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Note added in proof

Concerning Problem 11.1, J. C. Su has given an example with F=C P?
els.ewhere in these Proceedings. In a recent paper entitled “Represen-
tations at fixed points of smooth actions of compact groups”, I have
shown that F=pt4+CP> cannot occur with the possible exception of
X =5°xS* Similarly, F=pt+QP? cannot occur except in six possible
cases. F'=pt+ Cayley plane cannot occur at all.

Concerning Conjecture 11.5, I have shown (loc. cit.) that, for n=7,
F=pt+5° or F is 3 points. Thus the conjecture has been reduced to
the question of whether or not F can consist of exactly 3 points.

I'have also proved conjecture 11.6 except for the case r= — 1 {loc. cit.).
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Equivariant Homotopy

GLEN E. BREDON*

This report concerns the homotopy classification of equivariant maps
between spheres with involutions. Some of the results we shall describe
are also mentioned in the research announcement [3]. For the main
part the proofs of the results stated here are much too complicated by
details to be given here. A full treatment of the subject will eventually
appear in another publication.

Let us begin by considering the simplest case, that of antipodal maps.
The classical theorem of Borsuk and ULAM states that if f: S"—S™ is
equivariant with respect to the antipodal map (i.e. if f(—x)= — f(x)),
then n<m. The best known and easiest proof of this fact is obtained
by considering the induced map f:P"—P™ on the orbit spaces since
it is easily deduced that f*:H*(P™;Z,)—H*(P";Z,) is an epimorphism.

Another proof of this fact may be obtained by the use of the P. A.
SmITH theory. From this point of view it is technically simpler to ac-
complish the proof if the involutions in question have fixed points. But
this situation is easily achieved merely by suspending f to obtain S f:
S+l Sm*1 where both involutions now have two fixed points. Actually
it is desirable to suspend twice so as to obtain connected fixed point sets

{(circles). Note that the induced map between fixed point sets is then the

identity.

Before indicating the Smith theory proof let us introduce some con-
venient notation. We let S§"(r) denote the space-with-involution whose
underlying space is S" and whose involution is given by the matrix

-1 0>
0 In—r+1 .

Note that the fixed point set of S"(r) is S"~" so that the argument
refers to the codimension of the fixed point set. Also note that this
codimension is unchanged by suspension.
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Some further convenient notation is the use of X% to denote the
stationary point set of a G-space X (for us, G = Z,) and /'€ for the induced
map X®— Y€ from an (equivariant) map f: X7,

To return to the question at hand, let X =S"*%() and ¥ =S"**)
(P=n+1 and t=m+1 in the former notation). Then we are given a

map (equivariant) XY
LA

such that the induced map f¢:S*=X%=Y%=5* is the identity. We
may also assume k>1. Then Smith theory provides the following com-
mutative diagram

HY(Y%) —=» H* YY) 2 HEP2(Y) = 2y FEH(Y) X HE(Y)
Hk(XG)%UHk+1(X)_i_)”Hk+2(X)_:,..._%)aHk+z(X)<___Hk+t(X)

with coefficients in-Z,. (For background on this see [4] and [5]. The
dual proof in homology works equally well.) The isomorphisms on the
bottom row follow from the assumption that t<r as does the fact
that f*=0. But the diagram is clearly self-contradictory. This proof
gives more information than we have claimed since it clearly shows,
more generally, that if

1) S8 - 87K

and if r >t then f9: §*—S* has even degree (i.e. (f%)*=0 on H*(S*; Z,)).

The question arises as to what extent this latter result is best possible.
One can, in fact, achieve any even degree for f©.

