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Introduction

The purpose of this book is to describe the global properties of complete simply-
connected spaces that are non-positively curved in the sense of A. D. Alexandrov and
to examine the structure of groups that act properly on such spaces by isometries.
Thus the central objects of study are metric spaces in which every pair of points can
be joined by an arc isometric to a compact interval of the real line and in which every
triangle satisfies the CAT(O) inequality. This inequality encapsulates the concept
of non-positive curvature in Riemannian geometry and allows one to reflect the
same concept faithfully in a much wider setting that of geodesic metric spaces.
Because the CAT(O) condition captures the essence of non-positive curvature so well,
spaces that satisfy this condition display many of the elegant features inherent in the
geometry of non-positively curved manifolds. There is therefore a great deal to be
said about the global structure of CAT(O) spaces, and also about the structure of
groups that act on them by isometries such is the theme of this book.

The origins of our study lie in the fundamental work of A. D. Alexandrov'.
He gave several equivalent definitions of what it means for a metric space to have
curvature bounded above by a real number ic. Let us begin by explaining one of
Alexandrov's definitions, this formulation has been given prominence by M. Gromov,
who termed it the CAT(K) inequality. (The initial A is in honour of Alexandrov, and
the initials C and T are in honour of E. Cartan and A. Toponogov, each of whom
made an important contribution to the understanding of curvature via inequalities for
the distance function.)

Given a real number K, let denote the following space: if K < 0 then is real
hyperbolic space 1H12 with the distance function scaled by a factor of I if K = 0
then is the Euclidean plane; if K > 0 then is the 2-sphere S2 with the metric
scaled by a factor I Alexandrov pointed out that one could define curvature
bounds on a space by comparing triangles in that space to triangles in A natural
class of spaces in which to study triangles is the following. A metric space X is called
a geodesic space if every pair of points x, y E X can be joined by a continuous path
of length d(x, y); the image of such a path is called a geodesic segment. In general
there may be many geodesic segments joining x to y, but nevertheless it is convenient
to use the notation [x, y] for a choice of such a segment. A geodesic triangle in X
consists of three points x, y, z E X and three geodesic segments [x, y], [y, z], [z, xl. A

comparison triangle for in is a geodesic triangle in with vertices

In 1957 Alexandrov wrote an article summarizing his ideas [A1e57]
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such that d(x, y) = d(x, d(y, z) = and d(z, x) = ii). (If K <0 then such
a always exists; if K > 0 then it exists provided the perimeter of is less than

it is unique up to an isometry of The point E [x, is

called a comparison point in for p E [x, yJ if d(x, p) = Comparison points
on [y, zJ and [z, xJ are defined similarly. A geodesic space X is said to satisfy the
CAT(K) inequality (more briefly, X is a CAT(K) space) if, for all geodesic triangles

inX,
d(p, q) < 4)

for all companson points E C

Alexandrov defines a metric space to be of curvature < K if each point of the
space has a neighbourhood which, equipped with the induced metric, is a CAT(K)
space. He and the Russian school which he founded have made an extensive study of
the local properties of such spaces. A complete Riemannian manifold has curvature
< K in the above sense if and only if all of its sectional curvatures are < K. The
main point of making the above definition, though, is that there are many examples
of spaces other than Riemannian manifolds whose curvature is bounded above. An
interesting class of non-positively curved polyhedral complexes is provided by the
buildings of Euclidean (or affine) type which arose in the work of Bruhat and Tits on
algebraic groups. Many other examples will be described in the course of this book.

In recent years, CAT(— 1) and CAT(0) spaces have come to play an important
role both in the study of groups from a geometrical viewpoint and in the proofs of
certain rigidity theorems in geometry. This is due in large part to the influence of
Mikhael Gromov. Of particular importance are the lectures which Gromov gave in
February 1981 at College de France in Paris. In these lectures (an excellent account
of which was written by Viktor Schroeder [BG595]) Gromov explained the main
features of the global geometry of manifolds of non-positive curvature, essentially
by basing his account on the CAT(0) inequality In the present book we shall pursue
this approach further in order to describe the global properties of CAT(0) spaces and
the structure of groups which act on them by isometries. Two particular features of
our treatment are that we give very detailed proofs of the basic theorems, and we
describe many examples.

We have divided our book into three parts: Part I is an introduction to the geometry
of geodesic spaces, in Part lithe basic theory of spaces with upper curvature bounds
is developed, and more specialized topics are covered in Part III. We shall now
outline the contents of each part Before doing so, we should emphasize that many
of the chapters can be read independently, and we therefore suggest that if you are
particularly interested in the material from a certain chapter, then you should turn
directly to that chapter. (References are given in the text whenever material from
earlier chapters2 is needed.)

2 We shall wnte (7 11) to direct readers to item 7.11 in the part of the book that they are
reading, and (I 7 11) to direct readers to item 7.11 in Part I The chapters in Part III are
labelled by letters and subdivided into smaller sections, giving nse to references of the form
(m.r7 11).



Introduction IX

In Part I we examine such basic concepts as distance (metric spaces), geodesics,
the length of a curve, length (inner) metrics, and the notion of the (upper) angle
between two geodesics issuing from the same point in a metric space. (This concept
of angle, which is due to Alexandrov, plays an essential role throughout the book.)
Part I also contains various examples of geodesic spaces. Of these, the most important
are the model spaces which we introduce in Chapter 1.2 and study further in 1.6.
One can describe as the complete, simply connected, Riemannian n-manifold of
constant sectional curvature ic. However, in keeping with the spirit of this book, we
shall define directly as a metric space and deduce the desired properties of the
space and its group of isometnes directly from this definition.

We shall augment the supply of basic examples in Part I by describing several
methods for constructing new examples of geodesic metnc spaces out of more famil-
iar ones. products, gluing, cones, spherical joins, quotients, induced path metrics and
limits. Most of these constructions are due to Alexandrov and the Russian school.
In Chapter 1.7 we shall describe the general properties of geometric complexes, as
established by Bridson in his thesis. And in the final chapter of Part I we shall turn
our attention to groups: after gathering some basic facts about group actions, we
shall describe some of the basic ideas in geometric group theory.

In Part II we set about our main task exploring the geometry of CAT(ic)
spaces. We shall give several different formulations of the CAT(ic) condition, all due
to Alexandrov, and prove that they are equivalent One quickly sees that CAT(ic)
spaces enjoy significant properties. For example, one can see almost immediately
that in a complete CAT(O) space angles exist in a strong sense, the distance function is
convex, every bounded set has a unique circumcentre, one has orthogonal projections
onto closed convex subsets, etc. Early in Part II we shall also examine how CAT(ic)
spaces behave with regard to the basic constructions introduced in Chapter 1.5.

Following these basic considerations, we turn our attention to a richer circle of
ideas based on a key observation of Aiexandrov: when considering a triangle
in a complete CAT(O) space X, if one gets any non-trivial equality in the CAT(O)
condition, then spans an isometrically embedded Euclidean triangle in X. This
observation leads quickly to results concerning the existence of flat polygons and
flat strips, and thence a product decomposition theorem

Much of the force and elegance of the theory of non-positively curved spaces
rests on the fact that there is a local-to-global theorem which allows one to use
local information about the space to make deductions about the g'obal geometry
of its universal cover and about the structure of groups which act by isometries
on the universal cover. More precisely, we have the following generalization of
the Cartan-Hadamard theorem: for K < 0, a complete simply..connected geodesic
space satisfies the CAT(K) inequality locally if and on'y if it satisfies the CAT(K)
inequality globally. (In Chapter 11.4, following a proof of Alexander and Bishop,
we shall actually prove a more general statement concerning metric spaces whose
metrics are locally convex.)
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A more concise account of much of the material presented in Chapters II. 1-11.4
and 11.8-11.9 of the present book can be found in the first two chapters of Ballmann's
lecture notes [Ba95].

Even if one were ultimately interested only in CAT(O) spaces, there are aspects of
the subject that force one to consider geodesic metric spaces satisfying the CAT(K)
inequality for arbitrary ic. An important link between CAT(O) spaces and CAT(1)
spaces is provided by a theorem of Berestovskii, which shows that the Euclidean
cone C0Y over a geodesic space V is a CAT(O) space if and only if Y is a CAT(1)
space. (A similar statement holds with regard to the K -cone CK Y, where K is arbitrary.)
This theorem is used in Chapter 11.5 to establish the link condition, a necessary and
sufficient condition (highlighted by Gromov) which translates questions concerning
the existence of CAT(O) metrics on polyhedral complexes into questions concerning
the structure of links of vertices. The importance of the link condition is that in many
circumstances (particularly in dimension two) it provides a practical method for
deciding if a given complex supports a metric of non-positive curvature. Thus we are
able to construct interesting examples. Two-dimensional complexes are a particularly
rich source of examples, partly because the link condition is easier to check than
in higher dimensions, but also because the connections between group theory and
geometry are closest in dimension two, and in dimension two any subcomplex of a
non-positively curved complex is itself non-positively curved.

In Chapter 11.6 we begin our study of groups that act by isometries on CAT(O)
spaces. First we establish basic properties of individual isometries and groups of
isometries. Individual isometries are divided into three classes according to the be-
haviour of their displacement functions. If the displacement function is constant then
the isometry is called a Clifford translation. The Clifford translations of a CAT(O)
space X form a pre-Hilbert space H, which is a generalization of the Euclidean de
Rham factor in Riemannian geometry: if X is complete then there is an isometric
splitting X = X' x H. We also show that the group of isometnes of a compact
non-positively curved space is a topological group with finitely many connected
components, the component of the identity being a torus.

In the early nineteen seventies, Gromoll-WoIf and Lawson-Yau proved several
striking theorems concerning the structure of those groups that are the fundamen-
tal groups of compact non-positively curved Riemannian manifolds, including the
Flat Torus Theorem, the Solvable Subgroup Theorem and the Splitting Theorem.
In Chapters 11.6 and 11.7 we generalize these results to the case of groups that act
properly and cocompactly by isometries on CAT(O) spaces These generalizations
have a variety of applications to group theory and topology

In Chapters 11.8 and 11.9 we explore the geometry at infinity in CAT(O) spaces.
Associated to any complete CAT(O) space one has a boundary at infinity 0X, which
can be constructed as the set of equivalence classes of geodesic rays in X, two rays
being considered equivalent if their images are a bounded distance apart. There is
a natural topology on X = X U 0X called the cone topology. If X is complete and
locally compact, X is compact. If X is a Riemannian manifold, X is homeomorphic
to a closed ball, but for more general CAT(O) spaces the topology of 0X can be rather
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complicated. An alternative construction of
the of X modulo additive constants,

where X is embedded in by the map that assigns to x E X the class of the function
y i—* d(x, y). In this description of X the points of 0X emerge as classes of Busemann
functions, and we are led to examine the geometry of horoballs in CAT(0) spaces.

There is a natural metric / on the set 0X: given E 0X, one takes the
supremum over all points p E X of the angle between the geodesics issuing from p
in the classes and The topology on 0X associated to this metric is in general
weaker than the cone topology. (For instance if X is a CAT(— 1) space, one gets the
discrete topology.) We shall explain two significant facts concerning /: first, if X is a
complete CAT(0) space then (0X, /) is a CAT(1) space; secondly, the length metric
associated to /, called the Tits metric, encodes the geometry of flat subspaces in X,
in particular it determines how X can split as a product.

In Chapter HI.H we shall revisit the study of boundaries in the context of Gro-
mov's 8-hyperbolic spaces. In the context of CAT(0) spaces, the 6-hyperbolic con-
dition is closely related to the idea of a visibility space, which was introduced in the
context of smooth manifolds by Eberlein and O'Neill. Intuitively speaking, visibility
spaces are "negatively curved on the large scale" In Chapter 11.9 we shall see that
if a proper CAT(0) space X admits a cocompact group of isometries, then X is a
visibility space if and only if it does not contain an isometrically embedded copy of
the Euclidean plane.

The main purpose of the remaining three chapters in Part II is to provide examples
of CAT(0) spaces: in Chapter 11.11 we describe various gluing techniques that allow
one to build new examples out of more classical ones; in Chapter 11.10 we describe
elements of the geometry of symmetric spaces of non-compact type in terms of the
metric approach to curvature developed in earlier chapters; and in Chapter 11.12
we introduce simple complexes of groups as a forerunner to the general theory of
complexes of groups developed in Chapter II1.C.

Complexes of groups were introduced by Haefliger to describe group actions
on simply-connected polyhedral complexes in terms of suitable local data on the
quotient. They are a natural generalization of the concept of a graph of groups, which
is due to Bass and Serre. In order to work effectively with polyhedral complexes in
this context, one needs a combinatorial description of them; the appropriate object
to focus on is the partially ordered set of cells in the first barycentnc subdivision of
the complex, which provides the motivating example for objects that we call scwols
(small categories without loops).

Associated to any action of a group on a scwol there is a complex of groups
over the quotient scwol. If a complex of groups arises from such an action, it is
said to be developable. In contrast to the one-dimensional case (graphs of groups),
complexes of groups are not developable in general However, if a complex of groups
is non-positively curved, in a suitable sense, then it is developable.

The foundations of the theory of complexes of groups are laid out in Chapter
III.C. The developability theorem for non-positively curved complexes of groups is
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proved in Chapter Iii.g, where it is treated in the more general context of groupoids
of local isometries.

There are two other chapters in Part III. In the first, Chapter HI.H, we describe
elements of Gromov's theory of 8-hyperbolic metnc spaces and discuss the rela-
tionship between non-positive curvature and isoperimetric equalities. In the second,
Chapter 111.1', we shall delve more deeply into the nature of groups that act properly
and cocompactly by isometries on CAT(O) spaces. In particular, we shall analyse
the algorithmic properties of such groups and explore the diverse nature of their
subgroups. We shall also show that many theorems concerning groups of isometries
of CAT(O) spaces can be extended to larger classes of groups hyperbolic and
semihyperbolic groups. The result is a substantial (but not comprehensive) account
of the role which non-positive curvature plays in geometric group theory.

Having talked at some length about what this book contains, we should say a few
words about what it does not contain. First we should point out that besides defining
what it means for a metric space to have curvature bounded above, Alexandrov also
defined what it means for a metric space to have curvature bounded below by a real
number K. (He did so essentially by imposing the reverse of the CAT(ic) inequality.)
The theory of spaces with lower curvature bounds, particularly their local properties,
has been developed extensively by Alexandrov and the Russian school, and such
spaces play an important role in the study of collapsing for Riemannian manifolds.
We shall not consider the theory of such spaces at all in this book, instead we refer the
reader to the excellent survey article of Burago, Gromov and Perel'man [BGP92].

We should also make it clear that our treatment of the theory of non-positively
curved spaces is by no means exhaustive; the study of such spaces continues to be
a highly active field of research, encompassing many topics that we do not cover in
this book. In particular, we do not discuss the conformal structure on the boundary
of a CAT(— 1) space, nor do we discuss the construction of Patterson measures at
infinity, the geodesic flow in singular spaces of non-positive curvature, the theory of
harmonic maps into CAT(O) spaces, rigidity theorems etc.

It is our intention that the present book should be able to serve as an introductory
text. Although we shall arrive at non-trivial results, our lines of reasoning will be
elementary, and we have written with the intention of making the material accessible
to students whose background encompasses little more than a reasonable course in
topology and an acquaintance with the basic concepts of group theory. Thus, for
example, we expect the reader to understand what a manifold is and to be familiar
with the definition of the fundamental group of a space, but a nodding acquaintance
with the notion of a Riemannian metric will be quite sufficient for a complete under-
standing of this book. In any case, all such knowledge will be much less important
than an enthusiasm for direct geometric arguments.
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Part I. Geodesic Metric Spaces

This part of the book is an introduction to the geometry of geodesic spaces. The
ideas that you will find here are elementary, and we have written with the intention
of making all of the material accessible to first year graduate students.

Our treatment begins with such basic concepts as distance, length, geodesic,
and angle. In Chapter 1.2 we introduce the model spaces M (as metric spaces) and
establish basic facts about their geometry and their isometry groups; further aspects
of their geometry are explained in Chapter 1.6. In the intervening chapters we present
vanous examples of geodesic spaces, establish basic facts about length metrics, and
describe methods for manufacturing new spaces out of more familiar ones. Chapter
1.7 is an introduction to the geometry of metric polyhedral complexes, and Chapter
1.8 is an introduction to some of the basic ideas in geometric group theory.

Each chapter can be read independently (modulo references to earlier definitions).



Chapter 1.1 Basic Concepts

The fundamental concept with which we shall be concerned throughout this book is
that of distance We shall explore the geometry of spaces whose distance functions
possess various properties that compare favourably to those of the distance function
in Euclidean space. If such properties are identified and articulated clearly, then by
proceeding in simple steps from these defining properties one can recover much of
the elegant structure of classical geometry, now adapted to a wider context.

Metric Spaces

We begin by recalling the basic properties normally required of distance functions.

1.1 Definitions. Let X be a set. A pseudometric on X is a real-valued function
d : X x X —* R satisfying the following properties, for all x, y, z E X

Positivily: d(x, y) > 0 and d(x, x) = 0.

Symmetry: d(x, y) = d(y, x).

Triangle d(x, y) <d(x, z) + d(z, y).

A pseudometric is called a metric if it is positive definite, i.e.

d(x, y) > 0 ifx y

We shall often refer to d(x, y) as the distance between the points x and y. A metric
space is a pair (X, d), where X is a set and d is a metric on X. A metric space is
said to be complete if every Cauchy sequence in it converges. If Y is a subset of X,
then the restriction of d to Y x Y is called the induced metric on Y Given x X

and r > 0, the open ball of radius r about x (i.e. the set fy
I

d(x, y) < r}) shall be
denoted B(x, r), and the closed ball fy

I
d(x, y) < r} shall be denoted B(x, r). (Note

that B(x, r) may be strictly larger than the closure of B(x, r) ) Associated to the metric
d one has the topology with basis the set of open balls B(x, r). The metric space is
said to be proper if, in this topology, for every x X and every r > 0, the closed ball
B(x, r) is compact.

An isometry from one metric space (X, d) to another (X', d') is a bijectionf
X —> X' such that d'(f(x),f(y)) = d(x, y) for all x, y X. If such a map exists then
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(X, d) and (X', d') are said to be isometric. The group of all isometries from a metric
space (X, d) to itself will be denoted Isom(X, d) or, more briefly, Isom(X).

1.2 First Examples. Perhaps the easiest example of a metric space is obtained by
taking the intuitive notion of distance d(x, y) = Ix—yl on the real line. More generally,
we can consider the usual Euclidean metric on the set of n—tuples of real numbers
x = (xj,.. , The distance d(x, y) between two points x = (xi xn) and
y= (yi yn)isgivenby

d(x, y) := (t ixj —

Throughout this hook we shall use the symhol IE'1 to denote the metric space (R'1, d).

The Euclidean scalar product of two vectors x, y E R'1 is the number

(x I y) :=

x is lxii := (x x)"2. A useful way to view the metric on
E'1 is to note that d(x, y) = lix — yii. The triangle inequality for E'1 then follows from
the Cauchy-Schwarz inequality, l(x

I ilxll.llyll (see 4.1).
E'1 is the most familiar of the model spaces whose central role in this

book was described in the introduction. Another familiar model space is the
n-dimensional sphere, which may be described as follows. Let = {x E

lixil = 1}. This set inherits two obvious metrics from The first, and least use-
ful, is the induced metric. The second, and most natural, is obtained by defining the
distance d between two points x andy on the sphere to be the angle at 0 between the
line segments joining 0 to x and 0 to y respectively. We shall denote the metric space
(S's, d) by It requires some thought to verify the triangle inequality for We

shall return to this point in Chapter 2, where we consider the basic properties of the
model spaces M.

Of course, not all metric spaces enjoy as much structure as the preceding classical
examples. Indeed, given any set one can define a metric on it by defining the distance
between every pair of distinct points to be 1. Such pathological examples render the
theory of general metric spaces rather dull, and it is clear that we must restrict our
notion of distance further if we wish to obtain a class of spaces whose geometry is
in any way comparable to the preceding classical examples. For the most part, we
shall consider only spaces in which every pair of points can be joined by a geodesic,
which is defined as follows.
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Geodesics

1.3 Definitions. Let(X, d)be a metric space. A geodesicpathjoiningx E X toy E X
(or, more briefly, a geodesic from x to y) is a map c from a closed interval [0, 1] C R
to X such that c(O) = x, c(l) = y and d(c(t), c(1')) = t — t'I for all t, 1' [0, 1] (in
particular, I = d(x, y)). If c(O) — x, then c is said to issue from x. The image a of c
is called a geodesic segment with endpoints x andy. (There is a 1—1 correspondence
between geodesic paths in X and pairs (a, x), where a is a geodesic segment in X
and x is an endpoint of a.)

Let I c R be an interval. A map c . I —* X is said to be a linearly reparame-
terized geodesic or a constant speed geodesic, if there exists a constant A such that
d(c(t), c(t')) = A Jt — for all t, 1' 1. Under the same hypotheses, we say that c
parameterizes its image proportional to arc length.

A geodesic ray in X is a map c: [0, 00) —> X such that d(c(t), c(1')) = t —
t' > O.A geodesic lineinXisamapc: R —> Xsuchthatd(c(t), c(1')) =

for all t, t' R (according to the context, we may also refer to the image of c as a

geodesic line).
A local geodesic in X is a map c from an interval I c R to X with the property

that for every t I there exists s > 0 such that d(c(i'), c(1")) = It' — t"I for all

(X, d) is said to be a geodesic metric space (or, more briefly, a geodesic space)
if every two points in X are joined by a geodesic. We say that (X, d) is uniquely
geodesic if there is exactly one geodesic joining x to y, for all x, y E X.

Given r > 0, a metric space (X, d)is said to be r-geodesic if for every pair of
points x, y E X with d(x, y) < r there is a geodesic joining xto y. And X is said to
be r-uniquely geodesic if there is a unique geodesic segment joining each such pair
of points x andy.

A subset C of a metric space (X, d) is said to be convex if every pair of points
x, y E C can be joined by a geodesic in X and the image of every such geodesic is
contained in C. If this condition holds for all points x, y E C with d(x, y) < r, then
C is said to be r-convex

Notation. Henceforth, when referring to a generic metnc space, we shall follow the
common practice of writing X instead of (X, d), except in cases where ambiguity
may arise.

1.4 Remarks
(1) If for every pair of points x andy in a complete metric space X there exists a

point m E X such that d(x, m) = d(y, m) = y), then X is a geodesic space. If
such a midpoint exists for all points x, y E X with d(x, y) < r then X is r-geodesic.

(2) We emphasize that the paths which are commonly called geodesics in differ-
ential geometry need not be geodesics in the above sense; in general they will only
be local geodesics. Thus, for example, a umt speed parameterization of an arc of a
great circle on S2 is a geodesic (in the sense of this book) only if it has length at most
,r (cf. 2.3)
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(3) According to the definition of convexity that we have adopted, a geodesic
segment in a space that is not uniquely geodesic need not be convex.

1.5 Example. The most familiar example of a uniquely geodesic metric space is 1Ev:
the unique geodesic segment joining two points x andy is the line segment between
them, namely the set of points {(1 — t)x+ ty I 0 < t < 1}. A subset C is convex in
the sense of the above definition if and only if it is convex in the linear sense, i.e.
if the linear segment joining each pair of points of C is entirely contained in C. A
subset X C IE'1, equipped with the induced metric, is a geodesic space if and only
if it is convex. More generally, when endowed with the induced metric, a subset of
a uniquely geodesic metnc space will be geodesic if and only if it is convex. For
instance a circle in 1E2 with the induced metric is not a geodesic space, but a round
disc is

From the point of view of this book, the most fundamental examples of geodesic
spaces are the model spaces of constant curvature these are the subject of Chapter
2. Later in Part I we shall present three other major classes of geodesic metric spaces:
normed vector spaces, complete Riemannian manifolds, and polyhedral complexes
of piecewise constant curvature. In the last two cases the existence of geodesic paths
is not so obvious; determining when such spaces are uniquely geodesic is also a
non-trivial matter. The case of normed vector spaces is much easier.

Let V be a real vector space. Recall that a norm, denoted u 1-3 lull, is a map
V —> R such that d(u, w) := Ilu — wil defines a metric and IlAull = IAI.IIull for all
u E V and A E R. The triangle inequality for the metric associated to the norm is
equivalent to the statement that Ilu + wil < + IwlI for all u, w E V. For the
purposes of this book, we define a normed vector space to be a real vector space V
together with a choice of norm. V is called a Banach space if the metric associated
to this norm is complete.

We claim that every norrned space V. equipped with the metnc d(u, w) = lu —

wI. is a geodesic metric space. Indeed, it is easy to see that t i—÷ (1 — t)u + tw defines
a path [0, 1] —* X which is a linearly reparameterized geodesic from u to w. We
shall denote the image of this path [u, w]

1.6 Proposition. Every normed vector space V is a geodesic space. It is uniquely
geodesic and only the unit ball in V is strictly convex (in the sense that and
u2 are distinct vectors of norm 1, then 11(1 — t)ui + tu2 1 < 1 for all t (0, 1)).

Proof In the light of our previous observation that [u, w] is a geodesic segment, we
see that V is uniquely geodesic if and only if, given any u, u', u" E V, the equality
d(u, u') + d(u', u") = d(u, u") implies that u' E [u, u"]. Thus, writing u1 in place of

— u and u2 in place of u" — u', we see that V is uniquely geodesic if and only if
Flu1 + u211 < lu1 II + llu2JJ whenever u1 and u2 are linearly independent.
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A combinatorial graph Q consists of two (possibly infinite) sets V (the vertices)
and E (the edges) together with two maps : E —* V and : E —> V (the endpoint
maps). We assume that V is the union of the images of and (A combinatorial
graph in our sense is not a graph in the sense of Serre [Ser77].)

One associates to Q the set Xc (more briefly, X) that is obtained by taking the
quotient of E x [0, 1] by the equivalence relation generated by (e, i) (e', i') if
81(e) 81(e'), where e, e' E E and i, i' {O, 1). Let p : E x [0, 1] —> X be the
quotient map. We identify V with the image in X of E x to, i For each e E E, let
fe : [0, 1] —* X denote the map that sends t [0, 1] top(e, t). Note thatfe is injective
on (0, 1). Iffe(O) fe(1), the edge e is a called a loop.

To define a metric on X, one first specifies a map

associating a length A(e) to each edge e. A piecewise linear path is a map c : [0, 1] —>

X for which there is a partition 0 = to < t1 < ... = 1 such that each
is of the forrnfe o c,, where e E E and c, is an affine map from [t1, into [0, 1].
We say that c joins x to y if c(O) = x and c(1) = y. The length of c is defined to
be 1(c) where 1(c1) = — We assume that X is
connected, i.e. any two points are joined by such a path.

We define a pseudometric d X x X —* [0, 00] by setting d(x, y) equal to the
infimum of the length of piecewise linear paths joining x to y. The space X with
its pseudometric d is called a metric graph. For any edge e, the distance between
p(e, 1/2) and 8,(e) is A(e)/2.

If the graph has only one edge e and this is a loop, then the corresponding metric
graph is isometric to a circle of length A(e). Let us consider some other simple
examples.

(i) Suppose that the set of vertices V = is indexed by the non-negative integers,
and that the set of edges is indexed by the positive integers. Suppose =
u,1_1 and = In this case, if = 1 for each n, then X is isometric
to [0, oo); if = then X is isometric to the interval [0, 2) (which is not
complete); in general X is isometric to [0, h) where h = >

(ii) Suppose that V has two elements and u1, that the set of edges E = is
indexed by the positive integers, and that = u1. If = 1/n, then d is not a
metric, because d(uo, u1) 0. = 1 + 1/n, then d is a metric, d(uo, u1) = 1,
the metric space X is complete, but there is no geodesic joining uO to u1.

Coming back to the general situation, we leave the reader to check the following
facts.

(1) The pseudometric d is actually a metric if for each vertex u the set {A(e) J e E

E, and 80(e) = u or 8j(e) = u} is bounded away from 0.

(2) If the set of edge lengths A(e) is finite, then X with the metric d is a complete
geodesic space.

A combinatorial graph Q is called a tree if the corresponding metric graph X
where all the edges have length one is connected and simply connected.
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(3) If the graph Q is a tree, then the pseudometric on Xc associated to any length
function A E —* (0, 00) makes Xc a geodesic metric space.

Cayley Graphs. Many interesting examples of metric graphs are given by the fol-
lowing construction.

The Cayley graph CA(F) of a group F with respect to a generating set A is the
metric graph whose vertices are in 1-1 correspondence with the elements of F and
which has an edge (labelled a) of length one joining y to ya for each y E F and
a E A. In the notation of(1.9),V = F, E = {(y,a) y E F,a E A}, Bo(y,a)=
y, (y, a) = ya, and A : —> [0, 00) is the constant function 1.

Cayley graphs will play a significant role in Chapter 8. A simple example is the
Cayley graph of the free abelian group Z2 with basis {x, y}: this can be identified
with the integer lattice in the Euclidean plane.

Angles

We now turn to Alexandrov's definition [AleS 1 and A1e57a] of the angle between
geodesics issuing from a common point in an arbitrary metric space. For this we shall
need the following tool for comparing the geometry of an arbitrary metric space to
that of the Euclidean plane. (This method of comparison was used extensively by
A.D. Alexandrov and it plays a central role in Part II of this book. For historical
references see [Rin6l].)

1.10 Definition. Let X be a metric space. A comparison triangle in 1E2 for a triple of
points (p, q, r) in X is a triangle in the Euclidean plane with vertices 4, such that
d(p, q) = 4), d(q, r) = d(4, and d(p, r) = Such a triangle is unique
up to isometry, and shall be denoted q, r). The interior angle of q, r) at
is called the comparison angle between q and r at p and is denoted r). (The
comparison angle is well-defined provided q and r are both distinct from p.)

1.11 The Law of Cosines in IE'. We shall make frequent use of the following
standard fact from Euclidean geometry; this is commonly called the cosine rule or
the law of cosines.

In a Euclidean triangle with distinct vertices A, B, C, with sides of length a =
d(B, C), h = d(A, C), c = d(A, B), and with interior angle y at the vertex C (opposite
the side of length c), the following identity holds:

c2 = a2 + h2 — 2ah cos y.

In particular, for fixed a and h, the length c is a strictly increasing function of y.

The following concept is what Alexandrov calls the upper angle between
geodesics in a metric space.

Cayley graphs were introduced by Arthur Cayley in 1878 [Cay!878]
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1.12 Definition of Angle. Let X be a metric space and let c : [0, a] —> X and c'
[0, a'] —> X be two geodesic paths withc(O) = c'(O). Given t (0, a] and t' (0, a'],
we consider the comparison triangle c(t), c'(l')), and the comparison angle

c'(l')). The (Alexandrov) angle or the upper angle between the geodesic
paths c and c' is the number E [0, defined by:

L(c, c') = lim sup c'(t')) = lim sup c'(t')).

If the limit lim(?.o Lc(o)(c(t), c'(l')) exists, then we say the angle exists in the
strict sense

One can express L(c, c') purely in terms of the distance function by noting that

c'(t'))) = (t2 + t'2 — d(c(t), c'(t'))2).

The angle between two geodesic segments which have a common endpoint is
defined to be the angle between the unique geodesics which issue from this point and
whose images are the given segments If X is uniquely geodesic,p xandp y, then
the angle between the geodesic segments [p. x] and [p, y] may be denoted y).

Note that in IE'1, the Alexandrov angle is equal to the usual Euclidean angle.

1.13 Remarks and Examples.
(1) The angle between c and c' depends only on the germs of these paths at

0: if c" : [0, 1] —* X is any geodesic path for which there exists s > 0 such that
CIEoe] ciLo then the angle between c and c" is the same as that between c and
C'.

(2) The angle between the incoming and outgoing germs of a geodesic at any
interior point along its image is ,r. In other words, if c : [a, h] —> X is a geodesic
path with a < 0 < h, and ifwe define c' : [0, —a] —> X andc" : [O,h] —> X by
c'(t) = c(—t) and c"(t) = c(t), then L(c', c") = jr.

(3) In a metric tree, the angle between two geodesic segments which have a
common endpoint is either 0 or ,r.

(4) In the above definition of angle, it is important that one takes a limsup; in
general the limit c'(l')) does not exist For instance, we shall see
in Chapter 4 that such limits exist in a normed vector space if and only if the norm
derives from a scalar product. In contrast, in the metric spaces which are of primary
concern in this book, namely those with curvature bounded above, this limit always
exists (II 3.1).

(5) Consider (R2, where y), (x', y')) := maxtix — x'I, — For
every integer n > 1, the map t i—÷ (t, [t(1 — defines a geodesic path [0, 1/n] —*
(R2, These geodesics all issue from a common point and their germs are pairwise
disjoint, but the angle between any two of them is zero

This last example illustrates the fact that the angle between distinct geodesics
issuing from the same point may be 0, even if their germs are distinct Thus, in
general, (c, c') i—÷ L(c, c') does not define a metric on the set of (germs of) geodesics
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issuing from a point. However, this function clearly satisfies the axioms of symmetry
and positivity, so the following proposition, due to Alexandrov [AleS 1], shows that
it is a pseudometric. If one were to take lim inf instead of lim sup in the definition of
Alexandrov angle, then this property would fail.

1.14 Proposition. Let X he a metric space and let c, c' and c" be three geodesic
paths in X issuing from the same point p. Then,

L(c', c") < L(c, c') + L(c, c").

Proof We argue by contradiction. If this inequality were not true, then there would
exist 8 > 0 such that L(c', c") > L(c, c') + L(c, c") + 38. Using the definition of
the lim sup, we could then find an s > 0 such that:

(i) c'(t')) < L(c, c') + 8 for all t, t' < s,
(ii) c"(l")) < L(c, c") + 8 for all t, t" < s,
(iii) c"(t")) > L(c', c") — 8 for some t', t" < s

Let t' and t" be as in (iii). Consider a triangle in }E2 with vertices 0, x', x" such
that d(O, x') = 1', d(O, x") = 1", and such that the angle a at the vertex 0 satisfies:

c"(t")) > a > L(c', c") — 8.

In particular a < so the triangle is non-degenerate. Notice that the left-most
inequality implies that d(x', x") < d(c'(t'), c"(l")). The right-most inequality implies
that a > L(c, c')+ L(c, c")+ 28, and hence enables us to choose a pointx E [x', x"]
such that the angle a' (resp. a") between the Euclidean segments [0, x'] and [0, x]
(resp. [0, x"] and [0, x]) is bigger than L(c, c') + S (resp. L(c, c") + 8).

Let t = d(0, x). Because t < max{t', t"} <s, condition (i) implies that

c'(t')) < L(c, c') + 8 < a',

and hence d(c(t), c'(t')) < d(x, x'). Similarly, d(c(t), c"(l")) < d(x, x"). Thus

d(c'(t'), c"(t")) > d(x', x") = d(x, x') + d(x, x") > d(c(t), c'(t')) + d(c(t), c"(t")),

which contradicts the triangle inequality in X.

1.15 Exercise. Generalize definition 1.12 to give a notion of (upper) angle between
arbitrary continuous paths that issue from the same point in an arbitrary metric space
and do not return to that point. Then adapt the proof of the preceding proposition so
that it applies to this more general situation.
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The Strong Upper Angle

Following Alexandrov ([AleS 1] and [A1e57aJ), we give an alternative description of
the angle between geodesics issuing from a common point. Let X be a metnc space
and let c : [0, a] —* X and c' [0, a'] —> X be two geodesic paths with c(O) =
c'(O) = p. The strong upper angle y between c and c' is the number y(c, c') [0,
defined by:

y(c, c') := lim sup c'(t)) = lim sup c'(t)).
s—*O.tE(O.a'] cE(O.E].IE(O a'l

Alexandrov proved that this notion of strong upper angle is equivalent to the
notion of angle given in (1.12).

1.16 Proposition. Let X he a metric space. For all geodesics c : [0, a] —* X and
c' : [0, a'] —> X with c(O) = c'(O) one has L(c, c') = y(c, c').

Proof Let p = c(O) = c'(O) It is clear from the definition that L(c, c') < y(c, c').
In order to establish the reverse inequality it suffices to show that for each fixed

E (0, a'] we have lim c'(t)) < L(c, c') For this we need a technical
lemma:

1.17 Lemma. Let = d(c(s), c'(t)) and let = c'(t)). Then

5
+—.

s s 2t

Proof of the lemma From the definition of we have

s2+t2 s2—(uç,—t)2
cosys= = +

2st s 2st

And by the triangle inequality — < s, whence 0 < <

From the lemma we have lim cos Ys = lim for each fixed
E (0, a']. If 1' < t then by the triangle inequality t t' > and hence

< t Therefore

lim infcos < lim infcos
c—.O

The left hand side of this inequality is equal to cos L(c, c'), so since cos is decreas-
ing on [0, we have c'(t)) < L(c, c') for each t (0, a'], as
required
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The Length of a Curve

The last of the fundamental concepts which we introduce in this first chapter is the
notion of length for curves in an arbitrary metric space. We begin by fixing some
terminology Let X be a metric space For us, a curve or a path in X is a continuous
map c from a compact interval [a, b] C IR to X. We say that c joins the point c(a) to
the point c(b). If : [aj, b111 —÷ X and c2 : [a2, b2] —* X are two paths such that
ci (b1) c2(a2), their concatenation is the path c: [a1, b1 + b2 — a2] —* X defined
by c(t) = c1(t) ift E [a1, b11 and c(t) c2(r + a2 — b1) ift E [b1, b1 + b2 — a2].

More generally, the concatenation of a finite sequence of paths c1 [a1, b,J —* X, with
c,(b1) = c1+j(a1+j) for i = 1,2 n — 1, is defined inductively by concatenating
c1 and then concatenating the result with

1.18 Definition of Length. Let X be a metric space. The length 1(c) of a curve
C: [a, b] —÷ X is

1(c) — sup
0(o<ti<

where the supremum is taken over all possible partitions (no bound on n) with

a non-negative number or it is infinite. The curve c is
said to be rectifiable if its length is finite.

1.19 Example. An easy example of a non-rectifiable path in the metric space X
[0, 1] can be constructed as follows. Let 0 to < tj < < t,1 < . . be an infinite

sequence of real numbers in [0, 1] such that = 1. Let c : [0, 1] —* X be
any path such that c(0) = 0 and = This is not a rectifiable
path, because its length is bounded below by the sum of the harmonic series

Let V be the graph of c in [0, 1] x [0, 1], with the induced metric Visa compact,
path-connected metric space, but there is no rectifiable path in Yjoining (0, 0) to the
point (1,1n2).

We note some basic properties of length.

1.20 Proposition. Let (X, d) be a metric space and let c: [a, b] —* X be a path.

(1) 1(c) > d(c(a), c(b)), and 1(c) 0 jfand only jfc is a constant map

(2) If 0 is a weakly monotonic map fmm an interval [a', b'] onto [a, b], then
1(c) l(c o

(3) Additivity: Ifc is the concatenation of two paths c1 andc2, then 1(c) = l(cj) +
1(c2).

(4) The reverse path : [a, b] —÷ X defined by c(b + a — t) satisfies
= 1(c).
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(5) If c is rectifiable of length 1, then the function A : [a, fri —* [0, 1] defined by
A(t) is a continuous weakly monotonic function.

(6) Reparameterization by arc length If c and A are as in (5), then there is a unique
path [0, 1] X such that

t.

(7) Lower seimcontinuity. Let (ca) be a sequence of paths [a, b] —* X converging
unformly to a path c. If c is rectfiable, then for every & > 0 there exists an
integer N(s) such that

1(c) < + &

whenever n > N(s).

Proof Properties (1), (2), (3) and (4) are immediate. Property (3) reduces the proof
of (5) to showing that, given & > 0, one can partition [a, b] into finitely many
subintervals so that the length of c restricted to each of these subintervals is at most
& To see that this can be done, we first use the uniform continuity of the map
c [a, b] X to choose S > 0 such that d(c(t), c(t')) < s/2 for all t, i' [a, b] with
It — < S. Since 1(c) is finite, we can find a partition a = to < t1 < •.. < = b

such that

> 1(c) — s/2.

Taking a refinement of this partition if necessary, we may assume that It1
I
<S for

= 0, . , k — 1, and hence d(c(t,), < s/2 But l(cI > d(c(t1),
and 1(c) = by (3). Hence

1(c) = (i+i])> 1(c) — s/2,

with each summand in the first sum no less than the corresponding summand in
the second sum. Hence, for all i we have 1(c11111+11) d(c(t,), < s/2, and in
particular 1(cI[( < 5.

(6) follows from (5) and (2). To check (7), we again choose a to <t1 < ..
tk = b such that

1(c) < d(c(t1), + s/2.

Then we choose N(s) big enough to ensure that d(c(t), < s/4k for all
n > N(s) and all t E [a, b]. By the triangle inequality, d(c(t,), < 2s/4k +

Hence

&
k—I

&
1(c) < + + < & +

U



Chapter 1.1 Basic Concepts

1.21 Definition. A path c : [a, b] X is said to be parameterized proportional to
arc length if the map A defined in 1.20(5) is linear.

1.22 Remark. It follows from 1.20(2) and (5) that every path in X of length 1 has the
same image as a path [0, 1] —* X of length 1 which is parametenzed proportional to
arc length. It also follows from 1.20(5) that if a path joining x to y in X has length
d(x, y) then its reparameterization by arc length is a geodesic path joining x to y.

An easy but useful observation is that for any (continuous) path c: [0, 1] —* X,

1(c) = sup d(c(i/n), c((i + 1)/n)).
n>o

1.23 Exercice. Show that if a sequence of paths : [a, b] —* X converges uniformly
to a path c and lim is finite, then c is rectifiable.

Find a sequence of rectifiable paths : [0, 1] —* [0, 1] converging uniformly to
a non-rectifiable path c (see 1.19).

1.24 Constructing Metrics Using Chains. In certain situations one encounters a
numerical measure of separation between the points of a set X that does not satisfy
thetnangleinequality,sayp : XxX —* [0, oo)withp(x,x) = Oandp(x,y) = p(y,x)
for all x, y E X. In such situations one can obtain a pseudometric on X by defining

where the infimum is taken over all chains x x0,. . , y, no bound on n
(cf. (5.19) and (7.4))

One way in which examples can anse is when one has a metric space (X, d) and
a functionf: [0, oc) [0, oo)withf(0) = 0; one then considers p :=fo d.



Chapter 1.2 The Model Spaces

In this chapter we shall construct the metric spaces which play a central role
in later chapters, serving as standard models to which one can profitably compare
more general geodesic spaces. One way to describe is as the complete, simply
connected, Riemannian n-manifold of constant sectional curvature K E IR However,
in keeping with the spirit of this book, we shall first define and study the purely
as metric spaces (cf. [1v92]), and defer consideration of their Riemannian structure
until Chapter 6.

For each integer n, the spaces fall into three qualitatively distinct classes,
according to whether K IS zero, positive or negative To simplify the notation, we
concentrate first on the cases IE'1 = — and IHI'1 = M'1_1 (we shall explain
at the end of the chapter how each MK'1 can be obtained from one of these special
cases simply by scaling the metric) We shall give a concrete model for each of
the spaces under consideration, describe its metric explicitly and verify the triangle
inequality. In each case the tnangle inequality is seen to be intimately connected
with (the appropriate form of) the law of cosines. We give an explicit description of
the geodesics in each case, and also of the hyperplanes, the latter play an important
role in our description of Isom(M).

In Chapter 6 we shall give alternative models for the metnc spaces and we
shall describe their natural Riemannian metric.

Euclidean n-Space TFIZ

In 1.2 we introduced the notation IE'1 for the metric space obtained by equipping the
vector space IR'1 with the metric associated to the norm ansing from the Euclidean
scalar product (x

I y) X,yi, where x = (Xi and y (yj
As we noted earlier, IE'1 is a uniquely geodesic space; the triangle inequality is a
consequence of the Cauchy-Schwarz inequality, and the geodesic segments in IE'1 are
the subsets of the form [x,y] = {iy + (1 t)x O< t < 1}.

By definition, a hyperplane H in is an affine subspace of dimension n — 1.

Given a point P E H and a unit vector u orthogonal to H (u is unique up to sign), H
may be written as H = {Q E IE'1 I (Q — P

I
u) 0}. Every hyperplane anses in the

following way: given two distinct points A, B E IE'1, the set of points equidistant from
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A and B is called the hyperplane bisector of A and B; it is a hyperplane that contains
the midpoint P of the geodesic segment [A, B] and is orthogonal to the vector A B.

Associated to each hyperplane there is an isometry rjj of IE", called the reflection
through H. If P is a point on H and u is a unit vector orthogonal to H, then for all
A E IE'1 one has rjj(A) = A — 2(A — P

I
u)u. The set of fixed points of rjj is H.

If A IE'1 does not belong to H, then H is the hyperplane bisector of A and rjj(A).
Conversely, if H is the hyperplane bisector of A and B, then rH(A) B.

The n-Sphere

The n-dimensional sphere 5" is the set {x (x1,. E
I

I
•) denotes the Euclidean scalar product. It is endowed with the following

metric:

2.1 Proposition (Definition of the Metric). Let d . x S'1 —* IR be the function that
assigns to each pair (A, B) E S' x S'1 the unique real number d(A, B) E [0, it] such

that
cosd(A,B)=(A JB).

Then d is a metric.

Proof Clearly d(A, B) d(B, A) > 0, and d(A, B) = 0 if and only if A = B. The
triangle inequality is a special case of(1.14), because d(A, B) is the angle between
the segments [0, A] and [0, B] in U

In order to harmonize our treatment of S'1 with that of IHI'1, we give a second proof
of the triangle inequality based on the spherical law of cosines (which can also be
deduced from (114)). But first we describe what we mean by a spherical triangle
in 5" and give meaning to the notion of vertex angle. We must be careful about
our use of language here, because we do not wish to presuppose that d is a metric,
and therefore we should not use the definitions of geodesic, angle and triangle from
Chapter 1.

It is convenient to use the vector space structure on which contains S'1. A
great circle in S'1 is, by definition, the intersection of 5" with a 2-dimensional vector
subspace of There is a natural way to parametenze arcs of great given
a point A S'1, a unit vector u E with (u

I
A) = 0 and a number a E [0, it],

consider the path c : [0, a] given by c(t) = (cos t)A + (sin t)u. Note that
d(c(t), c(t')) = It — t'I for all r, t' E [0, a]. The image of c is contained in the great
circle where the vector subspace spanned by A and u intersects S'1. We shall refer to
the image of c as a minimal great arc or, more accurately, the great arc with initial
vector u joining A to c(a). If a = it, then for any choice of u one has c(ir) = —A. On
the other hand, if d(A, B) < it then there is a unique minimal great arc joining A to
B. If B A then the initial vector u of this arc is the unit vector in the direction of
B—(AJB)A.
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By definition, the spherical angle between two minimal great arcs issuing from
a point of §11, with initial vectors u and v say, is the unique number a E [0, it] such

that cos a (u
I

v). A spherical triangle in consists of a choice of three
distinct points (its vertices) A, B, C E S's, and three minimal great arcs (its sides),
one joining each pair of vertices. The vertex angle at C is defined to be the spherical
angle between the sides of joining C to A and C to B

2.2 The Spherical Law of Cosines. Let be a spherical triangle with vertices
A, B, C. Let a = d(B, C), b d(C, A) and c d(A, B) (spherical distances). Let y
denote the vertex angle at C. Then,

cosc — cosa cosb+ sina sinbcosy.

Proof Let u and v be the initial vectors of the sides of joining C to A and B
respectively. By definition, cos y = (u

I
v). And

cos c = (A
I

B)

= ((cos b)C + (sin b)u I (cos a)C + (sin a)v)

= cosa cosb(C I C)+ sina sinb(u I v)

= cosa cosb+sina sinb cosy,

as required. U

2.3 The Triangle Inequality and Geodesics. For allA, B, C E

d(A, B) <d(A, C) + d(C, B),

with equality and only C lies on a minimal great arc joining A to B. Thus:

(1) (5fl d) is a geodesic metric space.

(2) The geodesic segments in are the minimal great arcs.

(3) If d(A, B) <it then there is a unique geodesic joining A to B.

(4) Any open (resp closed) ball of radius r <it/2 (resp. <ir/2) in 5" is convex.

Proof Let a = d(C, B), b d(A, C), c d(A, B) We assume that A, B and C
are distinct (the case where they are not is trivial) Consider a sphencal triangle
with vertices A, B, C. Let y be the vertex angle at C The cosine function is strictly
decreasing on [0, it], so for fixed a and b, as y increases from 0 to it, the function
y cos a cos b + sin a sin b cos y decreases from cos(b — a) to cos(b + a). So by
the law of cosines we have cos c > cos(b + a), and hence c < b + a, with equality
if and only if y = it and b + a <it. The conditions for equality hold if and only if
C belongs to a minimal great arc joining A to B.

The convexity assertion in (3) follows from the fact, noted above, that if d(A, B) <
it then there is a unique minimal great arc joining A to B. This arc is the intersection
of with the positive cone in spanned by A and B, and hence consists of
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A

B

Fig. 2.1 A spherical tnangle in §11

points of the form AA + with A + 1. Suppose that A and B both lie in the
closed ball B(P, r) ç S'1 of radius r < ir/2 about P. By definition, C E B(P, r) if

IP)+,t(BI
P) > (A + ji) cos r cos r Hence the minimal great arc from A to B is contained in
B(P,r) D

Hyperplanes in S'1. A hyperplane H in S'1 is, by definition, the intersection of S'1
with an n-dimensional vector subspace of Note that H, with the induced metric
from S'1, is isometnc to S'1 . We define the reflection rH through H to be the isometry
of 5" obtained by restricting to 5fl the Euclidean reflection through the hyperplane of

spanned by H. Given two distinct points A, B E 5", the set of points in 5" that
are equidistant from A and B is a hyperplane, called the hyperplane bisector for A
and B; it is the intersection of §ll with the vector subspace of orthogonal to the
vector A — B. If A E S'1 does not belong toll, then H is the hyperplane bisector of A
and rft(A). Conversely, if H is the hyperplane bisector of A and B, then rH(A) = B.

Hyperbolic n-Space

When approaching hyperbolic geometry from a Riemannian viewpoint, it is common
to begin by introducing the Poincaré model for IHI'1 (see Chapter 6). However, from
the purely metnc viewpoint which we are adopting, it is more natural to begin with
the hyperboloid model. One benefit of this approach is that it brings into sharp focus
the fact that S'1 is obtained from in essentially the same way as IHI'1 is obtained
from 1 where denotes the vector space endowed with the symmetric
bilinear form that associates to vectors u = (u1 and v = (v1

the real number (u v) defined by

(u v) = +

The quadratic form associated to .) is nondegenerate of type (n, 1).
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The orthogonal complement of v E E11 with respect to this quadratic form is,
by definition, the n-dimensional vector subspace v1 ç consisting of vectors u
such that (u

I
v) = 0. If (v

I
v) < 0, then the restriction of the given quadratic form

to v1 is positive definite. If v 0 but (v
I

v) = 0, then is tangent to what is
called the light cone (x (x

I
x) 0}; in this case the given quadratic form restricts

to a degenerate form of rank n — 1 on v-1-. If (v
I

v) > 0, then the restriction to
of the given quadratic form is non-degenerate of type (n — 1, 1).

Fig. 2.2 The hyperbolic plane 1H12

2.4 Definition. (Real) hyperbolic n-space is

(u (u1 E
I

(u
I
u) = —1, > 0}.

In other words, is the upper sheet of the hyperboloid {u E
I

(u
I

u) = —1}.

Note that if u E then 1, with equality if and only if u1 = 0 for all
1=1 n.

2.5 Remark. We shall need the observation that for all u, v E IHI' one has (u
I

v) <
—1, with equality if and only if u v. Indeed,

/ fl

(u
I

v) = ufl+lvfl÷l

<
\ i=

—
1)1/2

—

/ 1/2

\j=i
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and one checks easily that this last expression is < —1 for any numbers >

1, with equality if and only if =
As an immediate consequence we see that (u — v u — v) 0, for all u, v E IHI",

with equality if and only if u v.

2.6 Proposition (Definition of the Metric). Let d : x —* IR be the function that
assigns to each pair (A, B) E x IHI" the unique non-negative number d(A, B)> 0
such that

cosh d(A, B) = —(A B).

Then d is a metric.

Pmof The content of Remark 2.5 is that d is well-defined and positive definite. d is
clearly symmetric, so it only remains to verify the triangle inequality. As in the case
of S's, we shall deduce this from the appropriate form of the law of cosines. fl

Again as for §11, in order to state the law of cosines we must first define primitive
notions of segment, angle and triangle in Eventually (2.8) we shall see that
the geodesic lines in are the intersections of with 2-dimensional subspaces
of Thus a hyperbolic segment should be a compact subarc of such a line of
intersection. More precisely, given A E HI'1 and a unit vector u E A' C I (i.e,
(u

I
u) = 1 and (A u) 0), we consider the path c : —* defined by
(cosht)A + (sinht)u. Note that d(c(t), c(1')) = It — t' lIt Given

a> 0, we define the image under c of the interval [0, a] to be the hyperbolic segment
joining A to c(a), and denote it [A, c(a)]. Given B E IHI' distinct from A, let u be the
unit vector in the direction of (B + (A B)A). This is the unique unit vector u E A'
such that B = (cosha)A + (sinha)u, where a = d(A, B). We shall refer to u as the
initial vector of the hyperbolic segment [A, B].

By definition, the hyperbolic angle between two hyperbolic segments issuing
from a point of W, with initial vectors u and v, say, is the unique number a E [0, it]
such that cos a = (u

I
v). A hyperbolic triangle in IHI" consists of a choice of three

distinct points (its vertices) A, B, C E IHI'1, and the three hyperbolic segments joining
them (its sides). The vertex angle at C is defined to be the hyperbolic angle between
the segments [C, A] and [C, B].

2.7 The Hyperbolic Law of Cosines. Let be a hyperbolic triangle with vertices
A, B, C. Let a = d(B, C), b d(C, A) and c = d(A, B). Let y denote the vertex
angle at C. Then

coshc = cosha coshb — sinha sinhb cosy.

Pmof Let u and v be the initial vectors of the hyperbolic segments joining C to A
and B respectively By definition, cos y (u v). And
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coshc — (A B)

((coshb)C + (sinhb)u I (cosha)C + (sinha)v)
= — cosha coshb(C I C) — sinha sinhb(u I v)

= cosh a cosh b — sinh a sinh b cos y,

as required.

There are many other useful tngonometnc formulae in hyperbolic geometry (see,
for example, [Thu97], section 2.4).

2.8 Corollary (The Triangle Inequality and Geodesics).
For allA, B, C E IHI'1,

d(A,B)<d(A,C)-4-d(C,B),

with equality and only C lies on the hyperbolic segment joining A to B. Thus:

(1) IHI'1 is a uniquely geodesic metric space.

(2) The unique geodesic segment joining A to B is the hyperbolic segment [A, B].

(3) If the intersection of a 2-dimensional vector subspace of IE'1 with IHI'1 is non-

empty, then it is a geodesic line, and all geodesic lines in IHI'1 arise in this
way.

(4) All the balls in are convex.

Proof Let a = d(C, B), b = d(A, C), c = d(A, B). We assume that A, B and C are
distinct (the case where they are not is trivial). Consider a hyperbolic triangle with
vertices A, B, C. Let y be the vertex angle at C. For fixed a and b, as y increases from
0 to it, the function y cosh a cosh b — sinh a sinh b cos y strictly increases from
cosh(b — a) to cosh(b + a). So by the law of cosines we have cosh c < cosh(b + a),
and hence c < a + b, with equality if and only if y = it. But y = it if and only if
C E [A, BJ Statements (1) to (3) are now immediate from the definitions.

The proof that the balls are convex is similar to the one given in (2.3) (one notes

that as and

a in and ir/2. Let d
be the length of the side opposite the angle Prove that cos = cosh d sin a.

Hyperplanes in IHI'1. A hyperplane H in W is, by definition, a non-empty intersec-
tion of IHI" with an n-dimensional vector subspace of With the induced metric,
H is isometric to IHI'1—'. Given two distinct points A, B E IHI'1, the set of points in
that are equidistant from A and B is a hyperplane, called the hype rplane bisector of
A and B; it is the intersection of IHI'1 with the vector subspace (A — B)' C



22 Chapter 1 2 The Model Spaces

The reflection rH through H is the isometry of W which is given by X i—÷
X — 2 (X I u) u, where u is a unit vector orthogonal to the vector space spanned by
H (it is unique up to sign). The set of fixed points of rH is H. If A E does not
belong to H, then H is the hyperplane bisector of A and rH(A). Conversely, if H is
the hyperplane bisector of A and B, then rH(A) B.

2.9 Proposition. The spherical (respectively, hyperbolic) angle between two geodesic
segments [C, A] and [C, B] in §fl (respectively, is equal to the Alexandmv angle
between them.

Pmof This proof was communicated to us by Ralph Strebel. We give the details in
the hyperbolic case; the spherical case in entirely similar.

Let a = d(A, C) and b = d(B, C), and let y denote the hyperbolic angle between
[C, Al and [C, B]. Given numbers s, t with 0 < s < a and 0 < t < b, one considers
the points A5 E [C, Al and E [C, BI that are a distance s and from C respectively.
Let cst = B1) and let be the angle at the vertex C in the companson tnangle

C) c 1E2 (notation as in 1.10). The Euclidean law of cosines yields

= + t2 — 2stcos

The hyperbolic law of cosines relates c5, to s and t:

(2.9-1) = coshs cosht — sinhs sinht cosy.

But the inverse of cosh I is not differentiable at 0, so the behaviour of

+ —

cos y5,j =
2st

cannot be gleaned immediately from (2.9-1). To circumvent this difficulty, we intro-
duce an auxiliary function h: given by the power series

h(x) = >'

This power series converges on all of R and it is related to cosh by the formula
coshx — I = Since h(0) = 0 and h'(0) = 1/2, the function h is invertible in a
neighbourhood of 0; this local inverse is given by a power series of the form

h'(x)=

We continue our analysis of cosh Using (2.9-1) we can rewrite =

coshc cosht— 1— sinhs sinht cosy
= (cosh s — 1) cosh t + (cosh t — I) — sinh s sinh t cos y

= h(s2) cosh t + h(t2) — sinhs sinht cos y.
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This last expression defines an analytic function g: —÷ R with the following three
properties:

g(O, 0) = 0, g(s, 0) = g(O, t) = h(t2).

Moreover the coefficient of st in the power series representation of g is — cos y.
The first of these properties implies that the compositionf = o g, which is

equal to for small positive s and t, is defined in a small disc around the origin. It
has there an absolutely convergent power senes representation that we can write in
the form

f(s, t) = +
j=1 k=1 j=1 k=1

By the second and third properties of g stated above, the first and second sums in this
expression forf are equal to and (2, respectively, so ifs and tare small and positive
then the term in parenthesis equals + t2 — Finally, by combining the
power senes expression of h' given above with our remark about the st coefficient
of g, we see thatf1 i = 2cosy. Hence

s2+t2—c2,
cos =

cos Y + 1A

2st
k>1 orj>1

tends to cos y when t,s —* 0+. 0

Remark. This proof shows that the angle between two geodesic segments issuing
from the same point in exists in the strict sense (as defined in 1.12).

The Model Spaces

2.10 Definition. Given a real number K, we denote by the following metric
spaces:

(1) ifK =
is obtained from the sphere §fl by multiplying the distance

function by the constant I

(3) if K < 0 then is obtained from hyperbolic space by multiplying the
distance function by I

The following is an immediate consequence of our previous results:

2.11 Proposition. M is a geodesic metric space. If K < 0, then M is uniquely
geodesic and all balls in M are convex. If K > 0, then there is a unique geodesic
segment joining x, y E if and only if d(x, y) JfK > 0, closed balls in
M of radius < are convex.
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When working with M, one constantly finds it necessary to phrase hypotheses
and conclusions in terms of the quantity which made its first appearance in
the preceding proposition. For this reason, we introduce the following device.

2.12 The Diameter of Henceforth we shall wnte DK to denote the diameter of
M. More precisely, := for K > 0 and :: for K <0.

2.13 The Law of Cosines in Given a geodesic triangle in M with sides of
positive length a, b, c and angle y at the vertex opposite to the side of length c,

forK = 0 : c2 a2 + b2 — 2abcos(y)

forK <0 : =
— cos(y)

for K > 0 = + cos(y).

In particular fixing a, b and K, one sees that c is a strictly increasing function of y,
varying from lb — alto a + b as y varies from 0 to ,r.

Note that one can pass from the formula for K > 0 to the formula for —K by
replacing with = since for any real t one has cos it = cosh t and
sin it = i sinh t.

Proof These formulae are obtained from the law of cosines for §fland by rescal-
ing. LI

Alexandrov's Lemma

In Chapter 1 we introduced the notion of a comparison triangle to enable us to
compare triples of points in an arbitrary metric space to corresponding tnples of
points in the Euclidean plane. In Part H we shall have occasion to compare metnc
spaces not only to 1E2, but also to for K 0. In order to do so we shall need the
following:

2.14 Lemma (Existence of Comparison Tnangles in Mt). Let K be a real number
and letp, q, r be three points in a metric space X; if K > 0 assume that d(p, q) +
d(q, r) + d(r, p) < 2DK. Then, there exist points r E such that d(p, q) =

d(q, r) = d@, i) and d(r, p) = d(i,
The triangle c with vertices is called a comparison triangle

for the triple (p, q, r); it is unique up to an isometry of If LI c X is a geodesic
triangle with verticesp, q, r, then LI(fi, is also said to be a comparison triangle
for LI.
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Proof Leta=d(p,q),b=d(p,r),c= d(q,r) Wemayassumethata b S c.By
the triangle inequality, c <a + b, so in particular if K > 0 then c Hence
we may solve to find a unique y E [0, which is related to a, b, c by the equation
in the statement of the law of cosines for (2.12). We fix a point and
construct two geodesic segments and fl, of lengths a and b respectively,
meeting at an angle y. By the law of cosines, d(q, = c.

The asserted uniqueness of is a special case of 2.15. LI

It follows from Proposition 2.9 that the definition of Alexandrov angle (1.12)
would remain the same if we were to use comparison triangles in rather 1E2.
However, the way in which the limiting angle is obtained would be different: instead
of / one would consider the following quantity.

2.15 Definition. Let X be a metric space and let K be a real number. Let p, q, r E X
be three distinct points with d(p, q) + d(q, r) + d(r, p) < 2DK. The K-comparison
angle between q and r at p, denoted r), is the angle at in a comparison

triangle c for (p, q, r). (In particular r) = r).)

Later, particularly in Chapter (II 4), we shall need to bound the geometry of
large geodesic triangles that are constructed from smaller triangles in a controlled
manner. The following technical lemma is invaluable in this regard. The reader may
find it helpful to view this lemma in the following light: take two (sufficiently small)
geodesic tnangles in that have one edge in common, with the sum of the interior
angles at one end of this edge, C say, at least ir; delete this common edge; imagine
the remaining four edges as rigid bars, joined by hinges at the vertices; imagine
straightening this arrangement so as to decrease the interior angle at C to ir. The
main content of the following lemma is that during such a straightening process the
angles at the vertices other than C increase.

We shall need the following terminology: given distinct points x, y E with
d(x, y) < there is (up to reparameterization) a unique local geodesic ('line')
R —÷ passing through x and y, the image of this line separates into two
connected components; two points z, w E are said to lie on opposite sides of the
line if they are in different connected components of its complement.

2.16 Alexandrov's Lemma. ConsiderfourdistinctpointsA, B, B', CE K > 0,
assume that d(C, B) + d(C, B') + d(A; B) + d(A, B') Suppose that B and B'
lie on opposite sides of the line through A and C.

Consider the geodesic triangles = B, C) and = B', C). Let
a, y (resp. a', y') be the angles of (resp. Li') at the vertices A, B, C
(resp. A, B', C). Assume that y + y' 2: ,r. Then,

(1) d(B, C)+d(B', C) <d(B,A)+d(B',A).
Let be a triangle in with vertices A, B, B' such that B) = d(A, B),

B') = d(A, B') and d(B, B') = d(B, C) + d(C, B') < DK. Let C be the point
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A

B B'
Fig. 2.3 Alexandrov's Lemma

of [B, B'] with d(B, C) = d(B, C). Let $, be the angles at the vertices
A, B, B'. Then,

(2) a + a', > $'> and d(A, C) d(A, C); any one equality implies
the others, and occurs if and only if y + y' = ir.

Pmof Let B' E be the unique point such that d(B', C) = d(B', C) and C lies on
the geodesic segment [B', B1. Because y + y' ir, the angle at C between [C, A] and
[C, B'] is no greater than the angle between [C, A] and [C, B']. Hence, by the law of
cosines, d(B', A) <d(B', A). Therefore, d(B, A) + d(B', A) > d(B, A) + d(B', A)>
d(B, B') = d(B, C) + d(C, B'). This proves (1).

As in (1), we have d(A, > d(A, B'), and by the tnangle inequality, d(B, W)>
d(B, B'); in each case equality is strict unless C E [B, B'], that is, y + y' = ir.
Applying the law of cosines to each of these inequalities we get a + a' and

Exchanging the roles of fi and we get > fi'. A further application of the
law of cosines shows d(A, C) d(A, C). All of these inequalities are stnct except
when y + y' = ir, in which case is isometric to the union of and with the
common side [A, C] deleted, so equality holds everywhere. LI

The Isometry Groups

Our next goal is to descnbe the isometry groups of the model spaces A key
observation in this regard is that each of these groups is generated by reflections in
hyperplanes. If one rescales the metric on a space then one does not alter its group
of isometries, so there are essentially only three cases to consider §fl and IHI".

The following proposition shows in particular that the group of isometries acts
transitively on M.

2.17 Proposition. Given any positive integer k and 2k points A1 Ak and
B1 Bk inM such thatd(A,,A3) d(B1,B3)foralli,j E {1, ..,k}, there exists
an isometry mapping A1 to B1, for all i E { I k}. Moreovei one can obtain such
an isometry by composing k or fewer reflections through hyperplanes.
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Proof Arguing by induction on k (the case k = 0 is vacuous) we may assume that
there exists an isometry q5 such that çb(A1) = B for all i E {1 k — 1}, and q5
is the product of k I or fewer reflections. If cb(Ak) = Bk then we are done. If
not, then let H denote the hyperplane bisector of Ø(Ak) and Bk. As usual, we let
denote the reflection through H. Note that B1 E H for i = 1 k 1, because
d(B,, çb(Ak)) = d(Ø(A1), q5(Ak)) = d(A1, Ak) = d(B,, Bk) Hence rH o q5, which is a
product of at most k hyperplane reflections, sends A to B, for all i { I k}. U

2.18 Proposition. Let q5 be an isometry of M.

(I) If q5 is not the identity, then the set of points which it fixes is contained in a
hyperplane.

(2) If q5 acts as the identity on a hyperplane H, then q5 is either the identity or the
reflection rH thmugh H.

(3) q5 can be written as the composition of n + I or fewer reflections thmugh
hype rplanes.

Proof
(I) If q5 is not the identity, then there is a point A such that 0(A) A We claim

that the set of points fixed by q5 is contained in the hyperplane bisector of A and q5(A).
Indeed, if B is fixed by q5 then d(A, B) = d(Ø(A), 0(B)) = d(q5(A), B), and hence
BEH

(2) Suppose q5 acts as the identity on a hyperplane H. Given any point A such that
0(A) A, the preceding argument shows that H must be contained in the hyperplane
bisector of A and 0(A). But no hyperplane is properly contained in any other, so H is
the hyperplane bisector of A and 0(A), and hence rH(A) = 0(A). ButA was arbitrary,
so q5 = rH.

(3) Fix a collection of n + I points A0,.. , that is not contained in any
hyperplane. Given an isometry q5, let B0 = 0(A0),.. , = 0(An). According to the
preceding proposition, there is an isometry 0' which maps each A, to B1 and which
can be wntten as the composition of at most n + 1 reflections through hyperplanes.
The isometry o q5 fixes each of the A1, and hence, by part (1), it is the identity.

LI

We require a base hyperplane H0 C M. In we take H0 = {0} x in
we take H0 = S" fl ({0} x in we take H0 = fl ({0} x In each
case there is a natural identification of H0 with and we use this to define what
we mean by a hyperplane in H0. (In the light of (2.20) this definition will become
obsolete)

2.19 Exercise. Let H be a hyperplane in and suppose that H0 H. If H0 fl H is
not empty then it is a hyperplane in H0. Conversely, every hyperplane in H0 is the
intersection of H0 with some hyperplane in (Because we defined hyperplanes in

(resp. as intersections of the sphere (resp. hyperboloid) in Rn+! with vector
subspaces, this is just an exercise in linear algebra)
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A set of n + I points in is said to be in general position if it is not contained
in any hyperplane. It is obvious that such sets exist.

2.20 Proposition. Let S1 and S2 be subsets of M and letf: —* S2 be an isometry.

Then,

(I) there exists E such that Is f;
(2) the restriction ofall hyperplanes containing is unique.

Pmof We first consider the case where = S2 = H is a hyperplane Because every
hyperplane is the bisector of some pair of points, the action of Isom(M) obviously
sends hyperplanes to hyperplanes. And it follows from (2 17) that the action of

on the set of hyperplanes in is transitive. Hence there is no loss of
generality in assuming that H = H0.

Let c H0 = be a set of n points in general position and letf: H0 H0

be an isometry. (2.17) gives E Isom(M) such that = In particular
E is contained in the hyperplane (Ho). Since is assumed not to lie in any
hyperplane of H0, itfollows that = H0 (see2.19). But now, applying (2.18)
to H0 = since the fixed points of E Isom(Ho) are not contained in any
hyperplane of H0, we have = idH0, i.e.f =

We now consider the general casef . Si —÷ S2. If Si and S2 are contained in
hyperplanes H1 and H2, then we can replace them by = i/i,(S,) C H0, where

H1 H0 is an isometry. Then, by induction on the dimension of (the case
n = 1 is trivial) we can assume that any isometry is the restriction of an
isometry of H0, and the first step of the proof then applies.

Thus we may assume that is not contained in any hyperplane of It follows
that some finite subset So C Si is not contained in any hyperplane of M By (2.17),
there exists E Isom(M) such that = ffs0. If i/to is = f then we are done.
If not, then there would exist x E such that f(x), and by applying (2.17)
again we would get i/'i E such that Is0 =f Is0 and (x) = f(x). But this
cannot happen, because we would have a non-trwial element E Isom(M)
fixing a set So that was not contained in any hyperplane, contradicting (2.18). This
completes the proof of (1).

Suppose that and are both such that = 'V"!s. Then and its
inverse send any hyperplane containing to another such hyperplane, and therefore
restricts to an isometry on the intersection of all such hyperplanes. Let I denote this
intersection. By making iterated use of (2.19) and (1) we see that! is isometric to

for some m n. If were contained in some (m — 1)-dimensional hyperplane
P c I, then by making further use of (2.19) we could construct a hyperplane in M
such that Ifl H = P, contradicting the fact that! is the intersection of all hyperplanes
containing S. Therefore is not contained in any hyperplane off and (2.18)
implies that -i/i' restncts to the identity on I. LI

2.21 Definition. Let m < n be non-negative integers. A subset P C is called an
rn—plane if it is isometnc to



The Isometry Groups 29

2.22 Corollary. If rn < n then every rn—plane in is the intersection of
(n — rn) hyperplanes. Every subset of M is contained in a unique rn—plane of rninirnal
dirnension.

Pmof Fix rn <n. There certainly exists an rn—plane P0 c M that is the intersection
of (n — rn) hyperplanes. The preceding proposition shows that any other rn—plane is
the image of P0 by an isometry of M, and any such isometry takes hyperplanes to
hyperplanes

The unique rn—plane of minimal dimension containing S is the intersection of all
hyperplanes containing S. LI

2.23 The Groups Isom(Mk). Using (2.16) we can determine the full group of isome-
tries of §fl and In the case of and a more pedestrian account (from a
different viewpoint) will be given in Chapter 4. A more explicit description of the
individual isometnes of will be given in Chapter 6.

Let D(n) denote the group of displacements of that is, the group of affine
isomorphisms of that preserve the distance. The subgroup of D(n) fixing the
origin 0 E is, by definition, the subgroup of GL(n, R) that consists of matrices
which preserve the Euclidean metnc. (The action of GL(n, R) is the usual linear
action; a matrix A = [a,3] acts thus: A(x) = y,3 where = A

simple calculation shows that the action of A preserves the Euclidean norm if and
only if A E 0(n), where 0(n) denotes the group of orthogonal matnces, i.e., those
real (n, n)-matnces A which satisfy A 'A = I, where 'A is the transpose of A and I is
the identity matrix.

D(n) also contains an abelian subgroup consisting of translations r0 : x x + a.
This subgroup obviously acts transitively, so any element of D(n) can be wntten
uniquely as the composition of an orthogonal linear transformation and a translation.
For each orthogonal transformation q5 we have = and hence the group
of translations is normal in D(n). The quotient of D(n) by this normal subgroup
is isomorphic to 0(n) and D(n) is naturally isomorphic to the semi-direct product

x 0(n) (cf. 4.13). Finally, we observe that D(n) contains all reflections through
hyperplanes in because 0(n) contains all reflections in hyperplanes through 0,
and D(n) (indeed its translation subgroup W) acts transitively on Therefore, by
part (3) of the preceding proposition, D(n) is the whole of

We have already noted that the natural action of 0(n + 1) on preserves the
Euclidean norm; hence it preserves the n-sphere §fl• A trivial calculation shows that
the induced action of 0(n + 1) on §fl is by isometries. The action is faithful, so we
obtain an injective map from 0(n + 1) to But, as noted above, 0(n + 1)
contains all reflections through hyperplanes in En+! that contain 0, and the restnction
of such reflections to §fl are, by definition, the hyperplane reflections of We have
shown that such reflections generate so the natural map from 0(n + 1) to

is actually an isomorphism.
Consider the group GL(n + 1, R) (thought of as matrices, as above) with the

usual linear action on Let 0(n, 1) denote the subgroup formed by
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those matrices which leave invariant the bilinear form (.
I •). A simple calculation

shows that 0(n, 1) consists of those (n + 1, n + I )-matnces A such that 'AJA = J,
where J is the diagonal matrix with entries (I I, —I) in the diagonal. While
0(n, I) preserves the hyperboloid {x E

I

(x
I

x) —I }, certain of its elements
interchange the two sheets. Let 0(n, 1 c O(n, 1) be the subgroup of index two that
preserves the upper sheet This subgroup consists of those matrices in 0(n, 1)
whose bottom nght hand entry is positive. It is clear from the definition that 0(n, 1
acts by isometries on A direct calculation shows that the stabilizer of the point
(0 0, I) is naturally isomorphic to 0(n). The group 0(n, contains all the
reflections through hyperplanes of W, so by the preceding proposition, it is equal to
the full group of isometries of

We summarize the preceding discussion:

2.24 Theorem.
(1) >ci 0(n).

(2) 0(n + I).
(3) 0(n,

In all three cases, the stabilizer of a point is isomorphic to 0(n).

Approximate Midpoints

The following result will be needed several times in Part H.

2.25Lemma. ForeveryK E R, I < DK ande > 0, there 1, e)>
0 such that for all x, y E with d(x, y) I, if d(x, m') and d(m', y) are both less
than y) + 8, then d(m', m) < e, where m is the midpoint of[x, y].

This result is a consequence of the transitivity properties of Isom(M) and the
following general observation.

2.26 Lemma. Let X be a proper geodesic space. If there is a unique geodesic
segment [x, y] joining x, y E X, then for each e > 0 there exists 'i > 0 such that
[d(x,z) + d(z,y) < d(x,y) impliesd(z, [x,yl) <e.

Proof Let = [p E X
I

d(p, [x, y]) = e}. Because X is geodesic, this set is empty
only if every point of X is a distance less than e from [x, yl. We consider the case

where it is non-empty. Because X is proper, S6 is compact. Let be the minimum
value attained byf(z) = d(x, z) + d(z, y) — d(x, y) on S6. Note that 'i > 0 because
[x, yl is unique.

If d(u, [x, y]) e then there exists v E S6 such that d(x, u) = d(x, v) + d(v, u).

Therefored(x, u)+d(u,y) = d(x, v)+[d(v, u)+d(u,y)] d(x, v)+d(v,y).Whence
LI
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Proof of (2.25). Because the action of is transitive on pairs of equidistant
points, we may assume that [x, y] is the initial segment of a fixed geodesic segment
[x, yoI of length 1. Let be a constant such that if d(x, z) + d(z, Yo) <d(x, Yo) +
then d(z, [x, Yol) <s/2.

We have d(x, m') + d(m', Yo) < d(x, m') + d(m', y) + d(,y, which is at most
d(x, y) + d(y, Yo) + d(x, Yo) + So if then d(m', p) <s/2 for some
p E [x, yol. Then, d(p, x) <d(p, m') + d(m', x) <s/2 + + y) and similarly
d(p, y) < s/2 + + y). Butp lies on the geodesic segment [x, YoI so therefore
d(p, m) <s/2 + Thus it suffices to take = rnin{s/3, iol2}. U



Chapter 1.3 Length Spaces

In this section we consider metric spaces in which the distance between two points
is given by the infimum of the lengths of curves which join them such a space
is called a length space. In this context, it is natural to allow metrics for which the
distance between two points may be infinite. A convenient way to describe this is to
introduce the notation [0, for the ordered set obtained by adjoining the symbol
oo to the set of non-negative reals and decreeing that oo > a for all real numbers
a. We also make the convention that a + 00 = oo for all a e [0, Having
made this convention, we can define a (generalized) metric on a set X to be a map
d : X x X [0, ool satisfying the axioms stated in (1.1)

Henceforth we shall allow metrics and pseudometrics to take the value 00

Length Metrics

3.1 Definition. Let (X, d) be a metric space. d is said to be a length metric (otherwise
known as an inner metric) if the distance between every pair of points x, y e X is
equal to the infimum of the length of rectifiable curves joining them. (If there are no
such curves then d(x, y) = oo.) If d is a length metric then (X, d) is called a length
space.

A complete metric space X is a length space if and only if it has approximate
midpoints in the sense that for all x, y E X and s > 0 there exists z e X such that
max{d(x, z), d(z, y)J s + d(x, y)/2

An arbitrary metric space gives rise to a length space in an obvious way:

3.2 Proposition. Let (X, d) be a metric space, and let d X x X —÷ [0, oo] be the
map which assigns to each pair ofpoints x, y X the infimum of the lengths of
rectifiable curves which join them. (If there are no such curves then d(x, y) 00.)

(1) d is a metric.

(2) d(x, y) > d(x, y)for alIx, y e X.

(3) If c: [a, b] —÷ X is continuous with respect to the topology induced by d, then
it is continuous with respect to the topology induced by d. (The converse is false
in general.)
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(4) If a map c [a, b] X is curve in (X, d), then it is a continuous
and curve in (X, d).

(5) The length of a curve C: [a, b] —÷ X in (X, d) is the same as its length in (X, d).

(6) d=d.

Proof Properties (1) and(2) are immediate from the definition of length. (2) implies
(3), and (6) is a consequence of (4) and (5) Property (4) is a consequence of 1.20(5),
so it only remains to prove (5). Let c : [a, b] —÷ X be a path which has length 1(c)
with respect to the metnc d, and length 1(c) with respect to the metric d. On the one
hand we have that 1(c) 1(c), by (2), and on the other hand

1(c) = sup
a=r0<t1 < i=O

sup 1(c111 'i) = 1(c).
a=10<t1< i=O

Hence 1(c) = 1(c). Li

3.3 Definition. Let (X, d) be a metric space. The map ddefined in (3.2) is called the
length metric (or inner metric) associated to d, and (X, d) is called the length space
associated to (X, d). Note that d = d if an only if (X, d) is a length space

The induced length metric on a subset Y X is the length metric associated to
the restriction of d to Y x Y (which in general will not be the same as the restriction
toY x Yofd).

3.4 Examples. Let (X, d) be a metric space. The identity map on X induces a contin-
uous map (X, d) (X, d), but this is not a homeomorphism in general. For instance,
the metric space (Y, d) considered in (1.19) is homeomorphic to [0, 1], but the as-
sociated length space is homeomorphic to the disjoint union of [0, 1) and { I } More
generally, the length space associated to a metric space (X, d) is connected if and
only if every pair of points in (X, d) can be joined by a rectifiable curve.

As another example, we can consider the set of rational numbers Q with the usual
metric d induced from JR. In the associated length metric d, the distance between
every pair of distinct points of Q is infinite, hence d induces the discrete topology
onQ.

3.5 Example. In the Euclidean plane we consider the complement X of an open
sector of angle a < ,r, namely X = {x JR2

I
(x e1) cos(a/2) where

e1 (0, 1), and (. .) is the Euclidean scalar product on JR2, with associated norm

We consider X as a length space, with the induced length metric from 1E2. This
is a uniquely geodesic space: if the geodesic in 1E2 which joins x E X to x' E X lies
entirely in X then this is the unique geodesic segment joining x to x' in X; otherwise,
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the unique geodesic from x to x' in X is the concatenation of the Euclidean geodesics
joining x to 0 and 0 to x'.

3.6 Exercises

(1) Prove that the induced length metric that §PI inherits from coincides
with the metric defined in 2.1. Prove that for all K 0, all x E M and all r > 0
(assuming r < if ic > 0), the induced length metric on {y E

I
d(x, y) =

r} c makes it isometric to (JfK < 0 then = =
i

(2) Give an example of a subset Y 1E2 such that the distance between each pair
of points in the induced length metric is finite but the topology which this metric
induces on Y does not coincide with the topology given by the restriction of the
Euclidean metric.

Recall that any metric space admits a completion. In other words, every metric
space X can be embedded isometrically as a dense subspace of a complete metnc
space X', which is unique up to isometry. One can obtain X' as the set of Cauchy
sequences in X modulo the equivalence relation: if and only Vs >
o > 0 such that <s for all n > Each x E X is identified with the
class of the stationary sequence = x, and the metric on X is extended to X' by:

= limp

(3) Prove that if X is a length space then its completion X' is a length space. (The
converse is obviously false, e.g. (3.4).)

(4) Prove that there exists a geodesic metnc space which is locafly compact but
whose completion is neither geodesic nor locally compact.

(Hint: Consider the induced path metric on the following subset of the Euclidean
plane: (0, lix {0} U(0, lix {1} x [0,1])

(5) Let d1 and d2 be two metrics on a space X which are Lipschitz equivalent, i.e.
there exists a positive constant C such that

<di(x,y) < Cd2(x,y),

for each x, y E X. Show that the same inequality is then satisfied by the length metrics
associated to d1 and d2.

(6) If one has a metric space (X, d) and a positive functionf: [0, oo) —÷ [0, oo),
then one can apply the construction of (1.24) with p := f o d. Show that if X is a
length space withf(a + b) > f(a) +f(b) for all a, b> 0 and 1im1.of(t)/t = 1, then

= d.
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The Hopf-Rinow Theorem

In general, a length space need not be a geodesic space, even if the distance between
every pair of points is finite For example, the induced metric on the Euclidean plane
minus the origin is a length metric, but there is no geodesic joining x E JR2 — {O} to
—x The space in this example is not complete, and in fact if one restricts to complete
locally compact spaces, then a length space in which the distance between each pair
of points is finite must be a geodesic metric space. This was known to Cohn-Vossen
[CV35a] and proved earlier in case of surfaces by Hopf and Rinow [HoRi32] (see
also the Appendix in [Rh52]) For a more general statement of the Hopf-Rinow
Theorem, see Ballmann [Ba95, p.13-14].

3.7 Proposition (Hopf-Rinow Theorem). Let X be a length space If X is complete
and locally compact, then

(1) every closed bounded subset of X is compact;

(2) X is a geodesic space.

Proof We follow the treatment of [GrLP81]. For (1) it suffices to prove that closed
balls about a fixed point a E X are compact. Given r > 0, we denote by B(r) =
{x E X

I
d(a, x) rJ the closed ball with centre a and radius r. Consider the set of

non-negative numbers p such that B(p) is compact. This is an interval containing 0;
we claim that it is both open and closed. Because Xis assumed to be locally compact,
the interval contains a neighbourhood of 0. To see that it contains a neighbourhood
of each of its other points, we fix p 0 such that B(p) is compact, and use the
local compactness of X to cover B(p) with finitely many balls s1) such that each
B(x,, s1) is compact. There is a strictly positive lower bound, say, on the distance
from any point in B(p) to the closed set X N U B(x,, s,), and hence B(p + S) is a
closed subset of the compact set U B(x,, s,).

It remains to prove that if B(r) is compact for all r < p then B(p) is compact. It
suffices to show that every sequence of points x, E B(p) such that d(a, converges
to p has a convergent subsequence. We fix such a sequence

Let s,, be a sequence of positive numbers tending to 0. For each p and each n,
we can find a point such that d(a, < p — and < s,, (to see this
one chooses a path c of length smaller than d(a, + joining a to and then
chooses a convenient point on this path). For each p. the points are contained
in the compact ball B(p — hence we can extract from a convergent
subsequence from the sequence we can then extract a convergent

subsequence, and so on. Eventually, by a diagonal process, we obtain a sequence of
integers (nk)k€N such that the sequence converges for all p. We claim that
the corresponding sequence (xflk)k€N is Cauchy. Indeed, for a given s > 0, we can
choose p such that s,, < s/3 and then use the fact that the sequence is convergent
(hence Cauchy) to see that for large k, k1 we have < s/3, and hence
d(xflk,xflk,) < < s,, + s/3 + < s.
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We shall now prove (2). Let a and b be distinct points of X. For every integer
n > 1, there is a path c,, : [0, 1] X, parametenzed proportional to its arc length,
such that < d(a, b)+ 1/n. Such a family of paths is equicontinuous; indeed
forallt,t' E [0, 1]wehave:

—
—

— l(c,) d(a, b) + I

hence < s if It — < The image of each path is contained

in the compact set B(2 d(a, b)). By the Arzelà-Ascoli theorem (see below) there is a
subsequence of the converging uniformly to a path c : [0, 1] —÷ X. Finally,
by the lower semicontinuity of length (1.18(7)), we have

1(c) < = d(a, b).

But 1(c)> d(a, b), so in fact 1(c) = d(a, b), and therefore c is a linearly reparam-
eterized geodesic joining a to b. Li

3.8 Corollary. A length space is proper if and only if it is complete and locally
compact.

The argument used to prove part (2) of the preceding proposition shows, more
generally, that if two points in a proper metric space are joined by a rectifiable curve,
then among all curves joining them there is one of minimal length (see [Hi1900]).

3.9 Remark. The terminology 'proper metric space', introduced in (1.1), arises from
the fact that a metric space (X, d) is proper if and only if, given a base point xo e X,
the function x d(x, xo) is a proper map from X to JR in the usual topological sense,
i.e., the inverse image of every compact set is compact.

Because we shall have rather frequent need of it, we include a proof of the Arzelà-
Ascoli theorem. Recall that a sequence of from one metric space to another
is said to be equicontinuous if for every s > 0 there exists S > 0 such that for every
n e N, if d(x, y) < 8 then <s.

3.10 Lemma (Arzelà-Ascoli). If X is a compact metric space and Y is a separa-
ble metric space, then every sequence of equicontinuous maps : Y —÷ X has a
subsequence that converges on compact subsets) to a continuous map
f: Y X.

Proof We first fix a countable dense set Q = . .. } in Y. Then we use the
compactness of X to choose a subsequence such that the sequence of points

converges in X as n —÷ 00; we call the limit pointf(qi). We then pass to
a further subsequence to ensure that converges to some point f(q2), as
n oo. Proceeding by recursion on k, we pass to further subsequences ffl(k) 50
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that as n(k) tends to infinity converges to f(q,) for all j < k. The diagonal
subsequence has the property that =f(q) for all q E Q.

By equicontinuity, for every s > 0 there exists 8 > 0 such that if d(y, y') < S then
< s for all n So taking the limit, d(f(q),f(q')) s for all q, q' E Q

with d(q, q') Since X is compact (hence complete) it follows thatf has a unique
continuous extension Y —÷ X, which again satisfies this inequality.

It remains to show that the convergence tof is uniform on compact subsets.
Given s > 0 we choose S as above. Given a compact subset C Y we fix N > 0
so that for every y E C there exists < N with d(y, < S, then we fix M
sufficiently large so that d(f < s for all n > M and allj <N. Then, for
all y E C and all n> M we have:

< + +
<S + S + S.

Thusffl(fl) —÷ f uniformly on compact sets as n —+ 00.

3.11 Corollary. If X is a compact metric space and jfc, [0, 1] —÷ X is a sequence
of linearly reparameterized geodesics, then there exists a linearly reparameterized
geodesic c : [0, 1] X and a subsequence such that c as

n(i) —+ 00.

Proof For every n E N and all t, t' E [0, 1] we have d(c,(t), c,1(t')) < Dit — t'I, where
D is the diameter of X. Thus the are equicontinuous. A uniform limit of geodesics
is a geodesic.

Later we shall need the following variation on (3.11). It is important to note that
here it is not necessary to pass to a subsequence in order to guarantee convergence.

3.12 Lemma. Letx andy be points in aproper geodesic metric space X. Suppose that
there is a unique geodesic segment joining x toy in X; let c: [0, 1] —÷ X be a linear
parameterization of this segment. Let : [0, 1] —÷ X be linearly reparameterized
geodesics in X, and suppose that the sequences of points and 1) converge to

x and y respectively. Then, c, c uniformly.

Proof We fix R > 0 so that the image of each of the paths c,, lies in the (compact)
closed ball of radius R about x If the sequence c pointwise,
then there would exist s > 0, to E (0, 1) and an infinite subsequence c,1 such that

c(to)) > s for all n1. The previous corollary would then yield a subsequence
ofthec,. converging uniformly toalinearly reparameterized geodesic c' [0, 1] —+ X
joining x = to y = limc,1(1). But since d(c'(to), c(to)) > E, this would
contradict the uniqueness of c.

Thus c pointwise. Using the fact that c and are geodesic it is easy to see
that the convergence must be uniform. LI
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Let X be a uniquely geodesic space. Let c(x, y) denote the linear reparameteri-
zation [0, 1] X of the geodesic segment joining x to y. Geodesics in X are said
to vary continuously with their endpoints if c(x, y) uniformly whenever

x and yn Y.

3.13 Corollary. If a proper metric space X is uniquely geodesic, then geodesics in
X vary continuously with their endpoints.

The following exercise shows that the hypothesis of properness in the above
corollary is necessary.

3.14 Exercise. Let be the subspace of obtained by taking a sector bounded
by two arcs of great circles, each of length ,r, which meet at the north and south
poles, at an angle and then removing the open ball of radius I/n about the
north pole. with the induced length metric is a topological disc whose boundary
consists of three geodesic segments, two of which have length — let a,1 be one
of the latter segments. Let X be the space obtained by taking the interval [0, it] and,

for every integer n > 2, attaching Y,, to an initial segment of [0, in by an isometry
an [0, ,r — I]; endow X with the unique length metric that restricts to the given
metric on [0, and on each of the

Show thatX is complete, uniquely geodesic, and admits a(Lipschitz-1) contrac-
tion to a point, but that geodesic segments in X do not vary continuously with their
endpoints.

We close this section by noting a further application of the Arzelà-Ascoli theorem
in the spirit of the Hopf-Rinow theorem.

3.15 Definition. By a loop in a metric space X we mean a continuous map c : X.
Such a loop is called a closed local geodesic if there exists a constant A such that
d(c(O), c(O')) = A d(O, 0') for all sufficiently close 0, 0' E §1 (where the circle is

equipped with its usual length metric).

Recall that two loops c, c' X are said to be homotopic in X, and we
write c c', if there exists a continuous map F x [0, 1] —÷ X such that
F(9, 0) = c(9) and F(0, 1) = c'(9) for all 9 e S'. A space X is said to be semi-
locally simply-connected if every x e X has a neighbourhood such that each loop in
that neighbourhood is homotopic in X to a constant map.

3.16 Proposition. If X is a compact, semi-locally simply-connected, geodesic space,
then every loop c :

§1 X is homotopic either to a constant path or to a closed
local geodesic.

Proof The fact that X is compact and semi-locally simply-connected implies that
there exists r > 0 such that every closed loop of length less than r is homotopic to a
constant map. So if c is not homotopic to a constant map then £ — inf{l(c') c' c}
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is strictly positive. We choose a sequence of loops parametenzed by arc length,
c whose lengths tend to £. By the Arzelà-

Ascoli theorem (3.10), this sequence has a convergent subsequence; we must show
that the limit which is obviously a closed local geodesic, is homotopic to c. For
this, we choose n sufficiently large so that < r/4 for all 0 E S1, then
we fix Oo Gm so that < r/4 and < r/4 for
all i (indices mod m). Let p, be a path of length < r/4 joining to For
each i, one obtains a loop of length less than r by concatenating Pi, then Pi+ i
and with reversed orientation. A loop of such length is null-homotopic. It
follows that c 0

Riemannian Manifolds as Metric Spaces

We now turn our attention to the study of Riemannian manifolds from the metric
viewpoint. Recall that a Riemannian manifold is a differentiable manifoldX together
with an assignment of a scalar product to the tangent space to X at each point
x, such that these scalar products vary continuously with x. Such an assignment of
scalar products is called a Riemannian metric on X. More explicitly, in the classical
notation, if(xi are local coordinates (of class C1) in an open set U ofX then,
at each x E U, the scalar product on the tangent space is given by a formula of
the form

ds2 =
i.j=1

where the gq(x) are continuous functions on U. This means that, at each pointx E U,
if ii = u,(x)8/8x, and w = are two vectors in then their scalar
product is (viw)

If t c(t) is a differentiable path in X, then one writes è(t) E to denote its
velocity vector at time t, and Iè(t)I to denote its norm with respect to the given scalar
product on

3.17 Definitions. If c(t) and c'(t) are two continuously differentiable paths such that
c(0) = c'(O), then the Riemannian angle between them at c(0) is the angle between
the vectors è(0), ë(0) E TC(f)X, namely the unique a E [0, 7r] such that

(è(0) è'(O))
cosa =

Ic'(O)I

The Riemannian length lR(c) of a piecewise differentiable path c: [a, b] —÷ X is
defined by:

1b

IR(c)
= J

Ic(t)I dt.
a

3.18 Proposition (The Distance Function on a Riemannian Manifold). Let X be a
connected Riemannian manifold. Given x, y E X, let d(x, y) be the infimum of the



40 Chapter I 3 Length Spaces

Riemannian length of piecewise continuously paths c : [0, 1] —÷ X
such that c(0) = x and c(1) = y.

(1) disametriconX.
(2) The topology on X defined by this distance is the same as the given (man(fold)

topology on X.

(3) (X, d) is a length space.

3.19 Example. The simplest example of a Riemannian manifold is W with the
Riemannian metric

ds2 =

The associated metric is the Euclidean metric, i.e., the associated length space is

We shall often abuse terminology to the extent of referring to the length space (X, d)
defined in (3.18) as a Riemannian

Proof of 3.18. It is clear that d is a pseudometnc. To check that it is positive def-
inite, we fix p E X and consider a local coordinate system (x1 defined in
a neighbourhood V of p such that the map q (x1(q) x,1(q)) is a diffeomor-
phism of V onto an open set of W containing the closed unit ball centered at the
origin, and x(p) = 0 for i = 1,.. , n. Let U be the set of points q E V such that

< I. Suppose that in these local coordinates the Riemannian metric is
given by the expression

ds2 =
i j=1

We want to compare it with the Euclidean metric on U given by

Given q E U and u E TqX, we denote by dE(p, q) the Euclidean distance
and by (resp ui) the norm of u with respect to the metnc (resp ds2)

Let m (resp. M) be the infimum (resp. the supremum) of ui over all u E TqX

with IuIE = 1 and q EU. By compactness, we have m > 0 and M < c'o. And for all
u e T11(U), we have

mIuIE<iui<M1u1E.

Therefore, for each piecewise differentiable curve c in U, we have

m IE(c) IR(c) < MIE(c)

where IE(c) denotes the length with respect to the Riemannian metric
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In particular, ifcjoinsp to q, then IR(C) > m dE(p, q), hence d(p, q) > m dE(p, q)
On the other hand, if q U, then d(p, q) m. This shows that the pseudometnc d
is positive definite. Thus we have established (1).

The balls BE(P, r) := {q E U I dE(p, q) < r} form a fundamental system of
neighbourhoods of p for the given topology on the manifold X And for r < m, we
have

BE(P, r/M) c B(p, r) c BE(P, r/m).

Thus the given topology on X agrees with the topology associated to the metric d.

To prove (3), let d be the length metric associated to d. Given p, q E X and
s > 0, we can find a piecewise differentiable curve c joining p to q and such that
lR(C) < d(p, q)+s. And from the definition of length (1.18) it is clear that 1(c) < lR(C).

Hence —

d(p, q) d(p, q) 1(c) < IR(C) <d(p, q) + s.

As s is arbitrary, we conclude that d = d. LI LI

By combining the preceding result with the Hopf-Rinow Theorem (3.7) we ob-
tain:

3.20 Corollary. Every complete, connected, Riemannian is a geodesic
metric space.

3.21 Remarks. One can prove that the Riemannian length of any piecewise contin-
uously differentiable curve is equal to its length in the metric constructed in (3.18).
Indeed a similar statement is true for curves in any smooth mamfold endowed with a
continuous Finsler metric (see [BusM4l], [Rin6l]). Recall that a Finsler metric on a

smooth manifold X is an assignment to each tangent space of a norm; this norm
vanes continuously with x. Proposition 3.18 is also true for Finsler manifolds (with
the same proof).

In the same vein, we note that the Riemannian angle between two geodesics
issuing from the same point of a smooth enough Riemannian manifold is equal to
the Alexandrov angle between them. This will be proved in (II.1.A).

3 22 Remark A Riemannian isometry of a Riemannian manifold Xis, by definition, a
diffeomorphism of X whose differential preserves the scalar product on each tangent
space. A Riemannian isometry is obviously an isometry of the associated length
space (X, d). The converse is also true if the Riemannian metric is of class C2 (see,
for example, [He178])

If X is a Riemannian manifold and Y c Xis a smoothly embedded submanifold,
then the restriction to of the given scalar product on gives a scalar product
on the tangent space to Y at each point x E Y. Thus Y inhents a Riemannian structure
from X, and we can consider the associated length space, as defined in (3.18). We
note a consequence of (3.18):
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3.23 Proposition. Let X be a Riemannian a smoothly
embedded Then, the induced length metric on Y (as defined in 3.3)
coincides with the length metric associated to the Riemannian structure which Y
inherits from X.

A similar observation holds for Finsler metrics.

Length Metrics on Covering Spaces

A continuous map p : Y —÷ X between topological spaces is said to be a covering
map if it is surjective and every x E X has an open neighbourhood U such that

U is a disjoint union of sets (Ia such thatp restncts to a homeomorphism of each

(Ia onto U. Whenever one has a covering p: Y —÷ X, the covering space Y inherits
all of the local structure of the base X. For example, a covering space of a manifold is
again a manifold; given a covering of a complete Riemannian manifold, one can use
the covering map to pull back a complete Riemannian metric; if the base manifold is
non-positively curved, then the pull-back metric on the covering space will also be
non-positively curved. Similarly, since measuring the length of a curve in a metric
space is a purely local process, there is a natural way to pull back the definition of
length to covering spaces. The purpose of this paragraph is to make this last idea
precise. We also give a criterion for recognizing covering spaces; this will be needed
in Chapter 11.4.

3.24 Definition. Let X be a length space and let X be a topological space. Let
p : X —÷ X be a continuous map that is a local homeomorphism (i.e., every point

E X has an open neighbourhood U such that p maps U homeomorphically onto an
open set of X)4 Given a path c: [0, 1] —÷ X, we define its length 1(c) to be the length
of the curve p o c in X We define a pseudometric on X by setting the distance d(i,
between two points E X equal to the infimum of the length of paths in X joining
them. (One checks easily that provided X is Hausdorif, this is indeed a metric; it may
be infinite if X is not connected or if the given length metric on X is infinite) The
metric d is called the metric induced on X byp.

3.25 Proposition. Let X be a length space, and let X be a topological space that is
Hausdorff Let p : X —> X be a continuous map that is a local homeomorphism, and
let d be the metric induced on X by p.

(1) If one endows X with the metric d, then p becomes a local isometry.

(2) d is a length metric.

(3) d is the unique metric on X that satisfies properties (1) and (2).

Such a continuous map p : X —÷ X will also be called an étale map
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Proof For (1), we must show that, given i E X with image p(i) = x, if r > 0 is

sufficiently small then the restriction of p to B(i, r) is an isometry onto B(x, r). Let U
be an open neighbourhood such that the restriction ofp to U is a homeomorphism
onto its imagep(U) = U, and lets : U —> U be the inverse of PIV. Let r > 0 be
small enough so that B(x, 2r) c U. We claim that s restricted to B(x, r) is an isometry
onto r). Indeed, given y, z E B(x, r) and s E (0, r), since X is a length space,
there exists a path c joining y to z in B(x, 2r) of length smaller than d(y, z) + s;
its image under s is a path joining s(y) to s(z), hence d(s(,y), s(z)) < d(y, z) + s for
arbitrarily small s > 0. But, by construction,p does not increase distances, therefore
d(s(y), s(z)) = d(y, z). It remains to prove that s : B(x, r) —÷ r) is surjective. But
this is clear, because p o s restricts to the identity on B(x, r) and p does not increase
distances. This completes the proof of (1).

Becausep is a local isometry, the length of a curve in Xis the same as the length
of its image underp; assertion (2) follows immediately.

Ifd' is any metric on X that satisfies (1), then the identity map id : (X,d) —> (X, d')
is a local isometry, in particular it preserves the length of curves. So if d' is assumed
to be a length metnc then id : (X, d) —÷ (X, d') must be an isometry. LI

3.26 Definition. A metric space X is said to be locally uniquely geodesic if for each
point x E X there is an r > 0 such that every pair of points y, z E B(x, r) can be
joined by a unique geodesic in X and this geodesic lies in B(x, r).

3.27 Remarks.
(1) It is a classical theorem in differential geometry that a Riemannian manifold of

class C2, when considered as a metric space (see 3.18), is locally uniquely geodesic.
(2) If X is locally uniquely geodesic and proper then geodesics vary continuously

with their endpoints locally. That is to say, with the notation of the above definition,
geodesics in B(x, r) will vary continuously with their endpoints (cf. 3.13).

In the following proof we shall use the fact that if X is Hausdorif and if p X —÷ X
is a local homeomorphism, then p has the property that 'lifts are unique': iff andf'
are two continuous maps of a connected space Y into X such that p of = p of', and

iff(y) =f'(y) for some pointy E Y, thenf =f' on the whole of Y. To see that p has
this property, one simply notes that the set of points in Y at whichf andf' coincide
is both open and closed.

3.28 Proposition. Letp : X —÷ X be a map of length spaces such that

(1) X is connected,

(2) p is a local homeomorphism,

(3) the length of every path in X is not bigger than the length of its image underp,

(4) X is locally uniquely geodesic and geodesics in X vary continuously with their
endpoints locally, and

(5) X is complete.

Then, p is a covering map.
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Note that conditions (2) and (3) are satisfied if p is a local isometry

Pmof We first prove that given a rectifiable curve C: [0, 1]—* X and a point E X
such that p(i) = c(O), there is a unique path : [0, 1] —> X that is a lift of c at
in the sense that = i and = c(t) for all t [0, 1]. Suppose that such
a lift has been constructed over an interval [0, a). Let a) be a sequence of
points converging to a. By (3), we have < < As
the sequence of numbers l(cItO,,]) is Cauchy, is a Cauchy sequence in X, and
hence converges to a unique point, which has the properties required of Thus
the given lifting can be extended to the closed interval [0, a}; this shows that the
maximal subinterval of [0, 1] that contains 0 and on which a lifting exists is closed;
it is also open by condition (2), hence it is the whole interval.

As X is (path) connected, the argument of the preceding paragraph implies that
the restriction of p to each connected component of X is a surjection onto X. What
remains to be proved is that for every x E X there is a neighbourhood U of x such
that the restriction of p to each component of U is a homeomorphism onto its
image. We shall show that it suffices to let the role of U be played by any ball B(x, r)
which is uniquely geodesic, the geodesic segment joiningxto each pointy E B(x, r)
depending continuously of its endpoints.

Given such a ball, we fix a point i E and for each pointy E B(x, r) we
denote by : [0, 1] —÷ B(x, r) the linearly reparameterized geodesic joining x to y,
and we let denote the unique lifting of with = Let : B(x, r) —> X
denote the map y i-÷ 1). We claim that is a homeomorphism onto an open set
of X. By (2), it is sufficient to check that it is continuous at y.

Because p is a local homeomorphism, we can cover the image of cy with a finite
number of balls Bk C B(x, r), so that 1)/n, k/nD c Bk for k = I
and there exist continuous maps : Bk —> X with op equal to the identity on Bk
and sk(cy(t)) = for all t E [(k 1)/n, k/n]. As geodesic segments in B(x, r)
depend continuously of their endpoints, if > 0 is small enough then for all z with
d(y, z) < 8, we have 1)/n, k/n]) ç Bk. And we may define a continuous
map : B(y, 8) x [0, 1] —> X by: t) = sk(cz(t)) if t E [(k — 1)/n, k/ni; to see
that this map is well-defined and continuous, one observes that on the connected set
B(y, 8) x {tk/fl } the definitions using sk_ i and agree at (y, tk/,I) and hence everywhere
(because hypothesis (2) ensures that p has the property that lifts are unique). Since

i—÷ is a lifting of at i, it must coincide with Therefore the restnction of
s-T to B(y, 8) agrees with the continuous map z i—÷ 1); in is continuous
aty.

We have shown that r)) is the union of the open sets r)) where
E (x), and p restncted to each of thee sets is a homeomorphism onto B(x, r)

Finally we observe that these sets must be disjoint; for .c1(B(x, r))flsj'(B(x, r)),
then the lifts of beginning at i and i' both end at 5', hence they must coincide
and i = i'. Therefore p is a covering map. LI

3.29 Remark. An examination of the preceding proof shows that one can obtain the
same conclusion under the following alternative hypotheses.



Manifolds of Constant Curvature 45

(1') p is surjective,

(2') p is a local homeomorphism,

(3') the length of every path in Xis not bigger than the length of its image underp,

(4') for every x E X there exists r > 0 such that, for every y E B(x, r), there is
a unique constant speed geodesic : [0, 1] —÷ B(x, r) joining x to y, and
varies continuously with y, and

(5') for every E there is a continuous lifting [0, 11 —> X of with

(1) Give an example of a compact geodesic space that shows that condition (4') is
strictly weaker than condition (4). (Hint: Consider a cone with a small vertex angle)

(2) By adapting example (3.14), show that the continuity requirement in
tions (4) and (4') is necessary, even for locally contractible spaces (if one does not
assume that the space is proper).

Manifolds of Constant Curvature

3.31 Definition. By definition, an n-dimensional of constant curvature K
is a length space X that is locally isometric to In other words, for every point
x E X there is an s > 0 and an isometry 0 from B(x, s) onto a ball B(Ø(x), s) C

3.32 Theorem. Let X be a complete, connected, n-dimensional man of constant
curvature K. When endowed with the induced length metric (3 24), the universal
covering of X is isometric to

Proof The following proof is due to C. Ehresmann [Ehr54]. In the first part of the
proof we do not assume that X is complete.

By definition, a chart 0 . U —÷ is an isometry from an open set U c X onto
an open set 0(U) c If 0' : U' —÷ is another chart and if Un U' is connected,
then by (2.20) there is a unique isometry g E Isom(M) such that 0 and g o 0' are
equal on U fl U'.

Consider the set of all pairs (0, x), where 0 : U —> is a chart and x E U. We
say that two such pairs (0, x) and (0', x') are equivalent if x = x'and if the restrictions
of 0 and 0' to a small neighbourhood of x coincide This is indeed an equivalence
relation and the equivalence class of x) is called the germ of 0 at x. Let X be the
set of all equivalence classes, i e. the set of all germs of charts. Let f : X —÷ X and
D X —> be the maps that send the germ of 0 at x to x and 0(x) respectively.

Notice that there is a natural action of G = on X: is the germ of
0 at x and if g E G, then gi is the germ of g o 0 at x. The map b X —>

is G-equivariant: = b(g and according to (2.20), given E

there is a unique g E G such that g =
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There is a natural topology on k, called the germ topology, with respect to which
fr is a covering and b is a local homeomorphism. The basic open sets defining this
topology are where 0 : U —> is a chart and X is the set of germs of 0
at the various points of U. The restriction of f) (resp. b) to

U is connected then is the disjoint union
of the open sets where g E G. Thus) : X —> X is a covering map (and in
particular X is Hausdorff). Indeed f) : k —÷ X is a Galois covering with Galois gmup
G (meaning that G acts by homeomorphisms on X preserving the fibres of f) and
acting simply transitively on each fibre).

Choose a base point x0 E X and a chart 0 defined at x0. Let E X be the germ
of 0 at x0, and let X be the connected component of X containing Let p : X —* X
and D X —÷ M be the restrictions off) and D to X Let r C G be the subgroup of
G that leaves X invariant. Then p : X —> X is a Galois covering with Galois group
r and the map D is a local horneomorphism which is r-equivanant. If we endow X
with the unique length metric d such thatp is a local isometry (3 24), then D becomes
a local isometry.

Now we assume that X is complete. Then (X, d) is also complete, and (3.28) tells
us that D X —> M is a covering. As is simply connected and X connected,
D must be a homeomorphism. Thus X is simply connected (hence the universal
covering of X), and D is an isometry.

3.33 Remark The map D : X —> M constructed in the proof of (3.29) is called the
developing map of X, and the group r C Isom(M) (which is naturally isomorphic
to x0)) is called the holonomy gmup of X with respect to the germ (0, xo).

An analogous theorem with the same proof is valid for spaces with a (G, Y)-
geometric structure see III g. 1.11 where we consider the more general case of
orbifolds.
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In this chapter we return to the study of normed spaces, which were introduced bnefly
in Chapter 1

Hubert Spaces

4.1 Definition. A scalar pmduct (or inner-product) on a real vector space V is a
symmetric bilinear map V x V —> R, written (v, w) i-÷ (v

I
w), with the property

that (v
I

v) > 0 for all v 0. Associated to a scalar product one has a norm
liv II (v

I
and hence a metric. Apre-Hilbert space (or inner-product space)

is a real vector space V equipped with a scalar product; it is called a Hubert space if
the associated metric is complete.

In order to see that the above expression really does define a norm, we must verify
the triangle inequality. This is a consequence of the Cauchy—Schwarz inequality:
(v I w)I IIviI.IIwII. The validity of this inequality is clear if w = 0, and for the

general case one expands the right-most term of the expression 0 IIv AwII2 =
(v Aw

I
v — Aw) and sets the scalar A equal to (v

I
w)/(w

I
w).

Using the Cauchy—Schwarz inequality, we deduce the triangle inequality:

lu + wII2 = (v + w I v + w)
= 11v112 + (v I w) + (w I v) + 11w112 < iIvIV + 2IIvII.IIwII + 11w112.

4.2 Remark. The £2 norm on is the norm associated to the Euclidean scalar
product (x

I
y) := where x = andy = (yi The

associated metric space is E". The existence of orthonormal bases (as constructed
by the Gram-Schmidt process, for example) implies that every n-dimensional pre-
Hilbert space is isometnc to E".

A tnvial calculation with the scalar product shows that the unit ball in a pre-
Hubert space is stnctly convex, so by (1.6) we have:

4.3 Lemma. Every pre-Hilbert space is uniquely geodesic.
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Not every uniquely geodesic normed space is a pre-Hilbert space. Indeed, P.
Jordan and J. von Neumann [JvN35] proved the following metric characterization of
pre-Hilbert spaces.

4.4 Proposition (The Parallelogram Law). A norm II II on a real vector space V
arises from a scalar pmduct if and only the norm satisfies the parallelogram law:
for all v, w E V,

Ill) — w112 + liv + w112 = 2(11v112 + 11wl12.

If a norm does satisfy this condition, then one recovers the scalarproduct by setting

(V I w) = + w112 — liv — wll2).

Proof If the norm derives from a scalar product then

iiv+wIl2—Iiv—wii2=(v+wlv+w—(v—wlv—w=4(vlw).

Conversely, we show that if the norm satisfies the parallelogram law then the
following formula defines a scalar product:

(v
I

w) = + w112 liv — WV2).

It is clear that (v I w) = (w
I

v) and (v
I
u) = huh2 > 0, 50 it suffices to check

that when w is fixed, (v
I

w) is a linear function of v. Applying the parallelogram
law to the pairs of vectors (v' + w, v") and (u' w, v"), we get

lu' + v" + WV2 + liv' v" + wV2 = 2Vu' + WV2 + 211v"112

Iv' + v" — w112 + lu' v" — wII2 = 211v' — w112 + 211u"112.

Subtracting the second equality from the first and using the definition of the scalar
product, we find

(u' + v" w) + (v' — u" w) 2(u' w).

