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1. Statement of the main results. It will be convenient for us to define 
an n-knot to be a smooth, connected, oriented, n-dimensional (closed) 
submanifold IP of Sn+2 (oriented). If X" is homeomorphic to Sn, then we 
call it a spherical knot. All manifolds in this note will be oriented and all 
constructions we consider will induce canonical orientations. This will be 
understood and not commented upon further. 

Let Kn denote the semigroup of isotopy classes of smooth rc-knots 
(Sn+2, Zw). Our object is to define a homomorphism 

co:Kn-+ Kn + 2 

which we think is reasonable to call "suspension". This homomorphism 
(o takes some spherical knots to nonspherical knots and vice-versa. (In 
fact, co(Sn+2, Sn) is just a canonically defined embedding of the cyclic 
double covering of Sn+2 branched at I? in Sn+4.) However, if we iterate co 
twice we obtain the following result : 

THEOREM A. The double suspension œ2:Kn-+ XM+4 takes homology 
spherical knots to spherical knots. Moreover, it induces a homomorphism 
œ2:Cn -> Cw+4 of (spherical) knot-cobordism groups, which is an isomor
phism for n ̂  1,3, an epimorphism for n — 1, and a monomorphism onto 
a subgroup of index two for n = 3. Also, co2 takes doubly null-cobordant 
knots to doubly null-cobordant knots. 

That such a homomorphism Cn-+ Cn+4. exists was shown by Levine 
[7] because of his calculation of these groups, but our result gives the first 
explicit geometrically defined description of such a homomorphism. 
(Another, quite different, description has been concurrently and indepen
dently discovered by Cappell and Shaneson.) 

The first statement in the theorem is an elementary consequence of the 
construction. The other statements follow from the following stronger 
facts: Let (Sn+2, EM) be an n-knot and let Wn+x c Sn+2 be a Seifert surface 
spanning E". Then we construct canonically a Seifert surface co{Wn+1) 
czSn+4 for the suspended knot co(Sn + 1, Sw). We prove that we can regard 
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Sw+4 as the join S1 * Sn+2 in such a way that œ(W) has the suspension 
S0 * W as a deformation retract. If W+ is a displacement of VF in the 
positive normal direction, we can construct a displacement œ(W)+ of 
œ(W) which has S°+ * W+ as a deformation retract, where S+ is S° rotated 
slightly in S1 in the positive direction. Using this, one sees that there are 
canonical isomorphisms fft(W;Z) » Hi+1(co(W);Z) and that the linking 
numbers of classes in H^(W) with classes in H^(W+) equal those of the 
corresponding classes in H^(co(W)) and H^(co(W)+). This implies the 
following basic result: 

THEOREM B. Let (S2m+ \ Z2m' *) be a knot with Seifert surface W2m. Then, 
with respect to a given basis of Hm(W2m;Z) and the induced basis of 
Hm + 1(co{W2m);Z\ the Seifert matrix ofœ(W2m) c S2m+3 is identical to that 
qfW2m Œ S2m+l. 

The main part of Theorem A then follows directly from this and the 
results of Levine [7]. (That co2 preserves knot-cobordisms is another 
elementary consequence of the construction.) 

A knot (S2m+1,22m"1) is called simple if it has a Seifert surface W2m 

which is (m — l)-connected, and such a Wis called simple. Clearly œ(W2m) 
is simple if W2m is, and thus co takes simple knots to simple knots. 

Using the results of Levine in [6], another immediate consequence of 
Theorem B is the following fact : 

THEOREM C. The double suspension œ2 gives an isomorphism from the 
semigroup of isotopy classes of simple spherical (2m — l)-knots to that of 
simple spherical (2m + 3)-knots for m # 1,2. It is a surjection for m = 1 
and an injection for m = 2. 

2. Regular O (ft)-manifolds. In order to describe the construction of the 
suspension co, we shall recall some well-known material on (smooth) 
0(n)-manifolds. An O(n)-manifold M will be called regular if (i) there are 
only 3 types of orbits: fixed points, spheres 0(n)jO(n — 1), and the 
Stiefel manifolds 0{n)/0(n - 2), (ii) the representation of 0(n) at a fixed 
point is twice the standard representation plus a trivial fe-dimensional 
representation, and (iii) the representation of 0(n — 1) on the normal 
space to an orbit of type 0(n)/0(n — 1) is the standard representation 
plus a trivial (k + 2)-dimensional representation. (In fact, (ii) and (iii) 
follow from (i).) Then dim M = 2n + k and the orbit space M/0(ri) is a 
topological (k + 3)-manifold with boundary (the singular orbits) and with 
the fixed set M°(w) corresponding to a fe-dimensional submanifold of the 
boundary of M/0(n). The orbit space can be given a differentiable structure 
which is unique up to diffeomorphism preserving M°(w). 

A theorem of Jânich [5] and Hsiang and Hsiang [4] states that for each 
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knot (Sk+2, Ek) and for n ^ 2 there is a unique (to equivariant diffeo-
morphism) regular 0(n)-manifold M = M2n+k(Lk) such that (M/0(n\ 
5(M/0(n)), M°(w)) is diffeomorphic to (Dk+3,Sk+2,Ek). For a complete 
exposition of this result and also for the proof in the topological (locally 
smooth) case, see [1]. In case n = 1,M = M2+k(Lk) is taken to be the 
cyclic double cover of Sk+2 branched at Ek, so that (M/0(1),M0(1)) » 
(Sk+2,I*) in this case. 

