Project &
MUSE

http:ffmuse._ jhu.edu

HOMOTOPICAL LOCALIZATIONS OF SPACES

By A. K. BousrFIELD

Abstract. For a map f of spaces, Dror Farjoun and the author have constructed an f-localization
functor, where a space Y is caled f-local when map(f,Y) is an equivalence. This very genera
construction gives al known idempotent homotopy functors of spaces. The main theorem of this
paper shows that f-localization functors always preserve fiber sequences of connected H-spaces
up to small error terms. For instance, the localization with respect to the nth Morava K-theory
preserves such fiber sequences up to error terms with at most three nontrivial homotopy groups. This
implies, for example, that a K(1)-homology equivalence of H-spaces must induce an isomorphism
of v1-periodic homotopy groups. Results are also obtained on the A-nullification or A-periodization
functors, which are just the f-localization functors for the maps f from spaces A to points. Two
spaces are said to have the same nullity when they give the same nullification functors, and it is
shown that arbitrary sets of nullity classes have both least upper bounds and greatest lower bounds.
The A-nullifications of nilpotent Postnikov spaces are completely determined.

1. Introduction. During the past two decades, great progress has been
made toward a global understanding of stable homotopy theory, showing that
some major features arise “chromatically” from an interplay of periodic phe-
nomena arranged in a hierarchy (see [Ra]). These phenomena have been quite
effectively exposed using localizations of spectra with respect to periodic homol-
ogy theories such as the Morava K-theories K(n)... We would like to similarly
expose periodic phenomena in unstable homotopy theory using localizations of
spaces. Some encouraging progress in this direction has been made by Mahowald
and Thompson ([MT]), Dror Farjoun and Smith ([DFS]), the author ([Bo 7]), and
others, and a powerful general theory of unstable homotopical localizations has
begun to emerge. In this paper, we investigate that theory and prove a general
fibration theorem showing, for instance, that K(n).-localizations preserve fiber
sequences of connected H-spaces up to error terms with at most three nontrivial
homotopy groups.

To describe our results, we first recall the very general notion of an f-
localization of spaces, and we initially work in the pointed homotopy category
Ho, of CW-complexes. For afixedmap f: A — B of spaces, we say that aspace Y
isf-local when f*: map(B, Y) ~ map(A, Y). As shown by Dror Farjoun ([DF 1])
and the author ([Bo 3, Corollary 7.2]), each space X has a natural f-localization
X — L¢X. The f-localization generalizes both the E,-localization X — Xg for a
homology theory E,. and the A-nullification X — PaX for a space A, which may
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respectively be obtained using a suitable huge E.-equivalence f and the trivial
map f: A — x. We give a brief general account of f-localizations in Section 2,
and refer the reader to [Bo 8], [Ca 1], and particularly to Dror Farjoun’s book
(IDF 3]) for additional background information. We remark that Dror Farjoun’s
earlier paper ([DF 1]) helped to stimulate widespread interest in f-localizations.

For amap f and space A, we consider the localization class ( f) consisting of
all maps giving the same local spaces asf, and the nullity class (A) consisting of
al spaces giving the same null spaces as A. The collections Locs of localization
classes and Nuls of nullity classes have obvious partial orderings (see [Bo 7],
[DF 2], [DF 3]), and we prove that they are actually small-complete large lattices
in the sense that their (small) subsets have greatest lower bounds and least upper
bounds (see 4.3 and 4.5). Moreover, we prove that each localization class ( f)
has a best possible approximation by a nullity class (A(f)) such that Pacy and
Lt have the same acyclic spaces (Theorem 4.4). Thus Pa(+) isrelated to L in the
same way as Quillen’'s plus-construction is related to the H.(<; Z)-localization
functor. For each map f, we also obtain a closed model category structure for
spaces, where the “weak equivalences’ are the L;-equivalences (Theorem 4.6).
Thus each localization class ( f) determines its own brand of homotopy theory.
Versions of this result have been obtained by Dror Farjoun ([DF 3]), Hirschhorn
([Hi]), Smith, the author ([Bo 2, Appendix]), and others. Our present approach
actually shows the existence of F-localizations and associated homotopy theories
for many large classes of maps F.

Our main result is a genera fibration theorem. For a map f of connected
spaces, we prove that the localization functors Ls; and L Q preserve homotopy
fiber sequences up to error terms whose p-completions have at most three non-
trivial homotopy groups for each prime p (Main Theorem 9.7). This generalizes
a fibration theorem of Dror Farjoun and Smith ([DFS]) for the localization func-
tors Ly2s and L¢Q?, which in turn partially generalizes the fibration theorems of
[Bo 7] and [DFS] for the nullification functors Psp and PaQ. These results al
depend on a key lemma (Lemma 5.3) which we originally proved in [Bo 7, 6.9].
The crux of our present proof isin Section 6, where we show that the homotopy
fiber of an Ly¢-equivalence of spacesis “amost” Ly¢-acyclic (Theorem 6.2), and
where we find a very convenient expression for the Ls¢-error term of a homotopy
fiber sequence (Theorem 6.4). Our main proof is completed in Section 9 after
we have determined the nullifications of nilpotent Postnikov spaces and of other
nilpotent “generalized polyGEMS® (see Theorems 7.5 and 8.8).

In Section 10, we develop general homological consequences of the preced-
ing work and show that K(n)..-localizations, and other E.-localizations, “amost”
preserve homotopy fiber sequences of H-spaces (Theorem 10.10). This also ap-
plies to various cohomological localizationsincluding those with respect to stable
cohomotopy theory (see 2.6 and 10.12). Finally, in Section 11, we introduce the
notion of a virtual E.-equivalence, defined as a map of spaces ¢: X — Y such
that ¢.: m(QX)e — mi(QY)e is an isomorphism for al sufficiently large i. We
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find that the virtual E.-equivalences are much more “durable’ than ordinary
E.-equivalences. For instance, in a map of fiber sequences, if any two of the
component maps is a virtual E.-equivalence, then so is the third (Theorem 11.4).
We show that each E.-equivalence of H-spaces is a virtual E.-equivalence (The-
orem 11.3), and each virtual E,.-equivalence of spaces induces an E.-equivalence
of sufficiently highly connected covers (Theorem 11.7). We deduce that if an
H-space is E,-acyclic, then so are all of its connected covers and all of its Post-
nikov sections (Theorem 11.9). Turning to K-theory, we show that the virtua
K /p.-equivalences (or virtual K(1).-eguivalences) of spaces are the same as the
vy L (s Z/p)-equivalences (Theorem 11.11), and conclude, for instance, that
each K/p.-equivalence of H-spaces is a vy Lr.(<5 Z/p)-equivalence (Corollary
11.12). This generalizes a result of Thompson ([Th], [Bo 7, 11.9]), and is needed
for the author’s subsequent work on K /p,.-localizations and v;-periodizations. We
also obtain some results on virtual K(n).-equivalences of spaces for n > 1. We
show that if amap of spacesis a ¢j-periodic homotopy equivalencefor 1 <j <n,
then it is a virtual K(n).-equivalence (Theorem 11.13). This implies, for exam-
ple, that if X is a space with trivial ¢-periodic homotopy groups for 1 <j <n,
then the Postnikov map X — P™X is a K(n).-equivalence (Corollary 11.14).
This should help to make K(n).X more accessible, and extends a similar result
of Hopkins, Ravenel, and Wilson ([HRW]) for infinite loop spaces.

This paper generalizes the fundamental results of Dror Farjoun and Smith
([DFS]), and we have benefited from their ideas.

We work simplicially so that “space” means “simplicial set.” However, to
make the presentation more accessible, we frequently work in the pointed homo-
topy category Ho,.

2. The basic homotopical localization theory. In this section, we recall
the basic theory of f-localizations of spaces and discuss some general examples.
We refer the reader to [Bo 8], [Ca 1], and [DF 3] for additional background
information and results. A thorough account of the basic theory is being developed
by Hirschhorn ([Hi]) in a general model category setting.

For pointed spaces X, Y € Ho,, let map,(X,Y) € Ho, and map(X,Y) € Ho.
respectively denote the pointed and unpointed mapping spaces from X to a fibrant
representative for Y, and recall that momap, (X,Y) = [X,Y]. Foramapf: A— B
and space Y in Ho,, we consider the orthogonality conditions:

(HY) f [BY]=[AY];
(H2) f*: map,(B,Y) ~ map, (A Y);
(H3) f*: map(B,Y) ~ map(A,Y).

It is easy to show

Lemma 2.1. (H3) = (H2) = (H1) and, when Y is connected, (H2) < (H3).
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We adopt (H3) as our main orthogonality condition in Ho,. For a fixed map
f: A— Bin Ho,, aspace Y € Ho, is caled f-local when f*: map(B,Y) ¥
map(A,Y); a map u: X — X' in Ho, is caled an f-local equivalence when
u*: map(X’,Y) = map(X,Y) for each f-local space Y; and amap u: X — X' is
caled an f-localization when it is an f-local equivalence to an f-local space X'.
By Lemma 2.1, an f-localization u: X — X’ is an initial example of a map from
X to an f-local spacein Ho,, and is aterminal example of an f-local equivalence
out of X in Ho,. Thus the f-localizations are unique up to equivalence in Ho,,
and by [Bo 3, Cor. 7.2] or [DF 1], we have

THEOREM 2.2. For each map f: A — B and space X in Ho,, there exists an
f-localization of X.

Hence, there is an idempotent functor Ls: Ho, — Ho, giving a natural f-
localization u: X — L¢X for X € Ho,.

2.3. The functor Ls on spaces. The idempotent functor Ls: Ho, — Ho,
is actually induced from a coaugmented functor Ls: S — S on the category
S of spaces (i.e. simplicia sets). Roughly speaking, for X € S, LiX may be
constructed from X by expressing f as an inclusion of spaces A C B and taking
all possible pushouts from the pairs (A", A") x (B,A) with n > 0 and the pairs
(A", &) with 0 < k < n > 0, where A" denotes the standard n-simplex with
boundary A" and kth horn Af. This construction is continued over an appropriate
section of ordinals to achieve the extension property with respect to the above
pairs and to create L X as a colimit. More elaborate versions of this construction
in [Bo 5], [Bo 7], and [DF 3] produce a functor Ly which is simplicial in the
sense of Quillen ([Qu, I1.1]) with L;(x) = = for a point x.

We refer the reader to Casacuberta and Peschke ([CP]) for an analysis of the
f-localization in the illuminating basic case where f is a self-map of S'; we now
turn to some other important general examples.