In particular if v' = u", since it is clear that (0
I

w) = 0, we have

(2v'
I

w) = 2(v'
I

and hence the above formula can be rewritten

, II F I(u +u w)+(v —u w)=r(2v 1w)

Replacing u' by I/2(u' + u") and v" by (1/2(u' — v"), we get

(u'
I
w)+(v"

I
w)=(v'+u" 1w) (*)

for all v', v", w E V
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We still have to check that (Ay
I

w) = A(u
I

w) for any real number A. The
equality (*) implies that this is true for any rational number, hence by continuity for
any real number. LI

There are important qualitative differences between the geometry of those norms
that satisfy the parallelogram law and those which do not. We note one important
difference concerning the notion of angle (1.12). For further differences and charac-
terizations of pre-Hilbert spaces see

Recall that the angle /(c, c') between two geodesics c, c' : [0, s1 —> X issuing
from a pointp in a metric space X, is lim c(t')), where c(t'))
is the vertex angle in the comparison triangle c(t), c'(t')) C

4.5 Proposition. A normed vector space V is a pre-Hilbert space if and only the

limit lim, to(c(t), c'(t')) exists for all pairs of geodesic rays c, c' issuing fmm
0 E V.

Pmof All linear segments in V are geodesics (1.6) and therefore every vector sub-
space of V is isometrically embedded. If V is a pre-Hilbert space, then every geodesic
ray c : [0, oc) —* V issuing from 0 E V is of the form t i—÷ tu (cf. (4.3)). By restrict-
ing our attention to the subspace spanned by any two such rays, we reduce to the
case V = 1E2, where it is clear that the stated limit exists

Conversely, suppose that the above limit exists for all pairs of rays issuing from
the origin in the normed vector space V. Given any two linearly independent unit
vectors U, U' E V, we consider the rays c, c' : [0, oc) —> V defined by c(t) = tu

and c'(t) = tu'. We claim that if to(c(t). c'(t')) exists and is equal to a, then
a = /o(c(t), c'(t')) for all t >0 and t' > 0. Indeed, a = /o(c(st), c'(st')),
and by the law of cosines, cos /o(c(st), c'(st')) + s2t'2 st'u'112),

which is independent of s.
To complete the proof we must show that V satisfies the the parallelogram law.

It is sufficient to check it for two linearly independent vectors v and w. Applying
the argument of the preceding paragraph to the normalized vectors u = v/Il vii and

= (u + w)/ilu ±wII, we see that the angles at 0 in the comparison triangles
u, v + w) and u, 1/2 (v + w)) are equal. The parallelogram law for u and

w follows easily from this observation, by the law of cosines LI

4.6 The Hubert Spaces £2(S). We first consider £2 (7Z), the set of bi-infinite sequences
of real numbers x = (xv) such that is finite. Let IIxM2 := We

claim that, when equipped with the term-wise operations of addition and scalar
multiplication, £2(7L) is a real vector space. That it is closed under scalar multiplication
is clear. And one sees that if x = and y = lie in £2(7L) then so too does
x + y = (x, + by observing that the triangle inequality in gives a bound on
the partial sums of x + y:

+y,I2)
+

1y112)
+ 11y112.
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We define a scalar product on £2(7L), with associated norm II 112, by: (x I y) :=
x,j',. The convergence of this sum is assured by the Cauchy—Schwarz inequality

for the Euclidean scalar product:

2

IxzYiI) Iy,I2 <

Now let S be any set We consider functions x S —> R. By definition, x(s)
is the supremum of the sums x(s) taken over the finite subsets C C S. If x(s)
is finite, then x(s) = 0 for all but countably many s E S (see [Dieu63] for example).

Let £2(S) be the set of functions x such that Ix(s)12 is finite. Arguing exactly
as in the case S = 7Z, we see that £2(S) is closed under the operations of pointwise
addition and scalar multiplication, and that when equipped with the scalar product
(x I y) := x(s)y(s) it is a pre-Hilbert space. The associated norm is denoted II 112.

4.7 Proposition. Let S be a set. The metric associated to the norm II 112 defined
above is complete, and hence £2 (5) is a Hubert space.

Proof Let d denote the metric associated to the norm 12. Let (x(m)) be a Cauchy
sequence in £2(S). Given s > 0, we fix N such that for all m, m' > N,

/2

X(m'))

=
— x(m')(5)12) <s.

Then X(m)(5) — x(m')(s)I < s for all s E S if m, m' > N, and hence for fixed s the
sequence of numbers (X(m)(s)) is Cauchy, with limit say. This defines a function

S —> R; we claim that E £2(S). From the above inequality we have that, for
all finite subset C C S

— x(m')(s)12 <

SEC

Fixing m and letting m' —> oo in this expression we get

— x°°(s)12 <
SEC

Hence X(m) — E £2(S), and therefore = — (X(m) — E £2(S). Since s
and C were arbitrary, the displayed inequality also shows that d(x(m), —÷ 0 as

Recall that a metric space X is said to satisfy a given condition locally (e g., "X
is locally compact") if for every x E X there exists s > 0 such that the closed ball of
radius s is (when equipped with the induced metric) a metric space which satisfies
the specified property (e.g., B(x, s) is compact).

4.8 Example. Let S be an infinite set. Let denote the sequence whose only
non-zero term is in position m, and this term is s. The infinite set

I
s E 5] is
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obviously contained in the closed ball of radius s about 0 E £2(S) but does not have

an accumulation point, thus £2(S) is not a locally compact space.

4.9 Exercise. Let d be the metnc associated to any norm on R", and let d2 denote
the Euclidean metric on R". Show that there exist constants M > m 0 such that
m d(x, y) < d2(x, y) < M d(x, y) for all x, y E Hence deduce that every finite
dimensional normed space is proper (and hence complete).

Further to the preceding example and exercise, we note that a classical result of
F. Riesz states that a normed vector space is locally compact if and only if it is finite
dimensional (see [La68, p.37] or [Dieu63, V.9]) We prove a particular case.

4.10 Lemma. A pre-Hilbert space is locally compact and only it is finite dimen-
sional.

Proof Suppose that V is an infinite dimensional pre-Hilbert space, with scalar prod-
uct (v

I
w). Let U2, ... be a linearly independent set of vectors. From this we

can construct an infinite sequence of orthonormal vectors, i.e., a sequence
such that (v,

I = (Kronecker's delta). In order to do so, we invoke the Gram-
Schmidt procedure: := II and, inductively, w,1 :=

I
v,) and

:=
Now, given any s > 0, we claim that the closed ball of radius s is not compact.

Indeed, the vectors sv,, form an infinite sequence contained in this ball, and the
sequence does not have an accumulation point, because if n m then SVm)2 =

— SVm I — SVm) = 262.

4.11 Example: The Space of Finite Sequences. We have noted that all finite di-
mensional pre-Hilbert spaces are actually Hilbert spaces. An easy example of a
pre-Hilbert space which is not a Hilbert space is provided by the space Co consisting
of those bi-infinite sequences of real numbers (x,1) all but finitely many of whose
entries are zero, this is a subspace of £2(7L), and one endows it with the induced
scalar product.

If x E £2(Z) is a sequence all of whose entries are non-zero, then one can obtain a
Cauchy sequence (gm)) in C0 by defining = if m> ml = 0 otherwise.
This Cauchy sequence does not have a limit in C0. Notice that this argument shows
that Co is dense in £2(7L).

Isometries of Normed Spaces

Let V be a normed vector space. Given any a E V, the map V —> V given by x i-÷ x+a
defines an isometry of V; we shall refer to this isometry as translation by a. The
abelian subgroup of Isom(X) formed by such translations is clearly isomorphic to
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the underlying additive group of V. We introduce the notation (.9(V) for the subgroup
of Lsom(X) consisting of those linear transformations of V that preserve its norm.

Recall that, given two groups G and H, and an action of H on G (i.e., a homo-
morphism H —> Aut(G), wntten h çü,,) one forms the semidirect product G x H
by endowing the set G x H with the operation (g, h) (g', h') = (gço,,(g'), hh'). For
the semidirect product referred to in part (2) of the following proposition, the action
of 0(V) on V is the obvious linear action.

4.12 Theorem. Let V be a normed iiector space.

(1) Eiiery isometry of V can be expressed uniquely as a linear transformation
followed by a translation.

(2) Isom(V) V x 0(V).

Proof The uniqueness assertion in (1) is clear, since the image of 0 under the given
isometry determines the translation whose existence is asserted By composing an
arbitrary isometry çü of V with the translationx i—÷ x— ço(O), we reduce the proof of( 1)
to showing that an isometry ço which preserves the origin is linear, i.e., ço(Ax) = Aço(x)
and = ço(x)+ ço(y) for all x, y E W and all A E JR. Mazur and Ulam [MaU132J
proved that any isometry of a normed space that preserves the origin is linear (see
[Bana32, XL.2] for a clearer proof). We shall give the proof only in the simple case
where V is uniquely geodesic.

The first of these equalities follows easily from the fact that the only geodesic
lines through 0 E V are the 1-dimensional subspaces of V, hence çü must map each
such line isometncally onto another such line. The second equality follows from
the fact that çü, as an isometry, must send the midpoint of a line segment to the
midpoint of the image segment (because such segments are the unique geodesics in
V). The midpoint of the unique geodesic segment joining x to y is (x + y)/2, hence
ço(x + y) = + y)/2) = 2ço(x) + = ço(x) + ço(y).

The decomposition in (1) allows us to express any q E Isom(V) as the product
of a linear transformation and a translation x i—÷ x + çü. We claim that the
map from Isom(V) to V 0(V) given by çü (ço(O), is an isomorphism. The
uniqueness assertion in (1) assures that this map is well-defined and injective. It
is clearly surjective, so it only remains to check that it is a homomorphism. Given
4, E Isom(V), the action on V is:

çtnfr(x) = +
= + + 4(0) = + +

So the in V x 0(V) is = (4(0),
L]

Of course, not all linear transformations of a normed real vector space are isome-
tnes. As we noted earlier, in the case of Euclidean space an n-by-n matnx A acts as
an isometry if and only if AtA = I, that is A E 0(n) Thus we have an alternative
proof of 2.24(1).
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4.13 Corollary. Isom(IE'1) JR'1 0(n).

S'1 is the set of vectors in JRn+i of Eucidean norm 1 The distance between two
points A, B E is the Euclidean angle between [0, A] and [0, B] at 0 E Since
this angle is arcsin of one half the Euclidean distance from A to B, any isometry of
lEn+l which fixes 0 must restrict to an isometry of In particular this is the case for
the action of 0(n). We obtain an alternative proof of 2.24(2) by showing that these
are the only isometries of SRI:

4.14 Proposition. Isom(S'1) = 0(n + 1).

Proof We must show that every isometry of 5n c can be extended to an
isometry oflEn+l Given an isometry q of the desired extension to is given
by writing each x E in polar coordinates where is a unit vector and

> 0 is a number; one defines = tço(v) Hence = for all x E
Furthermore, since q is an isometry of if we write cr(x, y) for the angle at the
ongin between the line segments [0, xl and [0, yl, then for all x, y E JRn+l we have

= co(vy)) = = cr(x, y). But then, applying the law of
cosines to the Euclidean tnangle with vertices 0, x, y, we can express the Euclidean
distance between x and y in terms of the co-invariant quantities and cr(x, y):

d(x, y)2 = + — cos cr(x, y).

4.15 Exercises
(1) Show that every linear transformation of a pre-Hilbert space V which pre-

serves orthogonality is a homothety, i.e., there exists a constant A > 0 such that
4(w)) Ad(v, w) for all v, w E V

(2) Prove the Mazur-Ulam theorem [MaU132] for finite dimensional spaces.

Spaces

In this paragraph we descnbe an important class of uniquely geodesic normed spaces
that are not Hilbert spaces. Given p 1 and a vectorx = (xi xn) in W, the
norm of x is defined by:

=
ixiv')

The associated metric is denoted It is obvious that
II is a norm, but less

obvious forp> 1.

4.16 Proposition. For every n E N and every real number p> 1, the map x i-÷
defines a norm on In particular; for any two non-zero vectors x, y E we have
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lix + ylip IIxIIp + Ilylip.

Furthennore, one has equality in this expression if and only if x is a positive multiple
of y, hence for all 1 <p < oo, the metric space (1W', associated to the norm
is uniquely geodesic.

Proof To check the triangle inequality, one considers the real number q> 1 defined
by

i/p + 1/q = 1

We claim that for any real numbers a> 0, b> 0, one has

a/p + b/q (1)

with equality if and only if a = b. The non-tnvial case is when a > 0 and b > 0.

Then, since the function log: [0, oo) —> JR is strictly concave, we have

log(a/p+b/q) i/p loga+ 1/q logb

with equality if and only if a = b. Composing both sides of this inequality with the
strictly increasing function exp, we get a/p + b/q with equality if and
only if a = b.

Recall that, given two vectorsx = (xi andy = (Yi in W, we
have the Holder inequality

iixiipiiyiiq. (2)

We shall verify this inequality for the non-trivial case x 0, y 0. Applying
inequality (1) to a, = and b, = we have

-I—f--- i/p + 1 /q
iiXIIp iiYiIq iiYiiq

Summing over i = 1, . . . , n, we then get the HOlder inequality and see that equality
holds if and only if a = b, for each i.

We are now ready to prove the triangle inequality for One has for each
i=1 n

1x11 + iyji (3-i)

From the Holder inequality we get

I/p I/q

(4)

I/p I/q

(5)
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hence,as(p—1)q=p,

I/p I/p I/q

< +

which leads to the tnangle inequality.
In the above tnangle inequality, equality can occur if and only equality occurs

simultaneously in (3-i), (4) and (5). Equality in (3-i) implies that x, and have the
same sign and that if x and y are non-zero then x + y is also non-zero. Equality in (4)
and (5) implies that

lxi +

—

I n, hence x has to be a positive multiple of y. Hence, by (1.6),
(W, is uniquely geodesic for all 1 <p < oo.

4.17 The Banach Spaces LP(S). Let S be a set. Let LP(S) denote the set of maps
x S —> R such that is finite (cf. 4.6). Define =
We claim that, when equipped with the term-wise operations of addition and scalar
multiplication, tn(S) is a real vector space. That it is closed under scalar multiplication
is clear. In order to see that if x, y E tn(S) then x + y E LP(S), one uses the tnangle
inequality in (W, to bound the sums over finite subsets C C 5:

/ \l/P / \1/P / \i/P
lx(s) + Y(s)l") < + < +

SEC SEC / SEC

This establishes the triangle inequality showing II Ito be a norm on LP(S). By
arguing as in the preceding proposition one see that the associated metric space is
uniquely geodesic if and only if p > 1.

4.18 Proposition. For every set S and every real number 1 <p < oo, the metric
space associated to tn(S) is complete. In other words, tn(S) is a Ban ach space.

Proof Modulo obvious changes of notation, the proof of Proposition 4.7 applies
verbatim. LI
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In this section we describe some basic constructions that allow one to manufacture
interesting new metric spaces out of more familiar ones. We consider whether such
properties as being a geodesic space are preserved by these constructions. Each of
the constructions which we consider here will play a significant role in Part II.

Products

5.1 Definition. The product of two metric spaces X1 and X2 is the set X1 x X2
endowed with the metric:

d((x1,x2),(y1,y2))2 =d(xi,yi)2+d(x2,y2)2.

For example, x is isometric to

In the proof of the next proposition we shall need the following charactenzation
of geodesic segments.

5.2 Exercise. Let X be a metnc space. A continuous path c : I —÷ X is a linearly
reparametenzed geodesic if and only if d(c(s), c(t)) = 2 d(c(s), c((s + t)/2)) for all
s, t E I; in other words c((s + t)/2) is a midpoint of c(s) and c(t).

5.3 Proposition. Let X be the product of the metric spaces X1 and X2.

(0) X is complete if and only if both X1 andX2 are complete.

(1) X is a length space if and only if both X1 and X2 are length spaces.

(2) X is a geodesic space if and only if both X1 andX2 are geodesic spaces.

(3) LetI JR beacompactinterval. Themapc I —÷ Xgivenbyt i—3 c2(t))
is a linearly reparameterized geodesic and only if the maps cI and c2 are
both linearly geodesics.

(4) An isometry y E Isom(X) decomposes as a product (yl, with Yi E Isom(X1)

and Y2 E Isom(X2), if and only for every x1 E X1 there exists a point denoted
yI(xi) EX1 such that y({x1} x X2) = {yI(x!)} x X2.
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Proof Assertion (0) is obvious. We first prove (1). The projection of X onto X1 is
distance-decreasing and hence length-decreasing, and it restricts to an isometry on
slices of the form X1 x {x2 }. From this observation it follows easily that if X is a length
space then so too is X1 (and similarly X2). For the converse, given (x1, x2), Y2) E X
and s > 0, we fix paths Cl [0, 1] —÷ Xi and c2 [0, 1] —> X2 joining xi to y'
and x2 to Y2 respectively, chosen so that 1(ci)2 < d(xi, yi)2 + 82/2 and 1(C2)2 <
d(x2, y2)2 + 82/2, and parameterized proportional to arc length. Consider the path
c: [0,1] —* Xdefinedbyc(t) = (c1(t),c2(t)) Thispathjoins(x1,x2)to(y1,y2)and,
according to (1.20), has length d(c(i/n), c((i + 1)/n)). Because c1 and
C2 are parametenzed proportional to arc length, for all n > i> 0 we have that

d(c(i/n), c((i + l)/n))2

d(ci(i/n), c1((i + 1)/n))2 + n2 d(c2(i/n), c2((i + 1)/n))2

d(xi, yi)2 + 82/2 + d(x2, y2)2 + 82/2

= d((xi,x2),(y1,y2))2 +s2.

Hence, n d(c(i/n), c((i + 1)/n)) < x2), (yi, Y2)) + s for all n > i > 0, so
1(c) < d((xi, x2), (yi, Y2)) + s. Since s was arbitrary, this shows that X is a length
space.

Assertion (2) follows immediately from (3). A trivial calculation shows that if Cl
and c2 are linearly reparametenzed geodesics then so too is c. For the converse we
apply critenon (5.2). To this end, given t, s I, we let x = (xi, x2) := (c1 (t), c2(r))
andy = Y2) := (c1(s), c2(s)), and we denote the rmdpoint (ci((t + s)/2), c2((t +
s)/2)) by m = (m1, m2) We must show that

d(mi,yi)=

If two numbers a, b E [0, 1] satisfy a + b = 1, then a2 + b2 > 1/2, with equality if
and only if a b = 1/2. Combining this with the triangle inequality, we have

<d(xi,rni)2+d(rni,yi)2,

with equality if and only if y1) d(x1, rn1) = d(mi, yi) Adding this to the
similar inequality forx2, m2, we obtain:

d(xi,m1)2+d(x2,m2)2+d(m1,yi)2+d(m2,y2)2.

The left hand side of this inequality is equal to y)2 and the right hand side
is equal to d(x, rn)2 + d(y, rn)2. But since c is a linearly reparametenzed geodesic,
d(x, rn) = d(y, rn) = y). Thus all of the above inequalities must actually hold
with equality, and in particular d(mi, = yi).

The necessity of the condition given in (4) is clear. In order to see that it is
sufficient, we assume that y is an isometry of X1 x X2 mapping {x1 } x X2 onto
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{Yi (x1 )} x X2 for each x1 E X1. Notice that the map x1 i—3 (xi) must be an isometry
of X1. Indeed its surjectivity follows from that of y, and it is distance preserving
because for all x1, Yi E X1

d(xi,yi)=inf{d((xi,x2),(yi,y2)) 1x2,y2 EX2}.

If we now show that the map x2 i—÷ y2(x2) of X2 to X2 defined by (y1(x1), y2(x2)) =
y(x1, x2) is independent of xi, then we can apply the preceding argument to see that
it too must be an isometry

Suppose that y maps(x1,x2)to(y1(x1), y2(x2)) and (yI,x2)to
(yi(yi), We have to check that y2(x2) = But,

d(xi, yi)2 = d((xi, x2), (yi, x2))2

=d(y(x1,x2), y(y1,x2))2

= d(yi(xi), yi(yi))2 + d(y2(x2),

=d(xi,yi)2 +d(y2(x2),

Hence d(y2(x2), = 0, as required.

5.4 Remark. Given any finite number of metric spaces (X1, d1) d,1), one

can consider their product X with the metric in which the distance from x =
(x1

d(x,y)2 >d1(xi,yj)2.

If 1 m < n then the natural bijection X, x —> X,, is an
isometry. And by induction on n (or directly) one can prove the analogue of (5.3) in
this more general setting

5.5 Exercises

(1) One might describe the space constructed in (5.4) as the £2-product of the
spaces (X,, d1). More generally, for any 1 p < oo, one can define an tn-metric on

117=1 by the formula

=

Using the properties of the ta-norm in JR'1. prove that d is a metric and that the
analogues of(5.3) parts (0) to (3) are valid if 1 <p < oo.

(2) Consider now the product HjEN X, of countably many metric spaces (X1, d,)
Prove that the function which associates to x = (x,), y = (y,) E HjEN the number
d(x, y) E [0, aol defined by

d(x,y) = >dj(xj,yj)2
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is a metric on HjEN X In order to get a metric with values in [0, oo) one must choose
a sequence of basepoints x, E X, and consider only those sequences (yj) that are a
finite distance from (x,). This subspace is called the £2 -product of the pointed spaces
(X,; x,). Which parts of (5.3) have valid analogues in this setting?

Check that if X- = JR for each i, and we choose 0 E X as the basepoint for each
i, then then £2-product is isometric to

ic-Cones

The purpose of this section is to describe an important construction which is es-
sentially due to Berestovskii [Ber83] (see the article by Alexandrov, Berestovskii
and Nikolaev [A1eBN86]). In order to offset the rather technical appearance of this
construction, we first recall the law of cosines in the model space (see 2.12);
this indicates the origins of the definition that follows. We also draw the reader's
attention to (5.8).

Let y be the angle between two geodesic segments [xo, xi] and [x0, x2J in
Let a = d(xo,xi), b = d(xo,x2) and c = d(xi,x2) If K > 0 then assume that
a + b + c <2DK. With this notation:

forK=0 : c2=a2+b2—2abcos(y)

forK <0 :
— cos(y)

for K > 0 : = + cos(y).

5.6 Definition (The K-Cone over a Metnc Space). Given a metric space Y and a real
number K, the K-cone X = CKY over Y is the metric space defined as follows. If
ic <0 then, as a set, X is the quotient of [0, oo) x Y by the equivalence relation given
by: (t, y) (t', y') if (t = t' = 0) or (t = t' > 0 and y = y'). If K > 0 then X is
the quotient of[0, DK/2] x Y by the same relation. The equivalence class of(t, y) is
denoted ty. The class of (0, y) is denoted 0 and is called the vertex of the cone, or the
cone point.

Let d(y, y')}. The distance between two points x = ty and
= t'y' in X is defined so that d(x, x') = t if x' = 0 and so that x')) =

y') if t, t'> 0. This is achieved by defining:
for K = 0:

d(x, x')2 = + t'2 — 2tt' y')),

for K <0:

x'))

= y')),
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and for K > 0:

d(x, x') <DK and

x')) = + y')).

For K = 0, the ic-cone over Y is also called the Euclidean cone over Y. We shall
prove in Proposition 5.9(1) that these formulae do indeed define a metnc on X (it is
only the tnangle inequality that is not obvious).

5.7 Remarks. In the notation of the preceding definition: if t, t' > 0, then d(x, x') =
+ t' if and only if d(y, y') > This observation has two consequences First, if

one replaces the given metric d on Y by the metric then the induced distance
function on X = CK Y remains unaltered. Notice that one can recover the metnc
on y from the distance function on X, because if x = ty, x' = t'y' witht, t' > 0, then

y') = x'). It follows that, since the length metrics d and agree on Y,
one can recover the metric on Y from the distance function on X under the added
hypothesis that Y is a length space.

Secondly, a path c : [—t1, t21 —> CK Y, where t1, t2 > 0 and c(O) 0, is a
geodesic if and only if there exist y2 E Y such that d(y1, Y2) > ,r, c(—s) = syi
fors E [0, t111 and c(s) = fors E [0, t21.

The above definition is motivated in part by the following example.

5.8 Proposition. If Y is the sphere then X = CKY is isometric to if K 0,

anda closed ball of radius DK/2 in if K > 0.

Proof Let o be a point in identify to the unit sphere in the tangent space
and let exp0 : —> be the exponential map (see 6.16). Then the

map CKS —> which sends the class of (t, y) to exp0(ty) is an isometry onto
if ic 0, and an isometry onto the closed hemisphere centered at o if ic > 0.

This follows from the definition of the metric on and the law of cosines in

5.9 Proposition.

(1) The formulae in (5.6) define a metric on X = CKY.

(2) Y is complete if and only if X is complete.

Proof (1) Consider three points x = i = 1, 2, 3 in X. We want to prove that
d(xi , x3) <d(xi, x2) + d(x2, x3). This is easy to check if one of the t, isO, because in
that case the assertion follows from the triangle inequality in

Assume that t > 0 for i = 1, 2, 3. We consider two cases.

Case): d(y1,y2)+d(y2,y3) <7t
It follows from the tnangle inequality in Y that d(y1, < Consider three

points inS2 such thatd(y,, Yj) = for i,j {1, 2, 3}. As in (5.8), the
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subcone CK{y!, Y2} is isometric to the subcone CK{y1, y3} c CK(S2) c so
we may appeal to the triangle inequality in

Case 2: d(y1, y2) + d(y2, > 7t.
Consider three points y3 occurring in the given order on the circleS' such

that Y2) = Y2) and d(y2, = y3). We identify CKS' to if
ic < 0 and to a closed hemisphere in jfK > 0. If i 1,2,3, then
d(xj, x2) = and d(x2, x3) = and d(xi, x3) <t1 + t3. As

,r, by Alexandrov's lemma (2.16) we have t1 + t3

Therefore, d(xi, x3) <d(xi , + d(x2, x3).

(2) Assume that X is complete. Given a Cauchy sequence in Y, let
where t0 > 0 and r0 < DK if K > 0. From the definition of the metric on X, one sees
immediately that is a Cauchy sequence in X, and hence converges to some point
a distance to from 0, let us say toy. Then, y =

Conversely, assume that Y is complete. Let = be a Cauchy sequence in
X which does not converge to 0 E X. Since it is Cauchy, this sequence is contained
in a ball of finite radius about 0 E X, in other words the are bounded. Passing to a
subsequence, we may assume that they converge, to t 0 say. For sufficiently
close to t, one can estimate in terms of Xm), thus is Cauchy, and
hence converges, to y say. It follows that a subsequence of the Cauchy sequence

converges to ty.

5.10 Proposition (Charactenzation of Geodesics). Let x, = tiyi and x2 = t2y2 be
elements of CK Y.

(1) If 12 > 0 and d(yi, < 7t, then there is a bijection between the set of
geodesic segments joining to in Y and the set of geodesic segments joining
x1 to x2 in X.

(2) In all other cases, there is a geodesic segment in X joining x, to x2; this segment
is unique, except possibly in the case where K > 0 and d(xi , = DK.

(3) Any geodesic segment joining x1 to x2 is contained in the closed ball of radius
max{t1, t2} about the vertexO E CKY.

Proof (1) Consider a geodesic segment [yI, Y21 c Yjoining to The subcone
CK [yi, y21 c Y is isometric to a sector in which is convex, hence there is a
geodesic segment joining x1 to x2 which is contained in CK [yi, y21.

For the converse, we consider a geodesic segment [xi, x21 Xjoining x1 =
to x2 = t2y2; let x = ty be an arbitrary point of [xI,x2]. Notice that t > 0, for
otherwise d(xi, x2) = t1 + t2, and this would imply d(yj, > contrary to the
hypothesis. Therefore the projection ty i—÷ y of [xi, x2] into Y is well-defined; we
want to prove that the image of [xi, x2J under this projection is a geodesic segment
joining yi to in Y. For this it is sufficient to prove that d(yi, y)+d(y,y2) = d(y1,

To check this equality, we consider in comparison tnangles =
for (0, x, xi) and = 1, for (0, x, x2), and we assume that these triangles
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are arranged so that and 12 are on opposite sides of the common segment [0,11
(cf. Alexandrov's lemma). Note that the vertex angle of at 0 is equal to d(y1, y) and
the vertex angle of at 0 is d(y, y2). As d(i1, 1) + = d(xi, X2) < 11 + =
d(O, ii)+d(O, 12), we have d(y1, y)+d(y, y2) <ir. Let x1 , X2) be a comparison
triangle in for (0, x1, x2). The angle at 0 is d(y1, Y2). By the law of cosines 2.13,
since x2) we have y) + d(y, y2) < Y2). The reverse
inequality is simply the tnangle equality in Y, hence Y2) = y) + d(y, y2).

(2)Ifwearenotincase(1),thend(x1,x2) = t1+:2andthepathc: [0, t1+t21 —÷ X
that sends! e [0, t (t a geodesic path joining
x1 to x2 We must prove that this is the only geodesic segment joining x1 to x2, if
ti + t2 <Jr/K. Ifti = 0 or!2 = 0, it is easy to see that this is true, so we need only
consider the case where > 0 and Y2) > ir.

It is sufficient to prove that if x = ly satisfies d(xi, x) + d(x, x2) = d(xi, x2), and
d(xi, x) <ti, theny = Yi. As in the proof of (1), we construct the two comparison
tnangles and in The vertex angles at 0 of and are respectively

and and so the sum of these two angles is not less than Jr. But
d(i1, 0) + d(O, x2) = d(x1 , X2) = d(i1, 1) + d(Tx, 12) (and this sum is smaller than
2DK if K > 0). Such an equality is only possible if both of the tnangles and
are degenerate, in which case x = tx1.

Part (3) follows from the convexity of balls in (see the beginning of the proof
of(1)). 0

As with the other constructions considered in this section, it is natural to ask
whether the cone over a geodesic space is again a geodesic space; conversely, one
might ask whether knowing that the cone over a space is geodesic, one can deduce
that the space itself is geodesic. In the latter case, one sees immediately that the
answer is no, because as we noted earlier, the isometry type of CK Y is not changed if
one truncates the metric on Y at any value ir. However, one can obtain a positive
result by taking account of this phenomenon.

Recall that a subset Y of a metnc space X is said to be convex it every pair of
points in Y can be joined by a geodesic segment and every such geodesic segment is
contained in Y.

5.11 Corollary. LetX be the K-cone CKY over a metric space Y. Then the following
conditions are equivalent:

(1) X is a geodesic space;

(2) any ball in X centred at the vertex of the cone is convex;

(3) there is an open ball centred at the vertex of the cone which is convex;

(4) Y is Jr -geodesic.

The equivalence of (1) to (4) remains valid one replaces "geodesic" by
"uniquely geodesic" and "convex" by "convex and uniquely geodesic ".

Proof Part (3) of the preceding proposition shows that (1) (2) (3). If we
know that a ball of radius 2t > 0 centred at the vertex of the cone is convex, then



Sphencal Joins 63

Y with d(y1,y2) < ir, then any points of the forrnx1 = lyi andx2 = 1y2

can be joined by a geodesic in X and hence, by part (1) of the preceding proposition,
there is a geodesic joining Yl to Y2 in Y. Thus (3) (4). Part (1) of the proposition
also shows that the ball of radius t about the cone point is uniquely geodesic if and
only Y is uniquely it-geodesic.

Assume that Y is ir-convex. Consider two points x1 = and x2 = t2y2 of
X. If ti > 0, t2 > 0 and d(y1, Y2) <Jr. then according to part (1) of the preceding
proposition, each geodesic segment joining Yl to Y2 corresponds to a geodesic joining
x1 tox2. And in all other cases, d(xi, x2) = t1 +12 and part (2) of the preceding applies.
Thus (4) (1). 0

5.12 Exercises

(1) Show that if Y is a length space then CKY is a length space.

(2) Let (Y, d) and (Y', d') be length spaces. Prove that every isometryf: CK1' —÷

C,. Y' that sends the cone point to the cone point, induces an isometry (Y, d) —÷ (Y, d').

Spherical Joins

The product construction allows one to obtain from the pair of spaces (IE",
In this paragraph, we describe a method for combining pairs of metric spaces which
when applied to the pair (Sn §tfl) yields §n±m±I• This construction, which is called
the spherical join, is due to Berestovskii [Ber83J (see also [CD931).

5.13 Definition. Let (Y1,d') and (Y2,d2) be two metric spaces. As a set, their
spherical join Y1 * Y2 is [0, ir/2] x Y1 x Y2 modulo the equivalence relation
which identifies (9, y2) to (9', , y'2) whenever [(9 = 9' = 0) and =
or [(9 = 9' = ir/2)andy2 = y] or [9 = 9' {O,ir/2}andy1 = = y'2].
The equivalence class of (9, yi, Y2) will normally be denoted (cos 9 + sin 9 y2).
Sometimes we shall denote the class of (0, Y2) (resp. (ir/2, yi' Y2)) simply by Yi
(resp. thus implicitly identifying Y1 and to subsets of Y1 * Y2.

We define a metnc d on * Y2 by requiring that the distance between the points
y = (cos 9 + sin 9Y2) andy' = (cos + sin be at most it, and thatd satisfy
the formula

cos(d(y, y')) = cos 9 cos 9' y'1)) + sin 9 sin 9' (y2, y'2)).

5.14 Remarks

(1) If one equips Y1 and with the truncated metrics 4 and 4, then the natural
inclusion of each space into Y1 * is an isometry onto its image.

(2) If Y1 is a single point then Y1 * Y2 is naturally isometric to the cone C1 Y2.
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The fact that the formula in (5.13) does indeed define a metric on Y1 * is

implicit in the following proposition.

5.15 Proposition. For any metric spaces Y1 and Y2, there is a natural isometry of
C0(Y1 * 1'2) onto C0Y1 x CoY2.

Proof Consider the map : Co(Y1 * Y2) —÷ CoY1 x CoY2 defined by

yi + sin9 Y2)) = (tcos9 yi, tsin9

We claim that is an isometry. Given two points x = t(cos9 + sin9 Y2) and
x' = t'(cos9'y1 + in Co(Y1 * 1'2),

d(x, x')2

= t2 + t'2 2tt'(cos 9 cos 9' + sin 9 sin 9' (y2,

On the other hand,

= t2cos29 +tF2cos29/ 2tt'cos9

+ t2 sin2 9 + sin2 9' — 2tt' sin9 sin9'

These expressions are obviously equal. E

5.16 Corollary. There is a natural isometry from S" * to

Proof y = is the only geodesic space with CoY = JEn+m+2 = x
D

5.17 Exercise. Let X and Y be non-empty metric spaces. Prove that X * Y is path-
connected and give an example where it is not locally connected. Prove that if X is
path-connected and Y is non-empty then X * Y is simply-connected.

Quotient Metrics and Gluing

A natural way to construct interesting new metric spaces is to take a disjoint collection
of known metric spaces and glue them together. The purpose of this section is to give
a precise meaning to this idea. The two basic ingredients of the discussion are the
notions of disjoint union and quotient pseudometric.

5.18 The Disjoint Union of Metric Spaces. Let (Xi, dx)AEA be a family of metnc
spaces. Their disjoint union X = is the metric space whose underlying set
is the disjoint union of the sets XA (i.e. the set of pairs (x, A) with A e A and
x e )(A) and whose distance function d is defined by d((x, A), (x', A)) = dA(x, x') and
d((x, A),(x', A')) = oo if A A'.
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Most of the time we shall simply declare that the spaces are disjoint, meaning
that we implicitly identify each with a subset of the disjoint union by the map
x (x, A).

5.19 Quotient Pseudometncs. Let X be a set with an equivalence relation —, let
X = X/— be the set of equivalence classes and let p X —÷ Xbe the natural
projection. Associated to any metric d on X there is a pseudometric d on X defined
by the formula:

=

where the infimum is taken over all sequences C = (x1 , x2, . of
pointsofXsuchthatx1 fori= 1 n—i. Sucha
sequence will be called an n-chain joining i to and its length 1(C) is defined to
be d(x,, y1). Using the tnangle inequality for d, we see that there is no loss of
generality in assumingy1

It is obvious that d is symmetric and satisfies the triangle inequality, but in
general d is only a pseudometric rather than a metric (for instance if there is an
equivalence class which is dense in X then d is identically zero). We call d the
quotient pseudometric associated to the relation —. Note that <d(x, y) for all
x, y e X.

5.20 Lemma. Let (X, d) be a length space, let be an equivalence relation on X
and let d be the quotient pseudometric on X = X/—. If d is a metric then (X, d) is a
length space.

Proof Suppose that is a finite positive number a. Given £ > 0, one can find an
n-chain joining to such that d(x1, <a+s/2. Because d is a length metric,
for each i = 1,. ., n there exists a continuous path c : [0, ii —÷ X of length smaller
than d(x,, y1) + s/n such that c,(O) = x, and c,(1) = y1 Because < d(x, y)
for all x, y e X, the Jength of the path in X which is the concatenation of the paths

c, is a curve in X of length smaller than a + sjoining to E

5.21 Examples

(1) If X is a closed interval in R of length a and is the equivalence relation
identifying the extremities of this interval, then the quotient (X, d) is isometric to a
circle of length a.

(2) Let X = Uz where each I,, is isometric to the the unit interval [0, iJ. Let
be the equivalence relation that identifies the initial point of with the terminal

point of for each n e Z. The quotient d) is isometric to R.

(3) (Metric graphs.) We use the notation of (i .9). The metric graph associated to
a combinatorial graph g with edges E, vertices V, endpoint maps a0, E —÷ V,
and length function A : E —÷ (0, oo) is the quotient of V U UeEe([O, A(e)J x (e}) by
the equivalence relation generated by (0, e) a0(e) and (A(e), e) (e).



66 Chapter 1.5 Some Basic Constructions

(4) Let X be a sector in the Eucidean plane (resp. the hyperbolic plane) which
is the convex hull of two geodesic rays c and c' with c(O) = c'(O) = xo that form
an angle a < jr. On X we consider the equivalence relation generated by c(t)
c'(t), Vt e [0, oo). Then the set X of equivalence classes with the quotient metric is
isometric to the Euclidean cone (resp. the hyperbolic cone) over a circle of length a.

(5) Let X be a length space and let A e A) be a family of open subsets such
thatX UA UA Xbethenaturaiinclusionandleti: U, —÷ Xbe
the induced map on the disjoint union. Then X is naturally isometric to the quotient
of UA by the equivalence relation [x x' if i(x) = i(x')]. (It is easy to see that
the natural map from the quotient to X preserves the length of paths.)

(6) Given an action of a group F by isometries on a metric space X one can define
an equivalence relation by x y if and only if there exists y e F such that y x = y.
The quotient space X is the set of F-orbits and the quotient pseudometric is given
by the formula: d(i, j) = inf(d(x, y)

I
x e i, y e j}. In other words, one need only

consider 1-chains. Indeed any n-chain C = (XI, x2, Y2 with n > 1 and
y' = y.x2 canbereplaced by the(n — 1)-chain(x1, y.x3, yy3 Y.Xn,

whose length is not bigger than 1(C).
If the action is free and proper (see 8.2), then the projection p : X —÷ F\X = X

is a covering and a local isometry.

(7) In (3.24) we described how, given a length space (X, d) and a local homeomor-
phism p: Y —÷ X, one can construct an induced length metric d on Y. The quotient
of Y by the equivalence relation [y y' if p(y) = p(y')] is naturally isometric to X.

In symbols, d = d.

5.22 Exercises

(1) In the following examples, describe the geodesics and the balls in the corre-
sponding quotient metric space.

(i) Consider a circle S in E2 and the equivalence relation on 1E2 generated by [x y
ifx,y eS].

(ii) LetS be as above but now consider the equivalence relation generated by [x y
if x andy are antipodal points on S].

(2) Let F be a group acting by isometries on a metric space X Assume there is
a closed convex set F whose translates by F cover X and assume also that for each
x e F there exists an £ > 0 such that (y e FIy.F fl B(x, s) ø} is finite.

Consider on X the equivalence relation whose classes are the orbits of F.
Let be the restriction of to F. Show that the natural bijection from
to = F\X is an isometry (when each is endowed with its respective quotient
metric). (Hint: Show that any path in X is contained in the union of a finite number
of translates of F.)

As an example, let F be the subgroup of Isom(1E2) generated by two linearly
independent translations x x + a and x x + b. Consider the parallelogram
F = (Ia + sbjt, s e [0, 1]}. Then F\1E2 is isometric to the quotient of F by the
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equivalence relation generated by [ta ta + b, sb b + sbj, which is a torus locally
isometric to 1E2

(3) Let be an equivalence relation defined on a metric space Y and let be the
equivalence relation on its K-cone X = CKY defined by [ly t'y' iffy y' and t =
t']. Let and be the quotients of Y and X by these equivalence relations. Prove
that CKY is naturally isometnc to X.

(4) For i = 1, 2, let C X, be a subspace. Letf Y1 —÷ be a bi-Lipschitz
homeomorphism and let X be the quotient of the disjoint union of X1 and X2 by the
equivalence relation generated by y f(y) for all y e Y1. Show that the natural map
X, —÷ X is bi-Lipschitz. Show also that if each X, is proper and each 1', C X, is
closed, then X is proper.

Gluing Along Isometric Subspaces

The most obvious way of gluing metric spaces is by attaching them along isometric
subspaces.

5.23 Definition. Let (Xi, dx)AEA be a a family of metric spaces with closed subspaces
C LetA be a metnc space and suppose that for each A e A we have an isometry

: A —÷ Let X denote the quotient of the disjoint union by the equivalence
relation generated by [ix(a) Va e A, A, A' e A]. We identify each with
its image in X and write

X = [jXx.

X is called the gluing (or amalgamation) of the along A.

5.24 Lemma. Let X = [JA In the quotient pseudometric on X, the distance
between x e andy e is given by the formula:

d(x, y) = dx(x, y) A A'

d(x, y) = iA(a)) +

d a

A is X

If each is proper then X is

If each is a space then X is a length space, moreover d is the
unique length metric such that the induced length metric on each X is

d is the quotient pseudometric note that, by the triangle inequality
in any m-chain C in joining XA e XA to XA' e can be replaced by
a 2-chain whose length is no greater than 1(C). And if A = A' then (again by the
triangle inequality) one can actually take a 1-chain.
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The content of (1) is that d is positive definite. This follows immediately from
the fact that Ax is closed in Xx for every A c A.

In order to establish (2) one simply observes that, since dx = d on X, x Xx, the
intersection of Xx with any closed bounded set C c X is closed and bounded in Xx.
For then if each (Xx, dx) is proper and A finite, C is a finite union of compact sets,
hence it is compact.

An easy compactness argument shows that if A is proper, then for every x e
Xx, y E Xx' with A A', there exists a e A such that d(x, y) = d(x, ix(a)) +
d(ix'(a), y). Part (3) follows immediately from this observation. We leave the (easy)
proof of (4) as an exercise. E

5.25 Exercises Let (Xx, dx) and X be as in (5.23). Prove the following statements
(1) If each Xx is complete, then X is complete.
(2) If each Xx is locally compact and A is finite, then X is locally compact.
(3) Give examples to show that, for A = (1, 2}, it may happen that X1 and X2 are

complete (resp. locally compact) geodesic spaces but X is not a geodesic space.
(Hint: In the complete case, you may wish to consider a metric graph with countably
many edges emanating from a single vertex, the n-th having length I + and then
double this space along the set of free endpoints. In the locally compact case, you
may wish to consider a bounded region in the Euclidean plane.)

(4) Is the metric constructed in (5.24) determined by the fact that =
What about the associated length metnc?

5.26 Successive Gluing. Let (Xi, = 1, 2.. n be a sequence of metric spaces;
assume that an isometry f2 from a closed subspace A2 of "2 onto a closed subspace
f2(A2) of X1 is given and form the amalgamation := X1 UA2 X2 as in (5.23); assume
that an isometryf3 of a closed subspaceA3 of X3 onto a closed subspacef3(A3) of
is given and form the metric space Y3 (X1 UA, X2) UA1 X3; proceeding inductively,
suppose that for everyj 2: 2 an of a closed subspace 4 of X, onto a closed
subspace of is given and define = We say that Y,, is obtained
from the sequence X1, . . X,, by successive gluing. Note that is isometrically
embedded in Because of this, one can glue an infinite sequence of spaces in the
same manner.

Note also that, for each i, the natural inclusion : X —* Y,, is an isometric
embedding and that Y,1 is the quotient of the disjoint union X by the equivalence
relation which identifies two points if they have the same projection in

When one pictures ways of gluing spaces together, one quickly thinks of natural
processes that do not conform to the simple templates described in (5.23) and (5.26)
—see (5.21) or (5.29) for instance, and Chapters 7 and 11.11 for many more examples.
Often one wants to take a more local approach to gluing, identifying subspaces by
means of (not necessarily injective) local isometries, for example. The following
lemma is very useful in this regard (see 11.11 4).
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5.27 Lemma. Let X be a metric space and let (X, d) be the quotient of X by an
equivalence relation Let i e X and suppose that there exists = £ > 0 such
that:

(i) forallx,x' e e B(x,s),z' e B(x',s) withz z', we have d(x,z) =
d(x', z'); and

(ii) X' = B(x, s) is a union of equivalence classes.

Then,
(1) for every y e X with < s, there exists x e such that d(x, y) =

(2) for every x e andy c B(x, s) we have d(x, y) =

(3) let d' and -'-' be the restrictions of d and to X' and let (X', d') be the quotient
of X' by the equivalence relation then the inclusion of X' into X induces an
isometry of Brx', s/2) onto B[x, s/2), where i' is the -' equivalence class of
xei

Proof We first prove (1) If d yields an rn-chain
C = (x1,y1 xm,ym) joining Xi E Ito y = Ym with 1(C) < £ It is sufficient to
prove that if rn > 1 then there is an (m — 1)-chain C' joining an element of I to
y with 1(C) < 1(C). As yj e B(x1, s) and y1 x2, using (ii) we can find x e I
such that x2 e B(x, s). By (i) we have d(x, x2) = d(xi, hence

1)-

chain C' = Xm, yrn) and l(C') < 1(C).
To prove (2), note that by the first part of the proof we have d(y, d(y, x')

for some x' e and by (i) (with z = z' = y) we have d(x, y) = d(y, x').
Finally (ii) implies that the inclusion X' —÷ X induces an injection X' —÷X, and

(1) and (2) imply that for each 8 £ the ball B(7, S) is mapped bijectively onto the
ball S). To measure the distance between two points of s/2) we can use
chains of length < e, and such a chain is contained in X': this proves (3). E

5.28 Corollary. If for each I e X there exists > 0 as in (5 27), then d is a
rnetric, and for all x, y e X with x e I and d(x, y) we have d(x, y) =

5 29 Exercises

(1) Let P be a convex polygon in 1H12 with 4g sides. Proceeding clockwise around
P, we orient its edges and label them (in order) a1, b1, b,. , a8, b8,a, h'8.
Suppose that 1(a,) = and 1(b,) = 1(b) for all i, where I denotes length. Let]1
(resp h,) be an isometry from a to a (resp b1 to b) that reverses orientation. Let be
the equivalence relation on P generated by. [x j1(x) Vx e a,] and [x h,(x) Vx e b],
for i = 1 g Prove that the quotient pseudometric on S = P/-S-' is a metric (using
Lemma 5.27) and that S is a compact surface (of genus g). Show that if the sum of
the angles at the vertices of P is 2jr, then S is locally isometric to the hyperbolic
plane. Deduce from this and (3 32) that I' = ir1S acts by isometries on 11112 and that
the quotient metric on (in the sense of 5.2 1(6)) is isometric to S

(2) (Gluing with a tube.) Let Xi and X2 be two disjoint metric spaces, let C be
a circle of length £ and let i1 . C —÷ X1 and i2 : C —÷ X2 be two local closed
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geodesics. Let X be the quotient of the disjoint union of X1 U (C x [0, 1]) U X2 by
the equivalence relation generated by ii(t) (t,0) and i2(t) (t, 1). Show that the
quotient pseudometric is a metric. (Hint: Use Lemma 5.27 and successive gluing.)

Give a necessary condition on £ so that the natural inclusions of X1 and X2 into
X are isometric embeddings.

Limits of Metric Spaces

In this final section of the chapter we shall explore some notions of limit for sequences
of metric spaces, and consider spaces whose points are themselves metric spaces.
The idea of taking the limit of a sequence of spaces has played a central role in many
recent advances in geometry and geometnc group theory. Hausdorif introduced this
idea in the case where the sequence of spaces concerned is embedded in a fixed
ambient space, but the range of recent applications rests upon the idea of taking
limits in the absence of any obvious ambient space, and this innovation is due to
Gromov.

The first part of this section is based on [Bri5941.

Gromov-Hausdorff Convergence

We begin by considering the classical construction of Hausdorif, partly for complete-
ness but also because the basic structure of the argument in the following proof serves
as a blueprint for future proofs. Two particular features to note areS first, compact
sets are approximated by finite sets in a uniform way; secondly, a diagonal sequence
argument is used to construct a limit object as (the closure of) an increasing union
of finite sets

5.30 Definition. Let X be a metric space and let V6(A) denote the s-neighbourhood
of a subset A C X. The Hausdorff distance between A, B C X is defined by:

dH(A, B) = inf(s
I
A C V6(B) and B

5.31 Lemma. Let X be a compact metric space and let CX be the set of closed
subspaces of X. Then, (CX, d11) is a compact metric space.

Proof The only nontrivial point to check is that CX is compact.
Consider a sequence C1 in CX. We must exhibit a convergent subsequence. First

notice that given any s > 0 there exists an integer M(s) such that, in its induced
metric from X, every A e CX can be covered by M(s) open balls of radius s. Indeed,
because X is compact one can cover it with M(s) balls of radius s/2, then for each
such ball which intersects A one chooses a point in the intersection and takes the ball
of radius s about that point. In this way, for every positive integer n and every C1, by
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taking duplicates if necessary, we may assume that C is covered by precisely M( 1/n)
balls of radius 1/n. We wish to retain the centres of the balls from the n-th stage
of this construction at subsequent stages. Thus we define N(l/n) = M(1/m)
and cover with N(1/n) balls of radius 1/n with centres e C1 forj =
1 N(1/n), where = Xn(i,J) if j < N(1/n). This allows us to drop
the subscript n from Xn(i,J). Let n) (x(i,j) : j < N(1/n)} and note that
dH(CI, n)) < 1/n for all i.

C1 x(1,1),x(1,2) x(1,j),...

C2 x(2, 1),x(2, 2) x(2,j),

C, x(i, 1), x(i, 2) x(i,j),

Because X is compact, we may pass to a subsequence of the C, in order to

assume that the sequence x(i, 1) converges in X, to x(w, 1) say. Let CI denote this
subsequence. Inductively, we may pass to further subsequences in order to assume
that forj = 1,. . , k each of the sequences (x(i,j))1 converges in X to x(w,j). Let

be the closure in X of {x(w,j) j e N}. We claim that the diagonal sequence
converges to in CX. To simplify the notation, we write in place of

Let n > 0 be an integer. Given any integer I > 0, since d11(C1, E(i, n)) <
1/n for all i, in particular x(i, I) is a distance at most 1/n from n), and hence
x(w, I) is a distance at most 1/n from E(w, n) (x(w,j) j < N(1/n)}. Thus

n)) 1/n And jfk' is large enough to ensure that d(x(k',j), x(w,j)) <
1/n for allj N(1/n), then:

< n)) + n), n)) + n), < 3/n.

0

One can rephrase Hausdorif convergence in terms of convergence of sequences
of points:

5.32 Lemma. converges to C e CX if and only

(1) for all x e C there exists a sequence x in X, and

(2) every sequence yn(j) e with n(i) —÷ oo has a convergent subsequence
whose limit point is an element of C.

Proof Exercise. D
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We wish to consider what it means for a sequence of compact metric spaces to
converge to a limit space when there is no obvious ambient space contarning the
sequence. For this we need the following definition.

5.33 Definition. A subset S of a metric space X is said to be s-de,ise if every point
of X lies in the s-neighbourhood of A. (Under the same circumstances, S is called an
e-llel in X)

An s-relation between two (pseudo)metric spaces X1 and X2 is a subset R c
X1 x X2 such that:

(1) for i = 1, 2, the projection of R to X, is e-dense, and

(2) E Rthen < s.Theretationissaid
to be surjective if its projection onto each X1 is surjective. If there exists an s-
relation between X1 X2 then we write X1 -'-i X2, and if there is a surjective
s-relation then we write X1 X2.

We define5 the G romov-Hausdorff distance between X1 and X2 to be:

D11(X1,X2) inf(s I X1 X2}.

If there exists no e such that X1 X2, then D11(X1, X2) is infinite.

Sometimes, instead of writing "(x, y) E R" we shall write "x is related to y" or
"x corresponds to y".

5.34 Lemma.

(1) If X1

(2) DH satisfies the triangle iiiequaliiy and hence defines a pseu4omerric (which
may rake the value oo) on any set of metric spaces.

Proof Exercise. D

Terminology: We say that a sequence of (pseudo)metric spaces converges to X in
the Gromov-Hausdorff metric (or, in Gromov-Hausdorff space), and write X,
ifandonlyifDn(X,,X)—÷ oo.

5.35 Remarks and Exercises

(1) The graph off : X1 —÷ X2 is a 0-relation if and only iff is an isometry.

(2) The following alternative notion of distance between metric spaces is the
one used by Gromov in [Gro8Ib}. Given two metric spaces X1 and X2, consider all
metrics d on the disjoint union X1 U X2 that restrict to the given metrics on X1 and
X2, and define

X2) .= infd11(X1, X2),

where d11 is as in definition (5 30).

Some authors prefer to use instead of in this definition, the difference is not signifi-
cant, 5.34(1)
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(3) If X1 be a space with only one point a space consisting of two points
a distance one apart, then D11(X1, X2) = I and

X1 X2 be metric spaces. Show that D'11(X1, X2) <8 if and only if there is
a metnc space Y and isometric embeddingsj, X, Y such that d11(j (X1), j2(X2)) <
s. (Hint. Given Y and > 0, perturb j1(X1) in Y x [0, to make it disjoint from
32(X2))

(5) Let X1 and X2 be metnc spaces. Prove that X2) = D11(X1, X2).

(Hint: To see that 21Y11(X , X2) < DH(XI , X2), given a surjective 8-relation R C
X1 x X2, let Z be the disjoint union of a family of copies of [0, s] indexed by R and
consider a quotient of X1 U X2 U Z.)

The Gromov-Hausdorff distance between a metnc space and any dense subset of
it is zero, and hence limits of sequences of spaces are not unique in general. However.

5.36 Proposition. Let A and B be compact metric spaces. A and B are isometric if
and only if D11(A, B) = 0

Proof We shall show that if D11(A, B) = 0 then A and B are isometnc, the other
implication is trivial. Let be a countable dense subset of A and let Rm be a
surjective (I/m)-relation between A and B. We choose bmn E B so that (a,, bmn) E
Rm By passing to a subsequence of (bm I )m we may assume that —÷ b1 in B. By
passing to a further subsequence we may assume that bm 2 b2, and so on. Thus
for all n, n' and infinitely many m we have that — < I/m,
and hence an') = The desired isometry A B is the unique
continuous extension of i—+ b,,. D

(5.36) does not extend to proper metric spaces:

5.37 Exercise. Consider the following two metric graphs: each is constructed by
attaching a segment to integer points of the real line, in the first case the segment
attached at m has length sin mj and in the second case it has length sin(m +
Prove that the Gromov-Hausdorff distance between these spaces is zero but that they
are not isometric (Hint: Given e > 0, let 5 > 0 be such that x — < 5 implies

<8. Notethatthereexistintegers rands suchthat I(r— <s.)

5.38 Proposition. Let X be a complete space that is a Gromov-Hausdorff limit of a
sequence X,,.

(I) If each X is a length space.

(2) If each X is proper.

(3) If each is a proper geodesic space, then so too is X.

Proof In order to prove (I), since X is complete it is enough to show that X has
approximate midpoints. Suppose that x, y E X and s > 0 are given.
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Tin is sufficiently large then there is a surjective e-relation c X x Choose

E X, such that (x, E and (y, E let E X, be such that
max{d(xn,zn),d(zn,yn)} <d(xn,yn)/2+ 8. Choosez E E Then,

<

<d(x, y) + 58/2. This proves (1).
Each closed ball in X is the limit of balls in the Xn, and if a complete space is

the limit of compact spaces then it is compact (5.40). This proves (2). Part (3) is
immediate from (1), (2) and the Hopf-Rinow theorem D

The interested reader should be able to think of many more properties that are
preserved under the taking of Gromov-Hausdorff limits. We should mention one
property that is not preserved: if the spaces concerned are not proper, then a complete
limit of geodesic spaces need not be geodesic. To see this, consider the metric graph
X with two vertices and edges {em m E where em has length (1 + I/rn). This
is not a geodesic space, but it is the limit of the geodesic spaces Xn, where Xn differs
from X only in that its n-th edge has length 1.

In the proof of (5.31) we relied on the fact that closed subspaces of a fixed
compact metric space are uniformly compact in the following sense.

5.39 Definition. A family (CA)A€A of metric spaces is said to be uniformly compact
if there is a uniform bound on their diameters and for every s > 0 there exists an
integer N(s) such that each can be covered by N(s) balls of radius s

5.40 Exercise. If a sequence of compact spaces converges in Gromov-Hausdorff
space, then it is uniformly compact and the completion of the limit is compact
(Hint: Recall that a metric space is compact if and only if it is complete and totally
bounded6.)

The following was an ingredient in Gromov's proof of his polynomial growth
theorem (see [Gro8 I b} and (8.37)).

5.41 Theorem (Gromov). If a sequence of compact metric spaces C1 is uni-
formly compact, then it has a subsequence that converges in the Gromov-Hausdorff
metric.

Proof We follow the proof of (5.31). Thus we first construct a sequence of points
(x(i, j))j in each C1, with the property that for all n E N the baits of radius I/n about the
first N(l/n) terms in the sequence cover C1. Let S(i, n) = {x(i, I) x(i, N(i/n)}.

6 A metric space is totally bounded if, for every e > 0, it is the union of finitely many balls
B(x,e)
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C1 x(l, l),x(l, 2) x(1,j),

C2 x(2,l),x(2,2) x(2,j),.,.

C, x(i, I), x(i, 2) x(i,j),

Let d denote the metnc on C,. By passing to a subsequence of the C1, we may
assume that the numbers d,(x(i, 1), x(i, 2)) tend to a limit, 5(1, 2) say, as i —÷ oo By
passing to increasingly rarer subsequences given any integer k we may assume
that d1(x(i,j), x(i,j')) S(j,j') as i oo for all I < j < j' < k We define 5
N x N —÷ [0, oo) recursively in this manner, and claim that the diagonal subsequence

is convergent.
Let I be the set of i indexing this diagonal subsequence of spaces.
We shall construct the desired limit as the completion of a countable space. To

this end, we takeacountable set = {xi, x2,. . } and defineapseudometric on
by setting = S(j, k). We then take equivalence classes under the relation
that identifies points which are a distance zero apart, and define to be the metric
completion of this space. It is convenient to continue to write for the image of
in

Fix an integer n > 0. Because S(i, n) is a (I /n)-net for C,, given any I > N( I/n)
and i E N we have d1(x(i, 1), x(i,j)) < I/n for somej < N(I/n). If we fix land let
the index i tend to infinity through the diagonal indexing set I, then the same choice
of j must recur infinitely often, and for this value we have < 1/n. Thus
S(c'o, n) := . . ,XN(I/fl)} is (I/n)-dense in and hence in

If i E I is sufficiently large, then by definition ((x(i,j), c S(i, n) x
S(c'o, n)} is a surjective Moreover S(i, n) is (I/n)-dense in C, and
S(c'o, n) is (I/n)-dense in therefore R,1 is an (1/n)-relation. Since n > 0 is
arbitrary, this proves the desired convergence.

Finally we note that is totally bounded (indeed we have described a finite
(1 /n)-covering for every n > 0), so since it is complete by construction, is

compact. D

In [Gro8 I b} Gromov established the above compactness criterion by a different
argument, realizing the C, as compact subspaces of a fixed compact space.

5.42 Remarks

(I) Let d denote the usual metric on IPiltm let be the closed ball of radius n about
a fixed point and consider the sequence of metric spaces = (Ba, !d). We claim
that n E N} is not uniformly compact. To see this, we note that the volume
V(n) of a ball of radius n in grows like?, so if one could cover by N(s) balls
of radius e > 0, then one could cover (Ba, d) by N(s) balls of radius ns, and hence
V(n) <N(e).V(sn). If we fix e and let n —÷ oo, this inequality becomes absurd.
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It follows from (5.40) that the sequence does not have a subsequence that
converges in Gromov-Hausdorff space.

(2) By way of contrast, note that in Etm the rescaled balls (Ba, !d) are all isometric;
in particular they are uniformly compact. The previous inequality regarding volumes
is of course not absurd in this case, because V(n) = cnm, where c is a constant
depending on m. Polynomial growth is the real key here: in [Pan83} Pierre Pansu
proved some remarkable results concerning uniform compactness and convergence
of nilpotent groups.

(3) There are many applications of Gromov's compactness criterion (5.41) in
differential geometry, but to expose even a part of this literature would take us
well beyond the scope of this book. For an introduction to convergence theorems in
Riemannian geometry see [GrLP8I}, [B1W97} and {Pet96}. We mention one result to
give a flavour of some of the applications: For all n E N, all D > 0, all v0 > 0 and all
k E K the class vo, D) of n-dimensional Riemannian manifolds with volume
> v0, diameter < D and sectional curvature < k isprecompact in Gromov-Hausdorff
space (and in the topology 7for every a < 1). Moreover D) contains
only finitely many different manifolds up to diffeomorphism. In the form stated, this
result is due to Grove, Peters and Wu [GPW9O]. There are similar results by a number
of authors, beginning with the work of Cheeger and Gromov [ChGr86].

Convergence of Pointed Spaces

Gromov-Hausdorff convergence works well in contexts where one wishes to con-
sider sequences of compact metric spaces, but it is a less satisfactory concept for
convergence for non-compact spaces. One obvious disadvantage is that the distance
between a compact space and an unbounded space is always infinite. Thus, for ex-
ample, Gromov-Hausdorff convergence is insufficient to capture the intuitive notion
that as the radius of a sphere of constant curvature tends to infimty, to an observer
standing at the north pole, the sphere looks increasing like Euclidean space

The key here is that the intuitive sense of convergence comes from observations
taken at a fixed point.

5.43 Definition. Consider a sequence of metric spaces with basepoints x, E X,

The sequence of pointed spaces (X, x) if for every r> 0
the sequence of closed balls B(x, r)
in the Gromov-Hausdorff metric.

Under the same circumstances we say that X is a pointed Gromov-Hausdorff
limit of the and that converges to (X, x) in the pointed Gromov-Hausdorff
sense.

Just as (unpointed) Gromov-Hausdorff convergence is most suitable for se-
quences of compact metric spaces, so pointed convergence is most suitable for the
study of proper spaces. In particular:

For the definition of the C1 topology see {Pet96J
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5.44 Lemma. If a complete space is the (pointed) Gromov-Hausdorff limit of a
sequence of proper spaces, then it is itself proper

And Gromov 's pre-compactness critenon becomes:

5.45 Theorem. Let be a sequence of pointed metric spaces. If for every
r > 0 and 8 > 0 there exists an integer N(r, 8) such that r) can be covered
by N(r, 8)8-balls, then a subsequence converges in the pointed Gromov-
Hausdorff sense.

We leave the reader to formulate and prove the analogue of (5.38) for pointed
convergence

5 46 (Related notions of convergence). There are a number of situations
(notably in low-dimensional topology and geometric group theory) where one has a
natural degeneration of metric structure in which proper spaces approximate spaces
that are not proper. Such a situation arises, for example, in the study of degenerations
of hyperbolic structures [Sha9I}. In light of (5.44), we need a weaker definition of
convergence to cover such cases. A suitable notion was introduced by Paulin [Pau88}
(see also, Bestvina [Bes88}). The idea of this generalization is that finite subsets in
the limit space should be approximated by finite subsets of the limiting sequence
(cf. (11.3.10)). There is a natural extension of this situation where one has a fixed
group acting on a sequence of spaces and one wishes to take an equivariant limit.
Such equivariant limits have played an important role in the study of 3-manifolds (see
[Sha9l}) and many recent developments in geometric group theory, e.g. [5e1a97}.
(See section 4 of [Bri594} for further remarks.)

Ultralimits and Asymptotic Cones

Many of the key arguments in the preceding section are characterized by the fact
that one takes repeated subsequences to obtain the desired limiting space. A consid-
erable clarification of the argument would result if one could extract a convergent
subsequence all at once; non-principal ultrafilters provide a tool for doing so. They
also provide a means of constructing a limiting object (ultralimit) in cases where no
Gromov-Hausdorff limit of a sequence of spaces exists. For example, given a finitely
generated group F with a word metric d, it is natural to consider the sequence of
metric spaces X,, = (F, id), the identity element serves as a basepoint. One expects
limit points of this sequence to contain information about the asymptotic properties
of the group F. 1fF has polynomial growth then converges in the pointed Gromov-
Hausdorff topology ([Gro8lb}, [Pan83}). In general though, will not even contain
a convergent subsequence One remedies this by passing to ultralimits (5.50), the
significance of which were brought to the fore in this context by van den Dries and
Wilkie [DW84}.
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In order to motivate the definition of ultrafilters and ultralimits, let us pursue
remark (5.46) and reflect that one might define a metric space (Y, d) to be a limit of
a sequence of metric spaces if for every finite set of points {p, . . , C Y

and every s > 0, for infinitely many n one find subsets p7} c Y, such
that — d(pj,pk)I < s for all I j, k < i. This is too weak a notion of
limit for most purposes (but not all (11.3.10)). In order to obtain a stricter notion of
convergence one should replace "for infinitely n" by "for almost all n", and
one should also require that the points of Y account for all sequences of points in the
approximating sequence that might be said to converge. In order to quantify "almost
all" we need a measure:

5.47 Definition. A non-principal ulrrafilrer on N is a finitely additive probability
measure w such that all subsets S c N are w-measurable, w(S) E {0, I } and w(S) = 0
ifSis finite.

5.48 Exercise (Existence of Non-Principal Ulrrafilters). Let N be a set and let PN
denote the set of its subsets. A filter for N is a map : PN {0, I } such that:
p(ø) = 0, = I; ifS c T then p(S) < and if = = I then

fl T) = I. And is called an ultrafilter if in addition u(S) + p(N S) = 1 for
all S E PN. (One thinks of as labelling subsets S as large if u(S) = I and small if
p(S) = 0.)

There is a natural ordering on the set of filters for any set N, namely if
si(S) for all S E PN. Given S E PN, one obtains an ultrafilter by defining

= I if and only if S c T. Such an ultrafilter is called principal.

(1) Prove that a filter is s-maximal if and only if it is an ultrafilter.

(2) If N is an infinite set then the map : PN —÷ {0, 1} which assigns the value
1 to a set if and only if its complement is finite is a filter. Prove that an ultrafilter w
on N is not principal if and only if

(3) By applying Zorn's lemma to the filters with deduce that there
exist non-principal ultrafilters in the sense of (5.47).

Non-pnncipal ultrafilters pick out convergent subsequences:

5.49 Lemma. Let w be a non-principal ultrafilter on N. For every bounded sequence
of real numbers there existsa unique pointl E Rsuchthatw{n: <e} = I
for every s > 0. One writes I =

Proof Exercise. D

One should be aware that limo, depends very much on the choice of w. For
example, given two convergent sequences (ba) and (ca), if one defines to be
if n is even and if n is odd, then will equal lim if the even integers
have w-measure one, and lim if the odd integers have w-measure one. A similar
dependence on the choice of w is built into the following definition.
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5.50 Definition (w-Limits and Asymptotic Cones). Let w be a non-principal ultra-
filter on N. Let be a sequence of metric spaces with and let
denote the set of sequences where x, E and is bounded indepen-
dently of n. Consider the equivalence relation if Yn) = 0],
and let denote the set of equivalence classes. Endow with the metric

= lim(, One writes = (if the choice
of basepoints is not important).

One may be interested in the case of a fixed metric space X with a basepoint and
a metric d, and = (X, In this case X
is denoted

5 51 Remark. One can construct metric spaces X (subsets of the line even) and non-
pnncipal ultrafilters w a! so that and are not homeomorphic.
Simon Thomas and Boban Velickov recently showed that this can happen even when
X is the Cayley graph of a finitely generated group.

Ultralimits are related to Gromov-Hausdorff limits by the following exercise.

5.52 Exercise Suppose that the pointed space is the Gromov-Hausdorff
limit of a sequence of proper spaces Show that for every non-pnncipal
ultrafilter w on N, the ultralimit is isometnc to (See (5.55) with
regard to the need for properness.)

5.53 Lemma. The ultralimits of all sequences of metric spaces are complete.

Proof We sketch the proof and leave the details to the reader. Let = Let
denote the metric on Let be a Cauchy sequence in and represent each

entry by a sequence where E X1. Let A0 = N and for k E N inductively
define a strictly decreasing sequence of subsets Ak C Ak_I with w(Ak) = I so that
for all i and allj between I and k we have — 4)1 < 112k Set yi 4
for all i and prove that the sequence defines a point E such

that a length space, and any
ultralimit of geodesic spaces is a geodesic space.

5.55 Remarks. If X is a proper metric space, then the map which sends each x E X to
the constant sequence at x defines an isometry from X to the ultralimit of the constant
sequence = X. However, this is not true of complete metric spaces in general
Indeed, if X is a countably infinite set endowed with the discrete metric, d(x, y) =
for all x y, then for any non-principal ultrafilter w, the ultralimit of the constant
sequence X is an uncountable set with the discrete metric.

8 Some authors, e g [KlL971, find it useful to allow sequences of scaling factors other than
(1/n) in the definition of an asymptotic cone
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Asymptotic cones and ultralimits have played a significant role in recent proofs
of rigidity theorems (e.g. [K1L97}). This follows the influence of Gromov [Gro93].
The asymptotic cone of a finitely generated group was introduced by van den Dries
and Wilkie [DW84] as a device for streamlining Gromov's proof of his polynomial
growth theorem. See [Gro8 I b], [Dm97], [Paps96] and [Bri99a] for results connecting
the geometry and topology of asymptotic cones of groups to algebraic properties of
groups.



Chapter 1.6 More on the Geometry of

In this chapter we return to the study of the model spaces We begin by describing
alternative constructions of = attributed to Klein and Poincaré9. In each
case we describe the metric, geodesics, hyperplanes and isometries explicitly. In the
case of the Poincaré model, this leads us naturally to a discussion of the Möbius
group of and of the one point compactification of IE". We also give an explicit
description of how one passes between the vanous models of hyperbolic space. In the
final paragraph we explain how the metric on can be derived from a Riemannian
metric and give explicit formulae for the Riemannian metric.

The Klein Model for 11t1

In Chapter 2 we constructed as a subset of = Rn+l. This subset does not
contain 0 E lRn4t, and each 1-dimensional subspace of intersects it in at most
one point. Therefore, the natural projection from {O} to the real projective
space IP" of dimension n restricts to an injection on W. One way to obtain the Klein
model for is to simply transport the geometry of W C IE" by the map p We
shall explain this in some detail.

Let IP'7 denote real projective n-space, i.e. the set of 1-dimensional vector sub-
spaces of Letp: {O} F be the natural projection, which associates
to each point X E (O} the line passing through 0 and X. Let x = p(X). The
coordinates of X are called homogeneous coordinates forx; thus "the" homogeneous
coordinates of x are well defined up to multiplication by any non-zero real number.
The projective transformations of IP" are, by definition, the transformations of
induced by the linear transformations of ; they form a group PGL(n + 1, R) nat-
urally isomorphic to the quotient of the group GL(n + 1, R) by the normal subgroup
formed by non-zero multiples of the identity matrix. A projective line (more gener-
ally a projective p-plane) is a subset of IP" formed by the 1-dimensional subspaces
contained in a 2-dimensional (resp. a (p + 1)-dimensional) subspace of

The projection p sends the set of points X 0 of = such that (X
X) = 0 onto the set of points in IP" whose homogeneous coordinates satisfy the

The basic properties of real hyperbolic spaces were first established by Lobachevski in
the nineteenth century See [Mi1821 for an account of the subsequent developments of the
subject
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quadratic equation — = 0; the set of such points is a quadric, and
shall be denoted Q. The map p restricts to a bijection from W to the interior of
the quadric Q, i.e. the connected component of — Q which is the set of points
whose homogeneous coordinates satisfy — < 0. Hence p induces an
isomorphism from the group O(n, 1)+ of isometries of to the group of projective
transformations of P' that preserve the intenor of the quadric Q. The geodesic lines
in if' are the intersections of H" with the vector subspaces of of dimension 2,
they are mapped by p onto the non-empty intersections of the interior of Q with the
projective lines of

The projective form of the Klein model for hyperbolic n-space is the interior of
the quadric Q endowed with the unique metric such that d(p(X), p(Y)) = d(X, Y)

for all X, Y e H" c This metric admits an elegant description in terms of
projective geometry: given two distinct points x and y in the interior of Q, let
and be the points of intersection of Q with the projective line through x and y,
arranged so that x, y, occur in order on the projective line through x andy.

6.1 Lemma. The distance between Iwo points x, y in the projective Klein model is
given by the formula

d(x, y) = log(x, y,

where (x, y, is the cross ratio ofthefour aligned point x, y,

Proof Recallthatthecrossratio(x, y, v, w)offouraligneddistinctpointsx, y, v, w E
is defined as follows. Let X and Y be points of — {0} projecting byp to x andy.

Then there are pairs of real numbers (A, and (A', such thatp(AX+ Y) = v and
= w. By definition, (x, y, v, w) = [0, oc]. This definition is

independent of the various choices. An alternative description of (x, y, v, w) is to say
that it is the cross ratio (X, Y, V, W) (in the sense of 6.4(3) below) of any four aligned
points X, Y, V, W — {0} such thatp(X) = x, p(Y) = y, p(V) = v, p(W) = w.
If h is a projective transformation, then (h(x), h(,y), h(v), h(w)) = (x, y, v, w).

To prove the lemma, we use the invariance of the cross ratio under projective
transformations and the fact that Isom(W) acts transitively on pairs of points which
are a fixed distance apart. This enables us to reduce to the case where x andy are the
images underp ofpointsX = (X1 andY = (Y1 Y,1+1), all of whose
coordinates are zero except = 1, and Y1 = sinh r and = cosh r, where
r = d(x, y). Then = (cosh r + sinh r)X — Y and = (cosh r — sinh r)X — Y are
sent by p to and respectively. One calculates that (x, y, = e2r. 0

One can obtain a more specific parameterization of the Klein model by replacing
the interior of the quadric Q ç with the open unit ball B'1 = {x : lxii < 1},
where lxii denotes the Euclidean norm of x. This is essentially done by identifying

with the disc x {1} C and noting that there is exactly one point of this
disc on each line in that represents a point in the interior of the quadric Q.

The following proposition describes this construction more precisely
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same point is not equal to the Euclidean angle observed by simply regarding these
segments in B'1 C Thus considerations of angles in the Klein model do not
conform to Euclidean intuition.

For instance, orthogonality can be understood as follows We can consider the
projective space as the union of its affine part and the hyperplane at infinity. A
hyperplane in the Klein model is a non-empty intersection of B' with a hyperplane
H of IP'1. The pole of this hyperplane is, by definition, the point of x E IP' N B" such
that the lines which issue from x and are tangent to the boundary of cut §n—

along Hfl

6.3 Exercise. Show that the hyperbolic lines orthogonal to the hyperplane defined
by H are the non-empty intersections of B" with the lines through the pole of H.

For n = 2, construct the common perpendicular to two non-intersecting geodesic
lines in the Klein model.

The Möbius Group

6.4 Definitions.
(1) Let =

IEY1 U {oc} be the one point compactification of There is a natural
homeomorphism from S'7 C to Is", given by stereographic projection PN from
the north pole N = (0 0, 1) identify with the hyperplane = 0
in via the map (xi (x1, . . , 0); the stereographic projection
PN : —÷ maps the north pole N to oc and maps each x E 'N {N} to the point
of intersection of the hyperplane !E'1 with the line through N and x.

Fig. 6.2 The pole of a hyperplane with respect to the sphere S''
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(2) A circle in E' is either a Euclidean circle in E'1 or the union of a straight line
in E' and {oc}. More generally, a k-sphere in is either a k-dimensional sphere in
E'1 or the union of a k-dimensional affine subspace of E'1 and {oc}.

(3) The cross ratio of four distinct points x, y, v, w situated on a circle of E'1 is
the real number (x, y, v, w) defined by the formula

lix— Wll.lly— vu(x,y,v,w)=
lix — — wil

where is the Euclidean norm; by convention, = Oand = 1,and =
oc for all x E

(4) An inversion (or reflection) 1s of with respect to an (n — 1)-sphere S is
defined as follows If S is a sphere contained in E'1 with centre a and radius r > 0,

then 1s exchanges a and oc and is defined otherwise by

(x—a) +a
lix — a112

In other words, 1s sends each point x a to a point on the geodesic ray from a that
passes through x; this point is characterized by the fact that the product of its distance
from a with the distance from x to a is equal to r2. In particular, the points of S are
precisely those left fixed by 1s• If S is the union of {oc} and a hyperplane H c
then 1s fixes oc and its restriction to E'1 is the Euclidean reflection rH.

We leave the reader to check the following properties of inversions.

6.5 Proposition. Let 1s be an inversion of with respect to a sphere S. Then,

(1) js maps spheres of to spheres of

(2) js preserves the cross ratio;

(3) 1s preserves the Euclidean angles between intersecting spheres,

(4) the stereographic projection PN from S'1 onto is the restriction to S'1 of the
inversion of with respect to the sphere whose center is the north pole N
and whose radius is

From this proposition it follows that the stereographic projectionpN maps spheres
to spheres and preserves cross ratios and angles. We define an inversion of S'1 with
respect to an (n — 1)-sphere S C to be the restriction to of the inversion of
with respect to the unique n-sphere that is orthogonal to and contains S. Note that
stereographic projection PN conjugates such an inversion of to the inversion of
with respect to the (n — 1)-sphere PN(S).

6.6 Definition. The Möbius group Möb(n) (resp. is the group of transfor-
mations of (resp. of S'1) generated by inversions in (n — 1)-spheres.

Exercise. Show that the subgroup of the Möbius group Möb(n) fixing the point oc is
the group of similanties of (extended by the identity on {oc}). For instance any
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hornothety fixing the origin is the product of two inversions with respect to spheres
centred at the ongin.

The Poincaré Ball Model for

As with the Klein model, in the Poincaré ball model the points of hyperbolic space are
represented by the points of the unit ball in but the geometry imposed upon the
ball is quite different. In particular, we shall see that the geodesic lines in the Poincaré
model are the intersection of with those Euclidean lines and circles which meet
the boundary of orthogonally. A great advantage of the Poincaré model is that it
is conformally correct in the sense that the angle between two geodesic paths issuing
from a point is equal to the Euclidean angle between these paths.

6.7 The Poincaré Ball Model. We define the Poincaré metric on by pulling back
the metric from ç via the homeomorphism : —÷ W given by

hp(x)
= (

2x_2' 1 +
x =

1 — lxii 1 — lxii /
where lix II is the Euclidean norm ofx. This map associates to x the point of intersection
of with the line through the points (0, —1) and (x, 1) in x R =

More explicifly, the hyperbolic distance d(x, y) between x, y E in the Poincaré
model is given by the formula

(1 + Iixii2)(1 + IIyIi2) — 4(x I y) lix — yii2coshd(xy)= =1+2
(1 — 1ix02)(1 — 11yii2) (1 — 0xii2)(1 —

I y) is the Euclidean scalar product.

N

Fig. 6.3 The stereographic projection viewed as the restriction of an inversion
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6.8 Proposition. In the Poincaré ball model for hyperbolic n-space, the unique
geodesic segment joining distinct points x, y E is the arc which they bound on
the unique Euclidean circle (or line) that passes through them and intersects the
boundary of B'1 orthogonally. If and are the points of intersection of this
circle with arranged so that x, y, occur in order on the circle, then the
hyperbolic distance between x andy is given by the formula

d(x,y) =

Proof We shall deduce the stated properties of the Poincaré model from those of
the Klein model by examining the following explicit description of the isometry
h := (hK)1hp : B'1 —÷ B'1 between the two models (see figure 6.4). Briefly, this
isometry is obtained as the composition of two projections, the first stereographic,
the second orthogonal

Fig. 6.4 The map h = from the Poincaré ball to the Klein model

Consider as the intersection of the unit ball in = W x with the
hyperplane W x {O}. Let PS : B'1 —÷ S'1 c W x be the stereographic projection
from the south pole of S's, sending onto the upper hemisphere of S's; namely,

Ps x F—± In other words, is the restriction to of the inversion

of in the sphere with centre (0,.. 0, —1) and radius The isometry h =
(hK)'hp x i—± is obtained by post-composing the stereographic projection

with the orthogonal projection from the upper hemisphere of c x {0} onto
ç x {0}.
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We claim that the isometry h sends the set of arcs of those circles and lines in
that are orthogonal to the boundary onto the set of straight line segments in
Indeed PS sends the former set of arcs onto the set of arcs in the upper hemisphere
of that are contained in circles orthogonal to the equatorial sphere S'', and the
orthogonal projection from the upper hemisphere of onto then sends the set
of such circular arcs onto the set of straight line segments in B'2. Thus, since the
geodesic segment joining two distinct points in the Klein model is a straight line
segment, the geodesic arc joining two distinct points x, y E in the model
is the arc bounded by x and y on the unique Euclidean circle (or line) that passes
through them and meets the boundary of orthogonally and be
the points of intersection of this circle with arranged so that x, y, occur
in order on the circle.

Because ps is the restriction of an inversion of the cross ratios (x, y,
and are equal (6.6(4)). The points lie on
a semicircle orthogonal to W x {O}, so it is easy to calculate the cross ratio of their
projections onto x {O}:

6.9 Exercise. Let p, q E be distinct points on a semicircular arc with endpoints
a and b. Let p' and q' denote the orthogonal projections of p and q onto the line
segment [a, bJ. Prove that (p, q, a, b) = (p', q', a, b)"2.

Hence (h(x), h(y), = (ps(x), = (x, y,

Therefore, log(x, y, is equal to log(h(x), h(y), which is the hy-
perbolic distance in the Klein model between h(x) and h(y), by (6.2) Since h is an
isometry, this establishes the desired formula for d(x, y) in the model. 0

In Chapter 2 we described how reflections through hyperplanes generate Isom(W).
In the Klein model for hyperbolic space (based on B's), the hyperplanes are simply
the intersections of with Euclidean hyperplanes. The next proposition describes
the hyperplanes in the ball model of hyperbolic space, and the subsequent
corollary records what this description tells us about the structure of the isometry
group of the model.

6.10 Proposition. Let —÷ be the isometry from the Poincaré ball to W
defined in (6. This map sends the set of intersections with (n — 1)-dimensional
spheres S orthogonal to bijectively onto the set of hyperplanes H ç
Moreover; conjugates inversion in S to reflection through he(S), i.e., =

We proved in (2.18) that reflections through hyperplanes generate
hence:

6.11 Corollary. The group of isometries of the Poincaré ball modelforW is gener-
ated by the restrictions to of inversions of in spheres orthogonal to Thus

is naturally isomorphic to the Möbius group
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Proof of 6.10. One way to prove this proposition is to calculate an explicit formula
for rHhp, the conjugate of a hyperplane reflection. We indicate two other, more
instructive, proofs

Let S be an (n 1)-sphere orthogonal to and consider the restriction to
B" of the inversion 1s• According to (6.5), 1s sends the set of circles orthogonal to
S'11 to itself and preserves cross ratios. Hence, by the the preceding proposition, 1s
is an isometry of the Poincaré ball. Its fixed point set is S fl B'1. But, according to
(2.18), reflections in hyperplanes are the only isometries of IHI' whose fixed point sets
separate W into two connected components; and hyperplanes can be characterized
as those subsets of H'1 which arise as such fixed point sets. Since the fixed point set
of the isometry has this separation property, and its fixed point set is he(S),
we deduce that is the reflection in the hyperplane he(S).

It remains to be shown that every hyperplane in arises as he(S) for some S.
Since every hyperplane is the bisector of some pair of points in H's, it suffices to
show that the set of points in the Poincaré model that are equidistant from a fixed
pair of points x0 and Yo form an (n — 1)-sphere orthogonal to According to the
first formula in (6.7), the set of such points is determined by the equation:

lixo — z112 = kIIyo zII,

where k = (1 — IIxM 2)/( 1 2) It is an ancient observation of Apollonius that this
is the equation of a sphere (if k 1) or a Euclidean hyperplane (if k = 1). Moreover,
since we know that the geodesic lines in the model are the intersection with

of (Euclidean) lines and circles orthogonal to and since we also know that
the connected components of the complement of a hyperplane in IHI" are geodesically
convex, the above bisecting sphere/hyperplane must meet S'' orthogonally, as was
to be proved. 0

A different approach to proving the proposition is to first factor
h = (hK)1hp is the map from the Poincaré to the Klein model considered in (6.8)
As in that proof, we write h = it where ps is a stereographic projection sending
B'1 onto the upper hemisphere of the unit sphere c W x and it is orthogonal
projection onto = x {O} The map PS sends the set of intersections of B'1
with (n — 1)-spheres orthogonal to onto the set of half-spheres in that are
orthogonal to the equator The orthogonal projection it sends the set of such
half-spheres onto the set of intersections of B" with affine hyperplanes of The
latter is precisely the set of hyperbolic hyperplanes in the Klein model. To finish
the proof, one notes that if S is an (n 1)-sphere orthogonal to then
is an isometry that fixes the hyperplane hp(S); it is not the identity, so it must be a
reflection through this hyperplane.
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The Poincaré Half-Space Model for

6.12 Definifions. Let denote the upper half-space {(x1 E x,1 >
O} c The Cayley transform is the restriction to of the inversion js : —÷

where S is the sphere with centre (0 0, —1) and radius
The Cayley transform gives a homeomorphism from the Poincaré ball model for

W to H's. We define the Poincaré half-space model for to be the half-space
endowed with the unique metric with respect to which this homeomorphism is an
isometry.

The boundary of the half-space model is the set of points {(x1, x,,)

E
I

= 0} U c One can extend the Cayley transform by considering
the restriction of the above inversion 1s E" —÷ to the closure of the resulting
map sends the boundary of B", bijectively onto

Applying the considerations of (6.5) to the Cayley transform, one sees immedi-
ately that:

6.13 Proposition. Propositions 6.8 and 6.10 and Corollary 6.11 remain valid if one
replaces the Poincaré ball model by the half-space model H' and by

In Chapter 11.8 we shall describe a natural compactification of H" that depends
only on the metric (and not on any specific model). The subspace formed by the
ideal points of this compactification is homeomorphic to and there are natural
bijections from it to the sphere bounding the ball model in and We shall
see that isometries of W extend uniquely to homeomorphisms of the induced
action of on 81H1" is faithful and transitive.

We have seen that the generators of the isometry group of the Poincaré ball
model are restrictions to of inversions of E'1. Thus they extend to continuous
homeomorphisms of the closed ball B" U S"'. Similarly, there is a natural extension
of isometries of the half-space model to homeomorphisms of RH". With respect to
these actions, the above bijections from to and are equivariant.

The study of individual isometries of H' is well-documented and we shall not
repeat it here. However, it is worth recording some important examptes. for the action
of Isom(H") on the Poincaré ball model, the subgroup fixing 0 E I? c consists of
the restrictions to of the usual linear action of 0(n) on for the action of Isom(W)
on the Poincaré half-space model H'1, the subgroup fixing the point {oc}
is generated by the restrictions to H' of Euclidean translations, homotheties and
reflections of preserving it is isomorphic to IR, where the
left hand factor consists of those isometries of that preserve subsets of the form

x {a} and the action of the nght hand factor is conjugation by Euclidean
homotheties a F—± e'a.
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Since the actions of Isom(W) on and are both transitive, these examples
serve to descnbe the isotropy subgroups of arbitrary points in H's, up to conjugation
in Isom(W).

Isometries of 112

We conclude our considerations of the standard models for hyperbolic space with a
classical description of Isom(H2). This requires that we introduce a complex coor-
dinate in the Poincaré model: identify E2 with the complex plane C, the unit ball B2
with the disc {z E C

I Izi < 1 } and the upper half-plane H2 with {z E C
I

>
where 3z is the imaginary part of z. Given two distinct points z and w in or
let c be the unique circle in the Riemann sphere C U {oc} = E2 that passes through
z and w and meets the boundary of the model orthogonally. Let and be the
two points at which the circle c cuts the boundary of the model, labelled so that

z, w, occur in order on c. The hyperbolic distance between z and w is

d(z, w) = log(z, w,

where (z, w, = is real and greater than one.
In (6.12) we related to by the Cayley transform; in the present context

this is given by the formula z F—± (We warn the reader that the term Cayley
transform is also commonly used to describe the orientation preserving isometry
H2 -÷ B2 defined by z

6.14 Proposition. The group of isometries of the Poincaré half-space model for
is precisely the group of maps H2 —÷ H2 obtained by letting the group GL(2, act
thus:

bif ad—bc> Othentheactionof(a d) is

az + b
ZF-±

cz + d'

b
ZF-±

+ d

The kernel of this action consists of all scalar multiples of the identity matrix Thus
lsom(1H12) PGL(2,

The group of isometries of the ball model for H2 is precisely the group of maps
of the form:

ZF-± , — —,
qz+p qz+p

wherep, q E C and p12 1q12 = 1.
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Proof A direct calculation shows that the given maps are indeed isometries of the
half-space model H2, and the map GL(2, IR) —÷ Isom(H2) described by the given
formulae is a homomorphism with kernel the group of scalar multiples of the identity.
To see that the given action is transitive on H2, it suffices to consider z az with
a 0 and z '-÷ z + b.

The Cayley transform conjugates the given maps of 112 to those of B2, hence the
latter group of maps acts transitively on B2. This group also contains 0(2) (in the
form of the maps z pz and z with = 1), and since this is the stabilizer
of 0 in Isom(B2), it follows that the given maps are the whole of Isom(1H12). LI

as a Riemannian Manifold

In Chapter 2 we defined the metric spaces The main purpose of this section is
to exhibit as the length space associated to a Riemannian manifold. Initially, we
defined the set M to be a certain submanifold of a Euclidean space We shall give an
explicit description of a Riemannian metric on this submanifold. We shall then prove
that M is the associated length space. We do so by combining some facts about
Isom(M) with an explicit calculation of the Riemannian length of certain curves.
We shall also give explicit formulae for the Riemannian metrics on the Poincaré
models of hyperbolic space.

We begin by recalling once more that a Riemannian metric on a differentiable
manifold X is an assignment to each tangent space of a positive definite bilinear
form (i.e., a scalar product) such that these forms vary continuously with x. By
relaxing the requirement that these bilinear forms must be positive definite one
obtains the notion of a pseudo-riemannian metric

The Riemannian Metric on

As we pointed out in Chapter 3, IE'1 has a natural Riemannian metric, the Euclidean
Riemannian metric ds2 = (see Chapter 3 for notation). More explicitly,
one identifies the tangent space of at x with the set of pairs (x, v), where v
is a vector in IE'1; then one endows with the unique vector space structure and
scalar product so that the projection (x, v) v is a linear isometry of onto

is the differentiable submanifold of consisting of vectors of Euclidean
norm one. As such it inherits an induced Riemannian metric: the tangent space TXS'
to 5" at x E S' is the vector subspace of consisting of pairs (x, v) with
(x

I
v) = 0 (Euclidean scalar product), and the restriction to this subspace of the

given scalar product on defines a Riemannian metric on S'. In other words,
for every x E S's, the map (x, v) v gives a bijection from TXS" to the n-dimensional
subspace x-1- c orthogonal to x, and the Riemannian metric on is the unique
assignment of scalar products that makes all of these maps isometries
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In an entirely analogous way, one can obtain a Riemannian metric on W by
regarding it as a differentiable submanifold of 1• The latter has a natural pseudo-
riemannian metric ds2 = —

the desired Riemannian metric on TEl"
is obtained by restricting the given bilinear form on to TXIE-P for each x E TEl"

(these restrictions are positive definite). More explicitly: the tangent space to
THI'1 at x e is the vector subspace of consisting of pairs (x, v) such that
V E x1 (that is, (x

I
v)=0); for every x e the map (x, v) v gives a bijection

from to the n-dimensional subspace x-'- C orthogonal to x; the desired
Riemannian metric on is the unique assignment of scalar products that makes all
of these maps isometries. (The restriction of (

I •) to
x e W.)

The natural Riemannian metric on is obtained from the preceding special
cases by scaling. There are two equivalent ways of doing this. If K > 0, then one
can either identify with S' and multiply each of the scalar products defining
the Riemannian metric on the latter by a factor of 1/K, or else one can view M as
the Riemannian submanifold {x e

I
(x

I
x) = 1/K} and give it the

induced Riemannian metric. Similarly, if K < 0, then one can either identify M with
TEl" and multiply each of the scalar products defining the Riemannian metric on the
latter by a factor of 1/—K, or else one can view M as the Riemannian submanifold
{x e

I I
x) = 1/K } ' and give it the induced (pseudo-)Riemannian

metric.

We should be absolutely clear about the logical structure of what we are doing at
this point We have introduced a Riemannian metric on the manifold this allows
us to speak, for example, of the Riemannian length of curves in and of Riemannian
isometnes from to itself or other manifolds. But a priori the Riemannian length
of a curve may be different from its length in the metnc space M, and we may not
assume that a Riemannian isometry from Mg" to itself (i.e., a map whose derivative
preserves the Riemannian metric) is an isometry of the metric space Mt!, nor vice
versa.

6.15 Lemma. Given K e R, suppose that is equipped with the Riemannian
metric described above. Let d denote the metric on defined in (2.10).

(1) The action of d) on M is by Riemannian isometries.

(2) Forallx e andr > 0(withr < = >0), ifK Othen
the induced Riemannian metric on {y e Mg"

I
d(x, y) = r} ç makes it

isometric, as a Riemannian manifold, to a sphere of radius
I

in
vkl

(JfK < 0 then = =

Proof Because the metric and Riemannian metric on were defined by compatible
scaling processes, it is enough to consider the cases M = 5", W. It is obvious
that the group D(n) of displacements of lEa, the orthogonal group O(n + 1) acting
as usual on 5" c and the group O(n, l)÷ acting linearly on ç all
preserve the Riemannian men-ic. Thus (1) is a consequence of (2.21).
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Having proved (1), it suffices to verify assertion (2) for a particular choice of x,
because acts transitively. In the case of S'1. we letx = (1,0 0). By
definition, {y e 5" = r} {y e

I I

I
= cos r, >> = sin2 r}, which is a Euclidean sphere

of radius sin r. The Riemannian metric which this set inherits as a submanifold of
5" is, by definition, the same as that which it inhents from the ambient manifold IE".
This proves (2) in the case of S's.

The case of W c is analogous. Letx = (0 0, 1) e TEl" C Then,
{y E IHI"

I
= r} = {y e

j
(y

I
y) = —1, coshr =

I
x)} =

{(Yi Yn+i) E I Yn+i = cosh r, = sinh2 r}. This is a sphere of
radius sinh r in the affine subspace x {cosh r} and the projection of this
subspace onto its first factor gives a (Riemannian) isometry to

6.16 The Exponential Map. We have constructed a Riemannian metnc on
which gives a norm on each tangent space Each non-zero vector v e
can be written uniquely as ru, where r is a positive number and u is a vector of
norm one. We call (r, u) the polar coordinates of v. Given a point x e the
exponential map at x is the map expx from to that sends the origin to x
and sends the vector with polar coordinates (r, u) to the endpoint of the geodesic
segment issuing from x with initial vector u and length r (as defined in Chapter 2).
If K < 0 then the domain of expx is the whole of if K > 0 then is only
defined on the open ball of radius D,( =

More explicitly, for the case ic = — 1, if one identifies unit vectors in TXI[-P to
unit vectors in IE" ',as described above, then

expx(ru) = (cosh r)x + (sinh r)u.

Similarly, for the case K = 1, if one identifies unit vectors in to unit vectors in
as described above, then

expx(ru) = (cos r)x + (sin r)u.

In (2.11) we proved that for each pair of points x, y e (assuming that d(x, y) <
DK), there is a unique geodesic joining x to y in Hence expx is a bijection
onto if K < 0, and onto B(x, if K > 0 and the explicit expression
above shows that expx is a diffeomorphism. In particular, one can use to pull the
Riemannian metric on M back to where the availability of polar coordinates
facilitates an elegant and instructive description of it, (6.17(2)). This process is rather
like using planar charts to describe the surface of the Earth.

Notation. The metric ansing from the given scalar product on makes it isometric
to Euclidean space, and hence there is an associated Riemannian metric on
Let du2 denote the induced Riemannian metric on the unit sphere in
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6.17 Proposition.

(1) For every K e ]R, the metric on that was defined in (2.10) is equal to the
length metric associated the Riemannian metric given above.

(2) For every x e the Riemannian metric on TXM that is obtained by pulling
back the given Riemannian metric on via the exponential map expx, is given
in polar coordinates (r, u) by the formula

if K <0;

IJK >0;

ds2=dr2+r2du2

Proof We first prove (2) The case K = 0 is clear, because the exponential map is an
isometry and the Euclidean Riemannian metric is given in polar coordinates by the
formula ds2 = dr2 + r2du2. The given formulae for K 0 follow from 6.15(2) and
the fact that the smooth curve r expx(ru) is orthogonal to spheres centred at x

We shall deduce (1) from (2) in the case K = —1; the other cases are entirely
similar. Given x, y E with d(x, y) = r, there is a unique unit vector u0 e
such that y = expx(ruo). Consider a piecewise differentiable curve c : [0, 1] —÷ TEl'1

joining x to y. By writing c in the form c(t) = we obtain a formula for
its Riemannian length:

p1 pi pI
IR(c) = I + (sinh r(t))21à(t)12 dt > 1i(tN dt > r(t)dt = r.

Jo Jo Jo

One obtains equality in this expression if and only if à(t) = 0 and 1(t) 0 for all
t e [0, 1]. These conditions are satisfied by the path, t i—÷ (and by no
other, up to reparameterization). Thus the Riemannian distance between x and y is
r=d(x,y). LI

6.18 Proposition. The Riemannian metrics for the Poincaré ball and half-space
models of hyperbolic space are:

(1) for the ball model c

ds2
— (1 — 11x112)2

(2) and for the half-space model {x e > 0},

ds2 =

where lixil is the Euclidean norm of x and d4 = is the Euclidean
Riemannian metric.
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Proof The formula for the ball model can be calculated directly as the pull-back
of the Riemanman metric on THI" by the isometry hp : —÷ IHI'1 C defined
prior to (6.8). Alternatively, one can verify that the isometries of the Poincaré ball
preserve the given Riemannian metric; the action is transitive, so in order to prove the
proposition it then suffices to calculate the Riemannian length of curves emanating
from 0 E flfl; this can be done using polar coordinates on as in the preceding
proposition.

The Riemannian metric on the half-space model can be deduced from that on
B" by using Cayley transform B" -+ LI

6.19 Exercises

(1) Prove that the action of on the Riemannian manifold induces
a simply transitive action on the associated bundle of n-frames, i.e. the space of
(n + 1)-tuples (x, u1,.. un), where x e and Ui, . e TXM are mutually
orthogonal unit vectors. (cf. 2.15.)

(2) Using the Poincaré ball model, construct in the hyperbolic plane for each
n > 4 a regular n-gon with vertex right angles, and more generally regular n-gons
with vertex angles equal to a < (n

Given numbers a1, .. a,, e (0, it) with a, < (n — 2)ir, construct in 1H12

n-gons with vertex angles a1,. . , a,1.

(3)Themap(xj (x1 1)reducesthelengthofanyrectifiable
path that is contained in the subspace of the upper half-space model consisting of
points withx,, < 1.

(4) Fix 1> 0. Let S C 1E2 and S' c be circles of length I with centres c and c'
respectively Letp, q e Sandp', q' e 5' bepoints such that q) = /c'(p', q') > 0

and suppose that the tangent lines to S at p and q (resp. to 5' at p' and q') intersect at
r (resp. r') Show that p') > dE(r, p) and q') q).

(Hint: Consider the upper half-space model of hyperbolic space. When endowed
with the induced path metric, the horosphere x3 = I is isometric to 1E2, regard S as
lying on this horosphere. Identify TEl2 with the unique 2-plane in 1H13 that contains Sand

take p = p' and q = q'; note that the hyperbolic segment [p, r'} is the intersection of
this 2-plane with the vertical 2-plane containing the Euclidean segment [p, r]. Argue
that r is the image of r' under the projection map described in (3).)
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The simplest examples of geodesic metric spaces that are not manifolds are provided
by metric graphs, which we introduced in (1.9). In this section we shall study their
higher dimensional analogues, MK—polyhedral complexes. Roughly speaking, an
MK—polyhedral complex is a space that one gets by taking the disjoint union of a
family of convex polyhedra from and gluing them along isometric faces (see
(7.37)). The complex is endowed with the quotient metric (5.19). The main result in
this chapter is the following theorem from Bridson's thesis [Bri9l] (see (7.19)).

Theorem. If an Mg—polyhedral complex has only finitely many isometry types of
cells, then it is a complete geodesic metric space.

Metric Simplicial Complexes

We begin with an informal description of an MK -simplicial complex. There are techni-
cal reasons why simplicial complexes are easier to work with than general polyhedral
complexes, so since any polyhedral complex can be made simplicial by subdivision
(7.49), it makes sense to begin with the simplicial case.

There are two equivalent ways to view a metric simplicial complex. The first is
to imagine building the complex from a disjoint union of geodesic simplices in MK
by gluing simplices together along isometric faces (One restricts the gluing so that
each simplex injects into the quotient.) The quotient pseudometric (7.4) is called
the intrinsic pseudometric of the complex. This is the approach to MK -simplicial
complexes that we shall emphasize. An alternative approach is described in the
appendix to this chapter. This second approach is more appropriate in situations
where one wishes to use geometry to study a problem that has been encoded in the
combinatorics of an abstract simplicial complex

Whichever approach one takes, the issues that one faces are the same. One hopes
to obtain a complete geodesic metric space, but as we have already seen in the 1-
dimensional case (1.9), in order to do so one must add additional hypotheses. Under
very mild hypotheses one can prove that the intrinsic pseudometric is a metric and
the complex is a length space (7.10). Under the same hypotheses we prove that each
point in the complex has a neighbourhood that is isometric to a neighbourhood of
the vertex in the K-cone over the space of directions at that point (7.16).
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If the complex under consideration is locally compact, then one can deduce the
existence of geodesics under mild hypotheses using the Hopf-Rinow Theorem (3.7).
However we do not wish to assume that the complexes under consideration are locally
compact. (This is particularly important for the applications to complexes of groups
in Part III.) Instead, following [Bri9l}, we consider complexes that have only finitely
many isometry types of simplices. (Note that whenever one has a cocompact group
action on a complex, a natural thing to do is to the simplices of the quotient
and extend equivariantly; this gives a complex with only finitely many isometry types
of cells.)

7.1 Geodesic Simplices in M. Let n m be positive integers. An n-plane'° in M'
is, by definition, a subspace isometric to We say that (n + 1) points in are in
general position if they are not contained in any (n 1)-plane

A geodesic n-simplex S c M' is the convex hull of (n + 1) points in general
position; the points are called the vertices of S. If K > 0, then the set of vertices of S
is required to lie in an open hemisphere, i.e. in an open ball of radius DK /2.

A face T C S is the convex hull of a non-empty subset of the vertices of 5; if
T S then T is called a proper face. Note that a face of a geodesic n-simplex is a
geodesic n'-simplex for some n' n. The interior of S is the set of points that do not
lie in any proper face.

7.2 Definition of an Complex. Let (SA A e A) be a family of
geodesic simplices 5A C Let X = UAEA(SA x {A}) denote their disjoint union,
let "- be an equivalence relation on X and let K = Letp : X —÷ K be the natural
projection and define : 5A K by pA(x) p(x, A).

K is called an MK—simplicial complex if

(1) for every A e A, the map PA is injective, and

(2) if PA(SA) flpl'(SA) 0 then there is an isometry hA A from a face T1 C 5A onto
a face TA C 5A such thatp(x, A) = p(x', A') if and only if x' = h,. A'(x).

The set of isometry classes of the faces of the geodesic simplices is denoted
Shapes(K).

Terminology. M0 (resp. M1 , M_1) simplicial complexes are often called piecewise
Euclidean (resp. spherical, hyperbolic) complexes. MK—simplicial complexes are also
called metric simplicial complexes, or simplicial complexes of piecewise-constant
curvature.

7.3 Definitions (Simplices, Stars and Segments). Let K be as in (7.2). A subset
S C K is called an m-simplex if it is the image under some PA of an m-dimensional
face of S is a face of pj'(S), then T is called aface
of S The interior of S is the image under of the interior of (5) The support of
a point x E K is the unique simplex supp(x) that contains x in its interior.

such subspace is an intersection of hyperplanes
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We define a metric d5 on S by ds(pA(x), = ds(x, y). Condition 7.2(2)
ensures that this is independent of A. Observe that if T is a face of S then is the
restriction of d5. A bijection K1 K2 between MK—simplicial complexes is called
a simplicial isometry" if it maps each simplex of K, isometrically onto a simplex of
K2.

Let x e K. The (closed) star of x, denoted St(x), is the union of the simplices of
K that containx. The open star of x, denoted st(x), is the union of the interiors of the
simpl ices of K that contain x.

The image underpA of a geodesic segment [XA, YA I c T1 is called a segment
in the simplex T = pA(TA) and is denoted [x, y}, wherex = pA(xA) andy = The
length of [x, y] is defined to be dT(x, y). (Condition 7.2(2) ensures that the notation
[x, y} and the definition of length are unambiguous.)

K comes equipped with the quotient pseudometric described in (5 19) the
definition was in terms of chains In the present setting, we can use the extra structure
inherent in the definition of K to restrict the sort of chains that have to be considered.
The following combinatorial device is useful in this regard.

7.4 Definition (m-Strings and the Intrinsic Pseudometric). An m—string in K from x
toy is a sequence = (xo, x1 Xm) of points of K such that x = x0, y = Xm, and

for each i = 0, . . , m — 1, there exists a simplex 5(i) containingx, and x1÷I We call
m the size of and define the length of to be

1(E)

Every m—string determines a path in K, given by the concatenation of the segments
[x,, We denote this path P(s). When the integer m is not important, we may
refer to simply as a string.

The intrinsic pseudometric on K is defined by:

d(x, y) := a string from x toy

If there is no string from x toy, then d(x, y) := 00.

We now have two pseudometrics on K, the quotient pseudometric (defined in
terms of m—chains (5.19)), and the intrinsic pseudometric (defined in terms of m—
strings).

7.5 Lemma. For any MK—simplicial complex K, the intrinsic pseudometric and the
quotient pseudometric coincide. More precisely, there is an m—chain joining x to y
in K and only there is an m—string of the same length joining x to y.

sometimes called an isometric isomorphism
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Proof We have p : USx —÷ K. Every rn—chain C = S'i S'm) projects
to an rn—string of the same length p(x2) P($m), Conversely,
to each rn—string (x0, Xi Xm) we can associate an rn—chain =

S'm) such that for each i there exists A e A with = A), =
A), and = It is clear that projects to E and that

1(E)

Until further notice, K will denote a fixed cornplex
and d will denote the intrinsic pseudornetric on K

7 6 Rernark. If S is a simplex in K then ds(x, y) > d(x, y) for all x, y E 5, but one
does not get equality in general. For instance, consider the 1-complex that has three
vertices and three 1-simplices of lengths 1, 1 and 3 connecting the vertices pairwise
If S is the simplex of length 3, then the restriction of d to S does not coincide with
ds.

If Shapes(K) is finite, then one can always subdivide so as to arrange that d = ds
for all simplices S.

The following simple example shows that the intrinsic pseudometric on K will
not be a metric in general.

7.7 Example. Consider the metric graph that has two vertices and countably many
edges e,1 connecting these vertices, where has length 1/n. Subdivide the edges
to make it simplicial. The distance between the two original vertices in the intrinsic
pseudometric is zero.

The pathology in this example derives from the fact that there are points at which
the following quantity is zero.

7.8 Definition. Let x e K and let

e(x) := inf{e(x, S)
I

S C K a simplex containingx},

where e(x, S) := inf{d5(x, T) I T a face of Sand x T}. (IfS = {x} then we define
e(x, 5) to be oo)

7.9 Lemma Fix x e K If y e K is such that d(x, y) < e(x), then any simplex S
which contains y also contains x, and d(x, y) = ds(x, y).

Proof It is enough to show that if = (xo,. . , is an rn—string of length 1(E) <
s(x) from x = xo toy = with rn> 2, then L" = (xo, x2 is an (rn — 1)—

string with <1(E).
From the definition of an rn—string, we know that there is a simplex 5(1) containing

both x1 and x2, and since < e(x), the point x0 = x also belongs to 5(1). As
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ds(I)(xo, x2) < ds(I)(xo, x1) + ds(l)(xI, x2), we deduce that L" is an (m — 1)—string of
length < 1(E). LI

7.10 Corollary. If e(x) > 0 for every x e K, then the intrinsic pseudometric is a
metric and (K, d) is a length space.

Proof The lemma shows that d(x, y) > 0 if x y. It is then obvious from the
definition that d is a length metric. EIJ

The following simple example shows that we must impose extra hypotheses in
order to ensure that d is a complete length metric.

7.11 Example. Let L be the quotient of the disjoint union UN([O' 1 x {n}) by the
equivalence relation that identifies the terminal point of the n-th interval to the inidal
point of the (n + 1 )-th interval. Then e(x) > 0 for every x e L, and L is isometric to
[0,2).

In this example there are infinitely many simplices in a ball of finite radius. If
one has only finitely many simplices in any ball then (K, d) will be a proper length
space, hence complete and geodesic (3.7). (For an alternative proof see Ballmann
[Ba90])

The following result is the first of a number in which the set of isometry classes
Shapes(K) plays a prominent role. In order to work with this set we need a concrete
realization of it

7.12 Definition (Model Simplices). We represent each of the isometry classes in
Shapes(K) by a fixed geodesic simplex S C that is isometric to the simplices
in that class. S is called a model simplex. If S is an n-simplex in K then (5, is

isometric to a unique model simplex S. We associate to S an isometry fs : S —÷ S

called the characteristic map of S.
Note that d( sci),fs(Y)) for all i, e S (compare with 7.6).

7.13 Theorem. If Shapes(K) is finite, then (K, d) is a complete length space.

Proof First we prove that d is a length metric. According to (7.9), it suffices to show
that e(x) > 0 for evely x e K. Let S e Shapes(K) and let be a point in the interior
of S. Define > 0 to be the minimum of the finite set of numbers d(j(y), T), where
T is a face of some 5' e Shapes(K) andj ranges through the isometries of S onto
those faces of 5' whose interiors are disjoint from T. It follows immediately from
(7.9) that if x e K is such = x, then e(x) In particular e(x) > 0.

In order to prove that K is complete, we must show that every Cauchy sequence
(x,1) in K contains a convergent subsequence. Let be a simplex of K containing

Because Shapes(K) is finite, we can pass to a subsequence such that S,, = So for
every n e N. Let = By passing to a further subsequence, we may assume
that (ia) converges in So to a point



102 Chapter 1.7 M,ç—Polyhedral Complexes

Let T Fix e0 > 0 such that eo < and > 2eo for every
j E Isom(T) with Note that ifS S' So then or else

eo.

<eo/3andd(xfl,xN) < eo/3foralln N.
Then, xn) + d(xn, XN) + d(xN,fsN(X)). But

d(fs, (i), fs, is no greater than (see the last sentence of (7. 12)), and
similarly < Therefore d(J < E() if n > N, and

=fsN(X). So if we let x then for all n > N we have d(xn, 4
which goes to zero as n OO.

In (7. 19) we shall see that if Shapes(K) is finite then K is actually a complete
geodesic space In the appendix (7A.4) we consider a weaker hypothesis which is
enough to ensure that K is a complete length space but not enough to ensure the
existence of geodesics.

Geometric Links and Cone Neighbourhoods

In this section we study the local structure ofMK—simplicial complexes. We shall show
that if e(x) > 0 (in the notation of (7.8)) then the geometry of K in a neighbourhood of
xis entirely determined by the infinitesimal geometry atx (see 7.16). The infinitesimal
geometry at x K is encoded in the space of directions of geodesics issuing from
that point, which is called the geometric link Lk(x, K).

Let us first reflect on how to descnbe the neighbourhood of a point in a geodesic
simplex in terms of the tangent space at that point

7.14 The Link of a Point in a Geodesic Simplex. Let x be a point of a geodesic
m-simplex S in where m 1. The geometric link Lk(x, S) of x in S is the set of
unit vectors at x that point into 5, i.e. the set of initial vectors of geodesic segments
joining x to the points of S. The scalar product on the tangent space TXM induces
a length metric on the set of unit vectors making it isometric to Thus we may
identify Lk(x, S) with a subset of S then this subset is a
geodesic simplex; if x lies in the interior of S then Lk(x, S) is isometnc to

An equivalent way to view Lk(x, S) is as the set of equivalence classes of
geodesic segments [x, yJ in 5, where y S N {x} and [x, y'] [x, Y21 if [x, Yi J c
[x, y2J. The distance between the classes of [x, yJ and [x, y'J is the angle y').
Motivated by this, in what follows we shall write Ls(u, u') to denote the distance
between points u, Lk(x, 5).