Although such maps can be written down quite explicitly, we shall
give a suggestive general procedure for constructing them. First, we note
that there is a map g: 8**()—> S'**(r) which has degree —1 (forgetting
the action) and such that g¢ has degree + 1. (If ¢ is odd, then the involu-
tion itself is such a map g.) Second, note that S***1(r) = S'*¥(¢) (the
latter is the suspension of the former) and that the quotient space is the
one point union S***(z) \ §'*¥(t). Consider the resulting composition

B ST — §'H(D) o ST 210 5,

This map h has degree zero and h® has degree 2. Now consider
§*THE) = §'*EF Mt +1). This divides S*+1** into two hemispheres which
are interchanged by the involution. Thus h may be extended to one hemi-

‘'sphere (as a map) and then to the other hemisphere by equivariance.

This defines a map
f: St+1+k(t+1) — St+k(t)

and f9=h% has degree two. Such maps of any even degree can now
be constructed by using the group structure (see below).

Equivariant Homotopy 283

We have found maps
f Sr-!—k(r) — St+k(t)

with /¢ of any even degree when r=t+1. It is natural to ask whether
this can be done when r=t+2. The construction outlined above will
provide such maps with f¢ of degree four (and hence of any degree
divisible by four). It turns out however that this is the best that can be
done. Unfortunately the proof of this fact, and of similar ones to follow,
is much to difficult to give here and we will confine ourselves to a very
sketchy discussion of it. A general result of this nature is given by the
following theorem:

Theorem A. Let f:S™"*)—S'**(t) and put d=r—t. Then degf®
is divisible by 2%“~V*1 where ®(n) is the number of integers i with
O<i<n and i=0,1,2, or 4 (mod8). This result is best possible when
d#0(mod4). For d=4, 8, or 12 we have that deg f€ is divisible by
20=D*2 (= 16, 32, and 256 respectively), which is also best possible.

We conjecture that for d =0(mod4), deg ¢ is divisible by 2P~ 1)+2
(which would be best possible). [Added in proof: P. LANDWEBER has
found a proof of this conjecture using operations in equivariant K-
theory.]

A small part of Theorem A was also stated, in a different form, in
our research announcement [2], which contains more detailed infor-
mation in the cases d<38.

So far we have dealt only with the case in which the fixed point sets
have the same dimension. Let us now consider equivariant maps

f: Sr+k+j(r) N St-i—lc(t)

so that
. J('G: Sk+j — Sk.
We are able to obtain results here only for j=1,2,3 and also only for
the stable class {f“}en;=limn;,(S") of f% As in Theorem A the
method of Smith theory is completely inadequate for this situation. Our
computations have yielded the following information:
Theorem B. Let f:S™ " *i(r)— S ¢) and put d=r+j—t.

If j=1 and d>4 then {{°} =Oem, ~Z,.
If.]:2 (l”d d>7 then {fG}:OETCZQZZ.

= 8 [2713
If j=3 and d{ = 9} then {f}eidny} c ny=Z,,.
=10 81,

This result is best possible (stably) in the sense, for example, that
if j=1 and d<4 then any value of {f%}en, is possible.
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'There is an elementary general result along the lines of Theorem B
which says that if d<2j then any element of ; can be achieved by { f°}.
In fact, if g:S"—S™ is any map then

g A g:Sll A SH_)SIN A Slﬂ

is equivariant with respect to switching factors and hence is a map
f:82"(n)—>S8*"(m) with f“=g. Here j=n—m and d=2n—2m=2j
and any smaller value of d is obtained by restriction of f to a subspace.
As Theorem B shows, this result is not best possible. It does seem reason-
able to us, nevertheless, that in some asymptotic sense this result is
best possible.

Up to now we have discussed the question of which maps /¢ can
arise from a map f: S*(#)— S*(t). We shall now ask which maps
f:8"—S* can arise from a map f:S"(r)—S¥(t) by forgetting equi-
variance. This question can be rather thoroughly answered and we shall
list a few examples here:

Theorem C. Suppose f: S"i(t+k)—S"(t) so that the map f:S"+i— 8"
on the underlying spaces defines the class {f}en;. Then

ji=1, k#1 and k£04) = {f}=0,

j=2, k#2 and k#£0,1(4) = {f} =0,
keven #2 and k£0@8) = {f}e2ns,

j=3 kodd{#3 an'd k14 = {Z}:O,
otherwise = {f}el2n,,

j=6, k#4 and k=0,2,3(8) = {f}=0.

