyGEM by Lemma 9.15. Thus, F is a generalized polyGEM
by Lemma 9.12 since it is Σ2f -local. Moreover, since F is f -acyclic and Ω2F
is f -local, map�(F, Ω2F) ' � and thus ��F is 2-transitory by Proposition 9.1.
Hence F is a 2-transitory polyGEM.

10. On E�-equivalences and E�-localizations of spaces. For a spectrum
E, the E�-equivalences and E�-localizations of spaces may be viewed as f -local
equivalences and f -localizations where f is a huge E�-equivalence as explained
in 2.5. In this section, we develop some general homological consequences of
the preceding work, culminating in the result that the E�-localization functor “al-
most” preserves fiber sequences of connected H-spaces (Theorem 10.10). We then
briefly discuss the examples of Morava K-theories and stable cohomotopy theory.
We begin with an elementary lemma which permits us to study E�-equivalences
and E�-acyclicity at individual primes.

LEMMA 10.1. For a spectrum E, a map of spaces is an E�-equivalence if and
only if it is an EQ�-equivalence and an E=p�-equivalence for each prime p.
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Let tranpE denote the mod p transitional dimension of E (see 9.14). Thus
tranpE is the largest integer i such that eE�K(Z=p, i) 6= 0, or is1 when eE�K(Z=p, i) 6=
0 for all i. In [Bo 6] we proved

THEOREM 10.2. For a spectrum E and prime p:

(i) if tranpE = 0, then E=p ' 0;

(ii) if tranpE =1, then the E=p�-equivalences of spaces are the same as the
H�(�; Z=p)-equivalences.

We now prove complementary results.

LEMMA 10.3. Let E be a spectrum with tranpE = n and]E=p�K(Z, n + 1) 6= 0,
where p is a prime and 0 < n < 1. Then a nilpotent generalized polyGEM X
is E=p�-acyclic if and only if �n+1X=torsion and �iX are uniquely p-divisible for
i � n.

Proof. By Corollary 8.11, X is E=p�-acyclic if and only if K(Γs�1X=Γs+1�1X, 1)
and K(�iX, i) are E=p�-acyclic for each s � 1 and i � 2. The lemma now follows
by applying the E=p�-acyclicity criteria of [Bo 6, 4.3] to these Eilenberg-MacLane
spaces.

Similarly,

LEMMA 10.4. Let E be a spectrum with tranpE = n and]E=p�K(Z, n + 1) = 0,
where p is a prime and 0 < n < 1. Then a nilpotent generalized polyGEM X is
E=p�-acyclic if and only if �nX is p-divisible and �iX is uniquely p-divisible for
i � n� 1.

The preceding results combine to give necessary and sufficient conditions for
the E�-acyclicity of nilpotent generalized polyGEMs. We do not know of any
spectrum E satisfying the hypotheses of Lemma 10.4, and our main examples
will be covered by the following theorem. For a spectrum E, we let PE denote
the set of primes p such that E=p is nontrivial. For 0 < n < 1, we say that

E has acyclicity level n if tranpE = n and]E=p�K(Z, n + 1) 6= 0 (or equivalently
eE�K(Zp1, n) 6= 0) for each p 2 PE. For instance, the nth Morava K-theory
spectrum K(n) has acyclicity level n by [RW], and other examples are discussed
in Sections 10.11 and 10.12.

THEOREM 10.5. Let E be a spectrum of acyclicity level n where 0 < n < 1.
Then a nilpotent generalized polyGEM X is E�-acyclic if and only if �n+1X=torsion
and �iX are uniquely PE-divisible for i � n, and ��X is torsion when ��E is not
torsion.

For a spectrum E, we next derive necessary conditions for a nilpotent gener-
alized polyGEM to be E�-local. Let RE =

L
p2PE Z=p when ��E is torsion, and

let RE = Z(PE) otherwise. As in [Bo 6] and [Bo 2], we have
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LEMMA 10.6. Each HRE
� -equivalence of spaces is an E�-equivalence, and each

E�-local space is HRE
� -local. A nilpotent space X is HRE

� -local if and only if ��X is
Ext-PE-complete when ��E is torsion and is PE-local otherwise.

THEOREM 10.7. If E is a spectrum of acyclicity level n where 0 < n <1, and
if X is an E�-local nilpotent generalized polyGEM, then: ��X is Ext-PE-complete
when ��E is torsion and is PE-local otherwise; �n+1X is torsion-free; and, for
i � n + 2, �iX is zero when ��E is torsion and is rational otherwise.

