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THE LOCALIZATION OF SPACES WITH RESPECT
TO HOMOLOGY

A. K. BOUSFIELD
(Received 25 May 1974)

§1. INTRODUCTION

MY MAIN purpose is to show that each generalized homology theory 4, determines an
h,-localization functor, E:Ho—Ho and n:1—E, where Ho is the pointed homotopy
category of CW complexes. This localization is characterized by the universal property that
fy: X — EX is the terminal s4,-homology equivalence going out of E, i.e.

(i) nx: X~ EX induces hy(X) =~ hy(EX), and

(ii) for any map, f: X —» Y e Ho inducing A4(X) ~ hy(Y), there is a unique map r: ¥ —
EX e Ho withrf =ny.

The plausibility and desirability of such a functor E were shown by Adams [2). To
obtain an existence proof (§3), I will construct an appropriate localization functor on the
category of simplicial sets and will show that it induces the desired hy-localization functor
on Ho. The backbone of this proof is in an appendix (§10~§12), where I introduce a version
of simplicial homotopy theory in which the /-equivalences play the role of weak homotopy
equivalences. I show that this theory fits into Quillen’s framework of homotopical algebra
[1ol, [11].

Special cases of the hy-localization, X — EX, are familiar. If X is simply connected
(or nilpotent) and hy = Hy( ; Z[J ~11) where Z[J ~'] denotes a subring of the rationals,then
X - EX is the usual Z[J 'Jocalization with TI,EX ~Z[J ']® I, X. This case was
discovered by Barratt-Moore (ca 1957, unpublished) and has subsequently been discovered
and/or studied by various others, e.g. [4], [S], [7], [9], [11], [14], [15]. If X is simply connected
(or nilpotent) and hy = H,( ;Z,) with p prime, then X — EXis the p-completion [5, p. 186]
with II, EX = Ext(Z,. IT, X) ®@ Hom(Z,, II,_,X). If in addition X is of finite type, then
X — EX is the p-profinite completion [12], [14] with IT, EX given by the p-profinite com-
pletion of II, X. In [5] we gave various other examples of H,( ; R)-localizations where
R=Z,or R=Z[J 11, and we constructed an ““ R-completion” X — R, X which coincides
with the H,( ; R)-localization provided X is *‘ R-good”.

A major part of this paper is devoted to the study of Hy( ; R)-local spaces, i.e. spaces
X e Ho satisfying the equivalent conditions:

(i) X =~ EY for some Y e Ho
(ii) ny: X =~ EX.
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134 A. K. BOUSFIELD

ForR=Z[/""]and R = Z,, I characterize (§5) the Hy( ; R)-local spaces in terms of their
homotopy groups. To do this, I introduce (§5) the HR-localization for .groups anc.I the
HZ-localization for IT-modules; and I prove that X e Ho is H,( ; R)-localif and only if 'the
groups I1, X are HR-local and the IT, X-modules I, X are HZ-local for n > 2. There is a
step by step procedure (9.4) for constructing Hy( ; R)-localizations of CW complexes by
attaching cells so as to localize homotopy groups.

This paper is organized as follows. §2 contains categorical preliminaries on Jo.calization,
§3 contains the existence proof for hy-localizations, §4 contains a determination of tﬁhe
h.-localization for nilpotent spaces where hy is any connective homolo gy theory, §5 cpntams
the algebraic characterization of H,( ; R)-local spaces, §6 contains constructions of
homology equivalences, §7 concerns the HR-localization of groups, §8 concerns the HZ-
localization of TT-modules, §9 contains proofs and a step by step construction of Hy( ; R)-
localizations. There is a crucial appendix (§10, §11 and §12) which introduces “simplicial
homotopy theory with respect to A, ** and contains a key technical result (11.1) used repeated-
ly in this paper.

['am particularly indebted to Frank Adams, Emmanuel Dror, and Dan Kan for their
ideas and encouragement.

§2. LOCALIZATIONS IN CATEGORIES

I will explain some categorical notions which will be used repeatedly in this paper. In
particular, I will show how a class ¥ of morphisms in a category % can determine a ““ %'~
localization” functor £ : % — €. The reader should keep in mind the easy example where &
Is the category of abelian groups and %~ consists of all M — N e @ with QM- Q@ N
an isomorphism. In this case EM)~Q0® M.

2.1. W*-Localizations. Given a morphism class %" in a category ¥, an object De @
1s W-local if each w: ¥ — Y in # induces a bijection Hom(Y, D) ~ Hom(X, D). A w-
localization of an object A ¥ is a morphism w: 4 — D with D % -local and we v, Any
two  #-localizations of 4 e are  naturally equivalent; indeed, a ¥~ -localization
w: A - D satisfies each of the universal conditions:

() wis initial among the morphisms SiAd> X with x w -local.
(i) wis terminal among the morphisms 1A X with Jew.
Moreover, if 4 is % -local and w:A—Disaw. -localization, then w is an equivalence,

2.2. W -Localization Junctors. Suppose each object of # has a - -localization. Then there
exist a functor and a transformation

E:€>¢ n:l—-E
such that
Na:A—-EX

is a %-localization for each 4 € 4. Clearly (E,m)is unique up to natural €quivalence, and
(£, n) is called the W-localization Juncror,
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2.3. The idempotency of W -localization functors. Following Adams, I will call a functor
and transformation

E:4-% n:l—-E

idempotent if npy = Eny: EX — E*X and 7y is an equivalence for all X e 4. It is not hard
to show that the # -localization functor (2.2) is idempotent. Conversely, any idempotent
functor (F, #) on % can be obtained as a # -localization where #” consists of all/: X - Y€ &
such that Ef'is an equivalence. ‘

I conclude by recalling from [6, p. 12] a notion which will facilitate the detection of
+#/ -local objects.

