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1 Introduction

Critical points of functions and gradient lines between them form a comerstone
of physical thinking. In Morse theory the topology of a manifold is investigated
in terms of these notions with equally profound success: Smale proved the h-
cobordism and generalized Poincaré conjectures using surgery cobordisms, see
[Mi2].

Morse’s original application (see [Mo] and [Mil]} illustrates an important
theme. He chose to investigate the energy functional on the infinite dimensional
space of loops in a manifold (see [Mo] and [Mil]). Not only is this physically
relevant, for it describes geodesic motion, but it also led to the Bott periodicity the-
orem, see Bott [B4] and Bott and Samuelson [BS). The condition of non-degenerate
critical points was relaxed by Bott to allow for non-degenerate manifolds of criti-
cal points, This was more or less necessary to deal with the natural group actions
on the loop space of a symmetric space.

This theme is bome out in a later application of Morse theory by Atiyah and

“Bott [AB2]. They consider the Yang-Mills functional as a function on the space

of connections over a Riemann surface which is invariant under the group of
gauge transformations. Morse-theoretic ideas applied in the setting of equivariant
cohomology enable the computation of cohomological information about the space
of holomorphic bundles on the surface, which coincide with the minima of the
Yang-Mills functional. The same ideas were subsequently used by Frances Kirwan
[K] to enable the computation of the cohomology of geometric quotients in a very
general setting.

Acting from the perspective of quantum field theory, Witten [Wi] renewed
interest in Morse’s complex. Morse’s complex is the free module generated by
the critical points and graded by their index. A differential on this complex is
given by counting the number of gradient lines between critical points differing
in index by 1. Inspired by this, Floer made his dramatic contributions by building
a Morse complex both for the symplectic action functional on the loop space of
a symplectic manifold (Floer [F2]) and for the Chern-Simons functional on the
space of connections over a homology 3-sphere, [F1]. Not only is the configuration

1}  The first author gratefully acknowledges support from a National Science Foundation Postdoc-
toral Research Fellowship.
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space infinite dimensional, so is the index of each critical point. These theories had
important applications: they solved (part of) the Amold conjecture and established
an important gluing relation for Donaldson polynomial invariants.

Floer’s homology groups for homology 3-spheres asked for many general-
izations to describe more general gluing laws governing Donaldson’s polynomial
invariants, both through incorporating other auxiliary information (see Fukaya [Fu]
and Braam and Donaldson [BD]) as well as by considering general 3-manifolds
[AuB]. In the course of this work, new techniques were developed in these infinite
dimensional cases relating to equivariant cohomology, cup products and various
alternative approaches to problems of classical Morse theory. The purpose of this
paper is to give a self-contained finite dimensional description of these new as- i
pects,
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- When a function has nondegenerate critical manifolds, we say it is Morse-
Bott. A complex which computes the homology of the manifold in terms of the
critical submanifolds and gradient flows was missing. In this paper, we build such
a Morse-like complex which computes the deRham cohomology of the manifold.
The chains of the complex are differential forms on the critical submanifolds and
the boundary map is defined in terms of integration over the flow lines of the gradi-
ent vector field. In the case when the function is truly Morse, our complex reduces
to the standard Morse complex. The existence of our complex easily implies the
Morse inequalities of Bott in the same way that the standard Morse inequalities
follow from the existence of a complex computing homology. Furthermore, in the
spirit of Atiyah and Bott, we show how to compute the equivariant cohomology
of a manifold with group action in terms of an invariant function on the manifold. ‘
We do so in various ways, using a Morse-Bott function on approximations of the
homotopy quotient as well as through equivariant differential forms.

The isomorphism between the homologies of the deRham complex and ours

is obtained at the chain level by integrating differential forms over the unstable '
manifolds of critical submanifolds. This clearly illuminates the fundamental role
played by the Thom isomorphism in Morse theory. Furthermore, it leads to a
detailed investigation of the structure of the unstable manifolds near their frontiers.
With this in hand, additional algebraic topological invariants, such as the cup
product structure and Poincaré duality pairing, can be easily obtained from the
Morse complex. When studying the cup product, we come particularly close to
Witten’s idea of deforming the exterior derivative using the Morse function; instead
we use a classical analogue and pull back differential forms under the gradient
flow for large time. Using these tools we also find isomorphisms at the chain level
between the Morse and Morse-Bott complexes. These considerations should be
intimately connected with the results of Cohen, Jones and Segal, [C]S].

This paper is organized as follows: §2 contains a review of finite dimensional
Morse theory. Since so many of these ideas are applicable to the later Morse-Bott '
case, we have attempted to be as thorough as possible. A comprehensive discus-
sion of the asymptotics of the gradient line spaces is found in an appendix. A
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new feature included within this section is an explanation of the cup product in
terms of the Morse complex. Next we revise standard Morse theory for Morse-Bott
functions in §3 by developing a complex to compute deRham cohomology in the
case when the function has nondegenerate critical submanifolds. Cup products are
again explained. §4 is a bricf introduction to some tools from equivariant coho-
mology which we apply in §5 where it is shown how to compute the equivariant
cohomology of a manifold with group action in terms of an invariant function.
This is an extension of the Morse-Bott ideas in §3. Finally, §6 contains a more
detailed look at the module structure for equivariant cohomology. This will be
useful in [AuB] to explain the «u»-map on Floer homology.
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2 Review of classical Morse theory

This section presents a review of classical finite dimensional Morse theory. The
fundamental observation is that there is an intimate relationship between the critical
points of a function on a manifold and the topology of the manifold. Succinctly
stated, this says that critical points correspond to handles added to the manifold.
As such, one can build a complex (C,,8) whose homology equals the singular
homology of the manifold — a purely topological invariant. We will make this
relationship clear in this review. For additional background, we refer the reader to
sthe following: Smale [Sm1], Milnor [Mil], Milnor [Mi2], Witten [Wi}, and Floer
[F3]. Bott [B1] gives an interesting historical perspective.

While this section is primarily a review, it is also designed to motivate our
techniques in the more general Morse-Bott case. For this reason, the discussion is
self-contained and many details are given. Several of the more technical results

~are proven in Appendix A. We also give a proof here that the homology of this
complex is independent of the Morse function and metric on the manifold. This
is useful for infinite dimensional applications, such as Floer homology, where the
complex is not computing any known homology of the space. Finally in §24,
a new feature of Morse theory is described: the cup product structure on the
cohomology ring is accessible from a Morse function in terms of critical points
and gradient flow information.

2.1 The complex (C,,d)

Suppose that B is a smooth closed, oriented Riemannian manifold of dimension
nand f: B — R is a smooth function. A point & € B is called a critical point of
f if dfo = 0. At a critical point, the Hessian d2f, is well defined as a quadratic
form on T,B, and we call a critical point non-degenerate if its Hessian is a non-
degenerate symmetric bilinear form. We will henceforth assume that f is a Morse
function meaning that all the critical points of f are non-degenerate.
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For a critical point a, let H, be a maximal negative definite subspace of T,B
with respect to d2f,. The index is defined by

i(a) = dim H,.

Non-degenerate critical points are necessarily isolated, and in suitable local coor-
dinates the function is a quadratic form. To such a critical point a, we can assign
an unstable manifold U, defined by

Ay = {b € B; dy(b) — o as t — —co}

where ¢ is the gradient flow for the vector field —grad f (see Smale [Sm2]).
It is well known that U, is an embedded Rile), Similarly, one defines a stable
manifold ¥, for a using the flow as  — co. Again, &, is an embedded Rit—i(a),
The moduli spaces of gradient lines between critical points o and 3 are of central
interest in our discussion, These spaces have an R-action so we define:

Ma, B) = $5 N Uq
M(a, B) = (P3N UL)/R .

We begin by stating that «most» functions are Morse:

Proposition 2.1 For a Baire set of functions f € C*°(B), all critical points are
nondegenerate and WU, and Fg intersect transversely for all a and 8. Such an f
is called a generic Morse function.

L]
Proof. See Appendix B.

To begin to build a complex, we arbitrarily choose an orientation of all
unstable manifolds. At a critical point a, the tangent space splits into the stable and
unstable parts so that ToB = T, U ®Ta Y, Since B is oriented, the orientations of
the A, orient all stable manifolds. Because the intersections of stable and unstable
manifolds are assumed to be transverse. All moduli spaces of gradient lines are
now oriented and in particular if i(a) = i and i(8) = i — 1, then Uy NPy is
smooth, oriented and of dimension 1. Moreover it is invariant under the flow ¢

so that
(Gu-a N 9)13)/R

is simply a collection of oriented poinis.
Now form a complex with chain groups

C; = free Z-module generated by critical points of index i.

The boundary operator 9 : C; — C;_ is described by

a(a) = 3 mb,
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where a is a critical point of index #, the B¢ are the critical points of index i—1

and
mg =#(Fp, NU)/R € Z, _
where # denotes the algebraic count of the oriented points. The finiteness of the
intersection is guaranteed by the compactness of B.
It is also useful to consider the dual complex (C*,d*). Here

C! = free Z-module generated by critical points of index i

and the coboundary operator & : C! — CH! is given by
9*(a) =) #dl(vj,a)vj

where the sum is taken over the critical points «; of index i + 1.

The fact that (C,,d) and (C*,d*) form complexes will be discussed in some
detail and proven as Proposition 2.8 since the ideas are relevant for our discussion
in later sections. Assuming this fact for now, we state the fundamental theorem
concerning this complex:

Theorem 2.2 The homology o}’ the complex (C.,9) ((C*,0)) is naturally isomor-
phic to the singular (co)homology of B; that is,

Hj(B,Z) = H;(C.,d)  HI(B,Z) 2 HI(C*,&").

Of course, this theorem holds for general coefficient groups. It certainly was
known to Milnor [Mi2], although he did not define the boundary operator equally
explicitly. For a self contained proof see, for example, Floer [F3]; in Section 3, a
new, proof will be given over the real numbers.

There are two interesting corollaries of this theorem. That the critical points
form a basis of a complex which computes the cohomology of B immediately
implies the well-known Morse inequalities. Let ¢; = rank G, Iij = rank H;(B)
and z; = rank ker (9 : C; — C;—1) < cj. Defining k; = ¢; — zi 2 0 gives

Corollary 2.3 [Morse inequalities] There are ki > 0 such that
S =) =1+ kit
i i

Secondly, we may consider the Morse function —f which gives a new com-
plex (C.,8); by Theorem 2.2, the homology of (C«,d) also computes the homol-
ogy of B. The critical points of f and —f agree; however, a critical point of f of
index i is a critical point of —f of index 1 —i. Hence

C; = free Z-module generated by critical points of f of index 1 —1i.

Moreover, d(a) = Z#Ii(’y;,a)'yl-. This shows that the two complexes, (C*,d*)
and (C,,d), are isomorphic by the natural map taking

Ci — —Cn—i-

This gives the well known isomorphism

Supplied bv The British Librarv - "The world's knowledae"




128 D.M. Austin and PJ. Braam
Corollary 2.4 [Poincaré Duality] H*(B;Z) = Hu—+(B: Z).

Next we will discuss why Ci is a complex and why its cohomology is inde-
pendent of the generic Morse function f. These are the key ideas in our paper.

2.2 (C,,0) is a complex

The basic idea is quite simple. If d o d(a) # 0 then there must be gradient lines
from « to some 8 and from § to some 7 with i(a) = i(B) +1 = i(y) + 2.
This means that the space parametrizing gradient lines from « to 7 (which is
of dimension 1) has a boundary component equal to the factorization through 0.
But boundary points of 1-dimensional manifolds come in pairs, so there must be
another factorization a — g’ — '(as in figure 1).

Fig. 1

~

Theproof consists of showing that this is indeed so and that the orientations
cause thesé two factorizations to cancel out. For this reason, we begin a careful
analysis of the asymptotic structure of the space of gradient lines referring to
Appendix A for the more technical proofs. Our attention to detail here will ease
the more general Morse-Bott case in later sections. The discussion here owes much
to Floer [Fl1].

The assumption that f is a generic Morse function — that is, a Morse function
whose stable and unstable manifolds intersect transversely — implies that for
a# B, Il(a, () is a smooth manifold of dimension i(a) —i(B) — 1. In particular,
this says that if i(a) < i(B), then Al{a, B) = 0. Notice that, as a set, A, B) can
also be regarded as a submanifold of f~c) forany c € (f(B), f(a)). However,
the topology of pointwise convergence on the space of gradient trajectories can be
much stronger than the induced topology from B. This will be important for our
study of the asymptotic structure of the jlvl(a, B).

First of all, we have a weak compactness property which states that limits

of a sequence of gradient lines are broken gradient lines; the breaking points are
intermediate critical points.
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Lemma 2.5 If a, B are two critical points and {~;} is a sequence of gradient
lines in AM(a, B), then there are

1) a subsequence {7j}

2) a finite set of critical points a = ay,02,...,ak, a1 =3

3) a finite set of strictly decreasing real numbers ry,...,rg with the property
that ri € (f(ais1), f(ei))

such that

1) 1the points x;j = j(s) such that f (f,,) = r; converge 1o a regular point on
B which lies on a gradient line in M(aj, oiy1)

2) the indices of the o are sirictly decreasing with j; that is,

i(ar) > i(az) > - - i{ak41).

Pictorially, this may be seen as in figure 2.

Proof. The proof is in Appendix A (A.1.5).

Notice that for i(a) — i(8) = 1 the lemma states that Al(a, B) is compact.
We can now describe a local model of the boundary of the moduli of gradients.
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Lemma 2.6 Let & = ag,Qy,-..,0k—1,0x = 0 be a finite set of critical points,

the indices of which are strictly decreasing with j. For sufficiently small €, there
is a diffeomorphism, called the gluing map,

k k
G : [ ] Mlejr ajir) x [T0,6) - i, 5)
i:o j=]

mapping onto an open set in Il(a, B). Morcover, if «; is a sequence of gradient
lines as in Lemma 2.5, then 4; € image G for all large i. The compactification in
the sense of Lemma 2.5 proceeds by letting the real parameters in (0,€) approach
zero.

Proof. See A.2.2. Figure 3 indicates geometrically what the parameters

({'71'}}‘:0) {ti}}c:l) € H*’ﬁ(ai,aiﬂ) X H[O’ €)

signify. O

Fig. 3

Together the two lemmas prove that {l(a, 5) has a compactification

— . ko k
(e, f) = Ma,B) U | J U (] Mejajw) [T0.€)
j=1

keZ a=qg,...;,ar=8 j=0

which is a smooth manifold with corners.