Proof. Since X is E�-local and K(Z=p, j) is E�-acyclic for j � n+ 1, K(�iX, i)
is K(Z=p, j)-null for each i by Corollary 8.9. Hence, the theorem follows using
Lemma 10.6.

We now adapt our Main Theorem 9.7 to show that the E�-localization functor
preserves a homotopy fiber sequence of loop spaces up to an error term with at
most three nontrivial homotopy groups. This extends a similar result of Dror
Farjoun and Smith ([DFS]) for a fiber sequence of double loop spaces.

THEOREM 10.8. If E is a spectrum of acyclicity level n where 0 < n <1, and
if F ! X ! Y is a homotopy fiber sequence of simply connected spaces, then
the E�-localization functor preserves ΩF ! ΩX ! ΩY up to an error term Ω2D
with �iD = 0 unless n + 1 � i � n + 3. This conclusion holds more generally
when F ! X ! Y is a fiber sequence of connected spaces such that the kernel of
�1F ! �1X is Ext-PE-complete when ��E is torsion and is PE-local otherwise.

Proof. Let f be an E�-equivalence such that Lf is the E�-localization functor,
and let LΣf F ! LΣf X ! Y 0 be the fiber sequence of Theorem 6.1. By Theorems
5.2 and 6.4, the Lf -error term of ΩF ! ΩX ! ΩY is Ω2D where D is the
homotopy fiber of Y 0 ' LΣ2f Y

0 ! LΣf Y 0. Since the kernel of �1LΣf F ! �1LΣf X
equals the kernel of �1F ! �1X, we find that �2Y 0 is Ext-PE-complete when ��E
is torsion and is PE-local otherwise. Hence, D is an HRE

� -local space. Moreover,
by Theorem 9.5 and Lemma 9.11, D is an E�-acyclic 2-transitory polyGEM and
Ω2D is E�-local. The desired results now follow from Theorems 10.5 and 10.7.

Note. We may easily obtain more detailed information on D. If ��E is torsion,
then ��D is Ext-PE-complete with �n+1D adjusted (i.e. torsion-by-rational) and
with �n+3D torsion-free. If ��E is not torsion, then ��D is PE-torsion with
�n+3D = 0. Moreover, by 9.10, if PE consists of odd primes, then ΩD is a GEM,
and if F ! X ! Y is a fiber sequence of loop spaces and loop maps, then
Ω2D has GEM components. For simplicity, we shall henceforth omit detailed
descriptions of error terms.

COROLLARY 10.9. If E is a spectrum of acyclicity level n where 0 < n < 1,
and if X is a simply connected H-space, then the homotopy fiber of the natural
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map B(ΩX)E ! XE is an H-space ∆ with �i∆ = 0 unless n � i � n + 2. This
conclusion holds more generally when X is a connected H-space such that �1X is
Ext-PE-complete when ��E is torsion and is PE-local otherwise.

Proof. Since X is a retract of a loop space ΩΣX, it suffices to assume that X =
ΩY for a simply connected space Y . The map B(ΩX)E ! XE is now LΣf ΩY !
Lf ΩY for f as above, and its homotopy fiber is now ∆ = ΩD where D is the
homotopy fiber of LΣ2f Y ! LΣf Y . As in Theorem 10.8, �iD = 0 unless n + 1 �
i � n + 3, and the corollary follows.

Using the above results, we finally show that the E�-localization functor
“almost” preserves fiber sequences of H-spaces.

THEOREM 10.10. If E is a spectrum of acyclicity level n where 0 < n < 1,
then the E�-localization functor preserves a homotopy fiber sequence of connected
H-spaces F ! X ! Y up to an error term ∆ with �i∆ = 0 unless n�1 � i � n + 1.

Proof. Since the HRE
� -localization functor preserves the fiber sequence and

does not affect ∆, we may assume that F, X, and Y are HRE
� -local. By Corollary

10.9, the homotopy fibers of the maps B(ΩF)E ! FE, B(ΩX)E ! XE, and
B(ΩY)E ! YE have trivial �i-groups unless n � i � n + 2. By Theorem 10.8, the
functor B(Ω�)E preserves the fiber sequence up to an error term with trivial �i

groups unless n � i � n + 2. Thus, the original error term ∆ has �i∆ = 0 unless
n � 1 � i � n + 3, and has ��∆ torsion when ��E is not torsion. Hence, the
Postnikov map ∆! Pn+1∆ is an E�-equivalence, since its fiber is E�-acyclic by
Theorem 10.5. This implies ∆ ' Pn+1∆ since ∆ is E�-local.

