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Vector fields on w-manifolds
By G. E. BREDON and A. KOSINSKI*

1. Introduction

Let M* be an n-dimensional differentiable manifold. As in [8], we denote
by o(M) (the ‘““span’’ of M) the maximal number of linearly independent
vector fields on M, and we also put o, = o(S").

The number ¢, has been determined by J. F. Adams in [1]. In this paper
we show how to determine the span of an arbitrary 7w-manifold. This is done
by two theorems, below, the first of which states that only two values are
possible for the span of a w-manifold of given dimension, and the second
provides an easy way to decide which value is the case.

THEOREM 1. If M" is a m-manifold, then either o(M™)=0, or o(M™)=mn.

The invariant which separates these cases is the semi-characteristic x*
defined as follows: if » is even, then y*(M") = % y(M™) where y denotes the
Euler characteristic; if n = 27 + 1, then y*(M") is the mod 2 congruence
class of } 7 rank H(M; Z,). We also define the reduced semi-characteristic
7 by (M) = 1 — x*(M), and note that it is additive with respect to connected
sum of manifolds.

THEOREM 2. ¥ %8s a homomorphism of the semi-group of comnected
oriented n-dimensional w-mantfolds onto Z for m even, and onto Z, for n
odd, such that if n = 1,8,7, then o(M™) = n if and only if (M) = 1,

It is clear that Theorem 2 reduces to the theorems of Kervaire [4], [5].
The proof given here differs from Kervaire’s, Theorem 1 was first proved for
n # 4k — 1 by E. Thomas. Later the authors and Thomas produced independ-
ent proofs of this for general n. Thomas’ treatment of the subject is sub-
stantially different from that of the present paper and is presented in [8].

We wish to thank E. Thomas for bringing this problem to our attention,
and for many fruitful discussions concerning it.

An interesting example of applications of Theorems 1 and 2 is provided
by Stiefel manifolds (real, complex, or quaternionic). It is known that they
are w-manifolds [2]. We prove

COROLLARY. Stiefel manifolds V, , are parallelizable tf k > 1.
ProoF. Compare [7]. One could of course apply Theorem 2. The following
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method simplifies computations and applies in many situations. Since V, ;. is
fibered over V, ,_,, it follows that o(V,,,) = o(V,,._,). Using the elementary
fact that dim V,,,_, > (2/3)dim V, . for & > 2, together with the inequality
0, < 2m/3 (which follows easily from [1]) for m # 1, 3,7, we deduce from
Theorem 1 that, if V,, is parallelizable, then so are all the V, , for £ >1. To
check that V,, is parallelizable, we use Theorem 2.

Later on in this paper we shall need a sharper inequality for ¢,, namely:
20, <n —1 for n = 1,3,7,15. This is also easily checked from the explicit
formula for o, in [1].

2., The Gauss map

We recall that a 7w-manifold is 2 manifold which can be embedded in some
euclidean space with trivial normal bundle. It is known[6] that M is a r-manifold
if and only if M is stably parallelizable, that is, if and only if (M) + ¢ is trivial,
where (M) is the tangent bundle of M, and ¢ is a trivial line bundle on M.

Let M" be a closed oriented 7-manifold, and let F' be a framing of the
stable tangent bundle v + ¢ of M compatible with the given orientation on
7 +¢. Referring a vector v € ¢ + ¢ to the coordinate system based on the frame
F (at the base point of v), we obtain a point F™*(v) € R**'. If x — &(x) denotes
the canonical cross-section of the trivial line bundle &, then x — F*(e(x)) is
the ‘“ Gauss map ”’

vy Mr—— S*,
Clearly v, is covered by a bundle map of 7(M*) into 7(S*). Thus vi(z(S*)) =
v(M™) which implies o(M") = o,.