In showing that (C,,d) is a complex, we need to understand how the ori-
entations of the various moduli spaces of gradient lines relate to one another
through the gluing map. We now develop a calculus for discussing orientations of
submanifolds and their intersections.
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Recall that an oriented manifold with boundary induces an orientation on
its boundary. This orientation is defined by the rule that the outward pointing
normal followed by the boundary orientation must add up to the orientation of the
full manifold; with this convention, Stokes’ theorem is true. If R is an oriented
submanifold of B then the normal bundle is oriented by the rule [R][Nr] = [B],
where the notation means juxtaposition of oriented frames. Transverse intersections
of oriented submanifolds R and T are oriented by the rule that the sum of the
oriented normal bundles Ng @ N is the oriented normal bundle of RN T. These
rules are more conveniently expressed by noting that the juxtaposition of frames
can be expressed as Clifford multiplication in C(T*B), which in terms of an
orthonormal framing ¢; is defined by e? = 1 and eiej = —ejej if i # j. At
different points in a submanifold of B we can compare the two framings by using
parallel transport.

Starting from a choice of orientations of stable manifolds ¥, for critical
points o we orient the unstable ones by

[Fa][Ua] = [B]-
For oriented intersections Al{a, B) = ¥3 N U4, we find
MU, A)] = [(Ua][B] ™" [F5]-

Orient the gradient line space J[{(c, B) in a level set by [l(a, B)] = (e, ﬁ)] VSl

l’ropos}tion 2.7 The gluing map

G : (e, B) x (0,€) x AL(B,7) — (e, )

is orientation reversing.

Proof. Consider the image of G in the level set f~1(8) where & is in (f(8), f(e))
(as in the figure 4).

o,

"‘-I(O.’, ﬂ)

_Vf
m(B, )

Fig. 4
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The rules above give:

Fa, 7)] = —Mle, AItJALB, 7). 0

To complete the discussion that (C.,0) is a complex, notice that

dodla)= Y S #lio, BB, V)Y
i(y)=i(a)-2 i(B)=i(a)-1

=Y adL(c, 7)Y
Y
=0

since the boundary of a l-manifold has zero points counted with orientation. This
gives our result

Proposition 2.8 (Complex) dod=0.

The only fact used in the proof is that the oriented boundary of a 1-manifold
has zero points when counted with sign. These arguments, and the analogous ones
in the following sections, call on a detailed knowledge of the asymptotics: limits
of a sequence of trajectories should be understood in terms of gluing trajectories
which connect intermediary critical points.

2.3 Inidependence of function and metric

The construction above is at the heart of the definition of Floer homology. To show
that Floer homology is a topological invariant, one cannot proceed by comparing it
to a known topological invariant. We therefore present the usual alternative proof
in the finite dimensional setting which shows that the homology groups computed
are independent of the choices. This proceeds along the lines of Floer [F1] and
Fukaya [Fu]. It makes usec of time dependent gradient flows on B x R.

The construction of the complex (Cs,d) depended on a Morse function and
metric on the manifold. Of course, since the cohomology of this complex is just
the singular cohomology of the manifold, the cohomology is completely inde-
pendent of the choice of Morse function and metric. However, in many modem
applications, the complex is defined for an infinite dimensional manifold and there
is no known cohomology theory with which to compare. For this reason, we will
give an alternative proof, in finite dimensions, that the homology groups computed
from the complex (C.,d) arc independent of the Morse function and metric, fol-
lowing Floer [F1] and Fukaya [Fu]. This will also be useful in the definition of
equivariant Floer cohomology (see [AuB)).

If two Morse functions f; and metrics g on B are given, we obtain two com-
plexes, (C1,8') and (CZ,87), as above. We now follow a three step procedure.
First we construct chain homomorphisms from C! 1o C?, and vice versa, using
a time dependent flow. Secondly we show that their composition is a chain ho-
momorphism which also arises from a time dependent flow. Finally we construct
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a homotopy operator showing that the composition induces the same map as the
identity (which arises from a constant family). The three together show that the
homology is canonical up to isomorphism.

To construct a map of complexes we use a family of functions f; and metrics
gt on B parametrized by R and equal to f (resp. g;) for t < —1 and to fa (resp.
) for ¢ > 1. This pair is conveniently denoted by F = (fi, &), and defines a
vector field

0
—grad fr +

on B x R equal to —grad f; + ;‘% fort < —1landto —gradf; + z‘;’; when t > 1.
By abuse of notation we will also denote the vector field by F or Fy; if we want
to indicate that it interpolates between the grad f;, i = 1,2.

For such vector fields F with flow ¢s, one can easily define submanifolds
Ue = {(xat) €BxR; ¢S(x)t) - (a, —00) ass — —00},

of dimension i(a) 4+ 1 when a is a critical point of fj, and similarly manifolds ¥4
for critical points of f>. They will inherit orientations from the stable and unstable
manifolds in B and intersect .transversely for a Baire set of vector fields F on
B x R equal to the grad f; in the prescribed areas (see the transversality discussion
in Appendix B). Assume that we have chosen such an F on B x R and let

ILF (o, 8) = (Sp NU,)/R

of dimension i(a) — i(3) denote the oriented intersection.

A chain map Fpj 4 : C! — C2 can now easily be defined: for basis elements
ac€ C,-‘,ﬂ € C,-z, we define

Faale) =Y #llp (e, 0)8
B

using an algebraic count of oriented points.

Before explaining why this is a chain map, we observe that if F>; interpolates
between f) and fa, and F3; between f> and a third Morse function f3 on B, then

1 1
Fsit =Fu-1, t> 5, and By =Fanr, £< -3,

for large T.

Proof. This is a minor variant of the proof of Proposition 2.6 describing the gluing
of gradient lines and it can be found in the appendix (see A.2.4). O
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Lemma 2.10 F, : (C1;8') — (C2;82) is a chain map; that is, F.0" + 8°F, = 0.

Proof. Consider a a critical point of f; of index i and 3 a critical point of f2 of

index i — 1. This space of gradient lines, Al (a, 8), has dimension 1 and boundary
consisting of factorizations:

(Ul (e, 7) x e (7, 8)) | Uslp(a,6) x L5, (6,8))

where + runs over critical points of f; of index i — 1 and & runs over critical
points of f5 of index i (see A.2.3). This is shown as before keeping in mind that
due to the presence of the time factor in the flow, only one of the factorizing
trajectories can go through the time dependent area. The gluing and orientation

proceeds as before, Then F,0'(a) = 3.5 N #.Mf, (o, Y)#dle (v, )8 and & F.(a) =
285 #p (e, 6)#.,(th (6, 8)8. Thus the coefficient of B in F.9"' + O?F, is precisely
the number of oriented boundary points of Alp (o, B) and hence zero. O

Let Fi i = 1,2, be two families interpolating between f, g1 and f2,8:. To
complete the proof that the Morse complex defines a topological invariant, we
construct a chain homotopy to show that the induced maps F, i on homology are
the same. To do so, we use an appropriate family of mterpolatmg functlons and
metrics F, on B x R, wuth u € [0,1). We require that F, = F! when u < 3 and
F, = F2 when u > 3 5. Furthermore for ¢ > T we have F.(t) = (f1,&) for all
u € [0, 1), and similarly for t < =T we want (f2,$2).

We shall show on the level of complexes:

Lemmd 2.11 The maps (F1)« and (F2)s are chain homotoptc that is, there is a
map H : C} — C? 1 such that (Fy)s — (F2)s = —-HO' - &’H

Proof. To find the homotopy and the relation we once more consider the boundary
of a space of trajectories: this time trajectories for the flow of the vector field G
on B x R x [0, 1] which is tangent to the B x R for every u € [0, 1], and agrees
with the vector field F,, considered above on B x R x {uz}. We pick critical points
o of fi of and B of f, of index j. After perturbing our vector field slightly, we
can assume that -

Ag(e x [0,1],8 x [0,1])

is a smooth manifold of dimension i — j + 1 (see A.3.3). There are endpoint maps

. defined on this space mapping it to a x [0, 1} and 8 x [0, 1}.

When the index of a is i and that of 8 is i +1, then Alg(a % [0, 1], 8 x [0, 1])
is a compact zero-dimensional manifold. The fibers of the endpoint maps are
non-empty for only finitely many u € [0,1]. Now define the chain homotopy
H:C!—-C}, as

H(a) =) #lg(a x [0,1],8 x [0,1])8.
5
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For § a critical point of f; of index i, ./Tl(;(a x [0,1},6 x [0,1}) is a 1-
dimensional manifold whose boundary, when studied as above, equals:

- ./Tl[:o(a, HuU .:ﬂp, (a,d) U
- {{U‘)‘(‘/ﬁf] (Q',')') X “ﬁG(7 X [01 11’6 X [0’ 1]))} U
— {Us(lig(a x [0,1],8 x [0, 1]) x di5(8,6))}}.

Here 7, 8 range over the critical points of f;, f, of index i — 1, i+ 1 respectively.
Counting boundary points gives the desired relation. O

Observe that the homotopy measures which gradient lines cease or begin to
exist under variation of the parameter u. Putting everything together we obtain:

Proposition 2.12 The assignment (M, f,g) — H.(C.,0) defines topological in-
variants of M up to canonical isomorphism, i.e. changing the metric or Morse
function induces a canonical isomorphism between the corresponding homology

groups.

Proof. If (f1,£1), (f2,%) are as above, then the crucial observation to be made is
that the composition Fjz o F2; can be realized by the constant family Fy = (f1,£1)-
By 2.11, this induces the identity on homology. This shows that Fj; = Fz_ll.

O

Observe that the compactness assumption on B can be relaxed in the following
way. Let % be a class of functions and metrics such that:

1) for any (f,g) € 6 the critical point set of f is compact, and families of
gradient lines connecting critical points of at most index +2 apart can only
degenerate into factorizations into gradient lines connecting intermediary crit-
ical points;

2) the family of critical points and the moduli of gradients between critical points
of index at most two apart in ‘6 x B are cut out transversally;

3) for generic families F; = (f, &) : R — % connecting two elements in ‘6, the
stable and unstable manifolds intersect transversally, and the boundary of the
Me (e, B) for i(a) = i(B) or i(a) = i(B) + 1 is as described in the proof of
Lemma 2.11;

4) betweeg any two Fy, F, there exist families G = F;; with smooth moduli
space Alg(a %x.[0,1],5 x [0,1]) which has a boundary as in the proof of
Lemma 2.11 if i{a) = i(B). :

Observe that the last two conditions exclude the possibility of critical points walk-
ing off to infinity in families. The homology is now an invariant of the manifold
and the class of functions ‘6.
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Example
Let f: B — R be a function such that its critical points lie in a compact subset
equal to K = f~' ([N, N]) of B. Let O C B be a relatively compact neighborhood
of K, and let € be the affine space of functions consisting of functions f+g where g
has support in O. The metric may be arbitrary. Apart from the generic intersection
properties, which are proved in Appendix B, it is obvious that all conditions are
met.

The importance of existence, orientation and asymptotics of the stable and
unstable manifolds must be stressed. All this found its origin in the fundamental
work of Smale in dynamical systems and in the transversality theory of R, Thom,

2.4 Cup products

The complex (C,,d) derived from a Morse function computes the homology of
B using only information about the one-dimensional gradient line moduli spaces.
It is natura! to ask if additional information is obtained by studying the higher
dimensional moduli spaces. In this section, we indicate that these spaces determine
the cap and cup product structures on homology and cohomology. As we will cover
this in more generality in §3, we delay some of the proofs until then. Braam and
Donaldson use this construction in a gauge-theoretic application (see [BD]).

Let (Cy,d) denote the Morse complex defined by f with coefficient group
R. Given a differential form w € Q¥ (B), define

cw):Ci = Cigrarm— Z(./;t(aﬁ)w)ﬁl (2.1)

where the sum runs over the critical points gy of index i — k.

A careful study of the asymptotics of the gradient line spaces (as is becoming
routine) shows that

(c(dw)(@) = c(w)(da) + (c(w)(a))- (2:2)

This follows from

c(dw)(@) = 3 / dw)B

At(a,B)

=Z(/a

w)p.
., 5)
By Proposition 2.6, it follows that the relevant part of ol(a, B) is .

Ujty)mim1 e 1) X (7, 8) | Uig)=i-kle, 6) % (8, B).
Then

c(dw)(e) = \%(; #i(c 7)( /{ oy 26: #11(6, B)( L )

= d(c(w)(a)) + c(w)(da)
which proves (2.2).
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There are induced maps:

HJz(B) ® Hi(Cy; R) — H;_(Cs; R)

HtfR(B) ® Hi(c*; R) — Hi‘*'k (C*; R) . (23)

Theorem 2.13 The maps 2.3 induced by 2.1 agree with the usual cap and cup
products, under the isomorphism between the (co)homology of the Morse complex
with singular (co)homology.

A simple consequence of this theorem is the following. We may define a
pairing )
Ci ®'Cll—l — R

by S maa® 3 naa Yy 1.

Corollary 2.14 This induces the Poincaré duality pairing
Hi(B;R) ® H"{(B;R) — R

on cohomology.

Perhaps the most important point we encountered here is that the spaces
Al(ex, 8) contain definite homological information. To obtain a product structure
on H*(C*, f) without invoking differential forms on B, one would have to relate
the cycles defined using these moduli spaces to Morse cycles. This is done by
taking intersection numbers with stable (or unstable) manifolds of complementary
dimension, and warrants further study.

We will see how to generalize this to equivariant cohomology in §5.

3 Morse-Bott theory

The theory outlined in §2 has two deficiencies. Proposition 2.1 tells us that «most»
functions on a manifold are Morse. However, often one is presented with a natural
function which is not Morse. Moreover, this theory is ill-suited for the study of
equivariant functions, for in this case, the critical point set will necessarily contain
orbits of the group action and so the critical points are generally not isolated.

In this section, we will rectify these deficiencies by studying so-called Morse-
Bott functions. Here we allow the critical point sets to occur as positive dimen-
sional submanifolds while requiring that the Hessian be non-degenerate on the
normal bundle. Additionally, the equivariant case suggests some natural assump-
tions on the function which will amount to assuming that the stable and unstable
manifolds intersect transversely — this is not the generic case for equivariant
functions. Our methods give a complex, defined in terms of the deRham complex
of the critical point sets and gradient line spaces, which computes the deRham
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cohomology of the manifold. As such, this theory will generalize the usual Morse
theory of §2. A lengthy overview will describe the complex with the technical
details supplied afterwards. Later, we show how cup products may be computed
and demonstrate the theory with a few examples. For the sake of exposition, we
will often refer to the proofs of the special cases given in §2 when no new ideas
are involved.

