
SYSTEMS OF CIRCUITS ON TWO-DIMENSIONAL MANIFOLDS. 

BY H. R. BRAHANA. 

1. In this paper we first give a method of reducing any two-dimen- 
sional manifold to one of the known polygonal normal forms. The 
method used is one by which a polygon on which the manifold is repre- 
sented is subjected to a series of transformations by cutting it apart in 
a simple manner and then joining it together again so as to obtain a new 
polygon representing the same manifold. 

We next (?? 11 to 18) apply the same series of transformations to the 
problem of reducing a system of curves on the manifold to a normal form.* 
We then introduce certain matrices of separation by means of which the 
relations among the pairs of sides of the polygon are described and study 
the effect on these matrices of the transformation of cutting. By this 
means we obtain a number of theorems on systems of curves which 
follow closely along the lines of the theory indicated in Poincar6's 
"Cinquieme Complement a l'Analysis Situs."t 

We shall use the terms manifold, cell, circuit, orientable, one-sided, etc., 
as they are defined by Professor Veblen in his Cambridge Colloquium 
lectures on Analysis Situs. It is there shown (Chapt. II, ? 65) that any 
two-dimensional manifold can be imaged on a planar polygon in such a 
way that any point of the manifold has for its image an interior point, 
a pair of "conjugate points" (cf. ? 3 below), or a "conjugate set of 
vertices" of the polygon. 

I take this opportunity to acknowledge my indebtedness to Dr. J. W. 
Alexander for suggestions and to Professor 0. Veblen for proposing the 
problem and for advice in working it out. 

2. Conjugate Points and Sides of a Polygon. Consider a polygon of an 
even number, 2n, of sides in a Euclidean plane. Let P1, P2, P3 be three 
distinct points taken in the order P1P2P3 on the side ai of the polygon. 
These three points determine a sense of description of the boundary of 
the polygon. A (1-1) continuous correspondence may be set up between 
the points of as and the points of any other side aj of the polygon. Let 
such a correspondence be established and let the points which correspond 
to P1P2P3 be P1'P2'P3' respectively. In case the three points Pl'P2'P3' 

determine the same sense on the boundary of the polygon as is determined 
* This question was first considered by Jordan, Journal de math., (2) 11, pp. 105, 110. 
t Rendiconti del Circolo Matematico di Palermo, vol. 18 (1904), p. 45. 
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by the points P1P2P3, the correspondence will be called direct; in case the 
two senses are not the same, the correspondence will be called opposite. 

Suppose the sides of the polygon have been paired arbitrarily and 
denote the members of a pair by as and as'. Let as be called the side 
conjugate to the side as', and as' the side conjugate to ai. Let a corre- 
spondence, direct or opposite, be established between the members of 
each pair. Two corresponding points P1 and P1', interior to as and as' 
respectively, will be called a conjugate pair of points. 

3. Choose 4n points on the boundary of the polygon in the following 
manner: Take two arbitrary distinct points on each of the n sides as; 
then take the two points conjugate to them on each of the n sides as'. 
(Fig. 1.) Let the two points nearest to the vertex Pi, one on each of the 

ba N 
PI 

FIG. 1. 

sides that has an end at Pi, be called Pi, and Pi2. Join Pi, to Pi2 by a 
1-cell pi on the polygon. Do the same for each vertex, choosing the 1-cells 
pi so that no two intersect. Let the 2-cell whose boundary is made up 
of the segments Pi, Pi and Pi2 Pi, the 1-cell pi, and the points P21, Pi2, 
and Pi be called b 2. Consider the side Pi, Pi of the 2-cell b 2. There is 
a unique 2-cell bj2 one of whose sides Pi, P, (or P,2 Pi) is a segment con- 
jugate to the segment Pi, Pi. Join together these 2-cells by matching up 
conjugate points on their boundaries. Then there exists a unique 2-cell 
bk2 one of whose sides is conjugate to P,2 Pi (or Pj1 P,). Join bk2 to bj2 
in the same manner. This may be continued until a 2-cell b,2 is reached 
one of whose sides is the conjugate of the side P22 Pi of the 2-cell b, . 
The vertices Pi Pi Pk ... P, of the polygon which are on the boundaries 
of such a set of 2-cells will be called a conjugate set of vertices. 

4. If the 2-cells b 2, bj2, *.., b12 which determine a conjugate set of 
vertices be fitted together at their edges in such a way that conjugate 
pairs of points coincide, it is evident that they will constitute a single 
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2-cell. Hence it is evident that, for any polygon of 2n sides on which 
conjugate pairs of points and sets of vertices have been defined, there 
can be found a two-dimensional manifold such that there is a continuous 
correspondence in which each point of the polygon corresponds to one, 
and only one, point of the manifold and each point of the manifold corre- 
sponds either to one, and only one, point interior to the polygon, or to a 
pair of conjugate points on the boundary, or to a set of conjugate vertices. 
Conversely, for any two-dimensional manifold a polygon of 2n sides can 
be found (cf. the reference above) which is its image in the manner just 
described. 

5. We shall assume that a sense has been arbitrarily assigned to each 
of the sides as. This sense may be denoted by the order of any three 
distinct points on ai. The three conjugate points on ai' determine a 
definite sense on ai'. In case the senses of as and ai' for all values of i 
are such that one of them agrees and the other disagrees with a fixed 
sense of description of the boundary of the polygon, it is obvious that the 
manifold represented by the polygon is orientable or two-sided. In case 
there is one pair of sides as and as' the senses of which both agree with a 
fixed sense of description of the boundary of the polygon, it is equally 
obvious that the manifold represented is one-sided. 

6. Transformations of the Polygon. A 1-cell x on the polygon with its 
ends on the boundary divides the polygon into two 2-cells a and 3 (see 
Fig. 3). Suppose the side b2 is on the boundary of a and the side b2' is 
on the boundary of F. By cutting the polygon along x and joining the 
two 2-cells by matching up conjugate points of the two sides b2 and b2' a 
new polygon is obtained (see Fig. 4) which is in the same relation to the 
manifold as was the original polygon. If c is the image on the manifold 
of the 1-cell x, then on the new polygon the image of c will be two con- 
jugate sides; the image of a point interior to c will be a pair of conjugate 
points. 