2.4. Nullifications. For aspace A € Ho,, the localization with respect to the
trivial map f: A — x is called the A-nullification or A-periodization; the functor
L; is denoted by Pa; the f-local spaces are called A-null or A-periodic; and the
f-local equivalences are called A-periodic equivalences or Pa-equivalences. For
connected spaces A, Y € Ho,, notethat Y is A-null if and only if map, (A, Y) = x.
Thus the S™!-nullification functor on Ho, is equivalent to the nth Postnikov
functor. Many other interesting nullifications are discussed in [Bo 7], [Bo 8], [Ca
2], [Ch], [DF 3], and [Ne].

2.5. Homological localizations. For a spectrum E, the E.-localization func-
tor ( )e: Ho, — Ho, of [Bo 2] may be viewed as an f-localization for a huge
E.-equivalence f. For instance, we may use the map f: V,A, — V.B, obtained
by wedging representatives { A, C B, }, of al isomorphism classes of inclusions



HOMOTOPICAL LOCALIZATIONS OF SPACES 1325

of pointed spaces with E.(B,, A,) = 0 and with cardinality #B, < #E.(pt) where
#B,, denotes the number of nondegenerate simplices of B,. This follows since
the f-localization map u: X — L X is an E,-equivaence by its construction and
since L¢ X is E,-loca by [Bo 2, Lemma 11.3].

2.6. Cohomological localizations. Let E be a spectrum whose modp ho-
motopy groups ..(E/p) are al finite for each prime p. Then, following [Bo 4] or
[Ho] as explained below, there exists a spectrum G such that the G,.-equivalences
are the same as the E*-equivalences for spectra and hence for spaces. Thus by
2.5, there is an E*-localization functor of the form Ls for spaces. To construct
G, recall that the (E/p)*-equivalences are the same as the c(E/p).-equivalences
where c(E/p) is the Brown-Comenetz ([BC]) dual of E/p. Thus when the groups
m.E are al Ext-complete (i.e. when Hom(Q, 7.E) = 0 = Ext(Q, 7.E)), we may
use G = VpC¢(E/p); and when the groups 7.E are not al Ext-complete, we may
use G = HQV Vpc(E/p) where HQ is the rational Eilenberg-MacL ane spectrum.
We do not know whether localizations of spaces exist with respect to arbitrary
cohomology theories, athough they do for all ordinary cohomology theories by
[Bo 1].

3. Localizations with respect to classes of maps. The notion of an f-
localization of spaces for a single map f can obviously be extended to that of an
F-localization for a class F = {f,: A, — Ba}o Of mapsin Ho,. In particular,
a space Y € Ho. is caled F-local when f3: map(B,,Y) = map(A,,Y) for
each f, € F; amap u: X — X' in Ho, is caled an F-local equivalence when
u*: map(X’,Y) = map(X, Y) for each F-local space Y; and amap u: X — X' is
called an F-localization when it is an F-local equivalence to an F-local space
X'. Let L(F) denote the class of F-local spaces in Ho,.. When F = {f,}, isa
(small) set of mapsinHo,, thereisasinglemap f = v, f, such that £(f) = L(F),
and the f-localizations in Ho, immediately give F-localizations. In this section,
we develop machinery showing that many large classes of maps F = {f,}, can
similarly be replaced by single maps f with £(f) = L(F). This will generalize
the prototypical example of E.-localizations (2.5) where the class of al E,-
equivalences is replaced by a single huge E.-equivalence. Our main applications
of this machinery will be given in Section 4. We remark that in every case where
we are able to show the existence of F-localizations in Ho,, we are also able to
replace F by a single map f. We shall need

3.1. Coherent functors. Let Sets, be the category of pointed sets; let S,
be the category of pointed spaces (i.e. pointed simplicial sets); and let S,= S?
be the usual category of maps in S.. For such amap f: A — B, write #f for
the number of nondegenerate simplices of AV B, and call f’: A’ — B’ a submap
of f (denoted by f' C f) when A’ C A, B’ € B, and f’ =f | A'. Cdll a functor
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T: §;—> Sets.  b-coherent for an infinite cardinal number b when each f 65;
has T(f) = colim, T(¢) for ¢ ranging over the submaps of f with #$ < b. This

is equivalent to saying that T preserves colimits of diagrams in S indexed by
directed sets having upper bounds for their subsets of cardinality < b. Note that if

T is b-coherent, then it is b’-coherent for al b’ > b. Call afunctor T: §;—> Sets,
coherent when it is b-coherent for sufficiently large b. For such a T, call a map

—

f € S, T-acyclic when T(f) = *. For instance, for a spectrum E, the relative

homology functor E,: S,— Sets, is coherent and the E.-acyclic maps are the
E.-equivalences.

Lemma 3.2. If T: §*—> Sets, isa coherent functor, then there exists an infinite
cardinal number d such that for each T-acyclicg € S, and each § C g with
#0 < 29, thereexistsa T-acyclicf € S, withd c § c gand#0 < 29.

Proof. Assume that T is b-coherent and let d be a cardinal such that b < d

and #T(¢) < d for dl ¢ € 5; with #¢ < b. Then for each f € 5; with
# < 29, there are at most (29)° = 29 submaps ¢ C f with #p < b, and hence
#T(f) <d-29=29 GivenaT-acyclicmapge S, and § C g with #9 < 29,
each element x € T(6) maps trivialy to T(#") for some " C g with § C ¢’ and
#9' < 29, Hence, there is a transfinite increasing sequence

0=0pCO1C--COCOC---CH,=0

of submaps of g indexed through the first ordinal v of cardinality greater than
b, where each T(0)) — T(#x+1) is trivial, where #9, < 29 for each \ < v, and
where 63 = U,g0, for each limit ordinal 3 < ~. Since T is b-coherent, we
deduce that T(6,) = colimy.,, T(6,) = * and take § = 6, O

For a coherent functor T: §k_, Sets,, let A(T) denote the class of all maps
in Ho, represented by T-acyclic mapsin S,.

THEOREM 3.3. If T: §;—> Sets, is a coherent functor, then £(A(T)) = £(f)
for some wedge f of T-acyclic maps. Hence, A(T)-localizatons exist in Ho, and
are given by f-localizations.

Proof. Let d be an infinite cardinal given by Lemma 3.2. Then each T-acyclic
map ¢ in S, is the colimit of the directed system of all T-acyclic submaps 6 C ¢
with #9 < 29, and thus ¢ is weakly equivalent to a homotopy colimit of these
submaps by [BK, p. 332]. Hence, L(A(T)) = L(WW) where WV isa set containing a
representative of each isomorphism class of T-acyclic maps ¢ in S, with#p < 249
Thus we may let f be the wedge of all mapsin W. |
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Note that this theorem gives another proof of the existence of E,-localizations

in Ho, (see 2.5) using the relative homology functor E,: §;—> Sets,. Before
turning to our main applications, we must formulate a nonconnected Whitehead
theorem (Lemma 3.4) and derive a partial converse (Theorem 3.5) to the above

theorem. Let Hog‘:k be the homotopy category obtained by inverting the termwise
weak equivalence in S, (see e.g. [BF, A.3]).

Lemma 3.4. A map of pointed spaces ¢: X — Y isa weak equivalence if and
onlyif thenatural function hn: moX — [in, ¢] isontofor n > Owhere[in, ¢] consists

of the morphisms fromi,: A"U % C A" U * to ¢ in HOS,.

Proof. We can assume that ¢ is a fibration of the fibrant spaces. Then the
surjectivity of the functions hy, is equivalent to the right lifting property of ¢ with
respect to the map in, and this is equivalent to the weak equivalence property. O

THeoOReEM 3.5. For each map of pointed spaces f: A — B, there exists a co-

herent functor Ts: S.— Sets, whose acyclic maps are the f-local equivalences
inS..

Proof. By Lemma 3.4, a map of pointed spaces ¢: X — Y is an f-loca
equivalence if and only if h,: moLsX — [in,Lt¢] is onto for each n > 0. For
an infinite cardinal number b > #f, each space X has L;X = colim, L X, where
{Xa}a are the subspaces of X of cardinality < b. Thus a suitable functor T; is

[e¢)

Ti(¢) = \/ [in,Ls¢]/im hy. O

n=0

Note. The definitions and results of this section have obvious versions for
unpointed spaces with S in place of S,.

4. The lattice of localization functors and closed model category struc-
tures. Using the preceding machinery, we now prove several fundamental re-
sults on homotopical localizations: that the possible localization functors form a
small-complete large lattice; that each localization functor has a best possible ap-
proximation by a nullification; that the nullity classes also form a small-complete
large lattice; and that each localization functor determines a closed model cate-
gory structure for spaces, and thus determines its own brand of homotopy theory.

For a class F of maps in Ho,, we let £(F) denote the class of all F-local
equivalences in Ho,. In general, 7 C £(F) and
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Lemma 4.1. If the following conditions are satisfied, then F = £(F):

(i) for each space X € Ho,, there existsa map X — X' in F such that X' is
F-local;

(if) each eguivalencein Ho, belongsto F;

(iii) if a composition gf is defined in Ho, and if any two of f, g, gf arein F,
then so isthe third.

Proof. A map f: X — Y in Ho, induces a map f’: X' — Y’, where X — X'
andY — Y are F-localizationsgiven by (i). If f € £(F), thenf’ isan equivalence
in Ho, and hence f € F by (ii) and (iii). O

THEOREM 4.2. For a set {f, }, of mapsin Ho,, there existsa map f such that
E(F) =Na E(fa).

Proof. By Theorem 3.5, for each «, thereis a coherent functor Ts,, : <S?*—> Sets,

with A(T;,) = £(f,). These combine to give a coherent functor T: §*—> SHts,
with T(¢) = Vo Tt (¢), where A(T) =N, £(fa). By Theorem 3.3, there is a map
f €N, E(fa) with E(F) = E(N, E(fa)). Sincef is an f,-equivalence for each «,
so are the f-localization maps, and £(N, £(fa)) =Na E(fa) by Lemma4.1. O

4.3. The lattice of localization functors. Two maps f and g in Ho, give
equivalent functors Lt ~ Lg if and only if £(f) = £(g). The resulting equivalence
classes (f) form a partially ordered collection Locs, where (f) < (g) means
L(f) D L(g) or equivalently £(f) c £(g). Each (small) set {(f,)}, in Locs
has a least upper bound (V,f,) and has a greatest lower bound (f) given by
Theorem 4.2. Hence, Locs is a small-complete large lattice. For (f) < (g) in
Locs, the idempotent localization functors Ly and Lg on Ho, are related by a
canonical transformation Ly — Lg giving Lgls =~ Lg.