3.1 Overview

Let f: B —= Rbea function on the closed, oriented Riemannian manifold B,
non-degenerate in the sense of Bott; that is, the critical points are parametrized by
a submanifold, S, and on S, the Hessian of f defines a fiberwise non-degenerate
pairing on the normal bundle. For a component of S, Sa. we use the metric to
decompose the normal bundle into the positive and negative eigenspaces of the
Hessian, viz.

v(Se)=viev;.

As in the special case of §2, we define an index
i(a) = rank v .

Grouping the components of equal index defines 5; = Uj(a)=iSa- Denote by
AL(Si, S;j) the collection of points in B which are connected by gradient lines to
S.'," and S;. The flow ¢ induces an R action on this space whose quotient, denoted
AL(Si, Sj), parametrizes the space of gradient lines beginning at S; and ending at
Sj. Following the flow as t — o0 gives lower and upper endpoint maps

J

u;- :./TL(S,-,S,-) — §j.

. i : U(Si,Sj) — Sj )

We will now state our assumptions on f and the metric g. First of all, we require
that f be «weakly» self-indexing so that AL(S;, Sj) = @ if j > i (this is in contrast
to f being «strictly» self-indexing meaning f(5i) = ). Secondly, a transversality
assumption_on the stable and unstable manifolds defined by f enables us to con-
clude that AL(S;, Sj) is a smooth manifold and that the endpoint maps are locally
trivial fiber bundles with oriented fibers. We will be more precise momentarily.

An example to keep in mind is the following: Consider $2 as the unit sphere
in B3 and let f : S2 — R be given by the function f(x,y,2) = 22 The critical
points of index 2 are the nosth and south pole — Sz = {(0,0, 1), (0,0, -1} —
while the minima of f are the points on the equator {z = 0} = Sp. Then the
moduli space of gradient lines AL(S2, Sp) is diffeomorphic to the disjoint union of
two copies of S'.

We now define our filtered complex. Let C»/ = QJ(S;) with the operators

whenr =0

. o dw
. Ohf i+r,j—r+1 , A i
O:CH —-C fw { (=1 (d¥) (I1T7)*(w) otherwise
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where the map (u::"”)* is integration along the fiber of the bundle in (3.1). Let
with boundary operator @ = 3, §;. The complex is filtered by
0ocChcd c--ccf=CP

where .
Cl,: = @iﬂ':p,isz"I.

The main theorem of this section gives

Theorem 3.1 The cohomology of the complex (C*,0) is isomorphic to the de
Rham cohomology of B; that is,

H*(C*;0) = HiR (B).

Notice that the theory of §2 is contained within this more general framework.
In the case when f is a generic Morse function, the critical points are isolated.
Hence C! = Q0(S;) is the vector space generated by the critical points of index i.
Furthermore, 8, = 0 for all r # 1 for dimensional reasons. As before, IL(S,-H ,Si)
is an oriented 0-manifold — that is, a collection of signed points. Integrating over
the upper endpoint map simply counts these points with orientations, In this way,
we recover the ordinary Morse complex.

3.2 The Morse-Bott complex

We will now make this more precise. First, we introduce the stable and unstable
manifolds of the gradient flow and describe the assumptions needed to insure that
AL(Si, Sj) and ./TL(S,-,S,-) are smooth and that the endpoint maps are fibrations.
As our definition of the boundary operator 0 involves integration along the fiber
of the upper endpoint maps u;- : ML(Si,Sj) — Si, we will carefully study the

structure of the boundary of A{(S;,S;) (Lemmata 3.3 and 3.4). Stokes” Theorem
leads naturally to the fact that o @ = 0 (Proposition 3.5). Next we set up a
chain map between the ordinary de Rham complex and (C*,d) (Lemma 3.6).
Knowledge of the boundary structure of the unstable manifolds enables us to
show that this induces a map of filtered complexes inducing an isomorphism of
filtered cohomology groups (Theorem 3.8). This proves Theorem 3.1.

Proposition 3.2 The unstable manifold, U;, of S; which is defined as
U; ={beB| f—I»iTooqbl(b) € Si}.

is the image of a one-to-one immersion of v;” into B. There is a snooth endpoint
map 1t : WU; — S; given by 1/ (b) = limi——oo ¢1(b) which when restricted to a
neighborhood of S; has the structure of a locally trivial fiber bundle.
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Proof. This is shown in the appendix (A.9). O

Define U$ = (1/)~!(s) for s € S;. Similarly, the stable manifold ¥; is defined
using the ﬂow as t — oo and leads to the map /; : &; — S;. Of course, the moduli

space of gradient lines is .M(S,,S,) = (AU; N 9’,)/ R. We will make the following
assumptions in the sequel:

Assumptions:
1)) JT[(S,,S,) =@ if i < j. Thatis, f is weakly self-indexing.
2) Foralli,jand all s € §;, U intersects &F; transversally.

3) Both the critical submanifolds S; and their negative normal bundle v;~ are
orientable for all i.

By the transversality assumption (2) above, the following spaces are mani-
folds:

AL(Si,S55) = Fj NU;
Ai(si, S) = A(Si, S)/R
where the R action is given by translation along the flow lines. We have smooth

endpoint maps o
l;— : AL(5:,S5) — Sj

b (3.2)
tj : .M.(S,',S') — 5.

Furthermore, the transversality assumption (2) implies that u .M(S,,S,) — S;
has the structure of a locally trivial fiber bundle.

To define and study our filtered complex, we must first describe the structure
of the boundary of the spaces .M(S,,S j) and U;. This is entirely analogous to §2.

For a sequence j = ig < i} < -+ < i =i, using the fact that the u; induce
fibrations, define

Kigsinyonim = () (I2)" AUS3,, Siy)
and

‘Yio,il,...,lm (l‘m ),.l - (Ili(l))*cu'lo'

Im—1

Using the usual notation for fibered products, we may more explicitly write,
Xl'o,l'h...,i," = J[[(Sjm, Sim-—l) Xsim-l ‘At(sin,_l ) Sim_z) XS,'m_z e XS,-l ‘M'(Silvsio)
Yiositresim = MWSims Simot) X81,,_ M(Sipyys Sim—2) X8, _, *++ X5, Wip -

One thinks of the X;, i,,..i, as describing the space of «broken» gradient lines
from S; to S; factorizing through intermediate critical submanifolds as in Lemma
2.5. We may topologize the disjoint unions

sy U Xigdieein

j=i0 <i| <"'<im=i

Supplied bv The British Librarv - "The world's knowledae"




Morse-Bott theory and equivariant cohomology 141

and
W U Yieitein

ig<iy <o <im=i
by requiring that sequences converge as in Lemma 2.5. As in §2, the following
lemma holds.

Lemma 3.3 (Compactification) The spaces of gradient lines IL(S,-,S j) and the
unstable manifolds U; may be compactified so that

oA(Si,S}) = U Xiosirseonim
j=io<iy< - <im=i
and aGT[; = U Yi(),i],...,fm'

fo<i) < eim=1

These compactified spaces both have the structure of a manifold with corners —
that is, they are locally diffeomorphic to an open set in UN = {(xi € RN|x; >
0 for all i}. There is a natural injective immersion of the Q; into B, which is not
usually proper.

Proof. See Appendix §A.3. It should be noted that the transversality assumption
(2) above is necessary. O

The maps uj- : IL(S,-,S,') — §; extend smoothly to Xj,i,,..in and agree

with ll::z_l. Similarly for I; Furthermore, u;- : 811(5,-,5;) = U Xig iy yim — Si

and has the structure of a bundle map which we denote ”j‘,a and similarly for
u :OU; — Si.

Before defining our filtered complex we need to choose orientations of the
S; and their normal bundles. This orients all the spaces of gradient lines. Let

(A(Sia1, S = ()" (5) for s € Sir.
Lemma 3.4 (Boundary orientation) The codimension I stratum
(UEFY AUSiat, 1) — (AUSiak, Sin))”
of (It(SHk, Si))* has boundary orientation
(= )%= [(AUSiks Sid)FNASi11, S)))-

The codimension one stratum
(F)*ay — (M(Sk,S1)F
of OTI,’,‘( has boundary orientation:

(—=1)* = [(AUSk, S1)F) ).
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Proof. As in Lemma 2.7. O

, We digress briefly to discuss integration along the fiberofabundlen : E — C
| ; with fiber F. We furthermore assume that C is a closed manifold and that the
| typical fiber is an oriented compact d-dimensional manifold with comers so that
7g : OE — C is also a bundle with fiber OF . Take coordinates x on C and ! on
E. A form on the total space E may locally be written as a linear combination of
forms 7* () f(x, Hdti, Adti, A-- - Adt;, where ¢ is a form on C. Then integration
along the fiber, 74 : QE) - 'g('bs defined by

i (6)f(x, )dool) = f £(x, )dvol
ma(7* (@) (x, 1)dbi, ... dl;,) =0 for r < d.

It is important to consider how exterior differentiation is related to .. Since
Stokes’ theorem holds for manifolds with corners, we have for w € ¢/(C)

7 (dw) = dma (W) + (=17 (m9)s (wloE)- (3.3)

To see that we have defined a complex, we must first show that P =
(3>, 8,)* = 0. This is equivalent to the following proposition.

Proposition 3.5 (Complex) For each k, z;:{; 10, =0.

Proof. The fact that > =0 on QJ(S;) proves the casc k = 0.

For k > 0, we are interested in studying dxdow for a form w € Qi(S:).
Using (3.3) above and the study of the asymptotics of the space of gradient lines,
we arrive at

Ok Ogw = (-—1)j+](u::+k),(l::+k)*dw
= (=1 k) Ay w
= (‘*1)"+1d(u§+k)*(lf+")*w + (*l)iH(—l)i_k(ll:::'bk)*(lﬁ“*k)*w
= —Bpdkw + (—1)F T (). w.

(3.4)

We now study the boundary integral by considering the codimension one strata of
the boundary. These strata fit into the following commutative diagram:

i+l

; ~ ~ I
(U AU(Si41, 81) = M(Siz1, 5i) 5 Si

e l Luft!

| ui+k o [i+k
i+l il
Siak & MSizx,Siz) = Sial
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Integration over the fiber commutes with the pullback of bundles; hence,

W)L w = S (DR GO () () e
o<l<k

(3.5)
=>, (—1)¥0x_19.
O<i<k
These two expressions, (3.4) and (3.5), together prove the lemma. O

3.3 Comparison with the de Rham complex

We now claim that this complex computes the deRham cohomology of the man-
ifold B. To do this, we will assume that f is strictly self-indexing (f(Si) = i)
and define the sets By = f~'((k — %, 00)). The essential feature of By is that it
contains all critical submanifolds of index less than k and their unstable manifolds
while containing no critical submanifolds of higher index. When f is not strictly
self-indexing, it is possible, using the transversality assumption, to define sets By
also having this property. This is a simple extension of an idea of Smale {Sm2].
Thus, the self-indexing assumption only simplifies our notation without restricting
the generality of the conclusion.

Consider the standard deRham complex (€ (B),d) filtered by
0 C QU(By) C Q(Bu_y) C -+ C Q(By) = U (B)

where By ~= f}((k - %,oo)) and the subscript denotes compactly supported

forms. With C'/ = ©/(B) and C;(’ = Q{;(B x)» we will describe a map of filtered
complexes

$:CH - CI

inducing a map on the filtered cohomology groups. To define & : C"/ — C kij—k,
recall that 1k : QU — Sy has the structure of a locally trivial bundle. For w €
C'f = Qi(B), let

Dr(w) = @) (wh,)-
Then b = pPy.

Lemma 3.6 (Chain map) ¢ is a map of filtered complexes — that is, © od = dod.

Proof. The statement of the lemma is equivalent to

1=k

Dy (dw) = Sk 1P1(w).
1=0
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The codimension one stratum of the boundary 90Uy is given by Y} x with
I < k. We rewrite ¥} = (11" *Q1;. Then

@ (dw) = (%) (dw)
= (%Yo () + (—1) 7 (h)(w)
= () (@) + (=1 YD ) OF) (1) )

I<k
= By (w) + (= 1)1 S (=) (1) 91y ).
I<k

Furthermore ®_(w) =0ifw € Qé(Bk) so that & : C;(j — C{;. This shows that
& defines a map of filtered complexes, 0

The previous lemma enables us to say that ¢ induces a map on the filtered
cohomology groups of the complexes. In fact, this map is an isomorphism as will
be proven in the next theorem. First, we review how a filtered complex induces a
spectral sequence (see [BT]). Let K be a complex filtered by

.+ CKyc--CKiCKg=K=K_|=...

and let GK,, = K,/Ku4y be the associated graded complex. The short exact
sequence

0 — Kyy1 — Ky —GK; — 0

-~

induces the long exact sequence in cohomology
-+ — HP(Kpy1) — HP(Ky) — HP(GKy) — ---

This exact couple results in a spectral sequence whose Ej term is E (7 = HP(GKy).
The naturality of this construction implies that a map between filtered complexes
induces a map on the spectral sequences. The following algebraic lemma will be
useful in what follows.

Lemma 3.7 Let f : K — K2 be a chain map of filtered complexes. If f induces an
isomorphism of the Ey term of the associated spectral sequences, then f induces
an isomorphism on homology.

Proof. Since f induces an isomorphism of the Ey terms of the spectral sequences,
it must also induces an isomorphism of the E, terms. However, the Eo, term is
the associated graded group of the homology of the complex. The result follows
by noting that a homomorphism of filtered groups which is an isomorphism on
the associated graded groups must be an isomorphism. O
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We are now ready to prove our main theorem (Theorem 3.1). For the re-
mainder of this section, we will use real coefficients without explicit notation. Let
Np = f1((—o0, k— %]) so that the cohomology of the complex H? (Q7 (By),d) =
HP(B,Ny). Thus the filtration on the deRham complex induces a filtration on
HP(B) given by the image subgroups (H?(B,Ng) — HP(B)). The spectral se-
quence obtained by filtering forms on B by level was studied by Fary {Fa] and is
described in [Bol.