This result is best possible in the sense that, for example, if j=1
and k=1 or k=0(4) then such maps f exist (when # and t are suffi-
ciently large; see [3]) with {f}#0.

Similar results are known to us for j<9 at least and can probably
be deduced in the range j< 13 without great trouble.

The exceptional cases (j=1, k=1, j=2,k=2; j=3, k=2,3;j=6,
k=4) arise because of the possibility of non-trivial f€. If one required
that f¢ be inessential then the same theorem would hold with the ab-
sence of these exceptions.

Let us state as a corollary the most interesting special case of Theo-
rem C, that in which t=0 (i.e. no action on §”) and t+k=n+j+1
(i.e. the antipodal action on S"*J). This can be reformulated as follows.
Consider the diagram '

Sn+j S NG

\ pri
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Corollary. If f factors as shown above, then

j=1 and n#2(4) = {f}=0,

j=2 and n#12(4) = {f}=0,
{n even #4(8) = {f}e2n;,

j=3 210 = {}=0,
n Odd{ T4 = [flei2n,,

j=6 and n#1,3,48) = {f}=0.

Actually this is a “stable” result and in the stable category it is best
possible. As stated, however, some of the possibilities for f consistent
with the theorem would not actually exist. We don’t know the best
possible results in the non-stable case.

Again similar results are known for j<13. The case j=1 of this
corollary was originally proved by J. H. C. WHITEHEAD in 1941 and was
rediscovered by CONNER and FLOYD in 1962. The cases j=2,3 (at least)
and some similar results have been recently obtained independently by
E. REEs, a student of D. B. A. EpsTEIN, by the use of K-theory. He also
has some results in the non-stable case.

We shall outline very briefly some of the methods by which these
results, and many others along these lines were obtained. Since the
proofs of the results involve a considerable amount of detailed “cal-
culations” the full account of these matters will have to await publica~
tion elsewhere.

The object of interest to us is

@ [5"(); S*(0]

the equivariant homotopy classes of maps S"(r)— S*(t). For technical

reasons we consider only base point preserving maps and homotopies,

where the base points are fixed under the involutions. '
There is the fixed point set morphism

Q: [S"(T); Sk(t)] N [Sn—r; Sk—t]
and the forgetful morphism '
¥ [S"(); S5 ()] — [8": 5.
Of course, Theorems A and C are concerned with the images of these
morphisms.

This object (2) can be generalized in two ways by replacing the image
or the domain by a general G-space (G=Z,). We shall briefly discuss
both of these generalizations.

In the case of equivariant homotopy one considers the set

3) m,,(X) = [5"(); X],



286 G. E. BREDON

vyhere X is some given G-space with base point in X“. These sets were
first considered by LeEVINE in [8], with somewhat different notation.
'n,,yr(X) isa group if n—r>1 and is abelian when n—r>2 since §%(r)
1s a suspension or double suspension (as a G-space) in these cases.

Let us describe some important homomorphisms associated with
these groups. First, as above, there is the fixed point set functor

that is @: [8°0); X] - [$"7"; X€T;
¢: 7, (X) = m,_(XO).
There is also the forgetful functor
Y [8"0); X] - [$"; X]
(forgetting the actions); that is,
yim, (X) - m,(X).
Restriction to §" '(r—1) < S"(r) yields a homomorphism
Brm, (X) = m,_y . —(X).
Also there is a homomorphism
o m,(X) = m, (X)
defined by assigning to a map f:S"— X the map
5"0)

Here $"v §" has the involution interchanging factors and T denotes
the involution on X.