We list some elementary facts. 
(1) If Ek is a homology sphere, then the 0(2)-manifold M4+k(Ek) is a 

homotopy sphere. 
(2) For O < r <n and regarding 0{r) x 0(n - r) c= O(n), the 0(r)-

manifold M2n+kÇEk)°(n-r) is equivalent to the 0(r)-manifold M2r+kCLk). 
(3) M2(w+1)+k(Zk)/0(l) « S2w+k+2 and M2(n+r)+k(Lk)/0(r) * D2n+k+3 

for r > 1. 
For (1) see [1]. Part (2) is an observation that the orbit spaces (and knots) 

are the same. For (3) one notes that M2(w+1)+k(Xk)/0(l) is the boundary 
of M2(w+r,)+k(Ik)/0(r) for r ^ 2 and that the latter are independent of 
r (use part (2)). But, for r large, the Vietoris mapping theorem applied to the 
orbit map for the 0(n + reaction shows that M2(n+r)+k(Lk) is highly 
connected, and, applied to the orbit map for the 0(r)-action on this, then 
shows that the 0(r)-orbit space is contractible. (Also, its boundary 
M2(w+1)+k(Zk)/0(l) is simply connected; see [1].) 

Now 

M2w+k(2k) « M2{n + 1)+k(Lk)0{1) 

is embedded as a codimension two submanifold of 

M2(w + 1)+k(Zk)/0(l) « s2w+k+2, 

and hence is a (2n -f k)-knot. We define 

co(Sk+2,Xk) = (M4+k(Ek)/0(l),M4+k(Zk)0(1)) 

»(Sk+4,M2+k(Ik)). 

The above remarks imply easily that the n-fold iteration of œ is just 

cow(Sk+2,Zk) = (M2(M+1)+k(Zk)/0(l),M2(w+1)+k(2:k)0(1)) 

»(S2M+k+2,M2M+k(Ik)). 

We shall not indicate the construction of the Seifert surface œ(W) from 
a Seifert surface Wcobounding Z, since it involves a fair amount of explana
tion. (In fact, the only difficult part of this work was in discovering how to 
construct such a Seifert surface œ(W).) Suffice it to say that we investigate 
the construction of a>(Sk+2, Ek) closely, using W, and reduce it to a simple 
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cut and paste construction in which œ(W) and all other facts are relatively 
evident. 

3. Some consequences. It is clear that our theorems have some conse
quences for regular 0(n)-actions. It follows from Theorem B that suspen
sion preserves the usual knot invariants such as the signature and the 
Arf-Robertello invariant. For example, the following result is immediate : 

COROLLARY. Let (S 2 k + 1 ,L 2 k _ 1) be a knot and let n ^ 2 be such that 
n + kis even. Put M = M2n + 2k~ xÇL2k~l). Ifk is even, then M is a homotopy 
sphere ifflL2k~l is a homology sphere. If k is odd, then M is a homotopy 
sphere iff the cyclic double cover ofS2k + 1 branched at Z 2 k _ 1 is a homology 
sphere. In these cases, M is a/8 times the standard (Milnor) generator of 
bP,„ + 2fc, where a is the signature of the knot (S2k+1, Y?k *). 

A similar result holds for the Arf-Robertello invariant. This result was 
proved by Hirzebruch [3] and Erie [2] in the case k = 1. 

Another type of application is the following immediate consequence of 
Theorem C: Suppose that 0(1) acts on a manifold M 4 n _ 1 fixing a homo
topy sphere £4 n~3 . Suppose further that the orbit space M 4 M - 1 / 0 ( 1 ) is a 
standard sphere and that the knot (M 4 M ~ 1/0(1), X4rt~ 3) is simple. Then this 
0(l)-action extends to a regular 0(2n — l)-action. For example, the 
0(l)-action (z0, zl9..., z2n) i—• ( — z0, z l 9 . . . , z2n) on the Brieskorn mani
fold 

z2 + zV + • • • + z£» = 0, ]>*l2 = 1, (ai9 a,-) = 1 for i # f 

extends to a regular 0(2n — l)-action. 
A similar application of Theorem A is the following: Suppose that 

n ^ 2 and 0(2) acts regularly on S 4 n + 1 fixing a homotopy sphere Z4 n~3 

and with orbit space D4n (e.g., this is true when the fixed point set of O(l) 
is simply connected). Then this 0(2)-action extends to an action on 
S 4 n + 1 x I fixing an embedded £ 4 n _ 3 x / in such a way that the action 
on the other end extends to a regular 0(2rc)-action on S4 n + 1 . 

4. An example. It is of interest to ask what co(S2n+1 ,E2n-1) is when 
(S2n+\ E2"" *) is a Brieskorn knot 

4° + zV + • • • + zf = 0, £|z;|2 = 1 

in S2n+1 c Cn+1. It is easy to see, in fact, that œ(S2n+\ Z2 M~ *) is then the 
Brieskorn knot 

zS° + zV + • • • + z? + zM
2
+1 = 0, 5>*l2 = 1 

in s2n+3 a Cn+2. This generalizes to (at least) weighted homogeneous 
polynomials. 
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