A space X is called Li-acyclic or f-acyclic when LiX ~ %, and X is called
Pa-acyclic or killed by A when PaX ~ .

THeorem 4.4. For each map f in Ho,, there exists a space A(f) € Ho, such
that Pty and L have the same acyclic spaces.

Proof. Let Ts: <S?*—> Sets, be a coherent functor whose acyclic maps are the
f-equivalences. Then by Lemma 3.2, there exists an infinite cardinal 29 such that
each f-acyclic space X isthe colimit of a directed system of f -acyclic subspaces of
cardinality < 29. Thus A(f) exists as a wedge of representatives of isomorphism
classes of pointed f-acyclic spaces of cardinality < 29. O

For example, if Lt is the H.(«;Z)-localization functor, then Pacty is the
Quillen plus-construction functor by [Ca 1] or [DF 3].
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4.5. The lattice of nullity classes. Two pointed spaces X, Y € Ho, give
equivalent functors Px ~ Py if and only if the X-null spaces are the same as
the Y-null spaces. The resulting equivalence classes (X) are called nullity classes
(see [Bo 7, §9], [Bo §], [Ch], [DF 2], or [DF 3]), and form a partially ordered
collection Nuls, where (X) < (Y) means that the Y-null spaces are X-null or
equivalently that X is killed by Y. There is an inclusion Nuls c Locs where
(X) is identified with (X — «). For each (f) € Locs, Theorem 4.4 gives a
greatest member (A(f)) € Nuls with (A(f)) < (f). Thus each set {(Xs)}a in
Nuls has a least upper bound (V,X,) and has a greatest lower bound given
by 4.3 and 4.4. Hence, Nuls is a small-complete large lattice. In addition, Nuls
has the obvious finite smash products. For (V) < (W) in Nuls, the idempotent
nullification functors Py and Py on Ho, arerelated by a canonical transformation
Py — Pw gIVIng PwPy ~ Pw.

Finally, we show that each map f in Ho,. determines a closed simplicial model
category structure on S,., and thus determines a homotopy theory. Versions of this
result have been obtained by Dror Farjoun ([DF 3]), Hirschhorn ([Hi]), Smith,
the author ([Bo 2, Appendix]), and others. We call a map ¢ in S, an f-trivial
cofibration when it is both an f-local equivalence and a cofibration, and we call
¢ an f-fibration when it has the right lifting property for the f-trivial cofibrations.

THeEOREM 4.6. For each map f in Ho,, the ssimplicial category S.. of pointed
spaces has a closed simplicial model category structure with “ weak equivalences,’
“fibrations and “ cofibrations’ respectively defined as f-local equivalences, f-
fibrations, and ordinary cofibrations.

Proof. First note that a map ¢ is an ordinary trivia fibration if and only if
it is both an f-local equivalence and f-fibration, where the “if” part follows by
factoring ¢ as ji for a cofibration i and trivial fibration j, then deducing that i is
an f-trivial cofibration, and concluding that ¢ is aretract of j. The theorem now
follows from Lemma 4.7 below and a direct check of Quillen’s condition SM7(b)

([Qu)). O

Lemma 4.7. Eachmap ¢: X — YinS, canbefactored as¢ = ji for anf-local
equivalencei and f-fibration j.

Proof. Let T;: §*—> Sets, be a coherent functor whose acyclic maps are
the f-local equivalences. Then by Lemma 3.2, there exists an infinite cardinal
29 such that each f-trivial cofibration « is the colimit of a directed system of
f-trivial subcofibrations of cardinality < 29, and hence « is equivaent to the
homotopy colimit of these subcofibrations. Consequently, an ordinary fibration 6
of fibrant spaces is an f-fibration if and only if 6 has the right lifting property
for the f-trivial cofibrations of cordinality < 24, Thus, by a transfinite inductive
construction, we may factor the composite of ¢: X — Y withe: Y C ExX*®Y to
give ep = j'i’ for an f-local equivalence i’ and f-fibration j’, where e is Kan's



1330 A. K. BOUSFIELD

weak equivalence to a fibrant space EX>Y. A pullback now gives the required
factorization of ¢. m]

Note. Theorem 4.6 and its proof can immediately be modified to show that
amap f actually determines a closed simplicial model category structure on the
category S of unpointed spaces.

5. Acyclic spaces and their loop spaces. We now let f: A — B be afixed
map in Ho, and consider the f-localization u: X — L¢X of a space X. The reader
should keep in mind the case of a (co)homological localization (see 2.5 and 2.6)
which will be studied more fully in Sections 10 and 11. We say that a space X
is f-acyclic when L{X ~ x, or equivalently by Theorem 4.4 when Paf)X ~ *.

The f-acyclic pointed spaces are closed under homotopy colimits and under
fiber extensions, but are not closed under most homotopy inverse limits. However,
the following key theorem will show that the loopspace of an f-acyclic H-space
is “almost” f-acyclic. A space M € Ho. is called a GEM when M is connected

and M ~ T K(xaM, ) with 7:M abelian.
n=1

THeOREM 5.1. If Y € Ho, is a connected f-acyclic H-space, then LY isa
GEM, as are the components of L; QY.

Thiswill be proved in 5.6 after some preliminaries, and will imply the related
results of [Bo 7], [Bo 8], and [DF 5]. For each space Y € Ho,, the loop space
QLY isf-local, and thus Qu: QY — QLs¢Y inducesamap \: LiQY — QLsY.
A fundamental result of Dror Farjoun ([DF 3]) and the author ([Bo 7]) is

THEOREM 5.2. If Y € Ho, isa connected space, then A: LiQY ~ QLs:Y.

Thus, in Theorem 5.1, it suffices to show that Ls¢Y isa GEM. Our main tool
from [Bo 7, Cor. 6.9] will be

Key LEmma 5.3. For connected spaces X, Y € Ho,, if map,(X,Y) is homo-
topically discreteandif m1Y actstrivially on [X, Y], thentheinclusion X ¢ SP>°X
induces an equivalence map, (SP°X,Y) ~ map, (X, Y).

The infinite symmetric product SP°X is a GEM with 7,SP>X = H,(X; Z)
by Dold-Thom, and we may obtain other GEMs by

Lemma 54. If M € Ho, isa GEM, then so are its homotopy retracts.

Proof. For a homotopy retractionr: M — N with homotopy fiber i: F — M,
choose amap h: M — [],, K(mnF, n) such that h.i.: =.F ~ m.F, and deduce that
F isa GEM with M ~ F x N. Then reverse the roles of F and N to conclude
that N is a GEM. m]
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To show that map, (X, Y) is homotopically discrete, it is generally not suffi-
cient to check that its base component is contractible (see e.g. [DM]). However,
this difficulty disappears when Y is an H-space.

Lemma 5.5. For connected spaces X, Y € Ho,, if map, (X, QY) ~ %, andif Y
isan H-space, then map, (X, Y) ishomotopically discrete and 71 Y actstrivially on

[X, Y].

Proof. Since Y isan H-space, thereisaHopf fibrationY — YxY — ZY whose
fiber inclusion is nullhomotopic (see e.g. [St, p. 5]). Hence, m1map, (X, ZY) acts
transitively on the components of map, (X, Y), and they must all be contractible
since the base component is. O

5.6. Proof of Theorem 5.1. Ly;Y isan H-space since Ly preserves products
inHo,, and Ls;Y isLs-acyclicsinceLtLst Y ~ LY ~ x. Thusmap, (L5t Y, QL5 Y)
~ x since QLs;Y ~ L; QY isf-local, and hence Ls;Y is aretract of SP*Ls¢Y by
Lemmas 5.5 and 5.3. Now LsgY isa GEM by Lemma 5.4. O

The GEMs in Theorem 5.1 have a special “transitory” property which we
now introduce. Recall that an abelian group G is called Ext-complete when
Hom(Q, G) = 0 = Ext(Q, G), and that such a group decomposes as

G ¥ Ext(Q/Z,G) ¥ [ [ Ext(Zp=,G)
p

where p ranges over all primes ([BK]). For a set J of primes, G is called Ext-J-
complete when it is Ext-complete with Ext(Zy~,G) = 0 for each p ¢ J.

Lemma 5.7. For abelian groups G and H, the condition Hom(G,H) = 0 =
Ext(G, H) holds if and only if there exist complementary sets of primes J and J’
such that: (i) GisJ-torsion and H is J-local; or (ii) GisJ-local and H is Ext-J-
complete.

Proof. This follows by [Bo 7, 5.5] and [Bo 1, 2.3]. O

CoroLLARY 5.8. For abelian groups G and H, if Hom(G, H) = 0 = Ext(G, H),
then K(H, n) isK (G, m)-null for all m,n > 1. Conversely, if K(H, n) isK(G, m)-null
for somem,n > 1withn > m+ 1, then Hom(G, H) = 0 = Ext(G, H).

Proof. By 5.7 and [Bo 2, 4.3], there exists a set J of primes such that: (i)
K(G,m) is HZg).-acyclic and K(H,n) is HZ;y.-local; or (ii) K(G,m) is
H(@pes Z/p)«-acyclic and K(H, n) is H(Dyey Z/p)«-local. Hence, K(H,n) is
K(G, n)-null by [Bo 2, 12.2]. The converse follows since K(H, m+ 1) must be
K(G, m)-null. O

A graded abelian group G, will be called transitory when Hom(Gp,, Gn) =0
for n> m+ 1 and Ext(Gn, G,,) =0 forn > m+ 2.
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ProrosiTion 5.9. For a GEM M, the homotopy .M istransitory if and only if
map, (M, QM) ~ x.

Proof. Thisfollows from Corollary 5.8 since map, (K (mmM, m), K(mnM, n)) ~
x for al m> nif and only if map, (M, QM) =~ x. O

A GEM M will be caled transitory when 7.M is transitory

Remark 5.10. By Lemma 5.7 and [BK], if M is a transitory GEM, then the
homotopy groups 7. Fp..M of its p-completion are trivial except in two successive
dimensions my, and my+1 with my,+1Fp0M torsion-free. In general, we may view
the transitory GEMs as “small abelian spaces,” using the language of [DFS].

We now obtain a stronger version of Theorem 5.1.

THeOREM 5.11. If Y € Ho, is a connected f-acyclic H-space, then Ly;Y isa
transitory GEM, as are the components of L; QY.

Proof. This follows for Ls;Y by 5.1 and 5.6, and then follows for L QY by
5.2 and 5.9. O

A space X € Ho, is called smple when X is connected with abelian w1 X
acting trivialy on X for n > 2. We need

ProposiTioN 5.12. If X € Ho, is a simple space with P?X a GEM and with
m X transitory, then X isa GEM.