The degree of the map v, will be denoted by d(M, F'). If —F is the

framing (of ©(—M) + ¢) obtained from F' by reversing the first vector, then

(2.1) d(—M, —F) =d(M, F),
since v_, differs from v, by a reflection through a hyperplane, but the orienta-

tion of M has also been changed.
We note that (M) = k if and only if for each framing F there is a map

Sfee M™*— V.1 .s such that v, = wof, where 7: V, ;01— Vs = S is the

canonical projection.
If F and G are two framings of ¢ -+¢, then there is a map g: M"—SO(n+1)

such that, for each ze M, F, = g(x)-G,. Thus y42) = g(x)(vs(x)). Let
m: SO(n + 1) — S* be the canonical projection, and note that v, is homotopic
to a map v, taking the complement of some n-cell U onto the base point
7(e) € S*, while g is homotopic to a map taking U into e. Thus vy, is homotopic
to the composition

M 225800 1+ 1) v §* 2YA 55y St S
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the last map being of degree (1,1). It follows that
2.2) d(M, G) = deg (mog) + d(M, F) .

Notice that for #» odd, deg (meg) can be any even integer (at least), since
there is a map f: S* — SO(n + 1) with deg (wof) = 2.

3. Two lemmas

3.1. LEMMA. Let W™ be a m-mantfold with boundary S** (n odd). Let
Kbe a (k — 1)-connected complex with 2k =n. Then, for any map f: W—K,
f10W is null-homotopic.

Proor. By [6; Th. 6.6] W can be submitted to a sequence of spherical
modifications (away from 0 W) ending with a contractible manifold. We must
only check that at each stage there is a map into K extending the given map
Son 0W. But, by the proof of [6; Th. 6.6] surgery need only be performed on
embedded m-spheres for m < (n — 1)/2 < k. Thus, at any stage, the map
into K may be assumed to be constant in the neighborhood of this embedded
m-sphere, and hence the map into K can be defined in the obvious way on
the manifold resulting from this spherical modification.

3.2. LEMMA. Let M* be a m-manifold with n odd. Let v: M*— S™ be
any map of degree one. Then v can be lifted to fr M*— V. oy, withy =mof
of and only if k < o,.

ProoF. The lemma is trivial for » = 1, 3, 7. Assume for the moment that
n+1,3,7, 15, Suppose that k =0, + 1, and that f: M"—V,,, ;., exists such
that 7o f=v is of degree one. Let W be the complement of an open cell in M.
We may assume that v is one-one on M — W and maps W to a point. Then f
maps W into a fibre V, , of 7. Since V,, is (# — k — 1)-connected and (for
n#1,3,7,15) 2(n — k) = 2(n — 0, — 1) >n — 1 (that is, 20, < n — 1, see
[1]), it follows from 3.1 that f|dW: 0 W — V, , is null-homotopic. However,
f|10W is just the characteristic map of the fibering 7: V,., .., — S” since v is
one-one on M — W. Thus f| 0 W is not null-homotopic in V, ,, for otherwise
2 Vures: — S* would have a cross-section, and S* would have a field of %-
frafnes, k=0, + 1.

It remains to consider the case n = 15. More generally, let ¢! be
the largest integer k& for which there exists a m-manifold M*, and a map
fiM»—V, . .. With o fof degree one. We have shown that o!,= o, for n = 15,
and we wish to show this for n = 15. We claim that, if k¥ < o), o/,, then
k=<o0,..... Toseethis,let fi: M?—V, 1. and fo: M*— V... ... be as above.
Let g: M, x M, x S*— M, M, (the join of M, and M,) be a map of degree one
(that is, inducing isomorphism on homology in dimension » + m + 1). (g ean
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be taken to be the natural map into the reduced join of M, and M, followed
by a homotopy equivalence with M, + M,.) Consider the diagram

/ Vst * Vst iorr = Vidmin, bt
M, x M xS — M M 1 l
Sn*Sm ~ , Sn+m+1

where the map V. 00i% Vst k41— Vitmioes: 1S the map defined by James [3].
The bottom row of this diagram consists of maps of degree one, so that
k < 0, by definition.

Now we have, by induction, o), < 0},,,_,. For » = 15, p = 3 this yields

0{5§0;7:0'47:8:0'15-

Consequently ), = o, for all n, and the lemma follows.

4, Proof of Theorem 1

4.1. Suppose that either n ts even and, for some F, d(M*, F') = 0; or n
1s odd, and d(M", F') = 0 mod 2. Then o(M") = n.

Proor. The assumptions imply, by 2.2 and the remark following it, that
in either case there is a framing F' such that d(M, F') = 0. But then v is
null-homotopic and can be lifted to f, : M — SO(n+1) = V,.,,,.+:. This gives
the desired framing of t(M).