This transformation will be referred to as the method of cutting. The 
1-cell x will be called a cut. The method of cutting will now be used to 
reduce the polygon to a normal form. * We shall first reduce to one the 
number of points ai? of the manifold which correspond to vertices of the 
polygon, and secondly shall obtain a definite arrangement of pairs of 
conjugate sides of the polygon. 

7. Reduction to a Single Conjugate Set of Vertices. A sense may be as- 
signed arbitrarily to each of the edges a% and denoted by the order of 
any three distinct points on it. The three conjugate points on ai' deter- 

* The application of the method of cutting to the normalization of a polygon is due to Pro- 
fessor Veblen; it was first given by him in a seminar on Analysis Situs in 1915. 
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mine a sense on ai'. The sense of any side determines a sense of descrip- 
tion of the boundary of the polygon. 

ItF-- a{ 
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FIG. 2. 

REDUCTION 1. If vertices of the polygon correspond to more than 
one point of the manifold, therewill be some side, say a2, whose ends, 
Pj and Pk, correspond to distinct points of the manifold; let a, be a side 
with one end at P k and the other at a vertex Pm (Fig. 2). First let us 
suppose that the side a2 is not a,'. Let P, be the end of a,' which corre- 
sponds to the same point of the manifold as Pk. Draw a cut -a joining 
Pm to Pj and join the two parts of the polygon along the sides a, and a,'. 
This gives a polygon on which the number of vertices in the conjugate 
set to which Pk and P, belong has been reduced by one; the number of 
sides of the polygon has not been changed. 

REDUCTION 2. In case a side, say a3 (Fig. 2), joins two vertices which 
correspond to different points of the manifold and has an end in common 
with its conjugate side a3', we have the case excluded in Reduction 1. 
From the way in which points of a3 and a3' correspond it follows that a3 
and a3' must be oppositely sensed. Hence by coalescing the pairs of 
conjugate points of a3 and a3' a polygon can be formed from which the 
two sides a3 and a3' and their common vertex have been removed. The 
number of points of the manifold to which vertices of the polygon corre- 
spond has been reduced by one. 

8. These reductions may be continued so long as there is more than 
one point of the manifold to which vertices of the polygon correspond. 
By each step either a conjugate set of vertices is removed, or the number 
of vertices in one conjugate set is increased while the number of vertices 
in another conjugate set is reduced by one (Reduction 1); also the con- 
jugate set of which the number of vertices is to be increased can be chosen 
arbitrarily, because the roles of Pj and Pk may be interchanged in Reduc- 
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tion 1. Hence by a finite number of steps a polygon ma} be obtained 
whose vertices constitute a single conjugate set corresponding to an 
arbitrarily chosen 0-cell ai? of the manifold, or else a polygon of two sides 
may be obtained whose vertices constitute two conjugate sets, and whose 
sides are oppositely sensed. The manifold defined by the latter polygon 
is a sphere. 

Hereafter we shall call the 0-cell ai0 the point A. Each pair of con- 
jugate sides of the polygon will be imaged on a 1-cell on the manifold 
whose ends coincide with A. In other words, each pair of conjugate 
sides of the polygon will correspond to a simple circuit on the manifold 
through the point A.* 

9. Normalization of the Two-Sided Polygon. Let us first consider the 
two-sided case and show how to obtain a group x y x' y' of four consecu- 
tive sides on the boundary of the polygon. Draw a cut x joining the two 
forward ends of ai and ai' (a2 and a2' in Fig. 3). Let the two parts of the 

t a |x ~ ~ ~~~B ib2 

a.' by 3 
FIG. 3 

polygon be a and: where ai and as' are on a. There must be some side 
aj (b2' in Fig. 3) on a whose conjugate a,' is on 3, otherwise the vertices 
of j3 together with the two vertices of a at the forward ends of ai and a.' 
would constitute a conjugate set without including all the vertices of the 
polygon. Join a and A along the sides aj and a,'. On the resulting 
polygon the three sides ai x ai' will be consecutive (Fig. 4). Draw a cut 
y joining the forward ends of x and x'. Join the two parts of the polygon 
along the sides ai and ai' (Fig. 5). The four sides y' x y x' are consecutive 
and in that order. 

This process may be repeated for any other pair of conjugate sides 
ak and ak' without disturbing the arrangement of the sides x y x' y' for 
no cut will be drawn from a vertex at which two of these sides abut. 

* The same result could be obtained by shrinking to points 1-cells joining distinct 0-cells of 
the manifold. 
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From the above reasoning it follows that the number of sides of the poly- 
gon of a two-sided manifold, if the polygon has a single conjugate set of 

F s b~b 

FIG. 4 

vertices, is a multiple of four. Completing the reduction and changing 
the notation we get the following arrangement of the sides of the polygon: 

a, bi a,' bV' a2 b2 a2' b * * a, b, a,' b,'. 
This is the normal form of the polygon. The number p is called the 
genus of the manifold. The connectivity R1 of the manifold is 2p + 1. 

FIG. 5. 

10. Normalization of the One-Sided Polygon. In the consideration of the 
one-sided case we make use of the transformation just described for the 
two-sided case if there exists a group of four sides having the same rela- 
tions among themselves that the sides as, ai', aj, and a1' had above. Thus 
we obtain on the boundary of the polygon a certain number of groups of 
four consecutive sides in the order ai bi ai' bi'. 
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Let ak and ak' be a conjugate pair of sides which have the same sense 
(a3 and a3' in Fig. 6). Draw a cut x joining the forward ends of ak and 

/// 
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FIG. 6. FIG. 7. 

ak', and join the parts of the polygon along ak and ak'. This replaces 
the pair ak ak' by the pair x x' (Fig. 7) which is a pair of consecutive 
conjugate sides having the same sense. By application of the two trans- 
formations the sides of the polygon may be arranged in groups of four of 
the form ai bi ai' bi' and groups of two of the form cj cj'.* 

A group of six sides of the form ai bi ai' bi' cj c/' may be replaced by 
three groups of two of the form Ck Ck' cl cl' Cm Cm'. Draw a cut x joining 
the forward ends of ai and cj (Fig. 8). Join the two parts of the polygon 

al 

FIG. 8. 

along the sides cj and c3'. This gives six consecutive sides ai x bi' as' bix 
(Fig. 9). Draw a cut y joining the backward end of ai to the forward 

b~~, ~ bl 

a," 
FIG. 9. 