. It turns out to be quite important to consider also the groups ob-
tained by requiring the fixed point set $"~"=S"""(0) of S"(+) to be
sent to the base point of X by all maps and homotopies. We denote
these groups by =¥ .(X). Thus

mE (X)) = [S"(r)/S"77(0); X].
One has the natural homomorphism

i Tc;i,r(X) - nn,r(X)'

§"(r) - =s'vs il xyvx M x

As in the non-equivariant case the quotient S"(r)/S"~"(0) is (equi-
variantly) homotopically equivalent to the mapping cone of the inclusion
§"7"(0)—§"(r). Hence there is a canonical map S"(+)/S" " (0)—S S}’_"(O)
=S"""*1(0). This induces the homomorphism

A: nn—r+l(XG) - ﬂ:* (X)

n,r

since the equivariant maps S"~"*!(0)— X are just the maps §" " *!— X€.
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All the homomorphisms we have described, in fact, come from Puppe
sequences associated with mapping sequences in the diagram

S0y = STHr—1) — S""I(r —1)/8°(0)

§%(0) — §'(r) —— S'()/5°(0)
f— SV S —— 8V S

This also conteins analogues of «, ff and i for the =}, groups.

It is not hard to see then that this diagram induces the following
commutative “braid” diagram (Fig,) in which all four “sine curves” are
exact sequences:

TE;Y, r—1 (X) v Ty (X) . * TEn,r(X) ? 'nn—r‘(XG) 4
T ,_‘ I(X) TL':’,.(X) Tcn—l,r—l(X) !
7-En+1.r()() nn—r+1(XG) n:f—l,r—l(X) nn—l(X)

[ 4 w* o
Fig.
The sequence consisting of o f*and y*was previously considered by
LEvINE [8]. Note that this sequence is an exact couple and hence induces
a spectral sequence (there are some sticky technical difficulties here). It
is this spectral sequence, or rather one closely associated with it, that
we use in our calculations.

Let us now discuss the second method of approach which was, in
fact, my original point of view when first attacking these questions. In
the second approach we consider the set [X,S™(t)], or rather we stabilize
this situation and consider the stable equivariant cohomotopy groups

{X, Sm(t)} — 1—13}.1 [SkX; S"'+’c(t)].
These groups form a (generalized) equivariant cohomology theory, the
theory associated with the G-spectrum S§(t) ={S8"(1)]. That is
@ X S"(0)) = Ha(X; S(2).
We are interested in calculating these groups. According to [2] there
is a spectral sequence

gt = H(X; (1) = HEH(X;S(1).

Here s%(1) refers to the “coefficients” of the cohomology theory on the
right. The E,-term refers to the “gquivariant classical comohology
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theory” defined in [2]. It is closely akin to the Steenrod equivariant
cohomology theory but is somewhat more general. It is, however, easy
to calculate this E,-term. Moreover for X = S"(r) we can find a large
number of the differentials in this spectral sequence and hence derive
much information about the groups of interest to us. In general, how-
ever, the investigation of the differentials is a difficult problem. For
example, the non-triviality of certain of the differentials turns out to be
equivalent to the vector field problem on spheres.

We shall now turn our attention to the description of a remarkable

general result concerning equivariant homotopy classes of maps of
spheres. Let us use the notation

m,(r; ) = lim [$"¥(); 5°(2)]

= limr, ., (S°0) = HG"(S"0); S(0)-

Similarly we let =n¥(r,t) denote the analogous group where we require

fixed point sets to be sent to the base point. That is

mr(rs 1) = lim [S" (/547 (0); 0]

=k

= lim n¥, . (S¥(t))
—+k

= Hy"(S"(1)/S°(0); S@).