Theorem 3.8 ® induces an isomorphism of filtered cohonology groups; hence
& : HP(C},0) ~ image (HP(B,Ny) — HF(B)).

Theorem 3.1 appears as a special case.

Proof. We begin by showing that @ induces an isomorphism on the E; term of
the spectral sequences. The associated graded complexes of the two sequences are
given by

GCh = P~k (Sy)

and  GCY = QE(Bx)/Q(Bi+1)-

On the Ey term, ® induces ® : HP(GC}) — HP(GCy) = HP~¥(S). Recall that
this map is defined by ®(w) = (g )« (wlay, ) for w € QF(By).

Let Fy = Bx N9Lx be a neighborhood of Sg in Alg. By the stable manifold
theorem A.9, F; may be identified with the disk bundle D} in the negative normal
bundle v} . The map ¢ factors as

-~

HP(GCL) — HE(F¢) — HP¥(S)

where the first map is induced by restriction of forms QF(By) — QF(Fx) and
the second map is the Thom isomorphism given by integrating over the fibration
Fy — Sk. To show that @ is an isomorphism, is suffices to show that restriction
of forms induces an isomorphism HP(GC}) — HE(Fy) as follows.

The short exact sequence
0 — Q¥(Bxs) — Q(Bx) = GC{ — 0

induces a long exact sequence in cohomology related to the exact sequence of the
triple (B, Ng41,Ng) as

... HE(Beyy) — HE(By) — HP(GCL) —...
! d | |
.--HP(B,Nk.H)—)HP(B,Nk)—?HP(Nk+|,Nk)—*--.

By the Five Lemma, HP(GC}) — HP(Ng41,Ng) is an isomorphism. Further-
more, the gradient flow defines a deformation retract of the pair (Nk4p1,Nk)
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onto (Fx U Ni,Ng) (as in [Mil] for the case of nondegenerate critical points),
Hence, HP(Ng41,Nx) — HP(Fx,0F;) = HF(Fi) is an isomorphism by exci-
sion. Putting these together implies that restriction of forms gives an isomorphism
HP(GC}) — HE(Fy) as claimed.

Now that ¢ induces an isomorphism on the E; term of the spectral sequences,
it must induce an isomorphism on cohomology by Lemma 3.7. O

Without the transversality and self-indexing assumptions, the unstable man-
ifolds {;} still form a stratification of B. From this, we could compute the
cohomology of B resulting in a theory over the integers. However, as this method
does not generalize to infinite dimensions — the stable manifolds need not form
a stratification — we will not pursue this course.

As in §2, the existence of the Morse-Bott complex implies the more general
Morse inequalities of [B3] and [Bi]:

Corollary 3.9 There is a polynomial Q(t) with non-negative coefficients such that

> dim Hi(S R =3 dim HY(B; R)eF + (1 + DQ().
ij k

A Morse-Bott function f is called perfect if Q(t) = 0. If either the higher
differentials vanish in the spectral sequence or the components of the boundary
operator Jy for k > 0 are zero, then f is perfect. This is the case in Bott [B4].

3.4 Comparison with the Morse complex

Rememb?r that Proposition 2.1 states that a Morse function necessarily lies arbi-
trarily close to our given Morse-Bott function f. It is instructive to prove how the
two complexes are related. This is in fact not much different from the comparison
with the de Rham complex.

Choose tubular neighborhoods T; of the critical submanifolds S; and generic
Morse functions f; on 5;. Let p; be bump functions which are identically 1 near
S; and identically zero outside of T;. Define

fo=f+e3 oif

For sufficiently small ¢, f, is a nondegenerate Morse function. We denote the Morse
complex that it defines by (C¥, 97). We will describe a chain map between (C*, 9)
and (C}, d}) which induces an isomorphism on cohomology. Fintushel and Stern
[FS} have used this idea in computing Floer homology groups for Seifert fibered
homology 3-spheres.

The critical points of f, are exactly the critical points of f;; morcover, if a
is a critical point of index j for f, it is critical of index i + j for f.. Denote the
unstable manifold of « in §; by UL,.
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Proposition 3.10 For small €, the map F : (C*,0) — (C*,0}) defined by

P@)=([ we

where w € QU(S;), is a chain morphism inducing an isomorphism on cohomology.

Proof. Given critical points a and 3 of f, denote the moduli space of gradient
lines of f by Al¢(a, B). Showing that F is a chain map is equivalent to checking

F@w) =Y #ll(B,0)p

where the sum is taken over the critical points 8 of fi+x of index j - k + 1. For
k = 0, this is just Proposition 3.6. The proof for k > 0 involves the asymptotics
of the gradient line moduli spaces. Let p denote the minima of fi so that

Me(B,p) = g7y 17 ().
Then the boundary of Alc(5,p) contains factorizations
umWWWJMM£MJhm®me

Moseover the integral t(8p) I} dw vanishes since the form has no component
along the flow lines. Putting this together implies that

0= [} dw
AL (B.p)

b / w
At (B.p)

= f'u g’.((u;ﬂ).l,f‘w)lm;ﬂ- — #4l (6, a) [u ; Wy,
= F(Qxw) — 8" (F(w))-

This implies that F is a chain map.

Moreover, both complexes are filtered by the index of the critical subman-
ifolds of the original Morse-Bott function f and F is a chain map of filtered
complexes. It follows that the E; of both spectral sequences is HI(S;) and by
Proposition 3.1, F induces an isomorphism on E, and hence on the homology of
the complexes (Lemma 3.7). 0
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3.5 Cup products

Here we will generalize the discussion on cup products in §2 to include the Morse-
Bott case and a proof will be given for Theorem 2.13. The idea is that the cup
product can be realized by integrating over moduli spaces of gradient lines.

For w € 2%(B), define

R _-_<

c(w) : ¢! — ik
in terms of its decomposition ¢(w) = @p>oc(w)m where

c(W)m s Qj(si) — Qfmk (Sitm)-

For m = 0, ¢(w)o{a) = w|s; A . For m > 0, define

c(Wm(e) = ("Hm)*(w

AUSigmSi) N lia).
Studying the gradient line spaces, exactly as in §2.4, gives the chain relation
c(dw)(e) = 8(c(w)(a)) + c(w)(da)-

Then there is an induced map on cohomology such that the generalization of
Theorem 2.13 holds.

Theorem 3.11 The map

c: H5(B) @ H!(B; R) — H'**(B; R)

is the cup product map.

Proof. We will prove this in the case in which f is a nondegenerate Morse function
as in §2. The general Morse-Bott case is no more complicated.

The result is proven once we construct a commutative diagram |
A
H%(B)®@ Hig(B) 5 Hg,g‘l' (B)
H§R(B) ® HI(C*,B) 5 HkH(C*a a)

where the vertical arrows are induced by the isomorphism in Theorem 3.1 — that
is, by integration over the unstable manifolds.

A
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Let w € QF(B),n € Q/(B) and o, be critical points of f of index I and
I + k respectively. To demonstrate the commutative diagram above, we wish to
show that the chains ffﬂ,a wAnand [ 1(B.a)® Ju, 1 define the same cohomology

class.
In the spirit of Witten’s deformation of the deRham complex [Wi], we con-

sider the integral f:u, &' ,w A ¢fn. Since we have pulled the forms back by a

diffeomorphism isotopic to the identity, they still define the same cohomology
classes and hence the integral over the unstable manifold Ag must be cohomol-
ogous to f%w A 7. In the limit that £ — oo, the support of the forms becomes
concentrated around the critical points. Let « be a critical point of index i and
denote the eigenvalues of the Hessian of f at 4 by Aj where A; > 0 for j < i and
Aj <O for j > i. Set p = min|Aj| and R = max |A;|. For convenience, assume
that around +y there is a coordinate chart (Xy,...,Xi,Yi+1,.+,Yn) Such that the
vector field — grad f is linear so that the gradient flow may be written
oi(x,y) = (Mg, ..., ez, ety e ).

Near v, we write w(x,y) = wl,]dx’ A dy! and similarly for #. Then using

multi-index notation,

¢t w(x,y) = wi (gt (x,y)e N dxldy!

where Ak = D1 ck Ak The form ¢z admits a similar expression. Near the critical
point 7, the unstable manifold QU factorizes as AL(3,7) x U,. We can then apply
Fubini’s theorem to estimate

| / PLiwAdrn < / / |W11(¢-t(xd/))m']'(ff’t(x,y))le(x""x’)'dx'dxl
aLg A(8.7) Jau,
e(/\,—z\]r)fdy]dy['
S/ _/ I‘*’II(¢’-t(x,.‘/))’)I'I’(¢t(x,}/))|3(R|I"_plll)tdx1dxll
A(By) JaUy
W=yl dyl’,

Counting dimensions shows that any non-zero terms must satisfy

|+ =1

I+=1+k—i
- I+ 1]l =k

i+ =1

Making the coordinate change

glx,y) = (e’\llxh - 13Aitxi7yi+l’- e oY)y
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we may rewrite the inner integral over the unstable manifold QL. The contribution
to each term from the inner integral then becomes bounded by

[ (6 )y g O aa
ty

" As t grows, the contributions from terms with |I| > 0 become increasingly small

and can hence be neglected. For this reason, we can suppose that [I| = 0. A
similar argument shows that the only significant contribution is from the term
with |J’] = 0. Putting together the equalities above, we conclude that the index of
~ must be / and the integral becomes

/ o[ n
B JU,

This proves the result when the vector field is linear about a critical point. In
general, this is not so; however, we may use the estimates in Lemma A.3 to bound
the corrections arising from nonlinearity of the vector field. The same argument
then holds. O

Furthermore, the Poincaré pairing can be understood by reversing the gradient
flow as in Corollary 2.14. First suppose that —f is a Morse-Bott function satisfying
the assumptions above. Then —f defines a Morse-Bott complex (C*,9) which
again computes the cohomology of B. Then we have

Corollary 3.12 The Poincaré duality pairing H¥ (B; R) ® H"~*(B; R) — R can
be expressed in terms of the Morse-Bott complex

ck ®E’z_k - R
by wi @ nj — [fs, wi Ai.

Proof. The key observation is that the unstable manifold, A;, of the critical sub-
manifold S; under the function —f is (up to factorizations) just the gradient line
space {((Sg,S;) where S runs over all the local maxima for f. Then, arguing as
in Theorem 3.11 shows that

/w/\n:/ w/ n
B (Sk,5i) aU4;
=[wfn
U JU
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3.6 Examples

Though the Morse-Bott complex may appear somewhat daunting, it is often quite
easy to compute. In this section, we will present some examples to bolster this
claim.

1. Consider the two-sphere §2 = {(x,1,z) € R3}x? + 12 + z* = 1} with the
Morse-Bott function f(x,y,z) = z2. There are two critical points, p and g, of
index 2, while the equatorial S! is critical of index 0. Hence the E; term of the
spectral sequence is

0 0 0 0
RO 0 0.
R 0 R O

The differential d» : R — R? is given by integrating the volume form on §!

along the moduli spaces Jﬁ(p,S 1} and :fl(q,S 1) which are both circles. Then
dy(w) = (1,—1) and the Ec term of the spectral sequence looks like

&= o o
oo o
b= o Rl o
oo O

2. Consider CP" = §2"*+1/S! with coordinates [zp : 21 : ... : 2] Define the
Morse-Bott function

f([ZO I Zn]) = |2n|2~

There is a critical point p = [0:0: ... : 1] of index 21 and a critical submanifold

CP"! = [z9:2):... 21 : 0] of index 0. Then the E; term of the spectral

sequence looks like

21—-2 R 0

2n—-3 0 O

2m—-4 R O

0 R O ... R
0 1 ... 2n.

Notice that all higher differentials vanish for dimension reasons. This gives a
simple way to inductively compute the cohomology of complex projective spaces.
By changing f to —f, one can easily obtain the cup product structure.

3. Let 7 : E — B be a fiber bundle with fiber F and let f be a nondegenerate
Morse function on B. Pulling back to E gives a Morse-Bott function f=w"fon
E. The critical submanifolds of J are the fibers over the critical points of f and
hence all diffeomorphic to F. Moreover, the index of a fiber is exactly the index of
the critical point over which it lies. The Morse-Bott complex then gives a spectral
sequence whose Ej term is the cohomology H*(F)®H*(B). The resulting spectral
sequence is the Leray spectral sequence for the fibration (see [BT] and [Bo]).
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As an example, consider the Hopf fibration $3 — S? with fibers S'. Let f be
the height function on 52 with two critical points, one at the north pole of index
2 and one at the south pole of index 0. Now the E; term of the spectral sequence
given by f is

R oR
R 0 R~

The differential d» : R — R precisely measures the Euler class of the bundle. This
is a general phenomena; for k-sphere bundles, the differential dg. will measure
the Euler class.

4. There is one example of a fiber bundle which is relevant to our study of
equivariant cohomology in the next sections. Let X be a manifold with G-action
and EG — BG the classifying bundle for G. As we will see in the next section, the
homotopy quotient, defined as Xg = EG xgX, forms a fiber bundle 7 : Xg — BG
with fiber X. The cohomology of Xg is called the equivariant cohomology of X.
If f is a Morse function on BG, then #*f is a Morse-Bott function on X as in
example 3 whose critical submanifolds are all diffeomorphic to X. The Morse-Bott
complex then computes the equivariant cohomology of X.

For example, suppose that G = SU(2). In this case, the classifying bundle
is $%° — HP%°. On HP*, we may take a perfect Morse function whose critical
points all have index divisible by 4. The only non-zero components of the boundary
operator are &y and dy. Of course, &y is just the usual exterior derivative on
Q*(X). The component &y : Q/+3(X) — Q(X) is easily described. Given critical
submanifolds X;,4 and X;, the moduli space of gradient lines is

-~

M(Xiza, Xi) = X x SU(2).

The upper endpoint map is simply projection onto X while the lower endpoint
map is given by the group action: l;(x,g) = g-x. Then ifw € Qi+3(X) and M is
a submanifold of X of dimension j,

/M Bulw) = fc-M .

where G - M = {g .mlg € G,m € M}. In patticular, if w € Q3(X), then
04 w) Y) fG x

Many propemes of equivariant cohomology can be understood geometrically
in terms of this picture. In the next sections, we will build a different complex to
compute equivariant cohomology.

4 Equivariant cohomology

Here we review the basic definitions and standard results about equivariant coho-
mology. This will be useful in the next section where we discuss the computation
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of equivariant cohomology using critical submanifolds and gradient flows as in
the previous sections.