* Attention is called to the fact that the members of a pair as ai', or bi bi', are oppositely 
sensed, and that members of a pair c; c3/ have the same sense. 
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end of bi', and join the two parts of the polygon along the sides as and as'. 
This gives the six consecutive sides y y' bi' x bi x' (Fig. 10). Draw a cut 

SD xB 

FIG. 10. 

z joining the forward ends of bi and bi', join the two parts of the polygon 
along the sides bi and bi'. This gives the six consecutive sides y y' z z' x x', 
which is the desired form (Fig. 10). 

From the above it follows that the polygon of a one-sided manifold 
may be put in the form: 

(1) a, all a2 a2l a3 a3 aR - 1 aR1-. a 

The number R1 is the connectivity of the manifold. 
By applying the inverse of the reduction just described to a set of 

three consecutive pairs the polygon of a one-sided manifold may be put 
in one of the two forms: 

(a) a1 bi a,' bl' a2 b2a2' b2' ab. a ,'bp ab' b c';c1 
or 
(b) a, bi a,' bi' a2 b2a2' b2' *.. apbpap'b" c1 Cl' c2c2', 

according as R- 1 is odd or even. 
11. Fundamental Sets of Circuits. When the polygon has been so 

transformed that the vertices constitute a single conjugate set the image 
on the manifold of a pair of conjugate sides of the polygon is a simple 
circuit through the point A. No two of these circuits have any other 
point in common. The circuits constitute the complete boundary of a 
2-cell which contains all the points of the manifold which are not on the 
circuits. Such a set of circuits has been called by Poincare a fundamental 
set. 

The discussion in the first part of this paper proves the existence 
of a fundamental set. We shall now prove that a fundamental set can 
be obtained with an arbitrary point A1 of the manifold as the point A. 
If the image P1 of A, is interior to the polygon, draw an arc p connecting 
P1 with some vertex P of the polygon. Cut the polygon along the arc p. 
This gives a polygon with two more sides than the original polygon and 
with two conjugate sets of vertices. Now apply Reduction 1 of ? 7 in 
such a way that the number of vertices in the conjugate set which corre- 
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sponds to Al is increased. This may be continued until by application of 
Reduction 2 (? 7) the conjugate set which corresponds to A is removed, 
and the number of sides of the polygon is reduced by two. This gives a 
polygon of the same number of sides as the original one and with a single 
conjugate set of vertices. Consequently we have a new fundamental 
set of circuits, each passing through Al, and the number of circuits in 
this set is the same as in the original set. 

If the point P1 were on a side of the polygon, the number of sides would 
be increased by two if we considered P1 and its conjugate point P1' as 
vertices. The above procedure could then be carried out giving the same 
result. 

12. In considering a simple circuit C on the manifold we may assume, 
as a result of what has just been proved, that the point A of a funda- 
mental set F is on the circuit. Let us consider the polygon whose con- 
jugate pairs of sides are imaged on the circuits of F, and let us suppose 
that C has a finite number of points in common with circuits of F.* The 
image of C on the polygon will be a set of arcs [Ci']. If C has no point 
in common with F other than A, this set will consist of a single arc having 
its ends at two vertices of the polygon; these two vertices will be distinct 
unless C divides the manifold into two parts. If C has points other than 
A in common with F, two of the arcs [Ci'] will have one end each at a 
vertex of the polygon; the other ends of arcs of [Ci'] will be at points 
interior to the sides of the polygon. The second case may be reduced to 
the first by a proper choice of the fundamental set F; this may be done 
by the method of cutting. 

For, let C1' be an arc with one end at the vertex Pi and the other at 
a point P interior to the side as (Fig. 11). Draw a cut x joining Pi to 

I~~~~~~~~~~~~~~~~~L 

FIG. 11. 

* A fundamental set may always be chosen so that the above condition is satisfied. 
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an end of as such that as and as' are on different parts of the polygon. 
The cut x can be drawn so that it has no intersections with C1', so that 
it has no intersections with any arc joining two boundary points neither 
of which is interior to as, and so that it has no more than one intersection 
with any arc having an end on as. By joining the two parts of the polygon 
along the sides as and ai' a new polygon is obtained (Fig. 12) such that 

a s~~~~~~P P x 

p_ \_II 

xl 
FIG. 12. 

the number of ends of arcs at points interior to the sides is at least one 
less than on the original polygon. This process may be continued until 
this number is zero, i.e., until a polygon is obtained on which the image 
of C is a single arc Ci joining two vertices. 

13. Let us suppose that the circuit C is not homologous to zero, i.e., 
that it does not divide the manifold into two parts. Then the two ends 
of the arc Ci are distinct; and if a and 03 are the two parts of the polygon 
determined by Ci, there must be some side as on the boundary of a whose 
conjugate side as' is on the boundary of B. Hence, if we cut the polygon 
along Ci and join the two parts along as and as', a polygon is obtained on 
which the image of C is an arc joining two consecutive vertices. Hence, 
any simple circuit which is not homologous to zero may be made a member of 
a fundamental set. 

14. Relations between Two Fundamental Sets. To compare two funda- 
mental sets F and F1 we may assume that the points A and Al coincide. 
Let conjugate pairs of sides of the polygon be images of circuits of F. 
No circuit or set of circuits of F1 divides the manifold into two parts. 
The image of F1 on the polygon will be a set of non-intersecting arcs 
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[Ci'] having their ends on the boundary. By the method of ? 12 we 
may obtain a polygon on which one of the circuits of F1 is imaged on an 
arc Ci joining two vertices. Also since no two of the arcs [Ci'] intersect, 
we may obtain by the same method a polygon on which a second circuit 
of F1 is imaged on an arc Cj joining two vertices; for since neither of the 
ends of Ci is interior to any side of the polygon, none of the required cuts 
will cross Ci. Continuing this process a polygon is obtained on which 
the image of F1 is a set of arcs [Ci] each having its ends at vertices of the 
polygon. 

We will next see how a polygon may be obtained which is such that 
each conjugate pair of sides corresponds to a circuit of F1, and which is 
such that every circuit of F1 corresponds to a pair of conjugate sides. 
It will also be seen that the number of sides of this polygon is the same 
as the number of sides of the original polygon. 