Definition 2.4. In a category 4, a morphism class %" admits a calculus of left fractions if:

(i) # is closed under finite compositions and contains the identities of €.

(ii) Given X, < X, 4 X,e% with we #", there exists X, Lx, & X3 €% such that
ve W and of = gw.

(iii) Given X, > X2=fg> X, €% with we # and fw = gw, there exists X; - X, € € such
that v € # and of = vg.

It is easy to prove:

LEMMA 2.5. If W admits a caleulus of left fractions and D € €, then the following are
equivalent:

(i) Dis # -local.
(ii) Each morphism X — Y in W induces a surjection Hom(Y, D) — Hom(X, D).

(iii) Each morphism D — Y in ‘W has a left inverse.

§3, THE EXISTENCE OF /1,-LOCALIZATIONS

I will state and prove the existence theorem for localizations of spaces with respect to
hy-homology. The proof will rely on the ““simplicial homotopy theory with respect to /1, >
which I have developed in the Appendix (§10, §11 and §12). First consider:

3.1. The class of hy-equivalences. Let hy be a generalized homology theory defined on
CW pairs and satisfying the limit axiom [1, p. 188]. As usual I will transfer h, to simplicial
pairs (K, L) by letting hy(K, L) = hy(| K|, |L|) where “| |” denotes the geometric realiza~
tion [8, p. 55]. By a slight abuse of notation, let “Ho”’ denote the pointed homotopy
category of Kan complexes or of CW complexes, and let “h,”’ denote the class of maps
X - Y& Ho inducing isomorphisms sy X =~ hy Y. This abuse is harmless because the geo-
metric realization provides an equivalence between the Kan and CW pointed homotopy
categories [8, pp. 61-66].

The main existence theorem is:
THEOREM 3.2. Each object of Ho has an hy-localization (in the sense of 2.1).

I will actually prove a functorial refinement of this theorem involving:
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3.3. The functor C,,. Let & be the category of simplicial sets. By (11.1) there exist a
functor and a transformation

G, = 112G,

such that:

(i) For each Xe &, iy: X - C, X is an injection with #4(C;, X, X) = 0.

(ii) Foreach Xe &, C,, X is an hy-Kan complex (12.1), i.e. if K < L is a simplicial pair
with /,(L, K) = 0, then any map K — Gy, X can be extended to a map L — C, X.

1 will prove:

LeMMA 3.4. For a pointed Kan complex X, the map iy : X = Cy, X represents the hy-local-
ization of X in Ho.

This implies (3.2), and also shows that the h,-localization functor on Ho is induced by
the functor C,, on pointed Kan complexes.

Clearly (3.4) follows from (3.3) and

LEMMA 3.5. A pointed Kan complex is an hy-Kan complex if and only if it is he~local in
the pointed homotopy category Ho.

This is easily proved using (2.5) and the following result observed by Adams.

LEMMA 3.6. The class hy admits a calculus of left fractions in Ho.

Proof. 2.4(i) is obvious. For 2.4(ii), represent w and f by CW inclusions X, < X, and
X; = X3, and take X, = X, U X,. For 4.1(iii), represent w by a CW inclusion X < X,.
Then hy (Cyl, Spool) = 0 where
Spool = (0 x X;) U (I x X, /I x %) U (1l x Xy)
Cyl =1 x X,/I x *. ’
Take v to be represented by the right map of the push-out

Spool —— X,

|

Cyl—— X,

where the top map restricts to representatives of Sandgon (0 x X;) U (l x X )

§4. 714-LOCALIZATIONS FOR NILPOTENT SPACES

I will use results of [3] and [S] to “compute” the h,-localizations of nilpotent (e.g.
simply connected) spaces, where hy is any connective homology theory. First recall :

ProrosiTION 4.1 [3, 1.1]. If hy is a connective homology theory, then hy has the same
acyclic spaces as Hy( ; A), where either A = Z[J™'] or 4 = D Z, for some set J of primes.

ped
Here, Z[J~'] denotes the rationals whose denominators are products of primes in J,
and Z, = Z/pZ.
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This theorem shows that no new localizations are obtained by using connective homo-
logy theories other than the specified H,( ; 4).

Now recall from [5, p. 59]:

4.2. Nilpotent spaces. A connected object X € Ho is nilpotent if the group II; X is
nilpotent and the IT; X-module I1, X is nilpotent for n > 2 in the following sense. A II-
module is nilpotent if it has a finite II-filtration such that IT acts trivially on the filtration
quotients.

For X e Holet X - X, denotes the Hy( ; 4)-localization of X; and let X be connected
and nilpotent.

PROPOSITION 4.3. (i) If 4 =2Z[J7 ], then T, X, ~ Z[J 1@, X, and H(X,;Z) ~
ZIJ ' ® Hy(X; 2).