The preceding results apply to many important (co)homology theories, and
we conclude with some examples.

10.11. The Morava K-theories. For the nth Morava K-theory K(n)� at a
prime p with n � 1, Ravenel and Wilson ([RW]) have shown that K(Z=p, i) is
K(n)�-acyclic if and only if i > n, while K(Z, i) is K(n)�-acyclic if and only if
i > n+1. (See [JW, Appendix] or [HRW, 4.4] for an explanation of the case p = 2.)
Hence, K(n) has acyclicity level n, where ��K(n) is torsion and PK(n) = fpg.

For the BP-related spectrum E(n) with ��E(n) = Z(p)[v1, : : : , vn�1, vn, v�1
n ], a

map is an E(n)�-equivalence if and only if it is a K(i)�-equivalence for 0 � i � n
where K(0) = HQ. Hence, E(n) has acyclicity level n, where ��E(n) is not torsion
and PE(n) = fpg. Likewise, the spectrum K of periodic complex K-theory has
acyclicity level 1, where ��K is not torsion and PK = fall primesg.

10.12. Stable cohomotopy theory. Since stable cohomotopy theory �� = S�

is the cohomology theory represented by the sphere spectrum S, it has the same
equivalences as some homology theory rS� by 2.6, and hence ��-localizations
of spaces and spectra always exist. Chun-Nip Lee ([Le]) has shown that the space
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K(Z=p, 2) is ��-acyclic for each prime p, and he has implicitly shown that each
��-equivalence of spaces is a K�-equivalence (see Lemma 10.13 below). This
implies that K(Zp1 , 1) is not ��-acyclic. Thus rS has acyclicily level 1, where
��rS is not torsion and PrS = fall primesg. From this standpoint, �� resembles
K�, but there are many examples of K�-equivalences, such as the Adams maps
of mod p Moore spaces, which are not ��-equivalences.

We have used the following result shown implicitly by Chun-Nip Lee ([Le,
3.4]).

LEMMA 10.13. Each ��-equivalence of spaces is a K�-equivalence.

Proof. This depends on Miller’s ([Mi]) stable splitting

Σ1U '
_
k�1

BUAdUk
k '

Y
k�1

BUAdUk
k .

By the Segal conjecture, (BUAdUk
k )^p is a stable summand of the ��-local spectrum

(DBUk)^p , and thus BUAdUk
k is ��-local by an arithmetic square argument. Hence,

the spectrum Σ1U and the spaces Ω1Σ1U and U are all ��-local. Consequently,
each ��-equivalence of spaces is a K�-equivalence, and hence a K�-equiva-
lence.

11. Virtual E�-equivalences of spaces. We say that a spectrum E has n-
elevated acyclicity for an integer n � 0 if tranpE � n for each prime p, or
equivalently if K(Z=p, n + 1) is E�-acyclic for each prime p. This holds, for
instance, when E has acyclicity level i for some i � n, and thus holds for the
Morava K-theory spectrum K(i) when i � n. More generally, we say that a
spectrum E has elevated acyclicity if it has n-elevated acyclicity for some integer
n � 0. In view of Lemma 10.1 and Theorem 10.2, we have

LEMMA 11.1. A p-local spectrum E must have elevated acyclicity if it does not
have the same homology equivalences of spaces as H�(�; Z=p) or H�(�; Z(p)).

For a spectrum E of elevated acyclicity, a map �: X ! Y is Ho� is called
a virtual E�-equivalence if ��: �i(ΩX)E ! �i(ΩY)E is an isomorphism for all
sufficiently large i, and a space X 2 Ho� is called virtually E�-acyclic if �i(ΩX)E

is zero for all sufficiently large i. We shall see that the virtual E�-equivalences are
closely related to ordinary E�-equivalences, but have some better homotopy theo-
retic properties, and we shall give various applications. For instance, generalizing
work of Thompson and the author ([Bo 7]), we show that each K=p�-equivalence
of H-spaces is a v1-periodic homotopy equivalence (Corollary 11.12). We shall
need the main results of Section 10 in the following partially generalized, but
similarly proved, form.