If Ci is an arc joining the two ends of as, cut the polygon along C1 
and join the two parts along the sides ai and ai'. This gives a conjugate 
pair of sides whose image on the manifold is a circuit of F1. There exists 
no arc Cj joining the ends of a side of this conjugate pair, for if there were 
such an arc, it and Ci would divide the manifold into two regions. 

Let the transformation described in the last paragraph be carried out 
for each of the arcs of [CN] which joins two consecutive vertices of the 
polygon. If Cj is an arc which joins two vertices of the polygon which 
are not consecutive, it divides the polygon into two parts, a and 3, and 
there must exist a conjugate pair of sides ai and ai' of which 6ne is on the 
boundary of a and the other is on the boundary of f, and which is not 
the image of any of the circuits of F1; otherwise any arc on the manifold 
joining two points Pa and Pa would intersect one of the circuits of F1. 
Cutting the polygon along the arc Cj and joining the two parts along the 
sides as and ai', a polygon is obtained which has a conjugate pair of sides 
whose image on the manifold is a circuit of F1. By the above methods 
a polygon may be obtained which has a pair of conjugate sides for every 
circuit of F1. It remains to be seen that every pair of conjugate sides 
of this polygon is imaged on a circuit of F1. If this were not so, F1 would 
not bound a 2-cell and so would not be a fundamental set. 

15. Invariance of the Connectivity. Since none of the transformations 
used changes the number of sides of the polygon and since the normaliza- 
tion of a polygon whose vertices constitute a single conjugate set does 
not change the number of sides, it follows that the values of the connec- 
tivity determined by the two fundamental sets are the same. The con- 
nectivity is independent of the particular fundamental set in terms of 
which it was defined. 

16. Equivalences and Homologies. The transformations involved in 
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what we have called the method of cutting amount in every case to re- 
placing one of a set of circuits by a new circuit which is related to the circuits 
of the original set by an equivalence in the sense of Poincar6.* For 
example, in Fig. 8 the cut x joins the rear end of bi to the front end of ce 
and we have 

xi= bil - a,' - bi' + c,' 
because b1,'- a,', - b, cl and - x' taken in order bound a 2-cell. The 
two parts of the polygon are joined together along cl and cl' (see Fig. 9) 
so that the set of circuts a,', bil, cl, ... has been converted into a,' bil xi' 
... where the two sets of curves are related by the set of equivalences: 

all = all 
bil = bi 
xi = bil - all - bil + c,' 

In case the vertices of the polygon are all in one conjugate set, these 
equivalences are what Poincar6 calls proper equivalences because all the 
1-cells in question begin and end at the same point. In case they are 
not all in one set, the equivalences are what he calls improper equivalences. 

In the general case it is clear that, if we pass by the method of cutting 
from a polygon whose sides represent a set of 1-cells a,, a2, *. ., am to one 
whose sides represent a set of 1-cells b,, b2, . , bi, we have a set of 
equivalences of the form 

b = e"lla, + E,12a2 + + eilmam + C,2lal + C122a2 + . + e,1'mam 
b = E21"al + E212a2 + + E21lma + E221ai + 222 a2 + + E 2 cm am 

(1)* 

b_ = E "a, + E 12a2 + ... + Enlmam + En21 a, + en 22a2 + + En ma 

in which the e's are + 1, - 1, or 0. 
17. The terms of an equivalence are not commutative. If we treat 

them as if they were commutative and collect terms, the equivalences (1) 
reduce to the homologies 

b-- 77,lai + 71,2a2 + 7 13a3 + *. + 771ma. 
(2) --b2 721a, + n22a2 + 7723a3 + *. + 772ma. 

bn 7 'nla, + qn 2a2 + qn 3a3 + * + 77nman 
* Loc. cit., p. 60; see also Veblen, loc. cit., Chap. V, ? 28. 
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in which the 71's are integers. It is easily seen that in a homology the 
right and left sides together constitute the boundary of an oriented two- 
dimensional manifold though not in general a 2-cell. 

If the coefficients - of these homologies are reduced modulo 2, we 
obtain the following homologies: 

bi - Pilai + P12a2 + + lma. 
b2 - P21aj + P22a2 + ... + t2ma 

(3) (mod 2) 

bn " rn'a, + rn2a2 + *. + rnmam 

in which the ?'s are all 1 or 0. It is easily seen that in a homology (mod 2) 
the right and left sides constitute the boundary of a two-dimensional 
manifold which need not be oriented. (See Veblen, loc. cit., Chap. II, 
? 37.) 

It is obvious that the homologies (mod 2) are the simplest and 
easiest to work with, that the Poincare homologies are the next simplest, 
and that the equivalences are the most difficult on account of their non- 
commutative character. We shall therefore in what follows first consider 
the homologies (mod 2), then the Poincar6 homologies. 

18. We have now seen that it is possible to pass from any fundamental 
set of circuits to any other by the method of cutting, and also that the 
number of circuits in all fundamental sets is the same. In terms of the 
equivalences of ? 16 this means that, between any two fundamental 
sets a, a2 * a., and di, &2, * I *,,, there exist the equivalences 

di --E SEfjjaj 
i=1 j=1 

m v 

a,,_ 1i Je,,ijaj i=l j=l 

From this there follow the homologies 

dp ,,Bpjaj (p =1, 2, ... I A), 
j=l 

where m 
Opj E EP ij1 

We now want to investigate the question as to what are the conditions 
under which two fundamental sets of circuits satisfy a set of equivalences. 
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dp = ap (p = 1, 2, . *Iv Au) 

This is related to the question as to whether they satisfy the much weaker 
conditions 

ap --ap, 
or the still weaker condition 

dp - ap (mod 2). 

With a view to studying these questions we introduce certain matrices 
expressing the relations among the circuits of a fundamental set. 

19. The Separation Matrix. Suppose that each side of the polygon has 
been given a sense in the manner described in ? 5. A 1-cell joining the 
forward ends of ai and ai' divides the polygon into two parts a and 3. 
If one and only one of the sides aj and a/' is on the boundary of a, we will 
say that the conjugate pair aj a/' separates as ai'. As an obvious con- 
sequence of the definition we get the following theorems: 

1: If the pair aj a/' separates the pair ai ai', then the pair ai ai' separates 
the pair aj a/'; 

2: If the two sensed sides ai and ai' determine the same sense of descrip- 
tion of the boundary of the polygon, then the pair ai ai' separates itself; in 
the opposite case the pair ai ai' does not separate itself. 