(ii) If A = Z,,, then there is a splittable short exact sequence

* — Ext(Z, , I1, X) = I, X, » Hom(Z . ; 11, X) — *.
(i) If A= @ Z,, then Xy= [] X0

pelJ

pelJ
For a nilpotent group G, Z[J *]® G denotes the Z[J '}-Malcev completion of G
(see [5, p. 128]), while Ext(Z,», G) and Hom(Z,., G) were defined and studied in [5,
pp. 165-182]. For example, if G is finitely generated nilpotent then Ext(Z,. , G) is p-pro-
finite completion of G and Hom(Z,« , G) = *.

Proof of (4.3) using [5]. For a solid ring R (e.g. R = Z[J ~']or R = Z,) and for a pointed
connected R-good space X, the R-completion X — R, X is an H,( ; R)-localization of X
by [5, p. 205). Moreover, a connected nilpotent space is R-good for R = Z[J 'land R=2Z,.
Thus 4.3() and 4.3(ii) follow from [5, pp. 133, 183]. In 4.3(iii), the product I Xz, is

pelJ
H,( ; 4)-local because its factors are. It now suffices to show H,(Y(p); Z,) = 0 for each
peJwhere Y(p)= T Xz, . This follows from [5, p. 134], because Y(p) is a nilpotent

qed ~ {p}
space with uniquely p-divisible homotopy groups.

§5. AN ALGEBRAIC CHARACTERIZATION OF LOCAL SPACES

Throughout this section let R = Z[J “or R=Z,. I will show that a connected space
X e Ho is Hy( ; R)-local if and only if the group IT; X and the 1, X modules IT, X, n = 2,
satisfy certain algebraic conditions, I will need:

5.1. HR localization theory for groups. Let @ be the category of groups, and let HR
consist of all «: A — Be % such that oy : H(A4; R) » H(B; R) is an isomorphism for i =1
and epimorphism for i = 2, where 4 and B act trivially on R. The terminology of §2 now
applies, and

THEOREM 5.2. Every group has an HR-localization.
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A proof of (5.2) and a discussion of this localization are in §7. I will also need:

5.3. HZ-localization theory for I-modules. Let I be a fixed group, let .4/ be th": jate‘
gory of left IT-modules, and let HZ consist of all o« : 4 — B € {”n such that %k - H{IL; f) ‘;
H{(IT; B) is an isomorphism for i = 0 and epimorphism for i = 1. The terminology of §
now applies and,

THEOREM 5.4. Every Il-module has an HZ-localization.

A proof of (5.4) and a discussion of this localization are in §8.

My algebraic characterization of local spaces is:

THEOREM 5.5. 4 connected object X € Ho is H,( ; R)-local if and only if T1, X is an
HR-local group for n > 1 and T1, X is an HZ-local II, X-module for n > 2.

This will be proved in §9.

The connectivity condition on X can easily be removed, because an object of Ho is
H,~( ; R)-local if and only if its components (with arbitrary basepoints) are Hy( ; R)-local.

§6. CONSTRUCTIONS OF HOMOLOGY EQUIVALENCES

As a step toward proving the results of §5, I will construct various homology equiv-
alences. I am indebted to E. Dror for the main ideas behind these constructions.

Let R =Z[J™'] or R= Z,, for p prime, let X e Ho be connected, let o: [T, X — G be a
group homomorphism, and let HR be as in 5.1,

LemMa 6.1. ae HR if and only if there exists a map f:X— YeHo such that
Sy Ho(X; R) ~ Hy(Y; R) and f,, : I, X = I1, Y is equivalent to a.

Proof. The “if” part is clear. For the “only if” part, suppose X is a CW complex.
Attach 1-cells and 2 cells to X so as to give i: X —— X with iy: II; X - I1, X equivalent to a.
Then iy: Hi(X; R) ~ H\(X; R) and there is an obvious commutative diagram

L

0—— Hy(X; B) —— H,(X; ) —— H,(X, X; R)——0

.

L

0 0

with exact rows and columns, A diagram chase shows that the composite map R ® I, X —
H,(X, X; R) is onto. Thus there exist elements {b.}in I1, X which 80 to an R-basis for the
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free R-module Hy(X, X; R). Using attaching maps representing the {5,}, attach 3-cells to X
50 as to give X < Y. Then the inclusion f: X —— ¥ has the desired properties.

Now let R =Z[J7'], let Xe Ho be connected, let a: I, X — M be a IT, X-module
homomorphism for some #n > 2, and let HZ be as in (5.3).

LEMMA 6.2, 1®a:RQII,X—>R@M is in HZ if and only if there exists a
map f: X — YeHo such that fy: Hy(X; R) ~ Hy(Y; R), fy: T, X = T, Y for j <n, and
S T, X - I1,Y is equivalent to a.

Proof. For the *““if” part, suppose f: X — Y e Ho has the specified properties. Thern
S« H(P"X; R)—~H(P"Y; R) is an isomorphism for j<n and an epimorphism for
J=mn+ 1, where P'X is the nth Postnikov section of X. By comparing the exact sequence.

(6.3) H,l+2(Pn—1X; R)—le(HIX;R®HnX)~+ "+1(P"X; .R)“‘"IJ,,.\\.{(P"——IX; _R)—)
H(II,X; R I, X) > H(P"X; R) - H,(P""'X; R) » 0 with the corresponding sequence
for Y, it is easy to show 1 ® « € HZ.