Proof. Assumeinductively that the nth Postnikov section P"X isaGEM where
n > 2. Then H*(P" 1X; mh+1X) = 0 by Corollary 5.8 and H' (K (mnX, n); mns1X) =
Ofori <nandi=n+2, where the vanishing of

H*(K(m2X, 2); m3X) = Hom(I X, 73X)
follows using the exact sequence
X ® X &= [maX & mX ® Z/2 <— 0.
Since HY(P"1X;mw1X) = 0, the Serre spectral sequence now shows that
H™2(P"X; mh+1X) = 0, and thus P™1X is a GEM. Hence, X is a GEM by in-

duction. O

This leads to an easy proof of the following slightly enhanced theorem of
Dror Farjoun and Smith ([DFS)]).

THeorem 5.13. If X € Ho, isaspacewith Ls; X ~ %, then Ly X isatransitory
GEM.
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Proof. Since Ly X ~ %, X must be smply connected with L QX ~ % by The-
orem 5.2. Hence, Lys QX isatransitory GEM by Theorem 5.11, and its classifying
space Ls2 X is aso atransitory GEM by Proposition 5.12. m]

Finally, for later use, we need

ProrosiTion 5.14. If F is the homotopy fiber of a map of simply connected
gpaces X — Y and if wF istransitory, then F isatransitory GEM.

Proof. By Proposition 5.12, it suffices to show P?F isa GEM. Let Y — Y

be a map such that: mY = 7Y for i < 2; m3Y isthe cokernel of mX — m3Y;
and m,Y = 0 for n > 3. Construct a fiber sequence

P?F — K(mX,2) —» Y

by taking a Moore-Postnikov section of X — Y. The k-invariant of Y corresponds
to a homomorphism ¢: F'moY — m3Y vanishing on the image of MmoX — moY.
Using the exact sequence

1Y @ mF &= TmaY/TmX & TmF - 0,

we find that ¢ = 0 since m3Y C mF and Hom(m1F, moF) = 0. Hence Y and P2F
are GEMs. O

6. General fibration theorems. For a map f: A — B of pointed spaces,
we shall show in Section 9 that the functors Ly and L;Q “amost” preserve
homotopy fiber sequences. In preparation, we now develop a series of general
fibration theorems.

THEOREM 6.1. For a homotopy fiber sequence F — X — B of pointed con-
nected spaces, thereis a natural homotopy fiber sequenceLstF — LstX — Y and
a natural diagram

F s> X s> Y

bl

LstF ase— LyX age— Y

suchthat u': Y <— Y’ isa Zf-local equivalence and Y’ is Z%f-local.

The proof is in §6.8. We view U’ as a “mixture” of the Xf-localization and
the >2f-localization of Y. Generalizing a result of Dror Farjoun and Smith ([DFS,
Theorem A]), we now obtain

THEOREM 6.2. For a homotopy fiber sequence F — X — Y of pointed con-
nected spaces, if X — Y is a Zf-local equivalence, then Ly¢F is an f-acyclic
transitory GEM.
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Proof. In the homotopy fiber sequence LsiF — LsX — Y/, the first map is
nullhomotopic since the second composes with Y/ — LstY' ~ LY to give an
equivalence. Thus Ly¢F is an H-space by a theorem of Sugawara (since Ly¢F is
a homotopy retract of QY’), and is f-acyclic by [Bo 7, 4.8(ii) and 4.12] since
X — Y isaZf-local equivalence. Hence, Ls¢F is a transitory GEM by Theorem
5.11. O

The above theorem may be viewed as a partia converse to the following
result of [Bo 7, 4.8 and 4.12] or [DF 3].

THeoreM 6.3. For a homotopy fiber sequence F — X — Y of pointed con-
nected spaces, if F isf-acyclic, then X — Y isan f-local equivalence.

For a homotopy fiber sequence F — X — Y and localization functor L, the
homotopy fiber of the map

LF — fiber (LX — LY)

is called the L-error term. It measures the failure of LF — LX — LY to be a
homotopy fiber sequence. Note that the L¢-error term of QF — QX — QY is
the loop space of the Ls¢-error term of F — X — Y. The following theorem will
help to make these Ly¢-error terms accessible.

THEOREM 6.4. For a homotopy fiber sequence F — X — Y of pointed con-
nected spaces, the Lss-error term is naturally equivalent to Q fiber (LszY' —
LssY’), where Y’ is given by Theorem 6.1.

Proof. This follows by taking vertical fibersin the diagram of homotopy fiber
sequences

LsitF s85— LagX g85- Y ~ LY

| | l :

fiber @es— LgX @ Ly ~ LyY.

We now turn to the proof of Theorem 6.1, and start by recalling

THeOREM 6.5. For a homotopy fiber sequence F — X — Y of pointed spaces
with X and Y connected, thereis a natural homotopy fiber sequence LiF — X —
Ls¢Y and a natural diagram

F ass-> X ass- Y
e [v e
LiF ase- X ase— LsY

such that i: X — Xisan f-local equivalence and X is =f-local.
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Proof. This follows by [Bo 7, 4.1 and 4.12] using QX ~ fiber (LQY — L¢F)
to show that X is Zf-local. O

We view T as a “mixture” of the f-localization and the Zf-localization. It
takes the latter form in the following case.

Lemma 6.6. If F — Xisnullhomotopic in the above homotopy fiber sequence,
thenT: Lt X ~ X.

Proof. In the diagram of homotopy fiber sequences

QX ez QY <« F

ool s

QX aee— LiQY sse— LiF,

it suffices to show that QU is an f-local equivalence. This follows since L pre-
serves products and since the principal fiber sequence QX — QY — F is equive
lent to a projection sequence QX — QX x F — F because it has a cross-section.

m|

For afibration X — Y, we let Pow(X/Y) denote the simplicial space (i.e. bism
plicial set) with

POW(X/Y)m. =X Xy -+ Xy X

given by the fiber product of m+ 1 copies of X over Y, and with horizontal sim-
plicial operators given by the usual formulae ([Ma, 1.4]). Applying the diagonal
functor diag(<) to the natural augmentation map Pow(X/Y)pe — Y, we obtain

Lemma 6.7. For a fibration X — Y, there is a natural weak equivalence
diag Pow (X/Y) ~ Y.

Proof. Thisfollows by [BK, p. 335] or [BF, B.2] since the augmentation map
Pow(X/Y)en — Yy is aweak equivalence in each vertical dimension n. m]

6.8. Proof of Theorem 6.1. For the homotopy fiber sequence F — X — Y,
there is a natural square

Pow(PF /F) sss— Pow(X/X)

| |

Pow(PF /%) <ss— Pow(X/Y)

of pointed simplicial spaces, which restricts to a homotopy fiber square in each
horizontal dimension m, where PF — F is the path fibration on F. Since
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Pow(PF /) isweakly equivalent to asimplicial point, we may identify Pow(PF /F)
with the homotopy fiber of Pow(X/X) — Pow(X/Y) and obtain a diagram of ho-
motopy fiber sequences

diag Pow(PF/F) «ss— diag Pow(X/X) sss—  diag Pow(X/Y)

Jo s b

diag Ly Pow(PF/F) <es— diag Pow(X/X) <es— diaglsiPow(X/Y)

by Theorem 6.5 and [BF, B.4]. The top sequence is weakly equivalent to F —
X — Y by Lemma 6.7, and 3 is equivalent to u: X — LstX by Lemma 6.7
since Pow(X/X) is constant at X. We claim that Pow(PF /F) is equivalent to the
pointed simplicia space QpisF with

(QbisF)me = Map, (A™/sk°A™, F)

form> 0asin[Bo 7, 3.3]. This follows since the weak equivaences of pointed
cosimplicial spaces

{C KA /SKOAM} = {A™ U C SkPA™}, o {AM/sK0A™

are carried by map, (<; F) to weak equivalences relating Pow(PF /F) and QpisF,
where C isthe unreduced cone functor. Since diagQypsF — diagLs QpisF isweakly
equivalenttou: F — LysF by [Bo 7, 3.4 and 3.6], sois« in our diagram. We now
let : Y — Y’ correspond to ~. It is an Lss-equivalence since it is a homotopy
colimit of Ls¢-equivalences by [BK, p. 335]. Finaly, Y’ is Z2f-local since QY’ ~
fiber (szF — szX). O

7. Nullifications with respect to Moore spaces. Before continuing our
study of fibration theorems for Ls;, we must determine the A-nullification of
a nilpotent space X in two important cases: (i) when A is a wedge of Moore
spaces; and (ii) when X is a Postnikov space or other “generalized polyGEM.”
These nullifications act very much like classical localizations and completions,
transforming homotopy groups in an elementary arithmetic way. Our results ex-
tend those of [Bo 7], [Bo 8], and [Ca 2].

7.1. Nullifications of groups. A group M is called G-null or G-reduced
for a group G when Hom(G, M) = {1}. As explained in [Bo 7, 5.1] and more
generaly in [Ca 2], each group M has a maximal G-null quotient group M//G
called the G-nullification or G-reduction of M. It is the initial example of a
homomorphism from M to a G-null group. The kernel of the quotient map M —
M//G is denoted by TcM and called the G-radical of M. Its G-nullification
TeM//G must be trivial, since the G-null groups are closed under extensions.
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The following genera examples are easily verified:

(i) For aset | of primes, if G is an I-torsion abelian group with G/pG # 0
for each p € I, and if M is a nilpotent group, then M//G is the image of the
localization M — M[l~1], and IgM is the maximal |-torsion subgroup of M.

(ii) For a set J of primes, if G isauniquely J-divisible abelian group having
Z[J~1] as a direct summand, and if M is a nilpotent group, then M//G is the
image of the Ext-J-completion M — T[,c; Ext(Zp~, G), and TgM is the maximal
J-divisible subgroup of M (see [BK, p. 177]).

The next three propositions will help to reduce the nullification theory of
nilpotent groups to that of abelian groups. Let abG denote the abelianization
of G.

ProposiTION 7.2. For a group G and nilpotent group M with center ZM, the
following are equivalent:
(i) MisG-null
(i) ZMisG-null;
@iii) M isabG-null.
Proof. Let {Z"M},>1 be the upper central series of M. By [Wa, 2.1],
Hom(Z™M/Z"M, Z'M) separates points of Z™M/Z"M for n > 1, and thus
Z™1IM/Z"M embeds as a subgroup of a product of copies of Z'M. Hence, M is

G-null if and only if Z*M is G-null, and the result follows since Z1G is abelian.
O

This implies
ProposiTion 7.3. For agroup G andnilpotentgroupM, M //GequalsM/ /abG.
Let {I'sM}s>1 denote the lower central series of M.