20. We will now construct a square matrix of R1 - 1 rows which is 
uniquely determined by the polygon. Let eij, the element in the ith row 
and the jth column, be 1 or 0 according as the pair aj a/' separates or 
does not separate the pair ai at'; this matrix will be called the separation 
matrix of the polygon. 

From the first theorem of ? 19 it follows that eij is equal to eji; and 
from the second it follows that eii is 1 or 0 according as the sides ai and 
ai' have the same or opposite senses. 

21. The separation matrix of the normalized polygon of a two-sided 
manifold is the following: 

0 1 00 ...0 0 
1 0 00 .*.. 0 
0 0 0 1 ... 0 0 
0 0 1 0 ... 0 0 

0 0 0 0 ... 0 1 
0 0 00 ... 1 0 

The separation matrix of the polygon of a one-sided manifold in the 
normal form (1) of ? 10 is: 
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1 0 00 0 ..0 0 
0 1 00 0 ..0 0 
0 0 1 0 *..0 0 
0 0 0 1 *..0 0 

0 0 0 **. 1 0 
0 0 0 0 ... 0 1 

These two matrices are also the separation matrices of the polygons 
whose sides are respectively in the order: 

a1 bi a2 b2 a3 b3 a3' b3' a2' b2' a,' bi' (Fig. 3); 
and 

a1 a2 a3 a4 a4' a3' a2' a,' (Fig. 6). 

Thus we see that a given separation matrix corresponds in general to 
more than one polygon. We will return later to the relations between 
two polygons which have the same separation matrix. 

22. Let us first consider the effect of cutting along a 1-cell a1 equivalent 
to a1 + a2 and joining the two parts together along the sides a1 and al' 
(cf. Fig. 2). This amounts to changing the fundamental set by the 
equivalence transformation 

di= a1 + a2 

a2 = a2 

We shall see that this changes the polygon r into a new polygon whose 
separation matrix is obtained from that of r by multiplying on the right 
by the matrix of the above transformation and on the left by the con- 
jugate of that matrix, and then reducing each element modulo 2. 

23. Let us consider first the case where a, and a,' have opposite senses 
on the boundary of the polygon. On comparing the separation matrix 
of the new polygon with that of the old we see: (a) The first row and 
column are unchanged-i.e., the row and column corresponding to a1 a1' 
on the transformed matrix M1 are the same as the row and column corre- 
sponding to a1 a,' on the original matrix M; (b) The second row and the 
second column of M1 are the result of adding the first row of M to the 
second row, adding the first column to the second column, and reducing 
each element modulo 2. For if the element e2i of Ml is 1, a single side 
of the pair as as' is on each part of the boundary of ir between a1' and a2'. 
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Hence ai ai' separates one but not both of the pairs a1 a1' and a2 a2', and 
hence just one of the elements e1i and e2i of M is 1. Conversely, if one 
and only one of the elements e1i and e2i of M is 1, the pair ai ail separates 
one but not both of the pairs a1 a1' and a2 a2', and hence has one side on 
each of the parts of the polygon ir between a,' and a2'; hence e2i of M1 is 1. 
(c) The element eij of M1, where i, j $ 1, 2, is the same as the element 
eij of M, for it is obvious that the above transformation does not affect 
the mutual relations of two pairs neither of which is a1 a1' or a2 a2'. 

In the case where a1 and a1' have the same sense, it follows similarly 
that the matrix M1 is obtained from the matrix M by adding the first 
row and column to the second row and column respectively and reducing 
each element modulo 2. 

24. We shall next see that any transformation of the polygon by a 
single cut may be obtained as the resultant of a series of cuts of the simple 
kind just considered. First it is obvious that the polygon obtained by 
two cuts d a, + a2 and d1 = Ul + a3 is the same as the polygon 
obtained by the cut d1 = a1 + a2 + a3, where for the first cut the parts 
of the polygon are joined along the sides a1 and a1', for the second along 
ai and 61', and for the third along a1 and a1'. This shows that any trans- 
formation a1- iai where the two parts of the polygon are joined along 
two sides a, and a1', one of which has an end in common with a1, may be 
obtained by a series of transformations of the type a1 = a1 + a2. In the 
case where the two parts of the polygon are joined along a pair of sides 
neither of which has an end in common with a1, we note that such a 
transformation may be obtained as the resultant of two transformations 
of the preceding type.* Thus any transformation of the polygon by a 
single cut may be accomplished by a series of transformations of the type 
di = a1 + a2, and consequently any transformation of the polygon by 
the method of cutting may be accomplished by a series of transformations 
of the same type. 

25. In ? 23 we saw that M1 can be obtained from M by adding the 
first row to the second row, adding the first column to the second column, 
and reducing each element modulo 2. From the theory of matricest it 
follows that the ith row of M may be added to the jth row and the ith 
column to the jth column by multiplying M on the left by a certain matrix 
A of determinant 1 and multiplying the result on the right by the 
conjugate matrix A'. Since by ? 24 any transformation by the method 

* For example, the result of the cut k- a, + * * * + as + ak + al + * * * + am, where the 
two parts are joined along ak and ak', is the same as the result of the cut ak- a, + * * * + a; + ak 
followed by the cut ak -=a + al + * * * + am, where the parts are joined along ak and ak' in the 
first case and along Uk and 'k' in the second. 

t See Veblen and Franklin, these Annals, vol. 23, pp. 1-15. 
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of cutting may be effected by a series of cuts of the type described in ? 23, 
it follows that if the polygon ri is obtained from the polygon ir by the method 
of cutting, the separation matrix M1 of Ir may be obtainedfrom the separation 
matrix M of or by multiplying M on the left by a matrix A of determinant 1 
and on the right by the conjugate matrix A', and then reducing each element 
modulo 2. 

The converse of this theorem is not true; we shall return to this 
question in a later paragraph. 

26. Let us consider a polygon to which Reduction 2 of ? 7 may be 
applied. In the separation matrix of the polygon the row and column 
which correspond to the conjugate pair ai ai' will be made up wholly of 
zeros. The separation matrix of the polygon that is obtained by carrying 
out Reduction 2 is the matrix obtained by striking out the row and 
column of zeros. Reduction 1 is an operation of the type considered in 
? 25. Hence, the connectivity of the manifold is one greater than the rank 
of the separation matrix of the polygon. 