If e > 0 is less that the distance from x to the union of those faces of S that
do not contain x, then the e-neighbourhood of x in S is naturally isometric to the
e-neighbourhood of the vertex in the ic-cone CK(Lk(x, 5)): the isometry sends tu
CK(Lk(x, 5)) to the point a distance t from x along the geodesic segment in the
direction u. (See 5.8)
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The geometric link of a point in an MK—complex is assembled from the links of
the points in the model simplices by the natural identifications.

7.15 The Link Lk(x, K) of a Point in K. Fix x K. Given y, y' E st(x) N

we say that the segments [x, yJ and [x, y'J define the same direction at x if one of
them is contained in the other. (Note that every equivalence class is contained in a
simplex.) The geometric link of x in K (usually just called the link) is the set Lk(x, K)
of directions at x. If x lies in the simplex 5, then the link of x in 5, denoted Lk(x, S)
is the subset of Lk(x, K) consisting of those directions which are contained in S.

Suppose S = PA(SA) (notation of (7.2)). The distance (angle) between two di-
rections u, Lk(x, 5) is defined to be where uA, U'A Lk(xA, SA) are

the directions of the unique geodesic segments in 5A that project onto geodesic seg-
ments in the classes u and u' respectively. Note that PA induces a canonical isometry
Lk(xA, SA) Lk(x, 5) and that if T is a face of S then Lk(x, T) is a subspace of
Lk(x, 5).

We construct a pseudometnc on Lk(x, K) in stnct analogy with (7.4) An m—
string in Lk(x, K) joining u to visa sequence = (uo Urn) of points in Lk(x, K)
such that Uo = U, Urn = v, and for each i there is a simplex S(i) such that U- and
are contained in Lk(x, 5(1)). The length of is defined to be

rn—I

1(E) := U÷1),

and the intrinsic pseUdometric on Lk(x, K) is the function:

d(U, v) := a string joining u to v

If there is no string connecting u and v, then d(U, v) := oo.

The intrinsic pseudometnc on Lk(x, K) coincides with the quotient metric associ-
ated to the projection UA Lk(xA, SA) Lk(x, K) induced byp: UA 5A K where,
by definition, SA) = 0 if x and otherwise x = PA(Xk). Note that if
x K is a vertex, then Lk(x, K) is an Mi—simplicial complex whose model simplices
Shapes(Lk(x, K)) form a subset of S)

I
a vertex of S Shapes(K)}.

7.16 Theorem. Let K be an MK-simplicial complex, and let x E K. If the number
e(x) defined in (78) is strictly positive, then B(x, e(x)/2) is naturally isometric to the
open ball of radius e(x)/2 about the cone point in CK(Lk(x, K)).

This is the first of a number of results in which we shall need the following device
for examining m—strlngs.

7.17 Definition (The Development of an m—Stnng). We fix a base point in a

base ray c : [0, DK] —÷ with c(0) = and an onentation of (The point of
the onentation is that it provides a uniform way of ordering pairs of directions that
are not antipodal.)
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Let x be a point of K and let = (x0 Xm) be an rn—string in sr(x) that avoids
x (in the sense that x does lie on any of the segments [x,, x,+1 1). Let S(i) be a simplex
containing [x1, and x. Let E = (jo, , be the sequence of points in
such that lies in the image of c, and for each i we have x) and

= ds(!)(xl_I, x,), and if xj, are not aligned, then the initial vectors
and occur in the order of the given onentation of The sequence

E is uniquely determined by these conditions and is called the developrnent of the
rn—stnng in

An important point to note is that the sum of the distances is equal to

Fig. 7.1 The development of E

The Proof of Theorern 7.16. We identify B(x, e(x)) with the ball of radius e(x) about
the cone point in CK (Lk(x, K)) by writing tu to denote the point a distance t along a

segment issuing from x in the direction u Lk(x, K). Let denote the pseudometnc
on CK (Lk(x, K)) (now transferred to B(x, e(4)). What we must prove is that for any
y, y' B(x, e(x)/2) we have d(y, y') = y'). (Lemma 7.9 ensures that the above
identification is well-defined, i.e. if d(x, y) < e(x) then there is a unique segment
joining x to y.)

Let y = tu and y' t'u'. Lemma 7.9 tells us that t d(x, y) y) and
therefore we restrict attention to the case t, t' > 0. Note that d(y, y') < t + t' and

t+t'.
Clairn 1: If d(u, u') <it then d(y, y') y') < t + t'.

By definition, d(u, u') is the supremum of the lengths of the strings in Lk(x, K)
connecting u to u'. Thus there exists an rn—stnng = (u0 Urn) with u = uo and
U' Urn such that d(U, u') < < Let S(i) be a simplex such that
Lk(x, S(i)).

From we shall construct a corresponding rn—stnng E joining y to y' by first
constructing its development. Te this end, we fix a basepoint E choose

such that = t, = t' and =
Then we choose points on the geodesic segment such that
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= dLk(Xs(1))(uj, Let t, = and let x = t,u,. Note that
[x,, C S(i) and =

The rn—string = Xm) jOjflS y = XO to y' = Xm in B(x, e(x)), and

therefore d(y,y') < = < t + t'. But djy,y') =
Thus Claim I is proved.

If d(y, y') = t + t', then d(u, u') > by Claim I, and therefore y') = t + t'.
In the light of this observation, the theorem follows from Claim I and

Claim 2. If d(y, y') <1 + t', then d(u, u') < it and y') <d(y, y').
Let = (x0, . , Xrn) be an rn—stnng joining y = x0 tO )" = Xrn in B(x, e), and

suppose < t + t' The triangle inequality tells us that x is not contained in the
path determined by Thus x, can be written uniquely as x1 t,u1, and we have an
rn—strings = (uO, ., Urn) joining u to u' in Lk(x, K).

Let E , be the development of in If were greater
than Jr, then for some i with 0 < i < rn there would exist such

that = let = Then, for E' and E" :=

. , Xm) we would have 1(E) = 1(E') + l(E") > (to + t) + (trn — t) = t + t',
which is a contradiction. Thus Jr > = > d(uo, Urn) d(u, u').
Since Xrn) and y') are obtained by applying the law of cosines to the MK-
tnangles with vertex angles Xrn) and d(U, U') respectively (see 5.6), we deduce
that > Xm)> y'). Therefore d(y, y') y'). LI

The following map was implicit in the arguments of the preceding proof.

7.18 Definition (Radial Projection). The map St(x) N {x} Lk(x, K) that associates
to each point y the direction of [x, yJ is called radial projection from x. Thus the rn-
stnng considered in the preceding proof was the radial projection of the rn-string

If x is a vertex then this map takes open simplices to open simplices and sends
segments in st(x) to segments in Lk(x, K).

The Existence of Geodesics

In this section we shall prove the theorem of Bndson [Bri9 I] mentioned in the
introduction.

7.19 Theorem. Let K be a connected MK—sirnplicial cornpleL If Shapes(K) is finite,
then K is a cornplete geodesic space

The outline of the proof of this theorem is as follows. We shall define a useful
subset of the set of rn—stnngs called taut strings. This class is large enough to ensure
that the infimum in the definition of the intnnsic pseudometnc on K can be taken
over taut stnngs rather than all stnngs (7.24). On the other hand, taut stnngs are
rather efficient in the sense that their size is bounded above by a linear function of
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their length (7.30); this will be proved by an induction on the dimension of K. Thus
the proof of Theorem 7.19 is reduced to showing that if one fixes rn then there is
a shortest rn—string among all those with specified endpoints. This is proved by a
simple "quasi-compactness" argument (7.27).

The proof of Theorem 7.19 will also provide us with a charactenzation of the
geodesics in MK—simplicial complexes that will be useful in Chapter 11.11 when we
come to construct polyhedral complexes using the gluing techniques introduced in
(5.19).

Taut Strings

Before defining what it means for an rn—string to be taut, we must make some obser-
vations about small subcomplexes of K. Suppose that Sand 5' are closed simplices in
K which have non-empty intersection, and consider L = S U 5' equipped with its in-
trinsic metnc, I e the metric such that d(x, y) = ds(x, y) if x, y 5, d(x, y) = ds (x, y)
if x, y 5', and d(x, y) z) + ds'(z, y)) if x E S and y 5'. Then
L is a geodesic metric space, and the minimal rn—string associated to any geodesic
segment has size at most 2 (cf. 5 24)

7.20 Definition of a Taut String. An rn—stnng = (xo, x1 Xm) in K is taut if
it satisfies the following two conditions for i = 1 rn — 1:

(1) there is no simplex containing x,, x1+i},

(2) if 5(i) and S(i + 1) then the concatenation of the line
segments [x,_1, x,J and [x,, J is a geodesic segment in L = 5(i) U S(i + 1).

Notice that if a stnng is taut then only its first and last entnes can lie in the intenor
of a top dimensional simplex of K.

7.21 Lemma. For afixed integer rn, is an rn—string frorn x toy in K, and is
of rninirnal length arnong all rn—strings joining these points, then (the path in
K determined by is the path determined by sorne taut n—string with n < rn.

Proof Let = (x0,x1 Xm). Suppose that for some i there exists a simplex
S containing x, and and let denote the (rn — 1)—string obtained from

by deleting the entry The triangle inequality for ds gives ds(x,_1, <
ds(x,_i,x,) + with equality if and only if x, lies on the line segment

Thus But is minimal, so in fact = and
hence x, must lie on the line segment This implies that determines the
same path as We can repeat this procedure until no simplex of K contains three
successive entnes of the resulting string the first condition for tautness.

We now show that satisfies the second condition for tautness. Let SandS' be any
simplices containing , x,} and {x,, } respectively Every geodesic segment in
the complex L = S U 5' can be expressed as the concatenation of one or two line
segments. So if the concatenation of the line segments [x,_1, x,] and [x1, were
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not a geodesic segment in L, then we could replace x, by some S fl S' to obtain
an rn—string from X0 to Xm which would be strictly shorter than contradicting the
minimality of LI

7.22 Example. Figure 7.2 illustrates the fact that a taut stnng is not necessanly a
local geodesic. Here K is a planar 2—complex with three 2—simplices, and the stnng
(a, b, c) is taut but not a local geodesic.

Fig. 7.2 A taut stnng which is not a geodesic

7.23 Lenuna. Let x be a vertex of K and let (xo Xm) be a taut string in
st(x), the open star of x. Suppose that x, xfor each i = 0, .. , rn. If K > 0, assurne
in addition that for each i, ds(,)(x, x,) < DK/2, where S(i) is a sirnplex containing
[x,, -

Then, the irnage of under radial projection (as defined in (7.18)) is a taut
string in Lk(x, K) of length < it.

Proof The radial projection of into Lk(x, K) isE = (uo, . , where u, is the
direction determined by the segment [x,x1J. Let = (10, . be the develop-
ment of in with respect to the base point (see 7.17); if K > 0, we
have < We claim that the concatenation of the geodesic segments

. ., is the geodesic segment As = it
will follow that <7r.

Since every local geodesic in DK/2) is a geodesic, it is enough to show that
the concatenation of [i,_ and J is ii, If this were not the case,
then arbitranly close to on the ray issuing from and passing through there

would be a point such that + < , x,) + Let
S(i) and S(i + 1) be simplices containing [x,_1, x,] and [x,, respectively. Let
be a point of St(x) N st(x) such that x, [x, note that E S(i) fl S(i + 1). As
x, is in the open star of x, we have x1 y,, and if is chosen close enough to
there is a point [x, such that d(x, = As S(i) fl S(i + 1) and

= and = we would have d(x1_1,x1) +
d(x,, > d(x1_1, + d(x1, contrary to the hypothesis that is taut.

It remains to show that E is taut. The first condition for tautness is obvious. To
establish the second condition, for each i we consider the map from 5(i) U S(i + 1)

C
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(with its intnnsic metnc) to CK (Lk(x, S(i) U S(i + 1))), as in (7.16). The argument of
the previous paragraph shows that the image under this map of the concatenation of
[x,_1, x1J and [x,, x,÷i J is a geodesic in CK (Lk(x, S(i)US(i+ 1))). Therefore, by (5.10),
the concatenation of [u,_i, and [u,, u1÷1] is a geodesic in pS(i) U pS(i + 1).

The Main Argument

In this subsection we present the proof of Theorem 7.19, as outlined above. In the
first step (7.24), we prove that the distance between two points is the infimum of the
length of taut stnngs joining them. In the second step (7 28), we prove that for every

> 0, there is an integer N depending only on the finite set Shapes(K) such that the
size of taut stnngs of length < £ is bounded by N.

7.24 Proposition. Let K be an MK—simplicial complex with Shapes(K) finite. Then
for any two points x, y K, we have

d(x,y) = taut stringfromxto y}.

The following lemma is taken from the thesis of Gabor Moussong [Mou88J who
used m—stnngs to prove the existence of geodesics in locally compact complexes.

7.25 Lemma. If L is a finite complex, and if the points x and y can
be joined by an m—string in L, where m is a fixed intege? then there is a shortest
m—string from x to y in L

Proof Let X C denote the set of m—strings from x to y in L We show that X
is closed and hence compact The length function I on m—stnngs is continuous on X,
and therefore attains a minimum if X is closed.

Notice that for any w, z L, the set st(w)flst(z) is empty if and only if there is no
closed simplex of L containing both w and z. Thus, if z = (Zo, Zi, . . , is not an
m—stnng, then for some i between 0 andm — I we have st(z1) fl i) = 0 Hence z
has a neighbourhood disjoint from X, namely (L x.. Lx st(z,) x ) x Lx.. . x L).

Thus X is closed. 0

7.26 Model Complexes (Quasi-Compactness). Given K with Shapes(K) finite, and a
positive integer m, one can build a finite set of model subcomplexes, that is, connected
complexes obtained by taking at most m (not necessanly distinct) simplices from
Shapes(K) and identifying faces by isometnes. Any subcomplex I(o of K which can
be expressed as the union of at most m closed simplices must be simplicially isometnc
to one of these models, i.e. there is a bijection from to the model which respects
the simplicial structure and restncts to an isometry on each simplex S equipped with
its intrinsic metric ds The existence of this finite set of models allows us to pass



The Main Argument 109

from the case of finite complexes to the case of interest, complexes with Shapes(K)
finite.

Notice that K0 with the induced metnc from K is not in general isometric to the
model with its intrinsic metnc. However, since the length of a stnng is defined in
terms of the local metrics d5, a given rn—stnng in and the corresponding rn—stnng
in the model have the same length This is the key to the following lemma.

7.27 Lemma. If K is an MK—simplicial complex with Shapes(K)finite, and two points
x andy can be joined by an rn—string in K, where m is afixed integer; then there is a
shortest rn—string frorn x to y in K.

Proof For any fixed pair of elements x and y there are only finitely many bipointed
models, (K'; x', y'), for (Ko; x, y) as K0 runs over all subcomplexes of K which contain
both x and y and can be expressed as the union of at most m closed simplices. Thus,
any m—stnng from x to y in K corresponds to an m—stnng of the same length from
x' to y' in one of the finitely many models under consideration, and vice versa. The
present lemma now follows by application of (7.25) to each of the models.

Proof of724 Apply (7.21) and (7.27).

We are now in a position to prove the required lower bound on the length of taut
m—stnngs. The idea is to localize the problem to the star of a single vertex and then
use (7.23) to reduce to a lower-dimensional complex. The proof which we present
here is a refinement of the onginal proof [Bri9 I], and appears in some unpublished
seminar notes of R. L. Bishop.

7.28 Theorem. Let K be an MK -simplicial complex with Shapes(K)finite Then, for
every £ > 0 there exists an integer N > 0, depending only on Shapes(K), such that
for every taut rn—string in K of length at most £ we have m N.

Proof We proceed by induction on the dimension of K. In order to clanfy the
induction process, we articulate an intermediate conclusion and use the following
scheme of proof:

The statement of the theorem is true for complexes of dimension n

. Suppose that K is of dimension n Then there exists a constant R, depending
only on the finite set Shapes(K), with the following property: if x is a vertex of
K and — (x0 is a taut rn—string contained in st(x), and if [x, xJ has
length less than DK/2 for each i, then rn <R.

Assertions and are tnvial We shall prove: 'If,1 for all
n>2.
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Let K, and x be as in statement 'I',.
If the path determined by were to pass through x, then x would have to be

an entry in E. The first condition for tautness would then imply that E has size
at most 2. Thus we may take R > 3 and restrict our attention to the case where

= (xe, Xi Xm) with m> 2 and the path determined by does not pass
through x. We can then radially project into Lk(x, K), as in (7.18)

According to (7.23), the image of under this projection is a taut rn—string in
Lk(x, K) of length smaller than 7r.

Now, by applying condition to the sphencal complex Lk(x, K), we obtain
a constant N(x), depending only on Shapes(Lk(x, K)), such that any taut string in
Lk(x, K) of length at most has size at most N(x).

There are only finitely many possibilities for Shapes(Lk(x, K)) as x ranges over
the vertices of K, and the set of these possibilities depends only on Shapes(K). So
setting R equal to the minimum of the constants N(x) as x ranges over the set of
vertices of K finishes the proof of the present implication.

W,1

If were false, then in some n-dimensional metnc simplicial complex K with
only finitely many isometry types of simplices there would be taut chains of bounded
length and arbitrarily large size, and hence taut strings of arbitranly small length and
arbitrarily large size. But because Shapes(K) is finite, there is a constant such

that any set of diameter at most is contained in the open star of some vertex
x K intersected with B(x, DK/2) (one simply chooses small enough so that each
S Shapes(K) is the union of the subsets S N N st(x)), where x runs over the
vertices of S and denotes the Thus we obtain a contradiction

LII

The Proof of Theorem 7.19. Given x, y E K, we can apply the preceding result to
obtain a bound on the size of taut strings joiningx toy. Then, by (7.28), one need only
take the infimum in the definition of d(x, y) over m—stnngs with m fixed. According
to (7.26) there is a shortest such m—stnng joining x toy. LI

We amplify two aspects of our proof of the existence of geodesics.

7.29 Corollary. If K is an MK-simplicial complex with Shapes(K) finite, then every
local geodesic offinite length in K is the concatenation of a finite number of segments
(each contained in a simplex).

7.30 Corollary. If K is an MK-simplicial complex with Shapes(K) finite, then there
exists a constant x > 0 such that every taut m—slring in K has length at least xm I.

Proof It is clear from the definition that a substring of a taut stnng is itself taut. And
according to (7.28) there exists an integer N such that if m N then the length of every
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taut m—stnng in K is at least 1. Let x — 1/N and be the integer part of ctm. Given
a taut m—stnng = (xe,.. , Xm), we can view it as the concatenation of the + 1

substnngs (xo, .. ,XN), = (XN X2N) .

Each of the first of these strings has length at least 1. Hence the length of is at
least = [ctm] > xm — 1.

This technical observation has the following consequence relating the metnc
structure of K to its combinatonal structure. The 1-skeleton of K, denoted is
the graph whose vertices are the vertices of K and whose edges are the 1 -simplices
of K.

7.31 Proposition. Let K be an MK-simplicial complex with Shapes(K) finite. Let
denote the 1-skeleton of K, considered as a metric graph with all edge lengths

1; let d1 be the associated metric. Then the natural injection j : K is a
quasi-isometry12.

Proof Because Shapes(K) is finite, every point of K is within a bounded distance of
the image off. And if we set k equal to the length of the longest edge of any simplex
in Shapes(K), then clearly d(j(u),j(v)) < v) for all vertices u, v

Let the constant a be as in (7 30) We fix a taut m—string = (xo,. . ,

determining a path in K that is a geodesic joining the vertices j(u) and j(v). Let
yo = j(u) and, inductively for i 1,. . , m 1, define y, to be a vertex of K that lies
in fl St(x1÷i) Let Ym j(v). This gives a sequence of vertices connectingj(u)
toj(v), and since each successive pair of these vertices cobounds an edge in we
deduce that di(u, v) < m. But from (7.28) we have d(j(u),j(v)) > xm 1. Hence
xdi(u, v) — I <d(j(u),j(v)) kd1(u, v). LI

Cubical Complexes

We turn our attention briefly to cubical complexes These are more rigid objects than
MK-simplicial complexes and in many ways they are easier to work with. Moreover,
there exist many interesting examples (see 11.5).

The unit n-cube is the n-fold product [0, 1]"; it is isometric to a cube in
with edges of length one By convention, j0 is a point.

The faces of the 1-cube [0, 1] are the subsets (0}, {1} and [0, 1], the first two
have dimension 0 and the last has dimension I Aface of!" is a subset S of!'1 which
is a product Si x x of faces of [0, 1]; the dimension of S is the sum of the
dimensions of the S,. (Each k-dimensional face is isometnc to Jk•)

We define a cubical complex, by mimicking the definition of an MK—simplicial
complex, using unit cubes instead of geodesic simplices

2See 1.8 14 for the definition of quasi-isometry
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7.32 Definition of a Cubical Complex. A cubical complex K is the quotient of a
disjoint union of cubes X = UA by an equivalence relation The restrictions

PA —÷ K of the natural projection p X —÷ K = X/— are required to satisfy-

(1) for every A E A the map px is injective;

(2) 0 then there is an isometry from a face C I"
onto a face TA C such that pA(x) = pA(x') if and only if x' = x(x)

7.33 Basic Structure. Let K be as in (7.32). A subset C C K is called an rn-
dimensional cube if it is the image under some of an rn-dimensional face of
The notions of segments, rn-strings, and so on, are defined as in the simplicial case, as
is the pseudometnc on K. In contrast to the simplicial case, the intnnsic pseudometnc
on a cubical complex is always a metnc because the number e(x) defined in (7.8) is
positive for every x E K If K is finite dimensional then d is also complete (a simplified
version of the argument given in (7.9) applies). In fact, K is finite dimensional,
then it is a complete geodesic space (see (7.43)).

If K is not finite dimensional then it might not be complete For instance, let H be
an infinite dimensional Hilbert space, fix an orthogonal basis, and consider the cubes
spanned by the finite subsets of the basis elements; these form a cubical complex
that is not complete

Complexes

We began this chapter by studying simplicial complexes rather than more general
polyhedral complexes, partly because simplicial complexes are easier to work with
and partly because we did not wish to obscure the main ideas by the troublesome
technicalities which must accompany a precise definition of polyhedra in general
Now we shall consider the general case.

Intuitively speaking, an MK-polyhedral space is a cell complex whose cells are
endowed with local metncs making each isometnc to the convex hull of a finite
number of points in M; these local metncs agree on the intersection of cells. (A
precise definition is given in (7.37).) One can measure the length of paths using these
local metrics, and the intrinsic pseudometric on the complex is obtained by setting the
distance between two points equal to the infimum of the lengths of paths connecting
them. As in the simplicial case, we are interested in the question of whether this
infimum is attained. We also wish to establish that polyhedral complexes have the
sort of local cone structure described in (7.16).

In order to establish the existence of geodesics, we shall describe a canonical pro-
cess of subdivision that transforms any MK-polyhedral complex K into an isometnc
MK-simplicial complex called the second barycentric subdivision of K.

Recall that a subset of a geodesic space is said to be convex if every geodesic
segment whose endpoints lie in the subset is entirely contained in the subset. The
convex hull of a subset P of a geodesic space is the intersection of all convex sets
containing P



Complexes 113

7.34 Convex Cells. Fix IC E R. By definition, a convex MK-
polyhedral cell C C M is the convex hull of a finite set of points P C if
K > 0, then P (hence C) is required to lie in an open ball of radius DK/2. The dimen-
sion of C is the dimension of the smallest13 rn-plane containing it. The interior of C
is the intenor of C as a subset of this rn-plane.

Let H be a hyperplane in M. If C lies in one of the closed half-spaces bounded
by H, and ifHflC 0, then F = HflCis called aface ofC; ifF C then itis called
a proper face. The dimension of a face F is the dimension of the smallest rn-plane
containing it The interior of F is the intenor of F in this plane. The 0-dimensional
faces of C are called its vertices. The support of x E C, denoted supp(x), is the unique
face containing x in its intenor.

The following discussion is parallel to (7.14) and (7.15). Given x E C, the
directions at x pointing into C form a space Lk(x, C). The distance (angle) between
two directions u, u' E Lk(x, C) is denoted Lc(u, u'). If C has dimension m, then
Lk(x, C) can be identified with a subset of 5tm_ ifx is an intenor point then Lk(x, C)
is the whole of Sm_I; if x is a vertex of C then Lk(x, C) is a convex polyhedral cell
in 5m_1•

7.35 Exercise. Let C be a convex MK—polyhedral cell of dimension m, let x E C and
suppose that supp(x) has dimension k > 0. Prove that Lk(x, C) is isometric to the
spherical join (5.13) of 5k— I and a convex Mi—polyhedral cell of dimension rn—k—- 1.

7.36 Proposition. Let C be a convex MK—polyhedral cell. Then:

(1) Each face of C is a convex MK—polyhedral cell.

(2) The intersection of any Iwo faces of C is again aface.

(3) C has only finitely many faces.

(4) C is the convex hull of its set of vertices.

(5) If C is the convex hull of a set P, then there is a unique minimal subset of P
with convex hull C, and this is the vertex set of C.

(6) 1ff: C —* C1 is an isometry from C to a convex MK—polyhedral cell C1, and if
F is aface of C, thenf(F) is aface of C1

Proof Suppose that C is the convex hull of the finite set P. Let F be a face of C and
suppose that F = C fl H where H is a hyperplane. Because the open half-spaces
defined by H are convex, F = H fl C is the convex hull of H fl P. This proves (1).

The content of (2) is that the intersection of two closed half-spaces X1 and X2,
bounded by hyperplanes H1 and H2 say, is contained in a half-space bounded by a
hyperplane that intersects X1 fl X2 in H1 fl H2. Part (3) follows immediately from (1),
and (4) and (5) are proved by induction on the dimension of faces.

Part (6) is a consequence of the fact that any isometry between subsets of
is the restnction of an element of (see (2.20)). Any such global isometry

i e the intersection of all hyperplanes containing C
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obviously takes the intersections of C with hyperplanes to intersections of C1 with
hyperplanes. Lii

For more details, see Eggleston's book on convexity [Eg77]. (Note that because
convex polyhedral cells in correspond to convex polyhedral cones in one
can convert most questions about such cells into questions concerning the convex
geometry of Euclidean space.) Further references include [Berg77], [Bro88] and
[Grü67]

7.37 Definition of an Complex. Let (CA : A E A) be a family of
convex MK—polyhedral cells and let X = UAEA(CA x {A}) denote their disjoint union
Let be an equivalence relation on X and let K = X/—. Let p X —÷ K be the
natural projection and define p. : C. —÷ K by px(x) p(x, A)

K is ca/led an MK—polyhedral complex if

(1) for every A E A, the restriction of to the intenor of each face of CA is
injective;

(2) for all A1, A2 E A and xi E CA, x2 E CA,, if = pA2(x2) then there
is an isometry h : supp(xi) —÷ supp(x2) such that = pA,(h(y)) for all
y E supp(xi).

The set of isometry classes of the faces of the cells CA is denoted Shapes(K).

The auxiliary definitions and terminology needed to descnbe the geometry of
MK—polyhedral complexes are essentially the same as in the simplicial case:

7.38 Cells, Stars, Links and the Intrinsic Pseudometric. Let K be as in (7.37). A
subset C C K is called an n-cell if it is the image pA(F) of some n-dimensional face
F C CA; the intenor of C is the image under of the interior of F.

The intrinsic pseudometric on K is the quotient pseudometnc d associated to
the projection p UA CA K. As in (7.5) one shows that it is equivalent to define
d(x, y) to be the infimum of the lengths of piecewise geodesic paths in K joining x to
y: a piecewise geodesic path is a map [a, b] —÷ K such that there is subdivision
a = to t1 < tk = b and geodesic paths c, : t} —÷ CA such that for
each t E t} we have c(t) = pA(c1(t)); the length 1(c) of c is 1(c) := 1(c1)

(7.37(2) ensures that 1(c) is independent of the choice of subdivision.)
Fix x E K. The open star of x, denoted st(x), is the union of the intenors of the

cells that contain x. The geometric link Lk(x, K) of x in K is the space of directions at
x endowed with the quotient metnc associated to the projection UA Lk(xA, CA)
Lk(x, K) induced by UA CA —÷ K (compare with (7.15)). As in the simplicial case,
one can give a more explicit descnption of the metric on Lk(x, K), except that now one
has to use piecewise geodesic paths in place of m-stnngs (as with the pseudometric).

As in (7.8), for each x E K one defines e(x) to be the distance from x to the closure
of st(x) minus st(x), where distance is measured in the local metrics dc(pA(x), pA(y))

y) on the cells C C K. By following the proof of (7 16) we obtain:
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7.39 Theorem. Let K be an Me-polyhedral complex, and letx E K. If e(x) > 0 then
B(x, e(x)/2) is naturally isometric to the open ball of radius e(x)/2 about the cone
point in CK(Lk(x, K))

7.40 Examples. We use the notation of (7.37).
(1) K is a metnc graph if and only if all of its cells have dimension at most 1

(2) K is an MK -simplicial complex if and only if each of the cells is a geodesic
simplex, each of the maps is injective, and the intersection of any two cells in K
is empty or a single face.

(3) K is a cubical complex if and only if each of the cells is isometnc to a
cube each of the maps is injective, and the intersection of any two cells in K
is empty or a single face.

(4) There are many interesting polyhedral complexes all of whose cells are cubes,
but they do not all satisfy the conditions of (3). We shall use the term cubed complex
to describe this larger class of complexes, except that in the 2-dimensional case we
shall use the term squared complex.

A simple example of a cubed complex that is not a cubical complex is the n-
dimensional torus obtained by forming the quotient of by the equivalence relation
that associates to each point in the (n 1)-dimensional faces its orthogonal projection
on the opposite face.

7.41 Exercises

(1) Describe all of the isometrically distinct squared complexes that arise as the
quotient of a single square j2 by an equivalence relation.

(2) Descnbe all of the isometrically distinct polyhedral complexes that one can
obtain as the quotient of a single equilateral triangle and describe the links of the
vertices in each case.

One of the complexes that you should consider is called the dunce hat, which can
be described as follows if the vertices of the triangle are x€3, x1 , x2, then the dunce hat
is the space that you get by identifying [x0, x1] with [x1, x2] by the isometry mapping
xo to x2, and by identifying [xo, Xl] with [x2, xoj by the isometry mapping x0 to x2.
The dunce hat has one vertex, the link of which has two 0-cells, with a loop based at
each and a third edge connecting them.

Show that the dunce hat is simply-connected. Then prove that it is contractible
(this is harder).

Barycentric Subdivision

We shall now explain how to subdivide an Mg-polyhedral complex so as to obtain
an isometnc MK-simplicial complex. The approach is rather obvious: one subdivides
each of the cells of K, or equivalently UA (in the notation of (7.37)), into geodesic
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simplices. However there are some technical difficulties: the process of subdivision
must be sufficiently canonical to ensure that the subdivisions of all cells agree on
faces of intersection, and one has to arrange for the conditions of (7.40(2)) to hold.

7.42 The Barycentre of a Convex Polyhedral Cell. Let C C M', be a convex
polyhedral cell. We shall define a point bc in the intenor of C that is fixed by all
isometnes of C.

First we define a barycentre for finite sets in M. In the case K 0, we identify JE'
formedbythepoints v = (xo,. 1.

Given k such points Uk, we define their barycentre to be

Jn the case K = 1, we identify 5" with the unit sphere about 0 E We define
the barycentre of a finite set of points (v1, .. contained in an open hemisphere
of S'1 to be

In the case K = —1, we identify IHI'7 with the upper sheet of the hyperboloid in
1. The barycentre of a finite subset (v1 vk} in is the unique point on the

hyperboloid that lies on the half-line that issues from 0 and passes through
The barycentre of a finite subset V C M (assuming that V is contained in an

open ball of radius DK/2) is defined by rescaling the metric on JE", or IFII".

The barycentre of a convex polyhedral cell C C is defined to be the barycentre
of its set of vertices; it is denoted

7.43 Lemma. Let C be a convex MK -polyhedral cell The barycentre of C lies in the
interior of C and is fixed by any isometry of C.

Proof It is clear from the definition that lies in the convex hull of the vertex set
of C and not in the convex hull of any proper subset of it. Thus bc is in the intenor
of C (by 7.36(5)). The invariance of bc under isometries follows from the invariance
of the vertex set (7.36(6)). [1]

7.44 Barycentric Subdivision of a Convex Cell. Let C C MK be a convex polyhedral
cell. The first barycentric subdivision of C, denoted C', is the MK-simplicial complex
defined as follows. There is one geodesic simplex in C' corresponding to each strictly
ascending sequence of faces F0 C Fi ... C of C; the simplex is the convex hull
of the barycentres of the F1. Note that the intersection in C of two such simplices
is again such a simplex. The natural map from the disjoint union of these geodesic
simplices to C imposes on C the structure of an MK-simplicial complex — this is C'.

Notice that if xi x2 e C belong to the same simplex of C' and F1 and F2 are the
minimal faces of C containing these points, then F1 C F2 or F2 c F1.

As an immediate consequence of (7.36(6)) we have:

7.45 Lemma. Any isometry C1 —÷ C2 between convex MK -polyhedral cells defines
a simplicial isometry —÷ C'.

7.46 Lemma. Let K = U CA be an Mr—polyhedral complex, and let . —* K
be the natural projection. Then:
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(1) The restriction of PA to each simplex of the barycentric subdivision is infec-
tive.

(2) Let A1, A2 E A, let and S2 be simplices of and and suppose that
and are infective. Jf(x E S1 (x) E pA,(S2)} is not empty, then it is aface
of S1.

Proof (1) If pA(x) = pA(y), then there is an isometry h : supp(x) —÷ supp(y) such that
y = h(x). Therefore the faces supp(x) and supp(y) have the same dimension. If x and
y are in the same simplex of then by the last sentence of (7.44), supp(x) = supp(y)
and h is the identity.

(2) It follows from the second condition in the definition of a polyhedral complex
that the set descnbed in (2) is a union of faces. It therefore suffices to show that it is
convex

Let xi,yi E and x2,y2 E CA, be such that pA(xi) = pA,(x2) and pA1(yl) =
Then supp(x1) and supp(x2) (resp. supp(y1) and supp(y2)) have the same

dimension. According to the last sentence of (7.44), if xl, y belong to the same
simplex Si of the barycentnc subdivision of CA then we may assume that supp(xi) c
supp(y1), in which case supp(x2) c supp(y2). Condition (2) in the definition of a
polyhedral complex yields an isometry h : supp(,yi) —÷ supp(y2) such that h(,y1) = Y2

and pA,(h(x)) = pA(x) for each x E supp(yi). As is injective, we also have
h(xi) = x2, hence pA ([x1 , yi]) = pA,([x2, showing that the set in (2) is convex.

U

7.47 Barycentric Subdivision of MK-Polyhedral Complexes. Let K be an MK—
polyhedral complex. Let p: UA CA —÷ K be as in (7.37). For each cell CA, we index
the simplices of the barycentric subdivision by a set IA; so is the MK—simplicial

complex associated to —÷ CA. Let A' = UA By composing the natural maps

U1, —÷ CA andp. UA CA -÷ K we get aprojectionp': IJIEA —÷ K. Let K' be
the quotient of by the equivalence relation [x y iffp'(x) = p'(y)].

K' is called thefirst barycentric subdivision of K. There is a natural identification
ofsetsK—÷ K'.

7.48 Lemma. With the notation of (7.47):

(1) K' is an MK—polyhedral complex.

(2) The restriction of p' to each simplex Si is an injection.

(3) The natural map K —÷ K' is an

Proof For (1) We must check the conditions of (7 37) the first is obviously satisfied
and the second follows from (7.45). Part (2) is a restatement of (7.46(1)), and (3) is
an easy consequence of the definitions. Lii

In general K' will not be an MK—simplicial complex because although the cells
of K' are geodesic simplices (in their local metncs), the intersection of two cells is in
general a union of faces rather than a single face. To remedy this, we take the second
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barycentric subdivision of K, which is by definition the first barycentnc subdivision
of K'.

7.49 Proposition. If K is an MK -polyhedral complex, then the second barycentric
subdivision K" of K is an MK-simplicial complex and the natural map K —÷ K" is

an isometry.

Proof This follows immediately from (7 46(2)) and (7.48). Lii

7.50 Theorem. Let K be an MK-polyhedral complex. If Shapes(K) is finite, then K
is a complete geodesic metric space.

Proof Shapes(K") is the set of isometry classes of the simplices in the sec-
ond barycentric subdivisions of the model cells in Shapes(K). In particular, since
Shapes(K) is finite, Shapes(K") is finite, and the theorem follows from (7.49) and
(7.19). Lii

We end this section with an example to indicate how Theorem 7.50 together
with our earlier results on the nature of geodesics can be combined to construct new
examples of complete geodesic spaces.

7.51 Example. Let K1 and K2 be 2—dimensional Mo—polyhedral (i.e. piecewise
Euclidean) complexes with Shapes(Ki) and Shapes(K2) finite. For i = 1,2, let
c1 : Si —÷ K, be a closed local geodesic, where S is a circle of length 1(c,). By
scaling the metrics on K1 and K2 we can arrange that 1(c1) = 1(c2) = Consider
the metnc space obtained by gluing a cylinder S1 x [0, 1] to the disjoint union of K1
and K2 by attaching the ends of the cylinder to the K1 by the maps c,.

According to (7.29), each c is the concatenation of a finite number of segments
(in the sense of (7.3)). It follows that we may subdivide the cells of K1 and K2 into
smaller polyhedra so that the curves c1 run in the 1-skeleton. We can then triangulate
the cylinder 51 x [0, 1] so that its attaching maps c, map cells isometrically to
cells. The resulting quotient complex K1 U (S1 x [0, 1]) U is then a Euclidean
polyhedral complex.

We shall see many more specific examples of this construction in Chapter 11.11.

7.52 Exercise. Show that the subdivision in (7 51) is possible even if K1 and K2 are
not 2-dimensional.

More on the Geometry of Geodesics

In this section we gather a number of technical results concerning geodesics in MK—
polyhedral complexes K with Shapes(K) finite. First we note that although we have
shown that for every x E K there is a unique geodesic joining x to y whenever
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y E B(x, e(x)), it does not follow that K is locally uniquely geodesic. Indeed we shall
now show (7.55) that requiring K to be locally uniquely geodesic is a surpnsingly
stnngent condition.

7.53 Definition. The infectivity radius of a geodesic space X is the supremum of the
set of non-negative numbers r such that any two points in X a distance r apart are
joined by a unique geodesic. We denote this number injrad(X).

An easy compactness argument shows that if a compact geodesic space X is
locally uniquely geodesic then injrad(X) > 0. We shall show that MK—polyhedral
complexes with Shapes(K) finite share this property. For this we need the following
lemma.

7.54 Lemma. If K is an MK—simplicial complex with Shapes(K) finite, then there
is a constant 60 > 0 such that for every x E K there exists y E K with B(x, 60)
B(y, e(y)/4), where e(y) is as defined in (7.8).

Proof Let denote the n—skeleton of K (that is, the union of the closed simplices
of dimension at most n). We shall construct a constant 80 so that, for all n, if x E
lies in the 8e0—neighbourhood of then there exists y E with B(x, 4eo)
B(y, e(y)/4).

Let E denote the disjoint union of the model simplices S E Shapes(K). Consider
the map 77: E -÷ (0, 00) defined on 5 E S by:

77(s) = min{d(s, F) I F a face and s F}.

Note that while 77 is not a continuous map, its restnction to the intenor of each face
is continuous.

Let 77o be 1/8 of the minimum value attained by on the 0—skeleton of
Then, inductively for n D = dim(K), we define 77,, to be 1/8 of the minimum value
attained by on the compact set (on which is continuous) obtained by deleting the
open of from Notice that < Let 80 =

Arguing by induction on n we prove that if x E N then either < 6(x)
or else there exists y E with B(x, c B(y, e(y)/4). The case n = 0

follows from Lemma 7.9. Considerx E If x lies in minus the open 77n—1

neighbourhood of then e(x) > On the other hand, if there exists z E
such that d(x, z) < then B(x, C B(x, 77n_1) ç B(z, But then, by
induction, either e(z) and hence B(x, ç B(z, E(z)/4), or else there
exists y E such that B(x, C B(z, C B(y, e(y)/4). Lii

Recall that a metnc space is said to be r-uniquely geodesic if every pair of points
a distance less than r apart can be joined by exactly one geodesic segment.

7.55 Proposition. Let K be an Mg—polyhedral complex with Shapes(K) finite. The
following conditions are equivalent:
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(1) K is locally uniquely geodesic;

(2) K has positive infectivity radius;

(3) Lk(x, K) is it-uniquely geodesic for every x E K.

Proof Subdividing if necessary, we may assume that K is simplicial.
That (2) implies (1) tnvial. If (1) holds then, by (7.39), for every x E K a

neighbourhood of the cone point in CK(Lk(x, K)) is uniquely geodesic. By (5 11),
this implies that Lk(x, K) is it-uniquely geodesic, thus (3) holds.

A second application of (5 11) shows that if Lk(x, K) is it-uniquely geodesic
then the whole of CK(Lk(x, P)) is uniquely geodesic So by (7 39), B(x, e(x)/4) is

uniquely geodesic. Hence, by the preceding lemma, there is a constant 60 such that
for every x E X the ball B(x, is contained in a uniquely geodesic subspace of K.
In particular, injrad(K) 60. Thus (3) implies (2) [1]

For future reference we note a result related to (7.55).

7.56 Lemma. Let K be an MK -polyhedral complex with Shapes(K) finite. If the
points x andy lie in the same open cell of K, then for sMfficiently small e > 0 there
exists an isometry from B(x, e) to B(y, e) that restricts to an isometry from B(x, e) fl C
to B(y, e) fl Cfor every closed cell C containing x.

Proof If we take e < min(e(x), then the metncs induced on B(x, e) and
B(y, e) are the length metncs given by measuring the length of paths in these balls
using the given local metrics dB on the individual cells B that contain x and y. Thus
it is enough to exhibit a bijection from B(x, e) to B(y, e) that restncts to an isometry
from B(x, e) fl B to B(y, e) fl B, where these intersections are endowed with the
restnction of the local metric dB.

This observation allows us to argue in the models S E Shapes(K) and hence in
More specifically, it is enough to show that given two points x' andy' in (with

d(x', y') if IC > 0), there is a canonical isometry of MK that interchanges
x and y and has the property that it sends every hyperplane containing x and y to
itself. (We need this isometry to be canonical so as to ensure that the local isometries
induced on each B(x, e) fl B agree on common faces.) The reflection of in the
hyperplane bisector H(x', y') of x' and y' has the desired property LI]

Arguments Using Finite Models

Proposition 7.55 is an example of how, in many respects, complexes with Shapes(K)
finite behave as if they were compact (or cocompact) spaces. We shall now present
two more examples of this phenomenon Our main interest in the first result lies
with the corollary, but in the next chapter we shall have need of the stronger, more
technical statement of the proposition.

7.57 Proposition. Let x andy be points in an MK—polyhedral complex K. Suppose
that Shapes(K) is finite. Suppose that there is a unique geodesic segment joining x
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to y in K and let c : [0, 1] —÷ K be a linear parameterization of this segment Let
c,1 : [0, 1] —÷ K, n = 1, 2,... be linearly reparameterized geodesics in K, and
suppose that the sequences of points

c

an Mg—polyhedral complex with Shapes(K) finite. If K is
uniquely geodesic, then geodesics in K vary continuously with their endpoints.

Proof of 7.57. Subdividing, we may assume that K is an MK—simplicial complex
K with Shapes(K) finite Suppose x and yn -÷ y Let c,, : [0, 11 -÷ K be
a linearly reparameterized geodesic joining to yn and let c : [0, 1] —÷ P be
the linearly reparametenzed geodesic joimng x to y. There is a uniform bound on
d(x, + + d(y,,, y), so by (7.30) there exists an integer N such that image of
each of the paths c,3 lies in a connected subcomplex K that can be expressed
as the union of at most N closed cells, and which contains geodesic segments from
x to and from y to yn. We fix a definite choice of for each positive integer n

Because Shapes(K) is finite, there are only finitely many equivalence classes of
such complexes modulo the relation: — Km if there is a map K,1 —÷ that
fixes x, y and is a simplicial isometry (i e., a homeomorphism whose restnction to
each closed simplex in is a local isometry onto a closed simplex in Such
a map is an isometry between K, and Km equipped with their intnnsic metrics (not
their induced metncs from K). We shall call — equivalence classes models, denoted

This notion of a model carries a little more information than that considered in
(7.26) and (7.27). A model p. in the present sense consists not only of a (model)
compact MK—complex with two distinguished points and yP, it also comes
equipped with a specified family of simplicial isometries : —÷ K, c K, one
for each K,1 E p., such that = x and = y. An important point to note
is that since the maps are simplicial isometnes, they preserve the length of paths
Thus, when considered as maps to K (as they will be henceforth) they do not increase
distances.

Because there are only finitely many models, after deleting a finite number of
terms if necessary, we may decompose (ca) into finitely many infinite subsequences
so that K, — for all c, and c1 in any subsequence. We focus our attention on one
such subsequence, and to simplify the notation we write p. for the corresponding
model and for the paths comprising the subsequence.

Let = : [0, 1] —÷ Because 0,, is length-preserving, is a linearly
reparametenzed geodesic of length l(c,,). Let = and let , = Notice
that by our initial specification of K,,, there exists a geodesic segment of length d(x,
connecting i to in and a geodesic segment of length d(y, connecting to

Hence d(i, 3') <d(x, + + d(y, yn), which approaches d(x, y) as n —÷ oc.

Since 0,, does not increase distance, we deduce that d(i, 3') = d(x, y). It follows that
since c is the unique reparameterized geodesic [0, 1] —÷ K joining x to y, and since

is injective, there is a unique linearly reparameterized geodesic : [0, 1] —÷

joining to in furthermore, c = o for all n.
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We can now appeal to (3.11) to see that the sequence of paths : [0, —±

converges uniformly to But d(c(t), c,1(t)) <
Hence c. —* c unifonnly. L

Given an Mr—polyhedral complex K, model cells S, Shapes(K) and points
E S and we consider the sets of points in K that lie above and

XK = (x E K I isometryf from a face of S to a closed cell in K with x),

= {y K isometry g from a face of S' to a closed cell in K with y).

7.59 Proposition. Let K he an MK-polyhedral complex. If Shapes(K) is finite then
for all S' e Shapes(K) and all and the set of numbers {d(x, y)

I
x E

XK, y E YK} is discrete.

Proof The number of points of XK or YK that lie in any given closed cell of K
is bounded by the maximum of the orders of the isometry groups of the model
cells S E Shapes(K). Hence, for each finite subcomplex L C P the set of numbers
{dL(x, y)

I

x E XK fl L, y E YK 11 L} is finite, where L denotes the intrinsic metric on
L (not the induced metric from K).

Let EN U{dL(x, y) x E XK ii L, y E fl L}, where the union is taken only
over those subcomplexes L C K which can be expressed as the union of at most N
closed cells. For each integer N there are only finitely many such subcomplexes up
to simplicial isometry, so the final sentence of the previous paragraph implies that

is finite. But according to (7.28), for every > 0 there exists an integer N such
that every geodesic in K of length > 0 is contained in a subcomplex which is the
union of at most N cells In particular, {d(x, y) x E XK, y E YK} fl [0, C L

Alternative Hypotheses

We close this chapter with a couple of exercises and examples to illustrate both the
usefulness and deficiencies of alternatives to the hypothesis that Shapes(K) is finite.
Further examples and exercises are contained in the appendix.

Let us first consider how one might weaken the hypothesis that Shapes(K) is finite
so as to accommodate infinite dimensional complexes. An obvious hypothesis to try
is that Shapes(K) contains only finitely many model simplices in each dimension. In
this generality we have:

7.60 Exercise. Let K be a metric simplicial complex. If Shapes(K) contains only
finitely many model simplices in each dimension then the intrinsic pseudometric on
K is actually a metric.

On the other hand, we do not necessarily obtain geodesic metric spaces in this
generality.
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7.61 Example. Let denote the standard Euclidean simplex of dimension n (i e. the
convex hull of the standard basis vectors in For every positive integer n we have

C via the inclusion (x1, (xi, 0) into
Let be the union of for n in N N {O} with the obvious piecewise Euclidean
structure. We consider the complex K obtained by joining two copies of

along the subcomplex opposite the vertex P (1, 0, . ..) (that is, we join them
along 11 {(x1, E x1 = O} for every n in N N {O}) We claim
that there is no geodesic joining and P_ in K. Indeed, the distance from P to the
opposite face of decreases to the limit 1 as n —± oo, and the distance between
and P_ in K is 2, which is strictly less than the length of any path joining to P_
in K.

On the other hand, it is easy to verify the following:

7.62 Exercise. Let K be a metric simplicial complex. If for every vertex x E K each
ball of finite radius about K (in the intrinsic pseudometric) contains only cells which
are modelled on a finite subset of Shapes(K), then (K, d) is a complete geodesic
metnc space.

Appendix: Metrizing Abstract Simplicial Complexes

In this appendix we describe an alternative approach to metric simplicial complexes.
This approach is often appropriate in situations where one wishes to use geometry to
study a problem that has been encoded in the combinatorics of an abstract simplicial
complex.

We shall recall the definition of an abstract simplicial complex, define the affine
realization of such a complex, and discuss related notions such as barycentric co-
ordinates. We shall then recast the definition of a metric simplicial complex in this
language.

In (7A.13) we generalize (7.13) by giving a weaker criterion for the intrinsic
metric on a metric simplicial complex to be complete. We shall also define join
and cone constructions for simplicial complexes and explain how they are related to
the analogous metric constructions given in Chapter 5. Finally, we give a criterion
(7A.15) for spaces to have the homotopy type of a finite simplicial complex.

Abstract Simplicial Complexes

7A.1 Definitions. An abstract simplicial complex K consists of a non-empty set V
(its set of vertices) together with a collection S of non-empty finite subsets of V, such
that (v} E S for all v E V, and ifS E S then every non-empty subset T of S is also
in S. The elements of S are called the siinplices of K. A simplex S E S is called an
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n-simplex ifS has cardinality n + 1 and n is called the dimension of S. The elements
of S are called its vertices and the non-empty subsets of S are called its faces. The
dimension dim K of K is the supremum of the dimensions of its simplices.

A simplicial complex K0 is called a subcomplex of K if its set of vertices Vo is a
subset of V and each simplex of K0 is also a simplex of K. To each n-simplex S of K
is associated a subcomplex S of K of dimension n whose set of simplices is the set
of faces of S.

Consider the equivalence relation on V generated by: u '-S- v if {u, v} E S. The
complex K is said to be connected if V consists of a single '-S- equivalence class.

Let K1 and K2 be be abstract simplicial complexes with vertex sets V1 and V2
respectively. A simplicial map from K1 to K2 is a mapf : —± V2 that sends each
simplex of K1 to a simplex of K2.

7A.2 Definition of Cones, Joins and Links. Let K1 and K2 be abstract simplicial
complexes whose vertex sets V2 are disjoint. The simplicial join of K1 and K2,
denoted K1 * K2, is a simplicial complex with vertex set V1 U V2; a subset of V1 U V2
is a simplex of K1 * K2 if and only if it is a simplex of K1, a simplex of K2, or the
union of a simplex of K1 and a simplex of K2. Note that

dim(K1 *K2) dimK1 +dimK2 + 1.

For example, the join of a p-simplex and a q-simplex is a (p + q + 1)-simplex
If K is a simplicial complex with vertex set V. then the simplicial cone over K,

denoted C(K), is the simplicial join of K and a complex with only one vertex v0 The
vertex v0 is called the cone vertex of C(K) and dim C(K) = dim K + 1.

Given a simplex Sin an abstract simplicial complex K, the link of Sin K, denoted
lk(S, K), is the subcomplex of K consisting of those simplices T such that T fl S = 0
and T U S is a simplex of K.

Note that the subcomplex of K whose simplices are the faces of simplices con-
taining S is isomorphic to the join S * lk(S, K).

7A.3 Affine Realization. Let K be an abstract simplicial complex with vertex set
V. Let W denote the real vector space with basis V. The affine realization

S of simplex in in other words, Sj
consists of those vectors x = v with E [0, ii and — 1. We give
SI the topology and affine structure induced from the finite dimensional subspace of
W spanned by the vertices of 5; this subspace is isomorphic to where n is the
dimension of S. Given two points x and y in jSj, the affine segment with extremities
x andy is denoted [x,

We define the affine realization (or simply the realization) of K to be the subset
KI of W which is the union of the affine realizations of the simplices of K. (It

is convenient to abuse terminology to the extent of writing S and K to mean the
realization of S and K, and we shall do so frequently) The realization of S is called
a closed simplex in K. The coordinates x0 of a point x of K C W are called its
harycentric coordinates.
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The interior of a simplex S is the set of points in its affine realization whose
coordinates v E S, lie in (0, 1). Given a point x E K, the open star st(x) of x
is defined to be the union of {x} and the interior of those closed simplices S which
contain x; the closed star St(x) of x is the union of the closed simplices which contain
x. (If v is a vertex, then its open star st(v) is the set of points x of K with barycentnc
coordinates > 0.)

Let and K2 be abstract simplicial complexes with vertex sets V1 and V2 and let
and W2 be the real vector spaces with bases and V2 respectively. 1ff: —± V2

gives a simplicial map from to 1(2, then the linear map W1 —* W2 sending V E

tof(v) E V2 maps Ito and its restriction to each is an affine map onto
This map, which we denote [/1 : will be called the (affine)

realization of the simplicial mapf.

7A.4 The Barycentric Subdivision. Let K be an abstract simplicial complex with
vertex set V. The barycentric subdivision K' of K is the abstract simplicial com-
plex whose vertices are the simplices S, of K, and whose n-simplices are the sets
(So where So C C C

There is a natural bijection from the affine realization of K' to the affine realization
of K. this map is affine on each simplex of K' and sends the vertex of K' corresponding
to the n-simplex S of K to the barycentre of the affine realization of S (namely the
point with barycentric coordinates = 0 if v Sand 1/(n + 1) if v E 5) and
is affine on each simplex of K'.

7A.5 Topology on the Affine Realization. For the moment we do not consider any
topology on the affine realization of K, but mention in passing that a useful topology
for the purposes of homotopy theory is the weak topology, which is characterized by
the property that a subspace of K is closed if and only if its intersection with each
closed simplex is closed.

An alternative topology on K can be obtained by introducing on W the scalar
product such that the basis V is orthonormal and considering the associated metric
The restriction of this metric to K is called the metric of harycentric coordinates.
If K is not locally finite, then the topology associated to this metnc is not the weak
topology. Indeed if a vertex v lies in infinitely many simplices, then any set containing
exactly one point v) in the interior of each simplex of St(v) is closed in the weak
topology, but in general it is not closed with respect to the metric of barycentric
coordinates because v might be an accumulation point of this set.

On the other hand, an important theorem of Dowker [Dow52 I shows that the
identity map of K is a homotopy equivalence from K equipped with the weak topology
to K equipped with the topology induced by the metric of barycentric coordinates.

7A.6 Barycentric Coordinates for Geodesic Simplices in For a geodesic n-
simplex S C with vertices v0 one has natural barycentnc coordinates,
which are defined as follows (compare with 7.42).

K = 0: Identify lEtm with the hyperplane in formed by the points y
(Yo with = I. Any point x E S C lEtm can be written uniquely
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as x = with [0, 1]; the reals numbers are the barycentric coordi-
nates of x.

K > 0: Identify with the sphere of radius centred at the origin in
The n-simplex S0 in spanned by the vertices v0 does not contain 0 and
therefore is mapped bijectively onto the simplex S by the radial projection from 0
to The barycentric coordinates of points x E S are defined to be the barycentric
coordinates of the corresponding points in So.

K <0: Identify with the upper sheet of the hyperboloid —

in and proceed as in the case K > 0.

Barycentric coordinates are preserved by isometries of IfS is an n-simplex
of an MK-simplicial complex, then the barycentric coordinates of a point x E S are
defined to be the barycentric coordinates of the unique point S that is mapped to
x by the characteristic mapfs : S —± S (see 7.12). The harycenire of a simplex S is
the point whose barycentric coordinates are all equal

7A.7 Afline and Projective Maps. Given geodesic n-simplices S C with ver-
tices v0 v,, and 5' c with vertices there is a unique map from
S to 5' sending v, to i4 and preserving the barycentric coordinates. Similarly, given
an n-simplex T = {uo in an abstract simplicial complex, there is a unique
map from S to the affine realization of T sending to u, for all i and preserving the
barycentric coordinates. Such a map will be called an affine map.

A projective map from S to 5' (or is one for which there exist positive real
numbers A1 such that the point of S with barycentric coordinates (x0, . , is sent
to the point with barycentric coordinates

A0x0

..,
The image under a projective map of a geodesic segment in S is a geodesic segment
in 5', but in general a linear parameterization of this segment is not mapped to a
linear parameterization of its image.

7A.8 Subdivision. Given a geodesic n-simplex S C with vertex set V
v,1} and a point v E S ". V. one can subdivide S into smaller n-simplices. the

n-simplices 5v' in this subdivision correspond to subsets V' C V of n vertices whose
convex hull does not contain v; Sv' is the convex hull of V' U {v}. With respect to the
barycentric coordinates of S and S is projective.

Metrizing Simplicial Complexes

Let K be an MK-simplicial complex as defined in (7.2). Associated to K one has an
abstract simplicial complex, whose vertex set V is the set of vertices of K; a subset
S c V is an (abstract) simpiex if and only ifS is the vertex set of a simplex in K. There
is a canonical bijection from K onto the affine realization of this abstract simplicial
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complex; this map extends the natural bijection between the sets of vertices and
is affine on each simplex with respect to the barycentric coordinates as defined in
(7A.6).

Conversely, when presented with an abstract simplicial complex K, one can turn
it into a geometric object (an MK-complex) as follows: metrize the simplices of
the realization of K by choosing an affine isomorphism to a geodesic simplex in

choose these isomorphisms so that the induced metrics coincide on faces of
intersection. This construction leads to a well-defined notion of a piecewise linear
(PL) path in K and the intrinsic pseudometric on K is the infimum of the lengths of
PL paths joining them.

7A.9 Alternative Definition of an MK—Simplicial Complex. Let K be a real number
An MK—simplicial complex consists of the following information:

(1) an abstract simplicial complex K;

(2) a set Shapes(K) of geodesic simplices S, C

(3) for every closed simplex S in the realization of K, an affine isomorphismfs
S —± 5, where S E Shapes(K), if 5' is a face of S, ofs' is required to be
an isometry from S' onto a face S.

A piecewise linear (PL) path in K is a path that is the concatenation of a finite
number of affine segments. The length of a segment I in a simplex S C K is defined
to be the length The intrinsic metric on K is defined by setting d(x, y) equal
to the infimum of the length of PL-paths joining x to y.

Note that the set of PL paths in K depends only on the affine structure of K and
not on the chosen mapsfs. It is easy to see that the above definition of the intrinsic
metric d agrees with that given in (7.4) and therefore (K, d) is a length space; it is a
complete geodesic space if Shapes(K) is finite (7.19). Moreover, the characterization
of geodesics in (7.29) shows that if Shapes(K) is finite then d(x, y) is equal to the
length of the shortest PL path connecting them (i.e. the infimum in the definition of
dis attained).

7A.1O Regular MK-Simplicial Complexes. An MK-simplicial complex K in which
all of the model simplices S E Shapes(K) have the same edge lengths is called
regular. We describe the cases K 0 and K 1.

In the notation of (7A.3), let W be the vector space with basis the vertex set of
K, endowed with the metric associated to the scalar product for which this basis is
orthonormal. Each n-simplex S of K, with the induced metric ds, is isometric to a
regular n-simplex in with edge lengths In this way K becomes a piecewise
Euclidean complex. If we wish, we may rescale the metric so that each edge has
length one; this is called the standard Euclidean realization of K.

Consider the unit sphere in W (the set of vectors of norm one) with the induced
length metric. Radial projection from the origin 0 E W onto the unit sphere restricts to
an injection on K, and this projection identifies each n-simplex S of K with a spherical
n-simplex whose edge lengths are all ir/2. In this case, K becomes a piecewise
spherical complex in a natural way, called the all-right spherical realization of K.
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If K is of finite dimension n, then in the above examples Shapes(K) = =
0, 1, , n}, where is the Euclidean (resp. spherical) i-simplex in (resp. S')
spanned by the vectors of the standard basis of

7A.11 Exercises

(1) Prove that the identity map of any abstract simplicial complex induces a
bi-Lipschitz homeomorphism between any two regular MK-simplicial complexes
associated to K (where ic is not fixed)

(2) Let K and d be as in (7A.5). Prove that if Shapes(K) is finite then the canonical
map from K to the standard Euclidean realization of the underlying simplicial which
is the identity on the set of vertices and affine on each simplex is a homeomorphism.

(3) Let K1 and K2 be abstract simplicial complexes. Show that the all-right spher-
ical realization of K1 * K2 is the spherical join (as defined in 5.13) of the all-right
realizations of K1 and K2.

(4) Let K be an MK-simplicial complex and fix a vertex v E K. In (7.15) we
defined the geometric link Lk(v, K) of v in K; it is a spherical complex. On the
other hand, the subcomplex St(v) "S st(v) is endowed with an induced MK-simplicial
structure from K. Prove that the map which associates to each x E St(v) st(v)
the initial vector of [v, xI E Lk(v, K) is a map that is not affine in general, but is
projective in the barycentric coordinates.

A Criterion for Completeness

7A.12 Definition. Given any geodesic n-simplex S in there is an affine map
bs of S onto the standard n-simplex in spanned by the basis vectors. Note
that is unique modulo the action of The distortion of S is the smallest
number A such that < d(x, y) < for every x, y E S.

The distortion of an MK-simplicial complex K is the supremum of the distortions
of the model simplices S Shapes(K).

7A.13 Theorem. Let K he afinite dimensional MK-simplicial complex. If the distor-
tion of K is finite, then K is a complete length space.

Proof Equip K with its intrinsic pseudometric d. It follows from (7.10) that (K, d)
is a metric space and it is clear that it is a length space. (However it need not be a
geodesic space, 7A.14)

Let 1(o be the affine realization of the simplicial complex associated to K and let
K —* K0 be the canonical map which is affine on each simplex. We view K0 as a

regular M0-simplicial complex. For each model n-simplex S E Shapes(K) we have
a bi-Lipschitz map S —* s". To say that K has finite distortion means that there
is a uniform bound, A say, on the Lipschitz constants of these maps. It follows that
the length of each PL path in K is at most A times the length of the same path in K0,
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and vice versa Since the pseudometric on each of the complexes is defined by taking
the infimum of the lengths of such paths, it follows that the map : K —÷ K0 is a
bi-Lipschitz homeomorphism (with Lipschitz constant A). In particular, since K0 is
complete (K, d) is complete.

7A.14 Example. Consider the metric graph with two vertices y, z and countably
many edges joining them, the n-th of which has length (1 + By introducing a
new vertex in the middle of each edge we make this graph simplicial It has bounded
distortion, but it is not a geodesic space: d(y, z) = 1 whereas every path from y to z
has length stnctly larger than 1.

Spaces with the Homotopy Type of Simplicial Complexes

We close with a result which shows that many geodesic spaces have the homotopy
type of locally compact complexes. There are much more general results of this type
(see [Bor661, [Hu(S)65 [West77]), but the simple result given below indicates the
ideas that we wish to exemplify and is sufficient for the purposes of Part II.

Let X be a topological space. A collection of subsets of a space X is said to be
locally finite if each point x E X has a neighbourhood that meets only finitely many
of the given sets An abstract simplicial complex is said to be locally finite if each
vertex belongs to only finitely many simpi ices

7A.15 Lemma. Le! X he a geodesic space and suppose that there exists e > 0 such
that X can he covered by a locallyfinite colleciion ofopen halls U {B(x,, e) i E I}
such that B(x1, s) and B(x1, 3e) are convex and uniquely-geodesic, and suppose that
geodesics in these balls vary continuously with their endpoints Then X is homo-
topy equivalent to the geometric realization of a locally finite simplicial complex K
(namely the nerve of the covering U). Moreover; if X is compac! then K isfiniie.

Proof Consider the abstract simplicial complex K whose vertex set is indexed
by the elements of! and which has an r-simplex ., v,,} for each non-empty
intersection flJ—0 B(x,,, e) 0. This complex is called the nerve of the covering U.
We consider the affine realization of this complex, which we also denote K, with the
weak topology (7A.5)

We shall define mapsf. X —f K and g : K —f X such thatfg is homotopic to the
identity of K and il is homotopic to the identity of X In the second case it suffices to
prove that for every x E X there exists i E I such that x has a neighbourhood V with
V U il(V) c B(x1, 3e), for then we obtain a homotopy h, from h0 il to h1
by defining h1(x), for each t [0, to be the point a distance td(x, from
on the unique geodesic segment [x, il(x)]; this segment is contained in B(x1, 3s) and
is assumed to vary continuously with its endpoints.

The desired map f : X K is obtained by using a partition of the unity
subordinate to the covering U. For each i I, let : X —f be the function
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which is identically zero outside of the ball B(x1, e) and which maps x E B(x, e,) to
— d(x, x,). Thenf(x) is defined to be the point whose j-th barycentric coordinate is

>JIEIJI

Note thatf maps B(x1, e) to the open star of
The desired map g : K —* X is defined inductively on the skeleta of K. For each

vertex v of K, let St'(v) be the set of points x E K whose barycentric coordinate
is not smaller than any of the other barycentric coordinates of x. (This subset of K
corresponds to the closed star of the vertex v in the barycentric subdivision K' under
the bijection from K' to K described in 7A.4) First, for each i E I we map v1 to x1.
Proceeding by induction, we assume that a continuous map g has been constructed
on the r-skeleton K(r) of K and that, for each vertex this map sends 11 St'(v1) to
B(x1, e). We extend g across each (r+ 1)-simplex S = ., } by mapping the

barycentre hs of S to a point in the intersection e), and then mapping the
affine segment [hs, yI affinely onto the geodesic segment [g(hs), g(y)I for each point
y in the boundary of S. This extension of g is well-defined and continuous because
for each y there is a vertex of S such that both g(hs) and g(y) lie in B(x,, e), where
geodesics are unique and vary continuously with their endpoints. By construction,
if v is a vertex of a simplex S of K, then g maps S into the ball B(x1, 3e), and hence
g maps St(v,) to B(x,, 3s).

It follows that il maps B(x1, e) to B(x1, 3e) and the argument at the end of the
second paragraph shows that il is homotopic to the identity.

To see thatfg is homotopic to the identity, note that if S is a simplex of K with
vertices { v10, .., v1, }, then g(S) C U=0 e), and hencefg(S) is contained in the
union of the open stars in K of the vertices of S. This completes the proof, because
if L is the realization of any locally finite simplicial complex, then by a standard
argument, any map F: L —± L that sends each simplex S into the union of the open
stars of the vertices of S is homotopic to the identity. (One proves this by proceeding
one simplex at a time using the obvious "straight line" homotopies, [Spa66, 3.3.11 ].)

0



Chapter 1.8 Group Actions and Quasi-Isometries

In this chapter we study group actions on metric and topological spaces. Following
some general remarks, we shall describe how to construct a group presentation for
an arbitrary group F acting by homeomorphisms on a simply connected topological
space X. If X is a simply connected length space and F is acting properly and
cocompactly by isometries, then this construction gives a finite presentation for F. In
order to obtain a more satisfactory description of the relationship between a length
space and any group which acts properly and cocompactly by isometries on it, one
should regard the group itself as a metric object; in the second part of this chapter we
shall explore this idea. The key notion in this regard is quasi-isometry, an equivalence
relation among metric spaces that equates spaces which look the same on the large
scale (8 14).

Group Actions on Metric Spaces

First we need some vocabulary.

8 1 Terminology for group actions. An action of a group F on a topological space
X is a homomorphism : F —± Homeo(X), where Homeo(X) is the group of self-
homeomorphisms of X. We shall usually suppress all mention of and write y.x for
the image of x E X under and y Y for the image of a subset Y c X. We shall
write r.y to denote UyEr y.Y.

An action is said to be faithful (or effective) if ker = { 1 }. An action is said
to be free if, for every x E X and every y E r 'N {1}, one has y.x x. And it is said
to be cocompact if there exists a compact set K C X such that X = F.K. Given an
action of a group F on a space X, we write for the stabilizer (isotropy subgroup)
of x E X, that is (y E r y.x = x}

If X is a metric space, then one says that F is acting by isometries on X if the
image of is contained in the subgroup Isom(X) c Homeo(X).

8.2 Definition of a Proper Action. Let F be a group acting by isometries on a
metric space X. The action is said to be proper (alternatively, "IT acts properly on
X") if for each x E X there exists a number r > 0 such that the set {y E F

y B(x, r) 11 B(x, r) ø} is finite.
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8.3 Remarks

(1) It is more usual to define an action of a group Fon a topological spaceX to be
proper if for every compact subset K C X the set of elements {y F y.K fl K 0}

is finite. The definition that we have adopted is equivalent to the standard definition
in the case of actions by groups of isometries on proper metric spaces, but in general
it is more restrictive. In fact our definition implies that every compact subset K C X
has an open neighbourhood U such that {y E F y.U fl U 01 is finite.

To see this, cover K with finitely many open balls B(x1, r,), where each x is in
K and each of the sets S(i) {y E r

I
B(x,, 2r1) fl 2r1) 01 is finite. Let

U be the union of the balls B(x1, r1). If there were infinitely many distinct elements
E I' such that y,,.U fl U 0, then for some fixed indices i0 and i1 there would be

infinitely many E F such that r0) fl B(x,, ri) 0. But then we would
have infinitely many elements E S(i0), which is a contradiction.

(2) Let X be a length space. If one endows the universal covering of X with the
induced length metric, then the action of jr1X by deck transformations on X is a
proper action (see 3.22(1)). (This statement would not remain true if one were to
replace r > 0" by "V r > 0" in the definition of properness.)

(3) In (8.2) we do not assume that the group F acts faithfully on X. However, if
the action of F on X is proper then every isotropy subgroup will be finite.

8.4 Exercises

(1) Let X be a length space If there is a group that acts properly and cocompactly
by isometries on X, then X is complete and locally compact, so by the Hopf-Rinow
Theorem it is a proper geodesic space.

(2) Show that the action of a locally compact space X is proper in
the sense of (8 3(1)) if and only if:

(i) F\X with the quotient topology is Hausdorif,

(ii) for every x E X, the isotropy subgroup is finite, and

(iii) there is a Fr-invariant neighbourhood U of x with F Ufl U 01.

(3) If a group F acts properly by isometries on a metric space X, then the pseudo-
metric on F\X that the construction of (5 19) associates to the equivalence relation
x y.x is the metric described in (8.5(2)) and the metric topology is the quotient
topology

We gather some basic facts about proper actions on metric spaces.

8.5 Proposition. Suppose that the group F acts properly by isometries on the metric
spaceX. Then:

(1) For each x E X, there exists e > 0 such that if y.B(x, e) fl B(x, e) 0 then
E

(2) The distance between orbits in X defines a metric on the space F\X of F-orbits.
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(3) If the action is proper and free, then the natural projection p X —÷ F\X is a
covering map and a local isometry.

(4) If a suhspace Y of X is invariant under the action of a subgroup H F, then
the action of H on Y is proper

(5) If the action of F is cocompact then there are only finitely many conjugacy
classes of isotropy sub group.s in F.

Proof Let x E X. By properness, there exists r> 0 such that the orbit F.x of x meets
the ball B(x, r) in only a finite number of points. To prove (1), choose e small enough
to ensure that B(x, 2e) fl F.x = {x}.

The distance d(F x, F y) = d(x, F.y) between orbits is obviously a pseudometric,
and it follows from (1) that d(F x. F.y) = d(x, F.y) is strictly positive, thus (2) is
true (3) follows easily from (1), and (4) is immediate from the definitions. To prove
(5), we fix a compact set K whose translates by F coverX, and cover K with finitely
many balls B(x1, r,) such that each of the sets {y E F y B(x1, r) fl B(x1, r) 0} is
finite; let be the union of these sets. For each x E X there exists E F such that
x E y.K. Since = we have c

In the following proof we need some elementary facts about lifting maps to
covering spaces. Such material is covered in any introductory course on algebraic
topology, e.g. [Mass9lJ

8.6 Proposition. Let X he a length space that is connected and simply connected,
and suppose that the group F C Isom(X) acts freely and properly on X. Consider
F\X with the metric described in (8.5(2)): d(F.x, F y) infYEr d(x, y.y). Let N(F)
he the normalizer of F in Isom(X).

Then, there is a natural isomorphism N(F)/F Isom(F\X), induced by the map
v i—÷ where v E N(F) and Isom(F\X) is the map F.x —÷ F (v(x))

Proof Bydefinition,N(F) = {v E Isom(X)
I

E FVy E F}. Soifv E N(F)
then v.1' F.v, and hence v.(y.x) E F.(v.x) for every x E X and y E F. Therefore
the map : F.x —÷ F.(u.x) is well-defined V is obviously an isometry. If is the
identity map, then for any choice of basepoint x0 E X, we have u x0 = y x0, for
some y E F. But this implies that v = y, because both v and y are liftings to X
of the identity map on F\X and these lifts coincide at one point x0, so they must
coincide everywhere, because X is connected. Thus v defines an injective
homomorphism N(F)/F —÷ Isom(F\X).

It remains to prove that this map is surjective. Let ji be an isometry of F\X, and
let p X —÷ F\X be the natural projection (which is a covering map, by (8.5(3))
As X is connected and simply connected, the composition ji op lifts to a continuous
bijection . X —÷ X projecting to ji. This map is a local isometry, because p is
locally an isometry. It follows that p. is an isometry, because it preserves the lengths
of the curves in X, and X is assumed to be a length space. Moreover, for each y E F,
the isometry projects to the identity of IT\X, hence it is an element of F, since
X is connected.
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The Group of Isometries of a Compact Metric Space

Let V be a compact metric space. One defines a metric on the group Isom(Y) by

d(cr, := sup
yE Y

8.7 Proposition. The metric on Isom(Y), defined above, is invariant by left and
right translations. With the topology induced by this metric, Isom( Y) is a compact
topological group.

Proof: The invariance of the metric by left and right translations is obvious, as is the
fact that preserves distances from the identity in Isom(Y). The composition

fi) i—÷ is continuous because
d(fl, fi') + a'), hence Isom(Y) is a topological group.

To see that Isom(Y) is compact, one can apply Arzelà-Ascoli theorem (3.10):
the set of isometries of Y is equicontinuous, so every sequence has a subsequence
converging uniformly to a map from Y to Y; the limit map is obviously an isometry.

Presenting Groups of Homeomorphisms

In this paragraph we construct a presentation for an arbitrary group I' acting by
homeomorphisms on a simply connected topological space X. If X is a simply con-
nected length space and F is acting properly and cocompactly by isometries, then
the construction which we shall describe gives a finite presentation for r. Our proof
relies on a simple observation concerning the topology of group presentations (8.9)

8.8 Free Groups and Presentations. We write F(A) to denote the free group on a
set A. The elements of F(A) are equivalence classes of words over the alphabet 14

A±I: a word is a finite sequence a1 .. . where a, E one may insert or delete
a subword of the form aa1, and two words are said to be equivalent if one can pass
from one to the other by a finite sequence of such deletions and insertions. A word
a1 . . . is said to be reduced if each a a,111. There is a unique reduced word in
each equivalence class and therefore we may regard the elements of F(A) as reduced
words.

The group operation on F(A) is given by concatenation of words the empty
word is the identity.

Let G be a group and let S C G be a subset. We write ((S)) to denote the smallest
normal subgroup of G that contains S (i.e. the normal closure of S).

A presentation for a group I' consists of a set A, an epimorphism : F(A) —+ I',
and a subset 1?. c F(A) such that ((R)) = kerjr. One normally suppresses mention

4Given a set A, the elements of A' are by definition the symbols a1 where a E A The
notation A±I is used to denote the disjoint union of A and
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of and writes G = (A R). The presentation is called finite if both of the sets A
and 1?. are finite, and F is said to be finitely presentable (or finitely presented) if it
adnnts such a presentation.

The Cayley graph CA(F) of a group F with a specified generating set A was
defined in (1.9). Directed edges in CA(F) are labelled by the generators and their
inverses, and hence there is a 1—1 correspondence between words in the alphabet

and edge paths issuing from each vertex of CA(F). An edge path will be a loop
if and only if the word labelling it is equal to the identity in F. The action of I' on
itself by left multiplication extends to a free action on CA(F) the action of sends
the edge labelled a emanating from a vertex y to the edge labelled a emanating from
the vertex

Basic definitions concerning 2-complexes (adapted to the needs of this chapter)
are given in the appendix.

8.9 Lemma. Let r he a group with generating set A and let he a subset of the
kernel of the natural map F(A) —÷ F. Consider the 2-complex that one obtains
by attaching 2-cell.s to all of the edge-loops in the Cayley graph CA(F) that are
labelled by reduced words r E R.. This 2-complex is simply-connected if and only if
((Rd) = ker(F(A) —+ F).

PmoJ The Cayley graph CA(F(A)) of F(A) is a tree. CA(F) is the quotient of this
tree by the (free) action of N ker(F(A) —* F). Thus there is a natural identification

(CA(F), 1) = N, and a word in the generators A±l defines an element of N if and
only if it is the label on an edge-loop in CA(F) that begins and ends at the identity
vertex.

Let u E F(A) be a reduced word and consider the vertex of CA(F) that is reached
from the vertex 1 by following an edge path labelled u Ifwe attach the boundary of a
2-cell to CA(F) by means of the edge loop labelled r that begins at this vertex, then by
the Seifert-van Kampen theorem [Mass9lJ, the fundamental group of the resulting
2-complex will be the quotient of N by ((u1ru)). More generally, if for every reduced
word r E and every vertex v of CA(F), we attach a 2-cell along the loop labelled
r that begins at v, then the fundamental group of the resulting 2-complex will be
the quotient of N by the normal closure of In particular, this 2-complex will be
simply-connected if and only if N is equal to the normal closure of

In the following proposition we do not assume that F is finitely generated, nor
do we make any assumption concerning the discreteness of the action.

8.10 Theorem. Let X he a topological space, let F he a group acting on X by
homeomorphisms, and let U C X he an open subset such that X = F. U.

(1) IfX is connected, then the setS = {y E F y.U fl U 0) generates F.

(2) Let As he a set of symbols indexed by S. If X and U are both path-connected
andX is simply connected, then F = (A5

I
R), where

= ES; Ufls1.Ufls3.U = 53 in F}.
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Proof: First we prove (1). Let H C F be the subgroup of F generated by S, let
V H. U and let V1 = (F H). U. If V fl V' 0, then there exist h E H, h' E F H
such that h'h'.U fl U 0 and hence h' E HS C H, contrary to assumption. Thus
the open sets V and V' are disjoint. V is non-empty and X is connected, therefore
V' =OandH=F.

We now prove (2) Let K be the combinatorial 2-complex obtained from the
Cayley graph by attaching a 2-cell to each of the edge-loops labelled by the
words r E According to the previous lemma, it is enough to show that K is simply
connected.

Fig. 8.1 The relations in Theorem 8 10

Fix E U. For each s E S we choose a point E U fl s. U and then (using the
fact that U is path-connected) we choose a path from x0 to in U, and a path from

to s.x0 in s.U; call the concatenation of these paths Letp : —÷ X be the
F-equivariant map that sends 1 to x0 and sends the edge labelled aç emanating from
1 to the path Because X is assumed to be simply connected, we can extend this
to a continuous F-equivariant map p K —÷ X.

Let D be the standard 2-disc. To complete the proof of the proposition, we must
show that every continuous map 0D —÷ can be continuously extended to
a map D —÷ K. It is enough to consider locally injective edge loops Because X is
simply-connected, the map : 0D —÷ X extends to a map 4) : D —÷ X. Because
D is compact and U is open, there is a finite triangulation Y of D with the property
that for every vertex v of Y there exists Yv E F such that 4) maps all of the triangles
incident at v into

Let t be a triangle ofT with vertices v1, v2, V3. We have

4)(t) c

Ufl
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It follows that s1 Yu,, Yv3, and s3 Yv3 are elements of S,

and E We can therefore extend the map v Yv to a map from the
1-skeleton of Y to by sending the edge connecting v, and to the edge
labelled s emanating from Yv, (indices mod 3). If V1 E 0D, then we choose the y1,,

so that the restriction of 4) to 0D is a reparameterization of £.
Finally, since 4) sends the boundary of each triangle in Y to a circuit in

labelled by an element of R, and since each such circuit is the boundary of a 2-cell
in K, we may extend 0 to a continuous map D —÷ K

8.11 Corollary. A group is finitely presented if and only it acts properly and
cocompactly by isometries on a simply-connected geodesic space.

Proof Given a group F acting properly and cocompactly by isometries on a simply-
connected geodesic space X, one chooses a compact set C C X such that F C = X and
an open ball B(x0, R) containing C, then one applies the theorem with U B(x0, R).
Because X is proper (8 4) and the action of I' is proper, the set of generators S
described in (8.10) is finite and hence so is the set

Conversely, given a finite presentation (A
I

R) of a group, one can metrize
the simply-connected 2-complex constructed in the proof of (8.9) as a piecewise
Euclidean complex in which all of the edges have length 1 and all of the 2-cells
are regular polygons The natural action of F on its Cayley graph extends in an
obvious way to an action of F by isometries on this complex; the action is proper
and cocompact (cf. Appendix).

8.12 Remarks

(1) Theorem 8.10 is due to Murray Macbeath [Mac64]. See page 31 of [Ser77]
for an alternative treatment and additional references.

(2) In 8.10(2) it is necessary to require that X is simply-connected. To see this,
let F be the group of order four generated by a rotation 4) of the circle S1 through an
angle and let U be an open arc of length on the circle Then the set Sin (8.10)
is {4), and the set 1?. is empty, thus (S R) is not a presentation ofF

To obtain further examples we consider groups F that are finitely generated but
not finitely presentable. There are uncountably many such groups [Rot95], some
examples are given in section (III.F.5). Let A be a finite generating set for F and
consider the action of F on the Cayley graph CA(F). If we take U to be the open ball
of radius 1 about the identity then S = in the notation of (8.10), and one cannot
present F with finitely many relations on these generators.

(3) An action of a group F on a metric space X is said to be cobounded if there
exists a bounded set B C X such that F.B X. (8.11) does not remain true if
one replaces the hypothesis 'cocompactly' by 'coboundedly'. For example, consider
£2(7Z) and let denote the sequence whose only non-zero is a 1 in the i-th place.
Define r, £2(7Z) —÷ £2(Z) by a a The subgroup T C generated
by i NI is not finitely generated, but its action is proper and cobounded.
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8.13 Exercise. Consider the £2 metric on the space UN S1 defined in (5.5(2)). Let T
be as above. Prove that is isometric to the subspace of UN S1 consisting of
sequences a finite distance from the constant sequence 0.

Quasi-Isometrics

Our next goal is to explain the comments that we made at the beginning of this chapter
concerning the relationship between length spaces and the geometry of groups which
act properly and cocompactly by isometries on them.

One of the main themes of this book is the large scale geometry of metric spaces.
In this context one needs a language that will lend precision to observations such as the
following, if one places a dot at each integer point along a line in the Euclidean plane,
then the line and the set of dots become indistinguishable when viewed from afar,
whereas the line and the plane remain visibly distinct. One makes this observation
precise by saying that the set of dots is quasi-isometric to the line whereas the line
is not quasi-isometric to the plane.

8.14 Definition of Quasi-Isometry. Let (X1, d1) and (X2, d2) be metric spaces. A
(not necessarily continuous) map f : X1 —÷ X2 is called a (A, e)-quasi-isomerric
embedding if there exist constants A > 1 and e > 0 such that for all x, y E X1

(x, y) e <Ad1(x, y) + e.

If, in addition, there exists a constant C ? 0 such that every point of X2 lies in the
C—neighbourhood of the image off, thenf is called a (A, e)-quasi-isomerry. When
such a map exists, X1 and X2 are said to be quasi-isometric.

8.15 Remark Some authors refer to the maps defined above as coarse quasi-
isometnes. In general the term "coarse" is used to describe properties that are in-
sensitive to all finite perturbations when studying such properties there is little
reason to care about whether maps are continuous or not.

8.16 Exercises
(1) Show that if there exists a (A, e)—quasi-isometryf : X1 —÷ X2 then there exists

a (A', e')-quasi-isometryf' : X2 —÷ X1 (for some A' and e') and a constant k 0 such
that d(ff'(x'), x') <k and d(f'f(x), x) k for all x' E X2 and all x E X1 Such a map

J.' is called a quasi-inverse for].

(2) Prove that the composition of a (A, e)-quasi-isometric embedding and
a (A', e')-quasi-isometric embedding is a u)-quasi-isometric embedding with

= AA' and v A'e + e'. Deduce that the composition of any two quasi-isometries
is a quasi-isometry.

(3) LetX a be metric space. We consider two mapsf, g : X —÷ X to be equivalent,
and writef g, if d(f(x), g(x)) is finite. Let [f] denote the equivalence class
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off. The quasi-isomerry group of X, denoted QI(X), is the set of equivalence
classes of quasi-isometries X —÷ X. Show that composition of maps induces a group
structure on X, and that any quasi-isometry 0 : X —÷ X' induces an isomorphism

QI(X) -÷ QI(X')
(4) Give an example of an unbounded metric space X for which the natural map

Isom(X) —+ QI(X) is an isomorphism; give an example where Isom(X) is trivial but
QI(X) is infinite, and give an example where QI(X) is trivial but Isom(X) is infinite.
(In the first two cases it suffices to consider discrete subspaces of JR but there are
more interesting examples.)

8.17 Examples

(1) A metric space is quasi-isometric to a one-point space if and only it has finite
diameter. More generally, the inclusion Y X of a subset Y of a metric space X
is a quasi-isometry if and only if Y is quasi-dense in X, i e there exists a constant
C> 0 such that every point of X lies in the C—neighbourhood of some point of Y.
For example, the natural inclusion 7Z JR is a quasi-isometry.

(2) Every finitely generated group is a metric space, well-defined up to quasi-
isometry)5 Given a group r with generating set A, the first step in realizing the
geometry of the group is to give F the word metric associated to A: this is the metric
obtained by defining dA(y1, Y2) to be the shortest word in the pre-image of Y2

under the natural projection F(A) -* F. The action ofF on itself by left multiplication
gives an embedding F —÷ Isom(F, dA). (The action of yij E F by right multiplication
y yyo is an isometry only if lies in the centre of I'.)

The word metrics associated to different finite generating sets A and A' of F are
Lipschitz equivalent, i.e there exists A > 0 such that fdA(yl, Y2) < dA(y1, Y2)

A dA(y1, y2) for all y2 E F. One sees this by expressing the elements of A as
words in the generators A' and vice versa— the constant A is the length of the longest
word in the dictionary of translation.

If two metrics d and d' on a set X are Lipschitz equivalent then the identity
map id : (X, d) —÷ (X, d') is a quasi-isometry Thus statements such as "the finitely
generated group F is quasi-isometric to the metric space Y" or "the finitely generated
groups F1 and F2 are quasi-isometric" are unambiguous, and we shall speak like this
often.

(3) The Cayley graph CA(F) of a group F with respect to a generating set A was
defined in (110); it is a metric graph with edges of length one. The induced metric
on its vertex set F is exactly the word metric dA described in (2). As a special case
of (1) we see that (F, dA) is quasi-isometric to CA(F) and that the Cayley graphs
associated to different finite generating sets for F are quasi4sometric.

Mikhael Gromov has been extremely successful in promoting the study of groups as geo-
metric objects [Gro84, 87, 93]. This approach to group theory (which we shall consider at
some length in Part III) lacked prominence for much of this century but was inherent in the
seminal work of Max Dehn [Dehn87] See [ChaM82] for historical details up to 980
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One can also think of the inclusion F CA(F) as being given by the natural
action of F on CA(F) it is y -÷ y. 1. From this point of view, the fact that
F CA(F) is a quasi-isometry provides a simple illustration of (8.19).

Quasi-Isometries Arising from Group Actions

8.18 Lemma. Let (X, d) he a metric space. Let F he a group with finite generating
set A and associated word metric dA. If F acts by isometries on X, then Jbr every
choice of hasepoint x0 E X there exists a constant > 0 such that d(y.xo, y'.xo)

y')Jor all )', )/' EF.

Proof Let = max{d(xo, axo) a E A U A—1 }. If dA(y, y') n then
= a1a2 . . for some E AU A1. Let gj = a1a2 . . .a,. By the trian-

gle inequality, d(y.xo, y'.x0) = d(xo, < d(xo, g1.xo) + d(g1.xo, g2.xo) +
x0, y y'.xo). Andforeach iwehaved(g1_1 gj x0) = d(xo, g,j1 gj.xo)

The following result was discovered by the Russian school in the nineteen fifties
(see [Ef53],[Sv55]). It was rediscovered by John Milnor some years later [Mi168,
Lemma 2].

8.19 Proposition (The Lemma). Let X he a length space. 1fF acts
properly and cocompactly by isometries on X, then F is finitely generated and for
any choice of hasepoint x0 E X, the map y -÷ y.x0 is a quasi-isometry.

c(1)
= -y.xo

Proof Let C C X be a compact set with F.C = X. We choose x0 E X and D > 0
such that Cc B(xo,D/3)andletA {y EF I y.B(xo,D)flB(x0,D) ø}.Because
X is proper (8.4) and the action of I' is proper, A is finite.

In (8.10) we showed that A generates F. (A second proof is given below.) LetdA
be the word metric on F associated to A. Lemma 8.18 yields a constant such that
d(y.xo, y'.x0) dA(y, y') for all y, y' E F, so it only remains to bound dA(y, y')
in terms of d(y.xo, y'.x0). Because both metrics are F-invariant, it is enough to
compare dA(1, y) and d(x0, y.x0).

Fig. 8.2 The Lemma
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Given y E F and a path c : [0, 1] X of finite length with c(O) = Xo and
c(1) y.Xo, we can choose a partition 0 = to < t1 < < 1 of [0, 1] such
that d(c(t,), < D/3 for all i. For each t we choose an element E I' such
that d(c(r1), y,.x0) < D/3; choose 1 and = y. Then, for i = 1 n we
haved(y1.xo, yj_i.xo) <Dandhencea1 := E A.

' a1

Because X is a length space, we can choose the curve c considered above to have
length less than d(xo, y x0) + 1. If we take as coarse a partition 0 to < t1 < ...

= 1 asispossiblewithd(c(t,), < D/3,thenn < (d(xo, y.xo)+1)(3/D)+1.
Since y can be expressed as a word of length n, we get dA(1, y) < (d(xo, y xo) +
1)(3/D)+ 1.

8.20 Exercises

(1) Let : F1 —* F2 be a homomorphism between finitely generated groups.
Show that if is a quasi-isometric embedding then ker(4) is finite, and that 0 is a

quasi-isometry if and only if ker(4) and F2/im('p) are both finite.

(2) Let denote the connected metric tree in which every vertex has valence n
and every edge has length 1. Prove that if n, m ? 3 then is quasi-isometric to

(Hint: Rather than doing this directly, you can show that every finitely generated
free group occurs as a subgroup of finite index in the free group of rank 2; the
Cayley graph of the free group of rank r is T2r, so the case where n and in are even
then follows from (1) and the fact that finitely generated groups are quasi-isometric
to their Cayley graphs. In the case where n is odd, consider the Cayley graph of
G2,, 7Z2 * 4; the kernel of the abelianization map 7Z2 x is free and
has finite index.)

8.2] Remark (Commensurability versus Quasi-Isometry). Two groups are said to be
commensurable if they contain isomorphic subgroups of finite index. Commensu-
rable groups are quasi-isometric (8.20(1)), but quasi-isometric groups need not be
commensurable, as we shall now discuss

First we note that if one uses the lemma to show that finitely gen-
erated groups are quasi-isometric by getting them to act cocompactly by isometnes
on the same length space, then in general it can be difficult to decide if the groups are
commensurable. A setting in which one can decide quite easily is that of semi-direct
products of the form Z2 7Z. which were considered in [BriG96].

Each such group acts properly and cocompactly by isometries on one of the
3-dimensional geometries 1E3, Nil or Sol (see [5co83] or [Thu97]). These three
possibilities are mutually exclusive and determine the quasi-isometry type of the
group. 7Z acts properly and cocompactly by isometries on 1E3 E GL(2, 7Z)
has finite order; it acts properly and cocompactly by isometries on Nil has infinite
order and its eigenvalues have absolute value 1; and it acts properly and cocompactly
by isometries on Sol has an eigenvalue A with > 1.
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In each of the cases E3 and Nil, all of the groups concerned have isomorphic
subgroups of finite index. But in the case of So!, the groups Z2 Z and Z2 Z
will have isomorphic subgroups of finite index if and only if the corresponding
eigenvalues ?.' have a common power (see [BnG96J). For arbitrary n > 0, the
groups Z'1 Z have not been classified up to quasi-isometry (although there has
been some progress [BriG96]).

Interesting examples of quasi-isometric groups that are not commensurable a!so
anse in the study of cocompact anthmetic lattices in Lie groups. In this setting there
are many interesting invanants of commensurability see [NeRe92J for example
Further examples of groups that are quasi-isometric but not commensurable are
described in (1111.4.23).

Quasi-Geodesics

Let r and X be as in the (8.19). One wou!d like to know to what extent the information
encoded in the geometry of geodesics in X is transmitted to r by the quasi-isometry
x —÷ r given by (8.19). This leads us to the fo!!owing definition.

8.22 Definition of Quasi-Geodesics. A s)-quasi-geodesic in a metric space Xis
a s)-quasi-isometric embedding c I —p X, where I is an interva! of the real line
(bounded or unbounded) or else the intersection of Z with such an interval. More
exp!icit!y,

—s

for a!! r, t' E I. If I = [a, b] then c(a) and c(b) are called the endpoints of c. If
I = [0, 00) then c is ca!led a quasi-geodesic ray.

Quasi-geodesics will p!ay an important ro!e in Chapter III.H. In particu!ar we
sha!! see that quasi-geodesics in hyperbo!ic spaces such as IHI'1 fo!!ow geodesics
c!ose!y. In genera! geodesic spaces this is far from true, as the fo!!owing example
indicates.

8.23 Exercise Prove that the map c : [0, 00) —p E2 given in polar coordinates by
t (t, !og( I + t)) is a quasi-geodesic ray.

Some Invariants of Quasi-Isometry

In the next few sections we shall describe some invariants of quasi-isometry. We
begin with a resu!t that il!ustrates the fact that quasi-isometries preserve more alge-
braic structure than one might at first expect. We sha!! see further examp!es of this
phenomenon in Part III.
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8.24 Proposition. Let and F2 be groups withfinite generating sets and A2. If
and F2 are quasi-isometric and I'2 has a finite presentation (A2

I
then

has a finite presentation (A1
I

fl.1).

Proof The strategy of the proof is as follows. We shall build combinatorial 2-
complexes K1 and K2 by attaching a locally-finite collection of 2-cells to the Cayley
graphs of and F2; it will be clear that K2 is simply connected and our goal will be
to prove that K1 is simply connected. Because F and F2 are quasi-isometnc, there
is a quasi-i sometryf : K1 —p K2 with quasi-inversef' K2 —p K1. In order to show
that K1 is simply connected, we usef to map loops in to loops into K2, we choose
a filling (i.e. homotopy disc) in K2 and map it back to K1 using the quasi-inverse
f' : K2 —p K1; a suitable approximation to the resulting (non-continuous) map of a
disc into K1 yields a genuine filling for the original loop in K1.

Let i {1, 2}. We write C to denote the Cayley graph CA(FI). Let p be the
length of the longest word in fl.2. According to (8.9), the 2-complex K2 obtained by
attaching 2-cells to C2 along all edge-loops of length < p is simply connected.

Letf : —p F2 andf' F2 —p F1 be (A, s)-quasi-isometnes and let > 0

be such that d(f'f(y), y) < for every y E F1. Let m = max{A, s, p} and let
M = 3(3m2 + 5m + 1). Let K1 be the complex obtained by attaching a 2-cell to
C1 along each edge loop of length < M. Let be an edge-loop in C1 that visits the
vertices g1 in that order. We view as a map : 8D —p where Dis a
2-dimensional disc. We will be done if we can show that has a continuous extension

D —p (see 8.9).
Let v1, . ., be the inverse images of the gj, arranged in cyclic order around

8D, and let 4: 8D —p C2 be a map that sends the edge (subarc) bounded by { v1,

onto a geodesic inC2 connectingf(g1) where the indices are taken mod n.
Because K2 is simply connected, we can extend 4 to a continuous map 4 :D —p K2.

We associate to each point x E D an element Yx E F2 such that either =
or else Yx is a vertex of the edge or open 2-cell in which 4(x) lies. We specify that

= f(g1). Notice that because 4 is continuous, Yx,) < p for all sufficiently
close x1, x2 E D. Notice also that 1/2 for every x E 8D.

We fix a triangulation T of D such that Yx2) < p if x1 , x2 are adjacent
vertices. We require that v1 be vertices of T.

Define eIaD = and e(x) for every vertex x ofT that lies in the interior
of D. We claim that sends each pair of adjacent vertices x1 x2 E T to elements of
F1 that are a distance at most M/3 apart in C1. Once this claim is proved, we can
extend £ across the edges of T be sending each edge to a geodesic in C1, and since
every circuit of length < M in C1 bounds a disc in K1 (by construction), we can then
extend continuously across the faces ofT.

We must show that d(e(x1), e(x2)) < M/3. This is obvious except in the case
wherex1 is in the interior ofD and x2 E 8D, withx2 between v, and say. In that
case,
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d(e(x), e(x2)) e(x2))

+
d(f' e(v1)) + d(e(vj, e(x2)).

<(Ap + s) + (A/2 + s) + [Ad(4.(v,), + s] + d(f'f(g1), g) + I
I

<3m2 +5m+1 <M/3.

8.25 Remarks. Let X and Y be metric spaces. X is said to be a quasi-retract of Y if
there exist constants A, s, C > 0, and mapsf X —p Y, andf' Y —p X such that
d(f'(y1),f'(y2)) Ad(y1,y2)+sforally1,y2 E Y,andd(f(x1),f(x2)) <Ad(xi,x2)+s
and d(f'f(x1), x1) < C for all x1 , x2 E X. The preceding proof actually shows that
any quasi-retract of a finitely presented group is fimtely presented

Juan Alonso [Alo90] pointed out that by keeping track of the number of faces
in the triangulations that occur in the proof of (8.24), one can deduce that having
a solvable word problem is an invariant of quasi-i sometry among finitely presented
groups.

8.26 Exercise Let F be a group with a finite generating set A. Show that if F is
finitely presentable, and if F = (A

I
R.) is any presentation for F, then there is a

finite subset R.' C 1?. such that ((R.')) = ker(F(A) F).

The Ends of a Space

Recall that a map f . X —p Y between topological spaces is said to be proper if
c Xis compact whenever C ç Y is compact. The following definition is due

to Freudenthal [Fr3 I].

8.27 Definition of Ends. Let X be a topological space. A ray in X is a map r
[0, 00) —p X. Let r1, r2 [0, 00) X be proper rays. r1 and r2 are said to converge
to the same end if for every compact C c X there exists N E N such that [N, oo)
and r2[N, oo) are contained in the same path component of X N C. This defines an
equivalence relation on continuous proper rays; the equivalence class of r is denoted
end(r) and the set of equivalence classes is denoted Ends(X). If the cardinality of
Ends(X) is m, then X is said to have m ends.

Convergence of ends is defined end(r) if and only if for every
compact set C c X there exists a sequence of integers such that 00) and

00) lie in the same path component of X N C whenever n is sufficiently large.
We define a topology on Ends(X) by descnbing its closed sets. A subset B C Ends(X)
is defined to be closed if it satisfies the following condition: if end(r,1) E B for all
n E N, then end(r) implies end(r) E B
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Let X be a metric space. By definition, a k-path connecting x to y is a finite
sequence of points x x1 = yin X such that < k for i =
1 n—i.

8.28 Lemma. Let X be a proper geodesic space and let k > 0. Let and r2 be
proper rays in X. Let (X) denote the set of geodesic rays issuing from xo E X.
Then:

(i) end(r1) = end(r2) if and only every R > 0 there exists T > 0 such that
r1 (t) can be connected to r2(t) by a k-path in X N B(xo, R) whenever t> T.

(2) The natural map —p Ends(X) is surjective.

(3) Let r E and let n > 0 be an Let V,1 C be the set of
proper rays r' such that r(n, oo) and r'(n, oc) lie in the same path component
of X N B(xo, n). The sets V, = {end(r')

I
form a fundamental system of

neighbourhoods for end(r) in Ends(X).

Proof Every compact subset of X is contained in an open ball about x0 and vice
versa, so one may replace compact sets by open balls B(xo, R) in the definition of
Ends(X). Part (3) follows immediately from (2) and this observation. Part (1) also
follows from this observation, because ifx1,. . , x,1 is a k-path connecting x1 to in
X B(xo, R + k), then the concatenation of any choice of geodesics [x1, x1+i I gives
a continuous path from x1 to in X N B(xo, R).

It remains to prove (2). Let r: [0, oo) —p X be a proper ray. Let c, [0, d,,] —p X

be a geodesic joining x0 to r(n); extend to be constant on [d,1, oo) Because X is
proper, the Arzelà-Ascoli theorem (3.10) furnishes us with a subsequence of the c,1
converging to a geodesic ray c : [0, oo) —p X, and it is clear that end(c) = end(r)

8.29 Proposition. If and X2 are proper geodesic spaces, every quasi-isometry
f X1 —p X2 induces a homeomorphismf8 : Ends(X1) —p Ends(X2).

The map QI(X1) —p given byf fe is a homomorphism.

Proof Let r be a geodesic ray in X1 and be a ray in X2 obtained by concate-
nating some choice of geodesic segments [fr(n),fr(n + l)J, n E N. Becausef is a
(A, s)-quasi-isometry, this is a proper ray It is clear that end(L(r)) is independent of
the choice of the geodesic segments [fr(n),fr(n + 1)]

Define fs Ends(X1) —p Ends(X2) by end(r) for every geodesic
ray r in X1. The image underf of any k-path in X1 is a (Ak + s)-path in X2, so 8.28(1)
ensures that fe is well-defined on equivalence classes, and that it is continuous.
8.28(2) ensures thatf8 is defined on the whole of

It is clear that if f' : X2 —p andf : X1 —p X2 are quasi-isometries then
= (f'f)e. and iff' : —p X1 is a quasi-inverse forf, then = (f'f)e is the

identity map on Ends(Xj).

In the light of 8. i7(2) and the preceding result, the following definition of Ends(I')
is unambiguous.
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8.30 Definition (The Ends of a Group). Let F be a group and let C be its Cayley
graph with respect to a finite generating set. We define Ends(F) := Ends(C).

831 Etercise Let be a metric tree in which all vertices have valence n > 3 and
all edges have length one. Construct a homeomorphism from Ends(T,1) to the Cantor
set.

(Hint: The Cantor set may be thought of as the subspace of [0, 1] consisting
of those numbers whose ternary expansion consists only of zeros and twos. Embed
T3 in the plane (topologically), fix a base point, and encode the trajectory of each
geodesic ray as a sequence of zeros and twos describing when the ray turns left and
right; regard this sequence as a ternary expansion Use (8.20) and (8.29) to pass from
n = 3 to the general case.)

Amalgamated free products and HNN extensions, which appear in part (5) of the
following theorem, will be discussed in more detail in section (III.F.6).

8.32 Theorem. Let F be a finitely generated group.

(1) F has 0, 1, 2 or infinitely many ends.

(2) r has 0 ends if and only if it is finite.

(3) r has 2 ends if and only if it contains Z as a subgmup offinite index.

(4) Ends(F) is compact. If it is infinite then it is uncountable and each of its points
is an accumulation point.

(5) F has infinitely many ends and only F can be expressed as an amalgamated
free product A *c B or HNN extension A*c with C finite, IA/Cl 3 and
lB/Cl > 2.

This result shows, for example, that if a geodesic space X has three ends, or if
the set of ends is countable, then X does not admit a proper cocompact action by a
group of isometries.

The first four parts of this theorem are due to Hopf [Ho43J. Part (5) is due to
Stallings [St68]; its proof is beyond the scope of the ideas presented here. Part (2) is
trivial. We shall prove parts (1) and (4). We leave (3) as an exercise (8.34).

Proof of 8.32(1) and (4) We fix a finite generating set for F and work with the
corresponding Cayley graph C The action of F on itself by left multiplication extends
to an action by isometries on C, giving a homomorphism F —* Homeo(Ends(C)) as
in(8.29). LetH be the kernel of this map If Ends(C) is finite, then H has finite index
in F.

We prove (1) by arguing the contrapositive. Suppose that C has finitely many ends,
and let e0, e2 be three distinct ones. We fix two geodesic rays r2 : [0, oc) —p X
with = r2(0) equal to the identity vertex 1, and end(r1) = e. Because H has
finite index in F, there is a constant such that every vertex of C lies in the
neighbourhood of H. It follows that there is a proper ray r0 . [0, oo) C with
end(ro) = eo, d(ro(n), 1)> n, and ro(n) E H for every n E N. Let = ro(n).
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We fix p > 0 such that r1([p, oo)), r2([p, oo)), and r0([p, oo)) lie in different
path components of C N B(1, p). If t, t' > 2p, then d(r1 (t), r2(t')) > 2p, because any
path joining to r2(t') must pass through B(1, p).

Since H acts trivially on Ends(C), we have end(y,1.r1) = end(r1) for i = 1,2. Let
n > 3p. Then y. lies in a different path component to r,([p, oo)), so
must pass through B(1, p). Thus y,1.r1(t) E B(1, p) and E B(1, p) for some
t, t' > 2p. But y,, is an isometry, so this implies d(r1 (t), r2(t')) < 2p, which is a
contradiction

We now prove (4) Given a sequence of ends we choose geodesic rays
[0, oo) —p C with = I and = e,1. The Arzelà-Ascoli theorem (or a
simple finiteness argument) shows that a subsequence of these rays converges on
compact subsets to some geodesic ray r; it follows that the corresponding sequence
of ends converges to end(r) Thus Ends(C) is sequentially compact, and since it
satisfies the first axiom of countability (8.28(3), it is compact. It is clear that Ends(C)
is Hausdorff, and a compact Hausdorif space in which every point is an accumulation
point is uncountable (exercise). Thus it suffices to prove that if Ends(C) is infinite
then every e E Ends(C) is an accumulation point

Given e1, e2 E Ends(C), let D = D(e1, e2) be the maximum integer such that
r1 ([D, oo)) and r2([D, oo)) lie in the same path component of C B( 1, D) for some
(hence all) geodesic rays with end(r,) = e, and r1(0) = 1. Note that e,1 —p e if and
only if e) —p as n —p

Fix e0 E Ends(C) and a geodesic ray ro with ro(O) = I and end(ro) = eo.

Let = ro(n). We shall construct a sequence of ends e" such that e" eo and
D(em, eo) —p as m —p Let e1, e2 be distinct ends, neither of which is eo
and let r be a geodesic ray with r(0) = I and end(r,) = e, for i = 1, 2. Let
M = maxD(e1, e3), i,j 0, 1,2. If we fix p > M, then by arguing as in (1) we see
that for large n at most one of the rays can pass through B(I, p). To each of the
other two rays y,1J) we apply the Arzelà-Ascoli theorem as in (8.28) to construct a
geodesic ray with = 1 and ej := end(rJ) = Since r0 and have
terminal segments in the same path component of C N B( 1, p), we have D(eo, e)> p.
The eJ are distinct, so at least one of them is not equal to eo: rename this end e1.

We now repeat the above argument with replaced by e1 and call the ray
constructed in the argument e2. We replace e1 be e2 and repeat again. At each iteration
of this process the integer M is increased. Thus we obtain the desired sequence of
ends e" with e" eo and D(e", eo) —p as m 00.

We note a consequence of 8.32(5):

8.33 Corollary. If two finitely generated groups are quasi-isometric and one splits
as an amalgamated free product or HNN extension of the type described in 8.32(5),
then so does the other

8.34 Exercise. Prove 8.32(3). (Hint: Choose a ball B about the identity that separates
the ends of the Cayley graph C, and choose y E I' N B whose action on Ends(C) is
trivial. Check that y has infinite order by considering y".r, where r is a geodesic ray
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r starting at y that does not pass through B. Finally, argue that the sequences n
and n tend to different ends of C, and that any point of C is within a bounded
distance of (y).)

Growth and Rigidity

The material that follows is of a different nature to what went before: greater back-
ground is assumed, non-trivial facts are quoted without proof, and some of the
exercises are hard The material in this section is included for the information of
the reader; our purpose in presenting it is to indicate that there are many situations
in geometry where it is useful to employ techniques involving quasi-isometries of
groups.

There is an extensive literature on the growth of groups. Much of it focuses on
the search for closed formulae which descnbe the number of vertices in the ball of
radius n about the identity in the Cayley graph of a group (see [GrH97]), but the
coarser aspects of the theory are also interesting.

8.35 Definition. Let F be a group with generating set A. Let 18A(n) be the number
of vertices in the closed ball of radius n about I CA(F). The growth function of F
with respect to A is n 18A(n).

One says that F has polynomial growth of degree d if there exists a constant k
such that &4(n) kn" for all n E N.

8.36 Exercises

(1) Prove that having polynomial growth of degree d is an invariant of quasi-
isometry. Prove that a group has growth of degree < I if and only if it is finite or
contains Z as a subgroup of finite index (cf. 8.40).

(2) Show that if F1 and F2 are quasi-isometric then with respect to any finite
generating sets for and A2 for F2 one has 18A(n) 18A,(n), where is the
equivalence relation on functions N —p IR defined as follows: f g if and only if

f g and g f, wheref g if and only if there exists a constant k > 0 such
thatf(n) k g(kn + k) + k for all n E N. (This observation allows one to drop the
subscript A or to wnte when discussing the properties of flA(n).)

(3) Prove that if F contains a non-abelian free group, then the growth function
of F satisfies 2' 18r(n). More generally, prove that if H C F is finitely generated
then

(4) The growth of Z" with respect to any finite generating set is polynomial of
degree m.

(5) If n 2, then any group F which acts properly and cocompactly by isometries
on W has exponential growth. (Hint: One way to see this is to show that the number
of disjoint balls of radius I that one can fit into a ball or radius r in grows as an
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exponential function of r, and this property is inherited by the Cayley graph of F.
One can also argue that F must have a non-abelian free subgroup.)

8.37 Examples

(1) R. Grigorchuk [Gri83] has constructed finitely generated groups F for which
fl(n) where 0 <a1 <a2 < 1.

(2) Recall that the lower central series of a group F is (F,1), where F0 = F
and F,, [F, F,,_1J is the subgroup generated by n-fold commutators F is said
to be nilpotent if its lower central series terminates in a finite number of steps, i.e.

= { I } for some c E N All finitely generated nilpotent groups have polynomial
growth see [Dix60], [Mi168], [Wo64] Guivarc'h [Gui70, 73], Bass [Bass72] and
others calculated the degree of growth. fl(n) nd where

d=

Gromov proved the following remarkable converse to (8.37(2)) see [Gro8lb]
and [DW84].

8.38 Theorem. Let F be afinitely generated group 1fF has polynomial growth then
F contains a nilpotent subgroup offinite index.

In order to prove this theorem one must use the hypothesis on growth to construct
a subgroup of finite index c F for which there is a surjection Z. Once one
has constructed such a map, there is an obvious induction on the degree of polynomial
growth: the degree of polynomial growth of is the same as that of F, and it is not
hard to show that the kernel of any map Z is finitely generated and the degree
of its polynomial growth is less than that ofF; by induction the kernel has a nilpotent
subgroup of finite index and hence so does F.

In order to construct a map to Z, Gromov proves that a subsequence of the metric
spaces = (F, converges (in the pointed Gromov-Hausdorff sense (5.44))
to a complete, connected, locally compact, finite-dimensional metric space A

classical theorem of Montgomery and Zippin [MoZSS] implies that the isometry
group of is a Lie group G with finitely many connected components. Using this
theorem, and classical results about the subgroups of Lie groups, Gromov analyses
the action of F on to produce the desired map —* Z.

8.39 Corollary. If a finitely generated group F is quasi-isometric to a nilpotent group
then F contains a nilpotent subgroup of finite index

A group F is called polycyclic if it has a sequence of subgroups { 1 } = F0 C
F1 c c F,, = r such that each F is normal in and F1+1/F1 is a cyclic
group. The number of factors isomorphic to Z is called the Hirsch length of
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F. In [BriG96] Bridson and Gersten proved that the Hirsch length is an invariant of
quasi-isometry for polycyclic groups. 16

Every finitely generated nilpotent group N is polycyclic. Arguing by induction on
the Hirsch length, one can show that the degree of polynomial growth of N is equal
to the Hirsch length if and only if N does not contain a subgroup of the form Z Z
where4 E GL(n, Z) is an element of infinite order, cf. (11.7. 16) and (III.F.4.17). And
N contains such a subgroup if and only if it is not virtually abelian. By combining
these facts with Gromov's Theorem (8.38) one gets the following result

8.40 Theorem. If a finitely generated group is quasi-isometric to then it contains
as a subgroup offinite index

This theorem is contained in a more general result of P Pansu concerning quasi-
isometries between nilpotent groups [Pan83J. The proof that we have sketched is
based on that of Bridson and Gersten [BnG96].