For the “ only if* part, suppose X is a CW complex. Attach n-cells and (n + 1)-cells to
X soastogivei: X — X with P""1X ~ P""1X and with i,: IT, X — IT, X equivalent to c.
By (6.3), ix: H/(P"X; R)— H,(P"X; R) is an isomorphism for j <n and an epimorphism
for j = n + 1. Thus iy: H,(X; R) ~ H,(X; R) and there is an obvious commutative diagram

R® Hn+1X_—> R® 1-'[r1+l‘Y

v

O—'—'—"H,,+1(X, R)'——’ ,,+1()?,R)-——7H,,+1(X, X; R)—_’O

v

H, 4 (P"X; R) —> H,.1(P"X; ) ——0

v v

0 0

with exact rows and columns. A diagram chase shows that the composite map R ®I1,,, X —
H,..(X, X; R) is onto. Thus there exist elements {b,} in I1,.,X which go to an R-basis for
the free R-module H,.,(X, X; R). Using attaching maps representing the {b,}, attach
(n + 2)-cells to X so as to give X « Y. Then the inclusion f : X —» Y has the desired
properties. '

For R = Z,, (6.2) does not hold and I obtain a less satisfying result. Let X € Ho be
connected, let o: IT, X » M be a IT; X-module homomorphism for some # > 2, and let HZ
be as in (5.3). Consider the following conditions:

64) 1®a:Z,QI,X>Z,®Misin HZ.

(6.5) oty Ho(IT, X; Tor(Z,,, TI, X)) — Ho(I1 X Tor(Z,, M))
is onto.

TOP Val. 14, No, 2—C
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(6.6) There exists a map SiX— YeHo such that S 1 Ho(X; Z,) =~ H(Y; Z,),
ST X = I Y for j < n, and f4: I, X - I1, Y is equivalent to o.

LEMMA 6.7. (i) 1f (6.4) and (6.5), then (6.6).
(i) 11 (6.6), then (6.4).
(iii) If°(6.6), and 1 @ u: Z,Q,X~Z,® M, then (6.5).

The proof is similar to that of (6.2). However, one must use the mod-p Serre spectral
sequence for P"X — P~ X instead of (6.3).

§7. HR-LOCALIZATIONS OF GROUPS

Let R=2Z[J Y or R= Z, for p prime. 1 will prove the existence Theorem 5.2 for
HR-localizations of groups and will give a rather general example,
LemMA 7.1. If

Gl—f——-» G,

Gsh’ G‘L

is a push-out of groups with r e HR, then s HR.
Proof. Form a push-out

K(Gy, 1) —2— K(G,, 1)

Lok
K(Gy, 1) —— X

of pointed connected CW complexes such that fis a cofibration inducing r and 4 induces ¢.
Then g,: I, K(G,, 1)~ I1, X is equivalent to by Van Kampen’s theorem, and clearly
H{(X, K(G,,1); R) =0 for i < 2. This implies s € HR.

LEMMA 7.2. The class HR admits a calculus of left fractions.
Proof. 2.4(1) is clear, and 2.4(ii) follows from 7.1. For 2.4(iii), let G, 5 G, A G3€% be
g
such that we HR and Sw=gw. Then the “folding™ map u: G, U G, - G, is in HR
G

1
because it has an obvious right inverse in HR. Now define v : G; - G, by the push-out

Gz H 02 9 G3
Gy

Pl

Gy —— G,

Clearly of = vg and v € HR by (7.1).
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Now (2.5), (6.1), and (7.2) easily imply:

Lemma 7.3. If X € Ho is connected and X — D e Ho is an H,( ; R)-localization, then
IT, X = I1, D is an HR-localization.

7.4. Proof of 5.1. Since each K(G, 1) € Ho has an H,( ; R)-localization by (3.2), each
group G has an HR-localization by (7.3).

HR-localizations (.:an be computed for many sorts of groups (e.g. finite, nilpotent, or
perfect groups) by using the following result. For a group G let G=T,GoT,G> -
denote the lower central series, and suppose R ®@ (T, G/T,+,G) =0 for some n > 1. Then:

LEMMA 7.5. The HR-localization of G is:

(i) the obvious map G — Z[J"'1® (G|, G) for R = Z[J ™', and

(ii) the obvious map G — Ext(Z,., G/T',G) for R=Z,.

The reader is referred to §4 and to [5] for an account of the Malcev completion
N = Z[J"']® N and the Ext-completion N - Ext(Z,, N) of a nilpotent group N.

Proof. By [13] a short exact sequence of groups * - 4 — B— C— * gives an exact
sequence

H,(B; R)— H,(C; Ry~ R® (4/[B, A]) - H\(B; R) - H,(C; R) = 0.
Thus the quotient map G — G/T', G is in HR. The lemma now follows by (4.3) and (7.3).
Many more examples of HR-local groups can be constructed using the obvious result:

LEMMA 7.6. The HR-local groups are closed under inverse limits.

§8. HZ-LOCALIZATIONS OF II-MODULES

Let IT be a fixed group and let .#; be the category of left Il-modules. I will prove the
existence theorem (5.4) for HZ-localizations in .4y and will give some general examples.