Let G a compact Lie group and denote the universal G-fibration by EG —
BG. If X is a space with a G-action, the space Xg = EG x¢ X, called the
homotopy quotient, is a fiber bundle over BG with fiber X. The G-equivariant
cohomology of X is defined by

Hg(X;T) =H*"(Xg:T).

Moreover, pullback by the fibration Xg — BG gives Hg(X;T') the structure of a
module over the ring H*(BG;T). This module structure will be investigated more
fully in §6.

The following examples illustrate some properties of equivariant cohomology.
First of all Hg({point};Z) = H*(BG;Z). If the G-action on X is free, then
Hg(X;Z) = H*(X/G;Z) and the equivariant cohomology of an orbit is given by
Hg(G/K;Z) = H*(BK;Z) for a closed subgroup K.

The equivariant cohomology of a space intertwines cohomological informa-
tion from the quotient with the subgroups appearing as stablizers of points. When
G acts freely on X, the module structure is easily understood.

Proposition 4.1 Suppose G acts freely on X, then the H*(BG; Z) module structure
of He(X;Z) = H*(X/G) is described as follows: if ¢ € H*(BG;Z) and w €
H*(X/G), then

¢"‘J = C*(¢') U“U,

where ¢ : X/G — BG is the classifying map for the principal G-bundle X —
X/G. .

Observe that the image of ¢* C H*(X/G;Z) consists of the characteristic
classes of the G-bundle X — X/G.

There is a convenient model with which we will consider equivariant coho-
mology: the equivariant cohomology with real coefficients can be computed from
a deRham like complex of differential forms. The version which we discuss is
due to Cartan [C] and we refer to the excellent book by Berline, Getzler and
Vergne [BGV]. Denote the Lie algebra of G by g. Define the so-called equivariant
differential forms

Qc(X) = (@*(X) @ S*(@")°,
where G acts on its Lie algebra by conjugation. Linear polynomials on g have
degree two, and this tums g (X) into a bigraded complex. Pick a basis X, of g
with dual basis ¢,. The differential is a graded derivation defined on the generators
by
de = dw — Z(}Sal.xnw, dG¢a =0
a

for w € Q*(X) and X, the vector field on X induced by X, € g. Cartan shows
that this defines a complex and:

Supolied bv The British Librarv - "The world's knowledae"



154 D.M. Austin and PJ. Braam

Proposition 4.2 Hg(X;R) = H* ({6 (X),dg)-

Proof. The isomorphism is induced by the Chern-Weil homomorphism which we
now describe. Let © : P — M be a principal G-bundle. The pullback map =*
identifies differential forms on M, Q* (M), with basic differential forms on P,

{ Masic(P) = {n € Q*(P)In is horizontal and G-invariant}.

Now consider the classifying G-bundle 7 : E G — BG with a connection
whose curvature is Q € Q2(EG;@). For a G-manifold X, define a map

x : E(X) = Uasic(EG % X):w®p)— () Q.

Using the identification of basic forms on EG x X with forms on Xg, we have
an induced map x : 5(X) — Q" Xg. The differential dg was defined so that x
is a chain map. The induced map on cohomology is the isomorphism which gives
Hil the proposition. O

When X is a poini, we see the well known fact H*(BG;R) = S*(g*)°,
which elegantly demonstrates the module structure of HE (X5 R).

It is important to notice that the Chern-Weil homomorphism is natural with
respect to pullback under equivariant maps and integration over equivariant fibra-
tions. Suppose f: X — Y isa G-equivariant map. Then there is an induced map
frQu(Y) — QLX) by fflw® $) = f*(w) ® ¢ which commutes with the
Chern-Weil homomorphism

z;l(Y) — n*(lvc)
QLX) — Q'(Xe)

We digress briefly to discuss integration along the fiber of an equivariant fiber
bundle. Let E — B be a G-equivariant fiber bundle with fiber F. Furthermore, let
X denote the vector fields on E and B induced by an element of the Lie algebra
g. We claim that integration along the fiber commutes with contraction by X; that
is,

ma(igw) = igme(w). (4.1)
This follows since if w = 7*$f(x, t)dvolF, then
i (7 (6)f(x, Didvolg) = w* (ig$)f (3, Didvolp + (=18 én (9)fx, igelvol.
Integrating along the fiber kills the second term while the first term integrates to

igm.(w). There is a map Ji : QL(E) — Qg "(B), where 1 is the dimension of
: the fiber F, induced by

I(w® ¢) = he(w) @9
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By (4.1), 1, induces a map, integration over the fibers, on equivariant cohomology.
Notice that x(1(w ® ¢)) = ¢() ® Iy (w) = i (x(w ® ¢)) so that Jt, commutes
with the Chern-Weil homomorphism.

In the case when 7 : E — B is an oriented vector bundle over a compact
manifold of rank k, the Thom isomorphism H}+X(E;R) — H*(B;R) can be
realized by integration over the fiber — that is, w — m{(w). An inverse is con-
structed using the Thom class 1« € HX(E) to define w — 1 A 7*w. The class u is
characterized by the fact that it is closed and has integral 1 over each fiber of 7.
Beautiful representatives for the Thom class were found by Matthai and Quillen
[MQ] (see also [BGV]) in which the Thom form is acquired by substitution of the
curvature of a connection on E into a standard formula.

The Thom isomorphism also holds in the more general setting of equivariant
cohomology. Let E — B be an oriented G-equivariant vector bundle of rank k.
We define Q¢ (E) = (Q(E) ® $*(q*))C and a map 7G4 : Q;‘;‘fck (E) — Q5(B)
by 7gs(w ® ¢) = ms(w) ® ¢. As before, this induces a map on equivariant
cohomology Haf;k (E) — HE(B). Constructing an equivariant Thom form will
give the inverse map as above. Let P — B be the G-equivariant principal K-
bundle associated to E and choose a G-invariant connection A. The equivariant
curvature F2 € Q% (P, Lie(K)) is defined as follows (see [BGV]). Fixing a point
p € P, an element 2 € ¢* ® Lie(K) can be produced by assigning to a vector
X € g the vector

Ap(X) € Lie(K)

where X is the infinitesimal action of X on P. The equivariant curvature is now:

~

F& =FA - .

The usual substitution into the formula of [MQ] produces a Thom form and proves:

Proposition 4.3 (The Thom Isomorphism) Given a G-equivariant vector
bundle E — B of rank k, integration over the fiber defines an isomorphism
HEHF (E;R) — HE(Bs R).

5 Equivariant cohomology and Morse-Bott theory

Many examples of Morse-Bott functions arise as invariant functions on a manifold
with group action. Here the critical point sets are invariant under the group action
and so must necessarily contain orbits. The theory in §3 tells us how to build
a complex which computes the deRham cohomology of the manifold. It is but
a slight generalization, using equivariant differential forms rather than ordinary
differential forms, to compute the equivariant cohomology of the manifold. We
take up this question in this section whose outline closely follows that of §3.
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5.1 The equivariant Morse complex

Let X be a compact G-manifold. An interesting theorem of Wasserman [Wa]
asserts that the G-invariant functions on X with isolated non-degenerate critical
orbits form a Baire set. Let f: X — R be a G-invariant function with nondegen-
erate critical orbits. The critical point set of index i of such a function is of the

form )
Si = UaG/K},

for certain subgroups K! which are the stabilizers of these critical orbits. Following
the notation of §3, AL(S5;,S j) denotes the set of points connected by a gradient line
to S; and 5j, M(Si,Sj) = M(Si, Sj)/R, and the lower (upper) endpoint maps are
I;- (u’]-) : M(Si,55) — Sj (Si). Notice that these maps are equivariant with respect
to the G-action.

We shall now assume that the stable and unstable manifolds intersect transver-
sally. This is not an assumption which will be satisfied generically for equivariant
non-degenerate functions (see [P]), but it is often satisfied by interesting group
actions. For instance, if the complement of the critical orbits contains only one
orbit type, then the usual obstructions to equivariant transversality disappear and
we can make this assumption, Observe that due to equivariance, AL(S;,Sj) = @ for
j > i, ie. our weakly self-indexing assumption is implied by the transversality as-
sumption. Similarly the assumption that the endpoint maps induce fibrations is an
immediate consequence of the presence of a transitive G-action on the components
of the critical point set.

We will form a complex which computes the equivariant cohomology of X,
again using.equivariant forms on the critical submanifolds. Using the Cartan modcl
for equivariant cohomology, we define a filtered complex (C*,9g) with

CP = ®ip=p(5i) = Dij+2k=p(V (51) ® sk(@*)°.
The filtration is given by
C)’: = eai+1=p,i_2anG (Si)

so that
cP=CjccCic-.-cChc--

As before, the boundary operator JgG : ch — CPH! splits into 9 = 3 (9c)k
where (9g)x : Ch — Cﬁ;:“ is a map of S*(g*)® modules as follows: for

w®PE (Qf(Si) ® Si(g*))G, let (8c)o(w ® ¢) = dc(w ® ¢) and for k >0, let
(Oc)k(w ® ¢) = Hhw @ ¢.

The following theorem shows that the filtered complex introduced above is
in fact a complex.
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Theorem 5.1 g 00g =0.

Proof. The proof closely follows that of Theorem 3.5. Again we must show that
> (@6)1(96)k-1 =0
1

for all fixed k. The case that k = 0 is trivial so we concentrate on k > 0. From
our definitions,

3 (6@ k-1lw ® ¢) = Y _(A1dk-1w) @ ¢
~ Y ig Hw@® ¢ — ) Dkixg,w ® P
As the first sum vanishes by Proposition 3.5, our investigation focuses on the

remaining terms. The theorem is proven if we have ig Okw + Ok ig w =0 which
is equivalent to

ig. (irr)elf (W) = (Wisk)slig, (W)-
This is true precisely because integration along the fiber and pullback commute
with contraction by X for equivariant maps. ]

Remark 5.2 If $ is an ideal in S *(g)C, then we can also consider the complex
(C*/$,0G). This has a variety of interesting applications, one of which we shall
discuss below.

Still following the outline of §3, we now show that the cohomology of our
filtered complex is the equivariant cohomology. Again we filter the equivariant
forms on X. Because the transversality assumption is satisfied, there is no loss of
generality in assuming the invariant function to be strictly self-indexing (that is,
f(Si = 1)), and so let X = f“‘((n - %,oo)). Notice that X,; is a G-space since
f is G-invariant. Define

C" = 05(X) = (@ (X) ®5°(a")°
with the filtration
Cir = % o(Xan).
With the usual boundary operator dg, (C’*,dg) forms a filtered complex.
We define a map of filtered complexes

¥ (C'*,dg) — (C*,8c) : ¥(w ® ¢) — P(w) ® ¢.

Recall the chain morphism & = @® where & : 2/(X) — AR
(1)« (w]ay, ) integration along the unstable manifold of Si. To show that ¥ is a
map of complexes, we must show ¥odg = dg o ¥. Applying Lemma 3.6, this is
equivalent to
Pp(igw) = igPr(w)
which follows easily from the fact that contraction by X commutes with integration
along the fiber of an equivariant bundle. Notice that ¥ is a map of 5*(g*) modules.
In analogy with Theorem 3.1, the main theorem of this section is
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Theorem 5.3 The map ¥ induces ail isomorphism of filtered complexes. In par-
ticular, ¥ : HL(X;C) = H *(C*,9c) is an isomorphism of $*(q*) modules.

Proof. The proof closely follows that of Theorem 3.8. We first consider the E;
terms of the spectral sequences induced by the two filtered complexes. As before,
the associated graded complexes are

GCl = 7*(Sx)  and GCP = O (Xk)/U (K1)

and the E terms give the cohomology of the associated graded complexes. Hence
¥ induces a map on the Ey term, HP(GC}) — HP(GCy) = HE(Sk)-

Recalling the notation of §3, we define Fx = Xx NWUy as a neighborhood
of Sy in the unstable manifold QL. Again, ¥ factors through the restriction of
forms and integration over the fibration Fiy — Sk. The same argument as in
the proof of Theorem 3.8 shows that restriction of equivariant forms gives an
isomorphism HP(GC}) = HE,C(Pk)- Furthermore, the Thom isomorphism holds

for equivariant cohomology so that @ : HP(GCL) — HP(GCk) = Hg_k(Sk)
is an isomorphism of real vector spaces. Then ¥ induces an isomorphism on
the E, terms of the spectral sequences and hence by Lemma 3.7, ¥ induces an
isomorphism of §*(g*)-modules in cohomology. O

As in §3, the filtered complex gives rise to a spectral sequence whose Ej
term equals

H&(Si;:C) = ®aH* (BKL: C).

~
Since we are assuming that the manifold X is finite dimensional, convergence of
the spectral sequence is guaranteed. However, in infinite dimensional applications,
this may not hold (see [Au] and [AuB]).

As always, the existence of the complex leads to equivariant Morse inequal-
ities and a notion of perfection.

Corollary 5.4 There is a polynomial Q(t) with non-negative coefficients such that

3" dim HL(SsR)EH =) dim HE(B; R + (1 + HQ).-
ij k

The function is called equivariantly perfect if Q(t) = 0. The Yang-Mills
function on the space of connections over a Riemann surface is equivariantly
perfect (see [AB2]), and more generally, the norm squared of the moment map for
a algebraic group action is perfect, Kirwan [K].

At this point it would be logical to insert a discussion which shows that
the cohomology of the equivariant Morse complex is independent of metric and
function. This issue is of importance in equivariant Floer cohomology and will be
taken up in [AuB].
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5.2 Comparison with the Morse-Bott complex

The invariant function f on X defines a Morse-Bott function on the homotopy
quotient. Thus, we have two complexes which compute equivariant cohomology:
the equivariant complex above and the Morse-Bott complex on the homotopy
quotient. We will use the Chern-Weil homomorphism to construct a chain map
between the two complexes which induces an isomorphism on cohomology.

Without too much work, it would be possible to apply our Morse-Bott the-
ory directly to the infinite dimensional homotopy quotient. Instead, we choose to
work with finite dimensional approximations as follows. Let {EG,, — BG,} be
a sequence of finite dimensional principal G-bundles approximating EG — BG;
that is, the homotopy groups 7;(EG,) = 0 for i < n and EG, 4 is constructed
from EG, by adding cells of sufficiently large dimension. Then we may form
the approximate homotopy quotients to X, Xgn = EGyp xg X. It is a standard
fact that for a fixed j, HL(X) = H/(Xg ) for all n >> 0. For cxample, when
G = SU(2), we may take S4n+3 _, HP" as an approximating sequence. Define
the ideal $,, = ker{H*(BG;C) — H*(BGx: C)}.