When we originally computed some of the groups x,(r,t) it was dis-
covered that there was a periodicity of these groups in ¢ but with some
exceptional cases. It became clear that the exceptions resulted because
of possibly non-trivial maps on the fixed point sets. This even affected
the kernel of ¢:x,(r;)—7w,_,4+,, the fixed point homomorphism, which
is even closer to being actually periodic in t. This was the reason for
introducing the groups =¥(r;t) which exhibit an exact periodicity.

The periodicity result is that
() nE(rst) = k(e 4+ 2707 h)
where @ is the well-known function
P(p)= # {kl0<k<p and k=0,1,2 or 4(8)}.

. Let us outline the proof of this fact. First it is necessary to generalize
these groups and consider

m(r,q;t) = lir’?[s"+"(")/S"+"_’+q(q); S4(1)]

= Hy "(S"(r)/S%(q); S(1)).
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(Note that =*(r;t)=m,(r,0;t).) Then one shows that the suspension
with action (i.e. the involution also interchanges the vertices of the
suspension) induces an isomorphism

i (rg;) = m i+ Lg+ 1+ 1).
. Now one constructs, by an inductive procedure, a map
28771 5 0(k); k=221

such that A(—x)= —A(x). [Proceeding one step further in the inductive
construction requires that 1 be inessential, forgetting equivariance.
When 7,_,(O(k))#0 this can be achieved (via a certain trick) by re-
placing O(k) by O(2k) and, according to the known stable homotopy
groups of the orthogonal groups, this produces the function ®.] By
projection on the equator, A can be extended to an equivariant map

A1 SP(p) — §°(0) > O(k)

the involution on O(k) being A— —A. .
Now suppose that X and Y are G-spaces with basc points and let

J:(87(p) A X, 8°00) A X) = (Y, %)
be.any equivariant map. Define
F*(S”(p) A X A S50), S°(0) A X A Sk(0)) — (S*(k) A Y, %)

where k=227"Y by f*a A x A b)=(A(a)-b) A fla A X).

We specialize to the case Y =(S"(p) A X)/(S°(0) A X) with X com-
pact and f:S”(p) A X—Y the canonical projection. Then it is easily
seen that f* induces an equivariant homeomorphism

SP(p) A X A SKQ) . SMk) A SP(p) A X
=, )
S°(0) A X A SH0) Sk(k) A SP(O) A X
Now taking X = S"(r) we obtain
Sp+k+r(p+r) . Sp+k+r(p+k+r)
_=, . .
SE*7(r) Sk,h (k+7)

By composition this induces an isomorphism
n,(p+k+r.k+rii+k) = n,(p+r,r;t+k).
Preceding this by the isomorphism Z* yields
(6) T p+r,r0) = mlp+r,rt+2°071)

which clearly generalizes (5).
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This periodicity leads to the following remarkable isomorphism:

Theorem D. If t >n+r+1 then
TC}T(;'; t) = Tcn—."+t(I/t,.")
where V,, is the Stiefel manifold of r-frames in euclidean t-space.

We shall briefly indicate the proof. Let us denote P, ,=P'~'/P'™" "%,
Then, according to James [7], we have

Tcn—r+t(Vl,r) ~ nn—r+l(Pt,r)

for t >n+r and the latter group is stable when t>n+r+1. Accord-
ing to ATivaH [1] P,, is S-dual to SP,_,, (a stable “object”) so that

~ 0. ~ . Q0
nn—r+l(1{,r) ~ {S BPt,r} n—r+t"’{SPr—t,rrs }n—r+1'
The latter means

{Pnj+r—z—1/Pnj—l—1; Snj-i—r—t—l—n}

where j=2%""1 g is a certain integer whose value is immaterial, and
aj>t. This group is just n,(aj+r—t,aj—1;0) and by periodicity (6)
(a times), this is n,(aj+r—t,aj—t;aj). By the isomorphism X*~%, this
is the same as m,(r,0;t) = =¥ (r;t), which proves Theorem D.