LeMMA 8.1. If
M —— M,

lr ls
My—— M,
is a push-out in My with r € HZ, then se HZ.
Proof. There is a commutative diagram

M, L My M,

M3'—__._—’M4-
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in .y such that j is onto and the square is both a pull-back and push-out. The lemma now
follows because r’ € HZ and there is a long exact sequence
= By (T M)~ Ho(Tl; M,") ~ Ho(TL; My) @ Ho(IT; M) — Ho(I1; M) = 0.

LEMMA 8.2. In My, the class HZ admits a caleulus of left fractions.

The proof is similar to that of (7.2).

To prove the existence of HZ-localizations I will need a lemma concerning Hy( ; Z)-
fibrations (10.1). Let w: X — ¥ be a Kan fibration of pointed connected Kan complexes
such that w,: TL, X ~ TI, Y and II,¥ = 0 for ; >2.

LeMMa 8.3. () If X > X5 Vis a factorization of u such that i, : Ho(X; Z) = HyW(X ; Z)
and v is an H,( ; Z)-fibration, then v ILX =11, Y.

() u: X — Y is an Hy(" ; Z)-fibration Yandonly if T, X € My, x is HZ-local for n = 2,

Proof of (i). v,: I, X - IT, Y € 9 is in HZ, because its rightinverse iy : [T, X - 11, X € ¢
is in HZ by (6.1). Thus by (6.1), v can be factored as X 5 W 5 ¥ where r is an injection with
rv: H(X; Z) ~ H(W; Z) and sy Iy W =TI, Y. Now r has a left inverse by (10.1), and
hence v, : IT, X — I, ¥ has a left inverse. Thus 0. ILX ~ 11, Y.

Proof of (ii). For the ““ only if” part it suffices by (2.5) and (8.2) to show for n > 2 that
each map IT, X - M e .y y in HZ has a left inverse, This follows by (6.2) and (10.1). For

the ““if” part, use (11.1) to factor u as X - X 2 ¥ such that iy: Hy(X; Z) ~ H(X; Z) and
visan Hy( ; Z)-fibration. Then Lt I X ~ 11, X by 8.3(j), and I1,X € My, x is HZ-local for
n =2 by the “only if” part of 8.3(ii). An inductive argument using (6.2) now shows
Iy IL, X =11, X for n > 1, and thus » is homotopy equivalent to » by [8, p. 50]. Hence « is
an H,( ; Z)-fibration.

8.4. Proof of (5.4). For M e M1, choose a connected pointed Kan complex X such that
I} X=Mand IT, X = M e Ay By (1 1.1) the Postnikov map X — P'X can be factored as

x5 X 5 PLX where ! Hy(X; Z) » Hy(X; Z) and v is an Hy( ; Z)-fibration. Now (6.2)
and (8.3) imply that #,: IT, X - I1,X € My is an HZ-localization.

I'will next show that HZ-local modules are closed under various constructions. Clearly:
LeMMA 8.5. The HZ-local objects of My are closed under inverse limits.
Less obvious is:

LEMMA 8.6. If M,, M, e My are HZ-local and w: M, — M, € My, then coker W) e Ay
is HZ-local,

Proof. Let

Xs"'—’Xl
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be a pull—lfaack of pointed connected Kan complexes such that f is a Kan fibration,
NI X, RILY, RILX,, i, X, -1, X, e My is equivalent to w: M; » M, € My,
and all other homotopy groups vanish for X, X,, and X, . Applying (12.3) and (8.3) to the

! .
maps X = X, —» P'X,, one shows f is an H,( ;Z)-fibration. Hence h: X; —» X, is an
H( ; Z)-fibration, and coker(w) ~ T1,X; e # is HZ-local by (8.3).

Similar methods can be used to prove the following two closure results for HZ-local
modules.

LeMMA 8.7. If My, M, € My are HZ-local and 0 — M| - M5y — M, >0 € My is exact,
then My € My is HZ-local.

LEMMA 8.8. If M € My is HZ-local and G - X1 is a group homomorphism, then M € M g
is HZ-local.

I can now construct some examples.
LeMMA 8.9. If M € My is nilpotent (4.2), then M is HZ-local.

Proof. Using (8.8) and the homomorphism IT — = €%, one shows every simple II-
module is HZ-local. The lemma now follows from (8.7).

More generally, for M € My let
MoIMoI*’M > -

be the *“ lower central series” where I = ZII is the augmentation ideal, and suppose I"M =
I"* 1M for some n = 0. Then:

LEMMA 8.10. The HZ-localization of M is the quotient map M — M[I"M € My,
Proof. A short exact sequence 0 —+ A4 —» B — C — 0 € 1, clearly gives an exact sequence
-+~ = H,(IT; B) - Hy(I; C) » AJIA - Hy(I1; B) = H(IT; C)—0.
Thus M — M/I"M is in HZ, and the lemma follows from (8.9) since M/[I"M is nilpotent.

Although the HZ-localization functor (2.2) E: My — Ay is still somewhat mysterious,
one has:

LEMMA 8.11. E: My~ My is additive and right exact.

This follows easily because the HZ-local objects of .4y are closed under products and
cokernels. :

I conclude with a technical result needed in §9.