8.41 Quasi-Isometric Rigidity of Lattices. In recent years a number of results have
been proved concerning the quasi-isometnc rigidity of lattices in semi-simple Lie
groups [Es98], [EsF97], [K1L97], [Schw95] See [Fa97] for a survey and further
references. There are rigidity results of two types in these works: in the first type
of result one shows that non-uniform lattices in certain Lie groups (e.g. SO(n, 1) in
[Schw95]) are quasi-isometric if and only if they are commensurable; in the second
type of result one shows that if an abstract finitely generated group G is quasi-
isometric to a group in the given class of lattices (e.g irreducible lattices in higher
rankgroupsin[K1L97]),thenthereisashortexactsequence 1 —± F —p G F 1,

where F is finite and F is a lattice of the given type.
Both types of rigidity results have also been proved for classes of groups other

than lattices (e.g. [FaMo98} and [KaL95].)

Quasi-Isometries of the Model Spaces

We consider which of the model spaces are quasi-isometric.

8.42 Proposition.

(1) is quasi-isometric to a point and only if IC > 0.

(2) is quasi-isometric to if and only if n = m.

(3) is quasi-isometric to if and only if n = m.

(4) is not quasi-isometric to IHI" if n, m> 2.

'6More generally, Gersten [Ger93a] proved that cohomological dimension is an invariant of
quasi-isometly among groups that have a subgroup of finite index with a compact Eilenberg-
Mac Lane space.



Quasi-Isometries of the Model Spaces 151

Remark. It is clear that is quasi-isometric to M for all ic <0.

Proof In the light of the considerations of growth described in the Exercises (8.36),
the only non-trivial point that remains is to prove that W and IHI" are not quasi-
isometric if n m. This is explained properly in (III.H.3) in terms of the boundanes
at infinity of the spaces, but it can also be proved using the elementary argument
outlined in the following exercise.

8.43 Exercise (Coarse Filling)

(1) Let k be a positive constant. A map between metric spacesf: X —p Y is said
to be k-continuous if for every x E X there exists v > 0 such that d(f(x, ),f(x2)) <k
wheneverd(x,x,) < vandd(x,x2) < v.

Let be a closed unit ball in and let S'1 = Show that the following
property (but not the choice of constants) is an invanant of quasi-isometry of metric
spaces X. Fix n E N.

For all sufficiently large k > 0 there exist constants A, A' > 0 such that for
every R> 0 and every x E X, every k-continuous map Sn —p X N B(x, R) extends to
a Ak-continuous map —p X '. B(x, A'R).

(2) Show that W has property for every i 2, but does not have property

This exercise provides a simple illustration of the fact that one can use coarse
metric analogues of the basic tools of algebraic topology (in this case higher homo-
topy groups) to describe the large scale geometry of a space (in this case dimension).
For more sophisticated applications of this approach, in particular the development of
cohomology theories that are invanant under quasi-i sometry see [Roe96], [Ger95]
and the survey article of Bloch and Weinberger [B1We97].

8.44 Exercises

(1) Prove that the natural homomorphism GL(n, IR) —p is injective.

(2) Prove that the image of the natural homomorphism —p QI(E")
coincides with that of 0(n).

(3) Prove that the natural map —p is injective if n > 2.

(4) Prove that the map in (3) is not surjective. (Hint: One can construct quasi-
isometries of W as follows Given any C' -diffeomorphismf of = 8W, send 0
to itself and for each geodesic ray c : [0, 00) —* with c(0) = 0, send c(t) to c'(t),
where c'(O) = 0 and c'(oo) =f(c(oo)).)

The conclusion of exercise (3) is valid for other irreducible symmetric spaces
of non-compact type, but the conclusion of (4) is not. (See the references listed in
(8.41).)



152 Chapter I 8 Group Actions and Quasi-Isometries

Approximation by Metric Graphs

We close our discussion of quasi-isomeffles with a result that allows one to replace
(perhaps very complicated) length spaces by simple mefflc graphs in the same quasi-
isometry class. This can be useful when studying quasi-isometry invariants because,
for example, it allows one to use induction on the length of paths (cf. III.H.2).

8.45 Proposition (Approximation by Graphs). There exist universal constants a and
such that there is an (a, from any length space to a metric graph

all of whose edges have length one. (Every vertex of the graph lies in the image of
this map.)

Proof Let (X, dx) be a length space. Consider a subset V C X with the property that
dx(u, v)> 1/3 for all pairs of distinct points u, v E V. Using Zorn's lemma, we may
assume that V is not properly contained in any subset of X with the same property. In
particular every point of X is a distance at most 1/3 from V. Let be the graph with
vertex set V which has an edge joining two vertices u, v if and only if dx(u, v) < 1.

We consider the metric graph dg) obtained by setting all edge lengths equal to
1. We claim that the map X —* Q sending x to a choice of closest point in V is the
desired quasi-isometi-y.

Since (V, dg) '—4 dg) and (V, dx) '—4 (X, dx) are obviously quasi-isometries
with universal parameters, it suffices to show that id: (V, dç) —* (V. dx) is a (3, 1)-
quasi-isometry. By construction this map does not increase distances. Conversely,
given u, V E V and ij > Owe can find a path of length dx(u, v) + ijconnecting u to v
in X. Along the image of this path we choose N equally spaced points beginning
with u and ending with v, where N is the least integer greater than 3(dx(u, v) + 11) + 1.

For each of these points p, we choose u, e V with dx(p,, u,) < 1/3. For each i we
have dx(u,, < 1, and hence u, = or else u1 and are connected by an
edge in It follows that dg(u, v) N — I 3(dx(u, v) + + I and hence (since

> 0 is arbitrary) id: (V, dg) —> (V, dx) is a (3, 1)-quasi-isometry. LII
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8.46 Exercises

(1) Calculate the universal constants in the above proposition

(2) (Quasi-length spaces) k-paths were defined prior to (8.28). The length of a
k-path x1 x, is defined to be d(x,, x,+i). X said to be coarsely connected if
there is a constant k such that every pair of points in X can be joined by a k-path, and
Xis called a quasi-length space if there exist constants k, A, e > 0 such that for every
pair of points x, y E X can be connected by a k-path of length at most A d(x, y) + e.

Prove that the class of quasi-length spaces is closed under quasi-isometry and
generalize (8.45) to include such spaces.

Prove that any metric space which admits a cocompact action by a finitely gener-
ated group is coarsely connected, but that it need not be a quasi-length space. (Hint:
Truncate the metric on a nice space by defining d'(x, y) = max{d(x, y), 1}.)

Appendix: Combinatorial 2-Complexes

Combinatonal complexes are topological objects with a specified combinatorial
structure. They are defined by a recursion on dimension; the definition of an open cell
is defined by a simultaneous recursion. If K1 and K2 are combinatorial complexes,
then a continuous map K1 —> K2 is said to be combinatorial if its restriction to each
open cell of K1 is a homeomorphism onto an open cell of K2.

A combinatorial complex of dimension 0 is simply a set with the discrete topol-
ogy; each point is an open cell. Having defined (n — 1)-dimensional combinatorial
complexes and their open cells, one constructs n—dimensional combinatorial com-
plexes as follows.

Take the disjoint union of an (n — 1)-dimensional combinatorial complex
and a family (eA A E A) of copies of closed n-dimensional discs. Suppose that for
each A e A a homeomorphism is given from 8eA (a sphere) to an (n — 1)-dimensional
combinatorial complex SA, and that a combinatorial map SA —> is also given;

: 8eA —> be the composition of these maps. Define K to be the quotient
of U eA by the equivalence relation generated by t (t) for all A e A and
all t 8eA. Then K, with the quotient topology, is an n-dimensional combinatorial
complex whose open cells are the (images of) open cells in and the interiors
of the eA.

8A.1 Attaching 2-Cells. We are interested primarily in 2-dimensional combinatorial
complexes. Let K be such a complex with 2-cells (eA

I
A A). Let X denote the 1-

skeleton of K. The attaching maps : 8eA —> are combinatorial loops (i.e. edge
loops) in X, and thus one describes K as the 2-complex obtained by attaching the
2-cells eA to X along the loops

There is an obvious way to endow any combinatorial 2-complex K with a piece-
wise Euclidean structure: one metrizes the 1-skeleton as a metric graph with edges
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of length one, and one metrizes each eA as a regular Euclidean polygon with sides
of length one. We wnte KE to denote the piecewise Euclidean complex obtained in
this way.

8A.2 The 2-Complex Associated to a Group Presentation. Associated to any
group presentation (A I '1?.) one has a 2-complex'7 K = K(A R.) that is compact
if and only if the presentation is finite. K has one vertex and it has one edge ea
(oriented and labelled a) for each generator a E A; thus edge loops in the 1-skeleton
of K are in 1—1 correspondence with words in the alphabet A±I: the letter
corresponds to traversing the edge ea in the direction opposite to its orientation,
and the word w = a, .. a,1 corresponds to the loop that is the concatenation of the
directed edges a1 a,1, one says that w labels this loop. The 2-cells e, of K are
indexed by the relations r e R.; if r = a, . . then er is attached along the loop
labelled a, . . The map that sends the homotopy class of ea to a E F gives an
isomorphism K(A: R.) F (by the Seifert-van Kampen theorem).

There is a natural F-equivanant identification of the Cayley graph CA(F) with
the 1-skeleton of the universal cover of K(A: R.). fix a base vertex v0 e K(A:
identify y.v0 with y, and identify the edge of CA(F) labelled a issuing from y with
the (directed) edge at y.v0 in the pre-image of ea.

8A.3 Exercises

(1) Prove that K, = K(a, b : and K2 = K(a, b, c abc, bac) are tori
but that and are not isometric.

(2) Following Whitehead [Wh36], we define the star graph of a presentation
(A I R.) to be the graph with vertices {(a, a e A, = ±1} that has one edge
joining (a, to (a', for each occurrence of the subwords ) and

among the relators r e R. (the tenninal and initial letters of a word are to be counted as
being consecutive, thus . . . contributes to the count for the subword

Show that the link of the vertex in K(A. R.) is the star graph of (A I

(3) Using (2), prove that K(a1 a,1 : a,.. . . is a closed surface
(of genus n/2) if and only if n is even.

(4) Using (2), prove that if A is finite and w is a reduced word in which a and
both occur exactly once, for every a E A, then K = K(A: w) can be obtained

by gluing a number of closed surfaces together at a point.

8A.4 Homotopy and van Kampen Diagrams. Let K be a combinatorial complex
with basepoint xo E We consider edge paths in K; such a path is the concate-
nation of a finite number of directed edges e1 : [0, 1] —* with e1( 1) = (0),
or else it is the constant path at a vertex. An edge loop is by definition an edge path

7 Sometimes called the Cayley complex
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that begins and ends at the same vertex. Given an edge path c we wnte to denote
the same path with reversed orientation (thus, for example, if e [0, 1] —> K is a
directed edge then : [0, 1] —* K is the inverse = e( 1) and 1) = e(0)).

Two edge paths in K are said to be related by an elementary homotopy if one of
the following conditions holds.

(i) (Backtracking) c' is obtained from c by inserting or deleting a subpath of the
fonn where e is a directed edge;

(ii) (Pushing across a 2-cell) c and c' can be expressed as concatenations c = auf3
and c' = where u'u' is the attaching loop of some 2-cell of K (Note that u
or u' may be the empty path.)

Two edge paths are said to be combinatorially equivalent if they are related by
a finite sequence of elementary homotopies. The set of equivalence classes of paths
that begin and end at x0 is denote x0) Concatenation of paths induces a group
structure on x0), where the class of the constant path [x01 serves as the identity.
If c is equivalent to the constant path, then we define Area(c) to be the minimal
number of elementary homotopies of type (ii) that one must apply in conjunction
with elementary homotopies of type (i) to reduce c to the constant path. It is a
standard exercise using the Seifert-van Kampen theorem to show that the natural
map xo) —> irj(K, x0) is an isomorphism (see [Mass9l], for example).

A van Kampen diagram in K is a combinatorial map —> K where is a

connected, simply connected, planar 2-complex. The boundary cycle of when
oriented, gives an edge loop c in that is null-homotopic. is called a van
Kampen diagram for c. A simple induction shows that c can be reduced to the
constant loop by applying elementary homotopies of type (i) together with
elementary homotopies of type (ii), where is the number of 2-cells in
Thus Area(c) < Conversely, if c can be reduced to the constant path [x0] by
elementary homotopies, then arguing by induction of the total number of elementary
homotopies required, one can show that there is a van Kampen diagram for c
with = Area(c) This important observation is due to van Kampen [K32b1
(cf Strebel's appendix to [GhH90]).

If K is the standard 2-complex of a finite presentation K = K(A: R.), edge paths
c in K are in natural bijection with words in the generators and two loops are
related by a homotopy of type (ii) if and only if the corresponding words have the
form w auf3 and w' = where r = E This means precisely
that there is an equality w' = )W in the free group F(A) It follows that if an
edge loop in K is labelled by the word W, then Area(c), as defined above, is the least
integer for which there is an equality of the fonn

W = J]x,rjx1'

in F(A), where the x1 E F(A) are arbitrary and r1 E Thus it is natural to define
Area(W) = The functionf(n) = max{Area(W) : < n, W = 1 is

called the Dehn function of (A I R.). Dehn functions are widely studied in connection
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with questions concerning the complexity of the word problem in finitely presented
groups (cf. Section llI.F.5).

The Dehn functions associated to different finite presentations of the same group
(or more generally quasi-isometric groups) are equivalent in the following sense
(see [A1o90]): given functions g, h N —÷ [0, oc), one writes g h if there is a
constant K> 0 such that g(n) <K h(Kn) + Kn + K, and one writes g h if g h

andh g.
The following picture shows a van Kampen diagram over (a, b, c [a, b]) for the

word a2bcb'a'bac'ba2b2. The reader might prove as an exercise that no van
Kampen diagram for this word is homeomorphic to a disc.

a a

b

a a
Fig. 8.3 A van Kampen diagram over (a, b, c [a, hi>

a



Part II. CAT(ic) Spaces

In Part I we assembled basic facts about geometnc notions such as length, angle,
geodesic etc., and presented various constructions of geodesic metric spaces. The
most important of the examples which we considered are the model spaces The
central role which these spaces play in the scheme of this book was explained in the
introduction: we seek to elucidate the structure of metric spaces by comparing them
to if favourable compansons can be drawn then one can deduce much about the
structure of the spaces at hand. We are now in a position to set about this task.

In Part!! we shall study the basic properties of spaces whose curvature is bounded
from above by a real number K. Roughly speaking, a space has curvature < K if every
point of the space has a neighbourhood in which geodesic triangles are no fatter than
their comparison triangles in In Chapter 1 we give several precise formulations
of this idea (all due to A D. Alexandrov) and prove that they are equivalent. In
subsequent chapters we develop the theory of spaces which satisfy these conditions,
concentrating mainly (but not exclusively) on the case of non-positive curvature.
We punctuate our discussion of the general theory with chapters devoted to various
classes of examples.

Unless further qualification is made, in all that follows K will denote an arbitrary
real number The diameter of will be denoted DK (thus DK is equal to if
K > 0, and oc otherwise).



Chapter 11.1 Definitions and Characterizations of
CAT(ic) Spaces

In this chapter we present the various definitions of a CAT(K) space and prove that
they are equivalent.

The Inequality

Recall that a geodesic segment joining two points p and q of a metric space X is
the image of a path of length d(p, q) joining p to q. We shall often write [p, q] to
denote a definite choice of geodesic segment, but immediately offset the dangers of
this notation by pointing out that in general such a segment is not determined by
its endpoints, i.e., without further assumptions on X there may be many geodesic
segments joining p to q.

By definition, a geodesic triangle in a metnc space X consists of three points
p. q, r e X, its vertices, and a choice of three geodesic segments [p, q], [q, r], [r, p1
joining them, its sides. Such a geodesic triangle will be denoted [p, q], [q, r], [r, p])
or (less accurately if X is not uniquely geodesic) q, r). If a point x E X lies in
the union of [p, q], [q, r] and [r, p], then we write x E

Recall from (1.2.13) that a triangle = in is called a comparison
tnangle for = q], [q, r],[r, p]) if = d(p, q), d@, = d(q, r) and
d(j5, = d(p, r). Such a triangle ç always exists if the perimeter d(p, q) +
d(q, r) + d(r, p) of is less than than twice the diameter DK of and it is unique
up to isometry (see 1.2.13). We will write = q, r) or fl, according
to whether a specific choice of is required. A point fl is called a
comparison point for x e [q, r] if d(q, x) = Comparison points on [15,
and fl are defined in the same way. Ifp q and p r, the angle of atp is the
Alexandrov angle between the geodesic segments [p, q] and [p, r] issuing fromp, as
defined in (1.1.12).

1.1 Definition of a CAT(K) Space. Let X be a metric space and let K be a real number.
Let be a geodesic triangle in X with perimeter less than 2DK. Let C be a
comparison triangle for Then, is said to satisfy the CAT(K) inequality if for
all x, y e and all comparison points E &

d(x, y)
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If K < 0, then X is called a CAT(K) space (more briefly, "Xis CAT(K)") if X is
a geodesic space all of whose geodesic tnangles satisfy the CAT(K) inequality.

If K > 0, then X is called a CAT(K) space if X is DK-geodesic and all geodesic
tnangles in X of perimeter less than 2DK satisfy the CAT(K) inequality. (In this
definition we admit the possibility that the metric on X may take infinite values. And
we remind the reader that to say X is DK-geodesic means that all pairs of points a
distance less than DK apart are joined by a geodesic.)

Note that in our definition of a CAT(K) space we do not require that X be complete.
Complete CAT(0) spaces are often called Hadamard spaces.

Fig. 1.1 The CAT(,c) inequality

1.2 Definition. A metric space X is said to be of curvature < K if it is locally a
CAT(K) space, i.e. for every x e X there exists > 0 such that the ball B(x, ri),
endowed with the induced metric, is a CAT(K) space.

If X is of curvature < 0 then we say that it is non-positively curved.

The definition given above was introduced by A.D. Alexandrov [A1e5 1]. It pro-
vides a good notion of an upper bound on curvature in an arbitrary metric space.
Classical comparison theorems in differential geometry show that if a Riemannian
manifold is sufficiently smooth (for example if it is C3) then it has curvature < K in
the above sense if and only if all of its sectional curvatures are < K (see the Appendix
to this chapter)

The terminology "CAT(K)" was coined by M. Gromov [Gro87, p.ll9]. The
initials are in honour of E. Cartan, AD. Alexandrov and V.A. Toponogov, each of
whom considered similar conditions in varying degrees of generality. In Chapter 4
we shall prove that if a complete simply connected length space has curvature < 0
then it is a CAT(O) space.

1.3 Remark. Let X be a geodesic space. If each pair of geodesics c1 [0, a1] —* X
and c2 : [0, a2] —* X with cj(0) = c2(0) satisfy the inequality d(ci(tai), c2(ta2)) <
t d(ci (ai), c2(a2)) for all t [0, 1], then one says that the metric on X is convex. It is
easy to see that the metric on a CAT(0) space is convex (cf. 2.2). In general having a
convex metric is a weaker property than being CAT(0) (cf. 1.18). There are, however,
several important classes of spaces in which convexity of the metric is equivalent to
the CAT(0) condition, including Riemannian manifolds (1A.8) and MK-polyhedral
complexes (5.4).

q

r
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1.4 Proposition. Let X be a CAT(K) space.

(1) There is a unique geodesic segment joining each pair of points x, y E X (pro-
vided d(x, y) < DK if K > 0), and this geodesic segment varies continuously
with its endpoints.

(2) Every local geodesic in X of length at most DK is a geodesic.

(3) The balls in X of radius smaller than DK/2 are convex (i.e., any Iwo points
in such a ball are joined by a unique geodesic segment and this segment is
contained in the ball).

(4) The balls in X of radius less than DK are contractible.

(5) (Approximate midpoints are close to midpoints.) For every A <DK and e 2 0

there exists S = S(K, A, e) such that if m is the midpoint of a geodesic segment
[x,y] Aandzf

max{d(x, m'), d(y, m')} < y) + 5,

then d(m, m') < e.

Proof (1) Considerp, q e X with d(p, q) < DK. Let [p, q] and [p, q]' be geodesic
segments joining p to q, let r E [p, q] and r' e [p, q]' be such that d(p, r) = d(p, r').
Let [p, r] and [r, q] be the two geodesic segments whose concatenation is [p, q]
Any comparison triangle in for q]', [p, r], [r, q]) is degenerate and the
comparison points for r and r' are the same. The CAT(K) inequality implies that
d(r, r) = 0, hence r = r'.

If X is proper then it follows immediately from (1.3.12) that
p and q. We consider the general case. First note that given any positive

number £ < DK, there is a constant C = C(& K) such that if c, c' : [0, 1] —> are
two linearly parameterized geodesic segments of length at most £ and if c(0) = c'(O),

then d(c(t), c'(t)) < Cd(c(1), c'(l)) for all t e [0, 1] (see 3.20). For K < 0 we even
have d(c(t), c'(t)) <td(c(1), c'(l)).

Let p,1 and q,1 be sequences of points converging to p and q respectively. We
assume that d(p,1, and d(p, q,1) are smaller than £ < Dk. Let c, c,1, be linear
parameterizations [0, 1] —÷ X of the geodesic segments [p, q], [p,', and [p,
respectively. Applying the CAT(K) inequality, wehaved(c(t), c,1(t)) d(c(t),

c,1(t) < C(d(q, qn) + d(p, p,1)), where C = C(& K) is as above. Therefore c,1
converges uniformly to c.

To prove (2), we fix a local geodesic c [0, A] —* X of length A < DK and
consider S = {t E [0, A] cIio.,i is a geodesic} This set is obviously closed, and it
contains a neighbourhood of 0 by hypothesis; we must prove that it is open. Suppose

E S and 0 < to < A. Because c is a local geodesic, there exists a positive number
e <A — to such that ci io—e.,o+e] is geodesic. Thus c([0, t0 + e]) forms two sides of the
geodesic triangle = c(to), c(to + e)). The comparison triangle C
must be degenerate: if it were not then the CAT(K) inequality applied to points
x [c(0), c(to)] andy E [c(to), c(to + e)] close to c(to) would contradict the fact that
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is geodesic. Thus has length d(c(O), c(t0 + 6)), 50 (t0, t0 + 6) c S

and we are done.
Assertion (3) follows from the CAT(K) inequality and the fact that balls in of

radius < are convex (1.2.12).
(4) follows easily from (1): if B = B(x, £), where £ < DK, then the map B x

[0, 1] —÷ X which associates to (y, t) the point a distance td(x, y) from y along the
geodesic segment [x, y] is a continuous retraction of B to x.

In (1.2.25) we proved that approximate midpoints are close to midpoints in
and having noted this, (5) follows immediately from the CAT(K) inequality

for y, m'). LII

1.5 Corollary. For K <0, any CAT(K) space is contractible, in particular it is simply
connected and all of its higher homotopy groups are trivial.

1.6 Exercise. Let X be a metric space whose metric is convex in the sense of (1.3).
Prove that X satisfies statements (1) to (4) of (1.4) with DK = 00.

Characterizations of Spaces

The CAT(K) inequality can be reformulated in a number of different ways, all due to
Alexandrov. We note four such reformulations immediately, and in what follows we
shall pass freely between these and definition (1.1), using whichever fonnulation is
best suited to the situation at hand and referring to that formulation as the CAT(K)
inequality.

1.7 Proposition. Fix K e 1I& Let X be a metric space that is DK-geodesic. The
following conditions are equivalent (when K > 0 we assume that the perimeter of
each geodesic triangle considered is smaller than 2DK):

(1) Xis a CAT(K) space.

(2) For every geodesic triangle q], [q, r], [r, p]) in X and every point x E
[q, r], thefollowing inequality is satisfied by the comparison pointx E fl C

q, r) C
d(p,x)

(3) For every geodesic triangle q], [q, r], [r, p]) in X and every pair of points
x E [p. q], y E [p. r] with x p andy the angles at the vertices corre-
sponding top in the comparison triangles A(p, q, r) C and x, y) C
satisfy:

Lr(x, y) K)(q r).

(4) The Alexandrov angle (as defined in 1.1.12) between the sides of any geodesic
triangle in X with distinct vertices is no greater than the angle between the
corresponding sides of its comparison triangle in
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(5) For every geodesic triangle q], [p, r], [q, r]) in X with p / q and
p r, (fy denotes the Alexandrov angle between [p, q] and [p, r] atp and if

c is a geodesic triangle with d(f', = d(p, q), d(f', = d(p, r)
and = y, then d(q, r) > d(?j,

Proof It is clear that (1) implies (2) and that (4) is equivalent to (5). And (4) follows
immediately from (3) and the observation that one can use comparison triangles in

rather than 1E2 when defining the Alexandrov angle (1.2.15). We shall prove that
(1) and (3) are equivalent, that (2) implies (3), and that (4) implies (2).
— Let p, q, r, x, y be as in (3). We write to denote comparison points in =

q, r) c and to denote comparison points in = x, y) C
Consider the vertex angles = r) and = y) at and )i'. According
to the law of cosines (1.2.13), the inequality > d(x, y) = is valid if
and only Thus (1) and (3) are equivalent.

Maintaining the notation of the previous paragraph, we shall now show that
(2) implies (3). Let Y', i") C be a comparison triangle for LMp, x, r).
Let denote the vertex angle at By (2), we have d(x, y) < d(x", i"), where

E [fi', i"] isthe comparison point fory. But =d(x, y), so Again
by(2),d(x <cr.Thusa <a.

Finally we prove that (4) implies (2). Given a geodesic triangle in X, say
q], [q, r], [r,p]), and a point x e [q, r] distinct from q and r, we fix a

geodesic segment [x, p1 joining x to p in X. Let y and y' be the angles at x which
[x, p1 makes with the subsegments of [q, r] joining x to q, and x to r, respectively. Let

be the angle at q between the geodesic segments [q, p1 and [q, r]. Let
be a comparison triangle for q, r) in and let be the angle at the vertex

Consider comparison triangles and i, in for the geodesic
triangles LMp, x, q) and x, r) respectively. We choose these comparison triangles
in such a way that they share the edge and and lie on opposite sides of the line
which passes andi Let = = and = By
1.1.13(2) we have y +y' jr,hence, by (4), +7 ? Alexandrov's lemma implies
that Therefore, using the law of cosines, we have > = d(p, x).

1.8 Other Notions of Angk. Let X be a metric space and suppose that we have a
map A which associates a number A(c, c') E [0, n] to each pair of geodesics c, c' in
X that have a common initial point. One might regard A as a reasonable notion of
angle if for each triple of geodesics c, c' and c" issuing from a common point we
have:

(1) A(c, c') = A(c', c);

(2) A(c, c") <A(c, c') + A(c', c");

(3) if c is the restriction of c' to an initial segment of its domain then A(c, c') = 0;

(4) if c [—a,a] Xis a geodesic and [0,a] X are defined by
c_(t) = c(—t) and = c(t), then A(c, =
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The Alexandrov angle satisfies these conditions (see 1.1.13 and 14). The Rie-
mannian angle also satisfies these conditions. And a trivial example is obtained by
defining A(c, c') = jr unless c and c' have a common initial segment.

If in (1.7) one replaces the Alexandrov angle by a function A satisfying the above
conditions, then the implications (5) (4) (2) remain valid. This observation
provides us with a useful tool for proving that certain spaces are CAT(K) (see (1A.2)
and (10.10)).

1.9 Exercises.
(1) Let X be a geodesic metric space Prove that the following conditions are

equivalent:

(a) X is a CAT(K) space.

(b) (cf. 1.7(2)) For every geodesic tnangle q], [q, r], [r, p]) in X (with perime-
ter smaller than 2DK if K > 0), the point m E [q, r] with d(q, m) = d(r, m) and
its comparison point fl C q, r) C satisfy

d(p,m)<

Show further that in the case K 0 the above conditions are equivalent to:
(c) The CN inequality'8 of Bruhat and Tits [BruT72] For all p, q, r E X and

all m E X with d(q. m) = d(r, m) = d(q, r)/2, one has

q)2 + r)2 2d(m,p)2 + d(q, r)2.

(In 1E2 one gets equality by a simple calculation with the scalar product.)

(2) Condition (1.7(5)) can be reformulated more analytically using the law of
cosines In the case K = 0, if we let a = d(p, q), b = d(p, r), c = d(q, r) and write
y for the Alexandrov angle atp between [p, q] andp, r], then the required condition
is.

c2 >a2+b2—2abcosy.

Find the equivalent reformulations for K <0 and K > 0.

(3) Let X be a CAT(ic) space If p, x, y E X are such that d(x, p) + d(p, y) <
DK, then the geodesic segment [x, y] is the union of [x, p1 and [p, y] if and only if
4(x, y) =

The CAT(ac) 4-Point Condition

All of the reformulations of the CAT(K) condition given above concern the geom-
etry of triangles. There is also a useful reformulation concerning the geometry of
quadrilaterals.

18 Courbure negative
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1.10 Definition. A subembedding in of a 4-tuple of points (x1, y', x2, Y2) from a
pseudometric space Xis a 4-tuple of points (ii, Y2) in such that =

E {1,2}, and d(x1,x2) <d(x1,x2) and d(y1,y2)
X is said to satisfy the CAT(ic-) 4-point condition if every 4—tuple of points

(xi, yi,x2,y2) with d(xi,yi, )+ d(y1,x2)+ d(x2, y2)+ d(y2,xi) < has a sube-

mbedding in

Note that every subspace of a CAT(ic-) space X satisfies the CAT(K) 4-point
condition. This condition first appears in the work of Reshetnyak [Resh68]. It was
used extensively by Korevaar and Schoen in their work on harmonic maps [KS93],
and also by Nikolaev [Ni95].

Recall that a pair of points x, y in a metric space X is said to have approximate
midpoints if for every S > 0 there exists m' E X such that max{d(x, m'), d(y, m')} <

y)+& If X is complete and every pair of points in X has approximate midpoints,
then X is a length space.

1.11 Proposition. Let X be a complete metric space The following conditions are
equivalent:

(1) Xis a CAT(K) space.

(2) X satisfies the CAT(K) 4-point condition and every pair of points x, y X with
d(x, y) <DK has approximate midpoints.

Proof We first prove that (1) implies (2). The existence of geodesics in X en-
sures the existence of approximate midpoints In order to show that X satisfies the
CAT(K) 4-point condition we must construct a subembedding in of each 4-tuple
(xi,yl,x2,y2)fromXwithd(xl,yI,)+d(yi,x2)+d(x2,y2)+d(y2,xi)<2DK

Given such a 4-tuple, we consider the quadrilateral Q C formed by compar-

ison triangles x2, 5i) = x2, and i2, Y2) = x2, Y2) with a

common edge [ii, and with and on opposite sides of the line containing

If Q is convex then the diagonals and intersect in some point
Let z E [x1, x2] be such that d(x1, z) = From the CAT(K) inequality (and
triangle inequality) we have:

<d(yi,z)+d(z,y2)

By construction, d(xi, x2) = so if Q is convex then (i1, j2, y2) is a

subembedding of (xi, , y2) in

If Q is not convex then one of the i1, say is in the interior of the convex

hull of the other three vertices of Q By applying Alexandrov's lemma (1.2.16) we

obtain a quadrilateral in with vertices where = d(x,, Yj)

for i,j = 1,2 E [yI,y21 is such that > d(ii,i2) = d(xi,x2).
And Y2) = + = d(y1, x2) + d(x2, Y2) > d(y1, y2). Therefore

x2, Y2) is a subembedding of (x1, y', x2, y2).

We shall now show that (2) implies (1). As a first step, we prove that (2) implies

the existence of midpoints for pairs of points less than DK apart; as X is complete, the
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existence of geodesics follows immediately. We fix x, y E X with d(x, y) < DK and

consider a sequence of approximate midpoints m, with max{d(x, m1), d(y, m)} <
y) + If we can prove that this is a Cauchy sequence then the limit will be a

midpoint for x andy. We fix an arbitrary s > 0 and fix A between d(x, y) and DK.

According to (1.2.25), there exists = A. s) such that in if d(p, q) < /

and max{d(p, rn'), d(q, rn')} < q) + then d(rn, rn') < s, where rn is the
midpoint of [p, q].

If is a subembedding of (x, rn,, y, nb), then by definition hi,)>
d(rn,, m1). Also, + = d(x, rn) + d(rn1, y) <d(x, y) + 1/i.
Thus, for i andj sufficiently large we have < A. And if max{1/i, 1/j} <
S(K, A, s) then rn) < s and rn) < s, where rn is the midpoint of
Since d(rn,, we have proved that is a Cauchy sequence, as required.

It remains to prove that triangles in X satisfy the CAT(K) inequality. Consider a
triangle y, z) C X of perimeter less than 2DK and let rn be a point on [x, y]. Let

be a subembedding of (z, x, rn, y) in As d(x, y) +
= d(x, y), we see that is a comparison triangle for y, z) and

is the comparison point for rn E By the definition of subembedding, d(z, rn) <
Thus y, z) satisfies the CAT(K) inequality (as characterized in 1.7(2)).

CAT(k) Implies CAT(k') if ic

The following basic theorem shows in particular that real hyperbolic space 11-P is a
CAT(O) space.

1.12 Theorem.

(1) If X is a CAT(K) space, then it i.s a CAT(K') space for every K' > K

(2) If X is a CAT(K') space for every K' > K, then it is a CAT(K) space

Proof We first prove (2). Given x, y E X with d(x, y) < DK, we have d(x, y) < DK'
for all K' > K sufficiently close to K. Thus ifX is DK-geodesic for all K' > K, then it
is

Given a geodesic triangle = q, r) in X with perimeter < we choose
K' > K sufficiently close to K to ensure that the perimeter of is less than 2DK.
Let a = d(p, q), b = d(p, r) and c = d(q, r). Let y be the Alexandrov angle at p
between [p, q] and [p, r]. In the light of the law of cosines for if K 0 then
characterization (1.7(5)) of the CAT(K') inequality becomes.

< +

If K > 0, then passing to the limit we get the same inequality with K1 replaced by
K. If K = 0, then in the limit we get c2 <a2 + b2 2ab cos y. Thus we obtain the
CAT(K) inequality (in the guise of 1.7(5)). The case K <0 is similar.
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We now prove (1). If K' > K, then since Xis assumed to be DK-geodesic it is a
fortiori

Given a geodesic triangle in X of perimeter less than DK we compare its compar-
ison triangles C and C It is sufficient to prove that the angles at the
vertices of are not smaller than the angles at the corresponding vertices of
Using the law of cosines in we reduce to proving the following lemma. U

1.13 Lemma. Fix K' > K and let (resp. be a geodesic triangle in
(resp. with vertices A, B, C (resp. A', B', C') and opposite sides of length a, b, c
(resp. a, b, c'), where the side opposite A has length a etc.. Suppose a + b + c <2DK.
and suppose that the angles at the vertices C and C' are equal and lie in (0, 7r). Then

< c.

Proof We introduce polar coordinates (r, 6) in and (in open balls of radius
= if K' > 0), see (1.6.16). Consider the map h sending the point of

with polar coordinates (r, 6) to the point with the same coordinates in We take
C and C' to be the centres of these polar coordinates (so h(C') = C). Because the
derivative of h at the origin is an isometry, we may assume h(A') = A and h(B') = B.

The image of h is the ball centred at C with radius DK', hence it contains the triangle

We wish to show that h increases the length of every path that is not radial in the
polar coordinates. For this we must show that if v is a vector in the tangent space

at a point x in the domain of h, then the norm of its image by the
differential of h at x is no smaller than the norm of v, and if v is not radial then

> liv!!.
Recall (I 6.17) that in the polar coordinates on the Riemannian metric is given

by
ds2 = dr2 +f(K, r)2d62,

where the function K f(K, r) is defined on the interval (—oo, by

r) ifK <0
f(K,r)= r ifK=O

* ifK >0.

It is easy to show that the function K f(K, r) is continuous and strictly decreasing.
Let v = 6) + 6) be a tangent vector at a point x with polar

coordinates (r, 0) in the domain of h; the square of its norm is +f(K', The
image of v under the derivative of h has the same expression in the polar coordinates
on and the square of its norm is +f(K, hence !!vlV with
equality only if v9 = 0 Thus strictly increases the norm of vectors which are not
radial, and so h strictly increases the length of paths which are not radial It follows
that the segment [A, B] c & which has length c, is the image under h of a path from
A' to B' of length less than c, but c' = d(A', B'), so c' < c.
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Simple Examples of CAT(k) Spaces

Pre-Hilbert spaces are obviously CAT(O). Conversely we have:

1.14 Proposition. If a normed real vector space V is CAT(K)for some K E IR, then
it is a pre-Hilbert space

Proof If V is not a pre-Hilbert space then, as in (1.4.5), there exist u, v E V such that
lim,0 Lo(tu, tv) = lim10 tv) does not exist, whereas 1 7(3) implies that if
V were CAT(K) then this limit would exist LI

1.15 Examples
(1) When endowed with the induced metric, a convex subset of Euclidean space

is CAT(O). More generally, a subset of a CAT(K) space, equipped with the induced
metric, is CAT(K) if and only if it is DK-convex. Here, it is important to distinguish
between the induced metric and the induced length metric: many non-convex subsets
of IE" are CAT(O) spaces when endowed with the induced length metric.

(2) Let X be the planar set which is the complement of the quadrant {(x, y)
I

x > 0, y > O}, endowed with the induced length metric from 1E2. In (1.3.5) we
described the geodesics in this space. It follows immediately from this description
and Alexandrov's lemma (1.2.16) that X satisfies the angle critenon 1.7(4) for a
CAT(O) space.

A similar argument applies to the complement of any sector in the plane, and a
local version of the same argument shows that the complement of any polygon in

has curvature <K.

(3) If and X2 are CAT(O) spaces, then their product X1 x X2 (as defined in
(1.5 1)) is also a CAT(O) space. This is easily seen using the characterization of
CAT(O) spaces given in (1.9(lc)).

(4) A metric simplicial graph is CAT(K) if and only if it does not contain any
essential loops of length less than 2DK; in other words, every locally injective path
of length less than 2DK is injective.

(5) An IR—tree is a metnc space T such that

(i) there is a unique geodesic segment (denoted [x, y]) joining each pair of points
x, y E T;

(ii) jf [y, x] fl [x, z] = {x}, then [y, xl U [x, z] = [y, z].

IR—trees are CAT(K) spaces for every K. Indeed in such spaces every geodesic
triangle with distinct vertices x1, x2, x3 is degenerate in the sense that there exists
V T such that [xi, = [x1, v] U [v, if i j. In particular, the angle at each
vertex is either 0 or it, and a vertex angle of it occurs if and only if one vertex lies
on the geodesic segment joining the other two vertices. Thus (1 7(4)) holds for all
K E IR Conversely, any metric space which is CAT(K) for all K 1S an IR—tree.

Simply connected metnc simplicial graphs, as defined in (I 1 10), are the easiest
examples of IR-trees. In general an IR-tree cannot be made simplicial For example,
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consider the set [0, oo) x [0, 00) with the distance d(x, y) between two points x =

d(x,y) = xi —yil ifx2 =Y2-
The asymptotic cone of provides another non-simplicial example. In this

case, the complement of every point in the IR-tree has infinitely many connected
components.

The apparently trivial nature of the geometry of IR-trees is deceptive and belies
their importance in low-dimensional topology and the delicacy of questions concern-
ing their isometry groups. We refer the reader to [Sha9l] for a survey to 1991 and
[Pau96] for an account of recent developments in this area.

1.16 Exercises.
(1) Let X be the closed subset of 1E3 which is the complement of the octant

{(x, y, z) x > 0, y > 0, z > O}. Show that X, endowed with the induced length
metric, is not a CAT(O) space (or indeed a CAT(K) space for any K).

(2) Let K > 0. Prove that X1 x X2 is a CAT(K) space if and only if both X1 and
X2 are CAT(K) spaces.

(3) Give a second proof of (1.14) by showing that if a normed space satisfies the
CAT(K) inequality then the norm satisfies the parallelogram law.

(4) Let C be a geodesic segment in Consider N C equipped with the
induced length metric and let X denote its metric completion. Prove using Alexan-
drov's lemma that X has curvature < K but that it is only a CAT(K) space if K > 0
and C has length DK.

(5) Prove that when endowed with the induced length metric, the complement of
an open horoball in 1E12 is a CAT(—1) space (Hint Use criterion 1.7(4).)

Historical Remarks

Prior to the work of A.D. Alexandrov, H. Busemann had introduced a weaker notion
of curvature in metric spaces [Bus48,55]. The book of W. Rinow [Rin6I] provides
good historical references for the period to 1960, and the report of K. Menger [Men52]
explains the importance of the early work of Wald [Wa36]. We close this chapter
with two remarks concerning the work of Alexandrov and Busemann.

1.17 The Relative Excess of a Triangle. Following Alexandrov, given K E IR and
a geodesic triangle = q], [q, r], [r, p]) in a metric space X with perimeter
smaller than we define the relative excess to be the difference of the sum
of the vertex angles of and the sum of the corresponding angles for a companson
tnangle in

It follows immediately from (1.7(4)) that < 0 for any geodesic triangle
in a CAT(K) space Alexandrov proved the non-trivial fact that the converse is
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also true: in a geodesic space X, if the relative excess SK of every geodesic triangle
is non-positive, then X is a CAT(K) space. The proof of this result requires a rather
long argument (see Alexandrov [A1e57a]).

Alexandrov shows also that a locally geodesic metnc space Xis of curvature K

if and only if, for each point x E X and each geodesic triangle in a neighbourhood
of x, the inequality K holds, where A is the area of a comparison triangle

1.18 Busemann's Approach to Curvature. Busemann [Bus48] made an extensive
study of spaces X whose metric is locally convex in the sense that every point
has a neighbourhood on which the induced metric is convex in the sense (1.3).
(Equivalently, every point x E X has an open neighbourhood which is a geodesic
space and for every geodesic tnangle = q], [q, r], [r, p]) in U the distance
between the midpoints of [p, q] and [p, r] is not bigger than the distance between the
comparison points in a comparison tnangle C The metric on any space of
non-positive curvature is locally convex, but not conversely For example, if V is a
normed space whose unit ball is strictly convex in the sense of (I 1 4), then the metnc
on V is convex, whereas V is non-positively curved if and only if it is a pre-Hilbert
space(cf 1.14).

More generally one might define a geodesic space X to be of curvature k (in a
weak sense) if every point of X has a neighbourhood such that given any three points
p, q, r in this neighbourhood (with d(p, q) = d(q, r) + d(r, p) <DK) and geodesics
[p, q] and [p, rJ, the midpointsx E [p, q] andy E [p, r] andtheircomparisonpoints in

C satisfy the inequality d(x, y) We shall see in the Appendix
that this condition is equivalent to Alexandrov's definition of curvature k if X is a
sufficiently smooth Riemannian manifold.

Appendix: The Curvature of Riemannian Manifolds

The purpose of this appendix is to relate Alexandrov's definition of upper curvature
bounds (1.2) to the classical notion of sectional curvature. In what follows M will
be a smooth Riemannian manifold of class C3 and dimension n equipped with its
associated distance function d, as in (1.3.18). We begin with a technical criterion for
deciding when a Riemannian manifold is of curvature K.

1A.1 Lemma. Fix K E IR, x E M and o E Suppose that for a suitable positive
numbers <DK there exists a efrom B(o, s) onto an open set U C M
such that e(o) = x and
(a) for ally E B(o, s) and v E we have > where

Te(y)M denotes the differential of e at y,
(b) = v is tangent to the geodesic joining o to y; in particular

T0e: is an isometry.
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Then:

(1) U = B(x, s). Indeed,foreachy E B(o, s), the geodesic segment [o, y] ismapped
isometrically by e onto a geodesic segment joining x = e(O) to e(y) in M, and
this segment is unique;

(2) for ally, z E B(o, s/2), we have d(e(y), e(z)) > d(y, z).

Proof As in (1.3.17), the Riemannian length of a curve c will be denoted IR(C) The
hypotheses of the lemma imply that for any piecewise curve c: [0, 1] B(o, s),
we have IR(e o c) ? IR(c) with equality if c is the geodesic path joining o to y This
together with the fact that any piecewise C' curve in M joining x to a point outside
of U has length at least s, implies that d(o, y) = d(x, e(y)), that U = B(x, s), and
that the image under e of the geodesic segment [o, y] is the unique geodesic segment
joining x to e(,y).

If y, z E B(o, s/2), then d(e(y), e(z)) < s is the infimum of the lengths lR(c) of
piecewise C1 curves c of length < s joining e(y) to e(z). Any such curve is the image
under e of a piecewise C1 curve joining y to z whose length (by (a)) is not bigger
than IR(c). Hence d(e(y), e(z)) < d(y, z). This proves (2).

1A.2 Proposition. Let M be a Riemannian and let K E IR. Let p E M
and suppose that s > 0 is such that for each poin! x E B(p, s/2) one can find a
map : B(o, s) B(x, s) satisfying the hypotheses of(JA. 1) Then B(p, s/2) is a
CAT(K) space.

Proof Let B = B(p, s/2). Lemma IA.l implies that B Mis convex and uniquely
geodesic. It also implies that the Riemannian angles at the vertices of any geodesic
tnangle y, z) C B with distinct vertices are no greater than the corresponding
angles in a comparison triangle = C As remarked in (1.8), this
implies that B satisfies condition (2) of (1.7).

1A.3 Jacobi Fields and Sectional Curvature. We recall some classical construc-
tions and facts from Riemannian geometry, these are proved in any textbook on the
subject (e.g [Mi163J or [ChEb75J). We consider a Riemannian manifold M that is
smooth enough (class C3 suffices) to ensure that the constant speed local geodesics

i-÷ c(t) in M are the solutions of the differential equation

where denotes the covariant derivative applied to smooth vector fields along the
path c, and c(t) E is the velocity vector of c at t.

For each vector v whose norm is small enough, there is a unique
constant speed local geodesic [0, 1] M such that = x and =
the point is denoted exp(v). We shall need the following classical fact: every
point of M has a neighbourhood U for which one can find s > 0 such that exp is
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defined on TEU = where T = {v E TXMI lvi < s}; the restnction
exp to each is a diffeomorphism onto an open subset of M and for each x E U

and v E the path is the unique constant speed geodesic [0, 1] —÷ Xjoining
x to exp(v).

Given x E U, a non-zero vector U E and v E TIM, there is a one-parameter
family of constant speed geodesics where s varies over a small neighbourhood
of 0 E IR. Associated to this family of geodesics one has the vector field J(t) =

along the geodesic path c = Cu. This satisfies the second order
differential equation

D2
(—R(J(t), c(t))) (c(t)),

with initial conditions J(O) = 0 and v = lim1.0J(t)/t, where R( , ) E
End(TM) is the curvature tensor. Any vector field satisfying such an equation is called
a Jacobi vector field along the geodesic path c. If J(O) = 0 and is orthogonal to

then J(t) is orthogonal to for every t.
If J(t) 0 is orthogonal to c(t), the sectional curvature of M along the 2-plane

in spanned by the orthogonal vectors J(t) and c(t) is by definition the number

K
— (R(J(t), c(t))c(t) J(t))

(t)
IJ(t)12

Given K E IR, if the sectional curvature of M along every 2-plane in TM is K, then
one says the sectional curvature of M is < K.

The following lemma is due to H. Rauch [Rau5l].

1A.4 Lemma. Let J be a Jacobi vector field along a unit speed geodesic c. [0, s]
M. If J(t) is orthogonal to c(t)for all t, then

iJI"(t) K(t)

at each point where J(t) 0.

If K(t) <K, J(0) = 0 and = 1, then for every t in the domain of c
we have

IJI(t) >jK(t),

where JK is the solution of the equation (t) = —KJK (t) with initial
conditions 1K(0) = = 1.

Proof For any vector fields X(t) and Y(t) along c, we have Y(t)) =
(X(t)

I
Y(t)). Thus we may write

IJI'(t) = (J(t)
I
J(t))'12 =

I
J(t)) lJ(t)L',

hence
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I
J(r)) +

I IJr)I-1

— J(t)) J(t)L3

= — (R(J(t), è(t))è(t) J(t))

I
J(t)[3.

Therefore by the Cauchy-Schwarz inequality

IJI"(t) > K(t) IJI(t)

Now assume K(t) ic, J(O) = 0 and I £JI(0) = 1. The solution of the differential
equation = with initial conditions .JK(0) = = 1 is JK(t) =

if K > 0; it isjk(t) = t if K = 0; and JK(t) = if K < o.
The first part of the lemma implies that

(IJI't)jKt) — IJI(t)L(t))' > 0,

and hence IJI'(tIiK(t) — > 0 (because this function oft vanishes at t = 0).
In other words, asjK(t) > 0 for 0 < t <DK,

(*)
IJKt) — jK(t)

for0 <t <DK.
By de l'Hôpital's rule,

IJI(t) IJI'(O) lim1..0 IJ(r)I/t=
JK(t) I

By integrating (*) we get J(t)l El

1A.5 Lemma. Let M be as in (IA. 3). If M has sectional curvature < K, then for
every p E M there exists a neighbourhood V of p and a positive number s > 0 such
that for all x E V one can find a map e: B(o, s) -± M satisfying the hypotheses of
Lemma IA.].

Proof Given a compact neighbourhood V of p one can find a positive numbers such
that, for all x E V, the exponential map -± B(x, s) is well defined and is
a diffeomorphism. Fix o E and x E V and identify with by means of a
linear isometry. Define e = o This map satisfies condition (b) of Lemma
IA.1.

Let u, V E be such that ui = 1, lvi = I and (v
I

u) = 0. Let Jk(t)
(resp. J(t)) be the Jacobi field that is associated to the one-parameter family of
geodesics c,(ii+cu)(t) = exp0(t(u + sv)) (resp. + sv)) as in (IA.3), where s
varies over a small neighbourhood of 0 E IR. By construction the differential of e
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maps JK(t) to J(t). It follows immediately from the description of the Riemannian
metric on in terms of polar coordinates (cf. 1.6.17), thatjK(t) = IJKI(t), and hence
the second part of Lemma 1A.4 implies that e satisfies condition (a) of (IA. 1). El

The following theorem is due to Alexandrov [AleS 1]. The fact that non-positive
sectional curvature implies non-positive curvature in the sense of (1.2) was proved
by E. Cartan [Car28].

1A.6 Theorem. A smooth Riemannian manifold M is of curvature < K in the sense
ofAlexandrov (1.2) if and only if the sectional curvature of M is < K.

Proof (IA.5) and (1A.2) together imply that if the sectional curvature of M is
bounded above by K, then M is of curvature <K in the sense of Alexandrov.

To prove the converse we use the following classical fact [Car28]. Let x E M
and let u, v be orthogonal unit vectors in TIM. For t small enough, we have unique
geodesics t and issuing from x with c11(O) = u and = v. Let K
be the sectional curvature of M along the 2-plane in spanned by u and v. Let
d(s) = d(c11(s), co(s)). Then'9

d(s)2 = 2s2 — +

Consider a geodesic triangle in with two orthogonal sides of length s; let
c(s) be the length of the third side. As M is assumed to be of curvature K,

we have d(s) > c(s) (see (1.7(5)) and (IA.7)). If K = 0, then d(s)2 > c(s)2 =
252, hence K < 0. If K < 0, then using the law of cosines we can express
c(s) as = The inequality d(s) > c(s) implies

> hence

1 — KS2 + + K2)54 + 1 — KS2 +

K K K

The "if" implication implies the following result.

1A.7 Corollary. Let M be a smooth Riemannian manifold and let c, c': [0, s] -± M
be geodesics issuing fmrn a common point x = c(0) = c'(O). The limit as t, t' -± 0

of the comparison angle c'(t')) exists and is equal to the Riemannian angle
between the velocily vectors c(0) and è'(O) In other words, the Riemannian angle
between c and c' is equal to the Alexandrov angle between them.

Proof As Mis locally compact, the point xis contained in a neighbourhood where the
sectional curvature of M is bounded by some number K. Hence x has a convex neigh-
bourhood that is a CAT(K) space. It follows for 1 7(3) that the angle c'(t'))

'9A proof in modern language can be found in unpublished lecture notes of Wolfang Meyer
on "Toponogov's Theorem and Applications"
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at in a comparison triangle c(t), c('t')) c is a non-increasing function
of t, t' > 0. Hence the desired limit exists call it It follows from (1.2.9) that

c'(t')) also converges to a as t, t' —± 0. To compute a we can take t =
observe that 2 sin(Z(c(t), c'(t))/2) = d(c(t), c'(t))/t. Let be the exponential map
defined on a neighbourhood of 0 E TIM. There are unit vectors u, u' E such
that c(t) = and c'(t) = we have to prove that a is the angle be-
tween u and u', namely that 2sin(a/2) = lu As the differential of at
o is an isometry on the tangent spaces, the argument used in the proof of (1.3.18)
shows that if t is small enough, then c'(t))/lltu — tu'fl = 1, hence

= c'(t))/t = lu — u'II. LI

JA. 8 Remark. The proof of (1 A.6) shows that if a smooth Riemannian manifold M is
of curvature < K in the weak sense of (1.18), then its sectional curvature is bounded
above by K, and hence M is of curvature < K in the sense of Alexandrov (1.2).
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In this chapter we concentrate mainly on CAT(0) spaces, establishing basic properties
that we shall appeal to repeatedly in subsequent chapters. We shall also describe the
extent to which each of the results presented can be extended to the case of CAT(K)
spaces with K > 0.

The most basic of the properties defining the nature of CAT(0) spaces is the
convexity of the metric (2.2). From this property alone one can deduce a great deal
about the geometry of CAT(0) spaces (cf. [Bus55]). We shall also examine orthogonal
projections onto complete convex subspaces (2.4), and we shall see that the existence
of unique centres for bounded subsets implies that every compact group of isometnes
of a complete CAT(0) space must have a fixed point (2.8).

The third section of this chapter begins with the observation (from [A1e5 1]) that
when considering a triangle in a CAT(0) spaceX, if one gets any non-trivial equality
in the CAT(0) condition, then spans an isometncally embedded Euclidean triangle
in X. (An analogous result holds for CAT(K) spaces in general (2.10).) This insight
leads quickly to results concerning the global structure of CAT(0) spaces (e.g. 2.14)
which illustrate the subtlety of Alexandrov's definition (1.1).

Convexity of the Metric

We recall the definition of a convex function.

2.1 Definition. A functionf: I —÷ defined on an interval I (not necessarily closed
or compact) is said to be convex if, for any t, t' I and s E [0, 1],

f((s — 1)t + st') < (s 1)f(t) + sf(t').

A functionf : X -± IR defined on a geodesic metric space is convex if, for any
geodesic path c : I -± X parameterized proportional to arc length, the function

f(c(t)) defined on the interval I is convex. Equivalently, for each geodesic path
c: [0, 1] —÷ X parameterized proportional to arc length, we have

f(c(s)) < (s I )f(c(0)) + sf(c( 1))

foreachs E [0, 1].
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2.2 Proposition. If X is a CAT(O) space, then the distance function d X x X -±
is convex, i.e. given any pair of geodesics c [0, 1] —± X and c' : [0, 1] -± X,

parameterized proportional to arc length, the following inequalily holds for all t E

[0, 1].

d(c(t), c'(t)) < (1 t)d(c(0), c'(O)) + td(c(1), c'(l))

Pmof We first assume that c(0) = c'(O) and consider a comparison triangle C
for c'(l)).GiventE [0, 1], elementary Euclidean geometry tells us
that d(c(t), c'(t)) =td(c(1), c'(l)) = td(c(1), c'(l)). And by the CAT(0) inequality,
d(c(t), c'(t)) d(c(t), c'(t)). Hence we obtain d(c(t), c'(t)) < td(c(1), c'(l)).

In the general case, we introduce the linearly reparameterized geodesic c"
[0, 1] —± X with c"(O) = c(0) and c"(l) = c'(l). By applying the preceding special
case, first to c and c" and then to c' and c" with reversed orientation, we obtain:
d(c(t), c"(t)) td(c(1), c"(l)) and d(c"(t), c'(t)) < (1 — t)d(c"(O), c'(O)). Hence,

d(c(t), c'(t)) < d(c(t), c"(t)) + d(c"(t), c'(t)) < td(c(1), c'(l)) + (1 — t)d(c(0), c'(O)),

as required.

2.3 Exercises.

(1) Let X be a CAT(K) space and fix E X. Prove that the restriction of x
d(x, x0) to the open ball of radius DK/2 about x0 is convex.

(2)LetXbeaCAT(0) space. Provethatforallpointsp, q, r E X,ifc: [0,a] —± X
and c' : [0, b] —± X are the unique geodesics joining q to p and r to p, respectively,
then d(c(t), c'(t)) < d(q, r) for all t < min{a, b}.

Convex Subspaces and Projection

In subsequent sections we shall make frequent use of orthogonal projections onto
complete, convex subsets of CAT(0) spaces. Orthogonal projection (or simply 'pro-
jection') is the name given to the map it : X -± C constructed in the following
proposition. (A careful inspection of the proof of this proposition shows that, mod-
ulo the usual restrictions on scale, one can also project onto convex subsets of CAT(K)
spaces when K > 0, see 2.6(1).)

2.4 Proposition. Let X be a CAT(0) space, and let C be a convex subset which is
complete in the induced metric. Then,

(1) for every x E X, there exists a unique point jr(x) E X such that d(x, ir(x)) =
d(x, C) := infYEc d(x, y);

(2) if x' belongs to the geodesic segment [x, ir(x)], then ir(x') =
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(3) givenx Candy E C, if y / ir(x) then20 ir/2;
(4) the map x it (x) is a retraction of X onto C which does not increase distances;

the map H X x [0, 1] -± X associating to (x, t) the point a distance t d(x, it (x))
from x on the geodesic segment [x, it (x)] is a continuous homotopy from the
identily map of X to it.

Proof To show the existence of ir(x), we consider a sequence of points yn E C
such that x) tends to d(x, C). We claim that this is a Cauchy sequence. Once
we have proved that this is the case, we can take ir(x) to be the limit point, whose
existence is guaranteed by the completeness of C. Moreover, the fact that every such
sequence (y,1) is Cauchy also establishes the uniqueness of ir(x), because if there
were a second point ir(x)' E C with d(ir(x)', x) = d(x, C), then the sequence whose
terms were alternately ir(x) and ir(x)' would satisfy the definition of(y,), but would
not be Cauchy.

Let D = d(x, C) and let s > 0 be small compared to D. By hypothesis, there
exists N > 0 such that x)< D + e whenever n > N. We fix n, m > N and
consider a comparison triangle yn, c 1E2. We then draw two circles about

one of radius D and one of radius D + s. An elementary calculation in Euclidean
geometry shows that any line segment which is entirely contained in the closed
annular region bounded by these two circles can have length at most 2V'2ED + s2.
The line segment Ym] must be contained in this annular region, for if it were
not then there would exist with < D But then, by the CAT(0)
inequality, the corresponding point z E [yn, C C would satisfy d(x, z) < D,
contradicting the definition of D. Hence, if n, m > N, then d(yn, <2V'2ED + s2.
Thus the sequence (Yn) is Cauchy.

(2) follows from the triangle inequality.
For (3), one observes that if y) were less that then one could find

points x'E [ir(x), x] andy' E [ir(x), y] distinct from ir(x) such that, in the comparison
triangle ir(x), y') the angle at ir(x) would be < it/2. This, together with the
CAT(0) inequality, would imply that for some point p E [ir(x), y'] C C we would
have d(x', p) < d(x', ir(x)). But by (2), d(x', ir(x)) = d(x', C).

(4) We claim that if x1 , x2 E X do not belong to C and if ir(x1) / it(X2), then

d(x1 , d(H(x1, t), H(x2, t)) forall t [0, 1]. To this end, we writex,(t) = H(x,, t)
and consider the quadrilateral in E2 which is obtained by adjoining comparison
triangles ir(x2)) and along the edge with

and it (x1) on different sides. It follows from (3), together with (1.7(4)), that the
angles atir(x1) and jr(x2) are not less than it/2. Hence d(xi , x2) =
d(x1 (t), x2(t)) d(x1 (t), x2(t)). El

The first part of the following corollary implies in particular that for any r> 0 the
closed r-neighbourhood of a convex set in a complete CAT(0) space is itself convex

20 y) is the Alexandrov angle between the geodesic segments x)1 and Iircx),
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2.5 Corollary. Let C be a complete convex subset in a CAT(O) space X Let dc be
the distance function to C, namely dc(x) = d(x, C). Then:

(1) is a convex function;

(2) for all x, y E X, we have Idc(x) — dc(y)l <d(x, y);

(3) the restriction of dc to a sphere with centre x and radius r < dc(x) attains its
infimum at a unique pointy and dc(x) = dc(y) + r

Proof Let it be the projection of X onto C.
(1) Let c [0, 1] —÷ X be a linear parameterization of a geodesic segment

and let c' : [0, 1] —± C be a linear parameterization of the geodesic segment
[ir(c(0)), ir(c(1))]. By the convexity of the distance function we have

dc(c(t)) <d(c(t), c'(t))
< (1 — t)d(c(0), c'(O)) + td(c(1), c'(l))

= (1 — t)dc(c(0)) + tdc(c(1)).

For (2), note dc(x) <d(x, iv(y)) <d(x, y) + d(y, ir(y)) = d(x, y) + dc(y).

(3) Let y be the point on [x, ir(x)] such that d(x, y) = r Then dc(x) dc(y) + r
by (2.4(2)). If y' is such that d(x, y') = r and dc(y') <dc(y), then

d(x, ir(y')) <d(x, y') + d(y', r + dc(y) = d(x, ir(x)),

hence ir(y') = iv(x)andy' =y. El

2.6 Exercises.
(1) Let X be a CAT(K) space and let C c X be a complete subset which is DK-

convex. If we replaceXby V = (x E X I dc(x) <DK/2} then parts (1)to (3) of (2.4)
remain valid, as does (2.5). Moreover, the map H described in (2.4(4)) is a homotopy
from idv to it.

(2) Let X be a complete CAT(K) space and let C c X be a closed DK-convex
subspace. Endow Y =X '. C with the induced path metric, let Y be its completion,
and define Bd(Y) = Y N V. Show that any geoclesicin Y with endpoints in Bd(Y)
is entirely contained in Bd( Y). (Hint: Y is open in Y and there is a natural map
4): Y —± X; if a local geodesic in Y met only at its endpoints, then its image
under 4) would be a local geodesic of the same length with endpoints in C)

The Centre of a Bounded Set

Early in this century Elie Cartan [Car28] proved that in a complete, simply connected
manifold M of non-positive curvature, given any finite subset {x1 the func-
tion x >J, d(x, x)2 has a unique minimum which can usefully be regarded as the
"centre" of the subset. Using this idea, he proved the existence of a fixed point for
the action of any compact group of isometries of M Using essentially the same idea
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(but with a different notion of centre) Bruhat and Tits proved a fixed-point theorem
for group actions on Euclidean buildings [BruT72] In this section we explain how
this idea applies to complete CAT(O) spaces, and we also explain how to construct a

centre for suitably small bounded sets in complete CAT(K) spaces with K > 0.

Given a bounded subset V of a metric space X, the radius of V is by definition
the infimum of the positive numbers r such that V c B(x, r) for some x E X.

2.7 Proposition. Let X be a complete CAT(ic) space. If Y ç X is a bounded set of
radius r1 <D,j2, then there exists a unique point c1 E X, called the centre2' of Y,
such that V C B(cy, ry).

Proof Let (x,1) be a sequence of points in X with the property that Y ç r,1) and
—± ry as n —± :0 We shall prove that is a Cauchy sequence; the idea of the

proof is very similar to that of (2.4). Since X is complete, this sequence will have a
limit point, and such a limit has the property required of cy. The fact that every such
sequence is Cauchy also establishes the uniqueness of c1, as in (2.4).

We fix a basepoint 0 Given s > Owe choose numbers R E (ry, DK/2) and
R' < ry such that any geodesic segment which is entirely contained in the annular
region A = B(0, R) '. B(0, R') has length less than s.

For sufficiently large n, n' we have <R. Let m be the midpoint of the unique
geodesic segmentjoining to x,. For each y E Y, we consider a comparison triangle

= c for x,,). If it were the case that for every y E Y the

midpoint of [1, c belonged to B(0, R'), then by the CAT(K) inequality we
would have Y c B(m, R'), contradicting the fact that R' < r1. Therefore, there exists
y E Y such that the midpoint of c lies in the annulus A. This implies
that at least half of lies in A, and hence has length less than 2s. El

For an alternative proof in the case ic = 0, see [Bro88, p 157] Finer results of a
similar nature can be found in the papers of U. Lang and V. Schroeder [L597a].

2.8 Corollary.

(1) If X is a complete CAT(O) space and F is a finite group of isometries of X or;
more generally, a group of isometries with a bounded orbit, then the fixed-point
set ofF is a non-emply convex subspace of X.

(2) If a group F acts properly and cocompactly by isometries on a CAT(O) space,
then F contains only finitely many conjugacy classes offinite subgmups.

Proof In order to see that the fixed point set of F is non-empty, one simply applies
the preceding proposition with the role of Y played by a bounded orbit of F; since
Y is F—invariant, so is its centre. If an isometry fixes p, q E X, then it must fix the
unique geodesic segment [p. q] pointwise Hence the fixed-point set of F is convex.

Part (2) follows immediately from (1) and 1 8 5(5).

21 more precisely, circumcentre.
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Fiat Subspaces

Most of the results that we have presented so far follow fairly directly from the
definition of a CAT(K) space. In this paragraph we begin to strike a richer vein of
ideas, based on the observation (from [Ale5l]) that when considering a triangle
of penmeter at most 2DK in a CAT(K) space X, if one gets any non-trivial equality in
the CAT(,c) condition then the natural map -± from any comparison triangle

c extends to give an isometric embedding of the convex hull of into X (see
(2.9) and (2.10)).

Flat Triangles

By definition, the (closed) convex hull of a subset A of a geodesic space X is the
intersection of all (closed) convex subspaces of X containing A. The convex hull of
a geodesic triangle q, r) c X coincides with the convex hull of its vertex set
{p, q, r}; in a general CAT(0), for example in the complex hyperbolic plane CH2 the
convex hull of three points in general position is 4—dimensional (see (10.12)).

2.9 Proposition (Flat Triangle Lemma). Let be a geodesic triangle in a CAT(0)
space X. If one of the vertex angles of is equal to the corresponding vertex angle
in a comparison triangle C 1E2 for then flat", more precisely, the convex
hull of in X is isometric to the convex hull in 1E2.

Proof Let = q, q') and suppose that q') = q'). Let r be any
point in the interior of the segment [q, q']. The first step of the proof is to show that
our hypothesis on r) implies that for all such r we have equality in the CAT(0)
condition, i.e. d(fl, = d(p, r).Let = q, r), and lets" = q', r). We
consider comparison tnangles = for and = ?j', for
in 1E2, and assume that these are arranged with a common side [j3, so that and
are not on the same side of the line through Let be the comparison point in

for r. As the sum of the angles at of and is not less than it, we can apply
Alexandrov's lemma (1.2.16). We have

q') < r) + r) < + <

where the second inequality follows from the CAT(0) condition (1.7(4)). By
assumption q') = hence we have equality everywhere, in particular

+ = Therefore, by Alexandrov's lemma again, d(p, r) =
d@, = as desired. — —

Let j be the map from the convex hull C 1E2 to X which, for every
E sends the geodesic segment fl isometrically onto the geodesic segment

[p. r]. We claim thatj is an isometry onto its image; it then follows that the unique
geodesic joining any two points of the image of j will be contained in the image,
sojinaps C(s) onto C(s). Consider two points fl and E [p, in
C(s), where and lie on and is between and Let x = x' =

r = r' = j(?'), and let 82, 83 be the angles r), r'), 4,(r', q'),
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respectively; 81, 83 will denote the corresponding angles in The first step_of
the proof shows that is a comparison triangle for q, r), hence
Similarly, 82 < and 83 < 83. But q') < 8 + + 83 =

q'), so in fact 82 = 82. Hence d(x, x') = i'), as required. El

2 10 Exercises.
q, 1) C 1E2

be its comparison triangle. Use (2.9) to prove that if there exists a point in the intenor
of 1] and a point with such that d(x, y) = d(i, then the triangle

q, r) is flat

(2) Generalize Proposition 2.9 and (1) to arbitrary CAT(K) spaces.

Flat Polygons

2.11 The Flat Quadrilateral Theorem. Considerfourpointsp, q, r, s in a CAT(O)
space X. Let a = s), = Zq(p, r), y = s) and S = Z5(r, p). Ifa + +
y + S > 2ir, then this sum is equal to 2ir and the convex hull of the four points
p, q, r, s is isometric to the convex hull of a convex quadrilateral in 1E2.

Proof The method of proof is similar to that of the preceding proposition. Let =
q, s) and = q,s). To begin, we construct a quadrilateral in 1E2 by

joining comparison triangles = q, s) and = q, s) along the edge
i] so that and lie on opposite sides of the line that passes through and
We denote the angles of at the vertices by respectively, and

those of at the vertices 1, by S2 From (1.7(4)) and (1.1.14) we have

We are assuming that a + + y +8 2ir, and the sum of the angles of a Eucidean
quadrilateral is 2ir, so we conclude that in the above expression we have equality
everywhere. In particular + = it and S < it; therefore
the Euclidean quadnlateral Q with vertices 1, is convex. The preceding
proposition then implies that and bound flat tnangles. Letj be the map from
the convex hull C of Q to Xwhose restrictions,j1 andj2, to the convex hulls
and of the triangles and are isometries onto the convex hulls of&
and To check thatj is an isometry, we have to prove that, for all
and x2 E if = x1 and = x2, then d(x1 , x2) = x2). This will
follow once we have proved that the angle Zq(xi, x2) is equal to the angle
11=

To check this equality, we let = xi), = Zq(xi, s), = x2)
and = r). As above, one sees that each of these angles is equal to the
corresponding angle in the comparison figure. Hence

And since = and = we deduce = 0
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2.12 Exercises.
(1) Let X be a CAT(O) space and consider n distinct points in X. Let

a1 = where indices are taken mod n. Prove that if>a, > (n — 2)ir
then the convex hull in X of is isometric to a convex n—gon in 1E2.

(2) (The Sandwich Lemma) Let X be a CAT(O) space. We write dc(x) =
inf{d(x, c)

I
c E C} to denote the distance of a point from a closed subspace C C X.

Let C1 and C2 be two complete, convex subspaces ofX. Prove that if the restriction
of dc to C2 is constant, equal to a say, and the restriction of dc2 to C1 is constant,
then the convex hull of C1 U C2 is isometric to C1 x [0, a].

(3) With the hypothesis of (2), let p X —p C1 be orthogonal projection. Let C'
be an arbitrary subspace of X. Prove that if the restriction of p to C'is an isometry
onto C1 then the restriction of dc (x) to C is constant, equal to b say, and there is a
unique isometryj from C x [0, b] to the convex hull of U C' such thatj(x, 0) = x
andj(x, b) = p(x) for all x E C'.

Flat Strips

Recall that a geodesic line in a metric space X is a map c : X such that
d(c(t), c(?)) = It — ?J for all t,? E R. Two geodesic lines c, c' in X are said to be
asymptotic if there exists a constant K such that d(c(t), c'(t)) < K for all t
We remind the reader that if a function R R is convex and bounded, then it is
constant.

2.13 The Flat Strip Theorem. Let X be a CAT(O) space, and let c X and
c' : X be geodesic lines in X. If c and c' are asymptotic, then the convex hull of
c(R) U c'(R) is isometric to a flat strip R x [0, DJ C

Proof Let it be the projection of X onto the closed convex subspace c(R) (cf. (2.4)).
By reparameterizing if necessary, we may assume that c(O) = iz(c'(O)), i.e., thatc(O)
is the point on c(R) closest to c'(O).

The function t i—* d(c(t), c'(t)) is convex, non-negative and bounded, hence
constant, equal to D say. Similarly, for all a E R, the function t i—* (c(t + a), c'(t)) is
constant. In particular d(c(a + t), c'(t)) = d(c(a), c'(O)) > d(c(O), c'(O)), and hence

= c(t) for all t. This same inequality shows that the projection it' onto c'(R)
maps c(t) to c'(t).

Given t < we consider the quadrilateral inX which is the union of the geodesic
segments [c(t), c(t')], [c(t'), c'(t')], [c'(t'), c'(t)] and [c'(t), c(t)]. According to (2.4),
all of the angles of this quadrilateral are at least ir/2. By (2.11), the convex hull of
{c(t), c'(t), c(?), c'(?)} is isometric to a Euclidean rectangle, and therefore the map

R x [0, D] X which sends (t, s) to the point on the geodesic segment [c(t), c'(t)]
a distance s from c(t) is an isometly onto the convex hull of c(R) U c'(R).

In view of the Flat Strip Theorem, the terms parallel and asymptotic are synony-
mous when used to describe geodesic lines in a CAT(0) space. Both are in common
use.



Flat Subspaces 183

2.14 A Product Decomposition Theorem. Let X be a CAT(O) space and let c
X be a geodesic line.

(1) The union of the images of all geodesic lines c' . X parallel to c is a
convex subspace of X.

(2) Letp be the restriction to X the complete convex
subspace c(R). Let = (c(O)). Then, is convex (in particular it is a
CAT(O) space) and is canonically isometric to the product x lit

Proof Given two points xi, x2 E we fix geodesic lines c1 and c2 parallel to c

such that xi lies in the image of ci and x2 lies in the image of c2. Because ci is
parallel to c2, we can apply the Flat Strip Theorem and deduce that the convex hull
of c1 (R) U c2(R) is isometric to a flat strip; in particular, it is the union of images of
geodesic lines parallel to c. This proves that is convex, hence it is a CAT(O) space.

In order to prove (2), we restrict our attention to those geodesic lines c' which
are parallel to c and for which p(c'(O)) = c(O). Every x E lies in the image of a
unique such geodesic line, which we denote

Letj : x be the bijection defined byj(x, t) Using the Flat Strip
Theorem, it is clear that this map is an isometry provided d(x, x') =
for all x, x' E Thus the following lemma completes the proof of the theorem. LI

2.15 Lemma. Consider three geodesic lines c1 : X, i = 1, 2, 3 in a metric
space X. Suppose that the union of each pair of these lines is isometric to the union
of two parallel lines in 1E2. Let p11 be the map that assigns to each point of c1(R) the
unique closest point on c1(R). Then P1,3 ° P3,2 ° p2.1 = pi i, the identity of ci (R).

Proof This proof was simplified by use of an idea suggested to us by Phil Bowers and
Kim Ruane (cf. [BoRu96b]). IfpI3 op3.2 op2 were not the identity on cj(R), then it
would be a translation by a non-zero real number, b say, 50p1.3 op32 op2,i(ci(t)) =
c1(t+b) for all t €R.

If we reparameterize c2 and c3 so that = c2(O) and p3 2(c2(O)) =
c3(O), then pi3(c3(O)) = c1(b). Let a1 = c2(R)), a2 = d(c2(R), c3(R)),
a3 = d(ci (R), c3(R)), and let a = + a2 + a3. By hypothesis, d(ci (t), c2(t + s)) =

+ d(c2(t), c3(t + s)) = + and d(c3(t), ci(t + s)) = + (s — b)2.

Therefore, for all s,

d(ci(O), ci(as + b))

< c2(ajs)) + d(c2(ajs), c3((ai + a2)s))

+ d(c3((ai + a2)s), ci((ai + a2 + a3)s +b))

+s2.

But since cl is a geodesic, d(ci(O), ci(as + b)) = las + bi, so we have (as + b)2 <
a2(1 + for all s R, which is impossible if b 0. LI
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In this chapter we examine how upper curvature bounds influence the behaviour of
angles, limits of sequences of spaces, and the cone and join constructions described
in (1.5). We then use the results concerning limits and cones to describe the space of
directions at a point in a CAT(K) space.

Angles in CAT(ic) Spaces

In CAT(K) spaces, angles exist in the following strong sense.

3.1 Proposition. Let X be a CAT(K) space and let c : [0, a] X and c'
[0, a'] X be two geodesic paths issuing fmm the same point c(O) = c'(O).

Then the K-comparison angle c'(?)) is a non-decreasing function of both

0, and the Alexandrov angle L(c, c') is equal to 4(0)(c(t), c'(?))

c'(t)). Hence, in the light of (1.2.9),

z(c, c') = lim 2 arcsin d(c(t), c'(t)).
2t

Proof Immediate from 1.7(3) and the fact that one can take comparison triangles in
instead of E2 in the definition (1.1.12) of the Alexandrov angle (see 1.2.9). fl

3.2 Notation for Angles. For the convenience of the reader we recall the following
notation. Let p, x, y be points of a metric space X such that p x, p y.

y) denotes the comparison angle in (see 1.2.15);

y) = 4°kx. y) denotes the comparison angle in 1E2 (see 1.1 .12);
if there are unique geodesic segments [p. xl and [p, y], then we write 4,(x, y)
to denote the (Alexandrov) angle between these segments (see 1.1.12).

Recall that a real-valued functionf on a topological space Y is said to be upper
semicontinuous iff(y) lim whenever —p y in Y.

3.3 Proposition. Let X be a CAT(K) space. For all points p. x, y E X with
max{d(p, x), d(p, y)} <DK,
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(1) the function (p. x, y) i-÷ 4(x, y) is upper semicontinuous, and
(2) forftxedp X, the function (x, y) i-÷ 4(x, y) is continuous.

Proof (1) Let (yr) and (p,1) be sequences of points converging to x, y and p
respectively Let c, c', c,, and be linear parameterizations [0, 1] X of the
geodesic segments [p,x], [p,y], and [pn,yn] respectively. Fort (0, 1], let
a(t) = c'(t)) and let a(t)

t a 4(x, y) = 1im1+o a(t) and
= And for fixed t we have a(t) as n 00.

Given s > 0, let T> 0 be such that a(t) s/2 <a for all t (0, T]. Then for n big
enough, a,,(T) a(T) + s/2, therefore <a(T) + s/2 <a + s Thus
lim sup <a as required.

(2) We keep the above notations, but we assume that p for all n. Let =
and y,, = By (1.7(4)), 0 and Y,i 0 as n 00. By the

triangle inequality for Alexandrov angles, a <a,, + Hence a,, = a.

3 4 Remark. With regard to part (1) of the preceding proposition, we note that in
general it will not be true that p i-÷ 4(x, y) is a continuous function. For example,
consider the CAT(O) space X obtained by endowing the subset ((Xi, 0)

I
x1 R} U

{(x1, x2) x1 > 0, X2 R} of the plane with the induced length metric from 1E2. Let
p = (0, 0) and = (—1/n, 0). Given anyx = (x1,x2)andy = Xsuch
that Xi > 0 and y' > 0, the angle which x and y subtend at p is equal to the usual
Euclidean angle, but 4, (x, y) = 0 for all n.

The following addendum to (3.3) will be useful later.

3.5 Proposition. Let X be a CAT(K) space, let c: [0, s] X be a geodesic segment
issuing from p = c(O) and let y be a point of X distinct from p (with s and d(p, y)
less than DK if K > 0). Then,

lim4,(c(s),y) = 4,(c(s),y).

Proof As s i—÷ 4")(c(s), y) is non-decreasing, y y) exists. By

(1.2.9), we have y = 4(c(s), y). This last expression is, by definition, the
strong upper angle between [p, y] and c, which we showed in (1.1.16) to be equal to
the Alexandrov angle. LI

3.6 Corollary (First Variation Formula). With the notation of the preceding pro-
position,

d(c(0), y) — d(c(s), y)
lim
s-.O 5

exists and is equal to cos 4,(c(s), y).

Proof This follows from the preceding proposition and the Euclidean law of cosines.
LI
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4-Point Limits of CAT(i'c) Spaces

We now turn our attention to limits of sequences of CAT(K) spaces. We want a
notion of convergence for metnc spaces that is strict enough to ensure that if a
complete geodesic space is a limit of CAT(K) spaces then it is itself a CAT(K) space.
On the other hand, we would like a notion of convergence that is weak enough to
allow a wide range of applications. We would also like a definition that allows us
to construct a "tangent space" at each point in a CAT(K) space X as a limit of the
sequence (X, where y) = n dtx, y) (see 3.19). Since the local structure of a
CAT(K) space can differ wildly from one point to another, this seems a lot to ask, but
in our discussion of ultralimits (1.5) we saw that a single sequence of spaces can have
a wide variety of "limits" if the notion of limit is defined in terms of approximations
to finite configurations of points. Since the CAT(K) inequality can be characterized
by a condition on 4-point configurations (1.10), we are led to the following definition
(cf [Ni95]).

3.7 Definition of 4-Point Limits. A metric space (X, d) is a 4-point limit of a
sequence of metnc spaces if, for every 4-tuple of points (Xi, x2, x3, x4)

from X and every s > 0, there exist infinitely many integers n such that there is
a 4-tuple (xi (n), x2(n), x3(n), x4(n)) from with Jd(x1, — < s for
I i,j s 4.

3.8 Remark. The unrestrictive nature of 4-point limits means that if (X, d) is a limit
of a sequence of metric spaces in most reasonable senses (for instance, a
Gromov-Hausdorff limit or an ultralimit) then it is a 4-point limit of the sequence.
A single sequence (X,1, d,1) may have a wide variety of 4-point limits. For example,
given a metric space Y, every subspace X C Y is a 4-point limit of the constant
sequence X,1 = Y

The final sentence of the preceding remark shows that if one wishes to deduce
that a4-point limit of a sequence of CAT(K) spaces is CAT(K) then one must impose
an hypothesis on the limit to ensure the existence of geodesics. The most satisfactory
way of doing this is to require that the space be complete and have approximate
midpoints (cf. 1.1 1).

3.9 Theorem (Limits of CAT(K) Spaces). Let (X, d) be a complete metric space.
Let be a sequence of spaces. Suppose that (X, d) is a 4-point limit
of the sequence (X,, d,) and that K = Suppose also that every pair of
points x, y X with d(x, y) < DK has approximate midpoints. Then X is a CAT(ic)
space.

Proof According to (1.12), it suffices to show that X is a CAT(K') space for every
K' > K, and according to (1 .11) for this it suffices to show that X satisfies the CAT(K')
4-point condition. Fix ic' > K For n sufficiently large we have K, <K', so by (1.12)
we may assume that all of the X,, are CAT(K') spaces.
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Let (xl,yl,x2,y2) be a4-tuple of points fromX with d(xi,yi,)+d(yi,x2)+
d(x2, Y2) + d(y2, x1) < 2DK'. According to the definition of a 4-point limit, there
is a sequence of integers n1 and 4-tuples (x1 (n3, yi (n3, x2(n1), y2(n,)) from
such that, forj, k E (0, 1), as n, oo we have and

Yk(n1)) d(y,, and d(x,, yk).
Each X,1 is a CAT(K') space, so the 4-tuple (xI(n3,yI(n,),x2(ni),y2(n3) has a

subembedding in We may assume that all of the
points ii(n1) are equal, so these 4-tuples are all contained in a compact ball in
Passing to a subsequence if necessary, we may then assume that the sequences
and converge, to and yk say Clearly (ii, is a subembedding of
(x1, x2, y2). Thus we have shown that X satisfies the CAT(K') 4-point condition,
and we conclude that X is CAT(K') for every K' > K.

We articulate some special cases of (3.9) that are of particular interest

3.10 Corollary. Fix K lit Let (X, d) be a complete metric space and let (X,1, d,) be
a sequence of CAT(K) spaces.

(1) If(X, d) is a (pointed or unpointed) Gmmov-Hausdorff limit of(X,,, d,1), then
(X, d) is a CAT(K) space.

(2) If(X, d) is an ultralimit dr), then (X, d) is a CAT(K) space.

Let (Y, S) be a CAT(K) space and let w be a non-principal ultrafilter on N. Let
= Y, letS,1 =n.S and let = '-S.

(3) 5,) is a CAT(O) space

(4) JfK = 0, then = 5) is a CAT(O) space.

(5) JfK <0, then is an R-tree.

Proof In each case the existence of approximate midpoints follows easily from the
hypothesis. For (3), (4) and (5) we recall that an ultralimit of geodesic spaces is always
complete and geodesic, and that if(Y, d) is CAT(K) then (Y, A.d) is CAT(A2K). fl

Metric Completion

For the most part, in this book we work with spaces that are assumed to be complete
and we only resort to the additional hypothesis of local compactness when it appears
unavoidable One advantage of this approach is that any CAT(K) space can be realized
as a dense, convex subset of a complete CAT(K) space, namely its metric completion.

3.11 Corollary. The metric completion (X', d') of a CAT(K) space (X, d) is a CAT(K)
space.

Pmof It is clear that (X', d') is a 4-point limit of the constant sequence (X,, d,1) =
(X, d) and that it has approximate midpoints. It is complete by hypothesis, so we can
apply (3.9). LI
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3.12 Remark We saw in (1.3.6) that the completion of a geodesic space need not be
geodesic, so our appeal to (3.9) in the above proof masked the fact that the curvature
hypothesis was being used to prove the existence of geodesics.

3.13 Exercises
(1) Give an example of a space X such that X and its completion X' are locally

compact geodesic metric spaces and X is non-positively curved but X' is not.

(2) Let U C be a bounded subset that is open and convex. Let c: [0, 1]
be an arc-length parameterization of the (rectifiable) boundary curve of U. Let P,, C

be the polygonal disc bounded by the concatenation of the geodesic segments
[c(il/n), c((i+ 1)1/n)], i = 0 n — 1. = Prove that M U is the
(4-point) limit of the sequence X, (where all of the spaces considered are endowed
with the induced path metric from Mt).

(3) Fix K <0, consider an open convex subset U C let U be its closure and
let Bd(U) = U '.. U. Prove the following facts and use (2) and 1.15(2) to deduce that

U has curvature < K. (Hint: One can reduce to the case where U is bounded
by restricting attention to a suitable ball in Mt.)
(i) Fix p U. Show that for all x U the geodesic segment [x, p1 intersects

Bd(U) in exactly one point, which we denote x'.
(ii) Show that x i-÷ x' is a continuous map and that Bd(U) is a 1-manifold.
(iii) Show that if U is bounded and c is a simple closed curve enclosing U, then

the length of Bd(U) (which is homeomorphic to a circle) is less than that of c.
(Hint: Consider the orthogonal projection onto U.)

(iv) Show that if U is unbounded then each component of its boundary is the image of
a map c : whose restriction to each compact subinterval is rectifiable.
In the case K = 0, prove that if Bd(U) is not connected then it consists of two
parallel lines.

Cones and Spherical Joins

The purpose of this paragraph is to prove the following important theorem of
Berestovskii [Ber83] (see also [AIeBN86]). This result provides a basic connec-
tion between CAT(1) spaces and CAT(K) spaces in general. The first evidence of
the importance of this link will be seen in the next paragraph, where we shall com-
bine (3.14) with results on limits in order to prove that the 'tangent space' at any
point of a CAT(K) space has a natural CAT(0) metric. We shall make further use
of Berestovskii's theorem in Chapter 5, when we discuss curvature in polyhedral
complexes.

The definition of a K-cone was given in Chapter 1.5

3.14 Theorem (Berestovskii). Let Y be a metric space. The K-cone X CK Y over

Y is a CAT(K) space if and only if Y is a CAT(1) space.
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Proof First we assume that Y is a CAT(1) space and prove that X is a CAT(K)
space. By 1.5.10, we know that any two points xI , x2 X with d(xi , <DK are
joined by a unique geodesic segment [Xi, x2]. We have to check that the CAT(K)
inequality is satisfied for any geodesic triangle with vertices x, = t1y,, i = 1, 2, 3
(assuming that its perimeter is less than 2DK). If one of the t, is zero, then the triangle
[x1 , x21 U [X2, X3] U [x3, x1], with its induced metric, is isometnc to its comparison
triangle in so we may assume each > 0.

Following Berestovskii [Be83], we consider three cases

(a)d(yi,y2)+d(y2,y3)+d(y3,yi) <2ir
1,2,3.

(c) One of the d(y1, Yj) is it.
Case (a). Let = C Y. We fix a comparison tri-

angle in = §2 with vertices The comparison map extends

naturally to a bijection from C to Let x = ty be a point on the
segment [x2, x3] and let be the comparison point for y in y3]. The triangle

X2, x3) C with = can be viewed as a K-comparison triangle for
x2, x3), with 1 = as the comparison point for x. As the CAT(1) inequality

holds for we have y) < d(31 , From this we see (using the formula 1.5.6
defining d(xi, x)) that d(xi, x) < dCxi , 1).

Case (b). Let i2) and , x3) be comparison triangles in for
x1 , x2) and x1, x3), respectively, chosen so that and x3 are on different

sides of [i1, 01 (where, as usual, 0 denotes the cone point of X) From the definition
of the metric on CK Y we have x2) = d(yi, x3) = d(yi, and

4(0, = (0, x2) and Lj (0, x3) = 4(0, x3). And by hypothesis we have
d(y1,y2)+d(yi,y3) > it, hence

x3) = 2it — i1) — i1) <d(,y2, = Z0(x2, X3)

and d(i2, x3) <d(x2, x3). Therefore, in a comparison triangle = 12, x3) in
for X2, X3), we have:

4(12,13) = O)+

= (x2, 0) + (0, x3)> (x2, x3)

Hence condition (1.7(4)) is satisfied.
Case (c). Suppose d(,y1, it. Then the geodesic segment [xi, x3] is the con-

catenation of [x1, 0] and [0, x3]. Let = and = x3, x2)
be comparison tnangles in for the triangles = XI, X2) and =

x3, x2), chosen so that the vertices Ii and X3 lie on different sides of the com-
mon segment [0, x2]. (In the case K > 0 such comparison triangles exist because the
perimeter of x2, x3) is assumed to be smaller than 2DK). The sum of the angles
at 0 in and is it. When we straighten the union
of these two triangles to get a comparison triangle for x2, x3), Alexandrov's
lemma (1.2.16) ensures that the angles do not decrease, and therefore
satisfies the CAT(K) inequality.
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It remains to be proved that if X is a CAT(K) space then Y is a CAT(l) space.
From 1.5.10(1) we know that pairs of points a distance less than apart in Y are
joined by a unique geodesic segment. Let be a triangle
in Y of perimeter less than 2ir and let =

y be its companson point. On the subcone C,,
we consider three points x1 = syj, i = 1, 2, 3, where s is positive (and small enough
to ensure that the perimeter of the triangle with vertices x1, x2, x3 is less than 2DK).
The cone is a subcone of c and the points = i = 1, 2, 3, are

the vertices of a companson triangle for the geodesic tnangle with vertices
X1,X2,X3. If x = ty [x2,x3], then its comparison point isi = By hypothesis
d(xi,x) < Hence d(y1,y) < by the definition of the metric on
CKY.

3.15 Corollary. The join Y1 * Y2 of two metric spaces Y1 and Y2 is a CAT(1) space
and only and Y2 are CAT( 1) spaces.

Proof This follows immediately from the theorem, because we saw in (1.5.15) that
C0(Y1 * Y2) is isometric to C0Y1 x C0Y2, and C0Y1 x C0Y2 is a CAT(O) space if and
only if C0Y1 and C0Y2 are CAT(O) spaces (1.16(2)). LI

3.16 Corollary. Let Y be a metric space. The following conditions are equivalent.

(1) CKY is a CAT(K) space.

(2) CK Y has curvature < K.

(3) A neighbourhood of the cone point 0 E CK Y is a CAT(K) space.

Pmof Trivially, (1) (2) (3). And (3) (1) is a consequence of the
preceding theorem.

3.17 Example. IfS is isometric to a circle of length a, then its cone CKS is a CAT(K)
space if and only if a > 2ir.

The Space of Directions

3.18 Definition (The Space of Directions and the Tangent Cone). Let X be a metric
space. Two non-trivial geodesics c and c' issuing from a point p X are said to define
the same direction at p if the Alexandrov angle between them is zero. The triangle
inequality for angles (1.1 .14) implies that [c c' if L(c, c') = 0] is an equivalence
relation on the set of non-trivial geodesics issuing from p. and z induces a metric
on the set of equivalence classes. The resulting metric space is called the space of
directions atp and is denoted (Note that two geodesics segments issuing from
p may have the same direction but intersect only at p.)

the Euclidean cone over is called the tangent cone at p.
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If X is a Riemannian manifold, then is isometnc to the unit sphere in the
tangent space of X atp and is the tangent space itself. If X is a polyhedral
complex, then is isometric to Lk(p, X), the geometric link ofp. In a Riemannian
manifold with non-empty boundary, if p is a point on the boundary then may
not be complete; for instance if X is a closed round ball in and p belongs to the
boundary of this ball, then is isometric to an open hemisphere in

The following theorem is due to I. C. Nikolaev [Ni95].

3.19 Theorem. Let K E R Ifa metric space X has curvature < K, then the completion
of the space of directions at each point p X is a CAT( 1) space, and the completion
of the tangent cone atp is a CAT(O) space.

Proof In the light of Berestovskii's Theorem (3.14), it suffices to prove that the
completion of is a CAT(O) space Following the outline of a proof by
B. Kleiner and B Leeb [K1L97], we shall prove this by showing that
satisfies the CAT(O) 4-point condition and has approximate midpoints (cf. (1.11) and
(3.9)). In the light of(3. 16), it suffices to establish these conditions in a neighbourhood
of the cone point.

Since depends only on a neighbourhood of p. we may assume that X is a
CAT(K) space of diameter less than DK/2, in which case there is a unique geodesic
segment [p, xl for every x X.

Letj : X be the map that sends p to the cone point 0 and sends each
x p to the point a distance d(x, p) from 0 that projects to the class of [p, x] in
And for each t [0, 1], let tx denote the point of X a distance td(p, x) from p on the
geodesic segment [p, x].

For each s (0, 1], define to be the following pseudometnc on

y) = d(sx, sy).

Note that satisfies the CAT(s2K) 4-point condition (and hence the CAT(0)
4-point condition if K 0). —

Fix x, y X distinct from p, and let = 4(sx, sy). By the Euclidean law of
cosines,

= 1x12 + 1y12 21x1.Iylcosy€,

where lxi = d(p, x) and = d(p, y). And from (3.1) we have 4,(x, y) = Ye•

By letting s 0 in the above formula, we see that do(x, y) := y)
exists for all x, y X, and thatj : (X, d0) is a distance-preserving map
of pseudometric spaces. Moreover, (X, d0) satisfies the CAT(0) 4-point condition,
because it satisfies the CAT(s2K) 4-point condition for every s. The image off
contains a neighbourhood of the cone point in so this neighbourhood also
satisfies the CAT(0) 4-point condition. In order to complete the proof of the theorem,
it only remains to establish the existence of approximate midpoints for pairs of points
j(x), j(y) C0S,, (X).

We first consider the case K <0. Let me be the midpoint of the segment [sx, sy].
We claim that when s is small, is an approximate midpoint for j(x),j(y). To



192 Chapter II 3 Angles, Limits, Cones and Joins

see this, note that by the convexity of the distance function on X, we have do(x, y) <
d(x, y) for any x, y E X, and hence

d(j(x), = = 1d0(sx,

<1d(sx, me) = —1—d(sx, sy) — y).
s 2s 2

Similarly d(j(y), y). And as d(j(x),j(y)) y), we are
done.

In the case K > 0, the argument is entirely similar except that one compensates for
the invalidity of the inequality do(x, y) < d(x, y) by noting that for any x, y E B(p, r)
and s > 0, we have y) <C(r)d(x, y), where C(r) —f ] as r 0. The existence
of this constant is a consequence of the following lemma and the CAT(K) inequality

D

3.20 Lemma. For each K > 0 there is a function C [0, DK) —÷ R such that
C(r) = 1 andforallp E and alix, y B(p, r)

d(sx, sC(r) d(x, y),

where ex denotes the point a distance s d(p, x)from p on the geodesic [p, x].

Proof Regard B(p, r) C as the ball of (Euclidean) radius r in R2 with the Rieman-
nian metric gK expressed in polar coordinates (p, 6) by ds2 dp2 + sin2
The associated metric on B(p, r) is denoted dK. Because ex is a]so the point a distance

x) from p along the Euclidean geodesic from p to x, we have

(1) sy) = s

And by the compactness of B(p, r), there is a constant C(r) > 1, which goes to I as
r —+ 0, such that the norm of any tangent vector v in the Euclidean metric is related
to the norm for by:

<

This gives a corresponding Lipschitz relation between the lengths of curves in the
two metrics, and hence

y) < dE2(x, y) < y)

for all x, y B(p, r). And this, together with (I), proves the lemma.

3.21 Remark. The above proof applies more generally to any Riemannian metric for
which one has normal coordinates.

3.22 Exercise. Let (X, d) be a space of curvature K. For each positive integer n,
define d(x, y) Prove that the tangent cone C0S(X) of X at p (and its
completion) is a 4-point limit of the sequence of metric spaces (X,
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Requiring a Riemannian manifold to have non-positive sectional curvature is a re-
striction on the infinitesimal geometry of the space. Much of the power and elegance
of the theory of such manifolds stems from the fact that one can use this infinitesimal
condition to make deductions about the global geometry and topology of the man-
ifold. The result which underpins this passage from the local to the globa] context
is a fundamental theorem that is due to Hadamard [H1898] in the case of surfaces
and to Cartan [Car28] in the case of arbitrary Riemannian manifolds of non-positive
curvature. The main purpose of this chapter is to show that the Cartan-Hadamard
Theorem can be generalized to the context of complete geodesic metric spaces We
shall see in subsequent chapters that this generalization is of fundamental importance
in the study of complete (1-connected) metric spaces of curvature < K, where K < 0.

Related results concerning non-simply connected spaces and CAT(K) spaces with
K > 0 will also be presented in this chapter. For a more complete treatment of the
case K > 0, see Bowditch [Bow95c].

Local-to-Global

The proof of the Cartan-Hadamard theorem that we shall give is very close to that
given by S. Alexander and R.L. Bishop [AB90]. The main argument is best viewed
in the general setting of spaces in which the metric is locally convex in the sense
of (1.] 8). We remind the reader that the metric on a space X is said to be convex
if X is a geodesic space and all geodesics c1[0, a1] X and c2 : [0, a2] —÷ X
with ci(0) = c2(0) satisfy the inequa]ity d(ci(tai), c2(ta2)) < td(ci(ai), c2(a2)) for

all t [0, 1] The metric on a space is said to be locally convex if every point has a
neighbourhood in which the induced metric is convex. If the metric on X is locally
convex then in particular X is locally contractible, and therefore has a universal
covering p : X —÷ X. In Chapter 1.3 we showed that there is a unique length metric
on X making p a local isometry this is called the induced length metric.

4.1 The Cartan-Hadamard Theorem. LeIX be a complete connected metric space.

(]) If the metric on X is locally convex, then the induced length metric on the
universal covering X is (globally) convex. (In particular there is a unique
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geodesic segment joining each pair of points in X and geodesic segments in
vary continuously with their endpoints.)

(2) If X is of curvature < K, where K <0, then X (with the induced length metric)
is a CAT(K) space.

This theorem is a variation on a result of M Gromov ([Gro87], p.1 19), a detailed
proof of which was given by W. Ballmann in the locally compact case [Ba90].
S. Alexander and R.L. Bishop [AB9O] proved (4.]) under the additional hypothesis
that X is a geodesic metric space.

4.2 Remarks
(1) The Cartan-Hadajnard Theorem is of considerable interest from a purely

topological viewpoint, because it provides a tool for showing that the universal
coverings of many compact metric spaces are contractible.

(2) We emphasize that in (4.1) we do not assume thatX is a geodesic space. Thus,
although there exist (non-simply connected) complete length spaces of non-positive
curvature which are not geodesic spaces,22 (4.1) shows that the universal covering
of such a space (with the induced length metric) is always a geodesic space

The second part of (4.1) is deduced from the first by a patchwork process that
will be described in the next section. In this section we shall prove 4.1(1). The main
work is contained in the following three lemmas.

In what follows, it is convenient to use the term "(local) geodesic" in place of
"linearly reparameterized (local) geodesic" and we shall do so freely throughout
this chapter

4.3 Lemma. LetX be a metric space Suppose that the metric on Xis locally complete
and locally convex. Let c . [0, 1] —÷ X be a local geodesic joining x toy Let s > 0
be small enough so that for every t [0, 1] the induced metric on the closed ball
B(c(t), is complete and convex. Then:

(1) For all E X with d(x, <s and d(y, there is exactly one 23 local
geodesic : [0, 1] X joining to such that t i—÷ d(c(t), E(t)) is a convex
function.

(2) Moreover,
1(E) < 1(c) + d(x, + d(y,

Proof We first prove that exists then it is unique. Note that does exist, then the
convexity of t i—÷ d(c(t), implies that d(c(t), < for every t [0, 1]. Let
c', c" [0, ] J X be local geodesics such that d(c(t), c'(t)) < s and d(c(t), c"(t)) <

22 For instance the graph with two vertices joined by countably many edges the n-th of which
has length I +

23 may be many local geodesics joining top, but only one has this property
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s for all t E [0, 1]. Because the metric on each of the balls B(c(t), 2s) is convex,
the function I i-+ d(c'(t), c"(t)) is locally convex, hence convex. In particular, if
c'(O) c"(O) and c'(]) c"(l), then c' = c".

Next we prove that (]) implies (2). To this end, we continue to consider c' and
c" with d(c(t), c'(t)) < s and d(c(t), c"(t)) < s for all t E [0, 1], and we now assume
that c'(O) = c"(O). By convexity, d(c'(t), c"(t)) < t d(c(']), c"(l)). Combining this
with the fact that 1(c'I[o(I) = t l(c') and 1(c"I[o,J) = d(c"(O), c"(t)) for small I > 0,
we have:

t 1(c") = d(c"(O), c"(t)) d(c'(O), c"(t))

< d(c'(O), c'(I)) + d(c'(t), c"(t))

<I 1(c') + td(c'(l), c"(l)),

and hence 1(c") 1(c') + d(c'(l), c"(I)).
Let be the unique local geodesic from toy that satisfies the conditions of the

lemma. By applying the argument of the preceding paragraph with c' = E' and c" E

we get 1(E) < 1(E') + d(y, And by applying the argument with c'(t) := c( I — t) and
c"(I) E'(] — t) we get IR') <1(c) + d(x, Thus 1(E) < 1(c) + d(x, + d(y,

It remains to prove the existence of Let A > 0 and consider the following
statement

a local geodesic E [a, b] X such that =
E(b) = and d(c(t), all t E [a, b].

If A < s/1(c) then P(A) is clearly true, so it suffices to prove:

Claim. If P(A) is true then P(3A/2) is also true.

Let a, b E [0, ]] be such that 0 < b — a < 3A/2. Divide [a, b} into three equal
parts with endpoints a <b1 <b. Let E X be such that d(c(a), <s and
d(c(b), < Proceeding recursively, we sha]l construct Cauchy sequences (pa)
and in the s-neighbourhoods of c(ai) and c(bi) respectively (figure 4 1) We
shall then construct a loca] geodesic from a to b, as required in P(3A/2), by taking
the union of a local geodesic joining to the limit of the sequence (q,,) and a local
geodesic joining the limit of the sequence to

To this end, we define P0 := c(ai) and qo := c(bi). Then, assuming that Pn—L
and have been defined, we use P(A) to construct local geodesics [a, b1] —÷

X and : [ai, b] X joining to and to with d(c(t), <
for t [a, b1] and d(c(t), < for t [at, b]. Let = and let

:= By convexity we have d(po,pi) < and d(qo, < s/2. More
generally, the convexity of the metric in the balls B(c(t), E) tells us that on [a, b1]
the function t is locally convex, hence convex, and therefore

< Similarly, d(q,, < It follows that
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a b

c(a) C p0= c(a3) c(b1) c(b)

Fig. 4.1 Constructing

Pn+ i) < and for all n E N, and therefore (pa) and
are Cauchy sequences in B(po, s) and B(q0, E) respectively.

Now, the functiont is convex and bounded by <
Thus is a Cauchy sequence in the complete ball B(c(t), for each

E [a, b1]. Similarly, is a Cauchy sequence inB(c'(t'), s) for each 1' E [ai, b].
It follows that the local geodesics c,, and converge uniformly to local geodesics
whose restrictions to the common interval [a1, b1 J coincide. The union of these two
local geodesics gives the local geodesic : [a, b] X required to complete the
proof of the Claim. D

An Exponential Map

In the case of ]—connected Riemannian manifolds of non-positive curvature, the
Cartan—Hadamard Theorem follows easily from the fact that the exponential map
from the tangent space at each point is a covering map. In the more genera] context
of (4. 1) one uses the following analogue of the exponential map.

4.4 Definition. Let X be a metric space and let xo E X. We define to be the
set of all (linearly reparameterized) local geodesics c: [0, 1] —÷ X issuing from x0,
together with the constant map io at x0. We equip with the metnc

d(c, c') sup{d(c(t), c'(t)) It E [0, 1]).

And we define exp X to be the map c c(l).

4.5 Lemma. Let X be a metric space and suppose that the metric on X is locally
complete and locally convex.

(1) is contractible (in particular it is simply connected).

(2) exp : —÷ X is a local isometry.

(3) There is a unique local geodesic joining to each point of
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Proof (]) There is a natural homotopy x [0, II from the identity map of
to the constant map at given by (c, s) where : [0, 1] X is the

path t c(st).

(2) Part (1) of Lemma 4.3 implies that for every c there exists s > 0 such
that the restriction of exp to the ball B(c, s) is an isometry onto B(c(1), s)

(3) Because exp is a local isometry, a continuous path in is a local geodesic
if and only if its image under exp is a local geodesic in X.!n particular, exp

is a bijection from the set of loca] geodesics [0, 1] issuing from to the
set of local geodesics c : [0, 1] X issuing from x0. Thus for each c E the path

:[0, ]] defined by s(s) = is the unique local geodesic joining i0 to c
0

4.6 Lemma. LetX be a metric space and let x0 X. If the metric on X is complete
and locally convex, then the metric on is complete.

Proof Let (ca) be a Cauchy sequence in Because X is complete, for every
t [0, 1] the Cauchy sequence (c,,(t)) converges in X, to c(t) say. Part (2) of Lemma
4.3 shows that the lengths are uniformly bounded, and hence the pointwise limit
t c(t) of the curves is a local geodesic. El

4.7 Corollary. LetX be a connected metric space and letx0 E X. If the metric on X
is complete and locally convex, then:

(1) exp : X is a universal covering map (in particular it is surjective);

(2) there is a unique local geodesic joining each pair of points in

Proof Assertion (1) follows immediately from (1.3.28), the preceding lemma, and
the fact that is simply connected (4.5(1)).

We claim that every path in X is homotopic (rel endpoints) to a unique local
geodesic. Since x0 E X is arbitrary, it suffices to consider continuous paths c
[0, 11 —÷ X issuing from x0. And since is a universa] covering, the set of paths
in X that are homotopic to c (rel endpoints) is in 1-] correspondence with the set of
paths in that issue from and have the same endpoint as the lifting of c that
issues from By (4.5(3)), the latter set of paths contains a unique local geodesic
This proves the claim.

Let p. q E Because is simply connected, there is only one homotopy
class of continuous paths joining p to q. The projection exp X sends this
class of paths bijectively onto a single homotopy class (rel endpoints) of paths in X,
and the argument of the preceding paragraph shows that the latter class contains a
unique loca] geodesic. D
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The Proof of Theorem 4.1(1)

Let X be as in 4.1(1) and fix x0 E X. We have shown that exp X is a
covering map. In (1.3.25) we showed that (under suitable hypotheses) the induced
length metric on a covering space is the only length metric that makes the covering
mapa loca] isometry. Thus (4.5(1)) implies that the length metric which X induces
on is the same as the length metric associated to the metric defined in (4 4).
According to (47(2)), there is a unique loca] geodesic joining each pair of points in

And (4.3(1)) shows that these local geodesics must vary continuously with their
endpoints. To complete the proof of Theorem 4.1(l), we apply the following lemma
with Y =

4.8 Lemma. Let Y be a simply connected length space whose metric is complete
and locally convex. Suppose that for every pair of points p, q E Y there is a unique
local geodesic cpq : [0, 1] —÷ Yjoining p to q. If these geodesics vary continuously
with their endpoints then:

(1) each cpq is a geodesic;

(2) the metric on Y is convex.

Proof (1) It suffices to show that for every rectifiable curve y : [0, ]] —÷ Y and
every t E [0, 1] we have < Because the metric on Y is locally
convex, for sufficiently small t the local geodesic is actually a geodesic.
Thus the subset of [0, 1] consisting of those t' for which the above inequality holds
for all t t' is non-empty. It is clear that this subset is closed. We claim that it is also
open, and hence is the whole of[0, 1]. Indeed if t0 is such that <
for all t < to, then (4.3(2)) tells us that when s is sufficiently small,

< + to

+ l(yIitoto+ej) =

as required.

(2) We have shown that Y is a complete uniquely geodesic space in which
geodesics vary continuously with their endpoints. In order to prove that the metric on
Y is convex, it suffices to show that d(cpq0 (1/2), cpq (1/2)) (1 /2)d(qo, for each
pair of geodesics cpq0. cpq : [0, 1] Y. Suppose that qo and are joined by the
geodesic .c Because the metric on Y is locally convex, we know from (4.3(]))
that when s and s' are sufficiently close q,(I/2)) (1/2)d(qç, qs).
Partition [0, 1] finely enough 0 so < < s,1 = 1 so that the above inequality
holds with s') = {s1, for i = 0 n — 1. By adding the resulting inequali-
ties we get d(cp,q0(l/2), cpq(l/2)) (1/2)d(qo, El
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Alexandrov's Patchwork

4.9 Proposition (Alexandrov's Patchwork). Let X be a metric space of curvature
K and suppose that there is a unique geodesic joining each pair of points that

are a distance less than DK apart. If these geodesics vary continuously with their
endpoints, then X is a CAT(K) space.

This proposition is an immediate consequence of the following two lemmas and
the characterization of CAT(K) space in terms of angles (1.7(4)). The idea of the
proof is portrayed in figure 4.2.

4.10 Gluing Lemma for Triangles. Fix K lit Let X be a metric space in which
every pair of points a distance less than DK apart can be joined by a geodesic. Let

= qi], [p, [qi, be a geodesic triangle in X that has perimeter less
than 2DK. Suppose that the vertices of are distinct. Consider r with
r and r Let {p, r] be a geodesic segment joining p to r.

Let be a comparison triangle in = q,], {p, r], [q,, r]). If for
= 1, 2, the vertex angles of are no smaller than the corresponding angles of Li,,

then the same is true for the angles of any comparison triangle for in

Proof Let i) and q2, be comparison triangles in for and
glued a]ong fl so that and do not lie on the same side of the line through

and The sum of the angles of and at r is at least so the sum of the
comparison angles is as well. Therefore we can apply Alexandrov's Lemma (1 2 16)

D

4.11 Lemma. FixK R. LetXbeametricspaceofcurvature < K Letq: [0, 1] X
be a linearly reparameterized geodesic joining two distinct points qo = q(0) and
qi = q(]) and letp be a point of X which is not in the image of q. Assume that for
each s [0, 1] there is a linearly reparameterized geodesic c5 : [0, ] J X joining
p to q(s), and assume that the function s is continuous. Then the angles atp, qo
and in the geodesic triangle with sides co([0, 1]), ci([0, ]]) and q([O, 1])) are
no greater than the corresponding angles in any comparison triangle ç (If
K > 0, assume that the perimeter of is smaller than 2DK

Proof By hypothesis, every point of X has a neighbourhood which (with the induced
metric) is a CAT(K) space, and the map c: [0, ] I x [0, ]] X given by (s, t)
cç(t) is continuous. Hence there exist partitions 0 = < si < < = 1 and
0= to < ti < < = I CXof
radius < which is aCAT(K) space and which contains c([s,_i, s,] x ti])

Consider the sequence of adjoining triangles where is the union
of the geodesic segments c5_ ([0, ]]), ([0, 1]) and q([s,_i, s,]). Repeated use of the
Gluing Lemma (4 10) reduces the present proposition to the assertion that the angles
at the vertices of each are no greater than the conesponding angles in comparison
triangles C In order to prove this assertion, we subdivide each and make
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further use of the Gluing Lemma (see figure 4.2). Specifically, for each i we consider
the sequence of 2k — I adjoining geodesic triangles where

is the geodesic triangle in with verticesp, , the geodesic
triangle in with vertices and the geodesic triangle
in with vertices (ti), Since is a CAT(K) space, each vertex
angle in these sma]l triangles is no greater than the corresponding angle in a com-
parison triangle in By making repeated use of the gluing lemma for triangles,
we see that the vertex angles of also satisfy the desired inequality. D

Fig. 4.2 Alexandrov's Patchwork

4.12 Corollary. Fix K E R. LetX be a metric space of curvature <K. Suppose that
all closed balls in X of radius less than DK /2 are compact. Then X is a CAT(K) space
if and only if eve#y pair of points a distance <DK apart can be joined by a unique
geodesic segment.