1350 A. K. BOUSFIELD

THEOREM 11.2. For a spectrum E of n-elevated acyclicity, we have:
(i) If X is an (n + 1)-connected generalized polyGEM such that ��X or ��E is

torsion, then X is E�-acyclic.
(ii) If X is an E�-local nilpotent generalized polyGEM, then: �n+1X is torsion-

free; �iX is rational for i > n + 1; and �iX = 0 for i > n + 1 when ��E is torsion.
(iii) For a fiber sequence of connected spaces F ! X ! Y, the E�-localization

functor preserves the homotopy fiber sequence ΩF ! ΩX ! ΩY up to an error
term Ω2D with �iΩ2D = 0 for i > n + 1.

(iv) For a connected H-space X, the homotopy fiber of the natural map B(ΩX)E !

XE is an H-space ∆ with �i∆ = 0 for i > n + 2.
(v) The E�-localization functor preserves a fiber sequence of connected H-

spaces F ! X ! Y up to an error term ∆ with �i∆ = 0 for i > n + 1.

Theorem 11.2 (iv) implies

THEOREM 11.3. If E is a spectrum of elevated acyclicity, and if �: X ! Y is an
E�-equivalence of connected H-spaces, then � is a virtual E�-equivalence.

Many other examples of virtual E�-equivalences follow from

THEOREM 11.4. For a spectrum E of elevated acyclicity, and for a map of fiber
sequences

F ���! X ���! Y
??y

??y
??y

F0 ���! X0 ���! Y 0,

if any two of F ! F0, X ! X0, and Y ! Y 0 are virtual E�-equivalences, then so is
the third.

Proof. Note that a map of pointed spaces is a virtual E�-equivalence if and
only if the induced map of universal covers is such. Thus we may assume that
the given spaces are connected and may apply Theorem 11.2 (iii).

The next two corollaries show the “durability” of virtual E�-equivalences.

COROLLARY 11.5. For a spectrum E of elevated acyclicity and for i � 0, a map
�: Y ! Y 0 in Ho� is a virtual E�-equivalence if and only if Ωi�: ΩiY ! ΩiY 0 is
such.

Proof. The case i = 1 follows by Theorem 11.4, and the other cases follows
inductively.

COROLLARY 11.6. For a spectrum E of elevated acyclicity and for i � 0, a map
�: Y ! Y 0 in Ho� is a virtual E�-equivalence if and only if �hii: Yhii ! Y 0hii is
such.
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Proof. In the fiber sequence Yhii ! Y ! PiY , the ith Postnikov section PiY
is virtually E�-acyclic by Corollary 11.5 since Ωi+1PiY ' �, and thus Yhii ! Y
is a virtual E�-equivalence by Theorem 11.4.

To compare virtual E�-equivalences with ordinary E�-equivalences, we use

THEOREM 11.7. If E is a spectrum of n-elevated acyclicity with ��E torsion,
and if �: X ! Y is a virtual E�-equivalence in Ho�, then �hii: Xhii ! Yhii is an
E�-equivalence for i � n + 2.

Proof. Since the maps Xhn + 3i ! Xhn + 2i and Yhn + 3i ! Yhn + 2i are E�-
equivalences, we may assume i � n + 3. The homotopy fiber F of �hii: Xhii !
Yhii is virtually E�-acyclic by Theorem 11.4, and thus (ΩF)E is Postnikov. Hence,
the map ΩF ! (ΩF)E is nullhomotopic by Theorem 11.2 (ii), and ΩF is E�-
acyclic. Therefore, F is E�-acyclic and �hii is an E�-equivalence.

When we wish to compute the E�-homology of a virtually E�-acyclic space,
we may replace the space by a suitable Postnikov section.

COROLLARY 11.8. If E is a spectrum of n-elevated acyclicity with ��E torsion,
and if X 2 Ho� is a virtually E�-acyclic space, then Xhn + 1i is E�-acyclic and the
Postnikov map X ! Pn+1X is an E�-equivalance.

Proof. Since Xhn+2i is virtually E�-acyclic by Corollary 11.6, it is E�-acyclic
by Theorem 11.7. The result now follows since K(�n+2X, n + 2) is E�-acyclic by
Theorem 11.2 (i).

Using this corollary, we deduce

THEOREM 11.9. For an arbitrary spectrum E, if X 2 Ho� is an E�-acyclic
H-space, then Xhii and PiX are E�-acyclic for all i.