Lemma 8.12 (i) If Me My is an HZ[J “1-local group, then so its HZ-localization
EMe Ay

(i) If M € My is an HZ-local [X-module, then so is its HZ -localization
Ext(Z,w, M)e M.
Proof. Part (i) follows because £ is an additive functor. Part (ii) follows from (8.5),
(8.6), and (8.7), using the natural exact sequence
0 — lim! Hom(Z,;, M) = Ext(Z, , M) lim Ext(Z,; , M)-0
of [5, p. 166 '
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§9. PROOF OF THEOREM 5.5

Let R=Z[J"'] or R=Z,. A connected object X & Ho will be called algebraically
Hy( 5 R)-local if T1, X is an HR-local group for n > | and I1, X is an HZ-lpcffll I'IIX-mgduIe
for n>2. I must prove that X e Ho is Hy( ; R)-local if and only if it is algebraically

H,( ; R)-local.
LEMMA 9.1. Let X, Y e Ho be connected and algebraically Hy( ; R)-local. If f: X —
Y e Ho induces fy: H(X; R) ~ H(Y; R), then £ is an equivalence.

Proof for R=Z[J7']. fu: TI; X > I1; Y € & is an isomorphism because it is in HR by
(6.1) and T, X, I1, Y € 4 are HR-local. Now Jx I X > T, Y e Ay, x is an isomorphism
because 1 ®/,: ROILX>R®I,Ye Hn,x 1s in HZ by (6.2), | ®fy is equivalent to
Jo My X =T, Y ey, and I, X, [, Y e “Mn,x are HZ-local. Continuing in this way,
one shows f,: I, X = I1,. Y.

Proof for R=Z,. As above, Je: I X = I1,Y. Define M, Nedyy by the exact

sequence 0 — M — HZX——Q» II,Y-N-0. Now Me ¥ is HZ -local by (7.6), and Ne & is
HZ -local because the HZ -localization functor, Ext(Z,., ),isright exact on abelian groups.
Thus the condition Z, @ M = 0 (resp. Z, ® N = 0) will imply M =0 (resp. N = 0) by (7.5).
But 1®/4:Z, @11, X ~ Z,®11,Y, because Z,®I1,X, Z,®I,Y e My,y are HZ-local
by (8.6) and | ® f,, isin HZ by (6.7)(ii). Now N = 0 becuase Z,® N = 0. Using 6.7(iii) and
the exact sequence Tor(Z,, [T, X) — Tor(Z,, I1,Y) — Zp, ® M — 0, one shows Hy(IT, X; Z,®
M) =0.Thus Z,® M =0 by (8.10), because Z, ® M e M, x is HZ-local by (8.5) and (8.6).
Consequently M = 0 and f,: II,X ~ II,Y. Continuing in this way, one shows f, : I1, X =~
I, r.

LEMMA 9.2. For each connected X e Ho, there exists a map f: X — Y e Ho such that
Sot Hf(X; R) ~ H(Y; R) and Y is algebraically Hy( ; R)-local.

Proof for R =Z[J™!]. Using (5.2) and (6.1), construct f1: X — Y'e Ho such that
Ji't Hy(X; R) ~ H(Y*; R) and S X T Ye @ is an HR-localization, Using (5.4)
and (6.2), construct f%: ¥! » ¥2 e Ho such that £, : H(Y'; R) ~ H,(Y?; R), fi> I, ¥ ~
I, 7% and £, T, Y S 11,72 e M1, y1 is equivalent to the obvious composition IT, ¥ ! —
R®ILY'> E(R®M,Y') where E is the HZ-localization functor. Then IT,Y?, II,Y?’ew%
are HR-local by (8.12) and I1, Y2 ¢ M, y2 is HZ-local. Continuing in this way, one obtains
asequence X — Y - Y2 ¥3 5 - from which the desired map X — Y can be constructed
by means of an infinite mapping cylinder.

Proof for R=2Z,. Construct f1: X — ¥1 ag above. Using (5.4), (6.2), and (6.7(i))
construct /2: ¥* - ¥2e Ho such that F2 T Hy (Y Z) ~ Hy (Y2 Z), i3 I Y &I, Y2,
and f,2: ILY' S ILY2 e Myy: is equivalent to the obvious composition IT, ¥! —
E(IT, Y') > EX(Z,., E(I1, Y ")) where E is the HZ-localization functor. The above use of
6.7(i) is justified because the map A4 - Ext(Z,.., 4) induces an isomorphism Z,®A4—
Z,® Ext(Z,«, A) and an epimorphism Tor(Z,, 4) - Tor(Z,, Ext(Z,. , 4)) for any abelian
group A. Now IT, Y2 I,Y2 e & are HZlocal by (7.5) and IT, Y2 ¢ Myt is HZ-local by
(8.12). The proof is completed as before.
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9.3. Proof of 5.5. For the *if” part, suppose X € Ho is connected and algebraically
H,.( ; R)-local. To prove X is Hy( ; R)-local, it suffices by (2.5) and (3.6) to prove that each
map X — Y e Ho in H,( ; R) has a left inverse. This can be obtained by first using (9.2) to
construct Y — W e Ho in Hy( ; R) with W algebraically H,( ; R)-local, and then using
(9.2) to show that the composition X — ¥ — W e Ho is an equivalence. The *“ only if” part
now follows from the ““if” part and (9.2).

Remark 9.4. Qur proof of Lemma 9.2 can now be regarded as a step by step construction
of the H,( ; R)-localization.