ProrosiTioN 7.4. For a group G and nilpotent group M, the following are
equivalent:
@ M//G=0;
(i) (abM)//G=0;
(iii) (FsM/T'1M)//G=0for s> 1.

Proof. The implications (iii) = (i) = (ii) are straightforward, and (ii) = (iii)
follows using the natural Lie bracket epimorphism

M ® - - @ abM - TM/T 1M, O

By a Moore space M(G,n) € Ho, for G abelian and n > 1, we mean a
space equivalent to a pointed CW-complex whose only nonbasepoint cells are
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in dimensions n and n + 1, and whose only reduced integral homology is G in
dimension n. Thus we alow M(G, 1) to range over many different homotopy
types for a given abelian group G. For a sequence {G;}i>1 of abelian groups,
let MG = V5 M(G;, i) be a corresponding wedge of Moore spaces; let MG(n) =
VILi;M(G;, i) be the subwedge for 0 < n < oo; and let J, denote the set of all
primes p such that G1 @ - - - @ Gy, is uniquely p-divisible. Generalizing results of
[Bo 7], [Bo 8], and [Ca 2], we have

THeEOREM 7.5. For anilpotent spaceY € Ho,, the nullification PygY isnilpo-
tent with natural isomorphism

Tr1PmcY ¥ (Mne1Pmcn)Y)//(G1 @ - - - @ Gpea)
for n > 0. Moreover, for i > n+ 1, thereisa natural isomorphism
TiPvemn)Y = miY @ Z(3p)

when G, . .., G, are all torsion, and otherwise there is a splittable natural short
exact sequence

05— [[ Ext(Zpe,mY) < miPucmY <— [] Hom(Zy<, mi—1Y) < 0.
pEdn PEIn

The proof will depend on the following fundamental result of Dror Farjoun
which may be deduced from Theorem 6.5.

THEOREM 7.6. For A € Ho,, Pa preserves each homotopy fiber sequence
F — X — Y of pointed spaces such that Y is A-null and connected.

7.7. Proof of Theorem 7.5. To determine Py g,1)Y, we use the approach of
Casacuberta ([Ca 2]). Let Y be the homotopy fiber of the Postnikov map Y —
K(m1Y//G1,1), and apply Proposition 7.2 and Theorem 7.6 to give a homotopy
fiber sequence

PM(Gl,l)v - PM(Gl,l)Y - K(WlY//Gl, 1).

Then 7r1P|\/|(G1,1)? = (Wl?)//Gl = x by Proposition 7.3, and PM(Gl,l)? isthe HR,-
localization of Y by Lemma 5.7 and [Bo 2, 4.3], where R = Z, for Gy torsion
and R= Dpea, Z/p otherwise. Thus, 71Pwc, 1Y ¥ m1Y//G1 and miPuc,1Y is
given by the arithmetic expressions of Theorem 7.5 fori > 2. Hence, miPwG, 1Y
is a nilpotent 71Pwm(c,,1)Y-module, and Py c,,1)Y is nilpotent. The theorem now
follows asin [Bo 7, §5] or [Bo 8, §4]. O
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We easily deduce

CoroLLARY 7.8. AnilpotentspaceY € Ho, isMG-nullifandonlyifK(Z1m1Y, 1)
and K(m,Y, n) are MG-null for eachn > 2.

A space A is said to kill a space X when PaX ~ .

CoroLLARY 7.9. For a nilpotent space Y € Ho,, MG killsY if and only if it
killsK(Ism1Y/Tsram1Y, 1) and K(mpY, n) for eachs > 1andn > 2.

Proof. By Theorem 7.5, MG kills Y if and only if it kills K(m,Y,n) for
each n > 1. Given that MG kills K(m1Y, 1), let 'Y be the smallest nontriv-
ia term in the lower central series of m1Y. Then Hom(Zp~,Mi71Y) is a direct
summand of Hom(Zy~, 1Y) for each prime p, since it is Ext-complete and the
quotient is contained in the torsion-free group Hom(Zy~, 71Y/Itr1Y). Thus MG
kills K(Fyw1Y, 1) by Proposition 7.4 and Theorem 7.5. Hence, MG kills each
K(Fsm1Y/Ist1mY, 1) by an inductive argument using Theorem 6.3, and the re-
sult follows easily. m|

Note 7.10. We cannot replace “s > 17 by “s=1" in the above result. For in-
stance, M(Q, 1) kills K(abN, 1) but does not kill K(N, 1), where N is the nilpotent
group of [Wa, 5.2] with abN = Q ® Q, IM'oN = Zp~, and '3N = 0.

8. Generalized polyGEMs and their nullifications. In [DFS], Dror Far-
joun and Smith introduced the notion of a polyGEM to describe the Ls2;-error
terms of fiber sequences. Roughly speaking, a polyGEM is built from GEMs in
the same way as a Postnikov section is built from Eilenberg-MacL ane spaces.
We now introduce a class of generalized polyGEMs and determine their nullifica-
tions. Thiswill be used in our study of Ls;-error terms and may be of independent
interest. Our results extend those of [Bo 8, §4].

Definition 8.1. A space X € Ho, is Z/p-Postnikov for a prime p, when ;X
is uniquely p-divisible for sufficiently largei. A space X € Ho, is a generalized
polyGEM when Psy z/pn)X is Z/p-Postnikov for each n > 1 and prime p.

ProrosiTioN 8.2. If aspace X isa GEM, then it is a generalized polyGEM.

Proof. This follows since Psiz/pnX is a ZK(Z/p,n)-null GEM by [Bo 8,
2.11]. m]

ProrosiTioN 8.3. In a homotopy fiber sequence F — X — Y of pointed con-
nected spaces, if any two of the spaces are generalized polyGEMs, then so is the
third.

Proof. This follows since the Psy z/pn)-€rror term of the fiber sequence is of
the form K(G, n) by [Bo 7, 8.1]. m]

The following four propositions on generalized polyGEMs now follow easily.
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ProrosiTion 8.4. The generalized polyGEMSs are closed under homaotopy re-
traction.

ProrosiTion 8.5. A connected Postnikov spaceis a generalized polyGEM.

ProrosiTion 8.6. For i > 0, a connected space X € Ho, is a generalized
polyGEM if and only if its i-connected section X(i) is a generalized polyGEM.

For a nilpotent space Y € Ho,, the homotopy fiber of the localization map
Y — Y[1/p] is called the p-torsion component of Y and denoted by 7,Y.

ProrosiTion 8.7. For i > 1, a connected space X € Ho, is a generalized
polyGEM if and only if 7,(X(i)) is a generalized polyGEM for each prime p.

We now determine the A-nullification of a nilpotent generalized polyGEM
X, for an arbitrary connected space A. Let MHA = VX M(HiA,i) be a corre-
sponding wedge of Moore spaces where M(H1A, 1) is chosen so that there is
an Hjp-equivalence M(H1A,1) — A mapping w1 surjectively. Then MHA Kkills
A, since it successively kills the homology groups of A. Thus there is a natural
transformation Pa — PynHa by 4.5,

THEOREM 8.8. For a connected space A and a nilpotent generalized polyGEM
X, thereisanatural equivalence PaX ~ PyuaX, and PaXisanilpotent generalized
polyGEM.

The proof isin §8.16. Thistheorem showsthat m,PaX = m,.PuuaX isgiven by
the arithmetic expressions of Theorem 7.5. Moreover, it combines with Corollaries
7.8 and 7.9 to give

CoroLLARY 8.9. Anilpotent generalized polyGEM X is A-null for a space A if
and only if K(Z1r1X, 1) and K (X, n) are A-null for n > 2.

CoroLLARY 8.10. A space A kills a nilpotent generalized polyGEM X if and
only if AkillsK(Ism1X/T s+1m1X, 1) and K(mpX, n) for eachs > 1and n > 2.

By Theorem 4.4, this implies

CoroLLARY 8.11. A nilpotent generalized polyGEM X is f-acyclic for a map
f: A— Bifand onlyif K(I'sm1X/Tsy1m1X, 1) and K(m,X, n) aref-acyclic for each
s>l1landn> 2.

For instance, this shows that a nilpotent Postnikov space X is E,-acyclic
for a generalized homology theory E, if and only if K(I'sm1X/Is¢1m1X, 1) and
K(mnX, 1) are E,-acyclic for each s> 1and n > 2.

To prove Theorem 8.8, we need four lemmas.

Lemma 8.12. If X isa nilpotent generalized polyGEM, then so is PypaX.
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Proof. Since PypuaX is nilpotent by Theorem 7.5, it suffices by Proposi-
tion 8.7 to show that 7PumHaX(1) is a generalized polyGEM for each prime
p. If H,A is uniquely p-divisible, then the nullification map X — PyuaX is
an HZ/p.-equivalence of nilpotent spaces and consequently induces an isomor-
phlsm 7TiTpX<l> = ﬂ'iTpPMHAX<1> for i > 2. In this case, TpPMHAX<1> must be
a generalized polyGEM because m,X(1) is. If H.A is not uniquely p-divisible,
then mi7oPmHaX(1) = O for sufficiently large i by Theorem 7.5. In this case,
ToPmHaX(1) is a generalized polyGEM by Proposition 8.5. O

LemmA 8.13. For n > 2and anonzero p-torsion abeliangroup G, K(G, n) kills
each (n < 1)-connected generalized polyGEM X with p-torsion homotopy groups
and with m,X/p = 0 when G/p = 0.

Proof. Since Psyz/pn+1X is @ Postnikov space with p-torsion homotopy
groups and with the same (n+1)-Postnikov section as X, K(G, n) kills Psxz/pn+1)X.
Since K(G, n) aso kills K(Z/p,n+1) and ZK(Z/p,n+ 1), it must kill X. m|

Lemma 8.14. For n > 2 and an abelian group G with G® Q # 0, K(G, n) kills
each (n < 1)-connected rational space X.

Proof. Since K(G, n) kills K(Q, i) for i > n, it kills the rational sphereSiQ for
i > n, and thus kills the Moore spaces M(H; X, i) for i > n. Hence, K(G, n) kills
X. O

Lemma 8.15. If X isa generalized polyGEM, and if a space W kills K(; X, i)
for each i, then W kills X.