For most purposes it is sufficient to consider the groups resulting
from a further stabilization. This is obtained via the suspension with
action which yields a homomorphism

Zimy(r;t) > m(r+ 150 4+1)

which turns out to be an epimorphism if r=n+1 and an isomorphism
for r=n+2. We define

(7) ﬂ:n,k = 11_1};1 nn(t + k’ t)

and similarly for the “starred” groups.
The 7, are periodic in k with period 2*"*! and moreover Theo-
rem D implies that

(8) i ~m, for n<k—1 and n<r—1

1

Here =nj, is the established shorthand for m., (V.. ).

Formula (8) together with the periodicity and Hoo and MAHOWALD’s
calculations of =j, in [6] suffice to compute =f_, for n<13. We
shall give some further information which allows the calculation of
T, 1N mMany cases.

Consider Fig. If we delete the arguments X and X ¢ then this dia-
gram is also valid for these doubly stable groups =, , and yields a large
amount of information.
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Let us use the notation
R =ker {@: m, = T, 1}

so that we have the exact sequence
) 0— Ty — Tk o,
and tlie exact sequence
(10) Tt 1,k = Tymrt = T — i =0,
For k<0 it can be seen that ¢ is onto and splits s0 that (9) yields
(1) Ty & T @ m,—, for k<O0.
From the argument given below Theorem B it can be seen that

(12) @7, — T,— isontofor nz2k orfor k<O0.

From (10) it follows that

(13) ¥, —=f@,, for kzn+2 or nz2k—1.

This suffices to compute 7, (n<13) except in the range
(14) k—1<n<2k-2.

Although more detailed information is available we content ourselves
here with listing these “exceptional” values of #,, in the range (14)
for n<6. In fact the only non-zero groups in this range are

T30 R Zya,
ﬁG,G ~ ZZ7
g7 = Ly.
For n>2k or k<0 ¢:m, ,—m,_, is onto by (12) and in the other
cases (for small n) the image of ¢ can be deduced from Theorems A
and B. By (9) this reduces the computation of 7, , to an extension prob-

lem. In general, however, we do not know how to determine this ex-
tension. A case in which this extension does not split is given by

0 —— g, — M3 4 —> 1 —0.

Here #;,=n%,~Z;,, but it can be shown that 73,7, is an
isomorphism so that n3 ,= Z,,. For all other cases with n<6 one
can see that the extension (9) does split but this must be regarded as
accidental.

19 Proceedings
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Gaps in the Dimensions of Compact Transformation
Groups

L. N. MANN*

Let {X,G) denote a G-space where G is a compact connected Lie
group, X a connected n-dimensional manifold and the action of G on X
is effective. A well-known result of MONTGOMERY and ZipPIN [8] states
that

dim G < r(r+1) < nn+1)
2 2

where  is the maximal dimension of the orbits of G on X. In the extreme
case where dimG =n(n+1)/2 it is known that G is locally isomorphic
to SO(n+1) and X is homeomorphic to either the n-sphere S" or real
projective n-space P*(R) [1], [3, p. 239]. Below this maximum case there
is a gap of n—2 dimensions, at least for n#4 and n>1. In fact, we
have the following result [11, p. 63], [10].

-1 +1
(n _ )”—l—1<dimG<n(n+ )

Theorem (WANG). If , then n=4.

Proof. We outline a proof as follows. By (1) G acts transitively on X.
Hence G acts differentiably on X = G/H, where H is the isotropy or
stability subgroup of G at a point x in X. By BOCHNER’S theorem on
local linearity about x [8, p. 243],

H® < S0(n)

where H? denotes the identity component of H. Now

, dim G = dim H® +n
arvld‘for n#4, H°=50(n) or .
- | —)m—1)

dim H® < dimSO(n —1) = (—”—)fi—)

(see, for example, [7]). The result follows. For. n=4, there is-an effective
‘action of SU{3)/Z ‘of dimension 8, Z denoting the center of SU(3),
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