APPENDIX
In this Appendix I will develop a version of simplicial homotopy theory in which the
hy-homology equivalences play the role of weak homotopy equivalences, where £, is a
generalized homology theory as in (3.1). This simplicial theory with respect to 4, (like

ordinary simplicial theory) fits very nicely in Quillen’s “homotopical algebra” framework
[10], [11], and I will so present it.

§10. SIMPLICIAL HOMOTOPY THEORY MODULO /iy
Let & denote the category of simplicial sets (see [5], [8]).
10.1. Definitions. A map f:K—~Le & is a weak hy-equivalence if fy: hy(K) = hu(L).
A map in & is an hy-cofibration if it is a cofibration (i.e. injection) in &%. A map u: X —
Ye & is an hy-fibration if it has the right lifting property with respect to each map
i A — Be & which is a weak h,-equivalence and -cofibration, i.e. for each commutative
square

A—— X

B—Y

there exists a map e making the triangles commute. Clearly, any h,-fibration is a Kan
fibration.

I will show that the above notions satisfy Quillen’s axioms for a closed model category
[11, p. 233]. This will lay the foundation for a Quillen-like homotopy theory. Indeed
Quillen has shown [10] that any closed model category (or its associated pointed category)
gives rise to much of the familiar homotopy machinery, e.g. the homotopy relations for
maps, loops and suspensions, fibration and cofibration exact sequences, Toda brackets, etc.

TueorEM 10.2. The notions of (10.1) in the category & satisfy Quillen’s closed model
category axioms:
CM 1. & is closed under finite direct and inverse limits.
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CM?2.If f and g are maps such that gf is defined, then if two of £, g, and gf are weak
hy-equivalences, so is the third.

CM3.If fis a retract of g and g is a weak hy-equivalence, an h,-fibration, or an Py
cofibration, then so is f.

CM4. Given a commutative square

A ——0 X

B—— Y

where i is an hy-cofibration,  is an hy~fibration, and either 7 or u is a weak /,-equivalence,
then there exists a map e making the triangles commute,

CMS. Any map £ can be factored in two ways:

(i) f'= ui, where i is an hy-cofibration and 1 is an hy-fibration which is a weak Py
equivalence. :

(ii) f = ui, where v is an hy-fibration and 7 is an hy-cofibration which is a weak /-
equivalence,

alence. It is now easy to deduce all of the axioms except CM5(ii), which follows from the
main result (11.1) of the next section,

§11. A FACTORIZATION THEOREM

This section is devoted to proving the following key theorem which was used in §10
and elsewhere,

i u
THEOREM 11.1. For eachmapf: X - ye & ‘there is a natural Jactorization X = E = ¥
such that u is an hafibration and i is qn hy~cofibration which is a weak hy-equivalence.

Let ¢ be a fixed infinite cardinal number which is at least equal to the cardinality of
hy(pt). For 4 e & let #4 denote the number of non-degenerate simplices in 4. We shall
implicitly use the easily proved fact that h«(4, B) has at most ¢ elements if # 4 < .

Lemma 11.2, If(KL)isa simplicial pair with hy(K, L) = 0, then there exists a sub-
complex A < K such that # A< &, A& L, and he(4, A A L)=0.

Proof. The desired A is given by the union 4 ~ Uns1 4, where
A Credcd,,,
Is a sequence subcomplexes of X such that # 4 < ¢, A, L, and the map
hi(dy, 4, A L)- hald, 4, Aurg 0 L)
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is zero for each n > 1. To inductively construct {4,}, first choose 4, = K such that # 4, < ¢
and 4, & L. Then, given 4,, choose for each element x € h,(4,, 4, M L) a finite complex
F, < K such that x goes to zero in /u(4, U Fy, (4, U F,) n L). This is possible since
hy(K, L) = 0 and h, satisfies the limit axiom. Finally, let 4, ,, be the union of 4, with all

F.for x e hy(d,, A, nL).

LEMMA 11.3. Let u: X — Y e & be a map which has the right lifting property with respect
to each inclusion map A~—— Be & such that h(B, A) = 0 and #B < c. Then u is an hy-
fibration.

. P'roof. If suffices to show that u has the right lifting property with respect to each
inclusion map L — K& & such that h(K, L) = 0. This follows by transfinite induction
because, for each such pair (K, L), there exists M e & such that Lc M c K, L # M,

h«(M, L) = 0, and u has the right lifting property with respect to L —» M. Indeed, one can
choose M to be 4 v L where 4 is as in (11.2).

LeMMA 11.4. For each map f: X - Ye & there is a natural factorization X LF f—ur Y
such that:

(i) f is an injection with hy(F;, X) =0, and

(il) for each inclusion i: A—"» Be & with hy(B, A) =0 and #B < ¢, and for each com-
mutative diagram

there exists a map e such that the triangles commute.