Proof Immediate from (4 9) and (1.3.13).

Local Isometries and irplnjectivity

We point out some topological consequences of the Cartan-Hadasnard Theorem.

El

4.13 Theorem. Let X be a complete, non-positively curved metric space, and fix a
basepoint x0 E X.

p

q1

q0
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(1) Every homotopy class y E 7r1(X, xo) contains a unique local geodesic
[0, 1] —÷ X. (The uniqueness implies that a non-constant locally geodesic ioop
cannot be homotopic to a constant loop.)

(2) Every non-trivial element of (X, x0) has infinite ordei

Pro of Consider the universal covering p X —÷ X endowed with the induced length
metric Fix X with p(i0) = x0. The fundamental group 7r1(X, xo) acts on X by
deck transformations; the action is free and by isometries. Each loop c: 1] —÷ X
in the homotopy class y 7r1(X, x0) lifts uniquely to a path : [0, 1] X such that

= and = yi°. Because p is a local isometry, will be a local geodesic
if and only if c is a local geodesic.

The Cartan-Hadajnard Theorem tells us that X is a CAT(0) space. Hence there is
a unique local geodesic [0, 1] —* Xjoining to This proves (1).

Because X is a CAT(0) space, any isometry of finite order will have a fixed point
(2.8) Thus (2) follows from the fact that the action of 7r1(X, xo) is free. El

Recall that a mapf : Y X between metric spaces is said to be locally an
isometric embedding if for every y E Y there is an s > 0 such that the restriction of
f to B(y, s) is an isometry onto its image.

4.14 Proposition. Let X and Y be complete connected metric spaces Suppose that
X is non-positively curved and that Y is locally a length space. If there is a map
f. V —÷ X that is locally an isometric embedding, then Y is non-positively curved
and.

(1) Foreveryy0 E Y, the : 7r1(Y,yo) 7r1(X,f(yo))inducedby
f is injective.

(2) Consider the universal coveringsX and Y with their induced length metrics.
Every continuous liflingf : Y —f X off is an isometric embedding.

Proof First we prove that Y is non-positively curved. Each pointy Y has a neigh-
bourhood B(y, s) that is isometric to its image in X. Shrinking s if necessary, we
may assume that the image of B(y, s) underf is contained in a neighbourhood off(y)
that is CAT(0) in the induced metnc. Fix p, q B(y, Because Y is loca]ly a
length space, there is a sequence of paths joining p to q in B(y, 3s/4) whose lengths
converge to d(p, q). Parameterize these paths by arc length. It follows from (1.4(5))
that the points halfway along the images of these paths form a Cauchy sequence in
the complete space f(B(y, The limitf(m) of this sequence is a midpoint for
f(p) andf(q) inf(B(y, 3s/4)). Because we are in a CAT(0) neighbourhood of f(y),
the pointf(m) must lie in the open ba]l of radius s/3 aboutf(y). Thus we obtain
a midpoint m between p and q in B(y, s/3). Since Y is complete, we deduce that
B(y, s/3) is a geodesic space. And since geodesic triangles in B(y, s/3) are isometric
to geodesic triangles in a CAT(0) neighbourhood off(y), it follows that B(y, s/3) is
a CAT(0) space. Thus V is non-positively curved.

Y is complete and non-positively curved, so by (4.13) every non-trivial element
y E 7r1(Y, yo) is represented by a local geodesic : [0, 1] —÷ Y. The image of cy
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underf is again a local geodesic (of the same length), so it is not homotopic to a
constant map (4.13) and 1.

Letu : X —÷ Xandv : Y —÷ Ybetheuniversalcoveringmaps.Letf: Y —÷ Xbe
a lifting off. By the Cartan-Hadamard Theorem, both X and Y are CAT(O) spaces,
so the distance between each pair of points is the length of the unique local geodesic
joining them. But if c is a local geodesic in Y, then f o c is a local geodesic of the
same length in X, becausef o c is a lift of f o v o c, and u, v andf all carry local
geodesics to local geodesics of the same length

Injectivity Radius and

We now turn our attention to the study of spaces which contain closed geodesics
(isometrically embedded circles).

4.15 Definition. Recall (1 7.53) that the injectivily radius, injrad(X), of a geodesic
space X is the supremum of the non-negative numbers r such that if d(x, y) < r then
there is a unique geodesic segment joining x to yin X. If X contains any isometrically
embedded circles then the injectivity radius of X is obviously bounded above by one
half of the infimum of the lengths of such circles (An isometrically embedded circle
of length £ is, by definition, the image of an isometric embedding —÷ X, where

= 2ir/L) If X contains such circles then Sys(X), the systole of X, is defined to
be the inIimum of their lengths.

We urge the reader to consider the many phenomena which may cause X not to
contain any isometrically embedded circles

The following result, which appears in [Gro87], complements Proposition 4 9.
We follow a proof of R Charney and M. Davis [CD93]. Recall that a metric space
X is said to be cocompact if there exists a compact subset K c X such that X

y E Isom(X)}.

4.16 Proposition. A cocompact, proper geodesic space X of curvature K fails
to be a CAT(K) space if and only if it contains an isometrically embedded circle of
length < 2DK. if it contains such a circle then it contains a circle of length
Sys(X) = 2 injrad(X).

Proof The sufficiency of the condition in the first assertion is clear; we shall prove its
necessity. Let r = injrad(X). As X is assumed to be cocompact and locally CAT(K)
we have r > 0. Suppose that X is not a CAT(K) space. Then, by (4 12), we have
r < DK.

We shall use the term (non-degenerate) digon to mean the union of two distinct
geodesic segments [x, y] and [x, yJ', called its sides, joining two points x andy in X.
We shall refer to x and y as the vertices of the digon. The first step of the proof is
to show that there exists a digon of perimeter 2r and the second step is to show that
such a digon is an isometrically embedded circle.
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By (1.3.13), geodesics of length < r emanating from a fixed point in X vary
continuously with their terminal endpoint. Thus we may apply (4.11) to any geodesic
triangle in X whose perimeter is less than 2r and conclude that the angles at the
vertices of are no bigger than the corresponding angles in a companson triangle
in

By the definition of r, there is a sequence of digons in X whose perimeter tends
to 2r. Because X is proper and cocompact, we can translate these digons into a
compact subspace and extract a subsequence D(n) converging to the union of two
geodesic segments [x, and [x, y]' of length r; we have to show that these two
segments are distinct. If this were not the case, then for n big enough the digon
D(n) U would be very narrow, consequently if m is the midpoint
of and m' is the midpoint of the geodesic triangles and

with vertices m, m' and m, m', respectively, would each have perimeter less
than 2r. The, by (4.11), the vertex angles in and would be less than the
corresponding angles in their comparison tnangles in But the comparison tnangle
for = m] U [m, U is degenerate, so the angles at the vertices
corresponding to and are zero. Alexandrov's lemma shows that these angles are
not smaller than the angles at the vertices corresponding to and in comparison
triangles for and respectively. Therefore these latter companson tnangles
are also degenerate, so [m, xj = [m', and [m, = [m', Yn]' contradicting the
hypothesis that [x, is a (non-
degenerate) digon.

We say that a point z E [x, y] is opposite the point z' E [x, y]' if d(z, x) + d(z', x) =
r. We claim that d(z, z') = r. If not, then the geodesic thangles with vertices z, z', x
and z, z', y, respectively, would be of perimeter smaller than 2r and we could apply
the same argument as above to conclude that the geodesic segments [x, y] and [x, y]'
were the same. It follows that D is an isometric image of a circle.

We saw in Chapter 1.7 that in many respects MK-polyhedral complexes with only
finitely many isometry types of cells behave like cocompact spaces. Here is another
important instance of this phenomenon.

4.17 Proposition. Let K be an Mr-polyhedral complex with Shapes(K) finite and
suppose that K has curvature < ic. JfK is not a CAT(K) space, then K contains an
isometrically embedded circle of length Sys(K) = 2 injrad(K). JfK > 0 and K is not
a CAT(K) space then Sys(K)

Pmof Since K is locally CAT(K) it is afortiori locally geodesic. So by (1.7.55), we
have r = injrad(K) > 0. In order to apply the arguments of (4.16) it is enough to
establish the existence of a non-degenerate digon whose sides have length r. In the
present setting, as on previous occasions, we shall use the hypothesis that Shapes(K)
is finite to reduce to consideration of the compact case.
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First we choose a sequence of (non-degenerate) digons D(n) with endpoints
and y,, such that approaches r. Since the lengths of the sides of the digons
D(n) are uniformly bounded, (1.7.30) yields an integer N such that each D(n) is
contained in a subcomplex of K that can be expressed as the union of at most N
closed cells Because Shapes(K) is finite, there are only finitely many possibilities
for up to isometric isomorphism, so by passing to a further subsequence we may
assume that all of the are isometrically isomorphic In other words there exists
a finite MK-polyhedral complex L with Shapes(L) c Shapes(K) such that for every
positive integer n there is a biject.ive map : L —÷ that sends cells to cells and
restricts to an isometry on the individual cells equipped with their local methcs.

Each of the maps is a length-preserving map of geodesic spaces, so =
and 4ç'D(n) C L is a geodesic digon with sides of length

Since L is compact, we may pass to a subsequence and assume that these
digons converge in L to a geodesic digon D with endpoints and The argument
given in (4.16) shows that the width of the digons D(n) is bounded away from zero,
so since 4,, : —÷ D(n) does not increase distances, D is non-degenerate.
However, we are not quite done at this stage, because in general the sides of
will not be geodesics in K: we have < — r for all n, but we
do not get equality in general. However we do know that

— r < + + — r

— r.

which tends to zero as n —÷ 00. —

Let I S and E S' be points in the model cells S. S' E Shapes(L) c Shapes(K)

such that fs(i) = and fB(1) = 5' for some closed cells S i and S' 5' in L. By
construction, for all n we have XK and E where XK and are as
in (1.7.59). We proved in (1.7.59) that the set of numbers {d(x, y) x E XK, y E YK}
is discrete. Hence for all sufficiently large n we have = r, and
is a non-degenerate geodesic digon with sides of length r.



Chapter 11.5 M,-Polyhedral Complexes
of Bounded Curvature

In this chapter we return to the study of metric polyhedral complexes, which we
introduced in Chapter 1.7. Our focus now is on complexes whose curvature is bounded
from above. The first important point to be made is that in this context one can
reformulate the CAT(K) condition in a number of useful ways. In particular, Gromov's
link condition (5.1) enables one to reduce the question of whether or not a complex
supports a metric of curvature < K to a question about the geometry of the links in the
complex. This opens the way to arguments that proceed by induction on dimension,
as we saw in (1 7). If the cells of the complex are sufficiently regular then the link
condition can be interpreted as a purely combinatonal condition; in particular this is
the case for cubical complexes and many 2-dimensional complexes.

This chapter is organized as follows We begin by establishing the equivalence of
vanous characterizations of what it means for a polyhedral space to have curvature
bounded above We then address the question of which complexes have the property
that their local geodesics can be prolonged indefinitely, and we describe some general
results of a topological nature. There then follows a discussion of flag complexes and
all-right spherical complexes. Two important results arising from this discussion are:
there is no topological obstruction to the existence of CAT(1) metrics on simplicial
complexes (5.19), and there is a purely combinatorial criterion for deciding whether
or not a cubical complex is non-positively curved (5.20). In the fourth section we
describe some constructions of cubical complexes and outline Davis's construction of
asphencal manifolds that are not covered by Euclidean space. The remaining sections
deal with two-dimensional complexes Two-dimensional complexes provide a rich
source of examples of non-positively curved spaces, and their usefulness is enhanced
by the close link between geometry and group theory in dimension two (cf. 5 45).
Two-dimensional complexes also enjoy some important properties which are not
shared by their higher dimensional cousins (see 5.27).

Further explicit examples of non-positively curved polyhedral complexes will be
described in Chapters II. 12 and III.r, and the techniques described in Chapters 11.11,
11.12 and III.C provide means of constructing many other examples.
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Characterizations of Curvature < ,c

We begin by describing critena for recognizing when an MK-polyhedral complex is
a CAT(K) space In the course of our discussion we shall need to call on a number of
facts from Chapter 1.7 concerning MK-polyhedral complexes with only finitely many
isometry types of cells. Most of these facts can be proved much more easily in the
special case where K is locally compact, as the interested reader can verify.

The following criterion for an MK-complex to have curvature < K is due to
M. Gromov [Gro87, p.120]. A proof in the locally compact case was given by
Ballmann [Ba90] and in the general case by Bridson [Bri9l]

5.1 Definition. An complex satisfies the link condition if for every
vertex V E K the link complex Lk(v, K) is a CAT( 1) space.

5.2 Theorem. An MK -polyhedral complex K, with Shapes(K) finite, has curvature
<K if and only if it satisfies the link condition.

Proof Let v be a vertex of K. According to (1.7.39), there exists > 0 such
that B(v, is convex and isometnc to the neighbourhood of the cone point
in CK(Lk(v, K)). Thus, in the light of Berestovskii's theorem (3.14), we see that K
satisfies the link condition if and only if every vertex has a neighbourhood that is a
CAT(K) space. To complete the proof of the theorem one simply notes that, given
any x E K, if v is a vertex of supp(x) and > 0 is sufficiently small, then B(x, is

isometric to B(x', for some x' E B(v, (see 1.7.56). 0

5.3 Remark In the above theorem one can weaken the hypotheses and require only
that the number defined in (1.7.39) is positive for every x E K.

5.4 Theorem. Let K be an complex with Shapes(K)finite JfK <0
then the following conditions are equivalent:

(1) K is a CAT(K) space;

(2) K is uniquely geodesic;

(3) K satisfies the link condition and contains no isometrically embedded circles;

(4) K is simply connected and satisfies the link condition.

JfK > 0 then the following conditions are equivalent.

(5) K is a CAT(K) space;

(6) K is geodesic;

(7) K satisfies the link condition and contains no isometrically embedded circles
of length less than 2ir/.F.

Proof The implications (1) (2) and (5) (6) are clear. (4.17) together
with (5.2) shows that (3) is equivalent to (1) and that (5) is equivalent to (7). As a
consequence (1.7.1), the Cartan-Hadamard Theorem and (5.2), we have (4) (3).
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We argue by induction on the dimension of K in order to see that (2) (4)

and (6) (7). For complexes of dimension 1 these implications are clear. If K
satisfies (2) or (6) then in particular its injectivity radius is positive, so by (1.7.55)
Lk(x, K) is uniquely it-geodesic for every x E K. Hence, by induction, Lk(x, K) is
a CAT(1) space. (5.2) completes the proof of (6) (7). To complete the proof of
(2) (4), we need the additional fact that if (2) holds then by (1 7.58) geodesics
vary continuously with their endpoints in K, so K is contractible (hence simply
connected) Indeed, for fixed x0 E K, we obtain a contraction K x [0, 1] —÷ K by
sending (x, t) to the point a distance t d(xo, x) from x along the unique geodesic from
xtox0. 0

The same arguments are enough to prove a local version of the above theorem:

5.5 Theorem. Let K be an MK -polyhedral complex with Shapes(K) finite. The fol-
lowing conditions are equivalent:

(1) Khascurvature <K;
(2) K satisfies the link condition;

(3) K is locally uniquely geodesic;

(4) K has positive infectivity radius.

The 2-Dimensional Case.
Let K be a 2-dimensional MK-complex. The link of a vertex v E K is a metric

graph whose vertices correspond to 1-cells incident at v and whose edges correspond
to corners of the 2-cells S incident at v; the length of an edge is the vertex angle at
the corresponding corner of the model simplex S E Shapes(K). A metric graph is a
CAT(K) space if and only if every locally injective loop in the graph has length at
least therefore:

5.6 Lemma. A 2-dimensional MK—complex K satisfies the link condition and only
each vertex v E K every infective loop in Lk(v, K) has length at least 2ir.

Extending Geodesics

Many important results concerning the global geometry of simply connected Rie-
mannian manifolds X of non-positive curvature rely in an essential way upon the
fact that if the manifold is complete then one can extend any geodesic path in X to a
complete geodesic line. When seeking to generalize such results to CAT(0) spaces,
it is important to understand which spaces share this extension property. We shall
address this question in the case of polyhedral complexes and topological manifolds.

It is useful to phrase the extension property locally.
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5.7 Definition. A geodesic metric space X is said to have the geodesic extension
property if for every local geodesic c : [a, bl —÷ X, with a b, there exists > 0

and a local geodesic c' [a, b + —+ X such that c'IIa b] c.

5.8 Lemma. Let X be a complete geodesic metric space.

(1) X has the geodesic extension property if and only if every local geodesic c
[a, b] —+ X with a b can be extended indefinitely, i.e. there exists a local
isometry —+ X such that drab] = c.

(2) if X is a CAT(0) space, then X has the geodesic extension property if and only
if every non—constant geodesic can be extended to a geodesic line R —÷ X

Proof For (1), one simply notes that if X has the geodesic extension property then, for
everylocalgeodesicc: [a, b] —÷ X,thesetofnumberst> Osuchthatc [a, b] —+ X
can be extended to a local isometry [a — t, b + t] —÷ X is open; the completeness of
X assures that it is also closed, and hence the whole of [0, 00).

Assertion (2) is an immediate consequence of the fact that in a CAT(0) space
every local geodesic is in fact a geodesic (1.4(2)).

In the case of polyhedral complexes, the geodesic extension property can be
rephrased in terms of the combinatorial structure of the complex.

5.9 Definition. Let K be an MK—polyhedral complex. A closed n-cell B in K is said
to be a free face if it is contained in the boundary of exactly one cell B' of higher
dimension and the intersection of the interior of B' with some small neighbourhood
of an interior point of B is connected. (The second clause in the preceding sentence
is necessary in order to avoid suggesting, for example, that if both ends of a 1-cell
are attached to a single vertex in a graph then that vertex is a free face.)

5.10 Proposition. Let K be an complex of curvature < K with
Shapes(K) finite. K has the geodesic extension property and only it has no
free faces.

Proof By (1.7 39), a small neighbourhood of each point x E K is isometric to the
K-cone on Lk(x, K). It follows from (1.5.7) that in any cone CK Y, a local geodesic
from ty incident at the cone point 0 can be extended past 0 if and only if there exists
y' E Y with d(y, y') > it. Therefore K has the geodesic extension property if and
only if for every x E K and every u E Lk(x, K) there exists u' E Lk(x, K) with
d(u, u') it. We call u' an antipode for u.

Suppose that K has a free face of dimension n. If x is an interior point of this face,
then Lk(x, K) is isometric to a closed hemisphere in In particular, some points of
Lk(x, K) do not have antipodes, and K does not have the geodesic extension property.

Suppose now that K does not have any free faces. We shall prove that every point
in every link Lk(x, K) has an antipode. We argue by induction on the dimension
of K; the 1-dimensional case is trivial. Given x E K and u E Lk(x, K), we choose
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U' E Lk(x, K) with u' u (note u must exist, for otherwise x would be a free face of
dimension 0). If u' is in a different connected component to u then they are an infinite
distance (greater than it!) apart and we are done. If not then we connect u to u' by a
geodesic in Lk(x, K). Since K has no free faces, neither does Lk(x, K), so using our
inductive hypothesis we may extend the geodesic [u, u'] Indeed, because Lk(x, K)
is complete (7 19), we may extend [u, u'] to a local geodesic c R —÷ Lk(x, K) with
c(0) = u.

By hypothesis, Lk(x, K) is a CAT(1) space. In a CAT(1) space any local geodesic
of length it is actually a geodesic (1.10), thus c(ir) is the desired antipodal point
foru.

5.11 Exercise. Give an example to show that the curvature hypothesis in the preceding
proposition is necessary.

Here is another important class of spaces with the geodesic extension property.

5.12 Proposition. If a complete metric space X has curvature < K and is homeomor-
phic to afinite dimensional manifold, then it has the geodesic extension property.24

Proof Let n be the dimension of X. Suppose that a certain local geodesic c cannot
be extended past x E X We fix a small CAT(K) neighbourhood B of x and a point
y E B in the image of c. Because the unique geodesic from y to x cannot be extended
locally, no geodesic to y from any point of B passes through x. Thus the geodesic
retraction of B to y restricts to give a retraction of B N {x} within itself. It follows
that the local homology group B N {x})is trivial. On the other hand, we may
choose a homeomorphism from the n-dimensional disc LY' onto a neighbourhood V
ofx in B, and by excision, B N {x}) = H,I(V, V N {x}) = LY' N {0}) = Z
(see [5pa66]).

At this point, when we have temporarily found the need to use some non-trivial
topology, we note a result that relates complexes to more general spaces of bounded

5.13 Proposition. Let X be a compact metric space. if there exists K E JR such that
X has curvature < K, then X has the homotopy type of a finite simplicial complex
(in fact, X is a compact ANR.)

Proof Every point of X has a neighbourhood which is CAT(K) in the induced metric.
Since X is compact, it follows that there exists E (0, such that B(x,
is CAT(K) for every x E X. According to (1.4), geodesics in B(x, are unique
and vary continuously with their endpoints, and B(x, is convex. Lemma I.7A.19

24Experts will notice that all that is actually required in the proof of (5 12) is that X is a
homology manifold

25 equivariant version of this result is proved in a recent prepnnt of Pedro Ontaneda entitled
"Cocompact CAT(0) spaces are almost extendible"
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implies that X is homotopy equivalent to the nerve of any covering of X by balls of
radius

The parenthetical assertion in the statement of the proposition is a special case
of [Hu(S), 111.4.1]. (A deep theorem of Jim West [West77] states that every compact
ANR has the homotopy type of a finite simplicial complex, so this parenthetical
assertion is stronger than the main assertion of the proposition.) D

5.14 Remark The preceding theorem does not say that every compact non-positively
curved space is homotopy equivalent to a compact non-positively curved simplicial
complex. In fact this is not true even for compact Riemannian manifolds of non-
positive curvature, as was recently shown by M. Davis, B. Okun and F. Zheng, and
(independently) by B. Leeb.

Flag Complexes

In the introduction to this chapter we alluded to the usefulness of having a purely
combinatorial criterion for checking whether complexes satisfy the link condition
and we indicated that such a criterion exists for cubed complexes. The purpose of
this section is to describe this condition.

5.15 Definition. Let L be an abstract simplicial complex and let V be its set of vertices.
L is called aflag complex (alternatively, "L satisfies the no triangles condition")
if every finite subset of V that is pairwise joined by edges spans a simplex. In other
words, if is a simplex of L for all i,j {1, .. , n}, then v,1} is a

simplex of L.

5.16 Remarks
(1) If L is a flag complex, then so is the link of each vertex in L.

(2) The girth of a simplicial graph is the least number of edges in any reduced
circuit in the graph A simplicial graph L is a flag complex if and only if its girth is

at least 4.

(3) The barycenthc subdivision of every simplicial complex is a flag complex.

(4) (No triangles condition). Let L be a simplicial complex. Then L is a flag

complex if and only if the statement is false for all n > 0, where the statement
is defined inductively as follows: is the statement that there exist vertices

1)0, E L such that vj) is a simplex for all i,j E {0, 1,2) but {VO, vi, is

not a simplex of L; and is the statement that there exists a vertex E L such
that L)).

(5) The simplicial join of two flag complexes is again a flag complex.

5.17 Definition. An all-right spherical complex is an complex each
of whose edges has length ir/2.
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The link of every vertex in an all-right spherical complex is itself an all-right
spherical complex.

The following theorem is due to M Gromov [Gro87].

5.18 Theorem. Let L be afinite dimensional all-right spherical complex. L is CAT( 1)
if and only if it is aflag complex

Proof First we observe that if there exist vertices v1, E L that are pairwise
joined by edges but do not span a simplex, then [Vo, v1]U[v1, v2]U[v2, is a locally
geodesic loop in L. To see this, note that in Lk(vi, L), which is an all-right complex,
the vertices corresponding to the edges [vo, [vi. v21 are notjoined by an edge,
so the distance between them is at least it and therefore [vo, U [vi, 1)21 U [V2,
is geodesic in a neighbourhood of (by 5.4).

If L is CAT(1), then so is the link of every vertex v E L, the link of every vertex
1/ E Lk(v, L), the link of every vertex v" E Lk(i/, Lk(v, L)), etc.. In particular, none
of these successive links can contain a geodesic circle of length less than 2ir. Each
of these links is an spherical complex. Thus, applying the argument of the
preceding paragraph to these successive links, we deduce that the statement
defined in (5.16(4)) is false for all n > 0, and therefore L is a flag complex.

It remains to prove that if L is a flag complex then it is CAT(1). Proceeding by
induction on the dimension of L, we may assume that Lk(v, L) is CAT(1) for every
vertex v E L, and therefore it suffices (by 5.4(7)) to prove that any curve £ C L
which is isomethc to a circle must have length at least 2ir.

We consider the geometry of geodesic circles in arbitrary all-right complexes K.
We claim that if v is a vertex of K and £ is a geodesic circle, then each connected
component £' fl B(v, ir/2) must have length it. To see this, consider the devel-
opment of £' in (Fig. 1.7.1): this is a local geodesic (with the same length as
in an open hemisphere of S2 (the ball of radius ir/2 about the image of v). Since the
endpoints of this local geodesic lie on the boundary of the hemisphere, it must have
length it.

Now suppose that the length is less than 2ir. In this case £ cannot contain two
disjoint arcs of length it and therefore cannot meet two disjoint balls of the form
B(v, Thus the set of vertices v E K such that £ meets B(v, ir/2) is pairwise
joined by edges in K. If K were a flag complex, this set of vertices would have to
span a simplex S and £ would be contained in 5, which is clearly impossible. Thus we
conclude that all-right flag complexes do not contain isometrically embedded circles
of length less than 2ir. 0

The following corollary was proved previously by Berestovskii [Ber861. It shows
that there is no topological obstruction to the existence of a CAT(1) metric on a finite
dimensional complex.

5.19 Corollary. The barycentric subdivision of every finite dimensional simplicial
complex K supports a piecewise spherical CAT( 1) metric.
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Proof Consider the barycentric subdivision K' of the given complex this is a flag
complex. The canonical all-right spherical metric on K' makes it CAT(1). [I]

We refer the reader to (1.7.40) for an explanation of the terminology "cubed"
versus "cubical". The following theorem is due to M. Gromov {Gro87].

5.20 Theorem. A finite dimensional cubed complex has non-positive curvature if
and only ([the link of each of its vertices is aflag complex.

Proof According to (5.2), a cubed complex has non-positive curvature if and only
if the link of each vertex is CAT(1). Such a link is an all-right spherical complex, so
we can apply Theorem 5.18. LI

5.21 Moussong's Lemma. There is a useful generalization of (5.18) due to Gabor
Moussong [Mou88] A sphencal simplicial complex L is called a metric flag complex
(see [Da99}) if it satisfies the following condition: if a set of vertices {v0, .. , is

pairwise joined by edges in Land there exists a spherical k-simplex in whose
edges lengths are then {vo Vk} is the vertex set of a k-simplex in L.

Moussong's Lemma asserts that if all the edges of a spherical simplicial complex
L have length at least ,r/2, then L is CAT(1) if and only if it is a metric flag complex.

This lemma has been used by Moussong [Mou88] (resp. M. Davis [Da98]) to
prove that the appropnate geometric realization of any Coxeter system (resp. build-
ing) is CAT(O). See also [CD95a}.

Constructions with Cubical Complexes

The following construction is essentially due to Mike Davis.

5.22 Proposition. Given any finite dimensional simplicial complex L, one can con-
struct a cubical complex K such that the link of every vertex in K is isomorphic to
L The group of isometries of K acts transitively on the set of vertices of K, and
has a finite number m of vertices, then K has 2m vertices.

Proof Let V be the vertex set of L and let E be a Euclidean vector space with
orthonormal basis {eç

I
s e V}. We shall construct K as a subset of the following

union of cubes C = Ur{>2s€rxsec e [0, 1]), where T varies over the finite
subsets of V. A face of C belongs to K if and only if it is parallel to a face spanned
by basis vectors e50,. . , where s0 5k are the vertices of a k-simplex in L.
Note that the vertices of K are just the vertices of C. The link in K of the vertex at
the ongin is isomorphic to L.

Let be the reflection in the hyperplane that passes through e5/2 and is orthogonal
to and let G be the subgroup of Isom(E) generated by these reflections. G is the
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direct sum of the cyclic groups of order two generated by the (so if V is finite then
IGI = 21V1). The action of G leaves K invanant and acts simply transitively on the
set of vertices of K. Since we already know that the link of one vertex is isomorphic
to L, this proves the proposition. LI

According to (5.20), the cubical complex K constructed above will be non-
positively curved if and only if L is a flag complex. Thus, for example, if L is the
barycentric subdivision of any simplicial complex, then the universal cover K of
the complex constructed above will be a CAT(0) space, and in particular it will be
contractible.

5.23 A Compact Aspherical Manifold Whose Universal Cover is Not a Ball. In
1983 Mike Davis solved an important open question in the study of topological man-
ifolds. Until that time it was unknown whether or not there existed closed asphencal
manifolds whose universal cover was not homeomorphic to Euclidean space Davis
constructed the first such examples [Da83]. We shall sketch his construction, pro-
ceeding in several steps from the construction in (5.22).

Step 1: Let L, K and G be as in (5.22) but assume now thatLis a finite complex. Let
F be the intersection of K with the cube e e [0, 1/2]}. Note that F is
a cubical complex (with edges of length 1/2). Note also that F is a strict fundamental
domain for the action of G on K, i.e. each G-orbit meets F in exactly one point. Given
a (k — 1)-simplex a of L with vertices s1 sk, we write Ga to denote the subgroup
of G generated by the reflections rck and P' to denote the intersection of F
with the affine subspace defined by the equations x3 = 1/2 = 1/2. We also

write ea = es.. Note that Ga is the stabilizer of F' in G.
We endow G with the discrete topology. Thus G x F is the disjoint union of

copies of F that are indexed by the elements of G. We identify K with the quotient
of G x F by the equivalence relation [(g, x) (gh, x) if x F' and h E Ga], where
a ranges over the simplices of L. We write this identification (g, x) F—* g.x.

An important point to note is that F can be identified with the simplicial cone
CL' over the barycentric subdivision L' of L. indeed one obtains a bijection CL' —÷ F
that is affine on each simplex by sending the cone vertex of CL' to the origin of E
and the barycentre of each simplex a of L to e F. This isomorphism identifies

with the subcomplex L' of L'
the vertices s, e a.

Step 2: Let M be a compact piecewise-linear26 n-manifold with non-empty
boundary and let L be a triangulation of (compatible with the given PL-
structure). We mimic the construction of K in Step 1, replacing G x F by G x M.
Explicitly, we define N to be the quotient of G x M by the equivalence relation
[(g, x) (gh, x) if x E C and h E Ga], where a ranges over the simplices
of L.

abbreviated to PL



214 Chapter!! 5 Complexes of Bounded Curvature

We claim that N is a compact n-manifold without boundary. It is sufficient to check
that the equivalence class of a point of the form (1, x) E G x has a neighbourhood
homeomorphic to an n—ball. Because is a PL-manifold of dimension n — 1, if
a C L is a (k — 1)-simplex then is PL-homeomorphic to an (n k)-ball. The star
in L' of the barycentre of a is the simplicial join (see I.7A.2) of and the boundary
of the simplex a. It follows that for each point x in the interior of there is a
PL-homeomorphism j from a neighbourhood U of x in M to a neighbourhood of 0
in x withj(U fl L) c x the mapj sends x to 0 and sends
U fl LSI, for each vertex s1 of a, into the subspace consisting of vectors whose i-th
coordinate is 0.

Consider the homomorphism a —÷ sending each r5 to the reflec-
tion in the i-th coordinate hyperplane of The map sending (g, y) e X U to
a(g).j(y) induces a homeomorphism from a neighbourhood in N of the equivalence
class of (1, x) onto a neighbourhood of 0 e IRk x

Step 3: Let K be as in Step 1 and let M be as in Step 2, and assume now
that the manifold M is contractible. In this case there is a homotopy equivalence
fo : CL —÷ M which restricts to the identity on L = and hence on L'. The map
(g, x) F—* (g,fo(x)) is compatible with the equivalence relations on G x CL' = G x F
and G x M and thus we obtain a G-equivanant homotopy equivalence!: K —÷ N.

If the triangulation L of is a flag complex (this can always be achieved by
passing to a barycentric subdivision), then by (5.20) the cubical complex K is non-
positively curved. In particular, its universal cover is contractible, so all of its higher
homotopy groups are trivial, i.e. K is asphencal. Since N is homotopy equivalent to
K, it too is aspherical (so its universal cover is contractible).

In dimensions 4 and above it is possible to construct compact contractible n-
manifolds whose boundary is not simply connected (the first examples were given
by B. Mazur [Maz6l] and V. Poenaru [Poe6O]). In this case Davis shows that the
universal covering of N, though contractible, is not simply connected at infinity 27
and hence is not homeomorphic to

In the above construction N is not endowed with any geometry we merely
related its topology to a space K where we could use geometry (specifically, the
Cartan-Hadamard theorem) to prove that the space was aspherical. Remarkably,
if the dimension of M (and hence N) is at least 5, then Ancel, Davis and Guibault
[AnDG97] prove that N can always be metrized as a cubical complex of non-positive
curvature.

27 means that N cannot be exhausted bya sequence of compact sets C such that any loop
in the complement of C is contractible in N C.
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Two-Dimensional Complexes

We now focus our attention on 2-dimensional MK—complexes of curvature < K There
are three main reasons for doing so. First of all, in the 2-dimensional case it is easy
to check if an explicitly described MK—complex has curvature < K. Secondly, there
are many natural and interesting examples. And thirdly, 2-dimensional complexes
enjoy some important properties that fail in higher dimensions (for example Theorem
5.27). We refer the reader to [Hag93], [BaBr94,95], [BaBu96], [BuM97], [BriW99],
[5w98] and [Wi96a] for examples of recent results in this active area.

5.24 Checking the Link Condition. As we noted earlier, it is easy to check whether
or not a given 2-dimensional MK—complex K0 has curvature < K, because the link
condition for such a complex admits a simple reformulation:

(5.6). A 2-dimensional MK—complex K0 satisfies the link condition if and only iffor
each vertex v e K0 every infective loop in Lk(v, K0) has length at least

Thus, if we label each of the corners of the 2-cells of K0 with the angle a, at
that corner, then the link condition for K0 is equivalent to a system of simultaneous
inequalities of the form + + a1 > there is one inequality for each
injective loop in the link of each vertex. Moreover, if K < 0 then for each n-sided
face of K0 we know that the sum of the vertex angles of that face is bounded by the
sum of the angles in a Euclidean n-gon. + + (n — 2)ir. If K < 0 then
each of this last set of inequalities will be sharp.

Changing perspective, we may view the above system of inequalities as giving a
necessary (but not sufficient) condition for a given combinatorial 2-complex to admit
the structure of an MK—complex of non-positive curvature. For suppose that we are
given a connected, combinatorial 2-complex K such that the attaching map of each
2-dimensional cell is a closed locally injective loop in the graph we say that
the cell is n-sided if this loop crosses exactly n edges. A corner is defined to be a
pair of successive 1-cells in the boundary of a 2-cell (this corresponds to an edge in
the link of the vertex at which the 1-cells are incident). To each corner we assign a
real variable a and consider the simultaneous system of inequalities requiring that
the sum of the a, around any injective loop in the link graph of each vertex of K is
at least 2,r, and the sum of the a- around each n-sided face of K is at most (n — 2),r.
If this system of inequalities does not admit a solution with each e (0, jr], then K
does not support an MK-polyhedral structure of non-positive curvature (cf. [Ger87]).

There is a partial converseS if there is a solution such that all of the corners of each
face have the same angle, then one can obtain a metric of non-positive curvature by
metrizing all of the 2-cells as regular Euclidean n-gons of side length 1. However, the
existence of a less symmetric solution to the above system of inequalities does not
guarantee the existence an MK—complex structure of non-positive curvature (although
it does imply that K is aspherical [Ger87], [Pri88]). The key point to observe is that
while a solution appears to allow one to assign appropriate angles to the corners of K,
in general one cannot assign edge lengths in a consistent way that is compatible with
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metrics on the 2-cells that have the desired angles. Readers wishing to understand
this difficulty should consider the 2-complex with one vertex, two directed 1-cells
labelled a and h respectively, and one 2-cell, whose boundary traces out the path a
(in the positive direction), then h twice, then a in the reverse direction, then h in the
reverse direction. The fundamental group of this complex is solvable but not virtually
abelian, and therefore it is not the fundamental group of any compact non-positively
curved space (cf. 7.5).

We note some situations in which the link condition is immediate. (These are
analogous to the small cancellation conditions of combinatorial group theory, see
[LyS77}.)

5.25 Proposition. Let K be a combinatorial 2-complex and suppose that there is an
integer N such that K contains no n-sided faces with n > N. Letp and q be positive
integers such that every face of K has at least p sides and every simple closed loop
in the link graph of every vertex of K has combinatorial length at least q.

(1) lf(p, q) e {(3, 6), (4,4), (6, 3)] then K can be metrized as a piecewise Eu-
clidean complex of non-positive curvature.

(2) If(p, q) e {(3, 7), (4, 5), (5, 4), (6, 3)} then K can he metrized as apiecewise
hyperbolic complex of curvature < —1.

Proof For (1) it suffices to metrize each n-sided 2-cell of K as a regular Euclidean
n-gon with sides of length 1.

For every s > 0 and N E N there exists 8(e, N) > 0 such that if n < N then
the vertex angles in a regular n-gon in with sides of length < 8 are at least

— 2)/n] — e. For (2) it suffices to metrize each n-sided 2-cell of K as a regular
hyperbolic n-gon with sides of length 8(,r/21, N). U

5.26 Exercise. Let K be a piecewise Euclidean 2-complex each of whose faces is
metrized as a regular n-gon, where n may vary from face to face but is uniformly
bounded. Prove that if every injective loop in the link of each vertex of K has length
> 2,r, then K can be metrized as an MK-complex of curvature < K for all ic <0.

Subcomplexes and Subgroups in Dimension 2

This section is dedicated to the proof of the following theorem.

5.27 Theorem. JfK is a 2-dimensional MK—complex of curvature < K, then every
finitely presented subgroup of iri(K) is the fiwdamental group of a compact, 2-
dimensional, Me—complex of curvature K with the geodesic extension property.

This theorem exemplifies a principle which can be applied to any class of com-
binatorial 2-complexes that is closed under passage to subcomplexes and covering
spaces. This principle is founded upon the concept of a tower, which was developed
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in the context of 3-manifolds by C.D. Papakyriakopoulos [Papa57] and adapted to
the setting of combinatorial complexes by Jim Howie [How8l]. Roughly speaking,
Papakyriakopoulos's insight was that a large class of maps can be expressed as the
composition of a series of inclusions and covering maps, and this enables one to ex-
ploit the fact that by lifting a map to a proper covering space one can often simplify
it (in some measurable sense). The relevance of this idea in the present context was
brought to our attention by Peter Shalen.

5.28 Definition. Given connected CW-complexes Y and Z, with Y compact, a map
g : V —÷ Z will be called an admissible tower if it can be written

where each Pr : Zr Yr_i is a connected covenng of a compact complex, Zr has
the induced cell structure, and each : + Zr is the inclusion map of a compact
connected subcomplex. = Y and Z0 Z.

A map of CW complexes is said to be combinatorial if it sends open cells
homeomorphically onto open cells. (Note that a tower is a combinatorial map.) Let
X be a compact CW-complex. By a tower lift of a combinatorial map! : X —÷ Z
we will mean a decompositionf = g of', wheref' : X —÷ Y is a combinatorial
map and g : Y —÷ Z is an admissible tower. In this setting it is convenient to write

f X Y Z.

The following result is a special case of Lemma 3.1 in [How8 1].

5.29 Lemma. If X and Z are connected CW-complexes and X is compact, then every

combinatorial mapf: X —÷ Z has a maximal tower : X Y -4 Z such that
jr1X Y is surjective.

Proof Let Y0 denote the image off. We measure the complexity off by means of
the non-negative integer c(f) := d(X) — d(Yo), where d(K) denotes the number of
0-cells of a compact complex K.

Let io : Y0 —÷ Z be the inclusion map and considerf X Y0 Z. If the
map —÷ ,riY induced byfo is not a surjection then by elementary covering
space theory (see [Mass9 1] for example) there exists a proper connected covering
Pi : Z1 —÷ Y0 such thatf = i0 o ofi, wherefi X —÷ Z1 is a lifting offo with
image Yi and : —÷ Zi is the inclusion map.

We claim that since Pi is a non-trivial connected covenng, c(fj) < Note
first that (p1 0 ii), which is surjective, is not injective (for otherwise its inverse would
give a section of pi) Hence there is a non-trivial deck transformation r of Zi such
that fl Y1 0. This intersection is the union of closed cells, hence there exist
0-cells v e Yi such that r.v = v. Sincepi(r.v) = pi(v), we have > d(Y0) and
hence c(fj) < c(jb).

If (fi)* : jr1X —+ Y is not surjective then there exists a proper connected
covenngp2 . Z2 —÷ Yi such thatf1 = °P2 012 ofi, wheref2 : X —÷ Z2 is a lifting
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offi with image Y2 and i2 : Y2 —÷ Z2 is the inclusion map. And <c(fo).
Proceeding in this manner, since c(f) is a non-negative integer, after a finite number

of steps we obtain a tower liftf X —÷ Z off such thatf,1 induces a surjection
on,r1. E

5.30 Proposition. Let K he a class of (not necessarily compact) combinatorial
complexes that is closed under the operations of passing to finite suhcomplexes and
to connected covers. Let I' he afinitely presented group. If there exists an injective
homomorphism of groups : I' —÷ Kfor some K E K, then there exists a compact
complex K' e K, of dimension at most 2, such that I' = ,r1K'.

Proof Our goal is to construct a combinatorial map of complexes f : X —÷ K
where X is compact, ,r1X I', the image of f is contained in 2-skeleton of K and

jr1X —÷ jr1K is an injection (that represents The preceding lemma implies

that such a mapf has a tower liftf : XX K'X —s K —÷ jr1K'
surjective. = is injective, it then follows is an isomorphism.
The compact complex K' is obtained from K by repeatedly taking subcomplexes and
coverings, hence K' E K; and because the image off is contained in the 2-skeleton
of K, the complex K' is at most 2-dimensional. Thus it suffices to construct X and
the combinatorial mapf : X —÷ K representing

To say that I' is finitely presented means that there is a surjection F(A) —÷ F
from the free group on a finite set A = am} such that the kernel N of
this surjection is the normal closure of a finite subset R c F(A). Without loss of
generality we may assume that the number of generators m is chosen to be minimal,
in which case each a, determines a non-trivial element of I', which we again denote
a,.

Let X0 be a graph with one 0-cell x0, and one 1-cell for each of the generators
oriented and labelled a1. (This labelling identifies with the free group F.)

We fix a basepoint k0 e K and for each generator a I' we choose a locally
injective loop in the 1-skeleton of K that represents E (K, Jco). We then define

f X0 —÷ K by sending the oriented edge labelled a1 to a monotone parameterization
of this loop We introduce a new combinatorial structure on Xo by decreeing that
each point inf is a 0-cell,f then becomes a combinatorial map. Note that

: F = ,r1X0 —÷ inK is the composition ofF —÷ I' and : I' —÷ ,r1K, and so has
image and kernel N.

Let S be an oriented circle with basepoint. Each of the defining relators r E R

determines an edge path ar S —÷ X0 which begins at the vertex xo E Xo and then
proceeds to cross (in order) the oriented 1-cells whose labels are the letters of the
word r E F.

Because the word r in the generators a, represents the identity in I', the loop
f 0 is null-homotopic in K. So by van Kampen's lemma [K33b, Lemma 1] there
exists a simply connected, planar, 2-complex a map j8r : S —÷ that is a
monotone parameterization of the boundary cycle of s,., and a combinatorial map

fr —* such thatfr 0 j8r f 0 ar (cf. I.8A).
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Let X be the combinatorial 2-complex obtained by taking the quotient of X0 U

Hr by the equivalence relation generated by a, (x) 18r(X) for all x e S and all
r E R. Let p : X0 —÷ X be the quotient map. Letf : X —÷ K be the combinatonal
map induced byf Xo —÷ K andfr : —÷ K. By the Seifert-van Kampen theorem,

: jr1X0 —÷ ir1Xisonto.Andbyconstructionr e E R,soN c
has kernel N, : jr1X —÷ jr1K is an isomorphism onto the image

which is LI

In order to apply the preceding proposition we need the following easy observa-
tion.

5.31 Lemma. Fix K e R and let IK(K) denote the class of connected Mr—complexes
K of dimension at most 2 that satisfy the link condition and for which Shapes(K)
is finite. If K E IK(K) then, when equipped with the induced length metric, every
connected suhcomplex of K is in IK(K) and every connected cover of K is in IK(K).

Proof The asserted closure property of IK(K) with respect to covers is not special to
dimension 2. Indeed, if K is an n-dimensional MK—complex with Shapes(K) finite
and K is a connected cover of K (with the induced path metric) then K is an MK—
complex with Shapes(K) Shapes(K). And since the covering map K —÷ K is a
local isometry, K has curvature < K (i e., satisfies the link condition) if and only if
K does.

The asserted closure property of IK(K) with respect to subcomplexes clearly fails
above dimension 2 But if K is 2-dimensional and v is a vertex of the subcomplex
L c K then Lk(v, L) is (locally isometric to) a subgraph of Lk(v, K). So if Lk(v, K)
contains no closed injective loops of length less than 2,r, then neither does Lk(v, L).
The absence of such loops is equivalent to the link condition. U

5.32 Remark One of the central problems in low-dimensional homotopy theory is
the Whitehead conjecture, which asserts that if the second homotopy group of a
2-dimensional CW complex is trivial, then so is the second homotopy group of each
of its connected subcomplexes. The preceding result, in conjunction with the Cartan-
Hadamard theorem, shows that MK—complexes of non-positive curvature satisfy the
Whitehead conjecture.

We now turn our attention to showing that if a compact 2-dimensional MK—
complex satisfies the link condition then it collapses onto a subcomplex with the
geodesic extension property. When combined with the preceding two results, this
completes the proof of Theorem 5.27.

We recall Whitehead's notion of an elementary collapse (which is the starting
point for simple-homotopy theory [Coh75]). Recall that a cell e of a combinatorial
complex K is, by definition, afree face if it lies in the boundary of exactly one cell e'
of higher dimension and the intersection of the interior of e' with some small neigh-
bourhood of an interiorpoint of e is connected. We define an elementary collapse of K
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to be any subcomplex obtained by removing a free face and the interior of the unique
higher dimensional cell in whose boundary the free face lies. We say that K collapses
onto a subcomplex L if there is a sequence of complexes K = K0 = L such
that each K1+i is an elementary collapse of

It is clear that an elementary collapse does not alter the fundamental group of a
complex, so the following lemma completes the proof of Theorem 5.27.

5.33 Lemma. Let K he a compact Iwo dimensional MK—complex. JfK satisfies the
link condition, then it collapses onto a suhcomplex which (when equipped with its
intrinsic metric) has the geodesic extension property.

Proof According to (5.10) an MK—complex which satisfies the link condition has the
geodesic extension property if and only if it has no free faces. K has only finitely many
cells, so after finitely many elementary collapses we obtain the desired subcomplex.

E

5.34 Exercises

(1) How unique is the subcomplex yielded by the preceding lemma?

(2) If K is non-positively curved, compact, simply connected and two dimensional,
then it collapses to a point.

Knot and Link Groups

We began our discussion of 2-complexes by asserting that there are many interest-
ing examples. In Chapter 12 we shall describe how to construct examples using
complexes of groups and in Chapter ffl.I' we shall give explicit examples that are
of interest in group theory. In the present section we shall describe a construction
adapted from classical considerations in 3-manifold topology, in particular Dehn's
presentation for the fundamental group of the complement of a knot in S3. The geo-
metric construction here is similar to earlier work of Weinbaum [We7 1] and others
who studied these groups from the point of view of small cancellation theory (see
[LyS77, p.270]). The adaptation to the non-positively curved case was first noticed
by I. Aitchison and (independently) by D. Wise [Wi96a].

5.35 Theorem. If K c R3 is an alternating link then iri(R3 — /C) is the
group of a compact 2-dimensional piecewise-Euclidean 2-complex of non-positive
curvature.

5 36 Remark. This result is not the strongest of its ilk, but the degree of geneçality
chosen allows a straightforward and instructive proof. In fact, all link groups are fun-
damental groups of non-positively curved spaces: this is a consequence of Thurston's
geometrization theorem for Haken manifolds [Mor84], [Thu82] and the fact that link



Knot and Link Groups 221

complements are irreducible [Papa57]; cf. [Bri98b} and [Le95]. In addition to (5.35),
we shall cover hyperbolic knots (Theorem 11.27) and torus knots (11.15).

For clarity of exposition we shall consider only knots; the adaptation to the case
of links is entirely straightforward.

5.37 Definitions. We consider smooth embeddings f S' —÷ 1R3. Two such
embeddings fo and fi are said to be equivalent if there is a smooth-embedding
F : S1 x [0, 1] —÷ 1R3 x [0, 1] such that F(x, t) = (f(x, t), t) for all x e S' and
te [0, 1], wheref(x, 0) =fo(x) andf(x, 1) =fi(x). A (tame) knot is, by definition,
an equivalence class of smooth embeddings S' 1R3. It is convenient to work with
a definite choice of representative for the class under consideration, or even just the
image of this representative, which we write ftC C 1R3. We may refer to ftC itself as
'the knot'.

Let yr : —÷ = x {0} be the obvious projection. Every knot has a
representative! : —÷ ftC c 1R3 such that ir of has a nowhere zero derivative, all
of its self-intersections are transverse, and for every x E im(,r of) the cardinality of
K fl ,r — (x) is at most two. H = ,r of is called a (regular) projection of ftC. Let A
denote the image of H. The points x e A for which ftC fl ir'(x) has cardinality two
are called its double points. If x is a double point, then the elements of ftC fl jr'(x)
are called the overpass and underpass at x, according to which has the greater third
coordinate. H is called an alternating projection if when traversing ftC in a monotone
manner one encounters underpasses and overpasses alternately. By definition, an
alternating knot is one that admits an alternating projection.

H is called a prime projection if it does not admit a reducing circle, i.e, an
embedded circle S C 1R2 such that S intersects A in exactly two points, neither of
which is a double point, and both components of 1R2 N S contain a double point of
A Let be a smoothly embedded 2-sphere in 1R3 that intersects ftC transversally at
exactly two points and p2. Let I and 0 be the connected components of 1R3 N
Let be an arc joiningpi top2 on Let and ftC2 be the knots obtained by
smoothing [pie P2] U (ftC fl 0) and P2] U (ftC fl I) respectively. In this situation,
ftC is said to be the connected sum of ftC1 and ftC2, written ftC = ftC1#ftC2.

5.38 Remark. The above definition of connected sum can be viewed as an operation
#: {knots} x {knots} —÷ {knots}. This is well-defined (in particular it is independent
of the choices of ftC, ftCi and ftC2 within their equivalence classes) and makes the set
of knots into an abelian monoid (see [BurZ85], [Ro190})

5.39 Lemma. Every alternating knot ftC is the connected sum offinitely many knots
each of which has an alternating prime projection.

Proof Let H = jr of be an arbitrary alternating projection of ftC, with image A.
If H is not prime, then there exists a reducing circle S c 1R2 Let and be the
points at which S intersects A, and let A1 and A2 be the components into which S
separates A. Let pi = fl ftC and p2 = fl ftC By closing the cylinder
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S x JR with horizontal discs well above and below IC we obtain an embedded 2-sphere
E C JR3 that is transverse to IC and meets it only at and p2• separates IC into
two components, parameterized by the restriction of f: S' —÷ )C to the connected
components of S' '.. fl' we call these two components of the circle C1
and C2. Thus /C 1C1#1C2, where (interchanging the indices as necessary) has
projection fl1, which begins at p, then describes A as paraineterized by then
follows the arc of the reducing circle Sjoiningp,

to complete the proof we must check that the projection H1 is alternating.
The double points of fl, are precisely those of so since fl = of is alternating
it only remains to prove that if the first double point along H is encountered as an
overpass, then the last is encountered as an underpass, and vice versa. But this is
easily seen by combining the fact that underpasses and overpasses alternate along
f(C,) with the observation that the number of underpasses onf(C,) is equal to the
number of overpasses, because there is one of each for each double point in fl(C1).

D

5.40 Corollary. If IC C JR3 is an alternating knot then the fundamental group of
(JR3 IC) is an amalgamatedfreepmduct oftheform

G0 G1 ...

where each G' is the fundamental group of the complement of a knot with a prime
alternating projection and each C1 is infinite cyclic.

Proof This follows from (5.39) upon application of the Seifert-van Kampen theorem
(see [BurZ85]).

5.41 The Dehn Complex of a Projection.
We maintain the notation and conventions established in (5.37). In particular,

A is the image of the regular projection H of the knot IC. We need an additional
definition: fix a neighbourhood about each double point x of A, small enough so
that intersects A only in two small arcs meeting transversally at x; a connected
component of (A fl '.. {x} is called a germ. Thus each edge of the graph A has
two germs, one at each end. We label germs o or u according to whether they are the
image of an arc in IC going through an overpass or an underpass. When embellished
with this extra information, A is called a knot diagram.

The Dehn complex V(H) of the projection H is a 2-complex with two vertices
v (which are thought of as lying, respectively, above and below the plane of

projection). The 1-cells of V(H) are in 1—1 correspondence with the connected
components A0, A1 A,, of JR2 '..A, the i-th 1-cell being oriented from to v_
labelledA1; the 2-cells of V(H) are in 1—1 correspondence with the double points of A.
They axe attached as follows: given a double point x e A, Ajr(4)

be the (not necessarily distinct) components of JR2 '.. A that one encounters as one
proceeds anticlockwise around x, beginning at a germ labelled 0; for each x, a 2-cell
is attached to the 1-skeleton of V(H) by a locally injective map from its boundary to
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the edge-path labelled where is A, traversed in the opposite
direction.

Choosing as basepoint and writing a, for the homotopy class of the loop
we see that the fundamental group of D(fl) has presentation

= (ao a0 = 1, = 1 for every double point x).

This is the well-known Dehn presentation of the fundamental group of JR3 '.. IC. The
following exercise is standard.

542 Exercise. Show that P11 is indeed a presentation of 7r1 (JR3 '.. /C)

(Hint: Isotop IC to lie in the union of JR2 x {O} and the spheres of some small
radius r about the double points of the projection. Place a ball of radius 2r about
each double point and apply the Seifert-van Kampen theorem.)

Henceforth we view V(fl) as a piecewise Euclidean complex with the intrinsic
metric obtained by met rizing each 2-cell as a unit square.

5.43 Proposition. D(H) is non-positively curved if and only if fl is a prime alter-
nating projection.

Proof We first describe the links V(fl)). Each edge in one of these link graphs
has length so our concern will be to determine when they contain circuits of
length less than 4. The vertex set of V(fl)) is in 1—1 correspondence with
the 1-cells of V(fl); from which it inherits a labelling A0 The edges of

V(fl)) (resp. Lk(v_, V(H))) are in 1—1 correspondence with pairs (x, g),
where x is a double point of A and g is a germ incident at x labelled u (resp. o). The
edge corresponding to (x, g) joins the vertices labelled by the regions which meet
along g.

If the projection fl is not prime, then there exists a reducing circle S. The two
components of S '.. A lie in distinct connected components of JR2 '.. A, A, and 4,
say. These components meet along two distinct edges, which means that they meet
along four distinct germs. At least two of these germs must carry the same label, o
or u, and therefore give rise to two edges joining the vertices labelled A, and 4, in
the corresponding link graph whence a circuit of length two.

To say that the projection fl is not alternating means precisely that the germs at
either end of some edge e in A carry the same label, u say. These two germs give rise
to two distinct edges in V(H)) connecting the vertices labelled by the two
components of JR2 '.. A that abut along e.

If fl is alternating then one can divide the components of JR2 N A into two types, let
us call them black and white: a bounded component is said to be white (respectively,
black) if the anticlockwise orientation of its boundary orients each of the edges in
its boundary from the germ labelled o to the germ labelled u (respectively, u to o);
the unbounded region A0 is coloured according to the opposite convention. Note
that if two regions abut along an edge of A then they have opposite colours. If we
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give the vertices of Lk(v±, D(fl)) the induced colouring, then the preceding sentence
implies that the endpoints of each edge in V(fl)) are coloured differently. It
follows that all closed circuits in D(fl)) are of even length, so to check the
link condition we need only rule out circuits of length two.

There are two edges connecting the vertices of V(fl)) labelled A, and A1
if and only if the regions A1 and A1 meet across two germs of edges in A that carry
the same label. If fl is alternating, the germs at either end of an edge carry different
labels, whence A, and meet across two distinct edges. But then, by connecting the
midpoints of these edges with arcs in the interiors of A, and we obtain a reducing
circle showing that fl is not prime. 0

Proof of Theorem 5.35. According to Corollary 5.40, the fundamental group r of
the complement of an alternating knot K: is of the form Go G1 ...

G, is the fundamental group of a knot with a prime alternating projection,
and each C, is infinite cyclic. The preceding proposition shows that each G is the
fundamental group of a compact, piecewise Euclidean 2-complex of non-positive
curvature. It follows from (11.17 and 1.7.29) that r is also the fundamental group of
such a complex (but not necessarily a complex built from squares).

5.44 Exercises
(1) Consider the projection of the tnvial knot given in polar coordinates by the

equation r = + cosO. Show that the Dehn complex of this projection is a
M'obius strip. Which projections of the trivial knot have curved Dehn
complexes?

(2) The Hopf link consists of two unknotted circles in JR3 linked in such a way
that they cannot be separated but have a planar projection with only two crossings
(figure 5.1)? What is the Dehn complex of this minimal projection of the Hopf link9

(3) The Borromean rings is a link with three components such that if one removes
any one of the components then the other two can be unlinked (fig. 5.1). What is the
Dehn complex of the projection shown in (fig. 5.1).

From Group Presentations to Negatively Curved 2-Complexes

In [Rips82J Rips introduced a construction that associates to any finite group pre-
sentation a short exact sequence I —* N —+ F —÷ G —* 1, where N is a finitely
generated group, r is a finitely presented group satisfying an arbitrarily stnct small
cancellation condition (cf. 5.25) and G is the group defined by the original
tion. We shall modify Rips's construction so as to arrange that G is the fundamental
group of a negatively curved 2-complex. An earlier modification of this sort was
given by Daniel Wise [Wi98aJ.

5.45 Theorem. There is an algorithm that associates to every finite presentation a
short exact sequence



From Group Presentations to Negatively Curved 2-Complexes 225

Fig. 5.1 Hopf link and Borromean nngs

1 —* N —* G 1,

where G is the group given by the presentation, N is a finitely generated group and
K is a compact, negatively curved, piecewise hyperbolic 2-complex.

Proof Given a finite presentation (x1 of G, let p = max 1r11 + 2

and let M be the least integer such that M2 > (lOnM + 5m) + M.
The idea of the proof is to expand the given presentation by adding a finite number

of new generators one uses these new generators to 'unwrap' the relations in G,
replacing r = 1 with a relation of the form r = where v, is a word in the
generators a1; then one forces the subgroup generated by the to be normal by
adding extra relations of the form = where the words involve only
the letters ak. The art of the construction comes in choosing the words v1 and
We shall choose them in a way that allows us to metrize the 2-cells of the standard
2-complex K of the presentation (I.8A) as right-angled hyperbolic pentagons with
the words r completely contained in the intenor of one side. We then arrange for the
2-complex to have negative curvature.

K is defined as follows:

• K has one 0-cell
• K has (M + n) 1-cells, labelled x1 x,7, aM (The loops labelled a,

generate the normal subgroup N in the statement of the theorem.)
• K has (m + 2nM) 2-cells, which are of two types:
• the 2-cells of the first type are in 1-1 correspondence with the original relators

r,;
• the 2-cells of the second type are in 1-1 correspondence with tnples r =

(x1, aj, e), where e = ±1 , i = 1 n andj = 1, .. , M.
• The attaching map of the 2-cell corresponding to r traces out the path labelled

p—IrI—l p p p p

where each e {ai aM} the exact choice of a1 is deferred.
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• The 2-cell corresponding to r = (x,, aj, e) is attached by a path labelled

where each e {a1 aM) — again, the exact choice of is deferred.
• Let L be the length of each side in a regular right-angled hyperbolic pentagon.

Each 1-cell in K is metnzed so that it has length L/p.
• Each 2-cell is metrized as a regular right-angled hyperbolic pentagon, so that

the arcs of the boundary that are labelled (in the case of 2-cells of the first
type) or (in the case of 2-cells of the second type) become sides of the
pentagon.

We claim that we may choose the and the so as to ensure that the piecewise
hyperbolic complex K described above satisfies the link condition (5.1). How could
it fail to do Well, the vertex angles at the corners of the 2-cells are all either ir/2 or
7t (we call the former 'sharp corners') and at corners with a vertex angle ir we either
have one edge labelled x, and one labelled aj, or else we have both the incoming and
outgoing edge labelled by the same a. Each 2-cell has only five sharp corners and
at each of these corners we have arranged that the labels on both the incoming and
outgoing edge are drawn from {a1,. , aM}.

In order to ensure that there are no circuits of length less than 7t in the link of the
vertex of K, it suffices to arrange that no ordered pair of labels (a,, a') occurs at more
than one sharp corner, and that at no sharp corner do we have a, = This amounts
to choosing a family of (m + 2nM) words and $o.r .r $4,r
with the following properties: no 2-letter subword appears more than once; there
is no subword of the form a1a1; and for allj,j' there is at most one word of the form

* * * aj' We shall call a family good if it has these properties.
We seek a good family words. To this end, following Wise [98a], we list all of

the words with i < i' in lexicographical order:

(ala2), , (a2, a3), . . (a2aM), (a3a4) (aM_laM).

We then concatenate the words in this list to form one long word WM. By construction,
no 2-letter subword a1a1 appears more than once in WM and there is no subword of
the form a a,. Moreover, for each fixedj,j', the word WM has at most one subwo'?d
of length 5 that is of the form a1 * * *

WM has length M2 — M, and we chose M so that M2 —M> 5(m + 2nM) . Thus
we can divide WM into (m + 2nM) disjoint subwords of length 5:

(ala2ala3al), (a4ala5alao),

This is the good family of words that we were seeking.

5.46 Remarks
(1) We emphasize that K was obtained from the given presentation in an algorith-

inic way: the integer M depended in a simple way on the number of generators and
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relators; the metric depended only on p. which is an invariant of the presentation;
and the "good" family of words used to attach the 2-cells of K were denved from M
by a simple algorithm.

(2) Notice that all of the 1-cells of K are geodesic circles and that they are the
shortest homotopically non-trivial loops in K

547 Exercise (Incoherence). Robert Bieri [Bi76a] showed that if H and r are
finitely presented groups of cohomological dimension at most two, and if H c r is
normal, then H is either free or else it has finite index in r. Prove that the group N
constructed in (5.45) is not free, and hence deduce that if G is infinite then N is not
finitely presented

Groups that contain subgroups which are finitely generated but not finitely pre-
sented are called incoherent. (See [Wi98a] for further results in this direction.)
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In Chapters 2 and 6 of Part I we described the isometry groups of the most classical
examples of CAT(O) spaces, Euclidean space and real hyperbolic space. Already in
these basic examples there is much to be said about the structure of the isometry group
of the space, both with regard to individual isometries and with regard to questions
concerning the subgroup structure of the full group of isometnes More generally, the
study of isometries of non-positively curved manifolds is well-developed and rather
elegant. In this chapter we shall study isometnes of arbitrary CAT(O) spaces X

We begin with a study of individual isometries y e Isom(X). We divide isometnes
into three types: elliptic, hyperbolic and parabolic, in analogy with the classification
of isometries of real hyperbolic space discussed in Chapter 1.6. We develop some
basic properties concerning the structure of the set of points moved the minimal
distance by a given isometry y.

In the second part of this chapter we consider groups of isometries. After noting
some general facts, we focus on the subgroup of Isom(X) consisting of those isome-
tries which move every element of X the same distance — Clifford translations. These
translations play an important role in the description of the full isometry groups of
compact non-positively curved spaces (6.17). In the last section of this chapter we
shall prove a theorem (6.21) that relates direct product decompositions of groups
which act properly and cocompactly by isometnes on CAT(O) spaces to splittings of
the spaces themselves.

We refer to Chapter 1.8 for basic facts and definitions concerning group actions. In
particular we remind readers that in the case of spaces which are not locally compact,
the definition of proper group action that we shall be using is non-standard

Individual Isometries

In order to analyze the behaviour of isometries of a CAT(O) space, we first divide
the isometries into three disjoint classes Membership of these classes is defined in
terms of the behaviour of the displacement function of an isometry. This function is
defined as follows.
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The Disptacement Function

6.1 Definitions. Let X be a metric space and let y be an isometry of X. The dis-
placement function of y is the function X —* defined by = d(y.x, x).
The translation length of y is the number yI

I
x e X}. The set of

points where attains this infinium will be denoted Min(y). More generally, if r
is a group acting by isometries on X, then Min(r)

.
Min(y).

An isometry y is called semi-simple if Min(y) is non-empty. An action of a
group by isometries of X is called semi-simple if all of its elements are semi-simple.

6.2 Proposition. Let X be a metric space and let y be an isometry of X. Let I' be a
group acting by isometries on X.

(1) Min(y) is y-invariant and Min(r) is r-invariant.

(2) If a is an isometry of X, then = I, and Min(aya1) = a.Min(y).
In particular; if a commutes with y, then it leaves Min(y) invariant If N is a
normal subgroup of r, then Min(N) is r-invariant.

(3) If X is a CAT(O) space, then the displacement function is convex, and hence
Min(y) is a closed convex set.

(4) If C C Xis non-empty, complete, convex, andy -invariant, then y I = I y Ic I and
y is semi-simple only if ' Ic is semi-simple. Thus Min(y) is non-empty if
and only if C fl Min(y) is non-empty

Pro of The proofs of (1) and (2) are easy, and (3) follows from the convexity of the
distance function in a CAT(O) space (2.2). To prove (4), consider the projection p of
X onto C. By (2.4) we have p(y.x) = y.p(x) and d(y x, x) > d(y.p(x), p(x)), for all
x E X, hence p(Min(y)) = Min(y) fl C Min(ylc).

6.3 Definition. Let X be a metnc space. An isometry y of X is called

(1) elliptic if y has a fixed point,
(2) hyperbolic (or axial) if attains a stnctly positive minimum,
(3) parabolic if does not attain its minimum, in other words if Min(y) is empty.

Every isometry is in one of the above disjoint classes and it is semi-simple if and
only if it is elliptic or hyperbolic. If two isometries of X are conjugate in Isom(X),
then they have the same translation length and lie in the same class

6.4 Examptes
(1) Consider the half-space model {x = (x1,.. , e R'1 x,, > 0) for hy-

perbolic space W. If A > 0 and A 1. the map x Ax is a hyperbolic isom-
etry y with = logAi In this case Min(y) is a single geodesic line, namely
{x e JR" x,, > 0, x, = 0 if i < n}. Every hyperbolic isometry of THI' with the
translation length

I
log Al is conjugate in Isom(W) to the composition of y and an

orthogonal transformation that fixes the axis of y pointwise.
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An orientation preserving isometry of 1H12 is parabolic if and only if it is conjugate
in Isom(1H12) to an isometry of the form y : (x1, X2) i—÷ + 1, Note that I y

I
= 0

and that the level sets of are the subsets x2 = const.
The half-space model for 1H12 can be described as the space of complex numbers z

whose imaginary part Im(z) is positive. In (1.6.14) we showed that the full isometry
group for this model can be identified with PGL(2, IR), the quotient of the group of
real (2, 2)-matrices by the subgroup formed by scalar multiples of the identity. It is
easy to show that the isometry determined by an element of GL(2, IR) is semi-simple
if and only if this element is semi-simple in the classical sense, i.e. it is conjugate
over C to a diagonal matrix More generally, in Chapter 10 we shall describe the
action of GL(n, IR) by isometries on the symmetric space P(n, IR) of positive definite
(n, n)-matrices and prove that an element of GL(n, IR) acts as a semi-simple isometry
if and only if it is a semi-simple matnx in the classical sense.

(2) Let y be an isometry of TE". We have seen (1.2.23 and 1.4.13) that y is of
the form x i—+ Ax + b, where A e 0(n) and b e JR". If y does not fix a point
then —b is not in the image of A — I, so A — I is not invertible. Thus Av = v for
some v E R" N {0}. Let V1 be the vector subspace generated by v and let V2 be its
orthogonal complement Then TE" is isometric to the product Vi x V2. and because y
maps each line that is parallel to V1 to another such line, it follows from 1.5.3(4) that
y splits as the product of a translation yj of Vi and an isometry y2 of V2. Because
V2 is isometric to E', arguing by induction on n it is easy to prove the following:

6.5 Proposition. Every isometry of IE" is semi-simple. More precisely, an isometry y
of IE" is either elliptic, or else it is hyperbolic and there is an integer k with 0 < k n

such that Min(y) is an affine subspace E1 of dimension k. And in the second case, if
E2 is an affine subspace which is an orthogonal complement of E1 (i.e. IE" = E1 XE2),
then y is the product of a non-trivial translation Yi of E1 and an elliptic isometry Y2
of E2.

In contrast to the finite dimensional case, infinite dimensional Hilbert spaces do
admit parabolic isometries (see Example 8.28).

6.6 Exercises

(1) Let X be a metric space and let y be an isometry of X. Show that

Jim
n

exists for all x e X. Show that y is

is a subadditive function. A function f : N —÷ N
is subadditive if f(m + n) < f(m) + f(n) for all m and n. It is a classical fact
that exists. Indeed for fixed d > 0, any integer n can be written
uniquely as n — qd + r with 0 r < d. The subadditivity condition implies that
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f(n)/n <f(d)/d +f(r)/n, hence f(d)/d for any d. Therefore
urn < urn

(2) Let K be a connected MK-simplicial complex with Shapes(K) finite (in the
sense of Chapter 1.7). Show that every simplicial isometry of K is semi-simple.
Show further that if a group r acts by cellular isometries on K, then the set of
translation lengths : y e is a discrete subset of the real line. (Hint: Given
an isometry y, there exists a model simplex S E Shapes(K), a sequence of points

e Sand simplices C K such that —* as n —* oc Combine
this observation with (1.7.59).)

(3) Recall that an R—tree is a geodesic space that is CAT(ic) for all Ic e JR. Prove
that every isometry y of an JR—tree is semi-simple (Hint: Let x E X and let m be the
midpoint of [x, y.x] Prove that d(m, y.m) = yI.)

Semi-Simpte Isometries

In this paragraph we note some basic facts about semi-simple isometries. First we
give an easy characterization of elliptic isometnes.

6.7 Proposition. Let X be a complete CAT(O) space, and let y be an isometry of X.
Then, y is elliptic if and only if y has a bounded orbit. And if yPZ is elliptic for some
integer n 0, then y is elliptic.

Proof The first assertion is a special case of (2.7). If yFZ is elliptic, fixing x e X say,
then the orbit of x under y is finite, hence bounded.

The following result concerning the structure of Min(y) when y is hyperbolic
will be used repeatedly both in the remainder of this chapter and in subsequent
chapters.

6.8 Theorem. Let X be a CAT(0) space.

(1) An isometry y of X is hyperbolic if and only if there exists a geodesic line
c: JR —* X which is translated non-trivially by y, namely y.c(t) = c(t + a),for
some a> 0. The set c(R) is called an axis of y. For any such axis, the number
a is actually equal to y

(2) If X is complete and ym is hyperbolic for some integer m 0, then y is
hyperbolic.

Let y be a hyperbolic isometry of X.

(3) The axes of y are parallel to each other and their union is Min(y)

(4) Min(y) is isometric to a product Y x R, and the restriction of y to Min(y) is
of the form (y, t) (y, t + IyI), where ye Y, t JR

(5) Every isometry a that commutes with y leaves Min(y) = Y x JR invariant, and
its restriction to Y x R is oftheform (a', a"), where a' is an isometry of Y and
a" a translation of JR.
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Proof The "if" direction in (1) is a special case of 6.2(4). Conversely, we claim
that if y is hyperbolic then every point of Min(y) lies on an axis of y, namely the
union of the geodesic segments [y".x, Since local geodesics in CAT(O)
spaces are geodesics, it suffices to show that [x, y2.x] is the concatenation of [x, y.x]
and [y.x, y2.x], and this is equivalent to showing that d(m, y.m) = d(m, y.x) +
d(y.x, y.m) = 2 d(x, m), where m is the midpoint of the geodesic segment [x, y.x].
As Min(y) is convex, it contains m, hence d(m, y.m) = d(x, y.x). But d(x, y.x) =
2 d(x, m), so d(m, y.m) = 2 d(x, m), as required.

To complete the proof of (3) we must show that if c, c' IR —* X are axes for y
then they are parallel. Since y.c(t) = c(t + and y.c'(t) = c(t + IyI). the convex
function t i-÷ d(c(t), c'(t)) is periodic of period In particular it is bounded and
therefore constant.

For (4), one notes that Min(y) is a convex subspace of X, and hence is itself a
CAT(O) space. In the light of (3), we can apply the Decomposition Theorem (2.14)
to the set Min(y) to obtain a product decomposition Min(y) = Y x R, where each
(y} x IRis an axis for y, so in particular y.(y, t) = (y, t + IyI).

(5) Let a be an isometry of X that commutes with y. It leaves Min(y) invariant
(6.2(2)). Moreover, a takes axes of y to axes of y. Hence (see 1.5 3) a preserves the
product decomposition Min(y) = Yx Rand splits as (a', a"). Because a" E Isom(JR)
commutes with the translation defined by y, it must be a translation.

Finally we prove (2). If is hyperbolic, then splits as Y x JR where
is the identity on Y and a non-tnvial translation on JR As y commutes with by
(5) we see that the restriction of y to Min(ym) = Y x JR splits as (y', y"), where
is the identity of Y and y" a non-trivial translation of JR. But Y is a complete CAT(O)
space (because it is closed and convex in X), so the periodic isometry y' must have
a fixed point in V. The product of any such fixed point with JR yields an axis for y,
so by (1) we are done. LI

In relation to part (5) of the preceding proposition, we note the following fact
concerning isometnes of product spaces.

6.9 Proposition. Let X be a metric space which splits as a product X' x X", and let
y = (y', y") be an isometry preserving this decomposition Then, y is semi-simple
if and only if y' and y" are semi-simple Moreovei Min(y) = Min(y') x Min(y").

Proof y is semi-simple if and only if Min(y) ø,so it is enough to show Min(y) =
Min(y') x Min(y").

For any x', y' E X' and x", y" E X", we have

d(y'(x'), x') <d(y'(y'), y') d(y(x', x"), (x', x")) <d(y(y', x"), (y', x"))

d(y"(x"), x") <d(y"(y"), y") d(y(x', x"), (x', x")) <d(y(x', y"), (x', y")).

Thus (from we have Min(y) ç Min(y') x Min(y") and (from Min(y)
Min(y') x Min(y"). LI
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On the General Structure of Groups of Isometries

In this section we gather some general facts about groups acting properly by isome-
tnes. The first result does not involve any hypothesis of curvature.

6.10 Proposition. Suppose that the group F acts properly by isometries on the metric
spaceX Then:
(1) If a subspace X' of X is invariant under the acticrif of a subgroup F' of F, then

the action of F' on X' is proper

(2) If the action of F is cocompact then every element of F is a semi-simple isometry
of X.

(3) If the action of F is cocompact then the set of translation distances I y E F}
is a discrete subset of JR.

(4) Assume that X splits isometrically as a product X' x X" and that each element
y of F splits as (y', y"). Let N be a normal subgroup ofF formed by elements
of the form y = (idx', y"), and assume that there is a compact subset K in X"
such thatX" = U7EN y".K. Then the induced action of F/N on X' is proper
(In this action the coset (y', y")N acts as y'.)

Proof (1) is immediate from the definitions.
(2) Let K be a compact set whose translates by the action of F cover X. Fix y E F

and consider its displacement function Let be a sequence of points in X such
that —÷ yl as n —* We choose elements E F such

that .y,j, y,1) = tends to lyl. as n —* Hence, for every
point x E K, the sequence x) remains bounded. Because the action of
F is proper, there are an infinite number of integers n such that is equal to
the same element of F Passing to a subsequence if necessary, we assume that
y = for every positive integer n. Because K is compact, we may pass to a
further subsequence in order to assume that converges to some pointy E K. Then,
for every positive integer n, the function assumes its minimum at 'y, because

= = = = =
lvi

(3) Let K C X be a compact set whose translates by F coverX. In order to obtain a
contradiction, let us suppose that there is a sequence of elements E Fand a number
a > 0 such that IYmI for all m n, and —÷ a as n —* According
to (2), we can choose points x,, E X such that = Replacing by
a suitable conjugate if necessary, we may assume that x,, K for all n. Since K is
compact, it is contained in a bounded set, say r). But then, for all n sufficiently
large, r+a+ 1)flB(x, r) 0, which contradicts the properness of the action
(see 1.8.3(1)).

(4)Letx' E X'andchooseapointx = (x',x") E Xsuchthatx" E K Astheaction
ofFisproper,thereexistse > Osuchthat{y EF I y.(B(x',E)xK)fl(B(x',e)xK)
0) is finite (see 1.8 3(1)). If y' E F/N is such that y'.B(x', e) fl B(x', s) 0, then
there exists y = (y', y") in the coset y' such that y" x" E K. But this implies that



234 Chapter 11.6 Isometnes of CAT(O) Spaces

y.(B(x', c) x K) fl (B(x', e) x K) 0. Thus the number of such y' is finite and the
action of F/N on X' is proper. LI

6 11 Remark. Parts (2) and (3) of the preceding proposition obviously remain valid
under the weaker hypothesis that F is a subgroup of a group that acts properly and
cocompactly by isometries. in section 5 of Chapter lilT we shall see that in the
context of CAT(O) spaces, many groups that cannot act properly and cocompactly
by isometries can nevertheless be embedded in groups that do.

The following result places severe restnctions on the way in which central ex-
tensions can act by isometries on CAT(O) spaces. Some topo'ogical consequences
of this will be discussed in Chapter 7 We emphasize that in the following result we
assume nothing beyond what is stated about the group actions involved, in particular
the action of the group F is not required to be proper or semi-simple.

6.12 Theorem. Let X be a CAT(O) space and let r be afinitely generated group act-
ing by isometries on X. If r contains a central subgroup A Z1z that acts faithfully by
hyperbolic isometries (apart from the identity element), then there exists a subgroup
of finite index H C which contains A as a direct

Proof Fix a E A, a non-trivial element. According to 6.8(5), the action of F leaves
Min(a) = V x JR invariant, and the restriction of each y 11' to V x JR is of the form
(y', y"), where y' is an isometry of V and y" is a translation of JR. The map y i-÷
defines a homomorphism from r to a finitely generated group of translations of JR.
Such a group of translations is isomorphic to Zm, for some m, so we have a surjective
homomorphism r ZflI. The image under of A is non-trivial, because
is non-trivial.

We compose with the projection of zm onto a suitable direct summand so as
to obtain a homomorphism : F —* Z such that is non-trivial. We then choose
a E A so that generates Let H0 = and note that H0 h fimte
index in F. The map (a) (sinc is
central) and A = A' x (a), where A' = A fl By induction on m (the rank of A)
we may assume that A' is a direct factor of a subgroup of finite index H' C
LetH=H'x(a). U

6.13 Remark. The first paragraph of the above proof establishes the following: if r
is any group of isometries of a CAT(O) space X such that every homomorphism
F —÷ JR is trivial, then the centre of r contains no hyperbolic elements.
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Clifford Translations and the Eucidean de Rham Factor

A simply connected complete Riemannian manifold of non-positive curvature admits
a canonical splitting M = N x 1E1z such that N cannot be further decomposed as a
Riemannian product with a Euclidean factor; the factor 1E1z is called the Eucidean
de Rham factor. In this section we construct a similar splitting for arbitrary CAT(O)
spaces.

6.14 Definition. An isometry y of a metric space X is called a Clifford translation
if is a constant function, i.e., Min(y) = X.

The pre-Hilbert space H constructed in the following theorem is the analogue
for CAT(O) spaces of the Euclidean de Rham factor in Riemannian geometry.

6.15 Theorem. Let X be a CAT(O) space.

(1) If y is a non-trivial Clifford translation of X, then X splits as a product X =
V x JR. andy(y, t)= (y, t+ Ii'I)for ally E Yand alIt ER.

(2) If X splits as a product X' x X", every Clifford translation of X preserves
this splitting and is the product of a Clifford translation of X' and a Clifford
translation of X".

(3) The Clifford translations form an abelian subgroup of the group of isometries
of X; let H denote this subgroup.

(4) The group H is naturally a pre-Hilbert space, where the norm of a Clifford
translation y is equal to its translation length IyI.

(5) If X is complete, then H is a Hilbert space.

(6) If the space H of Clifford translations is complete (in par/icular if it is finite
dimensional or X is complete), then X admits a splitting V x H such that, for
every y E Y, the subspace {y} x H is H.y, the orbit of y under the group H.

every isometry of X preserves this splitting.

Proof Part (1) is a special case of 6.8(4). To prove (2), we consider the foliation of
X by the axes of a non-trivial Clifford translation y. If these axes project to points in
X' then y is of the form (id, y"). Otherwise, the orthogonal projection of these axes
give a foliation of X' by geodesic lines that are parallel, if

x' the same line. We obtain a Clifford translation y' of X' by translating
each of these parallel geodesic lines a distance d(x'0, x'1) in the appropriate direction.
(The product decomposition theorem (2.14) ensures that this is an isometry.) In the
same way we obtain a Clifford translation y" of X" with = y"(x'1'). Now,
(y', y") is a Clifford translation of X whose action on the y-axis through is

the same as that of y, and therefore by (1) we have y = (y', y").
For (3) we consider two Clifford translations a and of X. If a is non-tnvial, then

X splits as a product V x R, and a is the product of the identity on V and a translation
Ta of JR. By (2), is the product of a Clifford translation of V and a translation
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of JR. Thus = is the Clifford translation (a', = V x JR. (Notice
that if is non-trivial, then by applying (1) to the action of on Y we get that X
splits as x E2, where a and project to the identity on Y' and translations of E2.)

(4) We first define the scalar multiplication giving the vector space structure on
the abelian group H of Clifford translations. Each non-trivial Clifford translation y
defines a splitting V x R ofX such that y(y, t) = (y, t + IyI). Given any A JR, the

map (y, t) (y, t+ AIyI) is again a Clifford translation of X, which we denote
A y to be the product of y by the scalar A, and claim that this defines a

vector space structure on H. The only non-trivial point to check is that A . (an) is the
composition of A . a and A . for all a, H and A E R. But this follows easily
from the parenthetical remark at the end of the preceding paragraph.

With the above definition of scalar multiplication, it is clear that the map which
assigns to each y H its translation length is a norm (the triangle inequality
being an immediate consequence of the triangle inequality in X). In order to complete
the proof of (4) we must show that this norm satisfies the parallelogram law. But the
parallelogram law only involves comparing two vectors, and so we may again use
the final sentence of the proof of (3) to reduce to the case X = 1E2, where the result
is clear.

(5) For any x E X and a E H, the map a a.x is an isometry of H onto H.x,
because d(a.x, = d(x, a Cauchy sequence
in H, then a Cauchy sequence in X. If we assume that X is complete, then
this sequence must have a limit point, which we denote by a.x. The map x a.x
is an isometry of X, moreover it is a Clifford translation, because for all x E X
we have d(x, a.x) = limd(x, a,1(x)) = lim And by construction, =
d(a.x, —* 0, as n —÷ This proves (5).

(6) Suppose that H is complete. Choose a base point xo E X Let p denote the
projection of X onto the closed convex set and let V be p We claim that the
map (y, a) i—÷ a.y is an isometry from V x H onto X. This map is surjective because,
given x X, its projection p(x) E is of the form ax0; we have p(a' .x) =
a'.p(x) = Xo, hence y := a'.x belongs toY and x = a.y. Consider E V
and a1, a2 E H and let a = we have to check that d(ai •Yi. a2.y2)2 =
d(y1 y2)2 + We can assume that a is not the identity, otherwise the is
obvious. Henceforth we work with the splitting V' x JR of X associated to a, as in (1).
Without loss of generality, we may assume that xj corresponds to the point (xe, 0);
thus V is contained in Y' = V' x {O}, and Yi Y2 correspond to the points 0)
and (y2, 0). Therefore, d(a1 Yl, a2.y2)2 = d(,yi, a y2)2 = d((yi, 0), al))2 =
d(y1, y2)2 + al2, as required.

Finally, let y be an isometry of X. For each x E X, H.x is the union of all axes of
Clifford translations passing through x. As y carries an axis of a Clifford translation a
onto an axis of the Clifford translation yay' ,we have y(H.x) = H(y.x). Therefore,
by 1.5.3(4), y preserves the splitting X = V x H LI

The next result indicates how Clifford translations may arise.
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6.16 Lemma. Let X be a complete CAT(O) space in which every geodesic can be
extended to geodesic line. If a group r acts cocompactly by isometries on X and
a E Isom(X) commutes with r, then a is a Clifford translation.

Proof The displacement function da is r-invariant, hence bounded because the
action of r is cocompact. The geodesic segment connecting any pair of distinct
points x, y E X can be extended to a geodesic line c : —* X The function
t i—÷ d(c(t), a c(t)) is convex and bounded, hence constant, so da(x) = day) for all
x,yEX.

The Group of Isometries of a Compact Metric Space
of Non-Positive Curvature

Let V be a compact metric space. In 1.8.7 we showed that Isom(Y) equipped with the
metric

d(a, a') = sup d(a.y, a'.y)
yEY

is a compact topological group. In this section we show that one can say considerably
more if V is non-positively curved.

If V is compact and non-positively curved, then by the Cartan-Hadamard theorem
(4 1), its universal covering is a proper CAT(O) space X. And we can think of V as
the quotient r'\X of X, where F is the fundamental group of V acting freely and
properly by isometries (as deck transformations) on X. in the following proof we
shall need the fact (proved in 1.8.6) that the group of isometries Isom(V) of V is
naturally isomorphic to the quotient N(r)/r, where N(F) is the normalizer of r in
Isom(X).

Recall (5.7) that a complete geodesic space V is said to have the geodesic extension
properly if every local isometry from a non-trivial compact interval of the real line
into V can be extended to a local isometry of the real line into V. If V has this
property then so does any covering space of it. Examples of non-positively curved
spaces which enjoy this property include closed topological manifolds and metric
simplicial complexes with no free faces (5.10).

6.17 Theorem. Let V be a compact connected metric space of non-positive curvature,
the quotient of the CAT(0) space X bya group r acting properly and freely on X by
isometries. (Thus F = ir1 V and X = Y) Suppose that V has the geodesic extension
properly. Then:

(1) The group Isom(V), equipped with the metric described above is a compact
topological group with a finite number of connected components.

(2) The connected component of the identily in Isom(V) is isomorphic to a torus —
the quotient by a lattice A of a finite dimensional Euclidean vector space H0,
which is a subspace of the Clifford translations of X.
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(3) In fact, H0 is isomorphic to the centralizer C(F) of F in !som(X) and A =
C(r') fl F is the centre of r.

(4) If the centre off = ir1 Y is trivial, then Isom(Y) is a finite group In general,
the centre ofF is a free abelian group whose rank is smaller than or equal to
the maximal dimension offlat subspaces of X.

Proof We showed in (6.16) that the centralizer C(F) of r in !som(X) consists entirely
of Clifford translations.

We wish to describe the component of the identity in Isom(Y). Because V is
compact and the covering map p : X —* V is a local isometry, we can choose e > 0

such that the restriction of p to every closed ball of radius c in X is an isometry onto
its image. Let ii be an isometry of V whose distance to the identity (in the metric
defined above) is equal to a < e. Then, there is a Clifford translation i of X of
norm a which is a lifting of V: the map sends each point x E X to the unique
point of the ball of radius e and centre x whose image under p is V(p(x)). The map
is clearly length-preserving, and hence is an isometry of X. Moreover it commutes
with every element of r, and hence is a Clifford translation. Indeed, for every x E X,
d(x, = d(p(x), is equal to a.

The group of Clifford translations of X which centralize r form a Hilbert sub-
space H0 of the Hilbert space H of all Clifford translations of X (cf. 6.15). As X is
locally compact, H is finite dimensional. The argument of the previous paragraph
shows that the natural homomorphism from C(F) = H0 to lsom(V) induced by
p sends the ball of radius c centred at 0 E H0 isometrically onto the ball of radius
e centred at the identity in Isom(V). A first consequence of this observation is that
the identity has a connected open neighbourhood in !som(V). In light of the fact that
Isom(V) is a compact topological group, this establishes (1). A second consequence
of this observation is that the homomorphism is a covering map from H0 onto
the connected component of the identity in !som(V); its kernel, C(F) fl F, must be a
lattice in C(F) = H0. This establishes parts (2) and (3) of the theorem. (4) follows
immediately from (3) and the fact that H0 is isometrically embedded in X (cf. 6.15).

U

6.18 Remarks
(1) In the preceding theorem, the hypothesis that Y has the geodesic extension

property is essential. (Consider for example the case of a compact ball in IE'1.)

(2) The preceding proof, like that of (1.8.6), is not valid for proper actions by
groups which have torsion. Let X be a CAT(O) space and suppose that r C !som(X)
acts properly and cocompactly. Let N(F) denote the normalizer of F in Isom(X). As
in (1.8.6), there is a natural homomorphism from N(F)/F to the isometry group of the
compact orbit space F\X, but in general this map is neither injective nor surjective
(Exercise: why not?). Note however that the image of N(F)/F in !som(r\X) is
closed, so with the induced topology N(F)/F becomes a compact topological group
(cf. 1.8 7).

For future reference we note an obvious consequence of (6.17).
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6.19 Corollary. Let X be a CAT(O) space with the geodesic extension properly and
suppose that F C Isom(X) acts properly and cocompactly. If F has a torsion-free
subgroup of finite index with trivial centre, then the centralizer of r in Isom(X) is
trivial.

Lemma 6 16 can be viewed as a special case of the following lemma which will
be needed in the proof of the Splitting Theorem (6.21) as well vanous points in later
chapters.

6.20 Lenuna. If X is a complete CAT(O) space with the geodesic extension properly,
and r is a group which acts cocompactly on X by isometries, then X contains no
r-invariant, closed, convex subsets other than X and the empty set.

Proof Let C be a non-empty F-invanant, closed, convex subset of X. Let ir denote
the orthogonal projection of X onto C. Since C is r-invanant, it contains a F orbit,
and since the action of F is cocompact there is a constant K such that every point
of X is within a distance K of C. This implies that in fact C itself is the whole of X,
for if there were a point x E X C then one could extend the geodesic [ir(x), x] to a
geodesic ray c : [0, oo) —÷ X such that d(c(t), C) = t for all t(because t i-÷ d(c(t), C)
is convex and d(c(t), C) = t for small t). LI

A Splitting Theorem

Splitting theorems of the following type were proved in the framework of Rieman-
man manifolds of non-positive curvature by D. Gromoll and J. Wolf [GW71] and
B. Lawson and S. Yau [LaY72] (see also Schroeder [5ch85]). A similar theorem
for CAT(O) spaces was proved by Claire Banbaud in her diplôme work [Bar93]. A
splitting theorem of a slightly different nature will be proved in Chapter 9.

6.21 Theorem. Let X be a CAT(O) space with the geodesic extension property.
Suppose that r = x r2 acts properly and cocompactly by isometries on X and
suppose that r satisfies one of the following

(1) r has finite centre and r1 is torsion free; or

(2) the abelianization of r is finite.

Then, X splits as a product of metric spaces X1 x X2 and F preserves the splitting;
the action of F = x on X = X1 x X2 is the product action and F\X =

x

6.22 Corollary. Let V be a compact geodesic space of non-positive curvature that
has the geodesic extension properly. Assume that the fundamental group of V splits
as a product r = F1 x r2 and that F has trivial center Then V splits as a product
V1 x V2 such that the fundamental group of V, is F,, i = 1, 2.
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We shall deduce Theorem 6.21 from the following more technical result

6.23 Proposition. Let X be a CAT(O) space with the geodesic extension properly.
Suppose that F = Fi x F2 acts properly and cocompactly on X. if the action ofFi on
the closed convex hull C of one of its orbits is cocompact, then X splits as a product
of metric spaces Xi x X2 and r preserves the splitting. Moreovei the subspaces of
the form X1 x {x2} are precisely the closed convex hulls of the r1 -orbits

Proof We shall present the proof of the proposition in several steps. Let E be the set
of closed, convex, non-empty, subspaces of X, and let JV' be the subset
of E consisting of those subspaces which are minimal with respect to inclusion. Note
that since a non-empty intersection of subspaces in E is again in E, the members of
JV' are disjoint. Note also that each member of JV' is the closed convex hull of some
r1-orbit C(ri.x).

Claim 1. JV' is non-empty.

Let C be as in the proposition and let K be a compact set such that r1 .K = C.

Every F1 -invariant closed, convex, non-empty subspace of C intersects K, so the
intersection of a decreasing sequence of such subspaces has a non-empty intersection
with K; such an intersection is again in E. Therefore we may apply Zorn's lemma to
deduce the existence of a minimal, closed, convex, r1 -invariant subset in C.

Given C1, C2 E .N', let p, X —* C denote the projection of X onto C1 and let
d= C2) := x2) IxiE C1, x2 C2)

Claim 2. There is a unique isometry j of C1 x [0, d] onto the convex hull of
C1 U C2 such thatj(x, 0) = x andj(x, d) = p2(x).

The function dc1 x d(x, which is convex and r1 -invariant, must be
constant on C2, because if there were points x, y E C2 such that (x) (y) then
{z C2 dc1 (z) (x)} would be a closed, convex, proper subspace
of C2, contradicting the minimality of C2. Apply 2.12 (2).

Claim 3. For every x E X there exists a unique E JV' such that x In fact,
= .x), the closed convex hull of the r1 -orbit of x

The uniqueness of is obvious because distinct elements of JV' are disjoint. And
if x E then Fi.x C and hence C(r1.x) = because is minimal

Let X' = U{C1 I C, E .N'}. To establish the existence of it is enough to show
that X' is a closed, convex, r-invai-iant subspace of X (see 6.20).

We first prove that X' is F-invariant. Each C E JV' is Given C =
E JV' and r2, we have y2.C C(y2Fi.x) = a closed,

convex, ri-invariant subspace of X. And if C' C .y2x) were a smaller such
subspace then C' C C would contradict the minimality of C. Thus E JV'.

Claim 2 implies that X' is convex.
To prove that X' is closed, we consider a point x E X and a sequence of

points E X' converging to x. Passing to a subsequence we may assume that
< I /2's. Let C,1 be the element of Jsf containing let : X —÷

be the orthogonal projection, and let be the restriction to C1 of the composition
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P,zP,i—I •. . p2. Note that for any z E C1, the sequence is a Cauchy sequence
because < d(C,, < d(x,, 1/2hz_1.

Since X is complete, the sequence of maps : C1 —* X converges.
The limit P : C1 —* X is a isometry of C1 onto its image, which is
therefore closed, convex and The minimality of C1 implies that P(Ci)
is also minimal, hence E JV'.

It remains to show that x E P(Ci). Let Z,j E C1 be such that = Then,
x) < x) = x) < x),

which tends to 0 as n —* Thus x lies in the closure of P(C1), hence in P(Ci).

Claim 4. If C1, C2, C3 .N', and if p, X —÷ C, denotes projection onto C1, then

pi
If each C1 is a single point (the case where F1 is finite) then the claim is trivial. If

not, then each point x E C3 lies on a non-trivial geodesic path in C3. By hypothesis
this can be extended to a geodesic line c(IR) in X. It follows from Claim 2 that c(IR)
cannot intersect any member of JV' other than C3 and hence, by Claim 3, c(IR) C C3.
The present claim then follows by application of (2.15) to the parallel geodesic lines
c(IR), p' c(IR) and p2c(IR).

Fix X —÷ X1 be orthogonal projection. It is Fi-equivariant. Let
X2 denote the metric space (.N', d), where d(C, C') = inf{d(x, x')

I
x E C, x' C').

Given x E X, let E .N' be as in Claim 3.
By restriction to X1 we get an action of F1 on X1 The action of on X2 is trivial.

There is an isometric action of r2 on X2 by Y2 = According to Claims 2
and 4, x defines an action of ['2 on X1 commuting with the action of r,
and by Claim 2 this action is by isometries. Thus we obtain an action of r on Xi x
by isometries

Claim 5. The map X —÷ Xi x X2 given by x (p(x), is a F-equivariant
isometry

The map is by construction.
Given x, x' E X, let p' be projection onto By applying Claim 2 twice and

then applying Claim 4, we see that X —÷ X1 x X2 is an isometry:

d(x, x')2 = d(x, p'(x'))2 +

= d(p(x), pp'(x'))2 +

= d(p(x),p(x'))2

It is clear from the construction of X1 x X2 that the action of r on it has the
properties stated in the proposition LI

We now turn to the proof of Theorem 6.21.

Proof of Theorem 6.21(1). We first prove that hypothesis (6.21(1)) is sufficient to
guarantee that the hypothesis of Proposition 6.23 holds. This follows from the next
lemma, which can be found in [GW7I] and [ChEb75ll.
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6.24 Lemma. Let X be a proper CAT(O) space. Let F = F1 x F2 be a group acting
properly on X by isometries, and suppose that the centre of I'2 is finite. Let C C X
be a closed, convex, F1 -invariant subspace and suppose that there exists a compact
subset K c X such that C C F.K. Then there is a compact subset K' C C such that
C =

Proof Assuming that there is no compact subspace K' such that C(F1 K) = F1 .K',
we shall construct below a sequence of distinct elements e I'2 such that, for any

e F2, the family of displacement functions is uniformly bounded on K. As
F acts properly on X, this implies that the subset c F2 is finite. Hence we
may pass to a subsequence and assume that all of the are equal. Applying
this argument as ranges over a finite generating set for I'2 (cf. 1.8.10), we obtain a
sequence of distinct elements such that = for every E F2 and
all n, m e N. But then we would have an infinite number of elements in the
centre of F2, which is supposed to be finite.

To construct the sequence first note that if the desired K' does not exist
then one can find a sequence of points in C such that F1 .K) —* cx. Choose
f3,, e F2 so that e Fi .K. Then (K), K) > (K), C(F1 .K)) >

C(F1 .K)) — diam(K). Hence, after passing to a subsequence, we may assume
that all of the elements are distinct.

It remains to check that, for any e I'2, the family of displacement functions
is uniformly bounded on K. Observe that the displacement function (which

is convex) is constant on the orbits of F1 because commutes with Fi; if r is the
maximum of on K, then the set of points where is not bigger than r is a
closed, convex, F1-invanant subspace containing F1 .K and hence C. Therefore is

bounded by r on C(F1 .K). As = r, for any x e K we have

(x) <r + 2 diam(K).

Indeed if e F1 is such that e K, then

.x, x)

+ + x)

= .x, + + x)

<diam(K) + r + diam(K).

0

Applying 6.23, we get a splitting X1 x X2 of X preserved by the action of F, the
action of F1 being trivial on X2. It remains to show that the action of F2 on the first
factor X1 is also tnvial. To see this we apply Corollary 6.18. As F1 is assumed to be
torsion free and as it acts properly on X1, it acts freely on X1. The centre of F1 is
assumed to be finite and torsion free, hence trivial, so by (6.18) the centralizer of Fi
in Isom(X1) is trivial. As each element of F2 commutes with F1, it follows that the
action of F2 on X1 is trivial.
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Proof of Theorem 6.21(2). We wish to apply (6.23). In order to do so, we shall prove
by induction on the maximum dimension of flats in X that F1 acts cocompactly on
the closed convex hull of each F1 -orbit in X. If the centre of F is finite then we can
apply (6.24). As we remarked in (6.13), because F1 has finite abelianization it has
no elements of infinite order in its centre, so if the centre of F (which is a finitely
generated abelian group) is infinite then there exists an element of infinite order y
in the centre of F2. Such a y is a Clifford translation (6 16), so we get a F-invariant
splitting X = Y x where y acts trivially on Y and F acts by translations on the
second factor Because the abelianization of F1 is finite, its action on the second
factor is trivial; in particular, every F1-orbit in X is contained in some slice Y x {t}.
Applying our inductive hypothesis to the action of F/( y) = Fi x F2/( y) on Y we
deduce that the action of i on the closed convex hull of each of its orbits in Y (and
hence X) is cocompact.

In order to complete the proof we must show that the action of F2 on Xi arising
from (6.23) is trivial. For this it suffices to show that for every Y2 e F2 there exists a
F1 -orbit x in X with closed convex hull 1.x) such that, if p : X —÷ C(F1 .x) is
the orthogonal projection then py2 restricts to the identity on C(F1 .x). If y2 is elliptic
then its action on the closed convex hull of any orbit in Min(y2) is trivial, so we
choose x e Min(y2). If Y2 is hyperbolic, then we consider Min(y2) with its splitting
Y' x as in (6.8(4)). (Recall that the action of y2 on Y' is trivial.) As F1 commutes
with it preserves Min(y2) and its splitting. As the abelianization of F1 is finite,
its action on the second factor is trivial, so each F i-orbit in Min(y2) is contained in a
slice Y' x {t} If p is the projection onto such an orbit, then is the identity, because
the action of Y2 on Y' is trivial. D

6.25 Exercises
(1) Let F be the fundamental group of a closed surface of positive genus. Construct

a proper cocompact action of F x Z on ]H12 x R with the property that F does not act
cocompactly on the convex hull of any of its orbits (Hint: Observe that there exist
non-trivial homomorphisms F —* Z via which F acts on lit Combine such an action
with a cocompact action of F on ]H12 and consider the diagonal action on ]H12 x
Extend this to a cocompact action of F x Z.)

(2) Show that the hypotheses of (6 21(1)) can be weakened to: the centre of F is
finite and F1 modulo its centre has a torsion-free subgroup of finite index.

(3) Let X be a proper CAT(O) space with the geodesic extension property. Let
F be a group acting by isometries on X such that the closure in X of the F-orbit
of a point of X contains the whole of 8X (notation of Chapter 8) Suppose that no
point of 8X is fixed by all the elements of F. If F splits as a product F1 x F2, prove
there is a splitting X = X1 x X2 such that if y = (yi, Y2) and x = (xi, x2), then
y.(xi, x2) = (yi, x2). (cf. Schroeder [5ch85].)
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This is the first of a number of chapters in which we study the subgroup structure
of groups I' that act properly by semi-simple isometries on CAT(O) spaces X. In this
chapter our focus will be on the abelian subgroups of I'. The Flat Torus Theorem
(7.1) shows that the structure of such subgroups is faithfully reflected in the geometry
of the flat subspaces in X. One important consequence of this fact is the Solvable
Subgroup Theorem (7.8): if I' acts properly and cocompactly by isometries on a
CAT(O) space, then every solvable subgroup of F is finitely generated and virtually
abelian. In addition to algebraic results of this kind, we shall also present some
topological consequences of the Flat Torus Theorem.

Both the Flat Torus Theorem and the Solvable Subgroup Theorem were dis-
covered in the setting of smooth manifolds by Gromoll and Wolf [GW7 1] and,
independently, by Lawson and Yau [LaY72]. Our proofs are quite different to the
original ones.

Throughout this chapter we shall work primarily with proper actions by semi-
simple isometries rather than cocompact actions Working in this generality has a
number of advantages: besides the obvious benefit of affording more general results,
one can exploit the fact that when restricting an action to a subgroup one again obtains
an action of the same type (In particular this facilitates induction arguments.)

The FJat Torus Theorem

Recall that, given a group of isometries I', we write Min(I') for the set of points
which are moved the minimal distance y e I'.

7.1 Flat Torus Theorem. Let A be a free abelian group of rank n acting properly
by semi-simple isometries on a CAT(O) space X. Then:

(1) Min(A) = Min(a) is non-empty and splits as a product Y x EPZ.

(2) Every element a E A leaves Min(A) invariant and respects the product decom-
position; a acts as the identiiy on the first factor Y and as a translation on the
second factor E'1.

(3) The quotient of each n-flat {y} x EPZ by the action of A is an n-torus.
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(4) If an isometry of X normalizes A, then it leaves Min(A) invariant and preserves
the product decomposition.

(5) If a subgroup F c Isom(X) normalizes A, then a subgroup of finite index in
F centralizes A. Moreover; if F is finitely generated, then F has a subgroup of
finite index that contains A as a direct

Proof We shall prove parts (1), (2) and (3) by induction on the rank of A. As the
action of A is proper and by semi-simple isometries, each non-trivial element of A
is a hyperbolic isometry. Suppose that A Z" and choose generators a1
We have seen (6.8) that Min(ai) splits as Z x E' where a1 acts trivially on the
first factor and acts as a translation of amplitude a1 on the second factor. Every
a e A commutes with ai and therefore preserves the subspace Z x with its
decomposition, acting by translation on the factor (see (6.8)).

We claim that the subgroup N C A formed by the elements a e A which act
trivially on the factor Z is simply the subgroup of A generated by To see this,
note that N, which is free abelian, acts properly on each line {y} x IE' by translation,
hence it is cyclic; and since e N is primitive in A, it must generate N.

The free abelian group A0 = A/N is of rank n 1. Its action on Z is proper
(6.10(4)) and by semi-simple isometries (6.9). As Z is a convex subspace of X, it
is a CAT(O) space, so by induction Min(Ao) C Z splits as Y x Es_I, where A0 acts
trivially on Y and acts by translations on with quotient an (n — 1)-torus. Thus
Min(A) = Y x x 1E1 = Y x and (1), (2) and (3) hold.

If an isometry y normalizes A, then it obviously preserves Min(A); we claim that
it also preserves its product decomposition. Indeed y maps A-orbits onto A-orbits,
and therefore maps the convex hull of each A-orbit onto the convex hull of an A-orbit;
and it follows from (3) that the convex hull of the A-orbits of points of Min(A) are
the n-flats {y} x EPZ, y e Y. This proves (4).

It also follows from (3) that for any number r there are only finitely many elements
a e A with translation length Pal = r. But y e Isom(X), so
if F C Isom(X) normalizes A, then the image of the homomorphism F —* Aut(A)
given by conjugation must be finite (because the number of possible images for each
basis element a, e A is finite). The kernel of this homomorphism is a subgroup of
finite index in F and its elements centralize A. 1fF is finitely generated then (6.12)
tells us that there exists a further subgroup of finite index which contains A as a direct
factor. This proves (5). D

We generalize the Flat Torus Theorem to the case of virtually abelian groups. (A
group is said to virtually satisfy a property if it has a subgroup of finite index that
satisfies that property.)

7.2 Corollary. Let F be a finitely generated group which acts properly by semi-
simple isometries on a complete CAT(0) space X. Suppose that F contains a subgroup
of finite index that is free abelian of rank n. Then:

(1) X a F-invariant closed convex subspace isometric to a product Y x EPZ.
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(2) The action of F preserves the product structure on Y x IEPZ, acting as the identity
on the first factor; and acting cocompactly on the second.

(3) Any isometry of X which normalizes F preserves Y x and its splitting.

Proof Let A0 be a subgroup of finite index in F. Because F is finitely generated,
it contains only finitely many subgroups of index F/A0 p. Let A be the intersection
of all of these subgroups. Note that A is a characteristic subgroup of finite index in
F, that is, = A for all E Aut(F). In particular, if a e Isom(X) normalizes F,
then it also normalizes A. As A is of finite index in A0, it is also isomorphic to

Z a closed convex subspace
of X; A acts trivially on the first factor, and cocompactly by translations on the
second factor. Because A C F is normal, F acts by isometries of Min(A), preserving
the splitting (7.1(4)). Thus we obtain an induced action of the finite group F/A on
the complete CAT(O) space Z. According to (2.8), the fixed point set for this action
is a non-empty, closed, convex subset of Z; call this subset Y

By construction Y x is F-invariant and the action of F on the first factor is
trivial. Since the action of A on each flat {y} x is cocompact, the action of F on
each {y} x is also cocompact.

To prove (3), one first notes that Y x EPZ is preserved by any isometry of X that
normalizes F, because (as we observed above) the normalizer of F in Isom(X) is
contained in the normalizer of A. Assertion (3) then follows, as in (7.1), from the
fact that the flats fy} x are precisely those subsets of Y x IE'1 that arise as convex
hulls of F-orbits. D

7.3 Remarks
(1) The invariant subspace Y x EPZ constructed in the preceding corollary contains

Min(F), but in general it is not equal to Min(F). For example, consider the standard
action of the Klein bottle group I' = (a, p = on the Euclidean plane:
the action of a is a translation of norm 1 followed by a reflection about an axis of
this translation; acts as a Clifford translation whose axis is orthogonal to that of a.

In this case, the invariant subspace yielded by Corollary 7.2 is the whole of the
plane, while Min(F) is empty.

(2) (Bieberbach Theorem) A finitely generated group F acts properly and co-
compactly by isometries on EPZ if and only if F contains a subgroup A ZFZ of finite
index. In the light of the preceding corollary and (6.5), in order to prove the 'if'
direction in this statement it suffices to get F to act properly by isometries on for
some d. To produce such an action, one fixes a proper action of A by translations on
EPZ and considers the quotient X of F x by the relation [(ya, x) (y, a.x) for all
x e and a e A]. Let m = F/A p. There is a natural identification of ErnPZ with the
set of sections of the projection X —÷ F/A, and the natural action of F on the set of
sections gives a proper action by isometries on

See section 4.2 of [Thu97] for an elegant account of the discrete isometry groups
of lEn
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Cocompact Actions and the Solvable Subgroup Theorem

The main goal of this paragraph is to prove that if a group F acts properly and
cocompactly by isometries on a CAT(O) space then all of its solvable subgroups are
finitely generated and virtually abelian. First we show that abelian subgroups of F
are finitely generated and satisfy the ascending chain condition. For this we need the
following geometric observation. Recall that a metric space Xis said to be cocompact
if there exists a compact subset K c X whose translates by Isom(X) cover X.

7.4 Lemma. If a proper CAT(O) space X is cocompact, then there is a bound on the
dimension of isometrically embedded flat subspaces X.

Proof We fix xo e X and choose r sufficiently large to ensure that the translates of
the ball B(xo, r) by Isom(X) cover X. As B(xo, 2r) is compact, it can be covered by
a finite number N of balls B, of radius r/2. If there is a flat subspace of dimension
p in X, then we can translate it by the action of Isom(X) so as to obtain a convex
subspace D1!, c B(xo, 2r) isometric to a Euclidean ball of dimension p and radius r.
An orthonomial frame at the centre of D1!, gives 2p points on the boundary of D1!,,
each pair of which are a distance at least apart. Each of these points is contained
in a different ball B, of our chosen covering of B(xo, 2r). Therefore 2p <N. Lii

If A is an abelian group, then its rank rkQA is, by definition, the dimension of
the Q-vector space A ® Q. In other words, rkQA is the greatest integer n such that A
contains a subgroup isomorphic to

7.5 Theorem (Ascending Chain Condition). Let Hi c H2 c be an ascending
chain of virtually abelian subgroups in a group F. If IT acts properly and cocompactly
by isometries on a CAT(O) space, then = for sufficiently large n.

7.6 Corollary. If a group F acts properly and cocompactly by isometries on a CAT(O)
space, then every abelian subgroup ofF is finitely generated.

Proof of the corollary. If A c F is not finitely generated then there exists a sequence
of elements a1, a2,... such that, for all n > 0, the subgroup generated by
{ai does not contain Thus we obtain a strictly ascending chain of
subgroupsHi D

Proof of the theorem. The proof of the corollary shows that if there were a strictly
ascending chain of virtually abelian subgroups in F then there would be a strictly
ascending chain of finitely generated virtually abelian subgroups. Thus we may
assume that the H, are finitely generated.

LetX be a CAT(0) space on which F acts properly and cocompactly by isometries.
The existence of a proper cocompact group action implies that X is proper (1.8.4)
and that each element of F acts on X as a semi-simple isometry (6.10). Lemma 7.4
gives a bound on the rank of flat subspaces in X, so it follows from the Flat Torus
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Theorem (7.1) that there is a bound on the rank of the abelian subgroups in F. Thus,
without loss of generality, we may assume that there is an integer n such that each
H, contains a finite-index subgroup A c H, isomorphic to

If n = 0, the groups H1 are finite, and by (2.8) there is a bound on the orders of
finite subgroups in F.

Consider the case n > 0. We claim that A1 has finite index in each H1. To see
this, consider the action ofAi on H by left translation and the induced action ofA1
on the finite set H1/A,. The stabilizer B c A1 of the coset A, is contained in Since
B, has finite index in A1, it has rank n, therefore it has finite index in A, and hence
in H,.

To complete the proof we must show that the index of A1 in I-I, is bounded
independent of i. By the Flat Torus Theorem (7.1), the convex subspace Min(A1) splits
isometrically as Y x EPZ, and A1 acts trivially on Y and cocompactly by translations
on E'1. According to (7.2), for each i there is a convex subspace Y, of Y such that H1
preserves Y1 x with its product structure and acts trivially on the factor Y1.