Now a G-invariant function on X with non-degenerate critical orbits gives a
Morse-Bott function on Xg . Hence the method of §3 is applicable to the com-
putation of H*(Xg,; R) and thus HZ(X). This produces a Morse-Bott complex
which we denote by (C’*,&@). We will show that there is a natural chain map
x:(C*8)— (C, ).

Notice that the critical submanifolds of index i on X¢ ,, are precisely (Si)Gn
while the gradient line moduli spaces are AM((S))G s (Sj)m) = AL(Si, Sj)G n- The
Chern-Weil homomorphism (see §4) defines

X : Qg(S1) = 2 ((Si).m)-
To check that this defines a chain map, one must show that

x((96)k(w ® ¢)) = T x(w ® ¢).

For k = 0, this is just the fact that the Chem-Weil homomorphism induces a
chain map between equivariant differential forms and forms on the homotopy
quotient. For k > 0, this follows from the fact that the Chern-Weil homomeorphism
commutes with pullback and integration over equivariant fiber bundles.

Now note that we also have a chain morphism:
x:C*/8u— C::/X(‘g’n)~

and that the cohomology of C/*/x($) equals that of C;*, because x($x) C imd'.
This gives:

Proposition 5.5 The cohomology groups H *(C*/$1,9) and H*(Xg n: C) are
isomorphic through x.
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Proof. As always, both complexes are filtered by index and the chain map x

is a map of filtered complexes. By Proposition 4.2, x induces an isomorphism
on the E; terms and hence by Lemma 3.7, x is an isomorphism on homology.

a

Notice that $, is zero in degrees small compared to 1. It is now quite clear
that using equivariant differential forms is an effective way to deal only with low
dimensional moduli spaces of gradient lines. This is important in gauge theoretic
applications where higher dimensional spaces may exhibit new forms of non-
compactness (bubbling-off).

5.3 Cup products

The cup product structure on HE(X) can be recovered as in §3. Given w ® ¢ €
& (X), define

ccw®¢): C' = C** 2 (s @ i) > c(w) () ® .
Again, we have
Theorem 5.6 The map cq inditces a map on cohomology
cg : HE(X)® H*(C*,85) — H*(C*,8;g)
which agrees with the cup product map.

The analog to the Poincaré duality pairing in equivariant cohomology is in-
tegration over the fiber Xg — BG, assuming that X is oriented and closed:

HE(X) ® HG(X) — H'**-"(BG),

where 1 is the dimension of X. In terms of the equivariant complex, this is given

by reversing the flow (or considering the invariant function —f) to obtain an
- - -—* =

equivariant complex (C", 9g).

Corollary 5.7 The pairing HE(X) ® HL(X) — H'**~"(BG) is described by the
equivariant complexes as a map

C*®CT — S$*(g")

given by (wi ® ¢i) ® (nj @ ¥j) = ([s, wi Ami)dithi.
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5.4 Examples
1. The simplest non-trivial example of equivariant cohomology is X = 52 where
! acts by equatorial rotations. It is well known that

Hg, (5% R) = R[u] ® R[v]/(c, —¢)

where (c,—c) is the subgroup of constant polynomials, Consider $2 as the unit

sphere in R3 with coordinates (x,y,z). We will study the following three sl

invariant functions:

1) f(x,y,z) = z with critical points of index 0 at the south pole and of index 2
at the north pole. Then (9g); = 0 for | > 0. Then Ef =E/ =R if i =0,2
and j is even and is O otherwise.

2) flx,yz) =1-— z2 takes on minima at the poles and a maximum at the

equator. Then .
. R ifi=1,j=0
EY/ =¢R? ifi=0,jeven
0 - otherwise.

The differential dy(a,b) = (9g)1(a,b) = a — b by counting gradient lines.
3) (xyz)= z2 takes on maxima at the poles and a minimum at the equator.

Then ep s .
. o R ifi=0,j=0
E;’] = Eé’g = R2 ifi=2 ) d}' LT N
0 otherwise.

2. Let (B, w) be a symplectic manifold with an S! action preserving the symplectic
form. A moment map is a function g : B — R such that

dp=ipw
w0

where Z?Zi is the vector field on B generating the S action. In this example, we will
consider s as a Morse function. Since w is a nondegenerate 2-form, the critical
point set of j equals the fixed point set of the S! action; that is

{beBldu, =0} = BS'.

It is well known that the critical point set is nondegenerate in the sense of Bott. The
fibers of normal bundle of the fixed point set are S! representations with no trivial
factors: hence the critical point sets are of even index. Denote the components of
index i by B,f5l . We will furthermore suppose that the gradient flow is Morse-Smale
so that our theory applies.

For this example, (8g)x = 0 for k > 0 for the following reason. The mod-

uli spaces .,Alﬂt(B;'?"P k,BSl) have an S! action commuting with the endpoint maps.

I
However, the S! action fixes the endpoints. Then for € Q*(B;ﬂ; ",

: Jrkys Jrkye: _
lr';%(lj )'n=(lj )1{.;%1)—0.
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However, 3‘% is tangent of the fiber of u;:"'k :IL(Bfik,Bf') — B,-S ' and hence
On = (). (" y'n =0,
Then 9 = (dg)o which implies that g is equivariantly perfect; that is,
H: (B R) = &HT (B R).

This is a special case of a general theory developed by Atiyah-Bott [AB2]
and Kirwan [K] in which it is seen that for reductive groups acting algebraically
and Kihlerian on projective varieties, the length of the moment map squared isa
perfect ‘Morse’ function; it is known in general if the function is non-degenerate,
but techniques with stratifications establish perfection. Ginzburg [G] has similar
results for a torus action on a Kihler manifold.

3. We will consider the case when G = SU(2). Additionally, we impose the
constraint that any stabilizer K is the centralizer of a subgroup of SU(2) and
that the action is of a single orbit type away from the critical points, equal to
SU(2)/(Z/2). In the sequel [AuB), we are interested in precisely this situation
when studying the SU(2)-action on the space of based SU(2)-connections over
a 3-manifold. We will see that the possible orbit types and the possible nonzero
boundary operators are quite restricted.

There are only three orbit types possible:
1) For K = Z/2, the orbits are SO(3)’s and called irreducible.
2) For K= U(1), the orbits are S2’s and called U(1)-orbits.
3) For K = SU(2), the orbits are points and called Z/2-orbits.
The terminology is borrowed from the situation with connections on principal
SU(2)-bundles. Notice that any irreducible critical orbit contributes H*BZ3;R) =
H*(pt; R) to the E;-term of the spectral sequence, a critical U (1)-orbit contributes
a H*(CP*;R) and a critical Z/2-orbit a H*(BSU(2); R) = H*(HP>°; R).

For dimension reasons, many differentials vanish. For example, the differ-
ential d; is a count of gradient lines. The second differential d, always vanishes

since all of the cohomology is in even vertical dimensions. For k = 3, only
d3 : H3(CP%; R) — H°(RP*;R) is nonzero. Furthermore, d4 = 0.

In the next section, we will consider this example further in relation to the
H*(BG)-module structure.

6 The H*(BG) module structure

The G-equivariant cohomology of a G-space X has a rich algebraic structure:
HZ(X) appears as an H*(BG)-module. In this section, we will investigate this
module structure in terms of the complex introduced in §5 paying special attention
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to the case G = SU(2). This material explains the «u»-map on Floer homology
and is relevant to the equivariant Floer cohomology developed in [AuB].

First, we say a few words about the origins of this structure and its expression
in the Cartan model. Recall that the homotopy quotient X is a fibration over
the classifying space BG, = : Xg — BG. Given an element of u € H*(BG),
define 1 : HE(X) — HE(X) by cupping with 7*(u). Using the Cartan model
for equivariant cohomology and identifying H*(BG) = (5*(a*))C, the map u :
HE(X) — HE(X) is described by multiplying a G-equivariant form on X with
an invariant symmetric polynomial; that is,

Hw® @) =w Q ug.

In the case that X admits a G-invariant Morse-Bott function with nondegen-
erate isolated critical orbits, we have the complex described in §5; namely,

CP = ®ipi—p5(Si) = Bijuak=p(V (1) @ S¥(8")°.

Furthermore, we have the chain map ¥ : QF (X) — C*, given by integrating forms
along the unstable manifolds, which induces an isomorphism on cohomology. As
¥ does not act on the polynomial part of an equivariant form, we see that the
module structure on HE(X) in terms of the equivariant complex is simply

Hw® @) =w@ud

for w ® ¢a€ NE(S;). That is, in the array of cochains QL (S;), multiplying by
elements of H*(BG) translates an element vertically.

It is interesting to investigate the situation when G = SU(2) as in the fi-
nal example from §5; that is, the stabilizers which occur are always the cen-
tralizer of some subgroup and the stablizer away from the critical orbits is ex-
actly Z/2. For instance, let Sk = 5O(3) be a critical orbit of index i and with
Z /2 stabilizer. Choose a cohomology class represented by o € Q2 (S,-" ) so that
d(a) = 0. Let 1 € H*(BSU(2)) be the universal second Chern class. We
wish to study the cohomology class u(a). Since H&(Sik) = H*(pt), it follows
that u(a) = (0¢)o(B) = dg(B) for some B € Q?;(S,-k). Then in cohomology,

u(a) is represented by > 1-1(@6)k(8). We will compute these components of
the boundary operator and see that they contain interesting information about the
configuration of gradient lines. Notice that this discussion only applies to orbits
with trivial stabilizer.

Choosing an orthonormal basis {¢;} for g*, 1 is represented as an element
of $*(g*) by 3. #?7. Let X; be the left-invariant vector fields on Si" generated by
¢}, and wj left-invariant 1-forms dual to X;. Denoting the G-equivariant volume
form on SF by dvolgp(s), one checks that defining v = dvolgo(sy + 2-wi @ i

leads to dg(y) = 3. ¢?. Hence, 8 =a A . We will discuss the components of
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9 (B). As « is simply a constant function, it is insignificant in the computations
that follow.

First, we study the component (6(;)2.(7) € Q4(Si42). Let S,! 42 be a com-
ponent of S;iy2. Notice that if the stabilizer of S, , is not U(1), the (8g)o co-
homology vanishes in dimension 2. We then assume that Sf 42 is stabilized by
U(1) and hence S}, = S2. For convenience, assume that AYS!, 5, SF) is com-
pact. Then AU(S!,5,5F) = U SO(3) and AL(S!,,,SF)/SO(3) is a collection of
oriented points. Denote the algebraic count of these points by 1. From the Gysin
sequence, we see that integrating over the fiber in SO(3) — 52 takes the G-
equivariant volume form on SO(3) to the G-equivariant volume form on $2; that
is &(dvolso(s)) = n dvolg,. Furthermore, notice that the infinitesimal action of

¢} on S,! 2= $2 defines two poles and hence height functions Ji; taking the values

+1 on the poles. One checks that &(w;) = #h;. Then the component of (J6)2(7)

in Q4(S! +2) is n(dvolga + 3-hi ® ¢;). Notice that dvolgz + Y hi ® ¢ generates

HE(S1,2).

Consider now the component (95 )a(y) € Q% (Si4). By counting dimensions,
we see that (9g)4(y) = O4(dvolsg(s)). For convenience, we will assume that
./Tl(S,' +k,S,-k ) is compact in the sequel. Suppose the stabilizer of s! Lk ISt
1) SU(2). As above, It(S,l +4,S,-") = |J SO(3) so again let 11 denote the alge-

braic count of points in the quotient It(S,l +a §¥)/S0(3). The component of

(8)a(7) in QO(SL,,) is n.

2) U(1). Then ANl(S,l 14,5k is a principal SO(3) bundle over a compact surface
%. In fact, % fiber of the lower endpoint map trivializes this bundle so that
I((S,l _M,S,-k )} = ¥ x SO(3). Meanwhile, a fiber of the upper endpoint map
has the form, u,-‘_:4(pt) = ¥ x S! and as such the component of dg(v) in
Q% (5},4) must vanish.

3) Z/2. Thinking of I((Sf +4,S{‘) as a 6-dimensional submanifold of X, form

p= | &1 (AUSL 14, 5F))

—oo<i<co

where ¢; is the flow of the gradient vector field of our Bott-Morse func-
tion. Then P — P/SO(3) is a principal SO(3) fibration. We claim that the
component of (9 )a(7) in O (8! +4) is related to the first Pontrjagin number
p1(P)[P/50(3)). Over U_go<i<0Pt (AL(5},4,5F))/50(3), a fiber of the up-
per endpoint map u;[,(pt) provides a trivialization. Likewise a fiber of the
lower endpoint map gives a trivialization over the rest. The lower endpoint
map on u,-j;,(pt) gives the transition function and hence d(dvolsg(3)) mea-
sures its degree. The Pontrjagin number is 4 times this degree. In [AuB], we
will show that this explains «u»-map on Floer homology as arising from the

t

i
W
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H*(BSO(3))-module structure on the equivariant cohomology of the space
of based connections.

To summarize,

Proposition 6.1 When a € Q; (S,-") with S¥ is an irreducible orbit, u(a)) measures
the number of gradient lines to U(1)-orbits of index i +2 and Z [2-orbits of index
i + 4 as well as the Pontrjagin number of the framed moduli space connecting
irreducibles of index i + 4. For a cohomology class represented by o € §1§ (S,")
with S,-k = pt or S2, the module structure simply carries o vertically.

Appendix A ‘
Asymptotics of gradient line moduli spaces

The methods of this paper depend in a crucial way on a detailed understanding of
the ends of the moduli spaces of gradient lines. In this appendix, we will discuss
the techniques necessary for a careful examination of these spaces as required in
the body of the paper. We begin by assuming that the critical points of the flow
are isolated before attacking the more general case of manifolds of critical points.
Furthermore, these methods enable us to prove a local stable manifold theorem
for the flow of the Chem-Simons functional about a nondegenerate critical point.

In this introduction, we explain a special case of the motivating boundary
value problem. Qur first concemn is the structure of solution curves near nonde-
generate critical points of vector fields. To begin, consider the special case of the
linear vector field on R¥ @ R given by v(x,y) = (—x,y). Trajectories of this
vector field are solutions to the differential equation

a (O s
dt x"(t) (t)—(x"(t)).