Proof. Choose n > 2 such that either ;iX® Q=0for eachi > nor ;X ® Q
Z 0 for some k with 2 < k < n. Since W kills the Postnikov section P"X,
it suffices by Theorem 6.3 to show that W kills the n-connected section X(n).
By Lemma 8.14, W kills QK(7iX,i)q for i > n and kills X(n)q. Hence, for
each prime p, W kills 7pK(miX,i) for i > n, and we must show that it kills the
generalized polyGEM 1pX(n). This follows easily from Lemma 8.13. m|

8.16. Proof of Theorem 8.8. The homotopy fiber F of the nullification
map X — PmpyaX is a nilpotent generalized polyGEM by Lemma 8.12 and
Proposition 8.3. Since MHA kills F by Theorem 7.6, it killsK(I'sm1F /Ts¢1m1F, 1)
and K(mnF,n) for each s > 1 and n > 2 by Corollary 7.9. Since SP*A ~
SP>*MHA, the space A must also kill these abelian Eilenberg-MaclL ane spaces
by [Bo 8, 3.2]. Hence, A kills F by Lemma 8.15, and X — PynaX is a Pa-
equivalence by Theorem 6.3. Since MHA Kkills A, we conclude that PyyaX is
A-null and that X — PpnaX is the A-nullification. O

9. The main fibration theorem. Our Main Theorem 9.7 will show that the
functors Ly and L Q “amost” preserve homotopy fiber sequences. To understand
the error terms, we require some preliminaries.
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A graded abelian group G, will be called k-transitory for a positive integer
k when Hom(Gp,, Gp) = 0 for n<m > k and Ext(G,, Gp) =0 for n&m > k+ 1.
Note that “1-transitory” means “transitory” in the sense of Proposition 5.9.

ProrosiTion 9.1. For a simple space X, the homotopy 7, X is k-transitory if
and only if X is a generalized polyGEM with map, (X, QXX) ~ x.

Proof. If m, X is k-transitory, then X is a generalized polyGEM by Lemma 5.7
and Proposition 8.7, and map, (X, Q*X) ~ * by an inductive argument using
Corollaries 8.9 and 5.8. Conversely, if X is a generalized polyGEM with
map, (X, QKX) ~ x, then K(mi+X, i) is X-null for i > 1 by Corollary 8.9. Since X
killsitself, it also kills each K(7; X, j) by Corollary 8.10. Consequently, K(j+X, i)
is K(mjX,j)-null fori,j > 1, and 7, X is k-transitory by Corollary 5.8. m]

Definition 9.2. A space X € Ho, is a k-transitory polyGEM if:
(i) X isthe homotopy fiber of a map of simply connected spaces; and
(i) m.X isk-transitory.

Condition (i) implies that X is simple, and (i) holds when X is simply con-
nected or when X is a connected H-space (and thus has a Hopf fiber sequence
X — X x X — ZX). By Proposition 9.1, a k-transitory polyGEM is a generalized
polyGEM, and by Proposition 5.14 we have

ProrosiTion 9.3. A space X € Ho, isa 1-transitory polyGEM if and only if X
isatransitory GEM.

By Proposition 9.1, ak-transitory polyGEM X is =kX-null and has a Postnikov-
like decomposition

X o~ PZkXX A szflxx S - S Py X & Py X ~ %,

ProrosiTion 9.4. If X is a k-transitory polyGEM, then the homotopy fiber F;
of PsiyX — Psi_1yXisatransitory GEM for 1 <i < k.

Proof. Since QF; is 2 ~1X-null and since '—1X kills F; by Theorem 7.6,
we have map, (F;, QF;) ~ *. Since X is a homotopy fiber of a map of simply
connected spaces, so is F1 by Theorem 6.5. Thus, since F; is (i < 1)-connected,
Propositions 9.1 and 9.3 show that F; is a transitory GEM. O

In 9.16 we shall prove

THeorem 9.5. For a mapf: A — B with f,: moA = 7B and for a connected
space X in Ho,, the homotopy fiber of Ls2 X — Ls¢X isa 2-transitory polyGEM.

Remark 9.6. By Lemma 5.7 and [BK], if M is a 2-transitory polyGEM, then
the homotopy groups of its p-completion m.Fy~M are trivial except in three
successive dimensions m,, My + 1, and my + 2 with 7my+2Fp<M torsion-free.



HOMOTOPICAL LOCALIZATIONS OF SPACES 1343
Theorem 9.5 immediately combines with Theorems 6.4 and 5.2 to give

MAIN THEOREM 9.7. For a map f: A — B with f,: mgA ¥ woB and for a
homotopy fiber sequence F — X — Y of pointed connected spaces, the Ly -error
termis the loop space of a 2-transitory polyGEM, and the Ls Q-error termis the
double loop space of a 2-transitory polyGEM. In particular, the components of
these error terms are 2-transitory polyGEMS.

Recall that the Lst-error and Ls Q-error terms are the homotopy fibers of the
maps

LstF < fi ber(szX S Lyt Y)
L: QF < fiber(Li QX <— LiQY).

The theorem shows that Ly almost preserves a homotopy fiber sequence F —
X — B, while Ly almost preserves QF — QX — QB. Before turning to the proof
of Theorem 9.5, we shall refine our main theorem to show that the components
of the above error terms are often GEMs.

Lemma 9.8. A connected H-space X isa GEM if and only if the p-completion
Fpeo X isa GEM for each prime p.

Proof. Thisfollows by astraightforward arithmetic square argument ([DFDK]).
m|

Lemma 9.9. For amap f: A — B with f,: mpA = 7B and for a connected
space X, let F be the homotopy fiber of u: Ls3X — Ls2¢X. Then the Hopf map
n: Q°F — Q3F is null-homotopic.

Proof. This follows since the f-equivalence Q%u: Q%Ls3X — Q2%Lsx X has
the left lifting property with respect to the map Q3u: QS3Lss X — Q3Ls2 X of
f-local spaces. m|

9.10. Refinements of Main Theorem 9.7. For a map f: A — B with
fo: moA = meB and for a homotopy fiber sequence F — X — Y of pointed
connected spaces, it is now straightforward to show that the following spaces
have GEM components: the Ls¢-error term localized at odd primes; the L Q-
error term localized at odd primes; and the L;Q%-error term. However, we do
not know whether the Ls¢-error term and the Ls Q-error term always have GEM
components.

We devote the rest of this section to proving Theorem 9.5. Let f: A — B be
a fixed map with f,: mpA = moB.

Lemma 9.11. For aconnected space X, the homotopy fiber F of Ly X — Ly X
hasthefollowing properties: (i) F isthehomotopy fiber of amap of simply connected
spaces; (ii) F isf-acyclic; (iii) LstF isa GEM; and (iv) F is Z%f-local.



1344 A. K. BOUSFIELD

Proof. Property (i) follows since miLs2 X = L5t X; properties (i) and (iii)
follow from Theorem 6.2; and property (iv) follows since Ly X and Ly X are
>?f-local. O

Our main task will be to show that a space F with the above propertiesis a
generalized polyGEM. We shall use

LemmA 9.12. Let F¥ — F — F” be a homotopy fiber sequence of connected
spacessuchthat F is>?f -local and F’ is>f -acyclic. If F” isageneralized polyGEM,
thensoisF.

Proof. In the fiberwise localization diagram

F' ses- F aess F

| .

B L
(see[Bo 7] or [DF 3]), LszF’' isa GEM by Theorem 5.13 since F’ is Zf -acyclic.
Hence, F is a generalized polyGEM by Proposition 8.3. Since F — F is a Z%f-

equivalence and F is Z?f-local, F is a retract of F, and the lemma follows by
Proposition 8.4. m|

Lemma 9.13. Each K(Z/p, n) iseither f-acyclic or f-local.

Proof. Since K(Z/p, n) istheinfiniteloop space of an HZ /p-module spectrum,
Corollary 2.11 of [Bo 8] shows that LK (Z/p, n) ~ K(V, n) for a Z/p-module V.
If V #0, then K(Z/p,n) is aretract of K(V,n) and is f-local. m|

9.14. The natural map F — JF. For p prime, let n, > 0 be the largest
integer such that K(Z/p,np) is f-local, or let ny = co when K(Z/p,i) is f-local
for all i. We call n, the mod p transitional dimension of L. For a simple space
F, we let J,F be the modified (n, + 2)-Postnikov section of FyoF with

TiFpsoF fOri <np+2
0 fori>np+2

where TiFpoF is the maximal torsion-free Ext-p-complete quotient of miFpoF
(see [BF, p. 182]). We construct JF as a homotopy pullback in the square

I aes-  [[F
p

l l

Fo wss— ( 1;[ JpoF)o

and we let F — JF be the induced map.
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Lemma 9.15. IfFisanf-acyclicsimplespace, then JF isageneralized polyGEM
and QpJF isa GEM, where Qg is the connected loop functor.

Proof. Since F is f-acyclic and K(Z/p,i) is f-loca for i < np, H‘(F;Fp) =
0 for i < np. Thus FpoF is ny-connected, and the conclusions follow from
Proposition 8.7 and Lemma 9.8. O

Lemma 9.16. If F isan f-acyclic simple space such that Lz F isa GEM, then
F — JFisaXf-local equivalence whose homotopy fiber F is Zf -acyclic.

Proof. A comparison with the arithmetic square of F shows that 7jF = 7 JF
for i < 1. Thus, to show that F — JF is a 2f-local equivalence, it suffices by
Theorem 5.2 to show that QoF — QgJF is an f-loca equivalence. QoJF is a
GEM by Lemma 9.15. Since K(Z/p, np +1) is f-acyclic, if M is an f-local GEM,
then miM is p-torsion-free for i = ny + 1 and uniquely p-divisible for i > ny + 2
by Corollary 5.8. Hence, QoF — QoJF is a map, (< FpscM)-equivalence as
well as a rational equivalence and is therefore a map, («<; M)-equivalence. Thus
QoF — LiQoJF isthe universal map in Ho, from QgF to an f-local GEM, since
L;QoJF is a GEM by [Bo 8, 2.11] or [DF 3]. Since LyfF is a GEM, the map
QoF — Lt QoJF hasthe same universal property, and therefore L QoF ~ Lf QpJF.
Consequently, F — JF is an Lss-equivalence, and Ls¢F is a GEM by Theorem
6.2. Since K(Z/p, ny +2) is f-acyclic, milstF is p-torsion-free for i = n, +2 and
uniquely p-lelsbIefor i > np+ 3, and hence JLstF ~ szF Since JF ~ %, we
find that F — Lx¢F is nullhomotopic and therefore LstF ~ x. O

9.17. Proof of Theorem 9.5. It will suffice to show that a space F, satisfying
the conditions of Lemma9.11 (i)-(iv), isa2-transitory polyGEM. In the homotopy
fiber sequence F — F — JF, the space F is =f-acyclic by Lemma 9.16, and JF
is a generalized polyGEM by Lemma 9.15. Thus, F is a generalized polyGEM
by Lemma 9.12 since it is 2f-local. Moreover, since F is f-acyclic and Q%F
is f-local, map,(F, Q°F) ~ % and thus =,F is 2-transitory by Proposition 9.1.
Hence F is a 2-transitory polyGEM. O

10. On E.-equivalences and E.-localizations of spaces. For a spectrum
E, the E.-equivalences and E.-localizations of spaces may be viewed as f-local
equivalences and f-localizations where f is a huge E,-equivalence as explained
in 2.5. In this section, we develop some general homological consequences of
the preceding work, culminating in the result that the E,-localization functor “al-
most” preserves fiber sequences of connected H-spaces (Theorem 10.10). We then
briefly discuss the examples of Morava K-theories and stable cohnomotopy theory.
We begin with an elementary lemma which permits us to study E.-equivalences
and E,-acyclicity at individual primes.