As the action of F on X is proper and cocompact, for each R > 0, there is an
integer NR such that, for every x e X, the set ft e F y.x e B(x, R)} has cardinality
less than NR. We can choose R big enough so that in the action ofA1 on the second
factor of Y x IEPZ, the orbit of any ball of radius R covers EPZ. Then, given h E H1 and
x e Y, x {O}, we can find an element a e A1 such that d(x, ah(x)) < R. It follows
that the index of in each H, is bounded by NR, which is independent of i. D

7.7 Remarks
(1) If X is a complete simply-connected Riemannian manifold of non-positive

curvature, then every abelian subgroup of Isom(X) either contains an element of
infinite order or else it is finite. Indeed, one can easily show that the set of points
fixed by any group of isometz-ies of X is a complete geodesically convex submanifold,
and this allows one to argue by induction on the dimension of the fixed point sets of
the elements of F (see [ChEb7S] and [BaGS8S]).

A similar induction can be used to show that any abelian subgroup of Isom(X)
which acts properly by semi-simple isometrics is finitely generated. The analogous
statements are not true for proper CAT(O) spaces in general (see (7.11) and (7.15)).

(2) In the preceding theorem one can replace the hypothesis that the action of F
on X is cocompact by the following assumptions: (i) the action of F is proper and
by semi-simple isometries; (ii) there is a bound on the dimension of flat subspaces
in X; (iii) the set of translation numbers y e F} is discrete at zero; and (iv)
there is a bound on the order of finite subgroups in F.

The examples given in (7.11) and (7.15) show that each of these conditions is
necessary. Torsion-free groups acting by cellular isometries on Ms-complexes Kwith
Shapes(K) finite satisfy all of these conditions.

Recall that the n-th derived subgroup of a group G is defined recursively by
= G and Q(n+ I) = where the square brackets denote the commutator

subgroup. G is said to be solvable of denved length n if n is the least integer such
that = {1}.



Cocompact Actions and the Solvable Subgroup Theorem 249

7.8 Solvable Subgroup Theorem. If the group F acts properly and cocompactly
by isometries on a CAT(O) space X, then every virtually solvable subgroup S C F is
finitely generated and contains an abelian subgroup of finite index. (And the action
of S on X is as described in Corollary 7.2.)

Proof Any countable group can be written as an ascending union of its finitely
generated subgroups, so in the light of the preceding result it is enough to consider
the case where S is finitely generated and solvable. Arguing by induction on the
derived length of 5, we may assume that the commutator subgroup = [5, 5] is
finitely generated and virtually abelian. As in the proof of (7.2), we choose a free
abelian subgroup A that has finite index in and is characteristic in 5w, hence

normal in S.
By applying (7.1(5)) we obtain a subgroup So of finite index in S that contains

A as a direct factor. The commutator subgroup of So has trivial intersection with A,
and hence injects into the finite group The following lemma completes the
proof. Lii

7.9 Lemma. Ifa finitely generated group F has a finite commutator subgroup, then
F has an abelian subgroup of finite index.

Proof The action of F by conjugation on [F, F] gives a homomorphism from F to
the finite group Aut([F, F]). Let F1 c F denote the kernel of this map and notice
that = h all e F1

n [F, is central in g F1

But this implies that the finitely generated abelian group F1/Z(F1) is torsion, hence
finite. Thus F1 (and hence F) is virtually abelian. LI)

7.10 Remarks
(1) The hypotheses of the Solvable Subgroup Theorem can be relaxed as in-

dicated in (7.7(2)) In particular, if F acts freely by semi-simple isometries on an
Ms-polyhedral complex K with Shapes(K) finite, then every solvable subgroup of F
is finitely generated and virtually abelian.

(2) LetH be a group that acts properly and cocompactly by isometnes on a CAT(0)
space and let F be a non-uniform, irreducible, lattice in a semi-simple Lie group of real
rank at least two that has no compact factors. Such lattices have solvable subgroups
that are not virtually abelian (see [Mar90]), so by the Solvable Subgroup Theorem, the
kernel of any homomorphism 0 F —÷ H must be infinite. The Kazhdan-Margulis
Finiteness Theorem ([Zim84] 8.1.2) states that every normal subgroup of F is either
finite or of finite index. Thus the image of 0 must be finite.
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Proper Actions That Are Not Cocompact

Our first goal in this section is to examine how (7.5) can fail when the action is
not cocompact. We begin with a construction which shows that if G is a countable
abelian group all of whose elements have finite order, then G admits a proper action
on a proper CAT(O) space (a metric simplicial tree in fact). We shall then describe
how this construction can be modified to yield proper actions by infinitely generated
abelian groups such as Q. In each case the action has the property that Min(G) is
empty.

7.11 Example: Infinite Torsion Groups. Let G be a group which is the union of
a strictly increasing sequence of finite subgroups { 1} = Go C G1 C G2 C
Note that G can be taken to be any countably infinite abelian group that has no
elements of infinite order. (The reader may find it helpful to keep in mind the example

Let X be the quotient of G x [0, cc) by the equivalence relation which identifies
(g, t) with (g', 1') if g'g' e G and t = 1' i. Let [g, t] denote the equivalence
class of (g, t). We endow X with the unique length metric such that each of the maps

i-÷ [g, t] from [0, oc) into X is an isometi-y. With this metric, X becomes a metric
simplicial tree whose vertices are the points [g, i], where g e G, i e Z.

The action of G on G x [0, oc) by left translation on the first factor and the
identity on the second factor induces an action of G by isometries on X. This action
is proper. Indeed, if we denote by 18(i) the interval which is the union of points [g, t]
with I — 3/4 < t < I + 3/4, then g'(!g(i)) fl 0 if and only if g' belongs to the
finite subgroup G,. Each element g e G, is an elliptic isometry, fixing in particular
those points [1, t] with t ? i. Finally, we note that the map [g, t] i-÷ t induces an
isometry from the quotient space G\X onto [0, cc).

7.12 Exercises
(1) Let X be a metric simplicial tree with all edges of length 1 Suppose that

each vertex of X has valence at most m. Let Tm be the regular tree in which each
vertex has valence m and each edge has length 1. Prove that there exists an injective
homomorphism 0 : Isom(X) —÷ and a 0-equivariant isometric embedding
X '-*

(2) Deduce that there exist proper CAT(O) spaces Y such that Isom(Y) contains
subgroups that act properly and cocompactly on Y and also contains abelian sub-
groups that act properly on Y by semi-simple isometries but are not finitely generated
(Hint: The free group of rank m acts freely and cocompactly by isometries on
The construction of(7 11) with produces a tree of bounded valence.)

We shall need the following (easy) fact in the course of the next example.

(3) Consider two actions G —÷ Isom(X) and W: G —÷ Isom(Y) of an abstract
group G on metric spaces X and Y. Suppose that the induced action of G/ ker on
X is proper and the restricted action is proper. Show that the diagonal action
g i-÷ W(g)) of G on X x Y is proper.



Proper Actions That Are Not Cocompact 251

7.13 Example: Infinitely Generated Abelian Groups. We describe a proper action
of Q, the additive group of rational numbers, by semi-simple isometries on a proper
2-dimensional CAT(O) space (the product of a simplicial tree and a line in fact).

Q acts by translations on the line E' in the obvious way (the action is not proper
of course). Q/Z is a countable abelian group with no elements of infinite order,
so by the preceding example it acts properly on a simplicial tree X. According
to the preceding exercise, the diagonal action of Q on X x (via the obvious
homomorphism Q —÷ Q/Z x Q) is a proper action. This action is by semi-simple
isometries. Note that X x 1E1 is proper

In exactly the same way, we can combine the natural action of Q'1 by translations
on with a proper action of the torsion group on a tree to obtain a proper
action of by semi-simple isometnes on a proper CAT(O) space of dimension n + I
(the product of and a tree in fact). The following lemma shows that the dimension
of this example is optimal.

7.14 Lemma. Suppose that the group F acts properly by semi-simple isometries on
a proper CAT(O) space X and suppose that F contains a normal subgroup A

If X does not contain an isometrically embedded copy of [0, oc) x then A has
finite index in F

Proof By the Flat Torus Theorem, Min(A) splits as Y x EPZ and F preserves Min(A)
and its splitting. Let N c F be the subgroup consisting of elements which act trivially
on Y. Note that N contains A. Since the action of N on each of the flats {y} x is

proper and the action of A is cocompact, A must have finite index in N.
Y (with the metric induced from X) is a proper CAT(0) space, so it is either

bounded or else it contains a geodesic ray; we are assuming that X does not contain
a copy of [0, oc) x E", so Y must be bounded. Therefore, since the action ofF/N on
Y is proper (6.10(4)), F/N and hence F/A must be finite. Lii

The following exercise gives a more explicit description of a proper action of
Q that can be constructed by the above method, and describes the quotient space
(which is a piecewise Euclidean 2-complex of finite area).

7.15 Exercises
(1) A Non-Positively Curved 2-complex K with K = Q

The 1-skeleton of K consists of a half-line [0, oc) with vertices Vn at the integer
points, together with countably many oriented 1-cells where has length
1/n! and has both of its endpoints attached to Vn. For every non-negative integer n we
attach a en to K, where is metrized as a rectangle with sides of length 1/n!
and 1. We orient the boundary of en and describe the attaching map reading around
the boundary in the positive direction: the side of length 1/n! traces across En in the
direction of its orientation, beginning at v,1, then a side of length I runs along [0, oc),
joining to the side of length 1/n! traces (n + 1) times around Sn+I in the
direction opposite to its orientation, and finally the remaining side of length 1 runs
back along [0, oc) to
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Note that the 2-cell has area 1/n!, and hence K has total area e = 2 . 71

(a) Prove that yr1K = Q.

(b) Prove that when endowed with the induced length metric, the universal cover
of K is a proper CAT(O) space and the action of 7r1K = Q on it by deck
transformations is a proper action by semi-simple isometries.

(c) Prove that the action of Q is precisely that which one obtains by applying the
construction of (7.13) with Q/Z expressed as the union of the finite cyclic
groups G,L = (x,L

I
1), where G,L G,L+I by X?,

(2) In contrast, prove that if a group G acts freely on a non-positively curved
Mi-complex K by cellular isometnes, and if Shapes(K) is finite, then every abelian
subgroup of G is finitely generated. (This is a matter of venfying the remarks that
we made in 7.7(2). You will need to use 6.6(2).)

Polycyclic Groups

One would like to weaken the hypotheses of the Solvable Subgroup Theorem so
as to allow proper actions which are not cocompact. The preceding examples show
that in order to do so one must contend with the possible presence of infinitely
generated abelian groups. On the other hand, in some situations (e.g., when one is
considenng actions on Riemannian manifolds) one knows that the groups at hand
do not contain infinitely generated abelian subgroups. If the abelian subgroups of a
solvable group are finitely generated (as the case with finitely generated nilpotent
groups for example) then the group is polycyclic (see [5eg85]). Polycyclic groups
were defined following ([.8 39).

7.16 Theorem. A polycyclic group r acts properly by semi-simple isometries on a
complete CAT(O) space if and only if F is virtually abelian.

Proof For the "if" assertion, see (7.3(2)). To prove the "only if" assertion we argue
by induction on the Hirsch length of F This reduces us to consideration of the
case r = H with H finitely generated and virtually abelian. As in the proof
of (7.2), we can choose a free abelian subgroup A C H that has finite index and
is charactenstic in H (hence normal in F). According to 7.1(5), the abelian group
A x has finite index in r. Li

The preceding proof relied on an appeal to 7.1(5) which is underpinned by the
following observation: the translation numbers for the elements of a free abelian
group A acting properly by semi-simple isometries on a CAT(O) space X can be seen
by looking at the action of A on a flat subspace X which has quotient an
n-torus. We close this section with a lemma and some exercises that hint at the wider
utility of this observation.
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7.17 Lemma. Let X be a complete CAT(O) space, and let F Z?L be a group which
acts properly on X by semi-simple isometries.

(1) The translation length function y i—f y is the restriction to F of a norm on
r ® R R?L, and this norm satisfies the parallelogram law (i.e., arises from a
scalar product).

(2) If S c r is a subset with the property that there does not exist any scalar
product on r ® R W such that (s

I
s) = (s'

I
s')for alls, s' E S. then S does

not lie in a single conjugacy class ofthe full isometry group Isom(X)

(3) Let G be an abstract group with afree abelian subgroup G' IfS c G'
is a subset with the property that there does not exist any scalar product on

® R R?L such that(s
I

s) = (s'
I

s') for all 5, S1 E S, and ifS lies in a
single conjugacy class of G, then there does not exist a proper action of G by
semi-simple isometries on any complete CAT(O) space.

Proof According to the Flat Torus Theorem (7.1), F acts by Clifford translations on
the complete CAT(O) space Min(r) = Y x The map ofF into HMIfl(r), the group
of Clifford transformations of Min(r), extends in the obvious (linear) way to give
an injection r ® R HMIfl(r). The norm a i—f a on HMIfl(r) makes it a pre-Hilbert
space (6.15). This proves (1).

Part (2) follows immediately from (1) and the fact that translation length is
preserved under conjugation (3) follows immediately from (2). 0

It is easy to construct sets S as in part (3) of the preceding lemma. Any infinite
subset of Z?L has the appropnate property, as do many finite sets, for example any set
which meets a coset of a cyclic subgroup in more than two points

7.18 Exercises
(1) Let X be a complete CAT(O) space. Prove that if an abelian subgroup r C

Isom(X) acts properly by semi-simple isometries, then the intersection of r with
each conjugacy class of Isom(X) is finite.

(2) Let F be the free group on {a, b, c} and let be the automorphism of F
given by = a, = ba, = ca2. Prove that the group r = F
which has presentation (a, b, c, t tar' = a, tbr' = ba, = ca2), cannot act
properly by semi-simple isometries on any complete CAT(O) space. (Hint: Note that
a, t generate a free abelian subgroup of r and apply part (3) of the above lemma to
the setS = {t, at, a2t}.)

The example in (7.18(2)) is due to S.M. Gersten [Ger94]. He used the above
example to show that the outer automorphism group of any free group of rank at
least 4 cannot act properly and cocompactly by isometries on any complete CAT(O)
space. (A different argument shows that Out(F3) does not admit such an action either
[BriV95].)
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Actions That Are Not Proper

The following version of the Flat Torus Theorem can be applied to actions which are
not proper.

7.19 Leimna. 1fF is an abelian group acting by isometries on a complete CAT(O)
space, then the set of elements of r that act as elliptic isometries is a subgroup.

Proof Because they commute, if y, y' E rare semi-simple then Min(y) and Min(y')
intersect (6.2). If y and y' are elliptic then yy' fixes Min(y) fl Min(y') pointwise.

U

7.20 Theorem. Let F be a finitely generated abelian group acting by semi-simple
isometries on a complete CAT(O) space X. (The action of r need not be proper)

(1) Min(r) : Y x

(2) Every y E r leaves Min(r) invariant and respects the product structure; y
acts as the identity on the first factor Y and acts by translation on the second
factor n < rkQr and the action ofF on E" is cocompact.

(3) The n—fiats {y} x are precisely those subsets of Min(r) which arise as the
convex hull of a r—orbit.

(4) If an isometry a E Isom(X) normalizes F, then a leaves Min(r) invariant and
preserves its splitting Y x

Proof Let E denote the subgroup of r consisting of those elements which act as
elliptic isometnes. An easy induction argument on the number of elements needed
to generate E shows that Min(E) is non-empty. By (6.2), Min(E) is convex and r-
invariant. The action of F/E on Min(E) is by hyperbolic isometnes (except for the
identity element). From this point one can proceed by induction on rkQr to prove
parts (1), (2) and (3) of the theorem. The argument is essentially the same as in (7.1),
so we omit the details. Part (4) is also proved as in (7.1). []

7.21 Exercise. Let F and X and n be as in the above theorem. Show that if a convex
subspace Z C X is F-invariant and isometric to for some r, then r > n. Show
further that if r = n then Z C Min(r).

Some Applications to Topology

In this section we gather a number of results which illustrate the great extent to which
the structure of the fundamental group determines the topology of a non-positively
curved space. Most of the results which we present are applications of the Flat Torus
Theorem.
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Recall that a strong deformation retraction of topological space Y onto a subspace
Z is a continuous map F: [0, 1] x Y Y such that = idy, im =
and F(t, z) = z for all t E [0, 1] and z E Z. Recall also that afiat manifold is the
quotient of Euclidean space by a group acting freely and properly by isometries.

7.22 Theorem. Let Y be a compact non-positively curved geodesic space, and sup-
pose that its fundamental group F = 7riY is virtually solvable. Then, r is virtually
abelian, and

(1) there is a strong deformation retraction of Y onto a compact subspace that is
isometric to a fiat manifold;

(2) if Y has the geodesic extension property, then Y itself is isometric to a fiat
manifold

Proof According to (7.8), r is virtually abelian. Corollary 7.2 yields a
copy of Euclidean space E in the universal cover Y of Y, such that F acts properly
by isometries on this flat subspace Since the action of F on Y is free, Z := F\E is a
flat manifold.

E C Y is closed, complete and convex; consider the orthogonal projection it
Y E, as defined in (2.4). Because E is r-invai-iant, the projection map is r-
equivariant. Indeed there is a F-equivariant retraction R: [0, 1] x Y Y that sends
(t, x) to the point a distance td(x, ir(x)) from x on the geodesic segment [x, ir(x)].

Letp : Y Y denote the universal covenng map (so Z = p(E)). Because the
retraction R is F-equivariant, the map [0, 1] x Y —÷ Z given by (t, p(x)) = p(R(t, y))
is well-defined. This is the desired strong deformation retraction of Y onto Z.

The key point to observe for the second part of the theorem is that under the
additional hypothesis that Y has the geodesic extension property, the Euclidean sub-
space E must actually be the whole of Y. This follows from (6.20) and the fact that
Y inhents the geodesic extension property from Y (because this property is local and
Y is locally isometric to Y). U

Combining Theorem 7.8 with Propositions (5.10) and (5.12) we obtain:

7.23 Corollary. Let Y be a compact geodesic space of non-positive curvature, and
suppose that jr1Y is virtually solvable.

(1) If Y is homeomorphic to a topological n-manifold (or indeed an homology
manifold) then the universal cover of Y is isometric to IEYL.

(2) If Y is isometric to an Mi—complex with no free faces, then the complex is
actually a fiat manifold.

Our next result is of a more combinatonal nature. Recall that the girth of a graph
is the combinatonal length of the shortest injective loop that it contains.

7.24 Proposition. Let K be a finite, connected, 2-dimensional simplicial complex
with no free faces (i.e., every edge of K lies in the boundary of at least two 2-
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simplices). Suppose that the for each vertex v E K the girth of the link of V is at least
6. Suppose further that the fundamental group of K is solvable.

Then, K is homeomorphic to either a torus or a Klein bottle, and exactly six
2-simplices meet at each vertex of K.

Proof We metnze K as a piecewise Eucidean complex with each 2-simplex iso-
metnc to an equilateral tnangle of side length 1 Metrized thus, K satisfies the link
condition (5 1), and hence is non-positively curved. The preceding result implies that
K is isometnc to a flat manifold, hence it is homeomorphic to either a torus or a Klein
bottle. The fact that the metnc is non-singular at the vertices means that exactly six
2-simplices meet there. Li

One of the aspects of the study of non-positively curved spaces that we shall
not explore in this book is the theory of super-ngidity and the influence that ergodic
theory has had on the study of lattices in Lie groups, a la Margulis. (Basic references
for this matenal include [Mar90] and [Zim8411. See also [BuM96II, [GrS92] and
[GroP9l]).

The following consequence of the Flat Torus Theorem provides a very simple
example of a result from this circle of ideas.

7.25 Proposition. Let H be a group that acts properly by semi-simple isometries on
a CAT(0) space X and let r be an irreducible lattice in a semi-simple Lie group of
real rank n 2 that has no compact factors. If X does not contain an isometrically
embedded copy of E?L, then the image of every homomorphism F H is finite.

Proof The Flat Torus Theorem implies that H does not contain a subgroup isomor-
phic to whereas r does. Thus the kernel of any homomorphism : F H must
be infinite. If a normal subgroup of r is not finite, then it is of finite index ([Zim84]
8.1.2), therefore the image of must be finite.

Low-Dimensional Topology

In this section we present some applications of Theorems 6.12 and 7.1 to the study
of manifolds in dimensions two and three. In the course of the discussion we shall
require a number of standard facts about 3-manifolds and surface automorphisms.
We refer to [Bir76] for facts about the mapping class group, to [Ro19 1] and [Hem76]
for basic facts about 3-manifolds, and to [5co831 for facts about the geometry of
3-manifolds.

Mapping Class Groups. Let E be an oriented surface of finite type, i.e., a compact,
connected, oriented, 2-dimensional manifold with a finite number of points and
open discs deleted. (The surface may be closed, i.e. the set of punctures and deleted
discs may be empty.) A closed curve c 5' —÷ E is said to be simple if it has no
self-intersections; it is said to be separating if the complement of its image is not
connected.
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We consider the group of isotopy classes of those orientation preserving
seif-homeomorphisms of which send each puncture to itself and restrict to the
identity on the boundary of (We are only allowing isotopies through homeomor-
phisms which restnct to the identity on Associated to each simple closed curve
c in there is an element of defined as follows. One considers a product
neighbourhood of the image of c, identified with (R/Z) x [0, The Dehn twist
associated to c is the map defined on the given product neighbourhood by (using
the above coordinates) (0, t) i—f (0 + t, 1); one extends to be the identity on the
remainder of The class of thus defined is clearly independent of the choice
of product neighbourhood.

We shall restnct our attention to surfaces which are either closed of genus at
least 3, or else have genus at least two and at least one boundary component or two
punctures. With this restnction, we have the following result, which is a consequence
of Theorem 6.12 and an unpublished result of G. Mess28 concerning centralizers in
the mapping class group This consequence was first observed by Kapovich and Leeb
[KaL95II (from a different point of view).

7.26 Theorem. If is as above, then the mapping class group cannot act
properly by semi-simple isometries on any complete CAT(O) space

Proof The restrictions we imposed on ensure that there is a separating simple
closed curve c on with the property that the closure of one of the components
of N c is a sub-surface of genus 2 with no punctures and only one boundary
component, c itself, and the Dehn twist in c is non-tnvial in Let denote
the sub-surface of genus 2. The subgroup of given by homeomorphisms which
(up to isotopy) are the identity on the complement of is naturally isomorphic to

thus it will suffice to prove that cannot act properly by semi-simple
isometries on any CAT(O) space. Notice that the mapping class of the Dehn twist
is central in —

Let denote a closed surface of genus 2 with a single puncture p, and let
denote the corresponding closed (unpunctured) surface. There is an obvious inclusion
of into sending c to the boundary of a neighbourhood D of the puncture in

and an even more obvious inclusion of into These inclusions induce
surjective maps from to and from to (For the first
map, one extends homeomorphisms of to be the identity on D ) One checks easily
that both maps are surjective homomorphisms, well-defined on isotopy classes. The
kernel of the first homomorphism is the infinite cyclic subgroup generated by the
mapping class of the Dehn twist The kernel of the second homomorphism is
the subgroup, isomorphic to Jr1 which consists of mapping classes represented
by homeomorphisms which are the identity off a neighbourhood of some essential
closed curve based at p, and which drag p around that curve; a more algebraic
way of descnbing these mapping classes is to say that they are precisely those
elements of which induce an inner automorphism of jrj p). (See [Bir76]

28 MSRI prepnnt #05708, 1990
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for more details.) Thus the kernel K of the composition of the natural homomorphisms
is a central extension of with infinite cyclic

centre.
Using the above geometnc descnption of the mapping classes in the kernel of

—÷ one sees that K is the fundamental group of the unit tangent
bundle of (where the surface is endowed with a metric of constant negative
curvature)29. In particular, K is (isomorphic to) a cocompact lattice in the Lie group
PSL(2, R), the universal covenng group of PSL(2, R). Now, PSL(2, R) does not
contain the fundamental group of any closed surface of genus 2 (see [Sco83]),
so since every finite index subgroup of it1 is the fundamental group of such a
surface, the central extension 1 K —iri 1 cannot be split even
after passing to a subgroup of finite index in iri(E2). Thus, by (6.12), K (and hence

cannot act properly by semi-simple isometnes on any CAT(O) space LII

There has been a good deal of work recently on the question of which 3-manifolds
admit metncs of non-positive curvature (see [Le95], and references therein).
We shall not descnbe that body of work. Instead, we present a single consequence
of our earlier results in order to exemplify the great extent to which the structure of
the fundamental group determines the topology of a 3-manifold, particularly in the
presence of non-positive curvature.

Building on a sequence of works by various authors (including Thkia, Scott and
Mess), Casson and Jungreis [CasJ9411 and Gabai [Gab93] independently ptoved the
following deep theorem: if a 3-manifold M is compact, irreducible and it M contains
a normal subgroup isomorphic to Z, then M is a Seifert fibre space (i.e., it can be
foliated by circles). We prove a related (but much easier) result.

7.27 Theorem. Let M be a closed 3-manifold which is non-positively curved (i.e.,
locally CAT(O)). !firiM contains a normal subgroup isomorphic to Z, then:

(1) M can be foliated by circles.

(2) A finite-sheeted covering of M is homeomorphic to a product x S'. where E
is a closed surface of positive genus.

(3) M supports a Riemannian metric of non-positive sectional curvature.

Proof Consider the universal covenng p M -+ M, equipped with the length metric
making p a local isometry. The action ofF := ir1M on M by deck transformations is
an action by hyperbolic isometnes. Suppose that y E r generates an infinite cyclic
normal subgroup C C r. Because C is normal, Min(y) is r-invar-iant, and hence is
the whole of the universal cover (see (6.20) or (6.16)). The splitting M = Y x R
given by (6.8) is preserved by the action of r; the group C acts by translations on
the second factor and acts tnvially on the first factor. Hence the foliation of M by

29 is Mess's unpublished observation.
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the lines {y} x JR descends to a foliation of M by circles. Since Y x R is a simply
connected 3-manifold, Y is a simply connected 2-manifold (cf. [Bing59]). Since Y
is contractible (it is a complete CAT(0) space) it must be homeomorphic to R2.

Let r' c r be a subgroup of finite index that contains C as a direct factor (6.12),
say F' = C x K. The action of K = F'/C on Y is proper and cocompact (6.10). Since
K is a subgroup of F (which acts freely on the CAT(0) space M) it is torsion-free
(2.8). Thus the action of K on Y is free, K\Y is a closed surface E, and the quotient
ofM by the action of I" = C x Kis homeomorphic to x S!.

If has genus at least two, then it follows from Kerckhoff's solution to the
Nielsen Realization problem [Ker83] that there is a metnc of constant negative
curvature on Y that is r,c invariant; the resulting product metnc on x R descends
to the desired Riemannian metnc of non-positive curvature on M. If has genus 1
then r is virtually abelian and (7.2) implies that M admits a flat metric. LI
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In this chapter we study the geometry at infinity of CAT(O) spaces. If X is a simply
connected complete Riemannian n-manifold of non-positive curvature, then the ex-
ponential map from each point x E X is a diffeomorphism onto X. At an intuitive
level, one might descnbe this by saying that, as in our own space, the field of vision
of an observer at any point in X extends indefinitely through spheres of increasing ra-
dius. One obtains a natural compactification X of X by attaching to X the inverse limit
of these spheres. X is homeomorphic to a closed n-ball, the ideal points aX = X N X
correspond to geodesic rays issuing from an arbitrary basepoint in X and are referred
to as points at infinity.

We shall generalize this construction to the case of complete CAT(O) spaces X.
We shall give two constructions of the first follows the visual description given
above (and is due to Eberlein and O'Neill [EbON73]) and the second (descnbed
by Gromov in [BaGS85II) arises from a natural embedding of X into the space of
continuous functions on X. These constructions are equivalent (Theorem 8.13). In
general X is not locally compact then in general X and will
not even be compact We call X the borthfication of X.

Isometnes of X extend uniquely to homeomorphisms of X (see (8.9)). In the last
section of this chapter we shall characterize parabolic isometries of complete CAT(O)
spaces in terms of their fixed points at infinity.

Asymptotic Rays and the Boundary 0X

8.1 Definition. Let X be a metric space. Two geodesic rays c, c' [0, oo) —÷ X are
said to be asymptotic if there exists a constant K such that d(c(t), c'(t)) < K for all

? 0. The set X (which we shall also call the points at
infinity) is the set of equivalence classes of geodesic rays two geodesic rays being
equivalent if and only if they are asymptotic. The union X U will be denoted X.
The equivalence class of a geodesic ray c will be denoted c(oo). A typical point of

will often be denoted 4:.

Notice that the images of two asymptotic geodesic rays under any isometry y of
X are again asymptotic geodesic rays, and hence y extends to give a bijection of X,
which we shall continue to denote by y.
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8.2 Proposition. If X is a complete CAT(O) space and c: [0, oo) -+ X is a geodesic
ray issuing from x, then for every point x' E X there is a unique geodesic ray c' which
issues from x' and is asymptotic to c.

The uniqueness assertion in this proposition follows immediately from the con-
vexity of the distance function in CAT(O) spaces (2.2). For if two asymptotic rays
c' and c" issue from the same point, then d(c'(t), c"(t)) is a bounded, non-negative,
convex function defined for all t 0; it vanishes at 0 and hence is identically zero.
In order to prove the asserted existence of c' we shall need the following lemma.

8.3 Lemma. Given s > 0, a > 0 and s> 0, there exists a constant T = T(s, a, s)>
0 such that the following is true: if x and x' are points of a CAT(O) space X with
d(x, x') = a, if c is a geodesic ray issuing from x, and if ci, is the geodesic joining x'
to c(t) with cr,(O) = x', then d(ci,(s), ci,÷,'(s)) < efor all t> T and all t' > 0

(

x=rc(0) c(t)
c(t+t)

Fig. 8.1 The construction of asymptotic rays

Proof By the tnangle inequality,

t—aI <d(x',c(t)) t+a,

t+t'—aI
Let a be the comparison angle c(t + t')). By the law of cosines,

d(x', c(t))2 + d(x', c(t + t'))2 —
cos(a) =

2d(x', c(t)) d(x'. c(t + t'))

(t—a)2 +(t+t' —a)2
>
— 2(t+a)(t+t'+a)
— (t — a)(t + t' — a)

—

Thus cos a -+ 1 as t and hence a -+ 0, where the convergence is uniform in
t' >0.

On the other hand, if s min{d(x', c(t)), d(x', c(t + t'))} then by the CAT(0)
inequality in the comparison tnangle for c(t), c(t + t')),

d(a,(s), a,÷,'(s)) < d(o,(s), a,÷,'(s)) = 2ssin(a/2).

c(t+t')
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Thus for sufficiently large t we have a+1'(s)) < e. LI

Proof of (8.2). It follows from the preceding lemma that for every s> 0 the sequence
(an(s)) (which is defined for sufficiently large n) is Cauchy, and hence converges in
X to a point which we shall call c'(s). As the pointwise limit of geodesics, s c'(s)
must be a geodesic ray this is the desired ray c' issuing from x'. One can see that
c' is asymptotic to c by checking that d(c(s), c'(s)) d(x, x') for all s > 0. Indeed
by considering the companson triangle x', c(n)) one sees that

c(s)) c(s)) < d(x, x'),

for all n > 0, where the first inequality comes from the CAT(O) condition and the
second from elementary Euclidean geometry. LI

Let c : [0, oo) —÷ be a geodesic ray. The asymptotic ray which issues from
x E and is asymptotic to c is the unique ray parallel to c. The following exercises
describe the asymptotic rays in JHI'1.

8.4 Exercises
(1) The Poincaré metnc on the open ball c W was defined in (1.6.7). The

image of each geodesic ray c : [0, oo) —÷ is an arc of a circle that is orthogonal
to the unit sphere about the ongin in The closure of this arc has one endpoint on
the sphere and c(t) converges to this point as t —* 00.

Show that geodesic rays in this model of hyperbolic space are asymptotic if and
only if the closures of their images intersect the sphere at the same point.

Fig. 8.2 Asymptotic rays in the Poincaré model

(2) B?Z can also be viewed as the set of points in the Klein model for hyperbolic
space. In this model the images of geodesic rays are half-open affine intervals whose
closures have one point on the bounding sphere (1.6.2) Show that, as in (1), geodesic
rays in the Klein model are asymptotic if and only if the closures of their images
intersect the bounding sphere at the same point.

(3) The geodesic lines in the hyperboloid model of hyperbolic space JHI'1 C
are intersections with 2-dimensional vector subspaces in Show that if two
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geodesic rays in JHI'1 are asymptotic, then the intersection of the corresponding 2-
dimensional subspaces of is a line in the light cone.

(4) Give an example of a non-complete convex subspace of the Euclidean plane
for which the conclusion of (8.2) is not valid.

The Cone Topology on X = X U ÔX

Throughout this section we assume that X is a complete CAT(O) space. Let X =
X U 8X. We wish to define a topology on X such that the induced topology on X is
the original metric topology.

8.5 Definition of X as an Inverse Limit. We fix a point x0 E X and consider the
system of closed balls B(xo, r) centred at xo. The projection Pr of X onto B(xo, r)
is well-defined because B(xo, r) is a complete convex subset of X (see 2 4). If x
B(xo, r) then Pr(X) is the point of [xo, x] a distance r from xo. For r' > r, we have
Pr°Pr' = Pr. And for r E [0, r] and aIlx' E X with d(x', xo) /, the path r Pr(")
is the unique geodesic segment joining x0 to x'.

The projections : B(xo, /) —÷ B(xo, r), where r' > r, form an inverse

system, and we consider B(xo, r) with the inverse limit topology [Spa66J. A point
in this space is a map c : [0, oo) —÷ X such that if r' > r then pr(c(r)) c(r). Such
maps are of two types: either c(r') c(r) for all r' r (in which case c is a geodesic
ray issuing from x0), or else there is a minimum r0 0 such that c(r) = c(ro) for all
r> r0 (in which case the restriction of c to [0, r0J is the geodesic segment joining x0
to c(r0), and the restriction of c to [r0, oo) is a constant map). Thus IB(xo, r) may
be viewed as a subspace of the set of maps [0, oo) X. (The inverse limit topology
coincides with the topology of uniform convergence on compact subsets.)

There is a natural bijection . X r), which associates to E 8X
the geodesic ray that issues from xo in the class of and which associates to x E X
the map [0, oo) —÷ X whose restriction to [0, d(xo, x)J is the geodesic segment
joining x0 to x and whose restriction to [d(xo, x), oo) is the constant map at x. Let
7(xo) be the topology on for which is a homeomorphism. The inclusion
X X gives a homeomorphism from X onto a dense open set of X.

Notice that for every x E X and E 3X there is a natural path with compact
image [x, fl joining x to in this is the union of and the image of [0, oo) by the
geodesic ray c with c(0) = x and c(oo) = Notice also that a sequence of points

in X C X converges to a point E 0X if and only if the geodesics joining x0 to
x,, converge (uniformly on compact subsets) to the geodesic ray that issues from xo
and belongs to the class of

8.6 Definition of the Cone Topology. Let X be a complete CAT(0) space. The cone
topology on X is the topology 7(x0) defined above. (This is independent of the choice
of basepoint xo E X (see 8.8).)
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The topology on 8X induced by the cone topology on will also be referred to
as the cone topology. When equipped with this topology, 8X is sometimes called the
visual boundary of X. However, we shall normally refer to it simply as the boundary.
Note that 8X is a closed subspace of X and that X is compact if X is proper.

In order to work effectively with the cone topology, we need to understand an
explicit neighbourhood basis for it. A basic neighbourhood of a point at infinity has
the following form: given a geodesic ray c and positive numbers r> 0, £ > 0, let

U(c, r, e) {x E X d(x, c(O)) > r, d(pr(x), c(r)) <

where Pr is the natural projection of X = B(c(O), r) onto B(c(O), r).

8.7 Exercise. Prove that one obtains a basis for the topology T(xo) on by taking
the set of all open balls B(x, r) C X, together with the collection of all sets of the
form U(c, r, e), where c is a geodesic ray with c(O) x0.

8.8 Proposition. For all xo, E X, the topologies 7(x0) and are the same.

Proof It is enough to prove that the projection Pro X —÷ B(xo, r0) is continuous
when X is endowed with the topology The continuity at points y e X is
obvious. Given E 8X, let c0 and c'0 be the geodesic rays issuing from xo and

x co(ro) and let £
be an arbitrary positive number. Let R be a number bigger than r0 + d(xo, and
also bigger than the number T(e/3, d(xo, r0) given by (8 3). We shall argue that
Pro U(c'0, R, e/3) c B(x, e). To see this, given y X, let be the geodesic segment
or the geodesic ray joining toy. We claim that if y E U(c', R, e/3) then

d(p,0(.y), x) < d(pr0(y), + pr0(c'0(R))) + d(pro(c'o(R)), x)

< e/3 + e/3 + e/3

The bound on the second term comes from the definition of U(c', R, e/3), which
implies that c'(R)) < e/3. The desired bounds on the first and third terms
are obtained by applying (8.3) with x0 in the role of x', and x; the
rOle of the first case by and in the second case by LI

8.9 Corollary. Let y be an isometry of a complete CAT(0) space X. The natural
extension of y to X is a homeomorphism.

Proof The action of y on 8X is induced by its action on geodesic rays: r c(t) is

sent tot y.c(t). An equivalent descnption of the action of y on X = XU 8X can be
obtained by fixing x0 E X and noting that y conjugates the projection X —÷ B(x0, r)
to the projection X—÷ B(y(xo), r), and therefore induces a homeomorphism from

r) to r). Modulo the natural identifications and
descnbed in (8.5), this homeomorphism : X —÷ X is the natural extension of y
descnbed above.



Fig. 8.3 The cone topology in independent of base point

8.10 Remark. If X is a proper CAT(O) space, then the natural map c end(c)
from the set of geodesic rays to Ends(X) (as defined in 1.8.27) induces a continuous
suijection 8X —÷ Ends(X) If the asymptotic classes of c and c' are in the same path
component of 8X, then end(c) end(c').

8.11 Examples of 8X
(1) If X is a complete n—dimensional Riemannian manifold of non-positive sec-

tional curvature, then 8X is homeomorphic to the (n — 1)—sphere. Indeed, given
a base point x E X, one obtains a homeomorphism by considenng the map —* 8X
which associates to each unit vector u tangent to X at x the class of the geodesic ray
c which issues from x with velocity vector u.

(2) As a special case of (1), consider the Poincaré ball model (1.6.8) for real
hyperbolic n-space. In (8.4) we noted that two geodesic rays c and c' in IHI'1 in this
model are asymptotic if and only if c(r) and c'(t) converge to the same point of JR'1
as t —* oo. Thus the visual boundary 0W is naturally identified with the sphere
of Euclidean radius 1 centred at 0 E W, and IB!" is homeomorphic to the unit ball
B(O,

We noted in (8.4) that geodesic rays in the Klein model for IHI'1 also define the
same point in the bounding sphere. It follows that the natural transformation
between the models (see 1.6.2 and 1.6.7) extends continuously to the bounding sphere
as the identity map.

(3) In [DaJ9 Ia] M. Davis and T. Janusciewicz used Gromov's hyperbolization
technique to produce interesting examples of contractible topological manifolds X

The Cone Topology on = X U oX 265
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in all dimensions n 5. Each of their examples supports a complete CAT(O) metric
d such that (X, d) admits a group of isometries which acts freely and cocompactly.
However, in contrast to (1), one can construct these examples so as to ensure that 8X
is not a sphere (see (5.23)). If X is a complete CAT(O) 3-manifold, then one can use
a theorem of Rolfsen ([Ro168]) to show that 8X is homeomorphic to a 2-sphere and

is a 3-ball.

(4) If X0 is a closed convex subspace of a complete CAT(O) spaceX, then 8X0 is
a closed subspace of 0X. For instance, consider the Klein model of hyperbolic space
and let F be any closed set in 81H1'1 identified to the unit sphere in as in example
(2). Consider the convex hull F of F, that is, the intersection with of the closed
affine half-spaces containing F. (This is the same as the intersection of the closed
hyperbolic half-spaces whose boundary contains F.) The boundary at infinity of F
is F.

(5) Let X be an JR—tree (1.15(5)) and fix a basepoint x E X. The boundary of X
is homeomorphic to the projective limit as r —÷ oo of the spheres S,(x). Each such
sphere is totally disconnected, hence 8X is also totally disconnected. If X is locally
compact, then each sphere in X contains only a finite number of points, hence 0X
is a compact space. If X is an infinite simplicial JR—tree in which every vertex has
valence at least three, then 8X is a Cantor set (see (1.8 31))

(6) Let X x X2 be the product of two complete CAT(O) spaces and
X2. If E and 8X2 are represented by the geodesic rays c1 and c2 and if
O E [0, ir/2J, we shall denote by (cos 0) + (sin 0) the point of represented
by the geodesic ray t c2(tsin0)). The boundary 8X is naturally
homeomorphic to the sphencal join 8X1 * 0X2, that is, the quotient of the product

x [0, ir/2] x 8X2 by the equivalence relation which identifies 0, to

(7) If in the previous example we take to be a metnc simplicial tree in which
all the vertices have the same valence > 3 and we take X2 JR. then the boundary
of x X2 is the suspension of a Cantor set in particular it is connected but not
locally connected30. In contrast, Swarup [Sw96], building on work of Bowditch and
others, has shown that if X is compact and has curvature K < 0 and if X is not
quasi-isometnc to IR, then the boundary of its universal covenng is connected if and
only if it is locally connected.

(8) The Menger and Sierpinski curves can be obtained as the visual boundaries
of certain CAT(O) polyhedral complexes: see (12.34(4)) and [Ben92].

30Further examples are given in "CAT(O) groups with non-locally connected boundary", by
M. Mihalik and K Ruane, to appear in Proc. London Math. Soc.
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Horofunctions and Busemann Functions

Let X be a complete CAT(O) space. We have explained how one can attach to X a
boundary at infinity 8X, whose points correspond to classes of asymptotic geodesic
rays in X. This boundary was attached to X, intuitively speaking, by fixing a point
x0 E X and attaching to each geodesic ray issuing from x0 an endpoint at infinity.
Since the homeomorphism type of the space X = XU 8X obtained by this construction
is independent of the choice of x0, one expects that there might be a more functonal
way of constructing the boundary. Our first goal in this section is to descnbe such a
construction.

Following Gromov [BaGS87J, we shall descnbe a natural embedding of an arbi-
trary metric space X into a certain function space. This embedding has the property
that when X is complete and CAT(O), the closure of X is naturally homeomorphic
to X. In this construction, the ideal points of X appear as equivalence classes of
Busemann functions (see 8.16).

8.12 The Space Let X be any metric space. We denote by C(X) the space of
continuous functions on X equipped with the topology of uniform convergence on
bounded subsets (so in particular if X is proper then this is the more familiar topology
of uniform convergence on compact subsets). Let denote the quotient of C(X)
by the 1-dimensional subspace of constant functions, and letf denote the image in

off E C(X). Notice —÷ f in if and only if there exist constants
E JR such + —÷ f uniformly on bounded subsets; equivalently, given

a base point x0 E X, the sequence of functions z converges to the
function z f(z) —f(zo) uniformly on all balls B(xo, r). In fact, given a base point

E X, the space C(X) of continuous
functionsf on X such thatf(xo) 0.

It is also useful to observe that, given x, y E X, the value of f(x) —f(y) is an
invariant off.

There is a natural embedding t : X obtained by associating to each
x EX the equivalence class of the function y d(x, y). We shall denote
by X the closure of t(X) in The ultimate goal of this section is to prove the
following theorem.

8.13 Theorem. Let X be a complete CAT(O) space. The natural inclusion t . X -÷
extends uniquely to a homeomorphism X -÷ X.

It will be convenient to identify X with t(X), and we shall do so freely, unless
there is a danger of ambiguity.

8.14 Definition. h E C(X) is said to be a horofunction (centred at h) if h E X N X.
The sublevel sets r] C Xare called (closed) horoballs, and the sets
are called horospheres centred at h.
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8.15 Exercises
(1) Let X be a metric space. Prove that the map t : X —* is a homeomor-

phism onto its image.

(2) Prove that if X is proper then X and X N X are compact. (Hint: Given a
in and x0 E X, there exist such 0.)

(3) Show that if h e X then h(x) — h(y) <d(x, y) for all x, y E X. Show that if X is
CAT(O) then hoc: [a, bJ JR is convex for eveiy geodesic segment c: [a, bJ —÷ X.

The following general observation explains the connection between horofunc-
tions and sequences of points tending to infinity.

8.16 Lemma. Let X be a complete metric space. If the sequence converges to
h E X N X, then onlyfinitely many of the points lie in any bounded subset of X.

Proof Fix x0 E X and h E h with h(xo) = 0. If there is an infinite number of
points contained in some ball B(xo, r), passing to a subsequence we can assume
that d(x0, converges as n —÷ oo. By hypothesis the sequence of functions x

x) — x0) converges uniformly to h on B(xo, r). Therefore, given e > 0

we can find N > 0 such that h(x) — x) + < e for all n > N
and x E B(xo, r), and xo) — xo)I < e, for all n, n' > N. In particular

— + < £ and — + < e. Hence
< 2s.Thus the sequence is Cauchy and converges to some point z E X.

Therefore h contrary to hypothesis. LI

Typical examples of horofunctions are the Busemann functions associated to
geodesic rays c. We shall prove that in complete CAT(O) spaces every horofunction
is a Busemann function.

8.17 Definition of a Busemann Function. Let X be a metnc space and let c
[0, oo) -÷ X be a geodesic ray. The function : X -÷ JR defined by

lim (d(x, c(t)) — t)
t-.oo

is called the Busemann function associated to the geodesic ray c. (On occasion
may be denoted where x c(O) and c(oo).)

The first part of the following lemma implies that the limit in the above definition
does indeed exist. Examples of Busemann functions in CAT(0) spaces are given at
the end of this section.

8.18 Lemma. Let X be a metric space and let c: [0, oo) —÷ X be a geodesic ray

(1) For each x E X, the function [0,oo) —* IR given by t d(x,c(t)) — t is
non-increasing and is bounded below by —d(x, c(0)).

(2) If X is a CAT(0) space, then as t —÷ oo the functions d(x, c(t)) —
converge to uniformly on bounded subsets.



Horofunctions and Busemann Functions 269

Proof Bythetnangleinequality,ifO < t' < tthend(x, c(t)) < d(x, c(t'))+t—t',and
hence d(x, c(t)) — t < d(x, c(t')) — t'. But we also have t — t' <d(x, c(t')) + d(x, c(t)),
so taking 0 we get —d(x, c(O)) d(x, c(t)) — t This proves (1).

Part (2) is an immediate consequence of (8 3)

Our next goal is to establish a natural correspondence between horofunctions and
equivalence classes of Busemann functions.

8.19 Proposition. Let X be a complete CAT(O) space and let x,1 be a sequence of
points in X. Then converges to a point of X N X and only if x,1 converges in
X to a point of 8X, that is, for fixed x0 the sequence of geodesic segments [x0,
converges to a geodesic ray [xo,

We defer the proof of this proposition for a moment and move directly to

8.20 Corollary (The Ideal Points X N X). If X is a complete CAT(O) space, then the
Busemann functions associated to asymptotic rays in X are equal up to addition of
a constant, and for every x0 E X the map i 8X —* X N X defined by = is
a bijection.

Proof We first prove that i is suijective. Given h E X N X choose E X with
—÷ h. By the proposition, there exists E 8X such that —÷ in X. Let

c: [0, oo) X be the geodesic ray with c(O) = x0 and c(oo) = let = x,
and = c(n) for all n. Then y,, —÷ so by the proposition d), converges to a
point of X N X, and since X is Hausdorif this point must be h. Thus dcO) —÷ so by
definition (8.17) h =

Given any E X, in the preceding paragraph one can replace c by c': [0, oo)
X, where c'(O) = and c'(oo) = to deduce that h Thus the
Busemann functions of asymptotic rays differ only by an additive constant.

Given distinct points E 8X, let c and c' be the geodesic rays in X with
c(0) — c'(O) = x0, c(oo) = and c'(oo) = The sequence z, defined by = c(n)
and = c'(n) does not converge in X, so by the proposition, the sequence
does not converge in X, hence Thus i is injective.

In order to prove (8.19), we shall need the following lemma.

8.21 Lemma. Let X be a CAT(0) space

(1) Given a ball B(xo, p) and £ > 0, there exists r > 0 such that,for all z B(xo, p)
and allx EXwithd(x,xo)> r,

d(Z,y)+d(x,y)—d(x,Z)< s,

where y is the point of [x0, xJ a distance rfrom x0.

(2) Considerxo,y,x E Xwithy [xo,xjandd(xo,y)_— p >0. Then,
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d(y z)2
d(x, z) — d(x, y)>

for all z such that d(xo, z) = p

Proof (1) We first note that if a segment [p, qJ of length I is contained in an infinite
strip in E2 whose boundary is the union of two parallel lines a distance p apart, and
if t' is the length of its orthogonal projection onto the side of the strip, then

— p2/t.

Indeed, if q' is the orthogonal projection of q onto the straight line through p parallel
to the sides of the stnp and q" is the orthogonal projection of q' on [p, qJ, then

d(p, q') and It — d(q, q"); obviously d(q, q')/t d(q, q")/d(q, q') and
d(q, q') <p, so we have Jt —

Chooser big enough so that p2/(r— p) < e/2. If X = 1E2 and z' is the orthogonal
projection of z onto the line through x and x0, then using the above inequality twice
we get: d(z, x) — d(z', x) < e/2 and d(z, y) — d(z', y) < e/2. But d(z', x) = d(z', y) +
d(y, x), hence d(z, y) + d(y, x) < d(z, x) + e. In the general case, one applies the
CAT(O) inequality to the triangle z, x) and considers the comparison point for
y E [x0, xJ.

(2) We first check the inequality in the case X = E2. We have d(z, x) >
d(x, y) + d(y, z'), where z' is the projection of z on the line through xo and x. But
d(z', y)/d(y, z) d(y, z)/2p, whence the desired inequality forX = E2. The inequal-
ity in the general case is obtained by applying the CAT(O) inequality to the triangle

z, x) and considering the comparison point for y. LI

Proof of (8.19). Choose a basepoint xo E X and let be the function on X defined
by d(x, z) — dcx, xo).

Assume first that x,1 converges to E 0X. We want to prove that the sequence
converges uniformly on any ball B(xo, p). Given e > 0, choose r> 0 as in (8.21(1)).
Choose N big enough so that xo) > r for n > N. If is the point of [xo, x,j at
distance r fromx0, then by making two applications of (8.21(1)) we see that for all
z E B(xo, p)

— z) z) d(Xm, Ym)I

< z) — d(ym, + 2e
d(yn,ym)+26.

By hypothesis -÷ 0 as m, n -÷ oo. Thus we have uniform convergence on
the ball p). -

Conversely, assume converges uniformly on bounded sets but is un-
bounded (cf. 8.16). We need to prove that the geodesic segments [xo, converge to
a geodesic ray issuing from xo. Given p > 0 and s > 0, we fix an integer N such that

<sforallm,n>Nand
z E B(xo, p). Let be the point on the geodesic segment [x0, x,7J at distance p from



Horofunctions and Busemann Functions 271

x0. In the above inequality, replacing z by we get Id(Xm, yn) d(Xm, < 6,

because d(xo,yn) d(xo,ym) p. (8.21(2)) implies that for n, m > N we have
d(yn, ym)2/2p <e, hence y,, is a Cauchy sequence. Li

Proof of Theorem 8.13. Because X is dense in X, there is at most one continuous
extension to X oft : X X. We showed in (8.20) that the map i : 8X —* X N X
given by i(c(oo)) is a bijection, so it only remains to show that if we extend

by i then the resulting bijection i : X —÷ X and its inverse are continuous on the
complement of X.

We choose a base point x0 in X and identify C(X)
of those functionsf such thatf(xo) = 0; thus X is identified to a subspace

of C(X). With this identification, the map i : —* X associates to x EX the function
:= d(x, z) — d(x, xo), and associates to 8X the Busemann function of

the geodesic ray c with c(0) xo and c(oo) =
A fundamental system of neighbourhoods for a point X is given by the balls

B(x, r). A fundamental system of neighbourhoods for in X is the collection of sets

p, e) = {f E X Lf(z) — < 6, Vz E B(xo, p)},

where p > 0 and e > 0. A fundamental system of neighbourhoods for c(oo) in X
was descnbed in (8.6):

U(c, r, 8) = {x e X d(x, x0) > r, c(r)) < 8}

where r > 0, 8 > 0, and X —÷ B(xo, r) is the map whose restriction to X is the
projection on B(xo, r) and which maps c(oo) E 0X onto c(r)

By letting p. 6, r, 8 take all positive rational values, we see that each point
and X has a countable fundamental system of neighbourhoods. (i.e. as topological
spaces X and X are first countable). It is therefore sufficient to prove that both i and

carry convergent sequences to convergent sequences. In other words, wnting
to denote or (according to whether u E X or U E 8X), what we must show is
that a sequence in X converges to E 8X if and only if —÷ uniformly on
bounded subsets. But this was done in (8.18) and (8.19). LI

Characterizations of Horofunctions

Let B be the set of functions h on X satisfying the following three conditions:

(i) h is convex;
(ii) <d(x,y)forallx,yEX;
(iii) For any x0 E X and r > 0, the function h attains its minimum on the sphere

Sr(X0) at a unique pointy and h(y) h(x0) — r.

Notice that if h E B then h' E B whenever h = h'.

8.22 Proposition. Let X be a complete CAT(0) space. For functions h : X —* K the
following conditions are equivalent:
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(1) h is a horofunction;

(2) hET3;

(3) h is convex, for every t E R the set t] is non-empty, and for each
x E X the map : [0, oo) —÷ X associating to t > 0 the projection of x onto

h(x) — t] is a geodesic ray.

Proof (1) (2): Let h be a horofunctiori. After modification by an additive
constant we may assume that h is the Busemann function k associated to a geodesic
ray issuing from x. Let x,1 be a sequence of points tending to c(oo) along the geodesic
ray c, and let be the function defined by = z) — xo) Then

= di,,. The convexity of the metric on X (2.2) ensures that each
satisfies conditions (i) arid (iii) in the definition of B, and (ii) is simply the triangle
inequality for Each of these is a closed condition, so the limit b, also satisfies
them

(2) (3): Consider a function h E B, a point x E X, and a number t> 0. Let
be the unique point of S,(x) such that h(x) — t (condition (iii)). This

point is the projection of x onto the closed convex subset A, = h(x) — t]).
Let r : [0, t] —÷ X be the geodesic segment joining x to Because h is convex,
we have that h(x) — h(r(s)) <s for all s E [0, t]. Condition (iii) applied to the sphere
Ss(x) implies that cs(s) r(s), hence t is a geodesic ray.

(3) (1): Let b be the Busemann function associated to the geodesic ray
For convenience (replacing h by h — h(x) if necessary) we assume that h(x) = 0 We
want to prove that b = h. For r > 0 let irr be the projection of X onto the closed
convex set Ar = —r]. Note that d(x, = r.

Given y E X, for each (sufficiently large) r> 0, we have h(y) = d(y, JTr(Y)) — r.

Consider the Euclidean quadrilateral obtained by joining the comparison triangles
y, ir, (x)) and Jrr(y), along the edge [irr(x), so that Jrr(y) and I lie

on opposite sides of the line through and irr(x) (see Figure 8.3). (The degenerate
case irr(y) = is easily dealt with.) —

Let ç, be the angle of the triangle y, ir, (x)) at the vertex 2r,.(x) and let
ar, h/1r be the angles of the tnangle irr(x), irr(y)) at the vertices irr(x), 2Tr(Y)
and respectively. Because d(irr(x), ir, (y)) < d(x, y) (cf. 2.4), and d(x, ir1(x)) and
d(y, 2Tr(Y)) both tend to oo as r oo, the angles cp. and i/i. tend to 0 as r 00
From (1.7) and (2.4) we have

+ y) + lrr(y)) lrr(y))> ir/2.

As > we have fir = limr.oo ar = And therefore b(y) =
2Tr(x)) — r) = d(y, 2Tr(y)) — r = h(y). D

8.23 Exercises
(1) Prove that the Busemann functions associated to asymptotic rays in a CAT(0)

space X differ only by an additive constant even if X is riot complete. (HintS Use
(2.15).)
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(2) Let c be a geodesic ray in Prove that = —r < 0 if and only if c(r)
is the image of x under orthogonal projection to im(c).

(3) Prove that in the assertion of (2) is false.

(4) Let X be a complete CAT(0) space and let c [0, 00) X be a geodesic ray.
Fix a geodesic R 1E2 in the Euclidean plane For every x E X and every n > 0

consider a companson triangle c(0), c(n)) with c(0) = and c(n)
Let be the foot of the perpendicular from I to Prove that the sequence

r such that = —r.

8.24 Examples of Busemann Functions
(1) Consider W' equipped with the Euclidean metric, arid let c [0, oo)

be a geodesic ray of the form c(t) = a + te, where e is a vector of unit length and
a E W is fixed The associated Busemann function is defined by

= (a —x I e)

where (. is the Euclidean scalar product. Its horospheres (i.e., the sets where
is constant) are precisely those hyperplanes which are orthogonal to the direction
determined by e.

(2) Consider the Poiricaré disc model for real hyperbolic space The Poisson
kernel is the function P: IHI" x R defined by P(x, fl = where

I I

denotes the Euclidean norm The Busemann function associated to the geodesic
ray c with c(0) = x and c(oo) = is

= —logP(x,fl.

(3) Let X = X1 x X2 be the product of two CAT(0) spaces X1 and X2 Let c!
and c2 be geodesic rays in X! and X2 respectively, and let = (oo) E and

= c2(oo) E If 0 E [0, then c(t) = (c1(tcos0), c2(t sin 0)) is a geodesic

-ir(y)

y

Fig. 8.4 Characterizing horofuncuons

-ir(x)

x
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Fig. 8.5 Horospheres in the Poincaré mode'

ray in X and c(oo) is denoted + (sin (see (8.9(5)). if b1, b2, bare the
Busemann functions associated to c1, C2, c respectively, then

b = (cosO)b1 + (sin O)b2.

Indeed, since c(t)) + t)/2t = 1,

b(x) = urn (d(x, c(t)) — t) tim c(t))2 — t2)
—+oo 2t

= urn 1 {d(xi, c1 (t cos O))2 t2 cos2 0 + d(x2, c2(t sin 0))2 — t2 0]
2t

(cos0)bi(xi) + (sin 0) b2(x2).

(4) Let X be the tree constructed in (7 11). The boundary consists of exactly
one point and (up to sign) the natural projection onto [0, oo) is a Busemann function.

Further examples of Busemann functions and horospheres are described in
(10.69).

Parabolic Isometries

Recall from (6.1) that an isometry y of a metric space X is said to be parabolic if
d(y.xo, xO) > inf{d(y.x, x)

I
x E X) for every xo E X. In this section we consider the

action of such isometries on CAT(0) spaces X, and more particularly on X.
To say that an isometry y of a CAT(0) space X is parabolic means precisely that

if one takes a sequence of points E X such that the sequence of numbers
approximates I, then the sequence does not converge in X. But if X is proper,
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then such a sequence must have a convergent subsequence in X, which is compact.
Thus one expects to find fixed points of parabolic isometries at infinity.

8.25 Proposition. Let y be an isometry of a proper CAT(O) space X. If y is parabolic,
then itfixes at least one point u E EX and leaves invariant all of the ho ro balls centred
at u.

Proof Consider the displacement function of y. It is a y -invariant convex function
which does not attain its infimum in X. Thus the proposition is a consequence of the
following lemma.

8.26 Lemma. Let X be a proper CAT(O) space and letf : X R be a continuous
convexfunction which does not attain its infimum a E RU {—oo}. If y is an isometry
of X such thatf(y.x) =f(x) for alIx E X, then yfixes at least one pointu E and
also fixes all of the horofunctions centred at u.

8.27 Remark. Notice that, in general, when an isometry y fixes a point u E the
action of y may permute the set of horofunctions centred at u. On the other hand,
if y leaves invariant a horofunction centred at u then it must fix u and all of the
horofunctions centred at u.

Proof of Lemma 8.26 For every t > a, we let A1 = {x E X I f(x) < r). This is a
closed, convex, non-empty subspace of X. Obviously A, c if t < ?, and by our
hypothesis onf we have = 0. Since X is proper, for every closed ball B in
X we have B fl A, = 0 when t is close enough to a.

Let ir, be the projection of X onto A, and letf1 be the function x d(x, ir,(x)).
Choose a base point xo E X, and let h,(x) f1(x) —f,(xo). We claim that we can
find a sequence of numbers tending to a such that the corresponding sequence of
functions h1, x f1,(x) —f1,(xo) converges uniformly on compact sets to some
function h. Indeed, the family of functions h, x f,(x) — fi(xo) is uniformly
bounded on balls and equicontinuous because Ih,(x) h,(y)I < d(x, y) (8.22), and
hence, since X is proper, we can apply the Arzelà-Ascoli theorem (I 3.9) to obtain
the desired convergent sequence of functions h,, By Corollary 2.5, the limit h of the
sequence of functions (h,,) satisfies the list of conditions preceding (8.22) and hence
h is a horofunction Since each of the functions h,, is invariant by y, so too is h. U

The following example shows that (8.25) does not remain true without the hy-
pothesis that X is proper.

8.28 Example. Let H be the Hilbert space £2(Z), as defined in Chapter 1.4. (We
write points in H as x The boundary at infinity E)H can be identified with
the set of equivalence classes of H N {O} modulo the relation generated by scalar
multiplication by positive numbers: x — y if there exists A > 0 such that =
for all n E Z.
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Translations of H act trivially on One example of an isometry that does not
act trivially on is the shift map a. By definition, a xis the sequence whose n-th
entry is The only element of H fixed by a is 0, because if = 0 for
all n E Z, then is not an element of H. Let y be the isometry x a.x +
where is the sequence whose on'y non-zero entry is = 1. Arguing as above, one
sees that y does not fix any point in H, so it is not elliptic But y does not fix any
point in either, so it can't be hyperbolic because a hyperbolic isometry must fix at
least two points at infinity, namely the endpoints of its axes. Hence y is a parabolic
isometry that does not fix any point of 8H.

8.29 Exercise Calculate the translation length yl of the isometry y described in the
preceding example, and prove directly that does not attain this value.

8.30 Example. Let X = X1 x X2 be the product of two complete CAT(0) spaces. Let
y be an isometry of X that splits as y = (yl, If y, fixes E for i = 1,2,
then y fixes the whole segment + (sin E for 0 E [0, ,r/2] (in
the notation of 8.11(6)). If y' is parabolic and preserves the horofunctions of X1
centered at then y is parabolic (6.9), but it preserves the horofunction centred at
(cos 0 0 if preserves the horofunctions centred
at



Chapter 11.9 The Tits Metric and Visibility Spaces

Let X be a complete CAT(O) space. In the preceding chapter we constructed a bound-
ary at infinity and studied the cone topology on it. (This topology makes
compact if X is proper.) and are homeomorphic in the cone topology, but
at an intuitive level they appear quite different when viewed from within the space.
Consider how the apparent distance between two points at infinity changes as one
moves around in and in the angle subtended at the eye of an observer
by the geodesic rays going to two fixed points at infinity does not depend on where
the observer is standing; in 1FF the angle depends very much on where the observer
is standing, and by standing in the right place he can make the angle ir. Thus by
recording the view of from various points inside X one obtains a metric structure
that discnminates between the boundaries of and In this chapter we shall
consider the same metnc structure in the context of complete CAT(O) spaces.

More precisely, we shall define an angular metric on the boundary of a complete
CAT(O) space X. The associated length metric is called the Tits metric, and the
corresponding length space is called the Ths boundary of X, written The natural
map —÷ EX is continuous (9.7), but in general it is not a homeomorphism.

is a discrete space. In contrast, is isometric to and the natural map
—÷ is a homeomorphism.

This contrast in behaviour is indicative of the fact that the Tits boundary encodes
the geometry of fiats in a complete CAT(O) space X (see (9.21)). Moreover, if X has
the geodesic extension property, then the existence of product compositions forX is
determined by (see (9.24)).

IHI" is a visibility space (9.28), which means that every pair of distinct points
in can be connected by a geodesic line in The concept of visibility is
closely related to Gromov's s-hyperbolic condition (see III.H). In the final section
of this chapter we shall prove that a complete cocompact CAT(O) space X contains
an isometrically embedded copy of 1E2 if and only if X is not a visibility space (The
Flat Plane Theorem (9.33)).
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Angles in X

Most of the results in this chapter concern the behaviour of angles in the bordification
of a complete CAT(O) space

9.1 Definition. Let X be a complete CAT(O) space. Given x, y E X and rj E we
shall use the symbol to denote the angle atxbetween the unique geodesic rays
which issue from x and lie in the classes and respectively, and we write 4(y, fl
to denote the angle at x between the geodesic segment [x, y] and the geodesic ray
that issues from x and is in the class

The continuity properties of angles in X are much the same as those of angles in
X (see (3.3)).

9.2 Proposition (Continuity Properties of Angles). Let X be a complete metric
CAT(O) space.

(1) For fixed p E X, the function (x, 4(x, x'), which takes values in [0, ir],
is continuous at all points (x, x') E X x X with x p and x' p.

(2) Thefunction (p, x, x') x') is upper semiconrinuous atpoints (p, x, x') E
Xx Xx Xwithx

Proof Suppose x E X, x' E X and p p and x'
p'. Let c and c' be the geodesic paths or rays joiningp to x and x' respectively, and let

be the geodesic paths orrays respectively. We fix t> Oso
that for all sufficiently large n the points and are defined and different from

and By definition = and c(t)) = x).
And from the convexity of the metric on X (2.2) and the definition of the topology
on K we have c(t) and —÷ c'(t).

Thus, by replacing and by and we can reduce the present propo-
sition to the corresponding properties for angles in X (see (3.3)). 0

With the notion of asymptotic rays in hand, one can consider triangles which
have vertices in X rather than just X. Many basic facts about triangles in CAT(0)
spaces can be extended to this context. The following proposition provides a useful
illustration of this fact (cf. (2.9)).

9.3 Proposition (Triangles with One Vertex at Infinity). Let be a triangle in
a CAT(O) space X with one vertex at infinity; thus consists of two asymptotic
rays, c and c' say, together with the geodesic segment joining c(0) to c'(O). Let
x = c(O), x' = c'(O) and = c(oo) = c'(oo). Let y = and y' =
Then:

(1)

y + y' = ir and only the convex hull of is isometric to the convex hull
ofa triangle in E2 with one vertex at infinity and interior angles y and y'.
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Fig. 9.1 (i) A triangle in E2 with one vertex at infinity. (ii) A triangle in H2 with two vertices
at infinity

Proof Let denote the geodesic triangle in X with vertices x, x' and c'(t) Let
and be the angles at the vertices x and x'. Let and be the corresponding angles
in a companson triangle Let a, denote the angle at x between c and the geodesic
segment joining x to c'(t).

Withthisnotation,y <y,+a,,

y y,' <7r +a,.
But it follows from (8.3) that a, = 0, hence y + y'

We also have that y because, by the triangle inequality for angles
—a,I < y <y, +a,.

Suppose now that y + y' = ir. We claim that y' = = for all t > 0.
Since y,' = / and is a non-decreasing function of t, it suffices to show that

< y'. But + y, + + ir, so passing to the limit as
—f oo, we get2r = ' + V y <ir. Thus = and (2.9) implies

that the triangles Lx., are fiat for all t > 0.
Let be a Euclidean triangle with one vertex at infinity, consisting of two

asymptotic geodesic rays and issuing from points and which are a distance
d(x, x') apart, such that the angles of at and are ' and V respectively. For
all t > 0, the Euclidean triangle = isa companson triangle for

As t vanes, the isometries from the convex hull of onto the convex hull of
established in the previous paragraph fit together, to give an isometry from the

convex hull of onto the convex hull of D

The Angular Metric

Intuitively spealung, in order to obtain a true measure of the separation of points at
infinity in a CAT(O) space, one should view them from all points of the space. This
motivates the following definition.

(i) (ii)
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9.6 Examples

(1) IfX = then = for alIp,q E and all E

hence = a'). It follows that the map which associates to each E

the point of intersection of [0, fl with the unit sphere about 0 E gives an isometry
from to Sn_I

(2) If X is real hyperbolic space lI-F, then = ir for any distinct points
E because there is geodesic line c : —÷ such c(oo) = and

c(—oo) = We shall see later that the same is true for any complete CAT(—1)
space X(cf. 9.13).

(3) If X is the Euclidean cone CoY on a metric space Y, then with its angular
metric is isometric to Y with the truncated metric max{d, (This generalizes (1).)

Our next goal is to prove

9.7 Proposition. Let X be a complete CAT(0) space

(1) The identity map from equipped with the angular metric to with the cone
topology is continuous. (In general it is not a homeomorphism, cf 9.6(2)).

(2) EX with the angular metric is a complete metric space.

We postpone the proof of this proposition for a moment, because it will be
clearer if we first articulate a reformulation of the definition of t. In fact we take
this opportunity to list several such reformulations. (The proof of their equivalence
intertwines, so it is natural to prove them all at once.) The list of corollanes given
below indicates the utility of these different descriptions oft. Recall that forx, y E X
distinct fromp E X, the symbol y) denotes the angle at the vertex corresponding
top in a comparison triangle x, y) C 1E2.

9.8 Proposition. LetX be a complete CAT(0) space with basepointxo. Let E

and let c, c' be geodesic rays with c(0) = c'(O) = xo, c(oo) = and c'(oo) =
Then:

(I) = c'(t')) = c'(t')) t, ? > 0}.

(2) The function t is non-decreasing and

= lirn

(3) The function

(t, t') —* c'(t')) — c(t)]

is non-decreasing in both t and?, and its limit as t,? —f oo is a').
(4)

= lim c'(t)).
t
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9.4 Definition. Let X be a complete CAT(O) space. The angle between

E EX is defined to be.

= '1).
xEX

9.5 Proposition (Properties of the Angular Metric). Let X be a complete CAT(O)
spa Ce.

(1) The function defines a metnc on EX Called the angular
metric. The extension to X an isometry with the
angular metric. (We show in (9.9) that this metric is complete.)

(2) The function is lower semicontinuous with respect to the
cone topology: for every e > 0, there exist neighbourhoods U of

U E

and E there exist y E X and
E E)X such that = a').

Proof (1) The triangle inequality for / follows from the triangle inequality for
Alexandrov angles (1.1.13). We have to check that then > 0. Let c
and c' be geodesic rays issuing from the same point x E X and such that c(oo) =
and c'(oo) = We choose t> 0 large enough to ensure that d(c(t), c'(t)) > 0 Let
c" be the geodesic ray issuing from c(t) that is in the class If were zero,
then would be ir, and the concatenation of [x, c(t)] and would be
a geodesic ray distinct from c', contradicting the fact that c' is the only geodesic ray
in the class that issues from x.

(2) For fixed p E X, the function is continuous (9.2). The
supremum of a bounded family of continuous functions is lower semicontinuous.

(3) Choose a sequence of points in X such that = a').
As Xis assumed to be cocompact, there exists a compact subset C C X and a sequence
of isometries E Isom(X) such that yn E C. Clearly

and = a'). Passing to a subsequence we may assume
that converges to a point y E C. Furthermore, since we are assuming that X is
proper, is compact, so by passing to a further subsequence we may assume that

and converge in to points and say. The lower semicontinuity of
yields the third inequality given below, and the upper semicontinuity

of (see (9.2)) yields the first (the remaining inequality and the two
equalities hold by definition):

= lirn < <

< = a').

Equality holds throughout. 0
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Proof We begin with the characterization of given in (1) and explain why
this implies (4). Whereas the Alexandrov angle between the rays c and c' is defined
to be

= c'(t')),

we now wish to consider the limit as t,? —± cc,

.= lim c'(t)).
1.t' —.

This limit exists because (t,s') F-+ c'(t')) is a non-decreasing function of
both t and? (see (3.1)) and it is bounded above by ir. And 2 c'(t))/2) =
d(c(t), c'(t))/t, so we have

lim d(c(t), c'(t))
(—+00 t

This formula shows that (4) is a consequence of (1). It also shows that is

independent of the choice of basepoint x0, for if and are geodesic rays issuing
from some other point in X and = and = then there is a constant K
such that d(c(t), + d(c'(t), < K for all t > 0, so by the triangle inequality

c'(t))/t =
— Let v'). Note that < v'), because <

and does not depend on x0. Thus, in order to prove (1) (and
hence (4)) it suffices to show that < The proof of this inequality
intertwines naturally with the proofs of (2) and (3).

We use the following notation (see figure 9.2):

= c'(t')), c(t)), )'t = c'(t'))

= c(t)), = c'(t')).

The function t is non-decreasing because for s> t we have

+ < Jr +

where the first inequality comes from (9.3) and the second is the triangle inequality
for angles together with the fact that the angle at c(s) between the incoming and
outgoing germs of the geodesic c is ir. This proves the first assertion in (2). The
proof that the function described in (3) is non-decreasing is similar

In the same way as we obtained the displayed inequality above, we get
+ a1 + > ir, + > ir and + <.ir, hence

> (Jr a1 — a'1).

And if we let = c'(L')) and a', = c(t)), then by the CAT(0)
inequality we get

(Jr a, — a') > (Jr — — = c'(i')).
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Fig. 9.2 Characterizations of

Therefore,

> > > (ir — a, — a',) > c'(t'))

By definition c'(t')) = v'), so passing to the limit as t,? —÷

cc, all of the above inequalities become equalities This proves (1), (2), (3) and (4).
U

Proof of (9.7). We first prove (1). Fix xo e X and e 8X and let c be the geodesic
ray with c(oc) = that issues from x0. Consider a basic neighbourhood U(c, r, e)
of in the cone topology (see (8.7)). Let 8 — arcsin(e/(2r)) Given e 8X with

< 8, let c' be the geodesic ray with c'(O) = x0 and c'(oc) From part (1)
of the above proposition we have c'(r)) < 8 and hence d(c(r), c'(r)) e.
Thus < 8 implies e U(c, r, e).

The same argument shows that if is a Cauchy sequence for the angular metric
on and c,, is the geodesic ray with c,1(O) = xo and c,,(oc) = then for every
r > 0 the sequence c,1(r) is Cauchy and hence convergent in X. Let c . [0, cc) —±
X be the limit ray. Given e > 0, since is Cauchy, we can apply part (1) of
the preceding proposition to deduce that for sufficiently large m and n we have

t,? > 0} <s. Fixing n and letting m —÷ cc we get:

= t' > 0) < e.

Thus —÷ U

9.9 Corollary (Flat Sectors). Let X be a complete CAT(0) space. If for some point
x0 e X we have = <ir, then the convex hull of the geodesic rays
c and c' issuing from x0 with c(cc) = and c'(oc) = is isometric to a sector in
the Euclidean plane JE2 bounded by two rays which meet at an angle v').

Proof The function t F-+ is a non-decreasing function of t, its limit as
I 0 is and by part (2) of the proposition, its limit as t —* cc is v').
If = then this function must be constant, so we may apply the

xo
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Flat Triangle Lemma (2.9). (The hypothesis < ir is needed to ensure that
the comparison triangles c(t), c'(t)) are non-degenerate.) 0

9.10 Corollary. Let X be a complete CAT(O) space and let c, c' be geodesic rays
issuing from x0 in the direction of e 8X respectively. For any real numbers
a, a' > 0 we have

lim c'(a't)) = (a2 + a'2 — 2aa' cos
t-.+oo t

In other words, this limit exists and is equal to the length of the third side of a
Euclidean triangle whose other sides have lengths a and a' and meet at an angle

Proof The Euclidean law of cosines gives

d(c(at), c'(a't))2 = a2? + — 2aa'? cos c'(a't))).

To obtain the desired formula, we divide by t2, let t —÷ cc and appeal to (9.8(1)). D

9.11 Corollary. Let X1 and X2 be two complete CAT(0) spaces. Then 8(X1 x X2)
with the angular metric Z is isometric to the spherical join 8X1 * 8X2 of(8Xi, L) and
(8X2, Z). More specifically (in the notation of 1.5), given = (cose + sine
and = (cos e' + sine' in a(X1 x X2), we have

v')) cos e cos e' + sine sine'

Proof Choose basepoints x1 e X1 and x2 e X2 and let c2, c', be geodesic
rays issuing from these points in the classes respectively. c(t)
(c1(tcose), c2(tsine)) and c'(t) = are geodesic rays in
X1 x X2 with c(oc) = and c'(oc) and c(0) c'(O) = (x1,x2). The pre-
vious corollary implies:

(2 — v'))
= urn (d(c(t), c'(t))/t)2

= lirn(d(c1 (t cos (t cos e'))/t)2 + lirn(d(c2(t sin c'2(t sin O'))/t)2

= cos2 0 + cos2 0' —2 cos e cos e' cos

+ sin2e + sin2e' —

= 2— — 2sinesino'cos

as required. 0

Later (9.24) we shall prove that the above result admits a converse in the case
where geodesics can be extended indefinitely. In other words, if X has the geodesic
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extension property then one can detect whether or not X is a product by examining
the geometry of (8X, Z).

9.12 Examples
(1) If X is a complete CAT(—1) then = ir for all pairs of distinct points

ax. To see this, we fix x0 e X such that > 0 and consider c, c'
with c(0) c'(O) = x0 and c(oc) m1 denote the midpoint of
[c(t), c'(t)]. For a comparison triangle c(t), c'(t)) in 1H12 we have

c'(t)) c'(t)) = > 0.

It follows that d(10, is bounded above by some constant A. Hence,

2t = d(xo, c(t)) + d(xo, c'(t)) < 2d(xo, m1) + d(m,, c(t)) + d(m1, c'(t))

= + d(c(t), c'(t)) < 2A + 2t.

Dividing by t and let t —÷ cc, we get that d(c(t), c'(t))/t = 2, and conclude
from (9.8(4)) that = ir.

(2) Let Y = JR x X. By (9.11), the angular metric on 8 Y makes it isometric to the
suspension of (X, Z). The case X = 1E12 is described in (4). Consider the case where
X is a regular metric tree. In this case 8Y with the cone topology is metrizable as
the suspension of the standard Cantor set, and (8 Y, Z) is the length space associated
to this metric the metric topology and length-space topology are different in this
case.

(3) If Y = 1E12 x 1E12 then (8Y, Z) is the spherical join of two uncountable spaces
in each of which all distinct points are a distance ir apart

(4) If Y = IE'1 x then (8Y, Z) is the geodesic space obtained by taking
uncountably many copies of and identifying their north poles and south poles
(8Y, Z) would remain unchanged if we were to replace 1E12 by the universal cover
of any compact space X of strictly negative curvature with the geodesic extension
property (other than a circle).

The Boundary (DX, Z) is a CAT(1) Space

The following fundamental property of the angular metrics was proved by Gromov
in the case of Hadamard manifolds [BaGS87}.

9.13 Theorem. If X is a complete CAT(0) space, then 8X with the angular metric is
a complete CAT( 1) space.

First we prove that 8X is a ir-geodesic space. This follows from:
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9.14 Proposition. LetX be a complete CAT(O) space. Given rj e 8X with <
ir, there exists e 8X such that = Z(i7, =

We follow a proof of B. Kleiner and B. Leeb ([K1L97]); this requires two lemmas.

9.15 Lemma. Let X be a CAT(O) space. Fix x, y e X with d(x, y) = 2r and let m be
the midpoint of the geodesic segment [x, y]. If m' is a point such thatd(m', x) r( I +e)
and d(m', y) <r(I + e), then d(m, m') <r(e2 + 26)h/2.

Proof At least one of the angles x) and y) is greater than or equal to
ir/2, let us say Zm(m', x) ir/2. In the comparison triangle m', x), the angle
at is also greater than or equal to ir/2 (1.7), hence r2(1 + 6)2 > d(m',x)2 >
r2 + d(m, m')2. Therefore d(m, m')2 + 2e). 0

9.16 Lemma. Let X be a complete CAT(O) space with basepoint x0. Let x,1 and Y,i
be sequences of points in X converging to points and Ti of 8X in the cone topology.
Then,

y,1)> Ti).

Proof By hypothesis the sequences of geodesic segments [x0, x,1] and [x0, y,1] con-
verge to the geodesic rays [xo, and [x0, Ti] respectively. e [x0, to be the
point furthest from x0 such that [xo, 1) < 1. Let be the orthogonal projection
of to [x0, x,1]. Let and be defined similarly. Because x,1 —* and Y,i
we have d(xo, d(xo, —* cc. It follows from 9.8(1) that =

But y',1) = and by the CAT(O) inequality
Therefore Ti). 0

Proof of 9.14. Choose a basepoint x0 e X and let t and t i—÷ y1 be geodesic
rays issuing from x0 in the classes and Ti respectively. Let m1 be the midpoint of
the geodesic segment [x,, ye]. We wish to show that the geodesic segments [xo, m1]
converge to a geodesic ray [x0, as t tends to cc. This will prove the proposi-
tion, because m1) > and liminf1 m1) by
(9.16), and lim1 = by (9.8(1)), so letting t —* coin m1) =

< we get = L(Ti, < and the
triangle inequality implies that in fact we have equality.

It remains to show that the geodesic segments [xo, m1] converge to a geodesic ray
as t —* cc. Since X is complete, it is sufficient to prove that for all R > 0 and s > 0

the geodesic segments [x0, and [x0, intersect the sphere of radius R about x0 in
points a distance at most e apart whenever t and s are sufficiently large. Note first that
d(xo, —÷ cc as t —* oc, because by (9.8(4)) = ij)/2),
which by hypothesis is less than 1, and by the triangle inequality t d(x1, m1) +
d(xo, mt), so dividing by t and letting t —* oo we have d(xo, > I

Ti)!2) > 0.
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Given s > t we write (t/s) to denote the point on the geodesic segment [x0,
that is distance (t/s) d(xo, from x0. Applying the CAT(0) inequality to the tnangle

we get

t t
< — d(x5, =

2s

and from Ys' we get

< = d(x5, ys).
2s

Therefore

d(x1, < d(x1, (t/s) + d(y1, (t/s) < (t/s)

for all s > t. If we divide all of these inequalities by d(x1, and pass to the limit
as t —± cc, they all become equalities because s > t and d(x5, =

d(x1, y1)/t = Thus

• d(x1, (t/s)
hm =1 and

m1)

•

hm =1.
d(y1, m1)

Using (9.15) we conclude that = 0. But we proved in the
second paragraph that d(xo, > 0, hence

d(m1, (t/s) m5)
lim =0

d(xo, mt)

and therefore
lim (t/s) m5) = 0.

1.

Given a positive number R and t > R we write for the point of [x0, mt] a
distance R from xo. The CAT(0) inequality for mt, (t/s) m5) gives

<

which we have shown converges to 0 as s, t —* cc. Thus the geodesic segments
[x0, m1} converge to a geodesic ray [x0, D

9.17 Remark. There is an easier proof of (9.14) in the case where Xis proper: as in
the second paragraph of the proof given above one sees that the set of midpoints mt
is unbounded, then using the properness of X one can extract a sequence of points
mt(,1) from this set so that [x0, converges to a geodesic ray. The argument of the
first paragraph can then be applied.
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Proof of Theorem 9.13. We showed in (9.7) that (8X, Z) is a complete metric space,
so the existence of midpoints (9.14) implies that it is a ir—geodesic space. It remains
to show that triangles satisfy the CAT( 1) condition.

Consider e 8X with + + < 2ir and

= let C S2 be a comparison
triangle and let be the midpoint of the segment We must show that

Let c0, c1, C2, c' be geodesic rays issuing from a fixed point e X with
co(oo) = = = p., and let a = and
a cos(a/2) > 0. Let m, be the midpoint of the segment [co(t), c1 (t)]. We claim
that d(m1, c'(at))/t 0. For i — 0, 1, by (9.8(4)) we have

lim m1) = lim d(co(t), c1 (t)) = sin(a/2),
t 2t

and by (9.10)

lim d(c,(t), c'(at)) = sin(a/2).
t-.oc t

Hence

lim d(m1, c'(at))/t = 0.
1-. oc

Consider S2 as the unit sphere in R3 Let denote the midpoint of the Euclidean
segment The spherical distance is equal to the vertex angle at
0 e R3 in the Euclidean triangle The law of cosines applied to this
triangle yields:

(2) — = a2 + I — ii))

We wish to compare this with the fact that (cf. (9.10))

(3) lim d(c2(t), c'(at))2 = a2 + I — p)).
(—+00 t

By the CAT(0) inequality,

d(c2(t), co(t))2 + c1 (t))2 — d(co(t), c1 (t))2.

Combining this with (1), we get:

lim d(c2(t), c'(at))2
(—.00 1

< lim d(c2(t), co(t))2 + lim d(c2(t), C1 — lim d(co(t), c1
2t2

c2co c2c1 clco
—
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This inequality allows us to compare (2) and (3) and hence deduce that

The Tits Metric

For many purposes it is convenient to replace the angular metric Z on the boundary
ax of a complete CAT(O) space by the corresponding length metric. This metric is
named in honour of Jacques Tits

9.18 Definition. Let X be a CAT(O) space. The Ths metric on 8X is the length metric
associated to the angular metnc; it is denoted d7. The length space (AX, d7) is called
the Ths boundary of X, and is denoted 8TX.

9 19 Remarks
(1) If and are points of ax which cannot be joined by a path which is rectifiable

in the angular metric, then d7 = cc. In particular, if x is a CAT(— 1) space,
then the Tits distance of any two distinct points in ax is infinite (see 9.12(1))

(2) It follows from Theorem 9.14 that two points of 8X which are a distance less
than ir apart are joined by a (unique) geodesic in (8x, Z), so if < ir then

In particular the identity map from (8x, Z) to (ax, d7) is a local
isometry and (8x, dT) is a CAT(l) metric space If x is proper, then one can say
more:

9.20 Theorem. If x is a complete CAT(O) space, then 8X7 is a complete CAT( 1)
space. Moreover is proper then any two points e 8A' such that <
cc are joined by a geodesic segment in 8Tx.

Proof As < cc, there is a sequence of continuous paths Pu [0, 1] —÷ 8x,
parameterized proportional to arc length, which join to and whose Tits length
tends to d7 We fix N so that for all n sufficiently large d7 (p,1(k/N), p,1((k +
1)/N)) < ir/2 for k 0,.. , N — 1. As with the cone topology is compact,
we may pass to a subsequence and assume that each of the sequences con-
verges in the visual topology, to a point say. As d7 (p,1(k/N), p,1((k + 1)/N)) =
Z(p,1(k/N,p,1((k + 1)/N), using the upper semicontinuity of the angular met-
ric (9.2), we have Z(/Lk, /Lk+) < + 1)/N) which is

d7 (p,1(k/N), p,1((k + 1)/N)) ir/2. Let ck be a geodesic segment (which
exists by 9 14) joining to fork = 0 N — 1, and let c be the path joining

to which is the concatenation of c0 cN_ . Then,
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ZZ>ldT(ck)

urn ldT(Pn)

showing that c is a geodesic segment joining to

9.21 Proposition. LetX be a proper CAT(O) space and let and be distinct points
of 8X.

(1) > ir, then there is a geodesic c : JR —÷ X with c(oc) = and

c JR —÷ X with c(oc) = and c(—oc) = then

= and there is a geodesic segment in (8X, dT) joining to

(3) If c JR —* X is a geodesic, then dT(c(—oc), c(oc)) ir, with equality if and
only if c(JR) bounds a flat half-plane.

(4) If the diameter of the Tits boundary 8TX is ir, then every geodesic line in X
bounds a flat half-plane.

We need a lemma.

9.22 Lenuna. Let X be a complete CAT(O) space, and let (x,1) and be sequences
in X converging to distinct points and of 8X. Suppose that each of the geodesic
segments [x,1, meets a fixed compact set K C X. Then, there exists a geodesic
c: JR —÷ X such that c(oc) = and c( — oc) = the image of c intersects
K.

Proof For every n e N we fix a point p,1 e [xv, fl K. By passing to a subsequence
if necessary, we may assume that the sequence P,i converges to a point p e K. Let

and be the geodesic rays issuing from p which are asymptotic to and
respectively. We claim that the map c . JR —÷ X defined by c(t)

c(t) for t 0 a geodesic. Indeed, given y E andy' e
there exist sequences of points y,1 e [p,1, x,1] and y and

—÷ y' as n —÷ cc; since d(y,1, = d(y,1, p,i) + d(p,1, in the limit we have
d(y, y') = d(y, p) + d(p, y').

Proof of 9.21. (1) follows immediately from (2).
For (2), we consider geodesic rays c0 and c1 issuing from the same point and such

that co(oc) = and c1 (oc) = Let m1 be the midpoint of the segment [co(t), c1 (t)}.
If there is no geodesic joining to then, since X is proper, d(co(0), m1) —÷ cc
by (9.22). As in 9.17 one sees that there is a point e dX such that

1/2 <ir/2. As there are geodesic segments in 8Xjoining to
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arid to we have + = The reverse
inequality is obvious, hence =

(3) Let = c(—oc) arid = c(oc). We have > = ir. Sup-
pose = ir. According to (9.20), there exists 17 e 8X such that =

= ir/2, and hence by (1) y) ir/2. Let c' be the geodesic
ray issuing from x = c(0) and such that c'(oc) = 17. As < = ir/2
arid ir = < + < + Z(i7, = ir, we have
equality everywhere. In particular, i = 0, 1, and
(9.9) implies that the convex hull of c'([O, cc)) U c(R) is isometric to a flat half-plane
bounded by c(R).

9.23 Examples
(l)LetX = {(x,y) eR2 : x> Oory> 0) withthelength metricinducedby the

Euclidean metric. Then (8X, dT) is isometric to the interval [0, 3ir/2}.

(2) Let X = ((x, y) e yj < x2) with the length metric induced by the
Euclidean metnc. Then (DX, dT) is isometric to the disjoint union of two intervals
[—ir/2, ir/2}. The two half-parabolae ((x, y) y = x2, x > 0) and ((x, y) —y =
x2, x > 0} are the images of two geodesic rays in X that define points of (8X, dT)
that are a distance ir apart but which cannot be joined by a geodesic in 8X.

How the Tits Metric Determines Splittings

It follows from (9.11) that if a complete CAT(0) space X splits as a product X1 x X2,
then its Tits boundary splits as a spherical join 8TX = 8TXI * 8TX2. In this section we
shall show that, conversely, if X has the geodesic extension property then spherical
join decompositions of the Tits boundary 8TX give rise to product decompositions
of X itself. This theorem is due to V. Schroeder in the case where X is a Hadamard
manifold (see [BaGS87}, appendix 4).

9.24 Theorem. If X is a complete CAT(0) space in which al/geodesic segments can
be extended to geodesic lines, and if 8TX is isometric to the spherical join of two
non-empty spaces A1 andA2, then X splits as aproductX1 x X2, where ax, = A1for

= 1,2.

In order to clarify the exposition, we re-express the theorem in a more technical
form that indicates the key features of spherical joins.

9.25 Proposition. Let X be as above and suppose that A1, A2 C aTX are disjoint,
non-empty subspaces such that

(1) e A1 and

e A2 the
geodesic segment C 8TX.
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Then X splits as a product X1 x X2 such that = A1 for i = 1, 2.

9.26 Remarks. Under the hypotheses of the proposition:

(1) The Tits metric and the angular metric on 8X coincide

(2) EA1 E EA1.

In order to prove (9.25) we shall need the following lemma.

9.27 Lemma. LetX, A andA2 be as in the statement of the proposition and consider
two geodesic rays c1, c2 : [0, oo) —* X with c1(O) = c2(O) xo. If = A,,

fori = 1,2, then = ,r/2and the convex hull of c1([O, oo))is
isometric to a quadrant in the Euclidean plane.

Proof By hypothesis, the geodesic ray c1 is the restriction of a geodesic line c1
X. = As we remarked above, A1. Hence

=

50 = = ir/2, and we can apply Corollary 9.9. [1

Proof of Proposition 9 25. We present the proof in four stages. Fix xo E X and let
X1(xo) be the union of the geodesic rays joining xo to the points of A1.

Claim 1: X1 (xo) is a closed convex subspace. Any geodesic line which cuts
X1(xo) in two distinct points is entirely contained in And if E X1(xo) then

= Xj(xo).

Our proof relies on the following alternative description of X1 (xo). Consider a
geodesic ray c [0, oo) —* X with c(O) = xo and c(oo) E A2, and let be the
associated Busemann function. We claim that X1 (xo) = (0), where c runs
over all such geodesic rays The key observation is that if c1 is a geodesic ray with
c1(O) = xo and E A1, then the convex hull of c([0, oo)) and c1([O, oo)) is a
subspace isometric to a Euclidean quadrant (by the lemma) and the intersection of

with this subspace is c1([O, oo)) (see 8.24(1)). Since every point of Xj(xo)
lies on some such geodesic ray c1, we deduce X1 (xo) C (0). Conversely, given
x E X N X1 (xo), we consider a geodesic ray issuing from xo and passing through x.
By hypothesis, there exist A1 and E A2 such that E Let be
the geodesic rays issuing from xo with c,(oo) = Since x is not in X1 (xo), the ray c1
does not pass through x, and so by considering the restriction of to the Euclidean
quadrant yielded by the lemma, we see that 0 Thus X1(xo) =

it follows from this equality that for all E X1 (xo) and c with c(0) = xo and
c(oo) E A2, the Busemann function of the ray c' issuing from with c'(oo) = c(oo)
is the same as Thus Xj(xo) = =

Given any geodesic ray c with c(0) = xo and c(oo) E A2, we can extend it to a
geodesic line with c(—oo) E A2, as we noted previously. Let [0, oo) —÷ X be the
geodesic ray t i—p c(—t). Note that fl = 0]) fl oo))
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which is a closed convex set. it follows that X1 (xo), as the intersection of closed
convex sets, is closed and convex.

in the argument given above we described the geodesic ray joining xo to
an arbitrary x E X as lying in a subspace isometric to a Euclidean quadrant. The
intersection of this subspace with X1 (xo) is precisely the image of c1 (one of the
axes). it follows that if x X1 (xo) then meets X1 (xo) at only one point. This
completes the proof of the first claim.

Given x, y E X, define d(X1 (x), X1 (y)), and let pyx : X1 (x) X1 (y) denote
the restriction of the orthogonal projection X X1 (y).

Claim 2: The convex hull of X1 (x) U X1 (y) is isometric to X1 (x) x [0, ag]. And
for all x, y, z E X we have =

Given x' E X1 (x), we extend the geodesic segment [x, x'] to a geodesic line c with
c(O) = x. it follows from Claim I that c(IR) C (x) and c(oo) E A1. Consider the
ray c' issuing from y with c'(oo) = c(oo). The function t i—+ d(c(t), c'(t)) is convex
and bounded on [0, hence it is non-increasing and d(x', X1 (y)) <d(x, y). Casting
c(t) in the role of x', it follows that t i—÷ d(c(t), X1 (y)) is bounded on the whole of
IR. But since X1 (y) is convex, this function is convex (2.5), hence constant Thus
d(x, X1 (y)) = X1 (y)).

Because the convex hull of X1 (x) U X1 (y) is isometric to X1 (x) x [0, by the
Sandwich Lemma 2.12(2), the mappyx sends each geodesic line in X1 (x) isometrically
onto a geodesic line in X1 (y). And since every point of X1 (x) lies on a geodesic line,
the second assertion in Claim 2 is an immediate consequence of Lemma 2 15.

Claim 3: Let X2(xo) be the union of the geodesic rays joining to the points ofA2
and let P1 X X1(xo) be orthogonal projection We claim that X2(xo) =

Given x E X distinct from x0, let c, [0, oo) X be a geodesic ray issuing from
x0 and passing throughx. By hypothesis, there E A, such that E

Let c, be the geodesic ray with c,(0) = x0 and c,(oo) = According to the lemma,
the convex hull of the union of these geodesic rays is a subspace of X isometric to
a quadrant in a Euclidean plane. This subspace contains the image of and in this
subspace it is obvious that the orthogonal projection of x onto the image of c1 is xo if
and only if x lies in the image of C2; thus ifp(x) = xo then x E X2(xo). Conversely, if
x E X2(xo) then in the above construction we may choose c1 so that it passes through
any prescribed point x' E X1 (xo), and hence d(x, x') > d(x, xo) (with equality only if
x'=xo).

Claim 4. For i = 1,2, let p, : X X1(xo) be orthogonal projection. We claim
thatthe mapj = (pj ,P2): X —÷ Xj(xo)xX2(xo)is anisometry, whereX1(x0) xX2(xo)
is endowed with the product metric.

Let x, y E X. It follows from the first assertion in Claim 2 that d(x, y)2 =
d(X1 (x), X1 (y))2 + d(x, and from the second assertion that d(x, =
d(p1 (x), p1(y)). Claim 3 implies that p2(x) = X1 (x) flX2(xo) (if we exchange the roles
of the subscripts 1 and 2), and we get a similar expression for And Claim 2
(with I and 2 exchanged) implies that d(p2(x), p2(y)) = d(X1 (x), X1 (y)).
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Therefore d(x, y)2 = d(p1 (x), Pi (y))2 + d(p2(x), P2(Y))2. it is clear that =
A,, i= 1,2. o

Visibility Spaces

The notion of visibility for simply connected manifolds of non-positive curvature
was introduced by Eberlein and O'Neill [EbON73] as a generalization of strictly
negative curvature. This condition can be interpreted in a number of different ways
(see [BaGS87, p.54]) most of which can be generalized to CAT(O) spaces.

9.28 Definition. A CAT(O) space is said to be a visibility space if for every pair of
distinct points and q of the visual boundary 8X there is a geodesic line c: X
such that = and c(—oo) = ij.

Note that the geodesic c is in general not unique. For instance, X could be
a Euclidean strip [0, 1] x or X could be obtained by gluing such a strip to a
hyperbolic half-plane using an isometry of {O} x IR onto the geodesic bounding

9.29 Definition. A CAT(O) space X is said to be locally visible if for every p E X
and e > 0 there exists R(p, s) > 0 such that if a geodesic segment [x, y] lies entirely
outside the ball of radius R(p, s) about p then y) <s.

9.30 Definition. A CAT(O) space Xis said to be uniformly visible if for every s > 0

there exists R(s) > 0 such that, given p E X, if a geodesic segment [x, y] lies entirely
outside the ball of radius R(s) about p then y) < s.

9.31 Remarks
(1) Real hyperbolic space IHI'7 is uniformly visible and hence so is any CAT(—1)

space (because the distance from p to [x, y] does not decrease when one takes a
comparison triangle y, p) in 1H12 and the comparison angle atp is at least as large
as y)).

(2) There exist complete non-proper CAT(O) spaces which are locally visible but
which are not visibility spaces and vice versa. An example of a complete visibility
space which is not locally visible can be obtained by taking any complete visibility
space, fixing a basepoint and attaching to that point the c er of a Euclidean square
of side n for every positive integer n. An example of a omplet locally visible space
which is not a visibility space is {(x, y)

I

I > y 1 —(1 + IxIY1 } with the path metric
induced from the Euclidean plane. Examples of CAT(0) spaces which are visible but
not uniformly visible can be obtained by considering negatively curved 1-connected
manifolds whose curvature is not bounded above by a negative constant. The interior
of an ideal triangle in the hyperbolic plane provides an example of an incomplete
uniformly visible space that is not a visibility space.
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(3) in contrast to the remark preceding (9.30), note that by the flat strip theorem,
there is a unique geodesic line joining any two points at infinity in any proper
CAT(—1) spaceX.

One consequence of this is that if we fix p E X and 8X, then there is a
well-defined ideal triangle with verticesp, (Exercise: if 9 is the angle between
the geodesic rays issuing fromp with endpoints and and D is the distance from
p to the geodesic line with endpoints and then tan(9/4) <

9.32 Proposition. If X is a proper CAT(0) space, then the following are equivalent-

(1) X is a visibility space;

(2) X is locally visible.

If in addition X is cocompact, then (1) and (2) are equivalent to:

(3) X is uniformly visible.

Proof (2) (1): Let and be distinct points of 8X and let x,, and be
sequences of points in X converging to and respectively, if p E X is such thatL, > s > 0, then for n big enough we have > s. By (2), there exists
R> 0 such that meets the compact ball B(p, R). it then follows from Lemma
9.22 that there is a geodesic joining to

(1) (2): We argue the contrapositive. if X is not locally visible, then
there exists a point p E X, a number s > 0, and sequences and such
that d(p, is unbounded but > s. We can assume, by passing to
subsequences if necessary, that the sequences x,1 and converge to points and
in 8X. These points are necessarily distinct because > s.

Let p,1 be the image of p under projection onto the closed convex set By
passing to a subsequence if necessary, we may assume that the sequence p, converges
to a point q E 8X. Reversing the roles and if necessary, we assume that q

If n is big enough then and hence the angle is well defined.
According to (2 4) this angle is not smaller than ir/2, hence the comparison angle

(p, x,,) is also no smaller than ir/2, so x,1) <ir/2. But then, by the lower
semicontinuity of the comparison angle (9.16) we have q) ir/2. Hence there
is no geodesic in X with endpoints and q.

Finally we prove that (2) (3) (the converse is trivial). We argue the con-
trapositive Suppose that X is cocompact, covered by the translates of a compact
subset K. If X is not uniformly visible then there exists s > 0 and sequences of
points in X such that > s for all n, and d(p,1, y,1]) —* :: as
n Translating by suitable elements of isom(X) we may assume that p, E K
for all n, hence d(K, yn]) —* :: as n Since K and X are compact, we may
pass to subsequences so —* p E K —* 8X, yn E 8X. By the
upper-semicontinuity of angles (9 2), we have q) > s. Hence by the continuity
of angles at a fixed p. we have > s/2 for all n sufficiently large Since
d(p, > d(K, —* :: as n —÷ this implies that X is not locally
visible atp. LI



296 Chapter 11.9 The Tits Metric and Visibility Spaces

The following theorem was proved by Eberlein [Eb73] in the case of Hadamard
manifolds. The version given here was stated by Gromov [Gro87] and a detailed
proof was given by Bridson [Bri95]. A generalization to convex metric spaces was
proved by Bowditch [Bow95b]. The implications of the stark dichotomy exposed by
this theorem will be considered in Part 111.

9.33 Theorem. A proper cocompact CAT(O) space X is a visibility space and only
it does not contain a 2-flat (i.e, a subspace isometric to 1E2).

Proof it is clear that if X contains a 2-flat then it cannot be a visibility space. On the
other hand, if X is not a visibility space then according to (9.21(2)) there exist two
distinct points 8X such that < ir/2. But then, by Proposition 9.5(3),
there existy E X and q, q' E 8X such that 4(ij, q') = a'). It follows from 9.9
that the convex hull of the geodesic rays issuing from y in the classes q and q' is
isometric to a sector in the Euclidean plane; in particular X contains arbitrarily large
flat discs. The following general lemma completes the proof of the theorem. LI

9.34 Lemma. Let V be a separable metric space with basepoint yo and let X be a
proper cocompact metric space If for all n E N there exists an isometric embedding

B(y0, n) X then there exists an isometric embedding V X.

Proof Letyo, yj,... be a countable dense subset of V. Because Xis cocompact, we
can replace by a suitable choice of with g, E Isom(X), and hence assume
that the sequence is contained in a compact (hence bounded) subset of X
Since X is proper, it follows that for all i the sequence is contained in a
compact subset of X. Hence there exists x0 E X and a sequence of integers (no(J))j
such that —* x0 asj And proceeding by recursion on r we can find
a sequence of elements x,1 E X and infinite sets of integers C {nr_ 1(j)}1 such
that —* xL as j —* :: for all k < r. The diagonal sequence m = nr(r)
satisfies m :: for all k > 0. Since the are isometries, so too
is the map i—÷ The set {yi},. is dense in V, so i—+ has a unique extension,
which is the desired LI

We close this section by giving a few other characterizations of proper visibility
spaces. In Chapter III.H we shall consider a much more far-reaching reformulation
of uniform visibility, Gromov's 8-hyperbolic condition

9.35 Proposition. LetX be a proper CAT(0) space. The following are equivalentS

(1) X is a visibility space.

(2) If h, h' are horofunctions centred at different points 8X, then h + h'
assumes its infimum.

(3) Let h be a horofunction cent red at 8X and let c: [0, oo] X be a geodesic
ray with c(oo) Then h o c(t) tends to infinity when t tends to infinity.
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(4) The intersection of any two horoballs centered at different points of 8X is
bounded.

We first need a lemma

9.36 Lemma. Let c: —* X be a geodesic line in a CAT(O) space X, and let be
the Busemann function associated to the geodesic ray Letp be the projection
onto the closed convex subspace c(IR). Then for all x E X we have

bj,p(x)) <

Proof Lets = For any t > s, we have = t> s = and the
projection of c(—t) to the horoball ((oo, s]) is c(—s). Thus LC(_S)(c(—t), x) > ir/2,
and d(x, c(—t)) > d(x, c(—s)). Therefore p(x) E c([—s, LI

Proof of Proposition 9.35.
(1) (2). Let c: X be a geodesic such that c(oo) = and c(—oo) =

and let (resp. b_c) be the Busemann function associated to the ray (resp.
i-+ c(—t)). These functions are equal up to constants to h and h' respectively, so

it is sufficient to show that + assumes its infimum. Note = —t and
= t, and hence b, + is identically zero on c(IR). Letp be the projection

of X to c(IR) and x E X. By the lemma, bjp(x)) and b_j,p(x)) =
Thus + ? 0.

(2) (1). Let x E X be a point such that h(x) + h'(x) is minimum Let c (resp.
c') be the geodesic ray issuing from x such that c(oo) = (resp. c'(oo) = c'). As
h' E B (cf. 8.22), for t> 0, we have

h'(c(t)) — h'(x) <

and we have equality if and only if the concatenation of c (reversed) and c' is a
geodesic line. As h(x) — t + h'(c(t)) = h(c(t)) + h'(c(t)) > h(x) + h'(x) , we have

h'(c(t)) > h'(x) + t,

hence the desired equality.
(1) (3). Let c' IR X be a geodesic line with c'(oo) = c(oo) :=

and c'(—oo) = We have h(c'(t)) = h(c'(O)) + t. if p is the projection on c'(IR), by
the above lemma we have h(c(t)) > h(p(c(t)). As Ih(c(t)) — < d(c(t), c'(t)),
which remains bounded as t —* we have h(p(c(t))

(3) (4). Let h and h' be horofunctions centred at different points and
and let H and H' be horoballs centred at and if H fl H' is not bounded, there is
an unbounded sequence in H fl H' As X is proper by hypothesis, we can assume
that converges to q E 8X. Let x0 E H fl H'. As H fl H' is convex, the geodesic
segments [x0, converge to a geodesic ray c in H fl H' with c(oo) = q. But the
functions h(c(t)) and h'(c(t)) are both bounded, hence q = = a contradiction.
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(4) (1). Let and be distinct points of 8X and let and be
Busemann functions associated to geodesic rays issuing from x E X and such
that c(cc) = and c'(oo) By hypothesis the intersection C of the closed
horoballs H := 0]) and H' := 0]) is bounded. For a > 0, let
H(a) := —al). If a is bigger than the diameter of C, then H' fl H(a) = 0;
indeed fory E X such that < —a, we have a < — <d(x, y), hence
H' does not intersect H(a).

Letm := inf{a >0 I H'flH(a) ø}.AsweassumedXtobeproper,H'flH(m)
0. Given y E H' fl H(m), let and be geodesic rays issuing from y and such that

= and = We have = —t — m and = —t. We claim
that the union of the images of and is a geodesic line joining to it suffices
to check that, for t > 0, we have ë(t)) > 2t. Let z be a point on the geodesic
segment such that = —m. Then > 0, and hence

= z) + d(z, > — + — > 2t.

U



Chapter 11.10 Symmetric Spaces

A symmetric space is a connected Riemannian manifold M where for each point
p E M there is an isometry of M such that a,,(p) = p and the differential of
a1, at p is multiplication by —1. Symmetric spaces were introduced by Elie Cartan
in 1926 [Car26] and are generally regarded as being among the most fundamental
and beautiful objects in mathematics; they play a fundamental role in the theory of
semi-simple Lie groups and enjoy many remarkable properties. A comprehensive
treatment of symmetric spaces is beyond the scope of this book, but we feel that
there is considerable benefit in describing certain key examples from scratch (without
assuming any background in differential geometry or the theory of Lie groups), in
keeping with the spirit of the book. Simple examples of symmetnc spaces include
the model spaces that we studied in Part 1.

in this chapter we shall be concerned with symmetric spaces that are simply
connected and non-positively curved, if such a space has a trivial Euclidean de
Rham factor, then it is said to be of non-compact type, and in this case the connected
component of the identity in the group of isometries of such a space is a semi-
simple Lie group G with trivial centre and no compact factors, in fact, there is a
precise correspondence between symmetric spaces of non-compact type and such
Lie groups. given G one takes a maximal compact subgroup K, forms the quotient
M = G/K and endows it with a G-invariant Riemannian metnc— this is a symmetric
space of non-compact type and the connected component of the identity in isom(M)
is G (see for instance [Eb96, 2.1.1]).

The first class of examples on which we shall focus are the hyperbolic spaces
IKH', where 1K is the real, complex or quaternionic numbers. We shall give a unified
treatment of these spaces based on our earlier treatment of the real case (Chapter 1.2).
We shall define the metric on KR'7 directly, prove that it is a CAT(— 1) space, and
then discuss its isometnes, Busemann functions and horocyclic coordinates. Besides
one exceptional example in dimension 8 (based on the Cayley numbers), the spaces
1KW account for all symmetnc spaces of rank one, where rank is defined as follows.

The rank of a simply connected symmetric space of non-positive curvature is
the maximum dimension of flats in M, i.e. subspaces isometric to Euclidean spaces.
The results in Chapters 6 and 7 give some indication of the important role that
flat subspaces play in CAT(O) spaces; their importance in symmetnc spaces is even
more pronounced. In particular, there is a clear distinction between the geometry of
symmetric spaces of rank one and those of higher rank. Aspects of this distinction
will emerge in the course of this chapter. We should also mention one particularly
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striking aspect of the geometry of symmetric spaces that is not discussed here: if the
rank of M is at least 2, then M and lattices31 in lsom(M) are remarkably rigid (see
[Mar90], [Zim84] and (1.8.4 1)).

We shall exemplify the theory of higher-rank symmetric spaces by focussing
on P(n, IR), the space of symmetric, positive-definite, real (n, n)-matrices. P(n, IR)
has a Eucidean de Rham factor of dimension 1 (namely the positive multiples of
the identity matrix); the complementary factor P(n, IR)1 is the subspace of P(n, IR)
consisting of matrices of determinant one. P(n, IR)1 is irreducible (i.e. cannot be
decomposed as a non-trivial product). Following the outline of the treatment given
by Mostow [Mos73], we shall prove that P(n, IR) is CAT(O) and we shall describe
the geometry of its maximal flats (which are of dimension n). We shall also describe
the Busemann functions and horospheres in P(n, IR). The reason that we chose to
explain the example of P(n, IR) in some detail is that it plays the following universal
role in the theory of symmetric spaces: any simply connected symmetric space of
non-positive curvature is, up to rescaling of the irreducible factors in its product
decomposition, isometric to a totally geodesic submanifold of P(n, IR) for some n
(see [Mos73, paragraph 3] and [Eb96, 2.6.5]). Examples of such totally geodesic
submanifolds are given in the section entitled "Reductive Subgroups".

In the final section of this chapter we shall discuss the Tits boundary of symmetric
spaces (which is interesting only in the case where the rank is 2). This leads us to
a discussion of a remarkable class of polyhedral complexes called buildings. These
complexes, which were discovered by Jacques Tits, provide important examples of
CAT(O) and CAT( 1) spaces. We shall not replicate the literature on buildings, but in
an appendix to this chapter we shall present their definition and explain how it leads
to curvature bounds.

For a concise and elegant introduction to symmetric spaces from the point of
view of differential geometry, we recommend the excellent book of Milnor [Mi163].
For the general theory of symmetric spaces, see [Wo67], [He178], [Kar65],[1m79],
[Eb96]. in this chapter we have been guided by the treatment of Mostow [Mos73];
we also benefitted from the lecture notes of Eberlein [Eb96], as well as conversations
with Marc Burger.

Real, Complex and Quatermomc Hyperbolic n-Spaces

in this section we shall construct the complex and quaternionic hyperbolic n-spaces
in a manner closely analogous to the way in which we defined real hyperbolic space
in (1.2). We shall give as unified a treatment as possible, writing 1K to denote either
IR, C or the quaternions, and wnting to denote the 1K-hyperbolic 32 space of

Discrete subgroups such that I'\M has finite volume. For existence, see [Bo63].
this book the symbol IHI" is reserved for real hyperbolic n-space, but in this

chapter it will be convenient to wnte instead of so as to give a unified treatment of
the real, complex and quaternionic cases. For the same reason, we change the notation of
(16) by wnting instead of and RP'2 instead of r
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dimension n. As in the real case, we shall describe the set of points of in terms
of 1K"1, the vector space equipped with a form of type (n, 1). We shall then
define the distance function by means of an explicit formula on this set of points
(10.5) and give an explicit description of hyperbolic segments and angles (10.7). Our
task, then, will be to show that this 'distance function' is indeed a metric and that our
explicit descriptions of hyperbolic segments and angles are precisely the geodesic
segments and Alexandrov angles associated to this metric Proceeding as in (11.2),
we shall deduce these facts from an appropriate form of the law of cosines (10.8).
This form of the law of cosines also leads to a short proof of the fact that Ku'7 is a
CAT(—1) space (10.10).