27. The Normalization of the Separation Matrix. We have seen that a 
polygon whose conjugate pairs of sides correspond to the circuits of a 
fundamental set may be reduced to normal form by the method of cutting 
without reducing the number of sides. The separation matrix of the 
normalized polygon of a two-sided manifold is a matrix in which e2n-1, 2n 

and e2n, 2n-1 (n = 1, 2, ..., (R1 - 1)/2) are equal to 1 and every other 
element is 0; the separation matrix of the normalized polygon of a one- 
sided manifold is a matrix in which en, n (n = 1, 2, ..., (R1 - 1)) is 1 
and every other element is 0. These matrices are normal forms for 
symmetric matrices (mod 2) of determinant 1. * As a result of these 
considerations and ? 25 we have the theorem: If M is the separation 
matrix of a polygon whose vertices constitute a single conjugate set, there 
exists a matrix A of determinant 1 such that the product A M A' is equiva- 
lent modulo 2 to the normal form of a symmetric matrix of determinant 1, 
and such that A corresponds to a series of cuts on the polygon. 

28. We have seen that, when the polygon is in normal form, the 
separation matrix is also in normal form. The converse of this state- 
ment is, however, not true, as we saw in ? 21. Instead we have the 
following theorem: If the separation matrix is in normal form, the polygon 
may be normalized by a series of cuts of which the corresponding matrix A 
is the identity, modulo 2. 

Let us consider the one-sided and two-sided cases separately. In the 
one-sided case the polygon is in normal form or else there is a pair a2 ai' 
such that one of the two parts of the boundary between ai and ai' is 

* See Veblen and Franklin, loc. cit., p. 14. 
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made up of the sides aj aj' ak ak' ... a, a,' in that order. The cut joining 
the forward ends of ai and ai' gives the following transformation on the 
circuits of the fundamental set when the two parts are joined along a2 
and as': 

all -all 

di' --ail + 2ajl + 2akl + *. + 2alz 

djul a/ul. 

The matrix A corresponding to this cut has a main diagonal made up 
of l's and no other elements excepting O's and 2's. This transformation 
has increased by one the number of pairs of sides which are in the order 
ai ai' on the boundary of the polygon. By repeating this process the 
polygon may be reduced to normal form. 

In the two-sided case, if the polygon is not in normal form, there 
must be some group of four sides a2 bi ai' bi' such that between two 
elements of the group, say between bi and as', there are one or more groups 
of four consecutive sides aj bj a1' b/'. A cut joining the forward ends of 
bi and bi' gives a matrix A which is equal mod 2 to the identity, and so 
does a cut joining the forward ends of the sides di and as' obtained from 
the first cut. This transformation increases the number of groups of 
four consecutive sides of the form aj bj a/' b/' and may be continued until 
the polygon is normalized. 

29. From these theorems we can now deduce an important theorem 
analogous to the theorem given by Poincare on page 70 of the Fifth 
Complement. Given two fundamental sets a1, a2, . * ., a,, and b1, b2, * * *, b,,; 
in order that there shall exist a fundamental set cl, c2, * * *, c,W, into which 
the a's are transformable by a homeomorphism of the manifold with itself 
and which are homologous (mod 2) with bl, b2, , b, respectively; it is 
necessary and sufficient that the separation matrix of the a's shall be the same 
as that of the b's. 

If the a's are transformable into the c's by a homeomorphism of the 
manifold, this homeomorphism determines a homeomorphism of the 
polygon of the a's with that of the c's. Hence the separation matrix 
Ma of the a's is the same as the separation matrix Mc of the c's. By 
? 14 it is possible to pass from the c's to the b's by the method of cutting. 
This determines a set of homologies connecting the c's with the b's, and 
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if A is the matrix of this set of homologies, we have by ? 25, 
Mb =At Mc An 

where Mb is the separation matrix of the b's. By hypothesis we have a 
set of homologies, bi - ci (mod 2). But there cannot be more than one 
set of homologies (mod 2) connecting the b's and the c's, since otherwise 
there would be homologies of the form ci - c; (mod 2) among the c's. 
Hence A is the identity matrix and Mb = Mc. Hence Ma = Mb. 

Conversely, let us suppose that Ma = Mb. The a's and the b's respec- 
tively can be converted by the method of cutting into fundamental 
sets d1, d2, * *, d,, and fi, f2, * *, f,, respectively whose polygons are in 
normal form. Then, if a sequence of cuts is applied to fi, f2, , f 
which is homeomorphic with a sequence of cuts which converts d1, d2, 

*, d, back into a,, a2,* *, a, the f's are evidently converted into a 
fundamental set cl, c2, *.., c, which is capable of being transformed 
into a,, a2, *.*., a, by a homeomorphism of the manifold with itself. Hence 
Ma = Mc and therefore Mc = Mb. But the c's have been obtained from 
the b's by the method of cutting and so are related to them by an equation 
of the form A' McA = Mb. By ? 28 the c's can be obtained from the 
b's by a series of cuts for which A is the identity. Since there cannot be 
more than one set of homologies (mod 2) relating the b's and the c's, it 
follows that 

b2 C2 

(mod 2). 

30. The Matrix of Signed Separations. In the case of the two-sided 
manifold we may give an algebraic sign to the separations of pairs of 
sides of the polygon. First let us assign a sense arbitrarily to the boundary 
of the polygon. Of each conjugate pair one side agrees in sense with the 
boundary and the other disagrees with it; let the side which agrees in 
sense with the boundary be designated by as, and the other by as'. Sup- 
pose an arc drawn joining the forward ends of ai and ai', and let a be the 
part of the polygon on whose boundary the two sides as and ai' appear. 
If aj a/' separates as as' and the side aj is on the boundary of $, we will 
say that aj a/' separates as ai' positively; if aj is on a, we will say that aj a/' 
separates ai ail negatively. 

As an immediate consequence of the above definitions it follows that 
if aj a/' separates as ai' positively, then as ai' separates aj a/' negatively. 
In like manner it follows that reversing the senses of the sides ai and ai' 
changes the sign of every separation by that pair. 
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Let us give each non-zero element of the separation matrix the sign 
+ or - according as it stands for a positive or a negative separation. 
The resulting matrix will be called the matrix of signed separations. From 
the last paragraph it follows that this matrix is skew-symmetric. 