Lemma 10.1. For a spectrum E, a map of spacesis an E,-equivalence if and
only if it isan EQ..-equivalence and an E/p..-equivalence for each prime p.
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Let trangE denote the mod p transitional dimension of E (see 9.14). Thus
tranpE isthelargest integer i such that E.K(Z/p,i) 70, or isco when E.K(Z/p,i) #
O for al i. In [Bo 6] we proved

THeorem 10.2. For a spectrum E and prime p:
(i) iftrangE =0,thenE/p ~ O;

(i) if trangE = oo, then the E/p,-equivalences of spaces are the same as the
H..(<5 Z/p)-equivalences.

We now prove complementary results.

Lemma 10.3. Let E be a spectrum with trangE = n and E/\@K(Z, n+1) %0,
where pisaprimeand 0 < n < oo. Then a nilpotent generalized polyGEM X
is E/ps-acyclic if and only if m+1X/torsion and 7; X are uniquely p-divisible for
i <n.

Proof. By Corollary 8.11, X isE/p.-acyclicif and only if K(I'sm1 X/ ssam1X, 1)
and K(7i X, i) are E/p.-acyclic for eech s > 1 and i > 2. The lemma now follows
by applying the E/p.-acyclicity criteriaof [Bo 6, 4.3] to these Eilenberg-MacL ane
spaces. O

Similarly,

Lemma 10.4. Let E be a spectrum with trangE = n and %K(Z, n+1) =0,
wherepisaprimeand 0 < n < co. Then a nilpotent generalized polyGEM X is
E/p.-acyclic if and only if X is p-divisible and ;X is uniquely p-divisible for
i <nsl

The preceding results combine to give necessary and sufficient conditions for
the E.-acyclicity of nilpotent generalized polyGEMs. We do not know of any
spectrum E satisfying the hypotheses of Lemma 10.4, and our main examples
will be covered by the following theorem. For a spectrum E, we let PE denote
the set of primes p such that E/p is nontrivial. For 0 < n < oo, we say that
E has acyclicity level n if tran,E = n and %K(Z,n + 1) # 0 (or equivaently
E.K(Zpoo,n) 7 0) for each p € PE. For instance, the nth Morava K-theory
spectrum K(n) has acyclicity level n by [RW], and other examples are discussed
in Sections 10.11 and 10.12.

THeOREM 10.5. Let E be a spectrum of acyclicity level nwhere 0 < n < oo.
Then a nilpotent generalized polyGEM X is E.-acyclic if and only if 7,1 X/torsion
and m; X are uniquely PE-divisible for i < n, and 7, X istorsion when 7.E is not
torsion.

For a spectrum E, we next derive necessary conditions for a nilpotent gener-
alized polyGEM to be E.-local. Let RE = @ pg Z/p When 7.E is torsion, and
let RE = Z(pg) otherwise. Asin [Bo 6] and [Bo 2], we have
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Lemma 10.6. Each HRE-equivalence of spacesisan E,.-equivalence, and each
E..-local spaceis HRE-local. A nilpotent space X is HRE-local if and only if 7, X is
Ext-PE-complete when 7,.E istorsion and is PE-local otherwise.

THeorem 10.7. If E isa spectrum of acyclicity level nwhere 0 < n < oo, and
if X isan E,-local nilpotent generalized polyGEM, then: 7, X is Ext-PE-complete
when 7.E is torsion and is PE-local otherwise; m+1X is torsion-free; and, for
i > n+2, miXiszerowhen 7.E istorsion and is rational otherwise.

Proof. Since X is E.-local and K(Z/p,]) is E.-acyclic for j > n+1, K(mX,i)
is K(Z/p,j)-null for each i by Corollary 8.9. Hence, the theorem follows using
Lemma 10.6. O

We now adapt our Main Theorem 9.7 to show that the E.-localization functor
preserves a homotopy fiber sequence of loop spaces up to an error term with at
most three nontrivial homotopy groups. This extends a similar result of Dror
Farjoun and Smith ([DFS]) for a fiber sequence of double loop spaces.

THeorem 10.8. If E isa spectrum of acyclicity level nwhere0 < n < oo, and
if F — X — Y is a homotopy fiber sequence of simply connected spaces, then
the E..-localization functor preserves QF — QX — QY up to an error term Q2D
with mD = Ounlessn+1 < i < n+ 3. This conclusion holds more generally
when F — X — Y isa fiber sequence of connected spaces such that the kernel of
mF — mXisExt-PE-complete when 7, E istorsion and is PE-local otherwise.

Proof. Let f be an E.-equivalence such that L; is the E,-localization functor,
and let LyfF — LstX — Y’ be the fiber sequence of Theorem 6.1. By Theorems
5.2 and 6.4, the L;-error term of QF — QX — QY is Q2D where D is the
homotopy fiber of Y’ ~ LsxY’' — LsY’. Since the kerndl of miLsiF — mLsX
equalsthe kernel of mF — m X, wefind that woY’ is Ext-PE-complete when 7. E
istorsion and is PE-loca otherwise. Hence, D is an HRE-local space. Moreover,
by Theorem 9.5 and Lemma 9.11, D is an E,-acyclic 2-transitory polyGEM and
Q2D is E,-local. The desired results now follow from Theorems 10.5 and 10.7.

O

Note. We may easily obtain more detailed information on D. If 7.E istorsion,
then 7,.D is Ext-PE-complete with 71D adjusted (i.e. torsion-by-rational) and
with m+3D torsion-free. If m.E is not torsion, then w.D is PE-torsion with
m+3D = 0. Moreover, by 9.10, if PE consists of odd primes, then QD is a GEM,
and if F — X — Y is a fiber sequence of loop spaces and loop maps, then
Q2D has GEM components. For simplicity, we shall henceforth omit detailed
descriptions of error terms.

CoroLLARY 10.9. If E is a spectrum of acyclicity level n where 0 < n < oo,
and if X is a simply connected H-space, then the homotopy fiber of the natural
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map B(QX)g — Xg is an H-space A with mA = Ounlessn < i < n+ 2. This
conclusion holds more generally when X is a connected H-space such that 71X is
Ext-PE-complete when 7.E istorsion and is PE-local otherwise.

Proof. Since X isaretract of aloop space QX it sufficesto assume that X =
QY for a simply connected space Y. The map B(QX)e — Xg is now Ly QY —
L:QY for f as above, and its homotopy fiber is now A = QD where D is the
homotopy fiber of Ls2Y — LsY. Asin Theorem 10.8, miD =0 unlessn+1 <
i < n+ 3, and the corollary follows. O

Using the above results, we finally show that the E.-localization functor
“amost” preserves fiber sequences of H-spaces.

THeorem 10.10. If E is a spectrum of acyclicity level n where 0 < n < oo,
then the E,-localization functor preserves a homotopy fiber sequence of connected
H-spacesF — X — Y uptoanerror termAwithmA =0unlessn<l <i < n+1

Proof. Since the HRE-localization functor preserves the fiber sequence and
does not affect A, we may assume that F, X, and Y are HRE-local. By Corollary
10.9, the homotopy fibers of the maps B(QF)e — Fg, B(QX)e — Xg, and
B(QY)e — Y have trivia mj-groups unlessn < i < n+2. By Theorem 10.8, the
functor B(Q<)e preserves the fiber sequence up to an error term with trivial
groups unlessn < i < n+ 2. Thus, the original error term A has 7 A = 0 unless
nel <i<n+3, and has 7, A torsion when w.E is not torsion. Hence, the
Postnikov map A — P™IA is an E,-equivalence, since its fiber is E.-acyclic by
Theorem 10.5. This implies A ~ P™A since A is E,-local. O

The preceding results apply to many important (co)homology theories, and
we conclude with some examples.

10.11. The Morava K-theories. For the nth Morava K-theory K(n), at a
prime p with n > 1, Ravenel and Wilson ([RW]) have shown that K(Z/p,i) is
K(n).-acyclic if and only if i > n, while K(Z,i) is K(n).-acyclic if and only if
i > n+1. (See[IW, Appendix] or [HRW, 4.4] for an explanation of the casep = 2.)
Hence, K(n) has acyclicity level n, where 7.K(n) is torsion and PK(n) = {p}.

For the BP-related spectrum E(n) with 7.E(n) = Zp)[ 1, - - -, th-1, th, 1 2], @
map is an E(n).-equivalenceif and only if it isa K(i).-equivalencefor 0 <i <n
where K(0) = HQ. Hence, E(n) has acyclicity level n, where m.E(n) is not torsion
and PE(n) = {p}. Likewise, the spectrum K of periodic complex K-theory has
acyclicity level 1, where 7.K is not torsion and PK = {all primes}.

10.12. Stable cohomotopy theory.  Since stable cohomotopy theory * = S*
is the cohomology theory represented by the sphere spectrum S, it has the same
equivalences as some homology theory VS, by 2.6, and hence =*-localizations
of spaces and spectra always exist. Chun-Nip Lee ([L€]) has shown that the space
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K(Z/p,2) is n*-acyclic for each prime p, and he has implicitly shown that each
m*-equivalence of spaces is a K,-equivaence (see Lemma 10.13 below). This
implies that K(Zp~,1) is not 7*-acyclic. Thus VS has acyclicily level 1, where
. VSisnot torsion and PVS = {al primes}. From this standpoint, 7* resembles
K., but there are many examples of K.-equivalences, such as the Adams maps
of mod p Moore spaces, which are not 7*-equivalences.

We have used the following result shown implicitly by Chun-Nip Lee ([Le,
3.4]).

Lemma 10.13. Each 7*-equivalence of spacesis a K,-equivalence.