For an alternative introduction to complex hyperbolic space, see [Ep871, and for
the general case of symmetric spaces of rank one see [Mos73, paragraph 19].

Notation. Throughout this section 1K will denote either the field IR of real numbers,
the field C of complex numbers, or the non-commutative field of quaternions. (Recall
that the quaternions are a 4-dimensional algebra over IR with basis {1, i,j, k}, where
I is central, zj = k,jk i, ki =j and i2 =j2 = = —1.)

if x E C, then we write to denote the complex conjugate of x. Conjugation on
IR is trivial. For quaternions, one defines the conjugate of A = a0 + a1 i + a2j + a3k to
be A = a0 — a1i — a2j — a3k. The norm IAI ofA 1K is the non-negative real number

The real part of x is the real number

in all of the vector spaces which we shall consider, the multiplication by scalars
will be on the nght.

10.1 Definition of 1K' and the Form Q(x, y) = (xiy). We denote by 1K'2 the 1K-

vector space endowed with the form Q(x, y) (xly) of type (n, 1) defined
by. I

(xiy) :

where x = (xj, . , x,+1) andy = . if — 0 then x andy are said
to be orthogonal The orthogonal complement of x E written x-1-, is {u

I

(xlu) =0}

10.2 Remark. Note that (yix) and hence (xix) is a real number. If (xix) <0,
then the restriction of Q to x-1- is positive definite, and if (xix) > 0 then the restriction
of Q to x1 is of type (n — 1, 1) (see, e.g., [BourS9, paragraph 7]).

10.3 Lemma (The Reverse Schwartz Inequality). If (xix) <0 and <0, then

(xly)(yix) >

with equality if and only if x andy are linearly dependent over K.
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Proof If x andy are linearly dependent then we obviously have equality. The restric-
tion of Q tox1 is positive definite and (yiy) <0,so 0. Let A = — (xix) (xjy)'.
Then x + yA E x1, and if x andy are linearly independent then x + yA 0, therefore
(x + + yA) = (x + yAiyA) > 0. By expanding this inequality we get

0< —(xix) + (xix)2 (yjy) (yixY'(xiyY'.

After dividing by (xjx) < 0, this can be rearranged to give the inequality in the
statement of the lemma.

In Part I we described real hyperbolic space as one sheet of the sphere of radius
—1 in This sheet maps bijectively onto its image under the natural map p

IRP"; by endowing the image of the sheet with the metric that makes the
restriction of p an isometry one obtains an alternative model for real hyperbolic
space. This second (projective) model lends itself readily to the present more general
context.

10.4 Notation. Let KP" be the n-dimensional projective space over K, i.e. the quotient
of N {0} by the equivalence relation which identifies x = (x1 with
xA = (x1A, .. for all A E K* = K N {0}. The class ofx is denoted [xl and
(x1 are called homogeneous coordinates for [x].

10.5 The Hyperbolic n-Space over K. Wedefine to be the set of points
[x] E with (xix) < 0. The distance d([x], [y]) between two points of is

defined by
2

(xiy)(yix)
cosh d([x], [y]) =

(xix)

The preceding lemma shows that the right hand side of this formula is bigger than
I unless [x] = [y], so the formula makes sense and the distance between each pair of
distinct points is non-zero. Thus, in order to show that d is a metric, it only remains
to venfy the triangle inequality. As in the case K = JR (see I 2.6), we shall deduce
the triangle inequality from an appropriate form of the law of cosines. Following the
strategy of (1.2.7), this requires that we first define a primitive notion of hyperbolic
segment and hyperbolic angle. This task is complicated in the present setting by the
fact that if K JR then we do not have a canonical way to lift into Ku", and as
a result we cannot describe tangent vectors in as concrete a manner as we did in the
real case. We circumvent this difficulty as follows. Given x E with (xix) < 0 we
regard x1 as a model for the tangent space of [x] More precisely:

10.6 Tangent vectors. We identify x1 with using the differential of the
natural projection N {0} —÷ K?'.

If u E x-1- is identified with U E then we say that u is the tangent vector
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atx representing U. (If A 0 then uA is the tangent vector atxA representing U, and
since x1 = (xA)', one must be careful to specify the choice of x as well as u when
describing U E

We note in passing that if K is the quaternions, is just a real vector
space, whereas if K = C then is naturally a complex vector space. In any
case, the symmetric positive-definite JR-bilinear form associating to tangent vectors
u, v atx the real number is compatible with the above identifications
and therefore defines a scalar product33 on In this way is naturally a
Riemannian manifold. The interested reader can check that the metnc associated to
this Riemannian structure is the metnc defined in (10.5) (cf. 1.6.17).

10.7 Lines, Segments and Angles in Suppose that (xix) = —1 and that
U E x1, with (uiu) = 1, represents U E Then the hyperbolic geodesic
issuing from [x] in the direction of U is defined to be the map JR given by

c(t) = [xcosht + usinht]. Given a > 0, we write [c(0), c(a)] to denote the
image under c of the interval [0, a], and refer to it as a hyperbolic segment joining
[x] = c(0) to c(a). We call u the initial vector of[c(0), c(a)] atx.

We claim that, given any two points [x] [y] in there exists a unique
hyperbolic geodesic segment joining [x] to [y] To construct this segment one takes
(xix) = —1 and = —1 then multiplies y by the unique A E K with jAi =
such that is real and negative One then defines a = arccosh (—(xIyA)) and

= yA—xcosha The initial segment [c(0), c(a)] oft F—k c(t) [x cosh t + u sinh t] is a
hyperbolic segment joining [x] to [y]. It remains to show that this segment is unique

we leave this as an exercise for the reader.
Given [x] E and non-zero tangent vectors u, v atx, we define the hyperbolic

angle between u and v by

cosL"( )
._

u, V
.—

Since v) = VA) for all A E K, this formula gives a well-defined
notion of angle between vectors U, V E The hyperbolic angle between two
hyperbolic segments issuing from [x] E is defined to be the angle between their
initial vectors. A hyperbolic triangle in consists of a choice of three distinct
points (its vertices) A, B, C E and the three hyperbolic segments joining them
(its sides) The vertex angle at C is defined to be the hyperbolic angle between the
segments [C, A] and [C, B]

10.8 Proposition (The Law of Cosines in Let Ex be a hyperbolic triangle in
with vertices A, B, C, where C = [x] and (xix) = —I. Let a = d(B, C), b =

d(C, A) and c = d(A, B) Let u, v E x1 be the initial vectors at x of the hyperbolic
segments [C, A] and [C, B1. Then

B If 1K = C, there is also a well-defined hermitian form on T[X]IKH'1 given by — (uiv)/(xjx)
34The group of elements (numbers) of norm 1 in 1K acts simply transitively (by nght multi-

plication) on each sphere = r > 0} and each such sphere contains a unique real
negative number
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coshc = cosha coshb — sinha sinhb (uIvH.

Proof WehaveA = [xcosha+ usinha] andB = [xcoshb + vsinhb]. Hence

coshc = (xcosha+ usinha Ixcoshb +
=Icosha coshb—sinha

as required. E

10.9 Corollary (The mangle Inequality and Geodesics). For all A, B, C E

d(A,B)<d(A,C)+d(C,B),

with equality and only if C lies on the hyperbolic segment joining A to B Thus
is a uniquely geodesic metric space: the unique geodesic segment joining A to

B is the hyperbolic segment [A, B].

Proof Let a = d(C, B), b = d(A, C), c = d(A, B). We assume that A, B and C are
distinct (the case where they are not is trivial). Consider a hyperbolic triangle Ex with
vertices A, B, C. With the notations of the preceding proposition we have:

coshc = I
cosha coshb — sinha sinhb (ulv)j

cosha coshb+sinha
sinh a sinh b = cosh(a + b),

withequalityifandonlyif(ulv) = —1 = —1,thensince (ulu) = (vlv) = 1,

we have Q(u + v) = (u + v lu + v) = 0 The restnction of Q to x-1- is positive definite,
thus u = —v and C belongs to the geodesic segment [A, B]. E

The Curvature of

10.10 Theorem. is a CAT(— 1) space

Proof We shall prove that is a CAT(—1) space by applying (1.8) with the
hyperbolic angle L11 in the role of A.

Let Ex be as in (108) and note that in the light of (10.9) we now know that Ex
is a geodesic triangle. Let y denote the hyperbolic angle at the vertex C in i.e.

y =
a geodesic triangle B, C) in the real hyperbolic plane with

d(B, C) = a and d(A, C) = b, and with vertex angle y at C. Let = d(A, B). We
must show that < c. We claim that

= cosha coshb sinha sinhb

<jcosha coshb — sinha sinhb (ulv)I = coshc.
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The equality in the first line is the law of cosines in 1H12, the equality in the second
line is the law of cosines in and the inequality relating the two lines is a special
case of the simple observationthat A+.aql > E KandA,ji E

(with equality if and only if q E JR or = 0).
Thus c, and we can apply remark (1.8).

10.11 Exercise. The Alexandrov angle in is equal to the hyperbolic angle (10.7).

We note one further consequence of the law of cosines. This descnbes the triangles
in that are isometric to triangles in the model spaces Each of these special
triangles actually lies in a complete isometrically embedded copy of the appropriate
model space (cf. Theorem 10.16).

10.12 Proposition. Let Ex c be the geodesic triangle considered in (10.8) and
suppose that the vertex angle Lc(A, B) is not equal to 0 or it. Then

(1) The convex hull of is isometric to the convex hull of its comparison triangle
in if and only if(ulv) is real.

(2) The convex hull of is isometric to the convex hull of its comparison triangle
in M24 and only and v are linearly dependent over K.

Proof In the notation of the proof of (10.10), we have = c if and only if (ulv) is

a real number. If the convex hull of Ex is isometric to that of a geodesic triangle in
then obviously = c Conversely, = c then according to (2.10) the convex

hull of Ex is isometric to the convex hull of its comparison tnangle in

In order to prove the second assertion we compare the given tnangle B, C)
in with a triangle Ex = (A, B, C) in the plane M?i4 of constant curvature —4.
We choose d(C, A) = a, d(C, B) = b and B) = y, where y = B) =

Let
The law of cosines in M24 states that

= cosh2a cosh2b— sinh2a sinh2bcosy.

Squaring this expression and taking account of the identities cosh 24 = 2 cosh2 d —
and sinh 24 = 2 sinh d cosh d, we get:

= cosh2a cosh2b +sinh2a sinh2b 2coshacoshbsinhasinhb cosy.

On the other hand, the law of cosines in (10.8) gives

cosh2 c =

cosh2a cosh2b + I(ulv)I2sinh2a sinh2b — 2coshasinhacoshbsinhb cosy.

As I(ulv)I < 1, comparing the above expressions we see that c with equality if
and onlyif (ujv)I = I.

Since (ulu) = 1, if v = uA then A = (ulv) And since the span of {u, v}
is contained in x1, where the form Q is positive definite, v = uA if and only if
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(v — uA
I

v uA) = 0. Expanding (v — uA
I

v — uA) and setting A = (ulv), we get
(vlv) + I(ulv)l2(ulu) — And since (vlv) = (ulu) = 1, this expression isO
if and only if l(ulv)l = 1. Thus = c if and only if u and v are linearly dependent
over K.

In order to complete the proof, as in (1), we would now like to appeal to the
analogue 2.10 of the Flat Triangle Lemma. However, since is a CAT(— 1) rather
than a CAT(—4) space, we cannot appeal to (2.10) directly. Instead, we claim that if u
and v are linearly dependent, then Ex is contained in an isometrically embedded copy
of where m = K. To see this, we identify the one-dimensional K-vector
subspace of spanned by u with the tangent space at a point o E by means
of an isometry 4: —÷ Ku. The conclusion of the preceding paragraph, =
shows that the map 4: sending the point a distance t E [0, oo) along
the geodesic in Mm4 with initial vector v to the point a distance t E [0, oo) along the
geodesic in Ku" with initial vector 4(v) is an isometry onto its image.

10.13 Remarks
(1) Consider (10.12) in the case n = 1. Given any [x] E IKH', since x-1- is 1-

dimensional, any two vectors u, v E x-1- must be dependent. Thus KH' is isometric
to if K = C and to if K is the quaternions.

(2) The argument in the last paragraph of the preceding proof shows that the K-
linear map 1K'' sending (1, 0) to x and (0, 1) to u E x-1- induces an isometric
embedding]: KH1

(3) The proof of (10.12) shows that the curvature of KH'1 is bounded below by
—4 and above by —1.

The Curvature of Distinguished Subspaces of

Continuing the theme of (10.12) and (10.13), our next goal is to charactenze those
subsets of that are isometric to lHIk = and Mk4. This requires the following
definitions.

10.14 Definitions. Regard as an JR-vector space in the natural way. An JR-vector
subspace V C is said to be totally real (with respect to Q) if (ulv) E JR for all
u, V E V.

Letp : N {0} —÷ be the natural projection. If V C is a totally real
subspace of (real) dimension (k + 1), and if there exists x E V such that (xjx) < 0,
thenp(V N {0}) fl KH'1 is called a totally real subspace of dimension kin

If W C K" is a K-vector subspace of dimension two that contains a vector v
such that (vlv) = —1, then p(W N {0}) fl KH" is called a K-affine line. (K-affine
subspaces of dimension k are defined similarly.)

In the course of the next proof we shall need the result of the following simple
exercise in linear algebra.
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10.15 Exercise. Let V c K'1" be a totally real subspace of dimension k + 1 and let
XE VbesuchthatQ(x,x) = —1.Provethatonecanfindarealbasisu1 Uk, Uk+I

for V such that = x, (u11u1) = 1 fori = 1,. . , kand (u1Iuj) = 0 for all i r/=j.
(Hint: Argue that V = (x) (x'- fl V), as a real vector space, and use the fact that
the restnction of Q to the second summand is positive definite.)

10.16 Theorem.
(1) The totally real subspaces of dimension k in 1KW are precisely those subsets

which are isometric to the real hyperbolic space IRHk = lpilk

(2) For K R, the K-affine lines in IKH'2 are precisely those subsets which are
isometric to the model space of constant curvature —4, where m0 = dimRK.
Moreover KI-I'1 does not contain any subsets isometric to for m >

Proof In order to prove (1), given a totally real subspace V C of dimension
k + 1 containing a vector v with (v, v) = —1, we choose a basis u1 as in
exercise (10.15). The JR-linear map W2l K'1' sending the standard basis of 1RP2l
to u1 induces an isometry of RHk ontop(V N {0}) fl

For the converse, given an isometric embedding j ÷ KH'1, we choose
k + I points A0, A1,.. , E IRHk in general position, write x to denote the element
of K'1'1 with Q(x,x) = —l and [x] = j(A0), and then for i = 1,.. , n we define
u, E x-1- to be the initial vector of the geodesic segment j([A0, A,]). Proposition 10.12
implies that the R-subspace V c generated by x, u1 uk is totally real (since

= 0 and E JR for all i,j) and that p(V N {0}) fl KH" =j(RHk)

The preimage under p : —÷ KP'1 of a K-affine line in KP'1 is a two
dimensional K-subspace for which we can choose a basis {x, u} with Q(x, x) =
—I, Q(u,u)= I, and =0 ThelK-linearmapK' K'1' sending(I,0)tox
and (0, 1) to u induces an isometric embeddingj: KH' —÷ KH'1 whose image is the
given affine line. Thus the first assertion in (2) follows from (10.13). The assertion
in the second sentence is an immediate consequence of (10.12).

The Group of Isometries of

We describe the isometry group of KH'1 by means of a sequence of exercises.

Consider the group GL(n + I, K) of invertible (n + 1, n + 1)-matrices with
coefficients in K. There is a natural left action of this on by K-linear au-
tomorphisms: the matrix A = sends x = (xi E K'1' to A.x =

10.17 The group OK(Q). Let OK(Q) denote35 the subgroup of GL(n + 1, K) that
preserves the form Q defining K'1 A E OK(Q) if and only if (A.xjA.y) = (xIy)
for allx,y E

35Classically, is denoted O(n, 1) and is denoted U(n, 1)
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Note that the induced action of OK(Q) on preserves the subset consist-
ing of points [x] with (xix) < 0. Note also that the action of 0K(Q) on KH'2 is by
isometries (see 10.5).

The following description of the stabilizer of the point of JKH?? with homogeneous
coordinates (0 0, 1) is simply a matter of linear algebra.

10.18 Exercises
(1) The stabilizer in 0K(Q) of the point po with homogeneous coordinates

(0,.. , 0, 1) acts transitively on the sphere of unit tangent vectors in

(2) The stabilizer of Po is isomorphic to the group 0(n) x 0(1) if K = R, to
U(n) x U(1) if K = C, and to Sp(n) x Sp(1) if K = H. (Recall that 0(n), (resp.
U(n), Sp(n)) is the subgroup of GL(n, K) leaving invariantthe standard scalarproduct
(xjy) = on K = (resp. C, IHI).)

(Hint: If a matrix fixes po then its last column and last row have zeroes everywhere
except their last entry. Let P0 = (0,. . , 0, 1) E 'In the product decomposition
of the stabilizer of p0. the first factor is the stabilizer of P0 and the second factor is
the pointwise stabilizer of Ps-.

(3) In exercise (2), describe the action of the second factor of the stabilizer of po
on

With regard to part (1) of the preceding exercise, we remark that (10.12) shows
that, in contrast to the real case, if K JR then the stabilizer of P0 does not act
transitively on the set of pairs of orthogonal vectors in On the other hand:

10.19 Exercise. OK(Q) acts transitively on the set of totally real subspaces in KH"
of each dimension k < n. It also acts transitively on the set of K-affine subspaces of
each dimension k < n.

OK(Q) also contains the one parameter subgroup

/cosht 0 sinht
A(t)=( 0 0

\sinht 0 cosht

where 'n is the identity matrix of size n — 1.

10.20 Exercise
(1) Prove that A(t) is a hyperbolic isometry whose axis passes through P0 and has

initial vector (1, 0 0) at xo. The translation length of A(t) is t.

(2) Deduce (using (1) and 10.18(1)) that the action of OK(Q) on is transitive.
(Compare with 10.28.)

(3) A GL(K, n + 1) belongs to OK(Q) if and only if the columns a, an of
A, viewed as vectors in satisfy (an+, Ian+,) = —1, = 1 for i = I n

and
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(4) Let J be the (n + 1, n + I )-matrix that differs form I only in that its last
diagonal entry is —1. Show that A E OK(Q) if and only if 'AJA = J. Deduce that if
A E OK(Q) then 'A E OK(Q).

The kernel of the action of OK(Q) on is the subgroup formed by the scalar
matrices Al, where A E K is central and of norm I We write P0K(Q) to denote
the quotient of OK(Q) by this subgroup 36• If K is JR or the quaternions, then this
subgroup is simply ±1, while in the case K C it is isomorphic to U( 1).

It follows from Exercise 10.18 that the subgroup of P0K(Q) fixing Po is isomor-
phic to 0(n), U(n), or (Sp(n) x Sp(I))/{I, —I}, according to whether K is JR. C or
the quaternions.

10.21 Exercise
(1) P0c(Q) is isomorphic to the quotient of SU(n, by the cyclic subgroup

generated by

(2) In addition to P0c(Q), the group of isometries of also contains the
involution given in homogeneous coordinates by (zi

(3) The fixed point set of the involution in (2) is isometric to TRW. (It is a totally
real subspace of maximal dimension.)

(4) Prove that POc(Q) and the involution in (2) generate

(5) Prove that if K is the quaternions and n> 1, then POK(Q) =

The Boundary at Infinity and Horospheres in

10.22 The Boundary at Infinity. In Chapter 8 we saw that if X is a complete
non-positively curved Riemannian manifold, then FX is homeomorphic to the
(n — 1)-sphere. Thus is a sphere of dimension n — 1, 2n I or 4n 1, according
to whether K is JR. C or the quaternions. There is a natural way to realize as a
subset of KP" it is the subspace defined by the homogeneous polynomial equation
Q(x, x) = 0. More precisely, C KP" is given by the equation Q(x, x) < 0
and the inclusion map KP" extends uniquely to a homeomorphism from

U onto the subspace defined by Q(x, x) < 0.
It follows from (10.18) that the stabilizer of each point of KH'1 acts transitively

on

10.23 Horospheres in Hyperbolic Spaces. In Chapter 8 we saw that if X is a
CAT(0) space, x E X and E X is a sequence such that 4: E then the
horosphere centred at 4: that passes through x is the limit of the spheres

36Classically one wntes PO(n, 1) (resp PU(n, 1)) when 1K = IR (resp 1K = C).
37SU(n, 1) C Oc(Q) consists of those matrices which preserve Q and have determinant I
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where = In the present setting, spheres about E are the level
sets of the function

(xix)

If [y] E then the functions converge and the horospheres
centred at [y] have the form

= {[x] : t(xlx) = (xiy)(ylx)},

where t < 0. An alternative description of these horospheres is given in (10.28) and
(10.29).

Other Models for

10.24 The Ball Model. We describe an alternative model for 1KW corresponding to
the model of real hyperbolic space described in (1.6.2). The point set of this model,
which we denote 1KB'2, is obtained by taking the subset of that consists of elements
x = (x1 xk) such that x, y E KB" is
given by the formula

2 (1 — (xiy))(1 — (yix))
cosh d(x, y) =

(1 — (xix))(1 — (yb'))

where (xiy) x,y1 is the standard scalar product on K".
We leave the reader to check that the map which assigns to x = (x1 E

KB" the point of with homogeneous coordinates (xi 1) is an isometry
and that this map extends to a homeomorphism from the closed unit ball in K" to
KH" U

10.25 The Parabolic Model. The main benefit of the parabolic model is that, like
the upper half space model for IHI", it permits a convenient and explicit expression
for the horocyclic coordinates associated to a point at infinity (10.29) and the as-
sociated subgroup AN which stabilizes the given point (see 10.28). (This gives a
way of describing horospheres in that is more amenable to calculation than the
descnption given in (10.23).)

Consider the form Q' on given by

(xiy)' = Xn+1Y1

Q' is equivalent to Q by a linear change of coordinates, namely x where

underlying set of the parabolic mode! for KH" is the subset of K?1 defined by
{[x]

I
Q'(x,x) < 0}, and the metric is defined by the formula in (10.5) with Q

replaced by Q'.
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Recall that if x E has homogeneous coordinates (x1 1) then its non-
homogeneous coordinates are, by definition, (x1 These coordinates give the
classical identification of K" with a subset of KP".

For the purposes of calculation it is useful to describe the parabolic model in non-
homogeneous coordinates. The subset of K?1 defined in homogeneous coordinates
by Q'(x, x) < 0 is precisely the set of points with non-homogeneous coordinates
(x1, . . satisfying the inequality

(*) <x1

Let oo denote the point of KP'1 with homogeneous coordinates (1, 0, , 0). The
boundary at infinity is

{xEKfI

oo is a convenient point to use when giving explicit descriptions of the horocyclic
coordinates associated to a point at infinity. (Focussing on oo involves no loss of
generality because Isom(KH") acts transitively on

Horocydic Coordinates and Parabolic Subgroups for

By definition, oo E is the endpoint of the geodesic ray given in homogeneous
coordinates by t co(t) = (e', 0 0, e'). We shall need the following lemma
in order to determine the subgroup of Isom(KH") that fixes all of the horospheres
centred at oo.

10.26 Lemma. Let X be a CAT(0) space and let G be a group acting by isometries
on X. Suppose that h E G leaves invariant a geodesic line c : JR —÷ X and that
h.c(t) = c(t+ a) where a > 0 Letx0 = c(0) and letN c G be the set of elements
g E G such that h"gh".x0 —÷ x0 as n oo. Then

(1) Nisasubgroup.
(2) Nfixes c(oo) E and leaves invariant the Busemann function associated to

c.

Proof Inordertoprove(1),giveng, g' E = h"gh" and = h"g'h"
and calculate:

xo) =

xo) + d(xo,

the right side converges to 0 as n —÷ oo.



312 Chapter 11.10 Symmetric Spaces

For (2) we must prove that for any x E X and g E N we have =
Remembering that xo = c(O), we have:

= Jim d(g.x, h'T.xo) — dcx, xo),

and

ld(g.x, h'T.xo) — d(x, h'T.xo)I = ld(x, — d(x, h'T.xo)l

< =

which tends to zero as n tends to infinity.

Let OK(Q') be the subgroup of GL(n + 1, K) that leaves invanant the form Q'. The

natural action of OK(Q') on 1K?7 preserves the parabolic model of Consider
the 1-parameter subgroup of OK(Q') formed by the elements

/el 0 0

A(t)=( o In_I o

\o 0

This subgroup leaves invanant the geodesic line given in homogeneous coordinates
by co(t) = (e', 0 and A(t).co(O) = co(t). (Recall that co(oo) = oo and note,
for future reference, that co(t) has non-homogeneous coordinates (e21, 0 0).)

We shall apply the preceding lemma with A(1) in the role of h and c0 in the
rOle of c. Let N C OK(Q') be the subgroup formed by the matrices v such that

A(—t)vA(t) is the unit matrix. Calculating A(—t)vA(t) and noting that the
off-diagonal entries must tend to 0 and the diagonal entries must tend to 1, one sees
that N consists of matrices of the form

/1 M12 M13

v=(O 'n—I M23

\o o I

One further calculates (exercise!) that = (xly)' for alix, y with (xlx)' <0
and (y'Iy')' < 0 if and only if M12 (which is a (1, n 1)-matrix) and M23 (which is
an (n — 1, 1)-matrix) satisfy

(*) M23 = M12 and M12M23 = M13 + M13,

where M denotes the standard conjugation on K and M is the transpose of M.

LetA denote the 1-parameter subgroup {A(t) : t E R}.

10.27 Lemma.
(1) AN := {A(t)v It E R, P AN} is a subgroup of OK(Q').

(2) N is normal in AN.

(3) JfK = R then N is abe/ian, and K is C or the quaternions then N is ni/potent
but is not abe/ian if n > 1.
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Proof These are simple calculations. II

The following proposition is a special case of a general phenomenon for sym-
metric spaces (cf. 10.50 and 10.69).

10.28 Proposition.
(1) The subgroup AN acts simply transitively on 1KW.

(2) The orbits of N are the horospheres centred at the point 00.

(3) The geodesic lines in the parabolic model that are asymptotic to c0 are precisely
the geodesics t i—÷ v.co(t), where v E N and c0 is given in homogeneous
coordinates by co(t) = (e', 0 0, es).

Proof Recall that oo is the endpoint of c0 in the forwards direction. We have already
seen (Lemma 10.26) that v.oo = oo for all v E N and that the orbits of N are
contained in the horospheres centred at oo. It is clear that A acts simply transitively
on co(R) and hence on the set of horospheres centred at oo. Thus, in order to prove
(1) and (2) it suffices to show that given an arbitrary point x, with non-homogeneous
coordinates say, there exists a unique t R and a unique v E N such
that x is the image under vA(t) of the point given in non-homogeneous coordinates
byxo=(1,0 0).

Writing v in block form as above, vA(t).xo = x becomes the system of equations:

X2 =

where = (x2,.. , x,). Thus X2 uniquely determines M23 and hence M12 and
= (by (*)). Moreover, is, by definition, equal to the left side of

the equation (*) displayed in (10.25), and hence it is less than There therefore
exists a unique t E R such that = + M13 is uniquely determined
by = e2' + M13. Thus the above system of equations has a unique solution
(t,v)ERxN. D

10.29 Horocyclic Coordinates in the Parabolic Model. Let x be a point in the
parabolic model that lies on the horosphere through the point x, with homogeneous
coordinates (es, 0 e') and let v be the unique element of N such that v.x, = x.
Let the submatrices of u be as above.

The horocyclic coordinates of x are, by definition, the entries of the submatrix M23
together with the purely non-real part of A Thus x is assigned 2n — I (resp. 4n — 1)

real coordinates when K is C (resp. the quaternions). According to (10.28), these
coordinates together with t uniquely specify x.
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The Symmetric Space P(n, IR)

We turn now to the study of higher-rank symmetric spaces. For the reasons ex-
plained in the introduction, we shall concentrate our attention on P(n, R), the space
of positive-definite, symmetric (n, n)-matrices with real coefficients.

Our first task will be to metrize P(n, R); we shall do so by describing a Riemannian
metric on it. We shall then describe the natural action of GL(n, R) on P(n, R) and
prove that this action is by (Riemannian) isometries. First, though, we pause to fix
notation and remind the reader of some basic definitions.

10.30 Notation. We shall write M(n, R) to denote the algebra of (n, n)-matrices with
real coefficients. GL(n, R) will denote the group of invertible (n, n)-matrices. The
action of matrices on will be on the left (with elements of R'T viewed as column
vectors). The transpose of a matrix A will be denoted 'A.

Let S(n, R) be the vector subspace of M(n, R) consisting of symmetric matrices,
and let P(n, R) c S(n, R) be the open cone of positive-definite matrices. We remind
the reader that a matrix A is symmetric if and only if for all vectors v, w E R'7 we
have (Av, w) = (v, Aw), where ( , ) is the usual scalar product on and A is
positive definite if, in addition, (Av, v) > 0 for every v 0.

Given a symmetric matrix A one can always find an orthonormal basis for R'T
consisting of eigenvectors for A. More precisely, there exists an orthogonal matrix
o E SO(n) of determinant one such that 'OAO is diagonal. The enthes A,.. , of
this diagonal mathx are all positive if and only if A is positive definite (they are the
eigenvalues of A)

P(n, R) as a Riemannian Manifold

10.31 The Riemannian Metric on P(n, R). As P(n, R) is an open set of S(n, R),
it is naturally a differentiable manifold of dimension n(n + I )/2. The tangent
space R) at a point p is naturally isomorphic (via translation) to S(n, R).
On R) we define a scalar product

= Y),

whereX, YE 7,P(n, IR) S(n, R)andTr(A)isthetraceofamatrixA.(IfX E S(n, IR)

has then (XIX), = 11X112 =
This formula defines a Riemannian metric on P(n, IR)

10.32 The Action of GL(n, IR) on P(n, 11k). The group GL(n, IR) acts on S(n, IR) and
P(n, R) according to the rule

g.A :=

g E GL(n, R) and A E S(n, IR). This action leaves P(n, R) invariant.



P(n, R) as a Riemannian Manifold 315

10.33 Proposition. Consider the action of GL(n, R) on P(n, R).
(1) The action is transitive
(2) The action is by Riemannian isometries.
(3) The stabilizer of I E P(n, R) is 0(n)
(4) {±I} C GL(n, R) acts trivially on P(n, R) and GL(n, R)/{±I} acts effectively.

Note that in the light of this proposition we may identify P(n, R) with the homo-
geneous space GL(n, R)/0(n).

Proof Given p E P(n, R), there exists 0 E S0(n) such that D = tOpO is a diagonal
matrix D with positive entries A1. Let p"2 = (OD'12 t0), where D'12 is the diagonal
matrix with entries Thenp = p'12 I. This proves (1)

Part (3) is obvious and (4) is an easy exercise To prove (2) one calculates:
given g E GL(n, R) and X, Y E R), the derivative of g at p maps X onto
g.X=gX'g E

(g.XIg.Y)gp =

II

Recall that a symmetric space is a connected Riemannian manifold M where for
each point p E M there is a Riemannian isometry of M such that a_,,(p) = p and
the differential of at p is multiplication by —1.

10.34 Proposition. P(n, R) is a symmetric space.

Proof Given p E P(n, R), the required symmetry a_i, is q F—+ 'p. This map is the
composition of a_i, q q' and q F—+ p q We have already seen that the latter is
an isometry. To see that is an isometry38, first note that its derivative at q sends
X E S(n, R) = Tq(P(n, R)) (the initial vector of the curve t q + tX) to X =
q'Xq' E S(n, R) = Tq_iP(n, R) (the initial vector of the curve t (q + tX)').
Thus we have

(XI}')q- = = Tr(Xq'qq' Yq') = Tr(q'Xq' Y) = (XIY)q,

and hence a1 is an isometry. It is obvious that the differential of a1 at I is multiplication
by —1, and hence so is the differential of a_i, at p, because is the conjugate of a1
byqF—÷p"2.q. II

10.35 Remark. In a symmetric space the composition of two symmetries a_q 0 a_p is

called a transvection; it acts as a translation on any locally geodesic line containing
p and q. In the preceding proof we saw that the action of p E P(n, R), viewed as an

38Under the natural identification P(n, IR) = GL(n, IR)/O(n), the symmetry a1 is induced by

themapqF-÷
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element of GL(n, R), is the composition a1., o a1, so the action of P(n, R) C GL(n, R)
is by transvections.

The Exponential Map exp: M(n, IR) —> GL(n, IR)

Our next major goal is to prove that P(n, R) is a CAT(O) space Since we have
descnbed the metric in terms of a Riemannian structure, the natural way to prove
this is to use (1 A.2) from the appendix to Chapter 1. This requires that we understand
the divergence properties of geodesics issuing from a point in P(n, R). In order to
gain such an understanding we must examine the exponential map.

We have a concrete interpretation of T1P(n, R) as S(n, R), and the exponential
map can be interpreted in a correspondingly concrete manner, namely as the familiar
operation of exponentiation for matrices, exp M(n, R) —÷ GL(n, R), where

expA

We shall need the following properties of exp.

10.36 Lemma.
(1) exp(tA) = t(expA).

(2) If AB = BA, then A(expB) = (expB)A and expAexpB = exp(A + B). In
particular exp(—A) = (expA)*

(3) = g for all g E GL(n, R)

(4) =(exptA)Aforallt E lit
(5) The map exp is

(6) exp maps S(n, R) bijectively onto P(n, R).

Proof We shall only prove (6). It is obvious that if A is symmetric then expA is
symmetric. It is also obvious that every diagonal matrix in P(n, R) is exp of a diagonal
matrix, so since every p E P(n, R) is (action of 10.32) for some 0 S0(n) and
some diagonal the surjectivity of exp follows from (3).

A symmetric matrix A is uniquely determined by its eigenvalues and the as-
sociated direct sum decomposition E, of into the eigenspaces of A. The
decomposition associated to expA has exactly the same summands, and if the action
of A on E, is multiplication by A, then the action of expA on E, is multiplication by
exp(A1). Thus one can recover the action of A on W from that of expA, and hence
exp is injective on S(n, R). II

10.37 Remark. It follows from the preceding lemma that for every p E P(n, R) there
exists a unique symmetric matrix X such that expX = p. Let p'12 = exp(X/2), this
is the unique q E P(n, R) such that q2 = p, and we shall see shortly that it is the
midpoint of the unique geodesic joining Ito p.
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For future reference (10.40), note that exp(X/2) acts on P(n, R) as the transvection
o a1 which sends p to I.

The following exercises contain some further useful facts concerning the expo-
nential map; some of these facts will be needed in the sequel.

10.38 Exercises
(1) For allA,B E M(n,R), we have

(expA)B(exp —A) = (exp(adn ))(B),

where adn is the endomorphism of the vector space M(n, R) defined by

adn(B)=[A,B] :=AB—BA.

Hint: Express adn as LA — RA, where LA (resp. RA) is the endomorphism of M(n, R)
mapping C toAC (resp. CA). Note that LARA = RALA, hence

(T o k! rPr'l—

p+q=k

(2) Verify that the formula (AIB) = Tr(A!8) defines a scalar product on M(n, R)
Show that if X E S(n, R), then adx is a self-adjoint operator on M(n, R), i.e. for any
A, B E M(n, R), we have

(adxAIB) = (AIadxB).

(3) Given X S(n, R), consider the endomorphism of M(n, R) defined by the
fonnula

= exp(—X/2) exp(X + tY)
dt i=0

Prove that TX is self-adjoint.
(Hint: You may first wish to show that

rx(Y) = exp(—X/2)
k=I p+q=k—l

hence

(rx(Y)IZ) = exp(—X/2) 'Z)
k=I p+q=k—1

Then use the fact that Tr(AB) = Tr(BA))

(4) Show that exp Tr(A) = det(expA).
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P(n, IR) is a CAT(O) Space

We are now in a position to prove

10.39 Theorem. P(n, R) is a proper CAT(O) space.

As we remarked earlier, since we have described the metric on P(n, R) by giving
the associated Riemannian structure, the natural way to prove this theorem is to apply
(IA.2). In order to do so we must show that the restriction of exp to S(n, R) satisfies
the conditions on the map e in (1 .A. 1). This is the object of the next lemma, for which
we require the following notation: given X S(n, R), we define an endomorphism
ScflhadX/2 of S(n, R) by

sinh ad:,2
:=

10.40 Lemma.
(1) Consider the differential Tx at X S(n, R) of the composition of exp and the

transvection sending exp X to I (see (10.37)). By definition, Tx is the endomor-
phism of S(n, R) given by

Tx(Y) = (exp(—X/2) exp(X + tY) exp(—X/2))

We claim that
sinh ad:,2

adx,2

(2) Tx does not diminish the norm of any tangent vector. More precisely, for all
Y E S(n, R) we have Irx(Y)I 2 IYI with equality if and only if XY = YX.

(Recall that 1Y12 = Tr(Y2).)

Proof First we prove (1). Given Y E S(n, R) we consider the curve t X(t) =
X + tY. By differentiating the identity

X(t) (exp X(t)) = (exp X(t)) X(t)

at t = 0, writing E0 = expX(t)I,0 and noting that Y = X = X(O),

we get:
Y(expX)+XE0 =E0X+(expX)Y.

That is,
XE0 — E0X = (expX) Y — Y(expX).

By definition, rx(Y) = exp(—X/2)Eo exp(—X/2). Thus, multiplying both sides of
the above equation on both the left and the right by exp(—X/2), and noting that
exp(—X/2) commutes with X, we get:



P(n, is a CAT(O) Space 319

Xrx(Y) = exp(X/2) Y exp(—X/2) — exp(—X/2) Y exp(X/2).

By definition, 2 sinh(adx,2) = exp(adX/2) — exp(ad_X/2). Therefore, applying exer-
cise 10.38(1) to each term on the right-hand side of the above equation we get.

Xrx(Y) — rx(Y)X = 2 sinh(adx,2)(Y)

Thus

sinh adx,2
(4) adx,2 o = adx,2

aux,2

Let F := — (sinhadx,2)/adx,2. We shall show that F = 0 as an endomorphism of
M(n, R). Both adx,2 and TX are self-adjoint operators on M(n, R) (exercises 10.38
(3 and 4)), hence F is self-adjoint. Let N c M(n, R) be the kernel of adx,2; it is the
vector subspace {Y E M(n, R) : XY = YX}. By (4) we know that F maps M(n, R)
to N. It follows that the restriction of F to N-1- (the orthogonal complement of N) is
0, because if x E N-i- then for ally E M(n, R) we have (A(x)Iy) = (xIA(y)) = 0. It
only remains to check that F vanishes on N. But this is obvious, because if XY = YX

then TX(Y) = Y and (sinh adX,2)/adx/2(Y) = Y.

In order to prove (2) we choose an orthonormal basis e1 for consisting
of eigenvectors for X; say (X/2)e1 = Let E M(n, R) be the endomorphism
defined by Ekjek = where 8jk = 1 if j = k and zero otherwise. (The elements

form an orthonormal basis of M(n, IR).) We have X/2 = A1E,1, so since

EUEk, = it follows that adX/2(Eq) = (A, — AJ)EIJ, and hence

sinh(A, — A)= '

E S(n, R), then Y = y,JE(j where = yjj, and we have

=

Therefore

Irx(Y)12

because
I
(sinh A)/A) I 1. One gets equality in this expression if and only if yij = 0

whenever A1 A3. And this happens if and only if the action of Y on R'T leaves the
eigen spaces of X invariant, which is the case if and only if XY = YX. II

Proof of 10.39. In Lemma 10.36 we saw that exp: S(n, R) —÷ P(n, R) is a diffeo-
morphism, and the preceding lemma shows that at the point I P(n, R), the map
exp satisfies the conditions required of e in Lemma IA.1 (with e > 0 arbitraiy).
Since GL(n, R) acts transitively by isometries on P(n, IR), it follows from (IA.2) that
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P(n, R) is a CAT(0) space. And since exp does not decrease distances, P(n, R) is
proper. Thus Theorem 10.39 is proved. 0

As a consequence of (10.39) we have:

10.41 Corollary. Every compact subgroup of GL(n, R) is conjugate to a subgroup
of 0(n).

Proof If K c GL(n, R) is compact, then every K-orbit in P(n, R) is compact and
hence bounded. It follows that K is contained in the stabilizer of the circumcentre p
of this orbit (2.7). The action of GL(n, R) is transitive, so there exists g E GL(n, R)
such that g.I = p. The stabilizer of I is 0(n) (10.33) and therefore c 0(n).

II

We also note two consequences of Lemma 10.40.

10.42 Corollary.
(1) The geodesic lines c : —÷ P(n, R) with c(0) = p are the maps c(t) =

g (exp tX)'g, where X E S(n, R) with Tr(X2) = I and p = g'g.
(2) If p = expX then d(I,p)2 = Tr(X2) = X12.

(3) More generally, the restriction of exp to any vector subspace of S(n, R) con-
sisting of commuting matrices is an isometry.

10.43 Exercise. Let A C GL(n, R) be the group of diagonal matrices with positive
entries on the diagonal. The action of A on P(n, R) is by transvections and! E Min(A)
(see 10.33 and 6.8(1)). Prove that Min(A) = A.! = A and that A C P(n, R) is
isometric to IE'T (cf 6.8(5) and 7.1).

Flats, Regular Geodesics and Weyl Chambers

Flat subspaces play an important role in determining the geometry of symmetric
spaces. In this section we shall describe the flat subspaces in P(n, R) (10.45). In
contrast to the rank one case, if a CAT(0) symmetric space M has rank > 2, for
example M = P(n, R) with n> 2, then Isom(M) does not act transitively on the set
of geodesics in M (unless M = IE'T), however it does act transitively on pairs (F, p),
where F is a flat subspace of maximal dimension and p E F. In the case M = P(n, IR),

one way of seeing that Isom(M) does not act transitively on the set of geodesics in
M is to observe that some geodesics lie in a unique maximal flat while others do
not (10.45). The set of points q E F {p} such that F is the unique maximal flat
containing {p, q] is open and dense in F; it is the complement of a polyhedral cone
of codimension one and its connected components are called Weyl chambers.

The description of the flat subspaces in P(n, R) and their decomposition into
Weyl chambers will be important in later sections when we come to describe the
geometry of P(n, IR) at infinity.
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10.44 Definition. A subspace F C P(n, R) is called a flat of dimension k (more
briefly, a k-flat) if it is isometric to lEk. (Thus 1-flats are the geodesic lines in P(n, R).)
If F is not contained in any flat of bigger dimension, then F is called a maximal flat.

In (10.43) we descnbed a particularly nice flat A C P(n, R). This is the image
under exp of the subspace ao c S(n, R) consisting of diagonal matrices. The follow-
ing proposition shows that the action of GL(n, R) conjugates every flat in P(n, R)
into a subspace of A.

10.45 Proposition.
(1) Every flat in P(n, R) is contained in a maxima/flat, and every maxima/flat has

dimension n.
(2) GL(n, R) acts transitively on the set of pairs (F, p), where F C P(n, IR) is a

maxima/flat andp E F.
(3) The exponential map exp: S(n, R) —÷ P(n, R) induces a bijection from the set

ofvectorsubspaces {a C S(n, R)
I
XY = YXforallX, Y E a} to thesetofflats

F = exp a that pass through I.
(4) The geodesic line t exp tX through I is contained in a unique maxima/flat

and only the eigenvalues of X S(n, R) are all distinct.

Proof In any complete Riemannian manifold M of non-positive curvature, if F C M
contains p and is isometric to JE", then F is the image under the exponential map
of a k-dimensional subspace in T,,M Thus part (3) of the present proposition is an
immediate consequence of 10.40(2).

Let a0 C S(n, R) be the subspace of diagonal matrices. If a symmetric matrix
commutes with all diagonal matrices then it must be diagonal, so it follows from (3)
that A = exp a0 is a maximal flat in P(n, R).

ao has dimension n and GL(n, R) acts transitively on P(n, R), so in order to prove
(1) and (2) it suffices (in the light of (3)) to show that if a is a vector subspace of
S(n, R) such that XY = YX for all X, Y E a, then there exists 0 S0(n) such that
0.a C a0.

Given a, we choose a matrix X E a that has the maximum number of distinct
eigenvalues, k say. Let 0 E S0(n) be such that OX'O is a diagonal matrix. We must
show that 0Y '0 is diagonal for every Y E a. It suffices to show that every eigenvector
of X is an eigenvector of Y. (The columns of 0 are eigenvectors for X.)

Let = E1 be the decomposition of RIZ into the eigenspaces of X (cor-
responding to the distinct eigenvalues A1 < ... < If Y a then Y commutes
with X and hence leaves each E invariant. If Y E a is close to X, then for each i the
eigenvalues of must be close to A1. Since Y has at most k eigenvalues and the A1
are distinct, it follows that (which is diagonalizable) must be a multiple of the
identity. This completes the proof of (3).

In (4) it suffices to consider the case where X is diagonal. If two of the diago-
nal entries of X are the same, then the permutation matrix which interchanges the
corresponding basis vectors of commutes with X. On the other hand, if all of the
diagonal entries of X are distinct, then the preceding argument shows that the only
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symmetric matrices which commute with X are diagonal. Thus A is the only maximal
flat containing X if and only if the eigenvalues of X are all distinct. D

The final part of the preceding proposition shows that there are different types of
geodesics in P(n, R). The following definition provides a vocabulary for explonng
these differences.

10.46 Definition (Singular Geodesics and Weyl Chambers). Let M be a symmetric
space. A geodesic line or ray in M is called regular if it is contained in a unique
maximal flat, and otherwise it is called singular.

Let F C M be a maximal flat. A Weyl chamber in F with tip at p E F is a
connected component of the set of points q E F N {p} such that the geodesic line
through p and q is regular.

If two geodesic rays c and c' are asymptotic, then c is singular if and only if
c' is singular (cf. 10.65). In particular, since singularity is obviously preserved by
isometries, the group of isometnes of P(n, R) does not act transitively on aP(n, R)
if n> 2 (cf. 10.22 and 10.75).

It follows immediately from 10.45(4) that the Weyl chambers in any flat F C
P(n, R) are open in F. The following proposition gives more precise information.

10.47 Proposition. Let F C P(n, R) be a maximal flat, fix p E F.

(1) {q E F N {p}
I
the geodesic line containing [p. q] is regular} is the complement

in Fof 1)flats of dimension (n 1)that pass through p.
(2) There are nt Weyl chambers in F with tip atp.
(3) GL(n, R) acts transitively on the set of Weyl chambers in P(n, R).

Proof In the light of 10.45(2) it suffices to consider the case where p = I and
F = A (the space of diagonal matrices with positive entries in the diagonal) Each
q E A can be written uniquely in the form diag(e',. . , e) E A; in other words q
is the image under exp of the diagonal matrix diag(t1, . . , t,) E A; we regard the
t1 as coordinates for (the subspace of S(n, R) comprised of diagonal matrices).
According to 10.45(4), the geodesic line through p and q p is regular if and only
if all of the t1 are distinct, i.e. if and only if (t1 does not lie in one of the

— 1) codimension-one subspaces of defined by an equation t1 = where

j> i. The (n — 1)-dimensional flats in part (1) of the proposition are the images of
these subspaces under exp.

The Weyl chambers in A with tip at I are the images under exp of the n! open
convex cones defined by ta(1) > > where a is a permutation of fi n}.
The subgroup of SO(n) consisting of monomial39 matrices acts transitively on these
Weyl chambers. Parts (2) and (3) now follow, because GL(n, R) acts transitively on
pairs (F, p) and takes Weyl chambers to Weyl chambers (because they are intrinsically
defined in terms of the metric on P(n, R)). 0

39matnces with one non-zero entry in each row and column
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10.48 Exercise: P(n, R) as a space of ellipsoids in Givenp E P(n, R) with inverse
let E,, be the ellipsoid in JE" defined by the equation = 1. Prove that

p i-± is a GL(n, R)-equivanant map from P(n, R) to the set of (non-degenerate)
ellipsoids in centred at the origin.

This map sends I E P(n, R) to the sphere = 1. Describe the images of
the maximal flats through I, the images of the Weyl chambers with tip at I, and the
images of the regular geodesics through I.

The Iwasawa Decomposition of GL(n, R)

Consider the following subgroups of GL(n, R):
• K = 0(n) is the group of orthogonal matrices.
• A is the subgroup of diagonal matrices with positive diagonal entries
• N is the subgroup of upper-triangular matrices with diagonal entries 1

Note that AN is the group of upper triangular matrices with positive diagonal
entnes and that N is a normal subgroup in AN.

The subgroups K, A and N are intimately related to the geometry of the symmetnc
space P(n, R) we saw in (10.41) that K and its conjugates are the maximal compact
subgroups of GL(n, R), and we saw in (10.43) that the orbit of! under the action of
A is a maximal flat; N plays a key role in describing the horospherical structure of
P(n, R) (see (10.50) and compare with the groups A and N considered in (10.28)).

10.49 Proposition (Iwasawa Decomposition). The map K x A x N -÷ GL(n, R)
sending (k, a, n) to kan is a More informally,

GL(n, R) = KAN.

Proof This follows directly from the existence and uniqueness of the Gram-Schmidt
orthogonalisation process. If v1 are the column vectors of a matrix g E
GL(n, R), there exist unique R for 1 < i < j < n such that the vectors

= = A12v1 + 1)2 = AInVI + + An_I.nVn_i + are mutually
orthogonal; if n' E N is the matrix whose (i,j)-entry is for i <j, then gn' is the
matrix whose columns are .., Let a be the diagonal matrix whose entries in
the diagonal are the norms of the Then = k is an orthogonal matrix and
we have g = kan, where n = This decomposition is unique and the entries of

a and n depend differentiably on the entnes of g. D

10.50 Corollary. The map A x N —÷ P(n, R) sending (a, n) to an.! = an 'na i.s a
In other words the subgroup AN of GL(n, R) act.s simply transitively

onP(n,R).

Proof We know (10.33) that GL(n, R) acts transitively on P(n, R), so given p E
P(n, R) the set CA, = {g E GL(n, R)Ig.p = !} is non-empty. The stabilizer of!
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is K 0(n), so CA, is a coset Kan and by the proposition a and n are uniquely
determined by p. 0

We mention two other closely related and useful decompositions:

10.51 Exercises
(1) Prove that the map (k,p) i-÷ kp from 0(n) x P(n, R) to GL(n, R) is a diffeo-

morphism (its inverse is the map g (g(

(2) Let be the set of diagonal matncesdiag(A1, . , with A1 > . . >
> 0. Show that GL(n) = KA K. More precisely, show that every g E GL(n, R)

can be written as g = kak' with k, k' E 0(n) and a E and show that a is uniquely
defined by g

(Hint To show existence use (1). To show uniqueness, note that the eigenvalues
of a are the square roots of the eigenvalues of ¶gg.)

The Irreducible Synunetric Space P(n,

Following the outline of our treatment of hyperbolic spaces, we now turn our attention
to the study of convex submanifolds of P(n, R), where the range of such submanifolds
is much richer than in the hyperbolic case (see 10.58). The first such submanifold
that we consider is P(n, R)1, the subspace consisting of positive definite matrices
with determinant one

A totally geodesic submanU'old of P(n, R) is, by definition, a differentiable sub-
manifold M of P(n, R) such that any geodesic line in P(n, R) that intersects M in
two points is entirely contained in M. Such a submanifold is convex in the sense of
(1.1.3) and hence is a CAT(O) space. Moreover, if p lies in such a submanifold then
the symmetry leaves M fixed, and hence M is a symmetric space.

10.52 Lemma.
(1) P(n, R)1 c P(n, R) is a totally geodesic
(2) SL(n, R) c GL(n, R) leaves P(n, R)1 invariant and acts transitively on it.

SL(n, R) acts effectively n is odd and othenvise the kernel of the action is
{+J}

(3) P(n, R)1 = exp S(n, R)0, where S(n, R)0 C S(n, R) is the vector suhspace
con.cisting of matrices with trace zero.

Pro of P(n, R)1 is obviously invariant under the action of SL(n, R), and the proof of
10.33(1) shows that the action of SL(n, R) is transitive; this proves (2). Part (3) is an
immediate consequence of 10.36(6) and the (easy) exercise 10 38(4)

It follows from (3) that any geodesic t i—÷ exp(tX) joining Ito a point of P(n, R)1
is entirely contained in P(n, R)1, so by homogeneity (2) we see that P(n, R)1 is totally
geodesic. El
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Lemma 10 52 illustrates the fact that essentially the whole of our treatment of
P(n, R) works equally well if we replace P(n, R) by P(n, R)1, GL(n, R) by SL(n, R),
and S(n, R) by S(n, R)0. In particular we have the natural identification

P(n, R)1 = SL(n, R)/SO(n).

(Hence P(2, R)1 = SL(2, R)/SO(2) is isometric to 1H12, up to a scaling factor.)
We also have the diffeomorphism

SO(n) x P(n, R)1 -÷ SL(n, R)

given by (k, p) i-÷ kp, and the Iwasawa decomposition

SL(n, R) = KAN

where K = SO(n), the subgroup N is the group of upper-triangular matrices with
diagonal entries one and A is the group of diagonal matrices with positive diagonal
entries and determinant one And following the proofs of the corresponding results
for the action of GL(n, R) on P(n, R), one sees that SL(n, R) acts transitively on the
set of Weyl chambers in P(n, R)1 and on the set of pointed flats.

A further important point to note is that P(n, R)1 is one factor in a (metric) product
decomposition of P(n, R) To see this, first observe that the centre of GL(n, R) consists
of the scalar multiples of the identity and the quotient of this subgroup by {+1} acts
by hyperbolic translations on P(n, R). It follows from (6.15) and (6.16) that P(n, R)
has a non-trivial Euclidean de Rham factor, and it is not difficult to see that P(n, R)1
is the complementary factor. More precisely

10.53 Proposition. The map (s, p) i-÷ gives an isometry

R x P(n, R)1 P(n, R).

Moreove, P(n, R)1 cannot be expressed as a non-trivial (metric) product.

We leave the proof as an exercise for the reader. (One way to see that P(n, R)1
is irreducible is to consider how flats intersect in any product and then compare this
with the following description of Weyl chambers in P(n, R)1.)

10.54 Flats and Weyl Chambers in P(n, R)1. There is an obvious bijective cone-'
spondence between maximal flats in P(n, R)1 and maximal flats in P(n, R): a maximal
flat F1 in P(n, R)1 corresponds (under the decomposition in (10.53)), to the maximal
flat F = R x F1 in P(n, R). Similarly, there is a correspondence between the Weyl
chambers in P(n, R)1 and the Weyl chambers in P(n, R). Following the proof of
(10.47) we give an explicit descnption of the Weyl chambers in P(n, R)1.

Let a C S(n, R) be the vector space of diagonal matrices with trace zero. Then
A = exp a is a maximal flat in P(n, R)1 and exp is an isometry. The Weyl chambers
in A with tip at I are the images under exp of the open convex cones of the form
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{diag(t1 tn)
I

= 0 and ta(I) > > where a E (the group of
permutations of fi n}).

The closure of the cone indexed by a is the intersection of the (n — 1) open half-
spaces tcr(i+I) < 0 with the hyperplane t1 + ... + = 0. This is a simplicial
cone. Its faces of codimension k are obtained by replacing k of the inequalities
tcy(1) > > by equalities Thus, for example, a codimension one face is
defined by the equations ti + + = — tcx(i) = 0 and — tao) < 0 for

j#i.
The Weyl chambers associated to the permutations a and a' have a codimension-

one face in common if and only if for some i {1 n — 1} we have a'(i) =
a(i + 1), a'(i + 1) = a(i) and a'(j) = a(j) forj {i, I + 1}.

The obvious action of the symmetnc group 5n on the coordinates induces a
simply transitive action of Sn on the above set of Weyl chambers. Sn is called the
Weyl group; the interested reader can check that it is the quotient of the subgroup of
SO(n) that leaves the flatA invariant by the point-wise stabilizer of A.

In order to determine the shape of the Weyl chambers, we calculate the dihedral
angles between the codimension one faces of the Weyl chamber corresponding to
the trivial permutation. Let F, be the codimension one face defined by the equation

= and let e1 en be the orthonormal basis of the space of diagonal matnces
corresponding to the coordinates The unit normal to is u, = — e1+i) and

therefore = —1/2 ifj = i + 1 and = 0 ifj > i + 1. Taking inverse
cosines, we see that the dihedral angle between F1 and F,+i is ir/3 and the angle
between the faces F, and is ir/2 if Ii —Il > 2.

10.55 Example. In the notation of (10 54), if n = 3 then a can be identified with the
plane in R3 defined by the equation + t2 + (3 = 0 The Weyl group is S3, so there
are 6 Weyl chambers contained in A with tip at 1; they are the images under exp of
the sectors in a which form the complement of three lines through 0 as indicated in
figure (10.1).

> >

t2 > t2

t2

t3 > t2

Fig. 10.1 The Weyl chambers in a maximal flat of P(3, ]R)1 = SL(3, ]R)/SO(3)
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Reductive Subgroups of GL(n,

In the introduction to this chapter we mentioned that every simply connected symmet-
ric space of non-positive curvature is isometnc (after rescaling) to a totally geodesic
submanifold of P(n, R). We also alluded to the close connection between the study
of such symmetric spaces and the theory of semi-simple Lie groups. In this section
we shall present some totally geodesic submanifolds of P(n, R) and descnbe the
connection between such submanifolds and the subgroup structure of GL(n, R) (see
10.58). The subgroups with which we shall be concerned are the following.

10.56 Definition (Reductive and Algebraic Subgroups of GL(n, R)). A subgroup G
of GL(n, R) is reductive if it is closed and it is stable under transposition: if A E G

then 1A E G.

A subgroup G C GL(n, R) is algebraic if there is a finite system of polynomials
in the entries of M(n, R) such that G is the intersection of GL(n, R) with the set of
common zeros of this system

Before describing the connection between reductive subgroups and totally
geodesic submanifolds of P(n, R), we mention some examples of reductive alge-
braic subgroups of GL(n, R) Examples (2) and (3) explain why we have restncted
attention to real matnces, and (4) will allow us to embed (rescaled) in P(n, R)
as a totally geodesic submanifold.

10.57 Examples
(1) SL(n, R), 0(n) and S0(n) are all reductive algebraic subgroups of GL(n, R).

For instance 0(n) is defined by the vanishing of MM — 1, the entnes of which are
quadratic polynomials in the entries of M.

(2) GL(n, C) as a reductive subgroup of GL(2n, R). Consider the map from
GL(n, C) to GL(2n, R) that sends A + iB, where A, B E M(n, R), to

(A —B
A

This map is obviously injective and its image is defined by the obvious equalities
between entries. Thus GL(n, C) can be realised as a reductive algebraic subgroup of
GL(2n, R) Note that transposition in GL(2n, R) induces the conjugate transpose on
GL(n, C).

(3) GL(n, fl) as a reductive subgroup of GL(4n, R). Let 7-1 denote the quaternions.
Following the construction of (2), we shall explain how to realize GL(n, 7-1) as a
reductive algebraic subgroup of GL(4n, R).

First note that one can embed 7-1 in M(2, C) by sending q = a0 + a1 i + a2J + a3k
to the matrix

_d)
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where c = ao + a1i and d = a2 + a3i (so q = c + dj). The map 7-1 —÷ M(2, C)
thus defined is an injective nng homomorphism and the conjugate of q is sent to the
conjugate transpose of the image of q. More generally, one can realize GL(n, 7-1) as
a subgroup of GL(2n, C) by sending the matrix C + Dj E GL(n, 7-1), with C, D E
M(n, C), to the matrix

E GL(2n, C).

The conjugate transpose on GL(2n, C) induces the conjugate transpose on GL(n, 7-1).
The composition of the above maps GL(n, 7-1) GL(2n, C) GL(4n, R)

embeds GL(n, 7-1) as a reductive algebraic subgroup of GL(4n, R).

(4) Let 1K = R, C or 7-1. We saw in 10 20(4) that Ox(Q), the subgroup of
GL(n + 1, R) that preserves the form Q on is closed under the operation of
conjugate transpose. Thus by means of the above embeddings we can realize 0x(Q)
as a reductive subgroup of GL(m, R), where m = (n + 1), (2n + 2) or (4n + 4) in the
cases 1K = R, C and 7-1 respectively Moreover, it also follows from 10.20(4) that
this reductive subgroup is algebraic.

More generally, instead of Q one can consider a form of type (p, q):

Qp.q(x, y) = —
ijyj.

i=1 i=p+1

The subgroup of GL(n + 1, R) that preserves Qp.q is closed under the operation of
conjugate transpose (it can be described in a manner analogous to 10.20(4)), and its
image under the embeddings in (2) and (3) is a reductive algebraic group.

In the course of the following proof we shall need the fact that a closed subgroup
G of GL(n, R) is a Lie group, i.e. it is a differentiable submanifold and multiplication
and passage to inverses in G are differentiable operations. (This is easy to venfy in
the above examples)

Observe that if G c GL(n, R), then a necessary condition for G.J C P(n, R) to
be totally geodesic is the following (cf. 10.59)

(*) ifX E S(n, R) and expX E G then exp(sX) E G, Vs E R.

10.58 Theorem. Let G c GL(n, R) be a reductive subgroup satisfying (*). Let
K = G fl 0(n) and let M = G fl P(n, R). Then:

(1) Mis the G-orbit of!.

(2) M is a totally geodesic submanifold of P(n, R); it is diffeomorphic to G/K.

(3) M is a CAT(0) symmetric space.

(4) K is a maximal compact subgroup of G; up to conjugacy in G it is the unique
such subgroup.

(5) The map K x M G sending (k, m) to km is a diffeomorphism
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Conversely, if V is a totally geodesic submanifold of P(n, R) and I V, then
G = {g E GL(n, R)

I
g.V = V} is a reductive subgroup of GL(n, R) and V =

GflP(n,R).

Proof If X E S(n, R) andp = expX, thenp = g.I, where g := exp(X/2) E G. Thus
(1) is a consequence of(*).

G is a Lie group and the action of GL(n, R) is differentiable, so M = G.I is a
differentiable submanifold of P(n, R). And since the stabilizer of I in GL(n, R) is
0(n), M is diffeomorphic to G/K. The image of t exp(tX) is the unique geodesic
line containing the segment [I, p1 and (*) ensures that this line is entirely contained
in M, so by homogeneity M is totally geodesic.

Since M is totally geodesic, if p E M then the symmetry a, P(n, R) —÷ P(n, R)
leaves M invanant. The existence of the symmetries IM means that Mis a symmetric
space.

K is the stabilizer of I in G. It is compact because G is closed in GL(n, R) and
0(n) is compact Thus (4) follows from (2.7), as in (10.41).

We have seen (10.51) that the map 0(n) x P(n, R) sending (k,p) to kp is a
diffeomorphism onto GL(n, R), so in order to prove (5) we need only check that
if kp E G then k and p belong to G. We have p2 = '(kp)(kp) E M, and writing
p2 = exp X we have p = exp(X/2). Thus (*) implies p E G, hence k E G and (5) is
proved.

If V C P(n, R) is a totally geodesic submanifold then for anyp E V the symmetry
a, leaves V invanant. Givenp, q E V, if m is the midpoint of [p, q] then am(p) = q.
Thus the subgroup G of GL(n, R) leaving V invariant acts transitively on V. Moreover,
since q p.q is the composition of a1 and we have V C G fl P(n, R). And if
p E G fl P(n, R) then p.I = p2 E V, sop, which is the midpoint of [I, p2], is in V.
Thus V= GflP(n,R).

It remains to check that G is reductive; it is obviously closed so what we must
show is that G = Given g E G, write g = pk where k E 0(n) and p E P(n, R).
Then g.I = p! = p2 E V. hencep E V ç G, therefore k E G and = E G.

D

There are a number of remarks that we should make regarding the above theorem.
The first important point to note is that it applies to all reductive algebraic subgroups
of GL(n, R):

10.59 Lemma. Let G c GL(n, R) he a subgroup and let X E S(n, R) he such that
expX E G If G is algebraic, then exp(tX) E Gforallt E R.

Proof It suffices to show that if a polynomial function on M(n, R) vanishes at exp(rX)
for some X E S(n, R) and all r E 7Z, then it vanishes at exp(tX) for all t R

After conjugation by an element of 0(n), we may assume that X is a diagonal
matrix diag(A1, . An). Thus it suffices to show that if a polynomial

P(x1 = . . .
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of degree m in n variables x1 such that = 0 for all r E 74
then = 0 for all t E IL

Let s1 sL be the distinct values taken by the monomials ellA . . . on the
set of (ii,.. , E such that i1 + <m. One can write

. .

=

where a1 is the sum of the coefficients for which ellA ... = sj.

Ifwe view = 0 r = 0, 1, .. , k — 1) as a system ofk equations in the
k vanables a1, .. , as,, then the determinant of the coefficient matrix is — s•),

the Vandermonde determinant, which is non-zero. By hypothesis ajs = 0 for all
r E 7Z, hence all the aj are zero. D

There are several other important remarks to be made concerning (10.58):

10.60 Remarks. In the notation of (10.58):

(1) In general G does not act effectively on M (for example if M = {J}).

(2) In general an isometry of M cannot be extended to an isometry of P(n, R). For
example if n > 2 and M is a maximal flat in P(n, R), then Isom(M) acts transitively
on the set of geodesics in M whereas G does not (no element of G sends a regular
geodesic to a singular one).

(3) If the action of K on the tangent space T1M is irreducible, then the subspace
metric on M c P(n, R) is the unique G-invariant Riemannian metric on M up to a
scaling factor. To see this, first observe that any G-invanant Riemannian metric is
determined by the scalar product given on T1M, because G acts transitively on M.
Fix an isometry from to T1M endowed with the metric induced by the Riemannian
metric on P(n, R). If there were a non-proportional G-invariant Riemannian metric
on M then its unit ball would be an ellipsoid in this Euclidean space different from
a sphere, and the subspace spanned by those vectors which had maximal length
in the fixed Euclidean metric would span a proper K-invanant subspace of T1M,
contradicting the fact that the action of K is irreducible.

(4) Embedding and Other Symmetric Spaces. In the light of (4), by applying
(10 58) to the reductive algebraic subgroup G Ox(Q) described in 10.57(4) we
can realize (rescaled) as a totally geodesic submanifold of P(m, R) where
m =(n+

This embedding illustrates a general phenomenon. We mentioned earlier that,
after rescaling the metric on its irreducible factors, one can isometrically embed any
symmetric space of non-compact type as a totally geodesic submanifold M ç P(n, IR)
(see for instance [Eb96, 2.6.5]).

(5) The flats in M are the intersection with M of the flats in P(n, R). All of the
maximal flats in M have the same dimension (this is called the rank of M) and the
group G acts transitively on the set of maximal flats.
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Semi-Simple Isometries

In the remainder of this chapter we will concentrate on the horospherical structure of
P(n, R) and the geometry of aP(n, IR) However, before turning to this topic we pause
to reconcile an ambiguity in our terminology: classically, a matrix g E GL(n, R) is
said to be semi-simple if and only if it is conjugate in GL(n, C) to a diagonal matrix;
on the other hand, we have been studying GL(n, R) via its action by isometries on
the CAT(O) space P(n, R), and for such isometries we have a different definition of
semi-simplicity, viz. (6.1). The following proposition shows that these definitions
agree Indeed if g E GL(n, R) acts as a semi-simple isometry of any totally geodesic
submanifold of P(n, R) then it is semi-simple in the classical sense

10.61 Proposition. Let M be a totally geodesic submanifold of P(n, R). Suppose
that g E GL(n, R) leaves M invariant and let Isom(M) he the restriction of
g The isometry is semi-simple in the sense of(6 1) if and only jf the matrix g is
semi-simple.

Proof Assume that is semi-simple. fixes a point p E M, then g is conjugate to
an element of 0(n), hence it is semi-simple. Otherwise is hyperbolic, which means
that there is a geodesic c : R —÷ M and a > 0 such that = c(s + a), Vs E R.
Since M is totally geodesic, c is a geodesic line in P(n, R) and g is hyperbolic. After
conjugating g in GL(n, R) we may assume that c(O) = 1. If we write X to denote the
element of S(n, R) such that exp(sX) = c(s), then g ¶g = exp(aX) and the equation
g.c(s) = c(s + a) becomes g exp(sX) tg = exp(sX) exp(aX). Differentiating with
respect to s at s = 0, we get gX ¶g = X exp(aX) = hence gX = Xg. Thus
h exp(aX/2) (which is semi-simple) commutes with g; let k =

g h a on c(R), therefore k fixes c(O) = 1, in other words
k E 0(n) In particular k is semi-simple, and since it commutes with the semi-simple
matrix h, the product g = hk is also semi-simple.

To prove the converse, suppose that g E GL(n, R) is a semi-simple matrix that
preserves a totally geodesic submanifold M. As M is a closed convex subspace, the
isometry of P(n, R) defined by g will be semi-simple if and only if its restriction
to M is semi-simple (6 2(4)). Thus it is enough to show that g acts semi-simply on
P(n, R).

By hypothesis, g is conjugate in GL(n, C) to a diagonal matnx diag(A1,. . ,

we may assume that = i < k and that A, is real if 1 > 2k Standard
linear algebra yields elements k, h E GL(n, R) and a basis e1 for such
that g = kh = hk, where h(e,) = for all i and k multiplies e, by if
1 > 2k, and for i < k the action of k on the subspace with ordered basis {e21_1,
is rotation by arg(A1/1A11). Conjugating g by a suitable element of GL(n, R), we may
assume that ei,. , is the standard basis, and hence g = kh = hk where k E 0(n)
and h E P(n, R). Now, if h = 1, then g E 0(n) acts as an elliptic isometry of P(n, R)
(fixing 1). Otherwise, h = exp X where X E S(n, R) is non-zero; in this case h acts by
translation on the geodesic t exp(tX) in P(n, R). This geodesic is invanant under
the action of k and hence g, therefore g acts on P(n, R) as a hyperbolic isometry. D
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While on the subject of reconciling terminology, we should note that in texts on
symmetric spaces, [Eb96] for example, the term "hyperbolic isometry" is reserved
for transvections. In such texts isometries that are hyperbolic in our sense but which
are not transvections are usually called loxodromic.

Parabolic Subgroups and Horospherical Decompositions
of P(n, IR)

In this section we shall describe the Busemann functions and horospheres in P(n, IR)
and calculate the stabilizer C GL(n, IR) of each point IR). In its
broad outline this section follows our earlier discussion of the horospherical structure
of KH'3 (10.26 to 10.29). However, in the present (higher-rank) situation things
are less straightforward and more interesting because the parabolic subgroups and
horospherical structure associated to a point c(oo) E 8P(n, IR) depend very much on
the nature of the geodesic c (whether it is singular versus regular for example).

10.62 Definition. Given 8P(n, IR), define

If c(oo) where c is the geodesic line c(t) = exp(tX), define

{g E exp(—tX)gexp(tX) —p last —p oo}.

(We shall show that is a normal subgroup of Ge.)
is called the parabolic subgroup associated to and is called the horn-

spherical subgmup associated to It follows from (10.26) that the orbits of are
contained in the horospheres centred at These orbits foliate P(n, IR) and there is a
complementary orthogonal foliation (see 10.69) whose leaves are the totally geodesic
subspaces

F(c) c' : JR —p P(n, IR) is a geodesic parallel to c},

where c ranges over the geodesics such that c(oo) =

We shall give explicit descnptions of and F(c). We shall see that the map
x F(c) —p P(n, IR) sending (v, p) to V.P = tv is a diffeomorphisrn, and we shall

use this map to describe the Busemann functions of P(n, IR).

10.63 Examples. The structure of and F(c) depends very much on the
nature of c(co) = There are two extreme cases: if c(r) (the direction
of the Euclidean de Rham factor (10.53)), then = GL(n, JR), is trivial and
F(c) = P(n, JR); in contrast, if r c(t) is a regular geodesic, then is conjugate to
the group of upper triangular matrices (10.64), while is the subgroup consisting of
matrices with ones on the diagonal, and F(c) is the unique maximal flatA containing
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c(IR). In this second example P(n, IR) is foliated by the maximal flats whose boundary
at infinity contains = c(c'o) (cf. 10.68).

10.64 Proposition. Let 8P(n, IR) be a point at infinity, and let c: t exp(tX)
be the geodesic ray issuing from I with c(co) = where X E S(n, IR) and I1X II = 1.
Then

= {g E GL(n,IR) I lirnexp(—tX)g exp(tX)exists}.

Conjugating by an element of SO(n) we may assume that X is a diagonal matrix
. with A1 > ... > A,, In this case, if . ., are the multiplicities

of the eigenvalues of X taken in decreasing order; then g E GL(n, IR) belongs to
and only tf

fAii A12 . .

g
(

•o•

0 .

where is an (r,,

Pmof Let X = diag (At,.. A,1) where A A1 if i <j. If the (i, j)-entry of a matrix
g is then the (i,j)-entry of the matrix exp(—tX)gexp(tX) is which
converges as t —+ 00 if and only if A1 A1. In particular, the matrices such that

exp(—tX) g exp(tX) exists are precisely those displayed above; it remains to
show that these constitute

If exp(—tX/2) g exp(tX/2) exists, then

d( exp(—tX/2) g exp(tX/2).J, I) d(g exp(tX/2).I, exp(IX/2).1)

is bounded for t > 0, hence the geodesic ray t g exp(tX/2).J (t > 0) is asymptotic
to c(t) = exp(tX/2).J = exp(IX); in other words g4

Conversely, if g E then d(g exp(tX/2).J, exp(tX/2).1) is bounded for
t > 0, hence exp(—tX/2) g exp(tX/2) I remains in a bounded subset. It follows
that {exp(—tX/2)g exp(tX/2)

I
t > 0} C GL(n, IR) is contained in a compact sub-

set, because the map GL(n, IR) —÷ GL(n, IR)/O(n) P(n, IR) is proper Hence there
exists a sequence t, —÷ oo such that the sequence of matrices exp(t,1X) g
converges in GL(n, IR) as n —+ oo. But, as in the first paragraph, this implies that
gjj = 0 if < and hence (by the reverse implication in the first paragraph)

exp(tX) g exp(tX) exists

10.65 Remark. For all 8P(n, IR) the group acts transitively on P(n, IR).
Indeed if we conjugate into the above form, then it contains the group AN of
upper triangular matrices with positive entnes in the diagonal, and this acts simply
transitively on P(n, IR) (see 10.49).

Similarly, if is the endpoint of a ray in P(n, R)1, then fl SL(n, IR) acts
transitively on P(n, JR)1.
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10.66 Proposition.
(1)
(2) LetX diag(A1 Ak) be as in (10.64), letc(t) c(oo).

Theng

/ 'r1 A12 . Alk

g = (

A2k

0 ...
(3) leaves invariant the Busemann function =

Proof The inclusion C is immediate from (10 64) or (10.26) It also fol-
lows from (10.26) that leaves invariant the Busemann functions associated to
rays c' with c'(oo) Part (2) is an easy calculation, so it only remains to check
that is normal in If g E and v E then exp(—rX) u exp(tX) —p I as

—p 00 and exp(—tX) g exp(tX) converges to some element of GL(n, IR), there-
fore exp(—tX) exp(tX), which is the conjugate of exp(—tX) v exp(tX) by
exp(—tX) g exp(tX), converges to I.

Part (3) of the above proposition implies that the orbits of are contained in
horospheres about In general is not the largest normal subgroup of satisfying
this property. For example, if c(t) = exp( 1) then is trivial but SL(n, IR) preserves

the horospheres centred at c(oo).

Next we characterize F(c), which we defined to be the union of the geodesic lines
that are parallel to the given geodesic line c IR P(n, IR).

10.67 Proposition. If c(t) exp(tX) is a geodesic ray in P(n, IR), then F(c) c
P(n, IR) consists of those positive-definite, symmetric matrices which commute with
expX.

If X = diag Ak) is as in (10.64), then F(c) is the set of matrices g =
(g,j) E P(n, IR) such that g,j = 0

/P(ri,IR) 0 .. 0

( 0 P(r2,IR) ... 0

0 0 ... 0

\ 0 0 ... P(rk,IR)

This is a totally geodesic submanifold isometric to the product P(r1, IR).

Proof Let c(co) and let = c(—oo). Given p E P(n, IR) we may choose
g E such that p g I = g 'g (see 10.65) Since t g.c(t) is the unique geodesic
line through p such that g.c(co) by the flat strip theorem (2.l3),p E F(c) if and
only if g.c(cio) = and g c(—oo) = —4-; in other words, if and only if g E fl

We restrict our attention to the case c(t) = exp(tX) with X = diag(A1, . .

as in (10.64). Write g = By applying (10.64) to t exp(tX) and to t
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exp(t(—X)) we see that g E fl if and only if 0 when 54 A1. This

implies thatp is a symmetnc matrix with pj 0 when Ai
The p E P(n, IR) that commute with exp X are precisely those with 0

when A, 54 We have shown that F(c) is contained in this set of matnces. Con-
versely, any such matnx can be written as p = exp Y, where Y is a symmetnc
matnx that commutes with X. In this case d(exp Y exp(tX/2).J, exp(tX/2).1) =
d(exp(—tX/2) exp Y exp(tX/2)./, 1) = d(exp Y.J, 1) is independent of t, hence
the geodesic t exp Y exp(tX/2).J, which passes through p. is parallel to t
exp(tX/2)./ = c(t).

10.68 Corollary. If c is a regular geodesic in P(n, IR) then F(c) is the unique maximal
flat containing c(IR).

Proof By conjugating we may assume that c(t) exp(tX) where all of the eigen-
values of expX are positive and distinct. By (10.45), the set of matrices in P(n, IR)
which commute with expX is the maximal flatA 0

We know by (2.14) that F(c) C P(n, IR) is convex and isometric to F(c)o x IR,
where F(c)o is the set of points of F(c) whose projection on c(IR) is c(0) = I. The
horospheres centred at c(oo) intersect F(c) orthogonally in the parallel translates
of F(c)o.

10.69 Proposition (Busemann Functions in P(n, IR)). Let c(t) exp(tX) be a
geodesic line in P(n, IR), where x E S(n, IR) and = 1. Let c(oo). Then:
(1) xF(c) —p P(n, IR)sending(v,p)tov.p vptvisadtffeomorphism.
(2) The Busemann function associated to the geodesic c is given by the formula

= —Tr(XY), where p = exp Y E F(c) and v E

Proof After conjugation we may assume that X is a diagonal matrix

f/il/ri 0 .. 0

x—' 0 /-'-2'ri ... 0

0 0 ... 0

\ 0 0 ... /.LkIrA

with > and r1 + + r,< n.
To prove that the map x F(c) —* P(n, R) is bijective, we shall argue by

induction on k, the number of distinct eigenvalues of X. In the case k = 1 this map is
trivially a bijection: is trivial and F(c) = P(n, IR). For the inductive step we write

(n, n) matrices g E M(n, IR) in block form g = g12 where g22 E M(rk, R).
\g21 g22J

We want to show that, given p E P(n, IR), the equation vf tv p has a unique solution
(v,f) E x F(c). In the light of (10.66) and (10.67), this equation takes the form:

(vu v12'\ (fii 0 '\ 0'\ (P1 P12

0 'rk ) 0 f22) 'ri) — P21 p22
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where p21 =tp2. Thus it is equivalent to the three equations:

f22 = P22

'vii + v12f22tv12 =Pii•

From the first two of these equations we getf22 = P22 and v12 = and the
third equation becomes

PiI P12Py,P21.

If we can show that the symmetric matrix pu is positive-definite then it
will follow from our inductive hypothesis that this last equation has a unique solution

(v11 ,f i) of the required form.
To say that p is positive definite means precisely that > 0 for all non-

zero (n, 1)-matrices (column vectors) x Given an (n — 1)-matrix x1 54 0, we
let x2 and calculate 'xpx with = This yields 'x1p11x1 —

2p221p21x1 > 0, thus p — P12P22P21 is positive-definite.

Fixp E F(c). By 10.66(3) the Busemann function is constant on the orbits of
hence for all v E By (lO.67),p = exp Y where [X, Y] 0,

thus using 10 42(2) we get.

d(p, c(t))2 d(exp Y, exp tX)2

= d(exp(—rX/2)exp Yexp(—rX/2), J)2

d(exp(Y — tX), J)2

Tr((Y — tX)(Y — tX))

(o) Tr(YY) — 2tTr(XY) + 12.

By definition (p) = d(p, c(r)) — r. And from the triangle inequality for
c(0, c(t)) we get c(t)) + r)/2t = I. Therefore

= lim c(t))2 —
2r

and hence (o) implies that —Tr(XY).

10.70 Exercise Deduce that if c1(co) c2(OO) = then F(c1) and F(c2) are
isometric.
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The Tits Boundary of P(n, JR)1 is a Spherical Building

The purpose of this section is to describe the Tits boundary of P(n, IR), as defined in
(9.18). Our previous results lead one to expect that 8TP(n, IR) should enjoy consider-
able structure: in Chapter 9 we saw that the geometry of flats in a complete CAT(0)
space influences the Tits boundary of the space, and in the present chapter we have
seen some indication of the extent to which the geometry of P(n, IR) is dictated by
the nature of its flat subspaces.

10.71 Theorem. The Tits boundary of P(n, JR)1 is (naturally isometric to) a thick
spherical building.

In an appendix to this chapter the reader will find a brief introduction to spherical
buildings, a remarkable class of CAT(1) spherical simplicial complexes discovered
by Jacques Tits. The defining properties of a spherical building involve the behaviour
of its maximal sirnplices (chambers) and certain distinguished subcomplexes (apart-
ments). In our setting, the role of chambers and apartments will be played by the
boundaries at infinity of Weyl chambers and maximal flats (see 10 72)

An Outline of the Proof of Theorem 10.71. First we shall define certain subsets of
8P(n, JR)1 to be apartments and chambers (10.72). We shall then fix our attention on
a basic chamber In the Tits metric A+(oo) is isometric to a spherical simplex.
We metrize 8P(n, JR)1 as a spherical simplicial complex by transporting the metric
(and face structure) from A+(oo) to its translates under the action of SL(n, IR) (see
10.75). There are then two key points to check: the intrinsic metric associated to this
spherical simplicial structure on 8P(n, JR)1 coincides with the Tits metric (10.78); and
the apartments and chambers of 3P(n, JR)1. as defined in (10.72), satisfy the axioms
for a (thick) spherical building (IOA.1). Both of these points are easy consequences
of Proposition (10.77).

10.72 Definition (Apartments and Weyl Chambers at Infinity). A subset of 8P(n, IR)1
is called an apartment if it is the boundary at infinity of a maximal flat in P(n, JR)1.
A subset of 8P(n, JR)1 is called a Weyl chamber at infinity if it is the boundary at
infinity of the closure of a Weyl chamber in P(n, JR)1

There is not an exact correspondence between Weyl chambers at infinity and Weyl
chambers in P(n, JR)1. Indeed a Weyl chamber in P(n, JR)1 is contained in a unique
maximal flat whereas a Weyl chamber at infinity is contained in infinitely many
apartments (10.74). On the other hand, the correspondence between apartments and
maximal flats is exact: this is an immediate consequence of (10.53) and the following
lemma.

10.73 Lemma. LetA andA' be maximal flats in P(n, JR). If 8A 3A' then A = A'.

Proof Let c be a regular geodesic line in A and let c' be a geodesic line in A' such
that c'(oo) = c(oo) = Note that c'(—oo) c(—oo), because this is the unique
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point of 3A = 8A' at Tits distance ir from Thus the geodesic lines c and c' are
parallel, and hence F(c') F(c). But F(c) A, by (10.68), so A' C A. 0

10.74 Simplices in 87-P(n, JR)1. We wish to describe a spherical simplicial structure
Ofl 8TP(n, JR)1 in which the maximal simplices are the Weyl chambers at infinity and
the apartments are isometrically embedded.

The apartments of 87-P(n, IR)1 are isometncally embedded copies of Fol-
lowing our discussion in (10.45) and (10.54), we know that every Weyl chamber in
P(n, JR)1 is a translate by some g E SL(n, JR) of

={exp(sXfls> ta), =Oandt1 > >

Therefore every WeyJ chamber at infinity is a translate by some g E SL(n, IR) of the
closure of := {c(oo)

I
c[0, 00) ç a geodesic ray}, which in the

Tits metric is isometric to a spherical simplex of dimension (n — 2) (contained in the
copy of that is the boundary of the maximal flat containing We described
the shape of this simplex in (10.54).

The codimension-one faces of A+(oo) are obtained by replacing one of the in-
equalities t, > by an equality, and faces of codimension k are obtained by
replacing k of these inequalities by equalities. —

In order to show that the translates g
the (n a simplicial subdivision of 8TP(n, JR) 1,we must

check that every E 8TP(fl, IR)1 lies in a translate of A+(oo) and that g A+(oo) fl
A+(oo) is a (possibly empty) face of

10.75 Proposition.

(1) The spherical (n — 2)-simplex is a strict fundamental domain for the
natural action of SL(n, JR) on 8P(n, JR)1 (i e., A+(oo) contains exactly one point
from each SL(n, IR)-orbit).

(2) For every g ESL(n, JR), the intersection fl A+(oo) is a (possibly
empty) face of

(3) SL(n, JR) acts transitively on pairs (8A, C), where 8A is an apartment and
C c 8A is a Weyl chamber at infinity.

(4) For every E 3P(n, JR)1, the stabilizer in SL(n, IR) coincides with the
stabilizer of the unique open simplex containing

(5) The orbits of SL(n, JR) in 3P(n, JR)1 are the same as the orbits of SO(n).

Proof First we prove (5). Given E 8P(n, JR)1, let c [0, oo) —÷ P(n, JR)1 be the
geodesic ray with c(0) = I and c(oo) = Given g E SL(n, JR), let c' = g o c and let

= c'(oo) g4. There is an element h E SL(n, IR) fixing such that h.c'(O) I
(see 10.65). Therefore hg lies in the stabilizer of I, which is SO(n) (10.33), and
hg4



The Tits Boundary of P(n, is a Sphencal Building 339

Every E 8P(n, IR) can be represented uniquely as c(c'o) where c(t) = exp(tX)
is a geodesic through I. Now, since X is symmetric, there exists a unique diagonal
matrix X' with non-increasing entries along the diagonal such that X' gX 'g for
some g E SO(n). It follows that c'(oo), is the unique point of A+(oo) in the SO(n)-
orbit of where c'(t) = exp(tX'). In the light of (5), this proves (1). Part (4) then
follows easily from (10.64). To prove (2), note that if x lies in the given intersection,
by (1) we have g.x x and then by (4) we have that this intersection is a face.

It remains to prove (3). Since SL(n, IR) acts transitively on the set of Weyl cham-
bers in P(n, IR)1, it acts transitively on the set of Weyl chambers at infinity. Thus it
is sufficient to prove (3) for apartments containing But in the light of (4),
this follows immediately from the fact that for every 8P(n, JR)1 the stabilizer of

acts transitively on the set of geodesics c with c(oo) = (10.65) and is in the
interior of A+(oo) then each such c is contained in a unique maximal flat, therefore

acts transitively on these flats.

At this stage we have proved:

10.76 Corollary. The Weyl chambers at infinity are the maximal simplices in a
spherical simplicial complex whose underlying set is 8P(n, IR)1. The natural action
of SL(n, IR) on 8P(n, JR)1 is by simplicial isometries.

It remains to check that the intrinsic metric associated to this spherical simplicial
structure coincides with the Tits metnc This is the first consequence that we shall
draw from the following proposition (whose proof will be completed in 10.80). This
proposition also implies that the simplicial structure that we have described satisfies
axiom (3) in the definition of a building (10A.1).

10.77 Proposition. Any Iwo Weyl chambers at infinity are contained in a common
apartment.

Proof Let A c P(n, JR)1 be the maximal flat consisting of diagonal matrices. In the
light of 10.75(3), it suffices to show that given any Weyl chamber at infinity C there
is an element of SL(n, IR) that leaves invariant and maps C into 3A.

From 10.64 and 10.75(4) we know that the stabilizer of A+(oo) is the group of
upper triangular matrices in SL(n, IR), and from 10.54 we know that any other Weyl
chamber in 3A can obtained from by the action of a permutation matrix Thus
the proposition follows from the fact that any element of SL(n, IR) can be written in
the form glsg2, where and are upper triangular matrices and s is a monomial
matrix (this crucial fact will beproved in 10.80). For if C = g.A+(oo) and g glsg2,
then .C s.A+(oo), whence both C and are contained in .8A.

10.78 Corollary. The Tits metric on 3P(n, JR)1 coincides with the intrinsic metric of
the spherical simplicial complex obtained by dividing 8P(n, JR)1 into Weyl chambers
at infinity.
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Proof Let dT denote the Tits metnc on 8P(n, IR)1 and let d be the intrinsic metric
for the spherical simplicial structure on 3P(n, JR)1. The latter is obtained by taking
the infimum of the lengths of piecewise geodesic paths in the spherical simplicial
complex. The length of any such path is the same when measured in both the Tits
metric and d, because the Tits metric coincides with the simplicial metric on the
closure of each Weyl chamber Thus < for all E 8P(n, JR)1.

On the other hand, in the light of (10.77) we know that lie in a common
apartment. In the Tits metnc this apartment is isometnc to and any Tits geodesic
joining to obviously has length when measured in the metric d. Thus

The Final Step in the Proof of Theorem 10.71

The axioms of a building are given in (1OA.1). In the light of the preceding results
only axiom (3) requires further argument.

First we consider the case where two apartments E = 8A and E' = 8A' contain
a chamber C in their intersection. In this case (10.75) implies there is a simplicial
isometry from E' onto E that restricts to the identity on C. We claim that cbE.E
restncts to the identity on the whole of Efl E'. To see this, note that if x E Efl E' then
x is a distance less than ir from some point yin the open set C; the restriction of cbE.E'
to an initial segment of the unique geodesic [y, x] is the identity, and since [y, x] is
the only geodesic of length d(x, y) in E that has this initial segment, çbEE'(x) x.

Now suppose that B1 and B2 are (possibly empty) simplices in the intersection
of two apartments E1 and E2. For i 1, 2 we choose chambers C, c E1 such
that B c C. By (10.77) there is an apartment E' containing both C1 and C2. The
composition of the maps and 'bE E2 sends E2 isometrically onto E1 and restricts
to the identity on B1 U B2.

aTP(n, IR) in the Language of Flags and Frames

The following interpretation of apartments and Weyl chambers at infinity provides
a useful language when one wishes to bring the tools of linear algebra to bear on the
study of 8TP(n, IR). For example, the content of (10.80) was crucial in our proof of
(10.78).

Aflag in JR'1 is a sequence of subspaces V1 c V2.. C V,1_1 such that V1 has
dimension i. An unordered frame in JR'7 is a set of n linearly independent subspaces
of dimension one, and an ordered frame is a sequence of n linearly independent
subspaces of dimension one. (Thus every unordered frame gives rise to n! ordered
frames.) Associated to each ordered frame one has the flag V1 C ... C where
Vk is the subspace spanned by the first k elements of the ordered frame.

We write fl0 to denote the flag associated to the standard (ordered) basis e1
for IR", and we write fro to denote the associated unordered frame (the set of one-
dimensional subspaces (e,)). We shall also use the notation:
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A the set of maximal flats in P(n, JR)1 (= the set of apartments in 8P(n, IR)1)

C set of Weyl chambers at infinity

Fr = set of unordered frames in

Fl = set of flags in JR'7.

The obvious action of SL(n, IR) on each of Fr and Fl is transitive, and we saw earlier
that the action of SL(n, IR) on A and C is transitive.

10.79 Proposition. There are natural SL(n, IR)-equivariant btjections A —p Fr and
C —÷ Fl, and an induced bijection from {(A, C)

I
A E A, C C 8A} to the set of

ordered frames in JR'7.

Proof The group of upper tnangular matrices in SL(n, IR) is the stabilizer of both
A+(oo), the basic Weyl chamber at infinity, and the flag fib. Thus, since the action
of SL(n, IR) is transitive on both C and Fl, then g.A+(co) g.flo is an equivariant
bijection from C to Fl.

Let A0 be the maximal flat in P(n, JR)1 consisting of diagonal matrices. The
stabilizer in SL(n, JR) ofA0 (equivalently Mo) is the subgroup consisting of monomial
matrices, i.e. matrices having only one non-zero entry in each row and column. This
subgroup is also the stabilizer of the unordered framefro. Thus g.A g.fr0 is an
equivariant bijection from A to Fr.

SL(n, JR) acts transitively on the set of ordered frames and also on the set of pairs
{(A, C)

I
A E A, C c 8A}. The stabilizer of (A0, is the group of diagonal

matrices of determinant one, and this is also the stabilizer of the ordered frame
associated to the standard basis of JR'7. Hence the required equivariant bijection. 0

10.80 Lemma. Given two flags Vi C C and C C one can
find a basis v1 for JR'7 and a permutation of{1 n} such that V, is the
span of{v,Ij<i}for eachi<nand V1 is the span

of of In order to prove this lemma one analyzes the standard proof of the
Jordan-Holder Theorem (see [Bro88, p.84]). We shall give the proof for n — 3 and
indicate how the different cases that arise in the proof are related to the geometry of
Weyl chambers as described in 10.55 (and figure 10.1). It follows from the description
given there that each apartment 8A C 8TP(n, JR)1 is an isometrically embedded circle
and the Weyl chambers at infinity contained in 8A are six arcs of length ir/3. The
action of the symmetnc group 83 on the set of Weyl chambers in an apartment is
described in (10.55).

Let Vi c V2 and vç c be the two distinct flags in JR'7 and let C and C' be the
corresponding Weyl chambers at infinity. We seek a basis {v1, V2, v3} of JR3 and a
permutation such that V1 (resp. Vç) is spanned by v1 (resp. and V2 (resp.
is spanned by {v1, V2} (resp. As we noted above, the present lemma
implies that there is an apartment A containing both C and C, and the permutation
describes the action of 83 onA (see 10.55). With this geometric picture in mind, one
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expects there to be essentially three cases to consider: C and C' might be adjacent
chambers of A, they might be opposite, or they might be neither.

First case (adjacent chambers): V1 = or V2 =
If V1 = Vç,wechoosethebasis {v1, v2, v3} sothat {v1, v2} spans V2 and {v1, v3}

spans The permutation a is the transposition (2, 3).
If V2 = {v1, v2, v3} sothatv1 (resp. v2)spans Vi (resp.

and v3 V2. In this case a is the transposition (1,2).

Second case (opposite chambers): V1 V V1 or vç. This
is the generic case.

We choose the basis {v1, v2, v3} so that V1 is spanned by v1, V2 fl by v2 and
by V3. The permutation a is (3, 2, 1). In this case there is only one apartment

containing the given Weyl chambers C and C'.

Third case: V2 fl = (the case V2 fl = V1 is similar).
We choose {v1, v2, v3} so that V1 is spanned by V2 by {v1, v2} and by v3.

The permutation a is (3, 1, 2). In this case the Weyl chambers are neither adjacent
nor opposite in any common apartment. El

Appendix: Spherical and Euclidean Buildings

Spherical buildings were first introduced by Jacques Tits [Tits74] "as an attempt to
give a systematic procedure for the geometric interpretation of the semi-simple Lie
groups, in particular the exceptional groups". Euclidean buildings emerged from the
study of p-adic Lie groups [IwMa65] and their theory was developed by Bruhat and
Tits [BruT72], who established that Euclidean buildings were CAT(O) in the course of
proving a version of the Cartan fixed point theorem. (They used the CAT(O) inequality
in the guise of l.9(lc)). Tits later defined abstract buildings as combinatorial objects
(chamber systems) whose basic structure can be descnbed in terms of Coxeter groups.

There is an extensive literature approaching the subject of buildings from various
perspectives and we shall not attempt to replicate it. Instead, we shall give a rudi-
mentary introduction to sphencal and Euclidean buildings with the main objective
of proving that the axioms of a building imply upper curvature bounds (Theorem
IOA.4). We refer the reader to the books [Bro88], [Ron89] and [Tits74] for a much
more comprehensive introduction to buildings. The survey articles of Ronan [Ron92]
also contain a lot of information. For a less complete but very readable introduction
we suggest [Bro9l]. (A useful introduction to Coxeter groups, by Pierre de Ia Harpe
[Har9l], can be found in the same volume as [Bro9l].) We also recommend to the
reader the more metric approach to buildings presented by Mike Davis in [Da98].

The following definition of sphencal and Euclidean buildings is not the most usual
one, but it fits naturally with the geometric viewpoint of this book. Our definition of
a thick building is equivalent to the usual one (see [Bro88, IV, VI] or [Ron89])
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bA.! Definition. A Euclidean (resp. sphencal) building of dimension n is a piece-
wise Euclidean (resp. sphencal) simplicial complex X such that:

(1) X is the union of a collection A of subcomplexes E, called apartments, such
that the intrinsic metnc dE on E makes (E, dE) isometric to the Euclidean space

(resp. the n—sphere and induces the given Euclidean (resp. sphencal)
metnc on each simplex. The n-simplices of E are called its chambers.

(2) Any two simplices B and B' of X are contained in at least one apartment.

(3) Given two apartments E and E' containing both the simplices B and B', there
is a simplicial isometry from (E, dE) onto (E', dry) which leaves both B and B'
pointwise fixed.

The building X is called thick if the following extra condition is satisfied:

(4) Thickness Condition: Any (n — 1)-simplex is a face of at least three n-simplices.

1OA.2 Remarks
(1) For the purposes of this definition, the 0-dimensional sphere S° is defined to

consist of two points a distance apart.

(2) In condition (3), the simplices B or B' can be empty.

(3) It is usual to say that a building of dimension n has "rank (n+ 1)" This super-
ficially odd convention means that the rank of a symmetric space such as P(n, R)1 is
the same as the rank of its Tits boundary. (See also IOA.7.)

1OA.3 Examples
(1) Any metnc space X such that the distance between any two distinct points

is is a sphencal building of dimension 0, where the apartments are the pairs of
distinct points of X.

(2) Let X be as in (1). The sphencal suspension (as defined in Chapter 1.5) of
X is a sphencal building of dimension I whose apartments are circles, namely the
suspensions of the apartments of X.

More generally, if X and X' are sphencal buildings of dimension n and n', then
their spherical join X * X' is a sphencal building of dimension (n + n' + 1) whose
simplices (resp. apartments) are the sphencal join of the simplices (resp. apartments)
of X and X'.

(3) If the edges a metnc simplicial tree all have length I and every vertex of the
tree is adjacent to at least two (resp. three) edges, then the tree is a Euclidean building
(resp. a thick Euclidean building) of dimension one.

(4) In the final sections of the preceding chapter we showed that, when equipped
with the Tits metnc, the boundary at infinity of the symmetric space P(n, R)1 is a
sphencal building of rank (n 1). In general the Tits boundary of any symmetnc
space of non-compact type is a sphencal building whose rank is the rank of the
symmetnc space (see [Eb97]).

(5) Let k be a field and consider the simplicial graph X whose vertices are the
1-dimensional and 2-dimensional subspaces of k3, and which has an edge joining
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two vertices if and only if one of the corresponding subspaces is contained in the
other. In other words, X is the incidence graph of points and lines in the projective
plane over k.

If one metrizes each edge to have length then X is a sphencal building
of dimension one in which the apartments are hexagons (circuits of combinatorial
length 6). If k is the field with 2 elements, then X is a graph with 14 vertices and
21 edges, and every vertex is of valence three, corresponding to the fact that every
line through the ongin lies in exactly three planes and each of these planes contains
exactly three lines through the ongin. (Exercise: draw this graph.)

More generally, one can consider the poset of proper non-zero vector subspaces
in k'7 ordered by inclusion. A suitable geometric realization of this set is again a
sphencal building of rank (n — 1), whose apartments are isomorphic to the apartments
in 8rP(n, ]R)1; the chambers are in natural correspondence with flags in k' and the
apartments correspond to the unordered frames of (cf. 10.79 and 10.80). There is
an obvious action of SL(n, k) on this building.

1OA.4 Theorem.
(i) The intrinsic metric on a Euclidean (resp. spherical) building X is the unique

metric inducing the given metric dE on each apartment E.

(ii) With this metric, X is a CAT(O) space (resp a CAT( 1) space).

(iii) if X is thick, then all of the n-simplices in X are isometric to a single geodesic
n-simplex in W (resp. (in this case it follows from (i. 7.13) that the intrinsic
metric is complete.)

Proof The retraction PEC. Let C be a chamber contained in an apartment E. If E'
is another apartment containing C, then by IOA.1(3) there is a simplicial isometry

of E' onto E fixing C pointwise. This isometry is unique because the image of
each geodesic is determined by the image of an initial segment contained in C. This
uniqueness forces the restriction of E to

to define a simplicial retraction p = PE,C, which is a simplicial map
from X onto E. By IOA.1(2), each point x E X is contained in an apartment E' that
contains C. Define p(x) := This definition is independent of the choice of
E' because if E" is another apartment containing C and x, then fixes C and x
and o = because of the uniqueness established above. Note that p
is a simplicial map and that its restnction to each chamber is an isometry Moreover
its restriction to each apartment containing C is an isometry.

The restriction of the intrinsic metric to E is dE. Let d denote the intrinsic metric
on X (see 1.7.4). Because p = PE.C maps simplices to simplices isometncally, it
preserves the length of piecewise geodesic paths (and m-strings). Thus, given x, y E
E, since PIE = idE, when calculating d(x, y) one need only quantify the infimum in
the definition of d over paths (strings) contained in E. And this infimum is clearly
equal to dE(x, y). This proves part (i) of the theorem. It also shows thatX is a geodesic
space (the geodesic joining x to y in E is a geodesic in X). In fact these are the only
geodesics.
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1OA.5 Lemma. Let E be an apartment in X, let x, y E E, and in the spherical case
assume d(x, y) <ic. Then every geodesic in X connecting x to y is contained in E.

Proof Suppose that z E X is such that d(x, y) d(x, z) + d(z, y). Let z' be the point
on the geodesic segment [x, y] joining x to y in E with d(x, z) = d(x, z'). We must
show that z z'. Let C be a chamber in E containing z' and let p = PE,c. Since p
does not increase the length of paths, d(x, p(z)) < d(x, z) and d(y, p(z)) d(y, z).
And

d(x, y) <d(x, p(z)) + d(p(z), y) <d(x, z) + d(z, y) d(x, y).

There must be equality everywhere, therefore p (z) = z'. On the other hand, there is an
apartment E' containing both z and C, by IOA.1(2), and by definition p(z) PE,E(Z)
and z' Since PE,E is injective, we have z = z'. El

It follows immediately from this lemma that there is a unique geodesic joining
each pair of points x, y E X (assuming d(x, y) < in the sphencal case). It also
follows that geodesics vary continuously with their endpoints, because if y' is close
to y then there is a chamber C containing both y and y', and given x there exists an
apartment containing x and C. The desired curvature bounds can thus be deduced
from Alexandrov's patchwork (proof of (4.9)) or from (5.4). However, instead of
appealing to these earlier results, we prefer to give a direct and instructive proof of
the fact that X is CAT(O) (Euclidean case) or CAT( 1) (sphencal case).

The CAT(O) and CAT(1)Inequalities. Givenx, y, z E X(with d(x, y)+d(y, z)+
d(z, x) < in the sphencal case), let p be a point on the unique geodesic segment
[x, y]. Let E be an apartment containing [x, y], let C C E be a chamber containing p.
and let p = PE.C. We have d(x, p(z)) d(x, z), d(y, p(z)) < d(y, z) and d(p, p(z)) =
d(p, z). Let be a point in E such that d(x, = d(x, z) and d(y, d(y, z). The
tnangle y, c E is a Euclidean or sphencal comparison tnangle for y, z).
Thus it suffices to prove that d(p, z) < d(p,

Let E be such that d(x, d(x, p(z)) and d(y, = d(y, z). As d(y, p(z))
d(y, i'), the vertex angle at x in y, p(z)) is less than that in y, i'), and hence
(by the law of cosines) d(p, p(z)) d(p, i'). Similarly, comparing y, with

y, we see that d(p, <d(p, hence d(p, z) = d(p, p(z)) <d(p, This
proves (ii).

The case of a thick building. Let C and C' be distinct chambers in X. They lie in
a common apartment and therefore can be connected by a gallery, i.e. a sequence of
chambers C = C0, C1 ..., = C' such that each consecutive pair C1, have an
(n 1)-dimensional face in common. Thus it suffices to consider the case where C
and C' have an (n — 1)-dimensional face B in common.

By thickness, there exists a chamber C", distinct from C and C', of which B
is a face. Let E and E' be apartments containing C U C' and C U C" respectively.
The restnction to C' of PEc' o sends C' isometrically onto C and fixes B. This
completes the proof of Theorem I OA.4. El
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1 OA. 6 Remark. It follows from (1 OA.4) that Euclidean buildings are contractible. Ac-
cording to the Solomon-Tits theorem [So169], every sphencal building of dimension
n has the homotopy type of a wedge (one point union) of n-dimensional spheres.

1OA.7 Coxeter Complexes. We continue with the notation from the last paragraph
of the preceding proof. Let 1-( be the half-space of E that contains C' and has B in its
boundary. It is not difficult to show that the restnction of PEc o c to E is simply
the reflection of E in the boundary of (see [Bro88, IV.7]). It follows that if X is
a thick building and E is an apartment, then the subgroup of Isom(E) generated by
reflections in codimension-one faces acts transitively on the chambers in E. Further
thought shows that any chamber is a stnct fundamental domain for this action. This
group of reflections, which we denote W, is actually a Coxeter group (as defined in
12.31) with generating systemS, whereS is the setof reflections in the codimension-
one faces of a fixed chamber C (see [Bro88, IV.7]). E is (somorphic to) the Coxeter
complex for (W, 5) and ISI is the rank of the building. If W is finite then the building
is sphencal. If W is infinite then the building is Euclidean.

1OA.8 Example. Consider the building X = aTP(n, R)1, which has rank (n — 1).

In this case each apartment E is tesselated by (n — 2)-simplices (the closures of the
Weyl chambers at infinity), W is the symmetric group on n letters, and the preferred
generating set S is the set of reflections in the (n — 1) maximal faces of a fixed
chamber.

In the case n = 3, the apartments are regular hexagons (circles divided into
six equal parts — see proof of 10 80), S has two elements and W has presentation
(si, I

= = (51S2)3 = 1).

1OA.9 Remarks
(1) In the definition of a Euclidean building (IOA.1), instead of insisting that X

be a simplicial complex, we might have assumed instead that the chambers of X were
convex Euclidean polyhedra. For instance we might take the cells to be cubes. This
leads to a more general notion of a Euclidean building, with the advantage that the
product of two such Euclidean buildings is again a Euclidean building (cf. [Da98]).

An examination of the proofs given above reveals that they all remain valid if
one adopts this more general definition of a Euclidean building.

(2) One can show that if X is a Euclidean building as defined in IOA.1, the
boundary aTX of X with the Tits metric is a sphencal building (see [Bro88]), as it is
the case whenX is a symmetric space of non-compact type. In his Habilitationsschrift
[Le97], Bernhard Leeb established charactenzed irreducible Euclidean building and
symmetric spaces in terms of their Tits boundary. He showed that if a proper CAT(0)
proper space X has the geodesic extension property (5.7), and the Tits boundary of
X is a thick, connected, sphencal building, then X is either a symmetnc space of
non-compact type or a Euclidean building. (X will be a symmetnc space if and only
if every geodesic segment extends to a unique line.)
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In this chapter we revisit the gluing constructions descnbed in Chapter 1.5 and ask
under what circumstances one can deduce that the spaces obtained by gluing are of
curvature < K. Our purpose in doing so is to equip the reader with techniques for
building interesting new spaces of curvature K out of the basic examples supplied
in Chapters 5, 10 and 12.

Gluing CAT(k) Spaces Along Convex Subspaces

If one glues complete CAT(K) spaces along complete, convex, isometric subspaces,
is the result a CAT(K) space? We shall show that the answer to this question is yes.
In the case of proper metnc spaces this result is due to Reshetnyak [Resh6O] and the
proof is rather short. In the general case one has to overcome the additional problem
that the existence of geodesics in the space obtained by gluing is far from obvious
(cf. 1 5.25(3)).

We maintain the notation established in Chapter 1.5; in particular, given two
metnc spaces X1 and X2 and isometnes . A —÷ A3 onto closed subspaces A3 c X3,

we write X1 X2 for the quotient of the disjoint union of X1 and X2 by the equivalence
relation generated by [ii(a) — i2(a)Va E A]. (Suppressing mention of the maps i, in
this notation should not cause any confusion.)

11.1 Basic Gluing Theorem. Let K E R be arbitrary. Let X1 and X2 be CAT(K)
spaces (not necessarily complete) and let A be a complete metric space Suppose
thatforj = 1, 2, we are given isometries A —÷ where A3 C is assumed to be
convex ifK <0 and is assumed to be DK -convex if K > 0. Then X1 UA X2 is a CAT(K)
space.

Proof
Step]. We first prove the theorem assuming that X = Xi LJAX2 is a geodesic metric

space (which we know to be the case if X1 and X2 are proper 1.5.24(3)). We shall
verify cntenon 1.7(4) for all geodesic tnangles in X (with penmeter < 2DK ifK > 0).
The only non-tnvial case to consider (up to reversing the roles of X1 and X2) is that
of a geodesic triangle [xi,x2]) withx1,y E X1 andx2 E X2 N A2.
For this, one fixes points z, z' E A1 on the sides [xi, x2] and [y, x2] respectively.
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Any such points have the property that [x1, z] ç [x1, x2] and [y, z'] ç [y, x2] are
contained in X1, and that c [Xi,X2] and [z',x2] c are contained
in X2. In order to complete the proof one simply applies the gluing lemma for
triangles (4.10), first to z], [z, z'], [x1, z']) and z'], [z', [z, x2]) and
then to , x2], [x2, z'], [x1, z'J) and y], [y, z'], [x1,

Step 2. We shall now prove that Xis a geodesic metric space. As we do not assume
that A1 is proper, according to exercise 1.5.25(3) we must use both the fact that X1 and
X2 are CAT(K) and the fact that the A3 are convex in order to show that X = X1 X2

is a geodesic metnc space. It suffices to show that for all xi E X1 and x2 E X2 (with
d(x1,x2) < if K > 0)thereexistsz E A1 suchthatd(x1, z)+d(z,x2)= d(x1,x2)
We fix a sequence of points E A1 such that d(x1, z,1) + x2) — d(xi, x2) < 1/n.

Because the numbers d(xi, are bounded, we may pass to a subsequence and
assumethatd(xi,zn) —÷ asn —÷ oc.Thusd(x2,z,1) —÷ := d(x1,x2)—L1 as

n —* oc. We claim that (zn) is a Cauchy sequence; we will then be done because A1
is complete and z = limn has the desired property

Before turning to the general case, we give a proof valid for K < 0. Given s > 0,

let N > 0 be such that max{Id(xi, Zn) — Lii, ld(x2, Z,) — L21} < & for all n, m > N.

Let p be the midpoint of the geodesic segment [Z,1, Zm] ç A1. By the convexity of the
metric on X2 we have:

d(x2, p) < max{d(Zn, x2), d(Zm, x2)} < 12 +

hence d(xi, p) ? — & For a comparison triangle Zn, in E2, an elementary
calculation with the Euclidean scalar product yields:

+ —

We also have d(x1, p) d(x1, by the CAT(O) inequality in X1. Hence

d(Zn, Zm)2 <2d(x1, Zn)2 + 2d(x1, Zm)2 — 4d(x1,p)2

<2d(xi,Zn)2+2d(xi,Zm)2 —4(L1 _&)2 < 16L1&.

Step 3. We maintain the notation established in Step 2. The following proof that
(Zn) is a Cauchy sequence is valid for any K E By reversing the roles of and £2
if necessary, we may assume that Li d(x1, x2)/2 < /2.

We fix a number 1 with DK > 1 > d(x1 , x2). As in (1.2.25), it follows from
(1.2.26) that for every & > 0 there exists 8 = 8(K, 1, &) such that, for all x, y, w E
if d(x, y) < 1 and d(x, w) + d(w, y) <d(x, y) + 8, then d(w, [x, y]) <&. Shrinking

8, we may assume d(x1, x2) + 8 < 1. We fix an integer N so that for all n > N
we have d(xi,Zn) < and id(X1,Zn) — Lii < &, and d(xi,Zn) + d(x2,Zn) <
d(xi, x2) + 8. If n, m > N, then d(Zn, Zm) < d(Xi,Zn) + d(xi, Zm) < DK, 50 Zn and

Zm are connected by a unique geodesic segment (contained in the convex set A1) and
there are unique geodesic tnangles in X1 and in X2 with vertices (xi, Zn, Zm)

and (x2, Zm) respectively. The penmeter of each of these triangles is bounded by
d(x1, Zn) + d(x2, Zn) + d(xi, Zm) + d(x2, Zm) < 21 < 2DK. We consider comparison
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triangles = Zn, Zm) Zn, Zm) in along the common
edge and arranged so that are on opposite sides of the line through
and Zm. (We assume that the triangles and are non-degenerate; the degenerate
case is trivial.)