31. Consider a cut di a, + a2 (cf. Fig. 2). The 1-cell di divides the 
polygon into two parts one of which has on its boundary di, a,, and a2. 
If di is given a sense which disagrees with the sense of a, on the boundary 
of this part, then the signed separations by di di' on ri will be identical 
with the signed separations by a, a,' on ir. With this convention in 
assigning a sense to ai, we will prove that if ri is obtained from ir by a cut 
a- a, + a2, the matrix of signed separations S1 of ri may be obtained from 
the matrix of signed separations S of Xr by multiplying the first row by - 1 
and adding it to the second row, and performing the same operation on 
columns. 

Proof: The separation matrix of any polygon can be obtained from 
the matrix of signed separations by reducing each element of the latter 
modulo 2. The matrix given by the theorem when each element is 
reduced modulo 2 is the separation matrix of the transformed polygon. 
(Cf. ? 25.) Therefore the proof of the theorem reduces to the proof of 
the facts (1) that the matrix of the transformed polygon given by the 
theorem contains no element different from 0, 1, and - 1, and (2) that 
by the method given in the theorem the proper sign is attached to each 
element. To prove (1) it is sufficient to show that if e1i and e2i are both 
different from 0 they have the same sign. This means that if ai ai' 
separates both a, a,' and a2 a2', it separates both positively or both nega- 
tively, which follows from the fact that a, and a2 have the same sense. 
To prove (2) consider first the case where as ai' separates a, a,' but does 
not separate a2 a2' on 7r. We are to show that e2i of Si is 1 or - 1 accord- 
ing as e1i of S is- 1 or 1. This follows from the fact that as or as' is 
on the part of the boundary of 7r between a, and a,' which does not contain 
a2'. Finally consider the case where as as' separates a2 a2' but does not 
separate a, a,'. In this case the transformation does not affect the 
separation of a2 a2' by ai ai', which gives that if e1i of S is 0, e2i of Si is 
the same as e2i of S. 

32. Consider the cut di a, + a2'. This can be reduced to the case 
treated in ? 31 by changing the sense of each of the two sides a2 and a2'. 
This changes the sign of each element in the second row and each element 
in the second column (? 30). Now carry out the transformation 
di = a, + a2; the corresponding transformation on S multiplies the first 
row and column by - 1 and adds them to the second row and column 
respectively. Finally reverse the senses of a2 and a2' again and carry 
out the corresponding change on the matrix. The result may be expressed 
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as follows: If 7r, is obtained from Xr by a cut ad-- a + a2', the matrix Si 
of signed separations of 7r, may be obtained from the matrix S of signed 
separations of ir by adding the first row to the second row and performing 
the same operation on columns. 

33. By omitting the phrase "modulo 2" in the theorems of ? 25 and 
? 27 and replacing M and A by S and B respectively, we get two theorems 
concerning the matrix of signed separations. That these theorems are 
true follows easily from ?? 31, 32. Corresponding to the theorem of ? 28 
we have: If the matrix of signed separations is in normal form, the polygon 
may be normalized by a set of cuts of which the matrix B is the identity. 

To prove the theorem we need only (cf. ? 28) show that the matrix 
B corresponding to the cut 6b bi + aj + bj + a,' + b/' is the identity. 
This cut may be effected by the following series of cuts: 

x1i bi + a, X2-X1+b, X3-X2+ aja, b _x3 + b'. 

The product of the matrices of these transformations is the identity. 
By proceeding as in ? 29 we may now establish a theorem identical 

with that of ? 29 with omission of the modulo 2 condition. This is equiva- 
lent to the theorem given by Poincar6 (l.c., p. 70). 

34. Given any series of cuts on the polygon we have seen that there 
corresponds to it a matrix B whose determinant is 1. As a result of the 
first theorem of ? 33 we have that there exists more than one series of 
cuts corresponding to a given matrix, if there exists one. It can be 
shown however, by means of a simple example, that not every matrix of 
determinant 1 corresponds to the transformation of a given polygon by a 
series of cuts. 

35. Criterion for a Non-singular Circuit. Any simple circuit which is not 
homologous to zero is homologous to a linear combination, with coefficients 
relatively prime, of circuits of any fundamental set.* 

Proof: The circuit may be deformed into one which passes through the 
point A of any fundamental set F. The image on 7r of the circuit will be 
a set of non-intersecting arcs. By the method of cutting we may obtain 
a polygon 7r, on which the image of the circuit is an arc joining two con- 
secutive vertices. 

The separation matrix M1 of 7ri is equal to AMA' (modulo 2) where 
M is the separation matrix of 7r and A is the product of a set of matrices 
A k Aj A ... A1, each of which corresponds to a single cut and is therefore 
of determinant 1. The matrix A k Ai' As' * * A1' is the matrix of the 
homology transformation of the circuits of F into the circuits of F1. 
(See ? 22.) The elements of the ith row of this matrix are the coefficients 
of a combination of the circuits of F which is homologous to the circuit 

* Poincare proves this theorem and its converse for two-sided manifolds. i.e., page 70. 
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Ci' of F1, Ci/ -- 2jeij C,. Since the matrix is of determinant 1 the theorem 
follows. 

From the foregoing it is evident that the theorem just proved is true 
in the case of a two-sided manifold without the restriction in the hypothesis 
to circuits which are not homologous to zero. It is equally evident that 
the restriction is necessary in the case of a one-sided manifold, for a circuit 
whose image on the polygon together with two sides Ci and Ci' which 
have the same sense bounds a part cx of the polygon is equivalent to 2Ci. 
However Ci, a circuit of the fundamental set, is homologous to a linear 
combination with coefficients relatively prime of circuits of any funda- 
mental set. Thus we have the result that on a one-sided manifold any 
simple circuit is homologous to a linear combination with coefficients 
relatively prime of any fundamental set, or else it is homologous to a 
linear combination with coefficients containing 2 as a highest common 
factor. This factor 2 is the coefficient of torsion of a one-sided manifold. 

Any linear combination with coefficients relatively prime of circuits of a 
fundamental set for a two-sided manifold is homologous to a simple circuit. 