4.2. Let n be even, and suppose that for some F, d(M, F) # 0. Then
o(M) = o,.

Proor. For n even, o, = 0. Suppose o(M) = 0. Then there is, for each
F,amap f,: M—V,,,, such that v, = wo f;. Since H,(V,.1,.) = Z,, it follows
that d(M, F') = deg (7w o f;) = 0, which proves 4.2,

4.3. Let n be odd + 1,3,7 and suppose that, for some F, d(M, F') =
1mod 2. Then o(M) = o,.

Proor. By 2.2 we can find a framing F'such that d(M, F') = 1. Therefore
4.3 follows from 3.2.

Now, 4.1, 4.2 and 4.3 imply Theorem 1,

5. Proof of Theorem 2

We first prove

5.1. If nis even, then d(M, F') does not depend on F'. Ifnisodd +1,3,7,
then the mod 2 congruence class of d(M, F') does not depend on F.

ProoF. Suppose first that » is even. Then, in 2.2, we have deg (7w o g) = 0,
for = factors through V,,., and H,(V,... = Z, in this case. Therefore
d(M, F') does not depend on F,
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Suppose now that # is odd. By 4.1 and 4.3, the mod 2 congruence class
of d(M, F) is determined by the span of M, and therefore does not depend
on F,

We now define d(M) to be the mod 2 congruence class of d(M, F) if n is
odd, and to be d(M, F) if n is even.

To prove Theorem 2, it is now sufficient to prove the forrowing theorem:

THEOREM 3. If M™ isa w-manifold and n+ 1,3,7, then d(M") = y*(M™).
The proof is preceded by a lemma.

5.2. LEMMA. If M~ isthe boundary of an oriented m-manifold Wn+,
and vf F s a framing of ©(W), then d(M, F) = y(W).

Proor. Here we have used F' to denote also the restriction of F to a
framing of (W) | M = ©(M) + . Also, we select our orientation conventions
so that the canonical section (orientation) of ¢ is the outward normal vector.
Let W be riemannian and let f be a real-valued differentiable function on W,
which has only a finite number of non-degenerate critical points, and which is
constant on M. We may assume that (grad f) | M is the canonical section of ¢
(the outward normal to M in W) and that || grad f|| < 1 everywhere on W.

Let ¢, denote the map Wn*'— D**! defined by x — F*((grad f),), where
D™** is the unit disk in R**', Clearly v, = p, | M, and thus degy, = deg Ur
(considering (¢, as a map of pairs (W, M) — (D**, S*)), as follows easily from
the homology sequences of the pairs (W, M) and (D**!, S*). Since f is non-
degenerate, 0 is a regular value of p,, and thus deg , is the sum of the “local
degrees” at the critical points of f; that is, deg ¢, is the sum of the indices of
the vector field grad f. However, it is well-known that the latter is also the
Euler characteristic of W.

PROOF OF THEOREM 3. Suppose first that » is even, and consider M x I.
By 2.1, 2.4, and 5.1, we have

XM) = (M x I) = d(M) + d(— M) = 2d(M) ,

which proves the theorem in this case.

Assume now that » is odd and different from 1, 3, and 7. By [6, Th. 6.6],
M™ is frame-cobordant to a homotopy sphere — =", that is, there exists an
(n + 1)-manifold W**', and a framing F of t(W), such that oW = MU 3,
and F'| M is the given framing of t(M) + e.

Recall that for any even dimensional 7-manifold V*, y(V)=yx*(@V) (mod 2).
This follows from the fact that x(V) = x*(@V) + o where p is the rank of the
intersection pairing H.(V, Z,) ® H.(V, Z,) — Z, |6, Lem. 5.9], and the fact that
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0 is even since V is a w-manifold [6, p. 525].
Thus, in the present situation,

M)+ xS = *@W) = (W)=d@W,F|oW) = d(M) + dE) (mod 2).
Now y*(Z) = 1, and d(Z) must be odd; for if d(X) were even, then 4.1 would
imply that ¥ is parallelizable contrary to the assumption that #» = 1,3, 7. This
concludes the proof of Theorem 3, and hence also of Theorem 2,

UNIVERSITY OF CALIFORNIA, BERKELEY
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