Forall T > 0,p € R¥,q ¢ R with ||p]| = [lg]l = 1, we have a unique solution
curve '
[-T,T) = RF @ R' : £ — (x°(8),x%(t))
such that
(-T)=p
x*(+T) =q.

This solution curve is explicitly given by t — (e~ (Ttt)p,e~(T=1)y),

We call the set of points (x,0) the stable manifold since the trajectories
through these points are bounded. Likewise, the points (0, y) comprise the unstable
manifold. Notice that as T — oo, the trajectory described above approaches a

trajectory in the stable manifold on [—T, 0] and a trajectory in the unstable manifold
on [0, T}.
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To change our perspective, we can consider this family of trajectories as the
result of gluing trajectories in the stable and unstable manifolds in the following
sense. Let a(t) be a trajectory in the stable manifold, b(t) in the unstable manifold.
As | — oo we get the graphs in figure 5 for the length of the vector field

lloa(E)It and [o(GE)II-

llv (@)l BN

Fig. 5

We now assert that if we chop off the trajectories at £, > 0, < 0, respec-
tively, then we can find a unique trajectory c(t) such that figure 6 results.

\—/ HU(C(t))“

t

llc(t) — a(B)ll = O(e**), for t <ty
le(t) = b(t)]| = Oe™") for t > kg

Fig. 6

We have glued the trajectory a(t) to b(t). It is this sort of graphical picture
that appears in Floer’s work [F1] on trajectories for the anti-self-duality equation.
This property was recognized in the context of gradient like systems under the
name of transitivity (Smale [Sm2]). In fact it holds in considerable generality as
we shall see.

A.l Gluing trajectories near isolated critical points
Consider a bundle of Banach spaces

n:E—=R

with coordinates x in the fiber and ¢ along the base and a «linear» vector field
(x,t) — v(x, ) such that

we(v(x, 1) =%
v(0,t) =0

-
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for t € R, x € Ey = m~(t). We assume that the flow of v is defined by linear
maps ®(¢,7) : E; — E; satisfying the following hyperbolicity assumptions. The
bundle E is a direct sum:

E —_ ES @ Eu

of Banach subbundles and ®(t,7) preserves the splitting. Furthermore, there are
constants C > 0, p > 0 such that

| ®(t, 7)x%|| < Ce=P*=T)||x*|| for ¢ > 7 and x° € ES
@ (t, 7)x"]| < CeP*=)||x"|| for £ < 7 and x" € E¥.
We also assume that the projections
7t Ey — El for i =s,u
along E}' and Ej have bounded norm
=il < A

uniformly in £.

This is a general situation: it is easy to check that the flow of the linear part
of a vector field in the neighborhood of a hyperbolic critical point can easily be
cast in this form. Furthermore, nondegenerate periodic orbits and more generally
orbits in a hyperbolic set satisfy such estimates.

Let g be a vector field on E, to be considered as a vertical perturbation of v,
such that

me(g(x, 1)) = 0.

We shall be interested in the flow of
w(x,t) = v(x,t) + g(x,1t).

Before stating our gluing theorem, let us first recall how the stable manifold theory
applies in this situation (see [Du]).

Theorem A.1 (i) Assume that

1800, )]l < e,
IDxg(x, )| < B

forall (x,t) €E. If yB < 1 with v = %(C + &), then for each

a € Eg,
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there is a unique £(a) € Ep with, 75(€(a)) = a, such that the trajectory (x(t),t)
satisfying
dx(8),t) _
{ — = w(x,t)
x(0) = £(a)

is bounded for all t. It satisfies the a priori bound:

Ix(t)lle < (1 —28) " (lall + va)
for all t > 0. Further the assignment a — &(a) is as smooth as (x,8) — g(x,t).
(ii) Assume that

(0, £)]| = 0 and ||Dxg(x, )|l < B
and that for p' such that 0 < p/ < p, we have

A 1

’ . ' _ R
By < 1 with vy =0 (C+C).

"7

Then the bounded solution above satisfies:
Ix())le < (1 —B8)~'Ce™""]lal].

This theorem can be applied locally to vector fields w(x, t) = v(x,!)+h(x, f)
when h(x,t) is quadratic in x and satisfies an estimate

IDxh(x, )]} < Bjlx|

for all #. On shows easily that if 15(x, ) is a cutoff function equal to one on a
ball of radius & and zero outside radius 26, then for & sufficiently small

g(xv 1) = ¢6(x)t)h(x1 t)

is such that the estimates of Proposition 2.1 apply.
Henceforth we assume that

w(x, t) = v(x,t) +g(x, )
satisfies

£(0,t) =0 for all ¢

IDxg(x, )|l < Blix|| for all (x,#) € E

for fixed B > 0. In this case, E is tangent to the stable manifold at O. Now we
restrict ourselves to a & neighborhood of zero section in E., Using Theorem A.1 we
may assume that E is the fibred product of E", E° the unstable and stable manifold

for w; that is, we have used a coordinate transformation (x,t) — (&(x),t) for
x € E® and similarly for x € E¥.

In analogy with the situation described in the introduction, we can now state
the gluing theorem:

-

Supplied bv The British Librarv - "The world's knowledae"



Morse-Bott theory and equivariant cohomology 169

Theorem A.2 Let S%y be the sphere of radius € in Ef and Sy and sphere of
radius € in E}'. For T] < T, € sufficiently small and p € S? T € 5 "y there is
a unigue solm'lon x(t) of

= w(x(t),1)

such that

#(x(Ty)) = p
(x(Ty)) = g
Il < e

The solution depends smoothly on the parameters p,q,T,, and T, and will be
denoted x(t,p,q,T1,T2).

Proof. Denote by x5(t), x"(¢), w*(x, t), w"(x,t) the images of x(¢), w(x,t) under
the projections 7, 7". A solution x(¢) to the initial value problem for

.“% = v(x(t),f) + g(x(£), )

is generally described by the integral equation:
t
x(f) = 2(t, to)x(to) + / B(t,5)g(x(s),5)ds.
to

This is the Lagrange formula for solutions to inhomogeneous linear equations.

~

More generally we can write flow lines of w as

t
x(H) =, Ty)p +/T O(t,5)g* (x(s),s)ds
: (A.1)

T
+ O T - [ B(ts)g(x(e) 5)ds
t
Notice that a solution to (A.1) satisfies the ‘initial’ conditions

*(h)=p
x"(Tz) =1.

We can write (A.1) as a fixed point equation:
X = F(’-’:P,q: T|7T2)
where F is the right hand side of (A.1) and x lies in the Banach space

CY((T, T2), E)
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equipped with the supremum norm. Now the set of £ — x(#) with ||x|| < 77 is
mapped into itself since

1 A 1
|F(x,p,q,T1, T2l < (C+ E)e +—(C+ 5) sup [Ig(x,t)]]
p llxll <6

1 A 1
<(C+ —C‘)€+ ';(C'*' E)an <7

provided that € and 7 are sufficiently small. In the same way, one sees that F isa
contraction when 7 is sufficiently small.

The theorem now follows from the contraction principle. Applying the im-
plicit function theorem shows that solutions depend smoothly on s,u, T}, T since

|| Il < —(C + )S"Pux||<q|| §) < !
for n sufficiently small. 1

Lemma A3 For all 0 < p' < p, we may choose € sufficiently small and D
sufficiently large so that the following a priori estimates hold:

"xs(t Paq»Tl,Tz)ll < 6De“”'(’—rl)

1% a 2 6 pa T Tl < eDe™? (t-Ti)

Il'éa'(t'}"q! T ’TZ)“ < eDe™* ('—TI)'
Sinu'larly,“for x" we have

"xu(tip: q’Tl-;TZ)" < EDe_p’(T2")

113 ,
"ai(t’p,q’ Tl 7T2)" < eDe™? (T2—-1)

"
na" (tp, 0T, To)l| < De? @D,

All estimates hold uniformly in p,q, and Ty, T>.

Proof. The estimates hold by considering the integral equation (A.1) and applying
the method of continuity. We will demonstrate the ideas by showing

15 (t, g, T1, T2)|| < eDe™# ¢-Ti),

Define the open set € = {t € [T}, T2] : [IX*(t,p,q, T1, T2)|| < eDe=¢'(t=T1)},
If D > 1, then Ty € €. So suppose that [T}, #) C € where

H

S = (L To)p + / o(t,0)¢ (x(c), 0)da

T
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s Estimating the norm

t
HfUNSCfﬂ“mmm+C/eﬂﬂ”Wf@@%ﬂWU
T

t
< Ce~PU-Te 4 ABCD€2/ e=Alt=0)g=p'(e=Th)
Ty

ABCe

a < (C+ D)ee~ 7' U+T), |

Choose ¢ to be small so that the quantity

ABCe
p—r

<L

Then require D to satisfy
ABCe

p—r
Now t € 8 showing that B is closed and hence € = [Ty, T2). O

A+ D < D.

The previous lemma conveniently leads to the following compactness theo-
rem. For a large value of T, let Ty = —T and T» = T. Then denote x(f,p,4,T) =

x(t,p,q,-T,T).

Theorem A4 Let t — x{t,p,q,T) be as in Theorem A2. For T — oo, the
* trajectories .
t = x(t -T,p,q,T): [0,T] = E

approach the solution to

dx(t)
di

=w(x(t),t), x(0) = (s,0)
uniformly in T and on compact sets parameters p and q. Similarly, the trajectories
t — x(T—t,p,q,T):[0,T] = E

approach the unstable manifold solutions.

Proof. The initial value for x(t — T,p,q,T) is the point (s,x"(-T,p,q,T)). But
by Lemma A.3,

s*(~T,p,q, T)|| < eDe=2'T
so that x(—T,p,q,T) — (5,0) as T — co. (W
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Fig. 7

The implication of this theorem is that the limit of the trajectorics is really
the «broken» trajectory where the first piece lies in the stable manifold and the
second in the unstable (see figure 7).

These preliminaries allow us to proceed to our main gluing theorem.

A.2 Gluing theorems

Let v be a vector field on a manifold X and suppose that a, 3, 7y are nondegenerate .
critical points of v such that the intersections U, N¥F 5 and Uy N, are transverse.

Denote the space of trajectories from o to 8 by

M, B) = Ua NFg/R

where the R action is given by the flow. Similarly, define It(ﬂ, «) and Il(a 7). We
will study the relationship between the ends of ./tt(a,'y) and the spaces M(a, B)
and AL(8, 7).

We use the framework of §A.l1. Consider a small ball B C X around the

critical polt 3 and let E — R be a bundle of Banach spaces such that the unit
disk subbundle E | B x R. There is a vector field w on E mduced by v which

has the form v + 5- Consider Al(a, 8) C S° e1, and A(B,7) C ,- Due to the
assumption on the transversality of the mtersecuons, there are maps

u: Ai(e, B) x By, — B,
s: .M(,G,'y) X BET2 B,:T2

with

u(¢,0) = ¢
S(‘l/l, 0) =19

such that a slice to the R-action on AU, is locally described by the graph
(1(¢,0),0). Likewise, a slice to the R-action on &, is given by (7,s(2, 7)).

Theorem A.5 For T =T, — Ty large, there is a smooth injection
Gr : dife, B) x A(B,7) — (e, )

depending smoothly on T.
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Technically, the following proof works for compact subsets K, g C .7(1( a, )

and Kg, C .At(ﬁ, 7). The generalization to the statement given above is simple.
In the gauge theory case this generalization cannot be made so casily.

Proof. First we describe the boundary value problem. For trajectories ¢ € Il(a, B)

and ¢ € xt(ﬁ, 7), we wish to perturb the broken trajectory slightly to produce a
trajectory from « to 7. This is done by finding small o € Bé‘,’r, and 7 € Bi.Tz and
a trajectory x(¢) so that

x(TI) = (ll(¢, 0’),0’) € Uqa
x(T2) = (7,5(, 7)) € %,

Notice that this amounts-to specifying the two components at the two endpoints
Ty and T>.

Our principal tool for accomplishing this perturbation is Theorem A.2. This
says that for gradient lines -y € Jﬂ(a B)andy € Jﬂ(ﬂ, 7)ando € Blp,,7 € B 1,
there is a gradient line x(t) so that x*(T\) = u(y,0) and x“(Tz) = s(i, 7).
Moreover, x(t) depends smoothly on all the parameters. This gives one of the
components at each endpoint. The other is given by considering the map

(A2)

Flum) @ Biry X Bir, = Bégy x Bl

by
Fywry(o,T) = (¥ (Th),x*(T2)).
~ Notice that a fixed point (o, 7) will satisfy (A.2) and hence the accompanying

trajectory x(t) is a gradient line from o to . Fixed points exist for large T since
" F is a contraction as we demonstrate now.

We have

|F (v1,w1) — F(v2,w2)] < molor — 02| + mwl|w) — w2

where oxi(T), | OX(Ty) .\ B
x*(T) 2 T
m < (Tl + 175, I)IBTI
ox¥ (Tl) axs(Tz)
< (20 o) )
The partials Ia“l and | =| are bounded and Lemma A.3 shows that

a""(T‘)l Ia""(T"i, a"smﬁ 12 (TZ)I

decay exponentially with T. Hence for large T, F is a contraction and has a unique
fixed point denoted

(e(v, ¥, T),7(v, ¥, T)).
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In the same way, Lemma A.3 shows that the derivative %’% is small for large
T. The implicit function theorem implies that the gluing map

Gr : (e, B) x AU(B,7) — Ai(e,7)

is smooth, : O

This theorem and its proof have several important consequences for us.
Theorem A.6 For large T, there is an injective local diffeomorphism

G : d(a, B) x M(B,7) x [T, 0) — (e, 7)

onto an end 0fﬂ(a,7). For A € M(a,B),Az € M(B,%), the paths G(A,,A2,T)
converge to the broken trajectory formed by Ay and A; at the rate eDe=P'T,
Proof. The proof of the first part mimics the proof of Theorem A.5 while the
second part follows from the estimates of Lemma A.3. O

Given two Morse functions f; and f>, consider the manifold X x R with a
vector field F equal to

3
-V +-a—i fort < —1

J
| —sz+b?fort>l.
For critical points a, 8 of f; and v of f,, we have the following

Theorem A.7 For large T, there is an injective local diffeomorphism
G : Ay, (0, B) x Mg (B,7) x (T,00) = Mp (e, 7)

onto an end of Alp (o, ).