Proof: The method of proof will be to show that a matrix B with an 
arbitrary first row, provided the elements are relatively prime, may be 
built up by taking the product of a set of matrices each of which corre- 
sponds to a cut on the polygon. First reduce the polygon to normal form. 
Let D be the matrix to which this reduction corresponds. We shall now 
find a matrix C such that B = C . D has an arbitrary first row and such 
that the matrix C corresponds to a set of cuts. That B may have an 
arbitrary first row, it is sufficient that the first row of C may be chosen 
arbitrarily. 

The two transformations which follow can be carried out on the 
normalized polygon and each transformation leaves the polygon in normal 
form. 
(1) a2n-1 - a2n-1 + b2n, 

(2) a2n-1 - a2n1 + a2mn1 followed by b2m= b2m - b2n. 

The matrix B1 corresponding to transformation (1) is (for n = 2) of the 
form: 

1 0 0 0 0 0 O a 
0 1 0 0 0 0 O0 
00 1 00 0 
o o- 1 0 0 0 0 

B1= 0 0 0 0 1 0 oK 

o o 0 0 0 1.. Oi 
0 0 0 0 0 0 1i0 
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The matrix corresponding to the transformation (2) is (for n = 2, m = 1) 
of the form: 

10 0 00 ...0 0 
- 1 0 1 0 0 ..0 0 

0 1 0 1 0 0 I - 
0 10 0 ... 

O O 

B2= 0 0 0 0 1 0 0. 

0 0 0 0 0 ...1 0' 
0 0 0 0 0 0 10 1 

By taking products of matrices of the type B we may obtain a matrix 
of the form: 

I al a12 0 0 0 0 ...O 0 
a21 a22 0 0 00 ***0 0 

'0 0 a33 a34 0 0 *..0 0 
0 0 a43 a44 0 0 *.. O 0 
0 0 0 0 a55 a56 .. 0 0 

B3= 00 0 0 0 a65 a66 ***O 0 

0 0 0 0 0 0 a2p-1, 2p-l a2p-1 2p 

'0 0 0 0 0 0 a2p, 2p-1 a2p, 2p 

where ai, j+1 and a, i are any two integers relatively prime and where 

ai, i aj, i+1 = 1 
Iai+,, i ai+l,,i+l 

This follows from the fact that any two-rowed matrix of determinant 1 
may be normalized by elementary transformations on the rows alone. 
The elements a, i and a, j+l may be chosen so that el, ai, i = e1, i+i/ai, i+i, 
where e1, i and el, i+ are elements of the arbitrarily given first row of C. 
Then, by application of matrices of type B2 above, any odd row of B3 
may be added to the first row a sufficient number of times to give the 
arbitrary first row of C. This completes the proof of the theorem. 

36. Intersections of Circuits of Fundamental Set. Consider two sensed 
circuits C1 and C2 on a two-sided manifold. Let them have a point P in 
common. A 2-cell a12 may be constructed which contains P, and no 
other point common to the two circuits, as an interior point and which 
contains a simple arc of each of the circuits on the interior. Let one of 
the senses of description of the boundary be designated as positive. Let 
the forward end of the arc of Ci which is interior to a12 be called ai1i and 
the other end ai20. If the points a1 a120 separate the points a210 a220, the 
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two circuits C1 and C2 will be said to intersect at P. If the two circuits 
intersect at P and the point a220 is on the part of the boundary of a12 
that runs positively from a110 to a120, C2 will be said to intersect C1 posi- 
tively: if a210 is on that arc C2, it will be said to intersect C1 negatively. 
We have as an obvious theorem: If C2 intersects C1 positively at the point 
P, then C1 intersects C2 negatively at the point P. 

37. Consider now two circuits C1 and C2 which have more than one 
point in common. A 2-cell may be constructed at each common point 
as in ? 36. These 2-cells may be assigned senses in such a way that they 
all agree in sense. Making use of these sensed 2-cells, we may determine 
the number of positive and the number of negative intersections of the 
circuit C2 with the circuit C1. Let N(C2, C1) be a positive or a negative 
number equal to the number of positive intersections of C2 with C1 minus 
the number of negative intersections of C2 with C1. As a result of this 
definition and the theorem of ? 36 we have 

N(C2, C1) = - N(C1, C2). 

The following theorems may be easily proved: 
If C1 - 0, and C2 is any circuit whatever, then N(C2, C1) 0-. 
If C3 C1 + C2, and C4 is any circuit whatever, then 

N(C4, C3) = N(C4, C1) + N(C4, C2). 

If C1 - C2, and C3 is any circuit whatever, then N(C3, C1) = N(C3, C2). 
38. The Intersection Matrix. Let us consider the intersections of pairs 

of circuits of a fundamental set, and let us construct a matrix of 2p rows 
and 2p columns by making the element eij equal the number N(Cj, Ci). 
Since the circuits are simple circuits and no two have more than one 
point in common, the elements of the matrix will be 0, 1, and - 1. Every 
element esi will be 0; the element ej, will be the negative of the element 
eip. Thus the matrix is skew-symmetric. 

39. A cut d1 = a1 + a2 performs a certain transformation on the 
circuits of the fundamental set. According to ? 37 the intersections by 
the circuit on which d1 is imaged are obtained by adding the rows corre- 
sponding to C1 and C2 in the intersection matrix N. Then to get the 
intersection matrix of the transformed fundamental set we add the second 
row of N to the first row and perform the same operation on columns. 
This may be accomplished by multiplying N on the left by the matrix 
which is the inverse of the conjugate of the matrix B used in ? 33, and by 
multiplying on the right by the conjugate matrix. 

From this it follows at once that if the fundamental set F1 is obtained 
from the fundamental set F by the method of cutting, the intersection matrix 
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N1 of F1 and the intersection matrix N of F satisfy the relation N1 = T N. T', 
where T is a matrix of determinant 1. 

40. The polygon was normalized by the method of cutting. When 
the polygon is in normal form, the intersection matrix of the corresponding 
fundamental set is in normal form, as can be seen by constructing a 
neighborhood of the point A in the manner of ? 36, and the matrix of 
signed separations is also in normal form. These two normal forms are 
the same. The matrix of signed separations of the original polygon is 
normalized by a matrix B = (Bk . BB1); the intersection matrix is 
normalized by a matrix (Bk')> * . (B2')-'(Bl')-l. From this it follows 
by a simple computation with the matrices that the intersection matrix is 
the negative of the reciprocal of the matrix of signed separations. 
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