Proof. This depends on Miller's ([Mi]) stable splitting

z>U ~ \/ BUp™ ~ T BUL™.
k>1 k>1

By the Segal conjecture, (BU@d

(DBUy)), and thus BUkAdUk is m*-local by an arithmetic square argument. Hence,

the spectrum Z>°U and the spaces Q°°3°>°U and U are all 7*-local. Consequently,
each 7*-equivalence of spaces is a K*-equivalence, and hence a K.-equiva
lence. m]

Uk)f, is a stable summand of the 7*-local spectrum

11. Virtual E.-equivalences of spaces. We say that a spectrum E has n-
elevated acyclicity for an integer n > 0 if tranpE < n for each prime p, or
equivalently if K(Z/p,n+ 1) is E.-acyclic for each prime p. This holds, for
instance, when E has acyclicity level i for some i < n, and thus holds for the
Morava K-theory spectrum K(i) when i < n. More generally, we say that a
spectrum E has elevated acyclicity if it has n-elevated acyclicity for some integer
n> 0. In view of Lemma 10.1 and Theorem 10.2, we have

Lemma 11.1. A p-local spectrum E must have elevated acyclicity if it does not
have the same homol ogy equivalences of spaces as H..(<; Z/p) or H..(<; Zp).

For a spectrum E of elevated acyclicity, a map ¢: X — Y is Ho, is caled
a virtual E.-equivalence if ¢.: mi(QX)e — mi(QY)e is an isomorphism for all
sufficiently large i, and a space X € Ho, is called virtually E.-acyclic if 7;j(QX)e
iszero for al sufficiently largei. We shall see that the virtual E.-equivalences are
closely related to ordinary E.-equivalences, but have some better homotopy theo-
retic properties, and we shall give various applications. For instance, generalizing
work of Thompson and the author ([Bo 7]), we show that each K /p..-equivalence
of H-spaces is a v;-periodic homotopy equivalence (Corollary 11.12). We shall
need the main results of Section 10 in the following partially generalized, but
similarly proved, form.



1350 A. K. BOUSFIELD

THEOREM 11.2. For a spectrum E of n-elevated acyclicity, we have:

(i) If X isan (n + 1)-connected generalized polyGEM such that 7. X or w.E is
torsion, then X is E,.-acyclic.

(ii) If X isan E.-local nilpotent generalized polyGEM, then: 71 X istorsion-
free; m X isrational for i > n+1; and miX =0for i > n+ 1 when 7.E istorsion.

(iii) For afiber sequence of connected spacesF — X — Y, the E,-localization
functor preserves the homotopy fiber sequence QF — QX — QY up to an error
term Q2D with 7; Q%D = 0fori > n+ 1.

(iv) For aconnected H-space X, thehomotopy fiber of thenatural map B(QX)e —
Xe isan H-space Awith A =0fori > n+2.

(v) The E,-localization functor preserves a fiber sequence of connected H-
gpacesF — X — Y uptoanerror termA withmA =0fori > n+ 1.

Theorem 11.2 (iv) implies

THeorem 11.3. If E isa spectrum of elevated acyclicity, andif ¢: X — Yisan
E.-equivalence of connected H-spaces, then ¢ isa virtual E.-equivalence.

Many other examples of virtual E,-equivalences follow from

THeEOREM 11.4. For a spectrum E of elevated acyclicity, and for a map of fiber
sequences

F s X g Y

I l

F see- X age- Y,

ifanytwoof F — F/, X — X’,and Y — Y’ arevirtual E,-equivalences, thensois
the third.

Proof. Note that a map of pointed spaces is a virtual E.-equivalence if and
only if the induced map of universal covers is such. Thus we may assume that
the given spaces are connected and may apply Theorem 11.2 (iii). m|

The next two corollaries show the “durability” of virtual E.-equivalences.

CoroLLARY 11.5. For a spectrum E of elevated acyclicity and for i > 0, amap
¢. Y — Y'inHo, isavirtual E,-equivalence if and only if Q'¢: Q'Y — Q'Y is
such.

Proof. The case i = 1 follows by Theorem 11.4, and the other cases follows
inductively. m|

CoroLLARY 11.6. For a spectrum E of elevated acyclicity and for i > 0, amap
¢: Y — Y'inHo, isavirtual E.-equivalenceif and only if ¢(i): Y(i) — Y'(i) is
such.
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Proof. In the fiber sequence Y(i) — Y — P'Y, the ith Postnikov section P'Y
is virtually E.-acyclic by Corollary 11.5 since Q*P'Y ~ x, and thus Y (i) — Y
is avirtual E.-equivalence by Theorem 11.4. m|

To compare virtua E.-equivaences with ordinary E,-equivalences, we use

THeEOREM 11.7. If E is a spectrum of n-elevated acyclicity with 7, E torsion,
andif ¢: X — Yisavirtual E.-equivalencein Ho,, then ¢(i): X(i) — Y(i) isan
E.-equivalencefori > n+ 2.

Proof. Since the maps X(n+3) — X(n+2) and Y(n+3) — Y(n+2) are E,-
equivalences, we may assume i > n+ 3. The homotopy fiber F of ¢(i): X(i) —
Y (i) isvirtually E.-acyclic by Theorem 11.4, and thus (QF)g is Postnikov. Hence,
the map QF — (QF)g is nullhomotopic by Theorem 11.2 (ii), and QF is E,-
acyclic. Therefore, F is E,-acyclic and ¢(i) is an E.-equivalence. m|

When we wish to compute the E.-homology of a virtually E.-acyclic space,
we may replace the space by a suitable Postnikov section.

CoroLLARY 11.8. If E isa spectrum of n-elevated acyclicity with 7.E torsion,
andif X € Ho, isavirtually E.-acyclic space, then X(n+ 1) isE.-acyclic and the
Postnikov map X — P™1X isan E,-equivalance.

Proof. Since X(n+2) isvirtualy E.-acyclic by Corollary 11.6, it isE.-acyclic
by Theorem 11.7. The result now follows since K(m+2X, n+ 2) is E.-acyclic by
Theorem 11.2 (i). O

Using this corollary, we deduce

THEOREM 11.9. For an arbitrary spectrum E, if X € Ho, is an E.-acyclic
H-space, then X(i) and P'X are E.-acyclic for all i.

Proof. It suffices by Lemma 10.1 to prove the corresponding result for each
E/p., sinceitisclear for EQ.. Let X be E/p.-acyclic for aprimep. If tranyE = oo,
then the E/p,-acyclic spaces are the same as the H..(<; Z/p)-acyclic spaces by
Theorem 10.2, and the E/p..-acyclic H-spaces are those with uniquely p-divisible
homotopy groups. Hence, each X(i) and P'X is E/p.-acyclic. If trangE < oo, we
may assume that E/p has n-elevated acyclicity. Since X is virtualy E/p.-acyclic
by Theorem 11.3, X(i) and P'X are E/p,-acyclic for i > n+1 by Corollary 11.8.
Since the H-space P™X is E/p.-acyclic, so isK (7 X, i) for i < n+1 by Corollary
8.11, and hence each X(i) and P'X is E/p,-acyclic. O

Our next result characterizes the virtual E,-equivalencesin terms of ordinary
E.-equivalences, strengthening Theorem 11.7.

THeEOREM 11.10. For a spectrum E of n-elevated acyclicity with =.E torsion,
and for integersk > 1andi > n+2, amap ¢. X — Y in Ho, isa virtual E,-
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equivalence if and only if (QX¢)(i): (QX)(i) — (QXY)(i) is an E,-equivalence.
The" only if” statement also holdsfor k=0andi > n+ 2.

Proof. This follows easily by 11.3-11.7. m|

We conclude with some results relating the virtual K(n).-equivalences of
spaces to the ¢-periodic homotopy equivalences for j < n at a prime p, where
the ¢j-periodic homotopy groups z/j*lw*(x; Vj_1) of a space X are defined as in
[Bo 7, 11.9] and [Bo 8, 5.2]. Note that the virtual K(1).-equivalences are the
same as the virtual K/p.-equivalences.

THeEOREM 11.11. Amap ¢: X — Y inHo, isavirtual K/p,-equivalenceif and
only if ¢.: vy tmu(X; Z/p) = vy tmu(Y; Z/P).

Proof. By work of Thompson ([Th]) and the author ([Bo 7, 14.7]), ¢ induces
a K /p,-equivalence (Q?X)(3) — (Q?Y)(3) if and only if ¢.: v m.(X;Z/p) =
vy Lra(Y: Z/p). Our result now follows from Theorem 11.10. O

Generalizing a result of Thompson for iterated loop spaces ([Th], [Bo 7,
14.4]), we now obtain

CoroLLARY 11.12. If ¢: X — Y isa K /p,-equivalence of connected H-spaces,
then ¢.: vy tm(X;Z/p) = vy tr(Y; Z/p).

Proof. This follows by combining Theorems 11.3 and 11.9. O

The “if” part of Theorem 11.11 can be generalized to

THEOREM 11.13. If ¢: X — Y isa map in Ho, with ¢,: vj’lm(X;Vj_l) >
vj‘lw*(Y; Vi_1)forj=1,2,...,nwheren > 1,then¢isavirtual K(n).-equivalence
and hence (Q")(i) isa K(n).-equivalence for eachk > Oandi > n+2.

Proof. By [Bo 7, 13.3], the map of p-torsion components 7,QX(m) —
QY (M) is a P,,-equivalence for sufficiently large m. Thus, by [Bo 7, 12.1],
the map QX(m) — QY(m) is a K(n).-equivalence for sufficiently large m, and
hence ¢ is a virtual K(n).-equivalence by Theorem 11.3, Corollary 11.5, and
Corollary 11.6. The last statement follows by Theorem 11.10. O

The condition “j = 1,2,...,n" in this theorem cannot be reduced to “j =
n.” For instance, as noted at the end of [Bo 8], u, r.(U4); Vi) = 0 while
@UM) Z 0. We do not know whether the converse to this theorem holds.
However, as a consequence of this theorem and Corollary 11.8, we have

CoroLLARY 11.14. 1f X € Ho, isaspacewith 4. (X; Vj_1) = 0for 1 < j <
nwheren > 1, then X isvirtually K(n).-acyclic. Hence, X{n + 1) is K(n).-acyclic
and the Postnikov map X — P™1X isa K(n)..-equivalence.
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Hopkins, Ravenel, and Wilson ([HRW]) have proved a similar result when
X is an infinite loop space and have applied it to calculate K(n),X in some
interesting cases. Corollary 11.14 should help to extend that method.
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