Proof. Proceed as in Theorem A.5 considering the stable manifold of v, & C
Bc'_l. D

Consider two vector fields Fj,F, on X x R with
F = ——Vf|+-i‘% fort < —1
: ~Vh+ & fort>1

and
p _{—Vf2+5’; for t < ~1
2 —Vfs+& fort>1
Define F3 1 to be
_ P](t+T) forf <0
&ﬂ”‘{ﬁu—n for £ > 0.

Let a, 3, be critical points for fi, fa, f3 respectively.
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Theorem A.8 For large T, there is an injective local diffeomorphism
Gr : dip, (@, 8) x A, (8,7) — Alpy(@,7)

onto an end of Itpj (a,7).

Proof. Consider the flow —Vf,+ {% on X x [-T, T] and apply Theorem A.5 where
we regard U, C E_t and &, C ET. O

A.3 Manifolds of critical points
We now consider the case in which the critical points are no longer isolated. Let w
be a vector field on a manifold M and assume that S is a submanifold consisting
of zeroes of . Denote the normal bundle of S by Ng = TM|s/TS. Suppose that
forallse S,

dws : Ns — N;

has no eigenvalues with real part 0. When w = Vf, we say that f is a Morse-Bott
function.

In this situation, N splits smdothly into subbundles
N=N*eN-~

such that the real parts of the eigenvalues of dws on Nz have sign 2. Around a
base point s € S, there are coordinates in a neighborhood U C M such that

U—SxNy x N tmes (m®,m=,mt).
In these coordinates, the spaces {0} x Ny~ x {0} and {0} x {0} x Ng are tangent
to the strictly stable and strictly unstable manifolds of (0,0,0) for w. We shall
first show that this family &5 of stable manifolds of (s,0,0) is a smooth fibration
isomorphic to N~ — S, when intersected with a small neighborhood of S. This
is the analogue of Theorem A.l.

Choose a small coordinate neighborhood U in which to work and denote the
coordinates z = (s, ,y). Write L = dwjgg,0) for the linear part of the vector field.
Locally w(z) = Lz -+ g(z) where g(z) may be decomposed into its components
g(2) = (§%(2),87(2),8™ (2)) which are at most quadratic in z. More specifically,
notice that g(s,0,0) = 0 and that g~ (s,0,y) = 0 and g*(s,x,0) = 0. This implies
that the leading order terms of g are

go(s’x’y) ~ XYy
g (s,%,Y) ~ Xy + x5 + x2 (A.3)
gt x,y) ~xy+ s + 1~

With this in mind, we prove the local stable manifold theorem for families of
critical points.
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Theorem A.9 Given s € S, n— € N—, there is a unique bounded trajectory of w,
x : [0,00) — U such that x~(0) = n~ and limy_.o0 x(t) = (s,0,0). Moreover, for
varying (s,1n~) the map s — x%(0) defines a diffeomorphism between a neighbor-
hood of the zero section of N~ and a netghborhood of S in &g, intertwining the
projection and endpoint map.

This theorem is not new: it can be seen as a consequence of results in [HPS].

Proof. In the same way, we set up the boundary value problem. Define the complete
metric space

= {y:[0,00) = U| [x~(t)|| < eDe~""
lat (0]l < €

=21l < €}

for constants D and small ¢ and p’. Let ®(t,0) denote the flow of L from time o
to t and g*0(z) = g*(z) + £°(z). Then define the operator

14
F)(t) = 6(t, 0 + /0 B(t,0)g™ (y(0))do
- * o)e P (ylo))do
s [ &(t,0)g+° (y(0))d

A fixed point of F describes a bounded trajectory with the appropriate boundary
data: x~(0) = n~ and x°(t) — s as t — oo. Using the same reasoning as before,
we conclude that F : % — & and that F is a contraction.

Thé fact that s > x%(0) = s — [;° §%(x(o))do is a submersion follows from
estimating

2 [ funis
Js 0 $ )
Using the information about the leading order terms in (A.3), it follows that

ox~ (0)

/ P x(o))da] <C / (@) 20 4 xm() 2 Dy

The integrand decays exponentially with o and hence the variation of the integral
with s can be made sufficiently small. O

We continue by demonstrating the generalization of Theorem A.2: incoming
and outgoing gradient lines can be glued provided they converge to the same point
on S.

Theorem A.10 Let (s,n~,n*) € U and T be sufficiently large. There is a tra-
jectory x 1 [=T,T] — U so that x~(=T) = n~, x*(T) = n*, and x°(0) = s.
Furthermore, as T — oo the trajectories converge to a broken trajectory consisting
of a solution in the stable manifold followed by one in the unstable.
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Proof. We define the complete metric space

F = {y: [-T,T] = Ully" ()] < eDe+)
ly* (B)] < eDeAT=
PO < )

for suitable constants D, ¢, p. Define the operator

t
_(t,0)g™(y(0))do

PG =20, -Tn + [
T
+ &, Tt — /: B(t, 0)g" (y())do

0
+s- [ Plo)de.

As before, F : % — % and is a contraction. The fixed point is a trajectory satisfying
the hypotheses of the theorem. One sees that as T — oo, the integral equation
breaks into the integral equations for the stable and unstable manifold solutions.

O

Suppose that S,,53,5, are critical submanifolds so that the intersections
of stable and unstable manifolds are transverse. Suppose, in addition, that &,
intersects (Up)s transversely for ail s. Applying the reasoning of Theorem AS
leads to

Theorem A.11 For T large, there is an injective local diffeomorphism
G : 1(Sa» Sg) X, AU(Sg,Sy) X (T,00) = A(Sas S4)

onto an end of ./(~l(SQ,S7) where It(Sa,Sp) X$s It(Sﬁ,S7) denotes the fibered
product over the endpoint maps.

A.4 The stable manifold theorem for the Chern-Simons function

The discussion in section A.l lends itself to the study of the gradient flow of
the Chem-Simons function. In particular, it follows that the local stable manifold
theorem, as in Theorem A.1, holds in this setting.

Let A be a nondegenerate critical point of the Chern-Simons function on %,
the space of gauge equivalence classes of connections on the compact 3-manifold
M. A neighborhood of A in %, and also the tangent space To%, may be identified
with ker d% : Q'(M,su(2)) — QO(M, su(2)). We will work with the Sobolev
norm L2 without explicitly denoting it. The gradient flow of the Chern-Simons
function, at a connection V = A + A’, is — * FV, which decomposes into linear
and quadratic pieces:

—xFV = —xd A - +[A", A).
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The Hessian at the critical point A is given by
xdp 2 ker dj — ker dj.

This is a self-adjoint elliptic operator and as such has a discrete real spectrum,
Decompose ker d% = @)H* into its eigenspaces and define H* = Drc(>)oH™
The nondegeneracy of A implies that ker xd4 =0 so that ker xd4 =H™ ®@H +,

Notice that the flow of the linear part of the vector field, — * d4, is defined
by
B(t, ) = eIy,

Therefore, the flow is continuous on H™ only for positive time, where it is a
smoothing operator, and similarly the flow in continuous on H * only for negative
time. Remember that the vector field is not continuous on L% connections.

Reflecting on the methods of §A.1, we see that this is sufficient to prove the
stable manifold theorem for the Chern-Simons flow. Consider a ball B of radius €
in L2(M, su(2)). For a € H~ and x € C°([0, c0), B), define

: t fore)
F(x,a)(t) = ®(t,0)a + jo B(t,0)g™ (x(0))do — [ B(t,0)g* (x(c))da

where g£(A) = [A, AJ¥, the decomposition of the quadratic term given by H =3
Notice that this is well defined since we use the forward flow on H™ and the
backwards flow on H*. Also ®(t, o) satisfies the estimates of section A.1 so that
the techniques used in the proof of the stable manifold theorem apply. This leads
to:

Theorem A.12 Let a € H™ be sufficiently small in L3. There is £(a) € HY such
that the trajectory of the flow — x F V through (a,&(a)) is bounded. Moreover,
a+— £(a) is a smooth map.

The fact that a — £(a) follows from the implicit function theorem for Banach
spaces. It is important here to use L? connections since £ is as smooth as g is.
Using L? implies that g is smooth.

Appendix B
Transversality

In the interest of completeness, we present in this appendix a discussion of transver-
sality theory, a principal too! throughout this paper, and a proof of Proposition 2.1
This presentation proceeds as in Abraham and Robbin [AR].

We recall the basic definitions of transversality. Let X, Y be manifolds, W C
Y a submanifold and f : X — Y a smooth map. We say that f is transverse to w
at x € X if either f(x) ¢ W or f(x) € W and

Tf(,,)W + (L)(TxX) = Tf(x)Y-
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Gobally, f is transverse to W if it is transverse for all x € X. When f is transverse
to W, the implicit function theorem implies that f~Y(W) is a submanifold of X.

An important application comes from considering a family of maps para-
metrized by a manifold 6, or equivalently a map

F:Xx€—-Y.
The following theorem shows that transverse maps are «generic».

Theorem B.1 Suppose that F : X x € — Y is transverse to W. Then there is a
Baire set 6g C € so that for all ¢ € Gg, fc: X — Y is transverse to W.

The importance of this theorem, as we shall see, is that it can sometimes be
quite easy to show that a family of maps is transverse. It is easy to see that if

F:Xx€-Y
is transverse to W, then the canonically defined one-parameter version of F,
F: (X x [0, 1)) x Maps([0,1],%6) = Y,

is also transverse to W. Theorem B.1 implies that if F : X x 6 — Y is transverse
to W, then for a «generic» one parameter family, v : [0, 1] — 6, the map F, is
transverse to W and hence the space

FH W) c X x[0,1]

is a submanifold of X x [0, 1]. The set of s € [0, 1] for which F,R;)(W) is not cut

out transversely is the bifurcation locus of the path. In the case that W is compact
and F is proper then the bifurcation points are an isolated closed subset of [0,1].

For submanifolds R,S C Y, we say that R intersects S transversally at
yeRNS if
T,R + TS = TyY.
Furthermore, R intersects S transversally if this is true at every point in the intersec-
tion. There are equivalent definitions that are useful. Let ig(resp is) : R(resp S) —
Y be the inclusions of R and S. Then R intersects S transversally if ig is transverse
to the submanifold S. Again, this is equivalent to

iR Xig:RxS—>YXxY

being transverse 1o the diagonal submanifold. A theory for families of submani-
folds parametrized by ‘6 holds as above.

Now we are ready to discuss the genericity properties of the gradient flow
of Morse functions. Recall that a function is Morse if its critical points are non-
degenerate and that the gradient flow of a Morse function is Morse-Smale if all
stable and unstable manifolds intersect transversely. The following is then a variant
of the celebrated Kupka-Smale theorem and we shall just outline the interesting
elements. For details we refer to Abraham and Robbin [AR].
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Proposition B.2 Given a metric g on B, there is a Baire set ‘€ C C*°(B) so that
f € 6g is Morse with Morse-Smale gradient flow. '

Proof. The fact that the set 61 of Morse functions in C°°(B) is a Baire set follows
from the discussion above as follows. Notice that a function f is Morse precisely
when the differential form df, considered as a section of T*B, is transverse to the
O-section. It is easy to verify that the map

B x C*®(B) — T*B

given by (b, f} — dfy, is transverse to the O-section. Theorem B.1 then implies that
the set of Morse functions @ is a Baire set. Notice that € is independent of the
metric. When B is compact, we can also say that €y is open in C*°(B). However,
this open set is not connected since critical points can appear and disappear as we
vary the function.

When B is compact, there is a neighborhood Oy of f € Gy in C°°(B) con-
sisting entirely of Morse functions and such that the number of critical points of a
given index on this neighborhood is constant. This gives a a universal parametriza-
tion of the stable and unstable manifolds for the critical points a; of all functions
in Oy

1 U,-Ri(ai) x0f— B
s: U;R””i(ai) x 0 — B

In fact one can cover ‘Gg with a countable collection of such @f’s, such that the
resulting cover is locally finite ([§33.2][AR]).

The important step is to show that
1 x s : Uj R x Rr-il00) x 0 — B

is transversal to the diagonal. For this, it is necessary to know how the gradient
flow is perturbed by varying the function. As a first step, consider perturbing
the gradient flow by an arbitrary vector field ([§32][AR]): let X + sY be a one
parameter family of vector fields and let ®° denote the flow of X 4 sY. Choose
an arbitrary point b € B and let t — y(t) = ®)(b) be the trajectory of X through
b. Then we compute

dds to
dsm (B)ls=0 = /0 (0) (Y, (1))t (B.1)

It is important to notice that this derivative only depends on the perturbing vector
field Y along the trajectory (). ‘

The heart of the proof of the Kupka-Smale theorem is then to show that the
vector fields (in our case, the gradient vector fields) are rich enough to make the
universal stable and unstable manifolds transversal. To this end, suppose that there
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is (x,1, ) € R x R"= x Oy so that (1 x5)(x,¥,f) = (b, b). Denote the derivative
of u and s along Oy by g}‘é and gsx respectively. Then u X s is transverse 1o the
diagonal if for every v € T;B, there is a vector field Y supported away from the
critical points, such that either

du
a—x—(x,y,f)(0,0, Y)=v

(B.2)
%(X,y,f)(O,O,IY) =0,

or
Js
a—X(x,y,f)(O,O, Y) =7
ou
ﬁ(xs}/,f)((),();y) - 01

a relation which in fact is considerably stronger than transversality. We need to
perturb by vector fields whose support is disjoint from an open set containing the
critical points. Suppose that -y connects critical points « and 8. When b lies on vy
and is close to 3, we choose Y to satisfy (B.2). Otherwise when b is close to a,
we find Y satisfying (B.4).

We construct the vector field Y as follows. Choose I € C*°(R) with support
in [—to,0] so that [ hdt = 1. Let y(t) be the gradient line through b and define

Y along «(t) by
Y(y(t)) = h{E) (@) (0)-

Using (B.1), it is clear that

(B.4)

an
ﬁ(xsyif)(oa Oa Y) =?

s
—a-k—(x,y,f)(0,0,Y) = 0.

It is elementary to further verify that Y may be extended to B with support in a
neighborhood of ~(t) so that Y = —V{ for some function f. O

The proof for genericity of time dependent flows is slightly easier, as one may
now use time dependent functions to perturb the given vector field. The property
of the flow used in the homotopy equivalence of complexes is the one parameter
version of the transversality of time dependent gradient flows,
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