Proof. Choose a set {i,: Aa—c—> B}, of inclusion maps in & with /,(B,, 4,) = 0 and
# B, < c, and such that each inclusion map with these properties is isomorphic to some Z,.
For each « € I, let S, be the set of maps from , to f. Using the obvious commutative diagram

UAa-——-+X

seSe ael
jf

UB,(—-—»Y

s€Se ¢el
where *“ | )" denotes the disjoint union, define F, as the push-out of the top and left maps,
define j: X — F, as the induced cofibration of the left map, and define v: F; — Y by the
universal property of push-outs. :
11.5. Proof of 11.1. Let S be the section of the first ordinal of cardinality greater than c.
Using transfinite induction, define a commutative diagram in &
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1 io o » X i N PR
Xﬁ-———)j% :Aﬁ > Ay s+1

1
Y~—i—# Yy ! s Y R > Y - Y —_ ...

Hs+ 1

for s € S as follows. The map X, — ¥ equals x4 Y; the factorization X,—— X, —L ¥
equals the factorization X, EA £, 5 Y of (11.4); and if s is a limit ordinal, then X, =1lim X,

n<gs

and u;=1limu,. To obtain the desired factorization X - Effi» Y, let E, = lim X,, let

ses
n<s

u=lim u,, and let i be the obvious injection. In order to show that « is an h,~fibration, it

se§

suffices by 11.3 to show that it has the right lifting property with respect to each inclusion

map A—— Be & such that sy(B, 4) = 0 and #B < c. This property follows easily from
11.4(ii), because the image of each map A4 — E, will be contained in X, for some s e S.

§12, HOMOTOPY INVERSE LIMITS OF /,-KAN COMPLEXES
Definition 12.1. A simplicial set X is an /1,-Kan complex if X — « is an h,-fibration.
I will show that the hy-Kan complexes are closed under all sorts of homotopy inverse

limits. This is of interest because the pointed 4,-Kan complexes represent the h,-local
homotopy types.

For 4, X e & let hom(4, X)e & denote the simplicial function complex [8, p. 17];
and for

i:A~-Be % U:X->Ye%
let
(i*, uy): hom(B, X) - hom(i, ) e &
denote the obvious simplicial map
hom(B, X) - hom(4, X) X hom¢4, vy hom(B, ).

PROPOSITION 12.2. Zet i: 4 — B €& be an hy-cofibration and let y - X—>Ye bean
hy~fibration. Then (@*, uy) is an hy-fibration which is q weak h-equivalence ifeither i or u is a
weak hy-equivalence,

Proof. The required right lifting properties for (i*, ux) can be deduced from the
“adjoint” of ( 12.2). Namely, if JiK—Le % isan hy-cofibration, then

(K x B)Jxxaf(L X A) > L x B
Is an hy-cofibration, which is a weak /1,-equivalence if either 7 or j is such.

Note. In using (12.2) it is useful to recall that a map in & js 3 Kan fibration and weak
equivalence if and only if it is an hy-Kan fibration and weak /,-equivalence.

u v
Prorosition 12.3. For ¥4 Y-We g, suppose v and vu qgre hyfibrations. Iifuisa
Kan fibration, then u is an hy~fibration.
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COROLLARY 12.4. If u: X — Y€ & is a Kan fibration of hy-Kan complexes, then u is an
hy~fibration.

Proof of 12.3. Letting i: A —» Be & be an h,-cofibration which is a weak h,-equiv-
alence, it will suffice to show that (i¥, u,) is surjective in dimension 0. For this it suffices to
show (i*, uy) is a weak equivalence, because it is a Kan fibration by the usual “non-h,”

version of (12.2). But (i*, vy) and (i*, (vu),) are weak equivalences by (12.2), and (i¥, (vu),)
factors as

(i%, uy)
hom(B, X) ——— hom(i, u) ———— hom(i, vu)
where the second map is an induced fibration of (i*, v,). Thus (i*, uy) is a weak equivalence.

It is now easy to show that /,-Kan complexes are closed under familiar sorts of homo-
topy inverse limits.

PROPOSITION 12.5. If {X,} are h,-Kan complexes, then so is I1.X,.

PROPOSITION 12.6. If X is an h,-Kan complex and K € &, then hom(K, X) is an hy-Kan
complex.

PRrROPOSITION 12.7. Let X, Y, Be & be hy-Kan complexes, and let
E—X

,

Y——B
be a pull-back with u a Kan fibration. Then E is an hy-Kan complex.
PROPOSITION 12.8. If X« X, « Xy« is a tower of Kan fibrations with each X, an
hy-Kan complex, then lim X, is an hy-Kan complex.

In [5, p. 295] we defined the homotopy inverse limit, holim X e &, for an arbitrary
small diagram X of simplicial sets; and we showed that holim X had the “ right” homotopy
type for familiar diagrams of Kan complexes. Thus the following theorem generalizes the
above propositions.

TaroREM 12.9. If X is a small diagram of hy-Kan complexes, then holim X is an hy-Kan
complex.

In view of [5, p. 303], this theorem follows from:

PROPOSITION 12.10. If X is a fibrant cosimplicial simplicial set such that X" is an hy-Kan
complex for n = 0, then Tot X is an hy-Kan complex.
Proof. I will freely use the notation and results of [5, Ch. X]. Using (12.6) and the fibre
squares (see [5, p. 287])
My X—— X"

|

MX — M;7'X
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it is not hard to show that each Mg X is an /i,-Kan complex. Thus the natural maps (see
[S, p. 274]) s: X"*1 » M"X are h,-Kan fibrations by (12.4). Since there are pull-backs

Tot,.;X—— hom(A[z + 1], X"*)

l 1 (%, s4)

Tot, X ——— hom(;, s)

where Aln + 1] is the standard (n + 1) simplex and ;: Aln+ 11> Aln + 1] is the inclusion
of its n-skeleton, the maps Tot, ;X - Tot, X are h,-fibrations by (12.2). The lemma now
follows from (12.8).
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