Proof. It suffices by Lemma 10.1 to prove the corresponding result for each
E=p�, since it is clear for EQ�. Let X be E=p�-acyclic for a prime p. If tranpE =1,
then the E=p�-acyclic spaces are the same as the H�(�; Z=p)-acyclic spaces by
Theorem 10.2, and the E=p�-acyclic H-spaces are those with uniquely p-divisible
homotopy groups. Hence, each Xhii and PiX is E=p�-acyclic. If tranpE <1, we
may assume that E=p has n-elevated acyclicity. Since X is virtually E=p�-acyclic
by Theorem 11.3, Xhii and PiX are E=p�-acyclic for i � n + 1 by Corollary 11.8.
Since the H-space Pn+1X is E=p�-acyclic, so is K(�iX, i) for i � n+1 by Corollary
8.11, and hence each Xhii and PiX is E=p�-acyclic.

Our next result characterizes the virtual E�-equivalences in terms of ordinary
E�-equivalences, strengthening Theorem 11.7.

THEOREM 11.10. For a spectrum E of n-elevated acyclicity with ��E torsion,
and for integers k � 1 and i � n + 2, a map �: X ! Y in Ho� is a virtual E�-



1352 A. K. BOUSFIELD

equivalence if and only if (Ωk�)hii: (ΩkX)hii ! (ΩkY)hii is an E�-equivalence.
The “only if” statement also holds for k = 0 and i � n + 2.

Proof. This follows easily by 11.3–11.7.

We conclude with some results relating the virtual K(n)�-equivalences of
spaces to the vj-periodic homotopy equivalences for j � n at a prime p, where
the vj-periodic homotopy groups v�1

j ��(X; Vj�1) of a space X are defined as in
[Bo 7, 11.9] and [Bo 8, 5.2]. Note that the virtual K(1)�-equivalences are the
same as the virtual K=p�-equivalences.

THEOREM 11.11. A map �: X ! Y in Ho� is a virtual K=p�-equivalence if and
only if ��: v�1

1 ��(X; Z=p) �= v�1
1 ��(Y; Z=p).

Proof. By work of Thompson ([Th]) and the author ([Bo 7, 14.7]), � induces
a K=p�-equivalence (Ω2X)h3i ! (Ω2Y)h3i if and only if ��: v�1

1 ��(X; Z=p) �=
v�1

1 ��(Y; Z=p). Our result now follows from Theorem 11.10.

Generalizing a result of Thompson for iterated loop spaces ([Th], [Bo 7,
14.4]), we now obtain

COROLLARY 11.12. If �: X ! Y is a K=p�-equivalence of connected H-spaces,
then ��: v�1

1 ��(X; Z=p) �= v�1
1 ��(Y; Z=p).

Proof. This follows by combining Theorems 11.3 and 11.9.

The “if” part of Theorem 11.11 can be generalized to

THEOREM 11.13. If �: X ! Y is a map in Ho� with ��: v�1
j ��(X; Vj�1) �=

v�1
j ��(Y; Vj�1) for j = 1, 2, : : : , n where n � 1, then� is a virtual K(n)�-equivalence

and hence (Ωk�)hii is a K(n)�-equivalence for each k � 0 and i � n + 2.

Proof. By [Bo 7, 13.3], the map of p-torsion components �pΩXhmi !
�pΩYhmi is a Pvn-equivalence for sufficiently large m. Thus, by [Bo 7, 12.1],
the map ΩXhmi ! ΩYhmi is a K(n)�-equivalence for sufficiently large m, and
hence � is a virtual K(n)�-equivalence by Theorem 11.3, Corollary 11.5, and
Corollary 11.6. The last statement follows by Theorem 11.10.

The condition “j = 1, 2, : : : , n” in this theorem cannot be reduced to “j =
n.” For instance, as noted at the end of [Bo 8], v�1

2 ��(Uh4i; V1) = 0 while
]K(2)�Uh4i 6= 0. We do not know whether the converse to this theorem holds.
However, as a consequence of this theorem and Corollary 11.8, we have

COROLLARY 11.14. If X 2 Ho� is a space with v�1
j ��(X; Vj�1) = 0 for 1 � j �

n where n � 1, then X is virtually K(n)�-acyclic. Hence, Xhn + 1i is K(n)�-acyclic
and the Postnikov map X ! Pn+1X is a K(n)�-equivalence.
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Hopkins, Ravenel, and Wilson ([HRW]) have proved a similar result when
X is an infinite loop space and have applied it to calculate K(n)�X in some
interesting cases. Corollary 11.14 should help to extend that method.
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