Consider the unique geodesic segment [ii. in There are two cases:

(a) X2] meets Zm] in one point or
(b) x2] does not meet Zm].

In case (a), if y E [Zn, Zm] is the point a distance from Z,1, then by the
CAT(K) inequality,

d(xi,x2)< d(xi,y)+d(y,x2)<

Hence

d(x1,x2)+8,

so by the definition of 8 there e Similarly,

there eXists Pm E [xi, x2] such that d(Zm, Pm) < C.
The difference between and is at most 2e, so the distance

and Pm is at most 4e. Hence Zm) 6e.

In case (b), the sum of the angles of the vertices or Zm is not

less than suppose this vertex is According to 1.2.16(1), there exists a triangle
in with vertices such that d(xi, Zm), Zm) = d(x2, Zm)
and = + Let E be such that
d(xi, Zn). From (1.2.16(2)) we have > Zm). And by the
definition of 8, the point lies in thee-neighbourhood of So since Id(i1, z )—

< 2e, < 3E.

11.2 Remarks
(1) Under the hypotheses of (11.1), X1 and X2 are isometncally embedded in

X1 X2 as DK-convex subspaces, and X is complete if and only if X1 and X2 are
both complete.

(2) (Successive Gluing). In the notation of (1.5.26), if each of the metnc spaces
X1 is CAT(K), and if each of the subspaces A3 along which they are glued
is complete and DK-convex, then by repeated application of (11.1) we see that the
space obtained by successive gluing is CAT(K).

We generalize the Basic Gluing Theorem (11.1) to the case of arbitrary families
of CAT(K) spaces.

11.3 Theorem (Gluing Families of CAT(sc) Spaces). Let (Xi, dx)x€A be afamily of
CAT(K) spaces with closed subspaces AA C Let A be a metric space and suppose
that for each A E A we have an isometry : A —÷ Let X = LjAXA be the
space obtained by gluing the X, along A using the maps iA (see 1.5.23). If A is a
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complete CAT(K) space (in which case each AA is DK -convex and complete), then X
is a CAT(K) space.

Proof We claim that for all A1, A2 E A, the natural inclusion of XA LJA Xi., into X
is an isometi-y. Indeed if x, y E U are a distance less than DK apart in X then
there is a unique geodesic connecting them and this lies in LJA To see this,
note that because C is DK-convex, any geodesic in of length less than DK
with endpoints in lies entirely in and thus any chain in X that has endpoints
in UA XA2 and has length less than DK (in the sense of (1.5.19)) can be shortened
by deleting all of its entries that lie in X, N A for A {A1, X2}.

It follows from this descnption of geodesics that X is DK-geodesic and any
geodesic triangle C X with perimeter less than 2DK and vertices x1 E Xx, i =
1, 2, 3 is contained in UA UA Applying (11.1) twice, we see that UA

XA,) UA is a CAT(K) space and hence satisfies the CAT(K) inequality. El

Gluing Using Local Isometries

The preceding constructions were gfobal: we glued CAT(sc) spaces using isometries
between complete DK -convex subspaces to obtain new CAT(sc) spaces. We now turn to
the analogous local situation: we glue spaces of curvature < K using local isometnes
between locally convex and complete subspaces with the expectation that the result
will be a metric space of curvature K. We also seek more general constructions
that will allow us to glue along subspaces which are not locally convex.

At an intuitive level, much of what we expect from local gluing is clear— one can
visualize the result of gluing two hyperbolic surfaces along two closed local geodesics
of equal length for example. There are, however, a number of technical
associated to showing that the quotient metric has the anticipated properties. These
are eased by the following special case of (1.5.27).

11.4 Lemma. Let X be a metric space, A a closed subspace of X and a : A —* A
a local isometry such that a2 is the identity of A and a(a) afor each a E A. Let

be the quotient of X by the equivalence relation — generated by a a (a). Then,
the quotient pseudometric on X is actually a metric, and for every x E X there exists
e(x) > 0 such that: A then B(x, e(x)) is isometric to B(x, e(x)); if x E A then
the restriction of a to B(x, 2e(x)) flA is an isometry and e(x)) is isometric to the
ball of radius e(x) about the image of x in the space obtained by gluing B(x, 2e(x))
to B(a (x), 2e(x)) using this isometry.

11.5 Lemma. Let X, A anda be as above, if X has curvature ic andA is locally
convex and complete, then X also has curvature < K.

Proof Given x E A, by shrinking e = e(x) if necessary (notation of (11.4)) we may
assume that B(x, 2e) and B(a(x), 2e) are CAT(K) and that their intersections with A
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are convex and complete. Writing! = A flB(x, 2E), by (11.4) we know e)is
isometric to the ball of radius e about the image of x in B(x, 2e) Lij B(o- (x), 2e), where
the inclusion 1 —÷ 2e) is the restriction of a-. Thus, by the Basic Gluing
Theorem (11.1), B(x, e(x)) is CAT(K). El

11.6 Proposition (Simple Local Gluing).
(1) Let X be a metric space of curvature < K. Let A1 and A2 be two closed, disjoint

subspaces of X that are locally convex and complete. if i : A1 —* A2 is a bijective
local isometry, then the quotient of X by the equivalence relation generated by
[aj —1(a1), Va1 EA1]hascurvature_<K.

(2) Let X1 and X2 be metric spaces of curvature < K and let A C X1 and A2 C X2
be closed subspaces that are locally convex and complete. if j : A1 —÷ A2 is a
bijective local isometry, then the quotient of the disjoint union X = X1 U X2 by
the equivalence relation generated by [aj — j(aj), Va1 E A1] has curvature
<K.

Proof One proves (1) by applying the preceding lemma with A = A1 U A2 and

a-IAI = i and a-IA2 = And (2) is a special case of (1). El

We highlight three simple but important examples of (11.6), each of which will
play a role in Chapter ffl.F.

11.7 Examples
(1) (Mapping Tori). Let X be a metric space. The mapping torus of Isom(X)

is the quotient of X x [0, 1] by the equivalence relation generated by [(x, 0)
1), Vx E X], it is denoted If X is non-positively curved, then so is

(2) (Doubling along a Subspace). Given a metric space X and a subspace Y, we
write D(X; Y) to denote the metric space obtained by taking the disjoint union of two
copies of X and forming the quotient by the equivalence relation that identifies the
two copies of Y. The two natural copies of X in D(X; Y) are isometncally embedded
and the given identification between them induces a map D(X; Y) —÷ X which is a
left-inverse to both inclusion maps. If X has curvature < K and Y is a closed subspace
that is locally convex and complete, then D(X; Y) has curvature < K.

(3) (Extension over a Subspace). This construction is a special case of (11.13).
Given a metnc space X and a subspace Y, we wnte X*y to denote the quotient of
X [J(Y x [0, 1]) by the equivalence relation generated by [y — (y, 0) (y, 1), Vy E
1']. The natural inclusion X X*y is an isometry and there is a retraction X*y —* X

induced by the map (y, t) i—* y from Y x [0, 1] to Y. If X has curvature K and Y is

a closed subspace that is locally convex and complete, then X*y has curvature < K.

11.8 Exercise. For each of the above examples, show that if X is complete then the
space obtained by the given construction is complete.

11. 9Remark. One can iterate the construction of( 11.6(2)). Let (X1, d1), i = 1, 2. .. n

be a sequence of metric spaces; assume that a bijective local isometryf2 from a closed
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subspaceA2 of X2 onto a closed subspacef2(A2) of X1 is given; let be the quotient
of the disjoint union of and 3(2 by the equivalence relation generated by a
for all a E A2; proceeding inductively, suppose that for every i> 2 a bijective local
isometry f from a closed subspace A of 3(, onto a closed subspace of is given
and define to be the quotient of the disjoint union of 3(, and by the equivalence
relation generated by a "-'f,(a) for all a E A-.

If each X, has curvature < K and A, is locally convex and complete, then
has curvature K; according to the description of neighbourhoods in the above
proposition, a small ball about each point of can be obtained by successive gluing
of balls in X1

In (11.4) we required the map to be an involution, i.e. we considered the
quotient of a metric space X by the equivalence relation associated to a free action
of 7Z2 by local isometries on a closed subspace A C X. We restricted our attention to
7Z2 actions in order to move as quickly and cleanly as possible to the proof of (11.6).
However (1.5.27) applies equally well to the free action of any group F by local
isometries on a closed subspace A C X, provided that this action has the property
that for each a E A there exists s > 0 such that B(a, s) fl B(y.a, s) is empty if y 1

(where B(a, s) is a ball in X, not just A).
In this more general setting, the ball of radius about the image of a in the

quotient is obtained by gluing the family of balls B(y.a, s) using the isometries
B(a, e) flA —÷ B(y.a, s) flA obtained by restncting the action of I'.

Using this descnption of s-balls in place of that given in (11.4), and replacing
the appeal to (11.1) in the proof of (11.5) with an appeal to (11.3), we obtain.

11.10 Proposition. Let X be a metric space of curvature < K, let A C X be a closed
subspace that is locally convex and complete, and suppose that the group I' acts
freely by local isometries on A so that for each a E A there exists s > 0 such that
B(a, s) fl B(y.a, s) is empty for all y 1. Then the quotient of X by the equivalence
relation generated by y.a, Vy E F Va E A] has curvature <K

Similar arguments apply to equivalence relations that do not arise from group
actions. We mention one other example.

11.11 Proposition (Gluing with Covenng Maps). Let and X2 be metric spaces
of curvature K, and for i = 1, 2 let A C X, be a closed subspace that is locally
convex and complete. Letp : A A2 be a local isometry that is a covering map,

and suppose that for each y E A2 there exists s > 0 such that B(a, s) is CAT(K) and
B(a, s) fi B(a', s) is empty for all distinct points a, a' E A1 withp(a) = p(a') = y

Then the quotient of X1 U X2 by the equivalence relation generated by [a
p(a), Va E A1] has curvature <ic.

Proof Let X be the quotient of X1 U 3(2 by the stated equivalence relation. First
suppose that A2 = X2. If p is a Galois covering, then this proposition reduces to the
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previous one. The argument in the non-Galois case is essentially the same: one uses p
and its local sections to glue the balls {B(a, s) a E (y)} along their intersections
with A1 (having shrunk s to ensure that B(a, 2s) fl A1 is convex and complete for
each a). The space obtained by this gluing is CAT(K), by (11.3), and s/2) C X
is isometric to a ball in this space.

In the general case one first forms = (X1 u A2)!"-' and then one constructs X
by gluing to X2 along the obvious copies of A2. The image of A2 in X1 is closed
and locally convex and complete, so (11.6) applies. LI

11.12 Examples
(1) Let X,A be as in (11 10). If a group F acts properly by isometnes on X

and leaves A invariant, then provided its action on A is free, then the quotient X,'—
descnbed in (11.10) will be a metnc space of curvature <K.

(2) Suppose that X has curvature < K and let A be the image of an injective local
geodesic c : S' X. Given any positive integer n, one can apply (11.10) to the
action of the cyclic group = (r) onA, where r acts as c(O) c(O + 27r11n).

(3) Let X and A be as in (2) and let Y be a space of curvature < K that contains an
isometncally embedded line L. Suppose that there exists s > 0 such that B(y, s) is
CAT(K) for every y E L. Ifp : L A is a local isometry, then by (11.11) the quotient
of X JJ Y by the relation generated by [y — p(y), Vy E U has curvature < K.

There are many situations in which one wishes to glue along subspaces that are
not locally convex, for example totally geodesic submanifolds with self-intersections.
When gluing along such subspaces one needs to use gluing tubes.

In the following proposition the restriction K 0 is necessary because of the
need to introduce a product metnc on the tube.

11.13 Proposition (Gluing With a Tube). Let X andA be metric spaces of curvature
<K, where K > 0. If A is compact and q, : A X are local isometries, then the
quotient of X U(A x [0, 1]) by the equivalence relation generated by [(a, 0) -'-' q(a)
and (a, 1) -'-' Va E A has curvature K.

Proof If a point in the quotient is not in the image of A x {0, 1 } then it obviously has
a neighbourhood isometric to a neighbourhood of its preimage in X or A x [0, fl.
Consider the image of a point y E A x {0, 1} By compactness, the preimage
in XU(A x [0, 1]) of consists of a finite number of points, and it follows from
(1.5.27) that if 8 is sufficiently small then 8) is obtained from the union of the

of these points by successive gluing. Hence (11.2(2)) applies. LI

By taking X to be the disjoint union of Xo and we obtain:

11.14 Corollary. Let Xo, X1 and A be metric spaces of curvature K, where K >
0. If A is compact and ip1 : A X, is a local isometry for i = 0, 1, then the
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quotient of Xo U(A x [0, 1]) II X1 by the equivalence relation generated by [(a, 0) —
qo(a), (a, 1) q1(a), Va E A] has curvature <K.

11.15 Examples
(1) LetX0 andX1 be metnc spaces of curvature < K with K > 0, and for i = 0, 1

let c, : S' —÷ X1 be closed local geodesics of length £ (each c may have many self-
intersections). Let be a circle of length £ and choose arc length parametenzations

—* X, of the c. Then, the quotient of X0 x [0, 1]) II X1 by the relation
generated by [(0,0) (0, 1) VO E is a space of curvature
<K. The isometry type of this space depends not only on the curves but also
on the paraineterizations chosen

(2) (Torus Knots). A torus knot is a smoothly embedded circle which lies on the
boundary of an unknotted torus in The fundamental group of the complement of
such a knot has a presentation of the form Fflm (x, y

I

ym), where n and m
are positive integers (see [BuZi85], for example). Let X0 be a circle of length n and
let X1 be a circle of length m. Let c0 be a local geodesic that wraps m times around
Xo and let cI be a circle that wraps n times around X1. The construction in (1) yields
non-positively curved 2-complexes whose fundamental groups are Fflm.

11.16 Exercises
(1) Let T = S' x S'. a flat torus. Let c1 and c2 be two isometrically embedded

circles in T that meet at a single point. Let X be the quotient obtained by gluing two
disjoint copies ofT by the identity map on c! U c2. Prove that Xis not homeomorphic
to any non-positively curved space.

(2) Let F be a closed hyperbolic surface. Let c1 and c2 be isometncally embedded
circles in F that meet in a finite number of points. Prove that the metric space Y
obtained by gluing two disjoint copies ofF by the identity map on c1 U c2 (no tube)
is not non-positively curved. When is Y homeomorphic to a space with curvature
<0? And curvature < —1?

(Hint: 1fF has genus g then one can obtain a hyperbolic structure on it by realizing
it as the quotient of a regular 4g-gon P of vertex angle 7r/2g in 1H12 with side pairings
(1.5.29(1)); the vertices of the polygon are identified to a single point, v say If one
takes a regular 4g-gon in 1H12 whose edges are shorter than those of P. then the sum of
the vertex angles increases, so if one makes the same edge pairings as for P then the
metric becomes singular at v, where a concentration of negative curvature manifests
itself in the fact that the cone angle (i.e. the length of the link of v) is greater than 27r.
Indeed the cone angle tends to (4g — 2)7r as the area of the Covering polygon tends
to zero. When the cone angle is greater than 47r, there exist sets of four geodesic
segments issuing from v in such a way that the Alexandrov angle between any two
of them is 7r; in such a situation, the union of the geodesic segments is locally convex
near v.)

In Sections I1I.F.6 and 7 we shall return to the study of constructions involving
gluing in the context of determining which groups act properly and cocompactly
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by isometries on CAT(O) spaces Proposition 11.13 will be particularly useful in
that context. We refer the reader to those sections for explicit examples of spaces
obtained by gluing as well as general results of a more group-theoretic nature. We
include one such result here because it was needed in our discussion of alternating
link complements at the end of Chapter 5, and because it is a precursor to (1119).

The definition of an amalgamated free product of groups is recalled in (III.F.6).

11.17 Proposition. If each of the groups G1 and G2 is the fundamental group of a
compact metric space of non-positive curvature, then so too is any amalgamatedfree
product of the form G1 G2.

Proof Let X1 and X2 be compact non-positively curved spaces with ir1X, = G, The
generators of the subgroups of G1 and G2 that are to be amalgamated determine
free homotopy classes of loops in X1 and X2 respectively, and each of these classes
contains a closed local geodesic (1.3.16), which we denote c1. By rescaling the metric
on X1 we may assume that c1 and c2 have the same length and apply the construction
of (11.15(1)) to X = X1 U X2, i.e. we glue X! and X2 with a tube whose ends are
connected to c1 and c2 by arc-length parametenzations. By the Seifert-van Kampen
theorem, the fundamental group of the resulting space is (isomorphic to) the given
amalgam G! G2.

Whenever one is presented with a result concerning the group 7Z it is natural to
ask whether an analogous statement holds for all finitely generated free groups or
free abelian groups. In (III.F.6) we shall see that (11.17) admits no such extension.

Equivariant Gluing

One can regard (11.17) as a construction for gluing together the actions of G, on
we were free to describe this construction in terms of the quotients X because these
actions are free. One would like to have similar results concerning proper actions
that are not necessarily free. Actions which are not free are not fully described by the
associated quotient spaces alone, so in order to combine such actions one is obliged
to work directly with appropriately indexed copies of the spaces on which the groups
are acting that is what we shall do in this section.

Amalgamated free products will be used extensively in Section III.F.6. For the
purposes of the present section we shall only need their geometric interpretation in
the language of the Bass-Serre theory [5er77] The Bass-Serre tree T associated to
an amalgamated free product F = Fo *H F1 (we regard ['o, F1 and H as subgroups
of F in the usual way) is the quotient of the disjoint union F x [0, 1 (copies of [0, 1]
indexed by F) by the equivalence relation generated by

(yyo, 0) (y, 0), , I) (y, 1), (yh, t) (y, 1)

forally EF, Yo EF0, E F1, hE H, t E [0, 1].TheactionofFbylefttranslation
on the index set of the disjoint union permutes the edges and is compatible with the
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equivalence relation, therefore it induces an action F on T by isometries. The quotient
of the tree T by this action is an interval [0, 1]; the subgroup H C F is the stabilizer
of an edge in T and the stabilizers of the vertices of this edge are the subgroups
F0 C F and F1 c F.

11.18 Theorem (Equivariant Gluing). Let F0, F1 and H be groups acting properly
by isometries on complete CAT(0) spaces Xo, X1 and Y respectively. Suppose thatfor

j = 0, 1 there exists a monomorphism H and a isometric
Y —* Then

(1) the amalgamated free product F = F0 *H F1 associated to the maps acts
properly by isometries on a complete CAT(0) space X;

(2) if the git'en actions of F0, F1 and H are cocompact, then the action ofF on X
is cocompact.

Proof We wish to define a CAT(0) space X on which F will act properly by isometries.
We begin with disjoint unions of copies of X0, X1 and [0, 11 x Y, each indexed by F:

(F x Xo)U(F x [0, l]x Y)U(F x X1).

Let X be the quotient of the displayed disjoint union by the equivalence relation
generated by:

(y (y, (y, t, h.y),

(y,fo(y)) (y, 0, y), (y,fi(y)) (y, 1, y)

for ally El', Yo E F0, Yi E F1, hE H, xo E Xo, x1 E X1, t E [0, l],y E Y.

Forj = 0, 1, let be the quotient of F x by the restriction of the above
relation, and let be the quotient of F x [0, 1] x Y. Note that X0 is isometric to a
disjoint union of copies of X0 indexed by F/IT0: each {y} x Xo contains one element
of each equivalence class in F x X0; if y and y' lie in different cosets then (y, xo)
and (y', 4) are unrelated for all xo, 4 E Xo. Similarly, X1 is to a disjoint
union of copies of X1 indexed by F/F1, and Y is isometnc to the disjoint union of
copies of [0, 111 x Y indexed by F/H. —

By definition X is obtained from X0 LI U X1 by the following gluing: for each
yH E F/H, one end of the copy of [0, 1] x Y indexed by yH is glued to the copy of
X0 indexed by yF0 using a conjugate of the isometryfo, and the other end is glued to
the copy of X1 indexed by y F1 using a conjugate of the isometry fi. It is clear from
our earlier results that X is non-positively curved, in order to see that it is a complete
CAT(0) space we shall argue that the above gluings can be performed in sequence
so that each gluing involves attaching CAT(0) spaces along isometrically embedded
subspaces — we shall use the Bass-Serre tree to guide us in choosing the order in
which we do these gluings.

The action of F by left multiplication on the index sets (i.e. the factors F) in the
above disjoint union permutes the components of the disjoint union and is compatible
with the equivalence relation. Thus we obtain an induced action of F by isometnes
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on X. There is a natural F-equivariant projection p : X —* T, where T is the Bass-
Serre tree descnbed pnor to the statement of the theorem: the equivalence classes of
(y, x0), (y, x1) and (y, t, y) are sent by p to the equivalence classes of(y, 0), (y, 1)
andQ', t) respectively, for ally E F,x0 E X0,x1 E X1, t E [0, 1] andy E Y

Forj = 0, 1, the components of X, are the preimages in X of the vertices ofT that
are the equivalence classes of (y, j), and the edges ofT correspond to the components
of Y. It follows that the gluing of Y to X0 U X1 that yields X can be performed in
the following order: begin at the component of X0 above a fixed vertex u E T, glue
to this the components of Y that correspond to the edges of T issuing from u, then
glue to the resulting space those components of X1 that correspond to the vertices a
distance one from u E T; work out radially from u. Repeated application of (11.3)
shows that X is a CAT(O) space. (If we were working just with simply connected
topological spaces rather than CAT(0) spaces, then essentially the same argument
would show that X is simply connected.)

It is clear that the action of F on X is proper: the subgroups of F leaving the
components of C X invariant are conjugates of I), these act properly on the
components, and if y E F does not leave a given component of X, invariant then it
moves it to another component, which means each point gets moved a distance at
least 2; a similar argument applies to points in Y.

Finally, the maps X, and Y [0, ljl x Y [0, 111 x (H\Y)
induce a continuous surjection from Fo\Xo LI ([0, x (H\Y)) U F1 \X1 to F\X, so
if the actions of and H are cocompact, then the action of F on X is cocompact. LI

The following result generalizes (1117).

11.19 Corollary. If the groups F0 and act properly and cocompactly by isometries
on CAT(0) spaces X0 and X1, and if C is a group that contains a cyclic subgroup
of finite index, then any amalgamated free product of the form F = Fo *c F1 acts
properly and cocompactly by isometries on a CAT(0) space.

Proof If C is finite, then by (2.8) the image of C in F1 fixes a E forj = 0, 1.

Thus we may apply the theorem with Y equal to a single point and Y X, the map
with image p1.

If C contains an infinite cyclic subgroup of finite index, then it contains a normal
such subgroup (r); let tj be the image oft in F3. The action of Con X3 leaves an axis

JR of invariant (6.2). A virtually cyclic group cannot surject to both 7Z
and Z2 * 7L2, so the image of C in Isom(X,) either acts on as an infinite dihedral
group forj = 1, 2, or else it acts on both of these axes as an infinite cyclic group.
In each case, the action is determined up to equivariant isometry by the translation
length of any element y E C of infinite order. If we rescale the metnc on Xo so that

I
= I, and if we change the parameterization of c0 by a suitable translation, then

c1 (t) c2(t) is a C-equivanant isometry. Thus we may apply the theorem, taking
Y = JR = where each y E C acts on Y by y.t = cj'(y LI
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11.20 Remark. The above argument extends to actions that are not cocompact if one
adds the assumption that the images of C in F1 and 17o contain hyperbolic elements.

An argument entirely similar to that of (11.18) yields the following result. (See
section HI.F.6 for basic facts concerning HNN extensions.)

11.21 Proposition. Let Fo andH be groups acting properly by isometries on CAT(O)
spaces Xo and Y respectively. Suppose thatforj = 0, 1 a monomorphism : H F

and a isometric embedding 4 : Y Xo are given Then the HNN
extension F = Fo*H associated to this data acts properly by isometries on a CAT(0)
space X.

Proof We recall that the HNN extension F = ['o*H is generated by Fo and an element
s such that çbo(h) = for all h E H, and that F0 is naturally identified to a
subgroup of F (i.e. the base group, see llI.F.6.2). The associated Bass-Serre tree T
is the quotient of the disjoint union I' x [0, 1] (copies of [0, 1] indexed by F) by the
equivalence relation generated by

(y, t) (y4)o(h), t), (y, 0) 0) (ys, 1)

for all y E F, yo E ['o, h E H, t E [0, 1]. The action of F by left translation
on the index set of the disjoint union permutes the edges and is compatible with
the equivalence relation, therefore it induces an action of I' on T by isometries. The
quotient of the tree T by this action is a circle; the subgroup 4)0(H) C F is the
stabilizer of an edge in T and F0 is the stabilizer of a vertex.

The space X will be the quotient of the disjoint union

(I' xXo)U([' x [0, lix Y)

by the equivalence relation

(yyo, x) (y, (y4)0(h), 1, y) (y, t, h.y),

(y, 0, y) (y,fo(y)) (y))

forally E F, Yo E F0, h EH, t E [0,11.
The rest of the proof is entirely analogous to the proof of (11.18).

As in (11.19) we deduce:

11.22 Corollary. Let F0 be a group that acts properly by isometries on a CAT(0)
space, let C and C' be subgroups of ['o that contain cyclic subgroups offinite index
and let 4): C C' by an isomorphism. If C has an element y of infinite order then
suppose that y and are hyperbolic isometries with the same translation length.
Then the HNN extension F = acts properly by isometries on a CAT(0) space,
and if the action of F0 is cocompact then so is the action of I'



Gluing Along Subspaces That Are Not Locally Convex 359

11.23 Remark. The hypothesis of properness was only used in (11.18) to deduce that
the action of F was proper. The theorem remains valid if one replaces properness by
semi-simplicity or faithfulness (as both an hypothesis and a conclusion).

Gluing Along Subspaces That Are Not Locally Convex

Our next set of examples illustrates the fact that there are circumstances in which
one can obtain a CAT(0) space by gluing spaces (which need not be CAT(0)) along
subspaces which are not locally convex.

We showed in (1.6.15) that, as Riemannian manifolds, spheres of radius r in IHI'1
are isometnc to spheres of radius sinh r in Let D C be a closed ball of radius
sinh r and let D' c be an open ball enclosed by a sphere S of radius r. Endow
Y = N D' with the induced path metric and let i : —÷ S be a Riemannian
isometry. If X is the quotient of Y U D by the equivalence relation generated by
[x i(x), Vx E 8D we say "X is obtained from IHI'1 by replacing a hyperbolic ball
with a Euclidean ball".

In the course of the next proof we shall need the following observation.

11.24 Remark. Let (X, d) be a metric space and let (Z, d) be a subspace endowed
with the induced length metnc. If c and c' are geodesics in X that have a common
origin, and if the images of c and c' are contained in Z, then L(c, c') as measured in
(Z, d) is no less than L(c, c') as measured in (X, d), because d > d. In particular, if a
geodesic triangle c X is contained in Z and satisfies the CAT(0) angle condition
(1.7(4)) with respect to d, then it also satisfies condition (1.7(4)) with respect to d.

11.25 Proposition. If X is obtained from by replacing a hyperbolic ball with a
Euclidean ball in the manner described above, then X is a CAT(0) space.

Proof We begin by describing the geodesics in X. We maintain the notation estab-
lished in the discussion preceding (11.24).

S is convex in Y, by 2.6(2), and the map i . —* S preserves the length of
curves. Since the restriction to 8D of the metric on D is Lipschitz equivalent to the
induced path metric on 8D, it follows that X is a proper length space (homeomorphic
to IR") and hence a geodesic space (see 1 5.20 and 1.5.22(4)).

For each pair of distinct points p, q E 8D, we have dE(p, q) <dy(i(p), i(q)). This,
together with the fact that S is convex in Y (and the definition of quotient metrics
in terms of chains, 1.5.19), yields the following description of geodesics in X: if
x, x' E D c X, the Euclidean segment [x, x'l is the unique geodesic joining x to x' in
X; if x E D C X andy E Y C X, each geodesic joining x to yin Xis the concatenation
of a Euclidean segment [x, C D and a hyperbolic segment [x', C Y that meets
S only at x'; and any geodesic in X joining a pair of points y, y' E Y is either a
hyperbolic segment in Y or else the concatenation of three segments, two hyperbolic
ones [y, x], [x', y'] C Y separated by a Euclidean one [x, x'] C D.
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It remains to prove that every dart satisfies the CAT(O) inequality. Let H be
the intersection of Y with the hyperbolic 2-plane in spanned by the vertices of

and let X0 C X be the union of H and the 2-disc in D spanned by the boundary
of H. With the induced length metnc, Xo is isometnc to the space obtained from
1P112 by replacing a hyperbolic disc by a Euclidean disc. The inclusion Xo X does
not increase distances and its restriction to each side of is an isometry, hence it
is sufficient to show that venfies the CAT(O) inequality in X0 (with the induced
length metnc). By making two applications of the gluing lemma for tnangles (in X0),
we can reduce to the case of darts in which the two sides that are hyperbolic segments
meet the circle tangentially (see figure 11.1)— suppose that = q, r) has this
property.

The first inequality in Exercise 1.6.19(4) shows that the vertex angles at and
in any (isosceles) comparison triangle q, r) C 1E2 are greater than those at

p, q E C X0. And the second inequality in 1.6.19(4) shows that the angle at in
a companson tnangle q, r) c 1H12 is less than the vertex angle at r E By
(1.12), the angle at in q, r) C 1PA2 is less than the angle at in q, r) C 1E2,

so we are done. LI

11.26 Exercises
(1) To obtain an alternative proof of (11.25), one can replace the above consid-

erations of darts by the following argument for the case n = 2.

Show that if n = 2, then X is a Gromov-Hausdorff limit of the CAT(O) spaces
obtained from 1H12 by deleting a regular 2n-sided polygon inscnbed in Sand replacing
it with a regular Euclidean polygon with the same side lengths. (To see that is
CAT(O), assemble it from 2n sectors by a sequence of gluings.)

(2) Let c : S' 1E2 be a simple closed curve of length 27r that is not a circle.
Show that the space obtained by replacing the intenor of the disc bounded by c with
a round Euclidean disc of radius 1 is not a CAT(O) space.

(Hint: Enclose c in a large square. If the described surgery on the plane gave a
metric of non-positive curvature, we could get a metnc of non-positive curvature on
the torus by identifying opposite sides of the square. The Flat Torus Theorem would
then imply that the surgered plane is isometric to the Euclidean plane. To see that this
cannot be the case, recall that a simple closed curve of length 27r in the Euclidean
plane encloses an area at most with equality if and only if the curve is a round
circle.)

(3) The space obtained by removing a round disc from the Euclidean plane and
replacing it with a hyperbolic disc of the same circumference is not non-positively
curved.
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Truncated Hyperbolic Space

In this Section we shall describe the geometry of truncated hyperbolic spaces,
i e. geodesic spaces obtained from real hyperbolic space by deleting a disjoint collec-
tion of open horoballs and endowing the resulting subspace with the induced length
metric. The following result is a special case of the Alexander—Berg—Bishop char-
acterization of curvature for manifolds with boundary [ABB93b]. We present this
special case in detail because it provides a concrete example derived from a familiar
context, and also because it admits an elementary and instructive proof. The con-
struction does not involve gluing, but it is natural to include it at this point because
the arguments involved are very similar to those employed in the preceding section.

11.27 Theorem. Let X c IHI" be a subspace obtained by deleting afamily of disjoint
open horoballs. When endowed with the induced length metric, X is a complete
CAT(O) space.

This result does not extend to more general rank I syrnmetnc spaces, as one
can see by looking at the stabilizers of horospheres (11.35). Indeed, because of the
nilpotent subgroups corresponding to such stabilizers, non-uniform lattices in rank
I Lie groups other than SO(n, 1) cannot act properly by semi-simple isometries on
any CAT(O) space (7.16). In contrast, from (11 27) we get:

11.28 Corollary. Every lattice F C SO(n, 1) acts properly and cocompactly by
isometries on a CAT(O) space X.

Proof If F is a cocompact lattice, take X = IHJ'1. If F is not cocompact, then one
removes a F-equivariant set of disjoint open horoballs about the parabolic fixed points
of F; the action of F on the complement X is cocompact and by the above theorem
X is CAT(O) (cf. page 266 of [Ep+92]). El

Throughout this paragraph we shall work with the upper half space model for
IHI". Thus IHI" is regarded as the submanifold of R" consisting of points (x1
with > 0, and this manifold is endowed with the Riemannian metnc where ds

is the Euclidean Riemannian metric on

11.29 Horoballs in HI". An open (resp. closed) horoball in W is a translate of
B0 = {(x1 > 1)byanelementoflsom(IHI").Ahorosphere
is any translate of the set = {(x1 x,1) = 1 }. The closed horoballs in IHI'1
are the subspaces > const and the Euclidean balls tangent to 81H1'1. In the Poincaré
ball model, the horoballs are Euclidean balls tangent to the boundary sphere.

11.30 Exercises
(1) Prove that every disjoint collection of closed horoballs in IHI" is locally finite,

i.e , only finitely many of the horoballs meet any compact subset of IHI".
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(Hint: In the Poincaré ball model, if a horoball intersects the ball of Euclidean
radius r about the centre of the model, then the horoball has Euclidean radius at least
(1 — r)/2.)

(2) Let X be as in the statement of Theorem 11.27. Prove that X, equipped with
the induced path metric, is simply connected

In the light of the Cartan-Hadamard Theorem (4.1) and the preceding exercise,
in order to prove Theorem 11.27, it suffices to show that the truncated space X is
non-positively curved. Since this is a local problem, there is no loss of generality
in restricting our attention to the case where X is obtained from IHI'1 by deleting the
single horoball B0 = {(xi,. . , x,1) x,1 > I }. Let X0 = W B0, endowed with the
induced path metric from and let 11o = {(x1, .. = fl.

11.31 Lemma. X0 is uniquely geodesic.

Proof Fix x, y E X0. We extend the natural action of O(n — 1) on to R" so
that the action is trivial on the last coordinate. This action preserves the Riemannian
metric and hence restricts to an action by isometries on IHI" and X0. Transporting x

andy by a suitable element of O(n — I), we may assume that they lie in P = {O) x R2.
Because the metric on IHJ'1 arises from the Riemannian metric it is clear that the

map IHI" —÷ IHI" fl P given by (x1, . , i-÷ (0,. . , 0, x,1) strictly decreases
the length of any path joining x to Y unless the path is entirely contained in P Thus
P fl Xo is a (strictly) convex subset of Xo

We have reduced to showing that there is a unique geodesic connecting x toy in
P fl X0. But P fl X0 is isometric to 1H12 minus an open horoball (with the induced path
metric), and this is a CAT(—l) space (1.16(5)) LII

11.32 Lemma. The bounding horosphere 11o is a convex subspace of X0, and with
the induced path metric it is isometric to

Pro of The convexity of is a special case of observation 2.6(2) the point is
that the projection Xo —÷ given by it (x1, . , x,1) I) decreases the
length of any path not contained in The length of paths in H0 is measured using
the Euclidean Riemannian metric ds (because x,, = I on Ho), so 11o is isometric to
sn-I

As in (II 31), one can reduce the proof of the next lemma to the case n = 2,

where the result is clear.

11.33 Lemma. If the hyperbolic geodesic connecting two points x, y E Xo is not
contained in X0, then there exist points x', y' E such that the unique geodesic
connecting x toy in X0 is the concatenation of the hyperbolic geodesic joining x to x',
the (Euclidean) geodesic joining x' to y' in and the hyperbolic geodesic joining
y' toy. Moreover the hyperbolic geodesics [x', x] and [y', y] meet H0 tangentially.
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Proof of Theorem 11.27. We must show that for every geodesic triangle =
q, r) in Xo the angle at each vertex is no larger than the angle at the corresponding

vertex of a comparison triangle in 1E2. We may assume that p. q and r are distinct
The proof divides into cases according to the position of the vertices relative to the
horosphere H0.

Case 0. In the case where is contained in H0 there is nothing to prove, because
l-!o is isometric to The case C X0 l-!o is also obvious (in the light of (1 .12)).

Case 1. Suppose that just one vertex, q say, of the triangle q, r) lies on
l-!o, and suppose that the sides of the triangle incident at this vertex are hyperbolic
geodesics. (This happens precisely whenp and r lie on or below the unique hyperplane
in IHJ'1 that is tangent to Ho at q.) In this case the convex hull in X of the points p, q, r
is equal to their convex hull in W, which is CAT(O).

Case 2. Now assume that has one vertex in Xo H0 and two vertices on 1-!o.
Suppose also that each of the geodesic segments [p, q] and [p, r] is hyperbolic, i.e.
intersects H0 only at q and r respectively Let Y be the intersection of Xo with the
unique 2-plane (copy of 1H12) in W that contains p. q and r. If the boundary of this
2-plane contains the centre of the horosphere Xo, then we are in the setting of 1.16(6)
and otherwise Y fl Ho is a circle assume that we are in the latter case. Let D C H0
be the Euclidean disc bounded by the circle Y fl H0, and let Z = Y U D. Lemma
11.33 shows that is contained in Z, and (11.25) shows that Z, equipped with the
induced path rnetnc from X, is a CAT(O) space. Thus the vertex angles of are no
greater than the corresponding comparison angles (cf. 11.24).

We list the remaining cases and leave the reader the exercise of subdividing the
given tnangles (using Lemma 11.33) so that by using the gluing lemma one can
reduce to earlier cases (cf. figure 11.2).

Case 3. Assume that p E Xo H0 and q, r E H0, and that at least one of the
geodesic segments [p. q] and [p. r] meets H0 in more than one point.

Case 4. Suppose that q E H0 and p, r E X Ho but we are not in Case 2.
Consider the cases [p. r] fl H0 0 and [p, r] fl Ho = 0 separately

Case 5. p, q, r E Xo H0 but q, r) fl H0 0. LII

11.34 Corollary (Geodesics in Truncated Hyperbolic Spaces). Let X W be as in
Theorem 11.27. A path c: [a, b] —÷ X parameterized by arc length is a geodesic in
X if and only if it can be expressed as a concatenation of non-trivial paths ci,. . , c,1

parameterized by arc length, such that:

(1) each of the pat hs c is either a hyperbolic geodesic or else its image is contained
in one of the horospheres bounding X and in that horosphere it is a Euclidean
geodesic;

(2) if is a hyperbolic geodesic then the image of c1+, is contained in a horosphere,
and vice versa;

(3) when viewed as a map [a, b] —÷ IHI", the path cisC'.
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Proof Since X is a CAT(O) space, it suffices to check that this description charac-
terizes local geodesics in X. And for this local problem it is enough to consider the
case X = X0, where the desired result is a restatement of Lemma 11.33. LI

11.35 Remark. If one removes an open horoball from a rank I symmetnc space
other than IHI' then in the induced path metric on the complement the corresponding
horosphere will be convex (2.6(2)). But this horosphere admits a proper cocompact
action by a nilpotent group that is not virtually abelian (cf 10.28) and therefore the
horosphere is not a CAT(0) space (7.16). Hence the symmetnc space minus an open
horoball is not a CAT(0) space.

11.36 Remark (The Geometry of Cusps). If F C SO(n, 1) is a torsion-free non-
uniform lattice, then M = F\IHI'1 is a complete manifold of finite volume. The space
X C IHI'1 described in (11.18) projects to a subspace N c M that is a compact manifold
with boundary. The boundary components of N are in 1-1 correspondence with the
F-orbits of the horospheres in IHI" that bound X: each boundary component C of N
is the quotient of such a horosphere by the subgroup of F that stabilizes it; C is a
closed manifold on which the induced path metnc is flat (i.e. locally Euclidean), and
C N is a local isometry (where N is equipped with the induced path-metric from
M) The complement of N in M consists of a finite number of cusps, one for each
boundary component of N. If C is the quotient of a horosphere S by Fo C F, then
the cusp corresponding to C is the quotient by of the horoball bounded by S; this
cusp is homeomorphic to C x [0, oc).

By replacing each of the horoballs in the definition of X by a smaller concentric
horoball in a F-equivariant manner, one obtains a F-invariant subspace X' C W that
contains X and hence a subspace N' = F\X' C M containing N. The components
of the complement of N in N' correspond to the components of 8N; the component
corresponding to C C 8N is homeornorphic to C x (0, 1]. If C' C 8N' corresponds
to C, then the path metric on C' is a scalar multiple of the path metric on C. Thus,
replacing N by a suitable choice of N', one can decrease the volume of each boundary
component of N arbitrarily by extending down the corresponding cusp of M.

As one extends N down the cusps of M in the above manner, the shape4° of each
boundary component C remains constant. In order to vary the shape of the cusps
while retaining non-positive curvature, one must consider more general metrics on
N. The appropnate techniques are described in [5ch89] 41: one regards each cusp as a
warped product C x [0, oc) with the Riemannian metric ds2 = + dt2, where
ds0 is the given Riemannian metnc on C. One can vary this metnc on C x [1, oc) so
that negative curvature is retained and for suitable T0 > 1 the metric on C x [T0, oc)
becomes ds2 = +dt2, where ds1 is a chosen flat metric on C. A local version
of (11.27) shows that the length metric on the manifold with boundary obtained by
deleting C x (T, oo) from M is non-positively curved if T > T0.

40The shape of C is the isometry type of the flat manifold of volume one that is obtained from
C by multiplying the metnc with a constant

41 Schroeder informs us that a detailed account of the construction required in the present
context was wntten by Buyalo as an appendix to the Russian edition of [Wo67]
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11.37 Exercises
(1) Let F be as in (11.36) and suppose that the boundary components of N = F\X

are all ton. Show that if a group G acts properly and cocompactly by isometries on
CAT(O) space, then so too does any amalgamated free product of the form F *A G,

where A is abelian.
(Hint: If A is not cyclic, then since X is locally CAT(— 1) away from its bounding

horospheres, the A-invanant flats F yielded by (7.1) must be contained in one of these
horospheres. Adjust the size and shape of A\F using the last paragraph of (11 36)
and apply (11.18).)

(2) The purpose of this exercise is to extend (11.28) to all geometrically finite
subgroups r C SO(n, 1). Let F C SO(n, 1) be an infinite subgroup, let A(F) be its
limit set (the set of points in 81H1'1 that lie in the closure of an orbit of F) and let
C(F) be the convex hull in W of the union of geodesic lines with both endpoints in
A(F). 1fF is geometrically finite then C(F) is non-empty and there is a F-equivanant
collection of disjoint open horoballs, with union U, such that the action of F on
X = C(F) fl (IHI" U) is proper and cocompact.

Prove that when endowed with the induced path metric, X is a CAT(O) space.
(We refer the reader to the papers of Bowditch for the general theory of ge-

ometrically finite groups, and to Chapter 11 of [Ep+92] for results related to this
exercise.)
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In this chapter we describe a construction that allows one to build many interesting
examples of group actions on complexes (12.18). This construction originates from
the observation that if an action of a group G by isometries on a complex X has a stnct
fundamental domain42 Y, then one can recover X and the action of G directly from
Y and the pattern of its isotropy subgroups (The isotropy subgroups are organised
into a simple complex of groups (12.11).)

With this observation in mind, one might hope to be able to start with data
resembling the quotient of a group action with strict fundamental domain (i.e. a
simple complex of groups) and then construct a group action giving nse to the
specified data. Complexes of groups for which this can be done are called strictly
developable. A simple complex of groups consists of a simplicial complex with
groups associated to the individual simplices a, and whenever one cell r is
contained in another a a monomorphism : Gci _± Gr is given. If this data
arose from the action of a group G then the inclusion maps : G7 —÷ G would
be a family of monomorphisms that were compatible in the sense that Pr =
whenever r c a The main result of this section is that the existence of such a family
of monomorphisms is not only a necessary condition for strict developability, it is
also sufficient. More precisely, given any group G, the Basic Construction described
in (12.18) associates to each compatible family of monomorphisms : G

G a simplicial complex such that the (stnct) fundamental domain and
isotropy groups of this action are precisely the simple complex of groups with which
we began.

The question of whether the local groups of a simple complex of groups inject
into some group in a compatible way is a property that appears to require knowl-
edge of the whole complex. Remarkably though, in keeping with the local-to-global
theme exemplified by the Cartan-Hadamard theorem, there is a local criterion for
developability: if one has a metric on the underlying complex, and this metric has
the property that when one constructs a model for the star of each vertex in a putative
development, all of these local models are non-positively curved, then the complex
of groups is indeed developable (12.28). This will proved in Part III, Chapter g.

The construction outlined above is due essentially to Tits [Tits75 and Tits86b],
and has been used extensively by Davis and others in connection with constructions
that involve Coxeter groups and buildings (see in particular [Da83]). We shall give

421 e a subcomplex that meets each orbit in exactly one point
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a vanety of concrete examples in an attempt to illustrate the utility of some of the
ideas involved in these and other applications If the reader wishes to move quickly
through the main points of this chapter, then he should direct his attention first to
the basic definitions in 12.11-15, the main construction in 12.18 and the list of its
properties in 12.20

As well as providing us with a basic tool for constructing examples of non-
positively curved spaces, this chapter also serves as an introduction to Chapter III C,
where the same issues are addressed in a more serious fashion: a more sophisticated
notion of complexes of groups is introduced and used as a tool for (re)constructing
group actions that may not have a stnct fundamental domain. (Requiring a group
action to have a strict fundamental domain is a rather restrictive condition.)

Stratified Spaces

Most of the examples that we shall consider will involve groups acting on simplicial
or polyhedral complexes, but it is both useful and convenient to work in the more
general setting of stratified spaces. A useful example to bear in mind is that of a
metric polyhedral complex K in which the characteristic map of each closed cell
is injective. one can stratify K by defining the closed cells of K to be the strata, or
alternatively one can take the dual stratification of K (see (12.2(1)).

12.1 Definition (Stratified Sets and Spaces). A stratified set (X, consists
of a set X and a collection of subsets called strata, indexed by a set P. such that:

(1) X is a union of strata,
(2)

if an intersection fl of two strata is non-empty, then it is a union of strata,
(4) for each x E X there is a unique a(x) E P such that the intersection of the strata

containing x is

The inclusion of strata gives a partial ordering on the set 2, namely r < a if and
only if XT c We shall often refer to (X, as "a stratified space X with
strata indexed by the poset 2" or (more casually) "a stratified space over 2".

Stratified topological spaces: Suppose that each stratum is a topological space,
that fl is a closed subset of both and XT for each a-, r 2, and that the
topologies which and XT induce on fl are the same. We can then define
a topology on X that is characterized by the property that a subset of X is closed if
and only if its intersection with each stratum is a closed subspace of (This is
called the weak topology associated to [5pa66, p.5].)

If X has the additional property that each stratum contains only a finite number
of strata (which ensures that any union of strata is a closed set), then X is called a
stratified topological space.

Stratified simplicial complexes. If a stratified set X is the geometric realization
of an abstract simplicial complex and each stratum is a simplicial subcomplex,
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then X is called a stratified simplicial complex. If we endow each of the strata with
its weak topology (I.7A.5), then the topology on X arising from the stratification will
coincide with the (usual) weak topology on X We shall implicitly assume that all
simplicial complexes considered in this section are endowed with this topology, but
it is also worth noting that all of the statements that we shall make remain valid if
one replaces the weak topology on X by the metric topology of (1.7A.5).

Stratified MK-polyhedral complexes: If a stratified set X is an MK-polyhedral
complex with Shapes(X) finite, and if each stratum is a subcomplex (i.e. a union
of closed faces of cells), then X is called a stratified MK-polyhedral complex. As in
the simplicial case, one has to decide whether to use the weak topology or metric
topology in this case, but all statements that we shall make will be valid for either
choice of topology (Note that in the simplicial and polyhedral cases one does not
need to assume that each stratum contains only finitely many strata in order to ensure
that arbitrary unions of strata are closed.)

Throughout this section, the term stratified space will be used to mean one of the
three special types of stratified sets defined above. Morphisms of stratified spaces
are defined in (12.5).

st(x): Let X be a stratified space and let x E X. The complement of the union of
strata which do not contain x is an open set; this set is denoted st(x), and is called
the open star of x. (In the case where X is simplicial or polyhedral, this terminology
agrees with that of (1.7.3) if one takes as strata the closed cells of X.) The closure of
st(x) will be denoted St(x).

12.2 Examples

(1) Let K be a simplicial complex or an MK—polyhedral complex K with Shapes(K)
finite. Let P be the poset of the cells of K ordered by inclusion. As we noted above,
K has a natural stratification indexed by P, namely one takes as strata the cells of
K. Dual to this, one has a stratification indexed by (the set P with the order
reversed): the stratum indexed by the cell a of K is the union of those simplices in
the barycentnc subdivision of K whose vertices are barycentres of cells containing
a (figure 12 1).

(2) One can regard a 2-dimensional manifold X with a finite set of disjoint
closed curves as a stratified space whose strata are the curves and the closures of the
connected components of the complement of their union (figure 12.2 and 12.10).

(3) Let M be a compact manifold with boundary and let L be a tnangulation of its
boundary as in 5.23. The stratification associated to this situation in 5.23 is indexed
by a poset Q. The stratum is equal to M. The stratum (denoted If in 5.23)
is the union of simplices in the barycentric subdivision L' of L; a simplex of L' is in

if all of its vertices are the barycentres of simplices in L that contain a.
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Fig. 12.1 A stratum and its dual in the union of two trlang!es

Fig. 12.2 A stratified surface and the geometnc realization of the associated poset

12.3 Affine Realization of Posets

Associated to any poset P one has a simplicial complex43 whose set of vertices
is P and whose k-simplices are the strictly increasing sequences ao < < 0k
of elements of P. The affine realization of this simplicial complex will be called
the affine of the poset P. denoted It has a natural stratification
indexed by P: the stratum indexed by a E is the union of the k-simplices
a0 < with ak <a. The closed star St(a) is the union of the simplices with
a as a vertex, and the open star st(a) is the union of the interiors of these simplices.

For each a E P we consider the following sub-posets:

P(a) := {r E P r < a or r > a},
and

Lk,.(P):={p EPIp > a}.

Lk7(P) (often abbreviated to Lk7) is called the upper link of a. The affine realization
of is the stratum while the affine realization of P(a) is St(a). The affine
realization of is related to the others by means of the join construction, which is
defined as follows.

See the appendix to Chapter 1 7 for basic notions concerning simp!icial complexes
Sometimes we shall use "geometnc realization" instead of "affine realization".

1 2
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Given posets P and P'. one can extend the given partial orderings to the disjoint
union P II P' by decreeing that a < a' for all a E P, a' E P'; the resulting poset,
denoted P * P', is called the join of P and P'. The affine realization of P * P' is the
join of the simplicial complexes IPI and IP'I (cf. I.7A.2). For all a E P, we have
P(a) = * Lk7, and hence St(a) is the simplicial join of and

A map between posetsf : P —* Q is called a morphism if it is order preserving.
Such a morphism is called non-degenerate if for each a E P the restriction off to P°
is a bijection onto (this condition ensures that the affine realization
I QI. which was defined in (I.7A.3), sends each stratum Pa I homeomorphically onto
the stratum QFR0))

Note that, as simplicial complexes, IPI = but the natural stratifications on
these complexes are different. We wnte to denote the stratum in indexed
by a.

12.4 Examples of Poset Realizations
(1) Let K be an MK—polyhedral complex for which the inclusion maps of the cells

are injective (e.g. a simplicial or cubical complex), and let P be the poset of the cells
of K ordered by inclusion. Then IPI is simplicially isomorphic to the barycentric
subdivision of K; the stratum is the cell a C K, while the stratum P =
is the dual stratum described in (12.2(1)).

(2) Let n be a positive integer. Let S be a finite set with n elements, let S be the
poset of its subsets ordered by reverse-inclusion: for a, r S. if a C r then r < a
Let T be the subposet consisting of the proper45 subsets of S. The affine realization
of T is the barycentric subdivision of an (n 1)-simplex (see figure 12.3).

The affine realization 181 is a simplicial subdivision of the n-cube spanned by an
orthonormal basis {eV} yES in R'1; the subset a = {s1 sk} corresponds to the vertex

es,. This subdivision is isomorphic to the simplicial cone over the barycentric
subdivision of the (n 1)-simplex; the cone vertex corresponds to subset S c S.

For a = {s1, . . , s,j C 5, the stratum is the (n — k)-dimensional sub-cube
consisting of those points x = >cESxcec of the cube with = = = 1.
The dual stratum is the k-dimensional sub-cube spanned by the basis vectors

(3) Consider the poset of subsets of the set of vertices of a simplicial complex L,
ordered by reverse-inclusion. Let Q be the subposet consisting of the empty subset
and those subsets which span a simplex of L. The affine realization of Q is the
simplicial cone over the barycentric subdivision L' of L. As in the previous example,
one can identify the cone over the barycentric subdivision of each (k — 1)-simplex of
L with a certain simplicial subdivision of a k-cube, and thus Q = CL' is isomorphic
to the cubical complex F considered in 5.23. The stratum is the subcomplex
denoted in example 5.23 (if a = 0, then 1Q10 = IQI = F).

By convention, the empty subset is proper, S itself is not
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}

'{1,2}

{1,3}

Fig. 12.3 The affine realization of the poset of proper subsets of (1,2, 3}. and of the subposet
of all subsets.

Group Actions with a Strict Fundamental Domain

The main objects that we wish to study with the techniques developed in this chapter
are group actions on polyhedral complexes where the action respects the cell struc-
ture. If a subcomplex Y contains exactly one point of each orbit for such an action,
then Y is called a strict fundamental domain. In this section we generalize the notion
of cellular action to strata preserving action, and define strict fundamental domains
for such actions.

12.5 Strata Preserving Maps and Actions. Given two stratified sets (X,
a mapf X —÷ Y is called strata preserving if it maps each

stratum X bijectively onto some stratum of Y. The map f: P —* Q obtained
by to be the index of the stratum is a morphism of posets, as
defined in (12.3).

If X and Y are stratified spaces of the same type, thenf is called a strata preserving
morphism if its restriction to each stratum preserves the specified structure (i.e. in the
topological case the restriction must be a homeomorphism, in the simplicial case it
must be a simplicial isomorphism, and in the polyhedral case it must be a polyhedral
isometry). If there is a strata preserving morphism inverse tof, thenf is called an
isomorphism of stratified spaces

The action of a group G on a stratified space (X, {XU }a€p) is said to be strata
preserving if for each g E G the map x g.x is a strata preserving morphism.

12.6 Exercise. Let G be a finite subgroup of 0(3). For a subgroup H ç G, let
(resp. be the set of points x in R3 (resp. S2) such that the isotropy subgroup of x
is H. Show that the closures of the connected components of (resp. Si,), H C G,
form a stratification of R3 (resp. S2), and that the action of G is strata preserving.

{1,2,3}

{l

{3}

{2}

{3}
0 l}
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12.7 Definition (Strict Fundamental Domain). Let G be a group acting by strata
preserving morphisms on a stratified set (X, Ia El-') A subset Y C X is called a
strict fundamental domain for the action if it contains exactly one point from each
orbit and if for each o E P. there is a unique E P such that g.Xa = Xp(a) c y
for some g E G. (Note that Y is a union of strata and hence is closed.)

The set of indices Q C P for the strata contained in Y is a strict fundamental
domain for the induced action of G on P in the following sense: Q is a subposet of
P which intersects each orbit in exactly one element, and E Q, r < implies
r E Q. Conversely, given a strata preserving action of G on X, if the induced action
on P has a strict fundamental domain Q in this sense, then the action of G on X has
a strict fundamental domain, namely Y = UaEQ

12.8 Lemma. Consider a strata-preserving action of a group G on a stratified
space (X, {Xa)aEp) with strict fundamental domain Y = UaEQ Let x p(x)
(resp. o i—÷ p(o)) be the map that associates to each x E X (resp. o E P) the unique
point of Y (resp Q) in its G-orbit. Then•

(1) x i—÷ p(x) is a strata preserving morphism X —* Y.

(2) o p(o) is a non-degenerate morphism of posets P —÷ Q.

(3) For each o E P, the following subgroups of G are equal. Ga = (g E G
VxEXa).

(4) IfXT C then Ga C GT.

(5) The isotropy subgroup (stabilizer) of each x E X is (g E G
I

g .st(x)flst(x) 0).

Proof (1) and (2) are immediate from the definitions. If g E Ga and x E Xa, then
p(x) = p(g.x), since the image of p contains only one point from each orbit. But
x i—÷ p(x) is a bijection from to XP(a) and both x and g.x are in Xa, therefore
x = g.x. This proves (3), from which (4) follows immediately.

For (5), recall that st(x) = {z
I

z E x E We can assume
that x E Y. Suppose that g.z = z' for some z, z' E st(x), and that z E Xa. Then
x E fl g.Xa. Let h E G be such that c Y. We have h.x = x. As maps
g.Xa to Y, we also have hg*x = x, thus g.x = x.

12.9 Examples
(1) Consider the tesselation of the Euclidean plane by equilateral triangles (see

figure 12.4). We regard 1E2 as a stratified space whose strata are the simplices of the
barycentric subdivision of this tesselation. Let G be the subgroup of Isom(1E2) that
preserves the tesselation. The action of G is strata preserving and each 2-simplex is
a strict fundamental domain for the action.

Let G0 be the orientation-preserving subgroup of index two in G and let G1 be the
subgroup of index six in G generated by the reflections in the lines of the tesselation.

Any triangle of the tesselation serves as a strict fundamental domain for the action
of G1, but there does not exist a strict fundamental domain for the action of G0.

(2) Consider the construction due to Davis that we described in 5.23 and the
associated stratifications descnbed in 12.(3) and 12.2(3). In this setting the action of
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the group is generated by elements of finite order (In particular, a torsion-free group
never admits such an action.)

12.10 Lemma. Consider a strata-preserving action of a group G on a stratified
space (X, with strictfundamental domain Y = Xa. Let G0 C G be the
subgmup generated by the isotropy groups o E Q, and let X0 = G0.Y.

(1) Ifg.Yfl Yr/= 0, theng E EQ.
(2) Ifg.Xo flXo 0, theng E G0, hence g.Xo X0.

(3) X0 is open and closed in X.

(4) X is connected if and only if Y is connected and G = G0.

Proof Part (1) follows immediately from the fact that each orbit intersects Y in only
one point.

(2)Ifx E g.X0flX0,thentherearepointsy,y' E Yandelementsgo, E G0such
that x = = As in (1), we then have y = y' and hence E

(3) X0 is a union of strata, hence it is closed. Given x E xa not in Xo, choose
g E G so that g xa c Y IfXU fl X0 were not empty, then g.Xo fl X0 would not be
empty, so by (2) we would have g X0 = X0, which is nonsense because x E g.X0. It
follows that X Xo is a union of strata, hence it is closed.

(4) Suppose that Y is connected. Each g E G0 is a product of elements g1
from the isotropy subgroups of the points of Y. Let yn = g1 . . . gn. Each pair of
consecutive sets in the sequence yk.Y y1.Y, y0.Y = Y have a non-empty in-
tersection, hence their union is connected. Therefore g Y is in the same connected
component of X as Y is, and so X0 = G0. Y is connected. If Go = G then X is also
connected.

Conversely, if X is connected then X = X0, by (3), and hence G = Go, by (2).
Moreover, since Y is a continuous image of X (12.8(1)), it too is connected.

Simple Complexes of Groups: Definitions and Examples

In the introduction we indicated how simple complexes of groups were to be used
to reconstruct group actions on stratified spaces from a knowledge of the isotropy
subgroups on a strict fundamental domain A more sophisticated notion of complex
of groups, adapted to describe group actions that do not have strict fundamental
domains, will be described in Part HI, Chapter C

12.11 Definition (Simple Complex of Groups). A simple complex of gmups46
G(Q) = (Ge, over a poset Q consists of the following data:

46Equivalent definition: A poset can be regarded as a small category (HI.C) whose set of
objects is Q and which has an arrow a —* T whenever T < a A simple complex of
groups is a functor from Q to the category of groups and monomorphisms In this definition
we assume that the homomorphisms are injective to ensure that simple complexes of
groups are always locally developable (12 24). In all respects other than local developability,
the theory would go through without any essential changes if we did not assume to be
injective
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(1) for each o E a group Ga, called the local group at a;
(2) for each T < o, an injective homomorphism : Ga —÷ such that if

T <a <p, then
lftrp = 111ralfrap.

Two simple complexes of groups (G,, and over a given poset Q
are said to be simply isomorphic if there is a family of isomorphisms : Ga —*

such that = for all T
Let G be a group. A simple morphism = from G(Q) to G, written

G(Q) —* G, is a map that associates to each o E Q a homomorphism 'Pa : G

such that if T < o, then 'Pa = 'Pr 1/ira. We say that is infective on the local groups
if is injective for each o E Q.

12.12 Definition. Associated to any simple complex of groups G(Q) over one
has the group

G(Q):=
cIEQ

which is the direct limit of the system of groups and monomorphisms (Ga, 1/ira).
The group G(Q) is characterized up to canonical isomorphism by the universal
property given below. It is obtained by taking the free product of the groups Ga and
making the identifications 'frra (h) = h, V/I E Ga, VT <o. Thus, given presentations
Ga = (Aa I lZa), one can present G(Q) as (ila '4a

I 1/ira(a) = a, Va E
VT < o) (where 1/ira (a) is given as a word in the generators Ar).

The natural homomorphisms : Ga —* G(Q) give a canonical simple morphism
G(Q) —* G(Q), where = (ta). In general La is not injective (see for example

12.17(5)).

12.13 The Universal Property. Given any group Gand any simple morphism
G(Q) G, there is a unique homomorphism : G(Q) —÷ G such that o t =
(i.e. E Q).

(Conversely, every homomorphism : G(Q) —÷ G induces a simple morphism
p: G(Q) —* G, given by 'Pa 'P 0 La.)

12.14 Remark. There exists a simple morphism 'P from G(Q) to some group G that
is injective on the local groups if and only if is injective on the local groups

12.15 Strict Developability. Consider a strata preserving action of a group G on a
stratified space (X, )a€p) a strict fundamental domain Y. Let Q = E

P I xa c Y). To this action and choice of Y, one associates the simple complex of
groups G(Q) = (Ge, 1/ira) over Q, where Ga is the isotropy subgroup of the stratum
xa C Y and 1/Ira Ga —* is the natural inclusion associated to c xa. The
inclusions 'Pa : Ga —÷ G define a simple morphism 'P : G(Q) —* G that is injective
on the local groups.

Sometimes called the amalgamated sum or amalgam.
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A simple complex of groups G( Q) is called strictly developable if it arises from
an action with a strict fundamental domain in this way. A necessary condition for the
strict developability is that there should exist a simple morphism G(Q) —* G that
is injective on the local groups. In (12.18) we shall show that this condition is also
sufficient.

12 lóRemark
The notion of a simple complex of groups is a particular case of the more general

notion of complex of groups explained in III.C. In the more general framework, one
considers morphisms G(Q) —* G that are not simple and there is a correspondingly
weaker notion of developability (cf. Ill C, 2.15-16). If the affine realization of Q is

not simply connected, then it can happen that a simple complex of groups over Q is

developable but not strictly developable (this is the case in 12 17(Sii)).

12.17 Examples
(1) Triangles of Groups. Let T be the poset of proper subsets of the set S3 =

(1, 2, 3}, ordered by reverse-inclusion. A simple complex of groups G(T) over T
is called a triangle of groups. (A k-simplex of groups is defined similarly.) Thus a
triangle of groups is a commutative diagram of group monomorphisms as in figure
12.5. Such diagrams have been studied by Gersten and Stallings [St91] and others.
Tits considered more generally simplices of groups, i.e. complexes of groups over the
poset of faces of a simplex. In general triangles of groups are not (strictly) developable
(e.g. example(6))

G{12}

G{1} G{2}

/ GØ

I

G{13} G{3} —_—---_+ G{23}

Fig. 12.5 A triangle of groups

(2) A 1-simplex of groups is a diagram G1 H —* G2 of monomorphisms
of groups. The direct limit of this diagram is called the amalgamated free product
of G1 and G2 over H and is often denoted G1 *H G2 (see 1111.6.1). The natural
homomorphisms of G1 and G2 in G1 *H G2 are injective and G1 *H G2 acts on a
simplicial tree [5er77], called the associated Bass-Serre tree, with strict fundamental
domain a 1-simplex (see 11.18). The isotropy subgroups of the vertices and the edge
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of this simplex are respectively G1, G2 and H (see 12.20(4)). More generally, any
simple complex of groups whose underlying complex is a tree is strictly developable.

(3) Consider the action of G on 1E2 described in 12.9(1). Let s1, s2, s3 be the
reflections fixing the sides of a fundamental triangle, where the labelling (1), (2), (3)
is chosen as in figure (12 5); the vertex angles are ir/6, ir/3, ir/2. The triangle of
groups G(T) associated to this action has the following local groups: G(I} is the cyclic
group of order two generated by the reflections for i = 1, 2, 3; the local groups at
the vertices G(I G{23}, G{1 3) are dihedral 48 with orders 12, 6 and 4 respectively;
and the group Go in the middle of the triangle is trivial (see figure 12.6).

D3=(s2, 83)

I
(83)

(s1,s2)=D6
< (si) >

Fig. 12.6 The tnangle of groups associated to the action in fig 124

(4)The complex of groups associated to the action of SL(n, aP(n, R)1 with
the Tits metric (stratified by the Weyl chambers at infinity and their faces,cf. 10.75)
is an (n — 2)-simplex of groups. For instance for n = 4, if we choose as fundamental
domain the boundary at infinity of the Weyl chamber consisting of diagonal matrices
of the form diag(e", .. , with

i
t4, we get a triangle of subgroups of

SL(4, as indicated in figure 12.7.

(5) A Non-Developable Complex of Groups. Let Q be the poset consisting
of 5 elements (p. ri, r2h with the ordering v1 < < p for i,j = 1, 2.

Consider the following complex of groups over Q: let be the trivial group, let
Ga Ga, Z2, and let be a group H containing two distinct elements

of order two, t1 and t2 say; for i = 1, 2, the homomorphism i/ira Ga —* sends
the generator of Ga to This complex of groups is not strictly developable, because
the kernel of the canonical homomorphism Gr —* G(Q) contains t1 indeed
G(Q) is the quotient of H by the normal subgroup generated by t1 In particular,
if we take H to be a simple group such as A5, then G(Q) will be the trivial group.
(See figure 12.8.)

480ur convention will be to write fl,1 to denote the dihedral group of order 2n
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*

(
0 00 *

I

1*1*1*
I/

1*1*1* *\

\ ooo*)
Fig. 12.7 The tnangle of groups associated to the action of SL(4, IR) on 8P(4, JR)1

Let Q' be the subposet obtained from Q by removing p The simple complex
of groups G(Q') obtained by restricting G(Q) to Q' is developable in the sense of
(IH.C.2 11), but it is not strictly developable. Indeed, although G(Q') does not arise
from an action with strict fundamental domain, it is the complex of groups associated
to the simplicial action of a group H*z, on a tree such that the quotient is the affine
realization of Q' and the isotropy subgroups correspond to the local groups in Q'.
(There is some ambiguity concerning the choice of maps

Z2=(s) Z7=(s)/ 1' \ /
HD(s,t) {1} —÷4 H:)(s,t)

N / N /
Z2=(t) Z2=(t)

(I) (H)

Fig. 12.8 (I) A non-developable complex of groups with G(Q) = Z2 (II) A graph of groups
which is not strictly developable

(6) n-Gons of Groups. Let n > 3 be an integer. An n-gon of groups is a com-
mutative diagram of groups and monomorphisms of the type shown in Figure 12.9
More precisely, it is a complex of groups over where Q,, is the poset of faces of
a regular n-gon P in 1E2 ordered by inclusion.

In order to give examples, we introduce the notation = {p, T, i E Z
mod n), where the o, and correspond to the sides and vertices of P and p is P
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itself, the indices are chosen so that < o-, < p and r1 < < p. (See figure
12 9.)

An interesting class of examples is obtained by taking = (1), Ga = (x1) Z
and = (x1, = and taking homomorphisms and

that send the generators xjEGa, and E Ga± to the elements of that have the
same name49. Consider = (x1,. . , x,, = i Z mod n).

G(Q3) is the trivial group (this is not obvious!). If n > 4 then the local groups GT
inject into G( is developable. The case n = 4 was studied in
detail by Higman, who showed that G( Q4) has no proper subgroups of finite index (see
[Ser77, 1.4]). Because G(Q4) is infinite, one can construct finitely generated infinite
simple groups by taking the quotient of G(Q4) by a maximal normal subgroup.

(x2)

(x2,x3) = +— Ga2 = (xj,x2)

N t /
(x3) = ÷— G,, = (1} —÷ = (x1)

/

(x3,x4) = Ga4 —+ = (x4,x1)

(X4)

Fig. 12.9 A 4-gon (square) of groups

(7) Extending an Action with Strict Fundamental Domain. Let G(Q) be the
simple complex of groups associated to a strata preserving action of a group G on
a stratified space X with strict fundamental domain Y. Let : G(Q) —* G be the
associated simple morphism. Assume that X and its strata are arcwise connected and
that Y is simply connected. Let p : X —* Xbe a universal covering of X. Let G be
the set pairs (h, g), where g E G and h : X —* X is a homeomorphism such that
p(h.i) = g.p(i) for alli E X. The operation h1).(g2, h2) = (gIg2, h1h2) defines
a group structure on G. This group acts on X by (g, h).i = h(i).

Standard covering space theory (see e.g. [Mass9l]) tells us that if(g, h), (g, h') E
G then h'h' acts as a covering translation, and the map it : G —÷ G that sends (h, g)
to g E G is a surjective homomorphism whose kernel is naturally isomorphic to the
fundamental group of X:

1 —* ir1(X) —* G G -* 1.

group (y, x = x2) has several interesting manifestations, for example as the

subgroup of generated by y
=

anii x
=

which acts as

affine transformations on JR by x(t) = t+ 1 and y(t) = 2t.
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If we use it to define an action of G on X, then p becomes aG-equivariant map. As
Y is simply connected, there is a continuous map s : Y —+ X such that p o s is the
identity map on Y.

Let (X, }) be the given stratification on X. We stratify X by choosing as strata
the connected components of the inverse images of the strata of X. Note that the
action of G is obviously strata-preserving and s(Y) is a strict fundamental domain
for this action. Moreover, each stratum of X is contained in some translate of s(Y),
which is assumed to be simply connected, and hence p maps each stratum of X
homeomorphically onto a stratum of X

For each o- E Q, consider the isotropy subgroup Ga of s(Ya). The restriction of it
to Ga is an isomorphism onto Ga. These isomorphisms on local groups give a simple
isomorphism (in the sense of (12.11)) from G(Q) to the simple complex of groups
associated to the action of Gon X with strict fundamental domain s(Y). And the
monomorphisms : Ga —* G obtained by composing the isomorphisms Ga Ga
with the natural inclusions Ga G define a simple morphism : G(X) —* G that
is injective on the local groups, and ço =

The Basic Construction

We shall now describe the Basic Construction which we talked about in the in-
troduction. This construction allows one to reconstruct a group action with strict
fundamental domain from the associated simple complex of groups. It also shows
that a simple complex of groups G(Q) is strictly developable if and only if the natural
simple morphism : G(Q) —* G(Q) is injective on the local groups.

Following the Basic Construction we shall give a number of explicit examples to
try to give a sense of how one uses it, then we shall gather some of its basic properties.
Further examples will be given in subsequent sections.

12.18 Theorem (The Basic Construction). Let (Y, {ya)aEQ) be a strattfied space
indexed by the poser Q. (The three types of stratified spaces were described in
(12.1).) Let G(Q) = (Ga, 1,tlra) be a simple complex of groups over Q. Let G be a

group and let 'p G(Q) —* G be a simple morphism that is injective on the local
groups. Then:

(1) Canonically associated to 'p there is a poset D(Q, p), called the development
of Q with respect to p, and a stratified space D(Y, p) over D(Q, p) called the
development of Y with respect to 'p.

(2) Y is contained in D( Y, 'p)and there is a strata preserving action of G on D( Y,'p)
with strict fundamental domain Y.

(3) The simple complex of groups associated to this action is canonically isomor-
phic to G(Q), and the simple morphism G(Q) —÷ G associated to the action is
'p. Therefore G(Q) is developable.

(4) If Y = IQI then D(Y,çp) = D(Q, 'p)I
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Proof As the simple morphism q : G(Q) —÷ G is injective on the local groups, we
can identify each with its image in G; if t < a, then the subgroup is
contained in

Define P = D(Q,q) := the set of pairs with a E Q
and gG(. E a coset of Ga ç G. We define a partial ordenng on P by:

t) < a) if and only if t < a and g1g' E
G on D(Q, q) defined, for g' E G, by a) = a). The map

a (Ge, a) identifies Q with a subposet of D(Q, q) which is a strict fundamental
domain for this action.

Let D(Y, q) be the set which is the quotient of G x Y by the equivalence relation:
[(g, y) (g', y') y = y' and g1g' E where is the smallest
stratum containing y. We write [g, y] to denote the equivalence class of (g, y). The
set G x Y is a disjoint union UG Y and as such inherits the (topological, simplicial or
polyhedral) character of Y. We endow D(Y, q) with the quotient structure. D(Y, q) is
then a stratified space over P where the stratum indexed by a) is [g, YI.

The group G acts by strata preserving automorphisms according to the rule g'. [g, y] =
[g'g, y]. And if we identify Y with the image of { I) x Yin D(Y, q) (where I is the unit
element of G), then Y is a stnct fundamental domain for the action, and (modulo the
natural identifications of the with subgroups of G, and of Y with the fundamental
domain) the associated complex of groups is G(Q).

To prove (4), we note that the k-simplices in ID( Q, I that project to the k-simplex
of IQI with vertices a0 < < have vertices ao) < < ak),
where g E G is well-defined modulo In particular these simplices are in bijection
with the elements of D

12.19 Examples of the Basic Construction
(1) Let Q = {a, t), with t <a. Let Ybe the 2-dimensional disc with two strata,

the disc itself ya and its boundary YT. Let G(Q) be the complex of groups over Q
with = {1) and = Z2. There is only one simple morphism q : G(X) —+
that is injective on the local groups. The stratified space D(Y, q) is the 2-sphere with
three strata, namely the two closed hemispheres and the equator. The generator of
Z2 fixes the equator and exchanges the hemispheres G(Q) 7L2.

(2) Let Q = {a, ti), with to < a and t1 < a. Let Y be the segment [0, 1]
with three strata = [0, 1], = {O), and Y" = {1}. Consider the complex of
groups G(Q) with = {1}, Z3, and Gr 7L2. Let q : G(t) —+ G be a
simple morphism that is injective on the local groups. Then D(Y, q) is the barycentnc
subdivision of a graph with vertices of valence 2 and 3; the vertices of valence 3 are
indexed by pairs t0) (notation as in the proof of (12.18)); the vertices of
valence 2 are indexed by pairs t1); the edges are indexed by pairs a).

For instance, suppose that G 7L6 is generated by y and define q by sending
a fixed generator of Z3 (resp. Z2) to y2 (resp. y3). Then D(Y, q) is the barycentric
subdivision of the graph obtained by taking the simplicial join of the discrete sets
{t00, tOi) and {tiO, t11, t1 211. The generator y acts on D(Y, q) by exchanging the
vertices too and t0 and cyclically permuting {t10, t11, ti2}.
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(4) The examples of Mike Davis described in 5.22 and 5.23 are developments
D(F, q) and D(M, q) of the spaces F and M with the stratifications descnbed in
12.4(3) and 12 2(3) respectively. To see this, take Q to be the poset associated to
these stratifications, let G(Q) be the complex of groups that associates to a =

Sk) E Q the group = defined in 5.23, and let q : G(Q) —+ G
be the morphism defined by the inclusions of the groups G(7 into the group
G = USES G5.

(5) Constructing Tesselations of 1Ff. Let P be a k-gon in the hyperbolic plane
with vertices t1, .. (in order). Assume that the angle at the vertex t, is of the
form n]p,, where p, is an integer 2 (such polygons exist if k> 4 and in general
if >J, 1/p, < k — 2). Let a be the side of P joining the vertex to the vertex t,
(the indices are taken modulo k), and let 5, be the reflection of fixing a,. Let G be
the subgroup of Isom(1E12) generated by We claim that G acts on with
strict fundamental domain P (and thus the images of P by the elements of G form a
tesselation of 1H12 by polygons congruent to P). This is a particular case of a classical
theorem of Poincaré.

To prove our assertion, we consider a complex of groups G(Qk) over the poset
Qk = {p, a,, r1} of faces of P where p corresponds to P. Define = 1, to
be the subgroup of G generated by s,, and the subgroup generated by si_i afld
s1. Let q, : G(Q) —+ G be the morphism defined by the inclusions into G. The
development D(P, q) is a connected hyperbolic polyhedron. There is a natural G-
equivanant projectionf : D(P, ço) —+ 1Ff mapping [g, y] to g.y and we claim that
this projection is a local isometry. This is trivial except at the vertices t, = [1, of
P c D(P, q), where it follows from our hypothesis that the angle of P at t, is of the
form 7r/p1. Indeed this hypothesis implies that is the dihedral group of order 2k
which acts on iHI2 with a strict fundamental domain which is the sector bounded by
the rays issuing from and containing the sides a_i and a. As D(P, q) is complete,
the mapf is a covenng of 1Ff, hence an isometry (cf. 1.3.25), which means that we
can identify D(P, q) with 1Ff

The same construction using the morphism t : G(Qk) —+ lead to
the same conclusion, and therefore G is isomorphic to the group G(Qk) obtained by
amalgamating the groups and as in (12.12) (see also 12.22).

The same argument works when the hyperbolic plane is replaced by S2 or 1E2.
Indeed we could replace P by any convex polyhedral n-cell P in such that the
dihedral angle between each pair of (n — 1)-dimensional faces is of the form 7r/m
where m is an integer 2. The reflections fixing the (n 1)-faces of P generate a
subgroup G of and the images of P by the elements of G form a tesselation
of The argument is similar to the preceding one and uses induction on the
dimension n (for details, see de Ia Harpe [Har9l, p.221-238]).

12.20 Proposition (Properties of the Basic Construction). We maintain the notation
established in (12.18). Thus we have a simple complex of groups G(Q), a stratified
space (Y, and we consider simple morphisms q : G(Q) —+ G that are
infective on the local groups. (G is an arbitrary group.)
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(1) (Uniqueness) Let X be a stratified space over Q. If G acts by strata preserving
morphisms on X with strict fundamental domain Y, and the associated simple
complex of groups is simply isomorphic to G(Q), then the identity map on Y
extends uniquely to a strata preserving G-equivariant isomorphism D(Y, q,) —+
x.

(2) Let G0 C G be the group generated by the subgroups If Y is connected,
then the set of connected components of D(Y, q) is in bijection with the set of
cosets GIG0. In particular D(Y, q) is connected and only if G0 = G.

(3) (Functonality) Let 7t : G —+ G' be a surf ecti ye homomorphism of groups.
Let q' : G(Q) —+ G' be the simple morphism defined by := If cv' is
infective on the local groups, then the identity map on Y extends uniquely to
a strata preserving G-equivariant mapp D(Y, q) —+ D(Y, p'). The mapp is
a covering projection, and the kernel of 7t acts freely and transitively on the
fibres of p.

(4) Suppose that Y is connected and simply connected and that each stratum
of Y is arcwise connected Then the development D(Y, t) of Y with respect
to the canonical morphism t : G(Q) —+ G(Q) is simply connected. If the
canonical homomorphism : G(Q) —+ G associated to q is surjective, then
7r1(D(Y, q,)) (In the topological case one has to assume that D(Y, q)
is locally simply connected.)

Proof We use the notation established in the proof of (12.18).
(1) The map [g, y] —+ g.y is a stratum preserving G-equivariant isomorphism

from D(Y, q) to X.

(2) follows from (12.10).

(3) Letp: D(Y, q) —+ D(Y, q') be the map sending x = [g, y] to x' = [7r(g), y];
it is G-equivariant and maps the stratum indexed by a) onto the stratum
indexed by a). The inverse image of x' is the set of points of the form
k.x, where k E ker7r. Let be the smallest stratum of Y containing y and let

If st(y) is the open star of y in Y, the open star st(x) of x in D(Y, q) is
(see 12.8(5)). Similarly star(x') = where =

Thus p maps st(x) homeomorphically onto st(x'), and p (st(x')) is the disjoint union
of the open sets k.st(x), where k E ker7r Therefore p is a Galois covering with Galois
group ker7r.

(4) We use the construction of 12.17(7) applied to the action of G on X = D(Y,
Thus we get a group G which is an extension of G by the fundamental group of
D(Y, q), a stratification of the universal covering D(Y, q) of D(Y, q), and a strata
preserving action of G on D(Y, q) with a stnct fundamental domain one can identify to
Yso that the associated complex of groups is canonically isomorphic to G(Q). Let
G(Q) —f G(Q) —f Gbethehomomorphism
associated to (1), there is a G-equivariant isomorphism D(Y, q) —f D(Y,
and by (3), a G(Q)-equivariant covering map D(Y, i) —f D(Y, as D(Y, is

simply connected, this is an isomorphism. Hence D(Y, i) is simply connected and
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G(Q) —+ O is an isomorphism. The last claim follows from (3) applied to the
homomorphism

12.21 Corollary. Let G(Q) be a simple complex of groups over a poset Q. Let
Y IQI. If the canonical simple morphism t G(Q) —+ G(Q) is infective on the
local gmups and if Y is simply connected, then the space D(Y, t) given by the Basic
Construction is also simply connected. (And by 12.18(5) it is the realization of the
poset D(Q, q).)

The proposition can sometimes be used to find presentations of groups.

12.22 Corollary. Let G be a group acting on a simply connected stratified space
X with a strict fundamental domain Y. Then G is the direct limit (amalgam) of the
isotropy subgroups of the various strata of Y.

Proof Let G( Q) be the complex of groups associated to this action, let q : G( Q) —+ G

be the corresponding morphism and let : G(Q) —+ G be the associated homomor-
phism. According to (1), the space X is G-equivanantly isomorphic to D(Y, by
(2) is surjective, and by (3) the map D(Y, t) —+ D(Y, q) is a covering
As D(Y, q) is simply connected, this last map is an isomorphism, and so too is

12.23 Examples
(1) We revisit the group action and triangle of groups described in 12 17(3),

maintaining the same notation. Thus we have a group G generated by reflections
s, 53 acting on 1E2 As 1E2 is simply connected, we can appeal to 12.22 (or to
12 19(5)) to see that the group G is isomorphic to G(Q), which has presentation

(si, s2,s3 I
= = = (s1s2)6 = = (s1s3)2 1)

Let q G(t) —+ D6 be the simple morphism mapping s!, to the corresponding
generators of the dihedral group D6 and 53 to s2(ss2)2. If Y is the triangle chosen
as strict fundamental domain for the action, then D(Y, q) is the 2-torus obtained by
identifying opposite sides of the parallelogram formed by two adjacent triangles of
the tesselation. The group D6 acts on this 2-torus with a strict fundamental domain
isometric to Y. In general, given any surjective homomorphism G(Q) = G —+ H
that is injective on the local groups, if ker is non trivial, then D(Y, q) is isometric to
a 2-torus obtained by multiplying the distance function on the one described above
by a positive integer.

(2) We can apply corollary 12.22 to check that the group of permutations
(in the notations of example 12.9(3)) has the following presentation for n 4:

it is generated by the elements s1, .. , subject to the relations = 1 for
I <n—I, = 1 fori <n—i and = 1 forj i± 1.

Let T be the triangulation of described in 12.9(3), and let X be the 2-
dimensional subcomplex of the barycentric subdivision formed by the union of the
simplices whose vertices are barycentres of those simplices ofT that have dimension
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n 2, n 3 or n — 4. This complex X is the union of the cells of dimension 2 in
the dual subdivision of T, hence it is simply connected. The action of on
preserves X and has a strict fundamental domain X fl The isotropy subgroups of
faces of dimension n 3 (resp. n 4) of are the cyclic subgroups generated by
the s, (resp. the dihedral groups generated by pairs (s1, si), i By applying 12.22
to the action of on X we get the desired presentation.

Local Development and Curvature

The results of the previous section show that one can construct interesting group
actions from simple complexes of groups if there exist simple morphisms that are
injective on the local groups. However, we have not yet developed an effective
cnterion that is sufficient to show that the local groups inject; that is the purpose of
this section. We shall explain how one can use the local structure of a simple complex
of groups to understand what the closed star of a point in the development would look
like if it were to exist — this is called local development. It is a remarkable fact (akin
to the Cartan-Hadamard Theorem) that if at every point in the complex the putative
star is non-positively curved (and the local groups act by isometries), and if

I
is

simply connected, then the complex is strictly developable. This will be proved in
Part III.

12.24 Construction of the Local Development. We shall descnbe an explicit model
for the closed star St(&) of the vertex & = [1, a] in the affine realization of the
posets D(Q, q) constructed in the Basic Construction (12.18). This description is
independent of q. The local group acts naturally on St(&) with a strict fundamental
domain naturally isomorphic to St(a)

We define the complex St(ä) to be the affine realization of the subposet of D(Q, q,)
whose elements are pairs that are either of the form p), where p > a
and g E or else are of the form (Ge, t), where t < a (in such pairs, the first
member is considered as a coset in Ge). The partial ordering is defined by:

fora < p. p' : p) < p') if p < p'and E

forr,t' <

fort <a < p : (Ge, t) < p).

Using the notations of 12.3, this poset can also be described as follows
Let be the restriction of the simple complex of groups G(Q) to the

subposet = {p E Q . p > aJ. One has a canonical simple morphism
—f given by the injective homomorphisms —f

The upper link of& = (Ge, a) in the poset D(Q, q) can be defined as
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and St(5) is the affine realization of the poset

*

The map that associates to each p > a the pair = p), and to each
t < a the pair = (Fe, t), gives an identification of St(a) with a subspace of St(&).
There is also a natural projection pa : St(&) —+ St(a), induced by the poset map
sending each pair to its second coordinate

The group acts in an obvious way on St(&) Moreover it is clear that the
preceding construction does not involve the homomorphism q. Thus we have the
following local developability property in complete generality.

12.25 Proposition. Let G(Q) = (Ge, be a complex of groups over a poset Q.
Canonically associated to each a E Q there is a poset on whose affine realization
St(&) the group Ga acts with strict fundamental domain St(a). In this action, the
isotropy subgroup of the stratum indexed by each r < a is and the isotropy
subgroup of the stratum indexed by p > a is

St(&) together with the action of is called the local development of G(Q) at
the vertex a.

Assume that the affine realization QI of Q is endowed with the structure of
an MK-simplicial complex with finite shapes. Then for each a E Q, the simplicial
complex St(&) is also an MK-simplicial complex, and the is an isometry
on each simplex.

12.26 Definition (Simple Complex of Groups of Curvature < K). Let K E A

complex of groups G( Q) over an MK -simplicial complex Q is said to be of curvature
< K if the induced metric on the open star st(&) in the local development is of
curvature < K for each o E Q.

We shall be most interested in the case K = 0 where, of course, we say "non-
positively curved" instead of curvature 0

12.27 Remarks
(1) If Qj is one dimensional, and the length of each of its edges is one, say, then

any complex of groups over Q is of curvature S K for every K

(2) Suppose that Q is the poset of cells of an MK-polyhedral complex K with
Shapes(K) finite and suppose that there are no identifications on the boundaries of
cells in K Then the affine realization

I
QI of Q is isomorphic to the barycentric

subdivision K' of K, and as such inherits the structure of an MK-simplicial complex.
And for each vertex t of K, the geometric link Lk(t, K) inherits a spherical metric:
it is a (spherical) geometric realization of the subposet C Q.

To check that a simple complex of groups G(Q) over Q is of curvature < K,
it is sufficient to check that for each vertex t E K, the affine realization of =

lfrr), with its natural structure as a spherical complex, is CAT(l) (see 1.7.56
and 5.2).
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The following theorem, first proved by Gersten-Stallings [St91] in the particular
case of triangles of groups (see also Gromov [Gro87, p.1 27-8], Haefliger [Hae9O and
91], Corson [Cors92] and Spieler [Spi92]), will be proved later in a more general
framework (In.g).

12.28 Theorem. Let Q be a poset whose affine realization I QI is simply connected,
and suppose that IQI is endowed with an MK-simplicial structure with finite shapes,
where K 0. Let G(Q) be a simple complex of groups over Q which is of curvature

K. Then G(Q) is strictly developable.
If Q is finite and each local group G(7 is finite, this implies that G(Q)acts

cocompactly on the CAT(K) space ID(Q, t)I and that any finite subgroup of G(Q) is
conjugate to a subgmup of one of the local groups

12.29 The Local Development at the Corner of an n-Gon of Groups. We wish to
describe the local development at the vertices of polygons of groups If one focuses
on the corner of a polygon of groups, one has the vertex group, the two incoming
edge groups, and the local group of the 2-cell. With this picture in mind, we consider
simple complexes of groups over the poset Qo = {p, 0, tJ with p < p <02
and < t, 02 < t. This is equivalent to considering a group G (playing the role
of with two subgroups G1 and G2 (corresponding to a subgroup
H c G1 fl G2 (namely Ga).

a'
Fig. 12.11 A simple complex of groups at a corner of an n-gon

According to 12.24, the link of the vertex corresponding to r in the local
development is the barycentric subdivision of a bipartite graph g whose set of vertices
is the disjoint union of G/G1 and G/G2, and whose set of edges is G/H; the edge
corresponding to gil joins the vertices gG! and gG2. The group G acts on (by
left multiplication) with a strict fundamental domain which is an edge. This graph is
connected if and only if G is generated by G1 U G2. The girth girth(g) of this graph
is by definition the minimal number of edges contained in a simple closed curve in
g (in the case of a bipartite graph, the girth is even or infinity). For instance the girth
is 2 if and only if H G1 fl G2, and it is infinity if and only if the subgroup of
G generated by G1 U is the amalgamated product G1 *H G2. If G! = (s1) and
G2 = (s2) have order 2 and G is the dihedral group of order 2n generated by
(51, s2J, then the girth is 2n. If G = G1 x G2, the girth of is 4.

The affine realization of the poset Q0 is the union of two triangles glued along
the side joining p to t. If we metrize so that it is the union of two triangles

T
G

I
1!
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in such that the total angle at the vertex t is a, then the development at t is of
curvature < K if and only if 27r a girth(g). (Stallings [St91] calls 2n/girth(g)
the (group theoretic) angle of the n-gon of groups at the vertex t.)

For instance, if P is a regular n-gon in 1E2 the specific n-gon of groups considered
in 12.17(6) is non-positively curved if n 4, because the girth of the link of the local
development at each vertex is 4 (a circuit of length four is formed by the edges
labelled = and the angle at a vertex is ir/2. If we
retain the same underlying simple complex of groups but now regard P as a regular
n-gon in the hyperbolic plane with vertex angles greater than ir/2 (this is possible if
n> 5), then this complex of groups is of curvature —1.

More generally, we might consider a complex of groups over the poset of
faces of a regular Euclidean n-gon P such that, in the local groups at the vertices of
P, the intersection of the two subgroups coming from the adjacent edges is equal
to the subgroup coming from the barycentre of P. Any such n-gon of groups is
non-positively curved if n > 4, hence is developable, in the light of (12.28).

We now turn to more explicit examples of non-positively curved spaces with
cocompact group actions.

12.30 Examples

(1) Hyperbolic Polyhedra. Let P be a right-angled regular p-gon in 1H12 (such a
polygon exists if p > 4) We consider the following complex of groups G(Q) over
the poset Q of faces of P. the group associated to P is trivial, the group associated
to each edge e1 of P is a cyclic group 7Lq of order q (generated by an element s,,
say) and at the vertex of P adjacent to the edges e, and i Z mod p, we have
the product 7Lq X 7Lq generated by s, and (the labelling of the generators defines
the inclusions of the edges groups). This complex of groups is developable, because
there is an obvious simple morphism of G(Q) to the product fl" mapping s, to a
generator of the factor. The group "p.q := G(Q) is generated by the elements s•
subjecttotherelationss' = 1 ands,s1÷j = s,÷is,fori E 71 modp. The linkof the local
development at each vertex is the complete bipartite graph obtained by taking the
join of two copies of Zq; its girth is 4, therefore the M_1-complex D(P, t) on
which r'p.q acts properly and cocompactly is CAT(— 1) Marc Bourdon [Bou97a] has
determined the conformal dimension (in the sense of Pansu [Pan9O]) of the boundary
at infinity of This boundary is homeomorphic to a Menger curve [Ben92].

(2) Graph Pmducts of Groups Let L be a simplicial graph with vertex set Sand let
(GS)SES be a family of groups indexed by the set of vertices of L. The graph product G,.
of the family of groups is the abstract group generated by the elements of the groups

subject to the relations in and the relations g5g, = gigs if E Gç, g, E G1

and s and t are joined by an edge in L. Let G be the direct product USES of the
groups There is a unique homomorphism q : G,. —f G such that the natural
homomorphism of into G,. composed with q then the projection onto the factor

is the identity.
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Following [Da98] and [Mei96], we construct a CAT(O) piecewise Euclidean
cubical complex X on which G,. acts by isometries (preserving the cell structure)
with a strict fundamental domain.

Let K be the flag sirnplicial complex whose 1-skeleton is the graph L let Q
be the poset of those subsets of S (the vertex set of K) which span a simplex of K
together with the empty set, ordered by reverse-inclusion, a < t if t c a. To each
a = {Si skj E Q, one associates the product = (define G0 = (1 J),
and for t C a we denote by the natural inclusion This defines on Q
a simple complex of groups G(Q). It is strictly developable thanks to the existence
of the homomorphism q, and G(Q) is the graph product of the groups The affine
realization of the poset Q is the simplicial cone over the barycentric subdivision of
K (see 12.4(3)) which, in a natural way, can be considered as a cubical complex; let
F denote this cubical complex with its natural piecewise Euclidean metric

Let X be the cubical complex D(F, t), where t : G(Q) —+ G, is the canonical
simple morphism. As F is simply connected, X is also simply connected. One can
check that the link of each vertex of X is a flag complex, hence X is CAT(O) by
Gromov's criterion (5.20) and the Cartan-Hadamard theorem

(3) We should mention that Tits has constructed triangles of finite groups
([Tits86b], [Ron89, p.48-49]) whose simply connected developments provide re-
markable examples of Euclidean buildings which have the same type and are locally
isomorphic, but enjoy quite different properties

We should also mention the striking work of Floyd and Parry [FP97]. They give
explicit calculations of the (rational) growth functions of the direct limits of certain
non-positively curved triangles of finite groups. They also exhibit examples of pairs
of such tnangles such that all of the local groups are the same in each case, but the
direct limit of one triangle contains Z2 while the other does not (it is
in the sense of (1111.2.1)). Remarkably, these two groups have the same growth
function.

Constructions Using Coxeter Groups

12.31 Definition. A Coxeter group is a group W with a specified finite generating set
S and defining relations of the form one for each pair s, t 5, where = 1

and if s t then m5, is an integer > 2 or mc, = oo (which this means no relation
between s and t is given).

The pair (W, S) is called a Coxeter system

The matnx M = (mS,)S.,Es describing the defining relations can be reconstructed
from a weighted graph, called the Coxeter graph. The nodes (vertices) of this graph
are labelled by the elements of S. The vertices labelled s and t are joined by an
unweighted edge if 3 and by an edge weighted (i.e. labelled) by if mc, > 3

or = oo (If s and t are not joined by an edge, this means that = 2, i.e. the
generators s and t commute.)
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Coxeter Graphs Coxeter Groups

• . D2=Z2xZ2
S1

• . D3=S(3)
S2

m• . m>4 Dm

• •

• . . S(4)
SI 53

6 • • Group of isometnes of 1E2 preserving a tesseflation
S3

by equilatera' tnangles (see 12.17(3))

Fig. 12.12 Some Coxeter graphs and the corresponding Coxeter groups

12.32 Basic Property of Coxeter Systems. Let (W, S) be a Coxeter system. Given a
Subset Tof S. let WT be the Coxeter group with generating Set T and relations (ti')tm"
fort, t' T (where the exponents are as in the defining relations for (W, S)). Then
the natural homomorphism WT —* W induced by the inclusion T '—* S is infective

For a proof, see Bourbaki [Bou8l].
Note that in particular this result says that each elements of S generates a cyclic

subgroup of order two in W, that two distinct e'ements s, s' E S with =
generate an infinite dihedral group, and if m > 2, then s and

s' generate a dihedra' group of order 2m (denoted Do,). The subgroups of order 2
generated by different elements of S are all distinct

12.33 Complexes of Groups Associated to Coxeter Systems. In our language,
12 32 can be reformifiated as follows. Let S be the poset of subsets of S ordered by
reverse-inclusion, that is T1 < if T2 C T1. We define a simple complex of groups
W(S) over the poset S: to T c S we associate the group W7; if T2 ç T1 c 5, then

is the inclusion W72 W7 induced by T1 T2. For T = 0 the associated
group is the trivial group, and W5 = W. Note that W is the direct limit of the
groups W7, so we have a canonical morphism i: W(S) —* W (see 12.12).

The affine realization of S is a simplicial subdivision of an n-cube, where n is the
cardinality of S (if T has cardinality k, the stratum indexed by T is an (n— k)-cube, (see
12.4(2))). Let T be a subposet of S and W(T) be the simple complex of groups
obtained from W(S) by restriction to T. The restriction to W(T) of the morphism t
(which is injective on the local groups) will also be denoted t : W(T) —÷ W. Let
be the affine realization of T with its natural stratification and let T) be the
stratified space D(ITI, t) given by the basic construction (12.18). The group W acts
on T) with strict fundamental domain TI. We consider various special cases
of this construction.
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12.34 Examples
(1) If T is the poset of proper subsets of S, then T) is sometimes called

the Coxeter complex of(W, S) (cf. [Bro88J). IfS has cardinality n, this complex has
dimension n — I If W is finite, then T) is an (n — 1)-sphere tesselated by the
translates of the simplex III.

(2) M. Davis [Da98] introduced a different (inequivalent) notion of Coxeter com-
plex He did so by considenng the subposet S consisting of those subsets T c S

such that W1 is a finite group. The geometric realization is a cubical complex,
and the stratified space given by the Basic Construction is a simply con-
nected cubical complex on which W acts properly. Indeed the geometncal realization
of is always contractible, because it is a cone (the cone point corresponds to the
empty subset).

To obtain an explicit example, we consider a polygon P in the hyperbolic plane
such that the angle between each consecutive pair of sides s and s' is of the form

it/rn55', where > 2 is an integer. Let S be the set of sides of the polygon and define
= I and m55' = 00 if the sides are distinct and not adjacent. Let W be the Coxeter

group determined by the Coxeter matrix M = (m55'). In this case is isomorphic
to the barycentric subdivision of P and is isomorphic to the barycentnc
subdivision of a tesselation by polygons congruent to P(see 12. 19(5)).

More generally, if P has some vertices at infinity (and we define mçç' = oo for the
corresponding consecutive sides), then is the poset associated to the stratification
of P in which the strata are P. the sides of P. and the vertices that are not at infinity.
In this case is a subcomplex of the barycentric subdivision of P The stratified
space D(P, t) given by the basic construction is isometnc to a tesselation of by
polygons congruent toP, while is isomorphic to a proper subspace

of P are at infinity, then E(W, is the barycentnc
subdivision of a regular tree; the number of edges issuing from a vertex is equal to
the number of sides of P.

If (W, 5) is a nght angled Coxeter system (meaning that mç1 = 2 or oo for all
s t), then Sf) is the universal covenng of the complex constructed in 5.22.

In his thesis, Gabor Moussong [Mou88] proved that, for any Coxeter system
(W, 5), one can metrize the cells of as Euclidean polyhedra so that in the induced
piecewise Euclidean polyhedral structure, Sf) is CAT(O)

(3) Let L be a finite simplicial graph with vertex set S and suppose that each edge
is assigned an integer rn55 2 (where s and s' are the endpoints of the edge). There
is a natural way to associate to such a labelled graph a two-dimensional polyhedron
K and a group W acting simply transitively on the set of vertices of K, so that the link
of each vertex of K is isomorphic to L, in this isomorphism the edge of L joining s
to s' represents the corner of a polygonal face with 2m5 sides that is incident to the
vertex (see Benakli [Ben9 I a] and Haglund [Hag9 1]). To construct K and W, consider
M = to be a Coxeter matrix with = oo ifs and s' are not joined by an edge
in L, and let W be the associated Coxeter group Let T c Sf be those subsets with
cardinality 2. The geometric realization of is the cone over the barycentric
subdivision of L (see fig 12.13, where L is the union of two edges having a vertex
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in common). The first barycentnc subdivision of K will be the complex T). A
stnct fundamental domain for the action of W on T) is the star of the vertex
corresponding to the empty set.

(4) Haglund's Construction of Gromov Polyhedra. Recall that a simplicial
graph is said to be complete if every pair of vertices is joined by an edge. In this
paragraph we descibe how to construct simply connected polyhedra in dimension
two where the faces are k-gons and the link of each vertex is a complete graph with I
vertices. The existence of such polyhedra was asserted by Gromov [Gro83]. In fact,
as shown by Haglund [Hag9l] and independently by Ballmann-Bnn [BaBr94], there
is an uncountable number of isomorphisms classes of such polyhedra when k > 6
and I > 4. When I = 3, such a polyhedron is a simply connected surface tesselated
by k-gons: if k < 5 this is a sphere, if k = 6 the Euclidean plane, and if k > 6 the
hyperbolic plane.

The construction that we shall descnbe gives a polyhedron XL! with an action of
a group W which is transitive on tnples (vertex, edge, face), where, of course, the
vertex is in the edge, and the edge is in the face. A strict fundamental domain for this
action will be a 2-simplex T of the barycentric subdivision of XL,,.

We start from the Coxeter system (W, S) with S = {So, } and mç0ç = k,

= 3 for i = 1 I — 2. The other non-diagonal entnes are all equal to 2. In
other words, the Coxeter graph is.

k

Se_i

Let S be the poset of subsets of S ordered by reverse-inclusion. Let T be the sub-
poset of S consisting of the proper subsets of S containing p = {s3,. . , The
geometnc realization ofT is the barycentnc subdivision of a tnangle T whose three
vertices TO, Ti and T2 correspond to the subsets of S of cardinality (1— 1) not contain-
ing respectively Si and The barycentre p of T corresponds to the intersection
of these subsets and the barycentre of the side joining Tj, Tk corresponds to the
intersection of the subsets Tj and TL (where {i,j, k} = {O, 1, 2}). (See figure 12 14
where each group is represented by the corresponding Coxeter graph).

The second barycentric subdivision of the polyhedron XLI will be T), on
which we have the usual action of W with T as strict fundamental domain. The
vertices TO, TI, T2 ofT are, respectively, a vertex of XL,, a barycentre of a side of Xk,,
and a barycentre of a face of XL.,. These data define XL, uniquely.

Let us check that the faces of Xk.1 are k-gons. The isotropy subgroup of T2 is
= s,_)' which is the direct product of a dihedral group of order 2k

(generated by and and the subgroup generated by the 5, with i> 2. This second
factor acts tnvially on T and the orbit of T under the dihedral group is a union of 2k
tnangles forming the barycentnc subdivision of a k-gon P.

To check that the link in XL, of the vertex TO IS the complete graph on I vertices, we
note that the isotropy subgroup of TO IS = W(5 SI_i)' which can be represented
as the group of permutations of the set {1 I}, where acts as the transposition
(i, + 1) (see 12.9(3) and 12.23(2)). This action extends to a simplicial action on the
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the second barycentnc subdivision of any polyhedron satisfying the required local
conditions.

It is natural to identify T with a Euclidean tnangle whose angles at the vertices
To, ri, are, respectively, In this way the 2-cells of XL., become
regular Euclidean k-gons. If k > 6, then the Euclidean polyhedron XL! is CAT(O). If
k > 6, then we can metnze the 2-cells of K as regular hyperbolic k-gons with vertex
angles ir/3. The resulting piecewise hyperbolic structure on is CAT(— 1).

Nadia Benakli [Ben92] has shown that, if k is even and at least 8, the boundary at
infinity of XL! is homeomorphic to the Sierpinski curve if 1 = 4, and to the Menger
curve if 1 > 4.

(5) For I = 4, Haglund has constructed a twisted variant Mk , the above complex
XL This arises from a triangle of groups obtained from the one considered above
by replacing the local group at the vertex r2 by the dihedral group DL generated by
the elements so and s1, and then mapping 53 to the central element (SOSI )L E DL.

The local developments for this triangle of groups are the same as in the previous
one, hence if k 6 and we metrize T as a Euclidean triangle as above, the triangle of
groups is non-positively curved, therefore strictly developable by 12.28 Its simply
connected development is a complex ML4 satisfying the same local properties as XL.,.
The direct limit of the tnangle of groups is the group G generated by the elements

53 subject to the relations (s,)2 = = = (sos1 = (s1s3)2 =
(sos2)2 = = 1. In fact Haglund showed directly that this tnangle of groups
is strictly developable for k > 4. Fork = 3 it is not developable.

To see that the complexes XL.! and ML, are not isomorphic, let us fix a polygonal
2-cell P in one of these complexes. Let e1 eL be the sides of P in order Let P1
be a 2-cell adjacent to P along the edge e1 (there are two such cells). Let P2 be the
2-cell adjacent to P1 and to P along e2. By induction we define P1 to be the 2-cell
adjacent to Pt_i and to P along e,. We claim that the polygon PL+l adjacent to PL
and to P along ei is equal to Pi in XL.! and is different from P1 in ML.!.

To see this, we fix our attention on the 2-cell P which contains the fundamental
domain T. It is a k-gon which is the union of the 2k triangles r' (TUs0.T), where
r = s1 acts as a rotation of angle 2ir/k on P. Let e1 be the side of P containing the
vertices r0 and r1 of T. Thek sides ofPare (in order) e1, e2 = r.ei, . ., = .e1.

The element s1 fixes r0 and exchanges ei and e2 The element 53 fixes e1 and e2
and permutes the two other edges issuing from r0. The element fixes e1 and
maps e2 to an edge e2 e1, hence Pi := s2.P is adjacent to P along e1. As
preserves P, reverses the onentation of e1, and commutes with we have = P1

and hence the two other edges of P1 adjacent to e1 are s2.e2 and (sos2).e2. The
face P2 := (s1so).Pi = r.P1 is adjacent to P along e2 and to P1 along the side
(rsos2).e2 = s2.e2. It follows that P1 := P1 is adjacent toP along e, and to
for i k. The face Pk+i = r"P1 is adjacent to P along el and to Pk. In the complex
Xk,4 this face is equal to Pi, while in Mk.4 it is equal to (s3s2).P = s3.P2 P1.



Part III. Aspects of the Geometry of Group Actions

The unifying theme in this part of the book is the analysis of group actions, particularly
actions by isometnes on CAT(O) spaces. The matenal presented here is of a more
specialized nature than that in Parts I and II and the reader may find the style a little
less pedestrian.

Part III is divided into four lengthy chapters, the contents of which were explained
bnefly in the Introduction Each chapter begins with an overview. Chapters III.C
and iii.g are independent of Chapters III.H and III.F. The main arguments in the
chapter on groupoids, lug, rely only on matenal from Part II, but the reader who
digests the chapter on complexes of groups first, III C, will have access to a greater
range of examples in uui.g and may find the ideas more transparent. Likewise, an
understanding of the main points in the chapter on hyperbolic metric spaces, III H,
is required in order to appreciate certain sections in the chapter on non-positive
curvature in group theory, III F.



Chapter III.H 5-Hyperbolic Spaces and Area

In Part II we explored the geometry of spaces whose curvature is bounded above in
a strict, local, sense by means of the CAT(K) inequality. In the non-positively curved
case, the Cartan-Hadarnard Theorem (11.4.1) allowed us to use this local information
to make deductions about the global geometry of the universal coverings of the
spaces under consideration. In this way we were able to generalize classical results
concerning the global geometry of complete, simply connected manifolds of negative
and non-positive curvature.

M. Gromov's theory of 8-hyperbolic spaces, as set out in [Gro87], is based on a
completely different method of generalization. Ignonng the local structure, Gromov
identified a robust condition that encapsulates many of the global features of the
geometry of complete, simply connected manifolds of negative curvature. He then
showed that the geodesic spaces which satisfy this condition (8-hyperbolic spaces)
display many of the elegant features that one associates with the large-scale geometry
of such manifolds. Moreover, the robustness of this condition makes it an invanant
of quasi-isometry among geodesic spaces.

In this chapter we shall present the foundations of the theory of 8-hyperbolic
spaces, and in sections 2 and 3 of the next chapter we shall study the class of finitely
generated groups whose Cayley graphs are 8-hyperbolic.

8-Hyperbolic spaces form a natural context in which to explore the dichotomy
in the large-scale geometry of CAT(O) spaces exposed by the Flat Plane Theorem
(11.9.33): a proper cocompact CAT(O) space is hyperbolic if and only if it does
not contain an isometncally embedded copy of the Euclidean plane (Theorem 1.5).
An important aspect of this dichotomy concerns the behaviour of quasi-geodesics.
In 8-hyperbolic spaces the large-scale geometry of quasi-geodesics mimics that of
geodesics rather closely (Theorem 1.7), whereas this is not the case in spaces that
contain a flat plane (1.8 23). The stability properties of quasi-geodesics and local
geodesics in hyperbolic spaces play an important role throughout this chapter. In
particular this is true in section 3, where we descnbe the Gromov boundary at infinity
for hyperbolic spaces. If the space is CAT(O), the Gromov boundary coincides with the
visual boundary introduced in (11.8), and our construction of the Gromov boundary
is modelled on our earlier treatment of this special case.

In the second section of this chapter we discuss a coarse notion of filling-area for
loops in geodesic spaces. Our purpose in doing so is to charactenze hyperbolicity in
terms of isopenmetnc inequalities (2.7 and 2.9).
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note that since the area of geodesic tnangles in is bounded by ir, there is a bound
on the radius of semicircles that can be inscnbed in a geodesic triangle. El

1.3 Exercise. W is hyperbolic find the best 8

1.4 Proposition. LetX be a proper CAT(O) space Xis hyperbolic if and only if it is
uniformly visible (see II 9.30).

Proof Suppose that Xis 8-hyperbolic. Consider a geodesic triangle in X with vertices
p, x, y, and suppose that the distance from p to [x, y] is greater than p 38 Because
X is 8-hyperbolic, we can find z on [x, y], u on [p, x], and v on [p, y] such that
d(z, u), d(z, v) < 8. Thus d(u, v) < 28 and d(p, u), d(p, v) > p — (S. Applying
the CAT(O) inequality for comparison angles (11.1.7(4)) to u, v), we see that
d(u, v) > (p — (S) y)/2). Thus

y) 2 arcsin[28/(p — 8)],

which is independent ofp and tends toO as p —÷ oo. Therefore Xis uniformly visible.
Conversely, if X is uniformly visible then X is 8-hyperbolic with (S = R(ir/2)

(where R is as in definition (11.9.30)). To see this, consider a geodesic tnangle with
vertices x, y, z and a point p on the side [x, y]. The angles z) and L,,(y, z) must
sum to at least it, so one of these angles, z) say, must be at least ir/2. But then,
by the definition of uniform visibility, d(p, [x, z]) El

As a corollary of (11.9.32 and 33) and (1.4), we get the following theorem.

1.5 Flat Plane Theorem. A proper cocompact CAT(0) space X is hyperbolic if and
only if it does not contain a subspace isometric to 1E2.

Quasi-Geodesics in Hyperbolic Spaces

One of the most important facets of the dichotomy highlighted by the Flat Plane
Theorem concerns the lengths of paths which are not close to geodesics For example,
the following result is blatantly false in any space that contains an isometrically
embedded plane.

1.6 Proposition. Let X be a 8-hyperbolic geodesic space. Let c be a continuous
rectifiable path in X. If [p, q] is a geodesic segment connecting the endpoints of c,
then for every x E [p, q]

d(x, im(c)) < 8
I
log2 /(c)I + I

(Here, as usual, 1(c) denotes the length of c.)
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Proof If 1(c) 1, the result is trivial Suppose that 1(c) > 1. Without loss of
generality we may assume that c is a map [0, 1] —÷ X that parameterizes its image
proportional to arc length. Thus p = c(O) and q = c(1). Let N denote the positive
integer such that < 1 < l(c)/2".

Let = c(1/2)], [c(1/2), c(1)], [c(O), c(1)]) be a geodesic triangle in
X containing the given geodesic [c(O), c(1)]. Given x E [c(O), c(1)], we choose Yl E
[c(O), c(1/2)] U [c(I/2), c(1)] with d(x, Yl) S Ify1 E [c(O), c(1/2)] then we con-
sider a geodesic triangle c(1/2)], [c(1/4), c(1/2)], [c(O), c(1/4)]), which
has the edge [c(O), c(1 /2)] in common with and call this triangle If on the
other hand Yl E [c(1 /2), c(1)], then we consider c(3/4)], [c(3/4), c(1 )],
[c( 1/2), c( 1)]) and call this triangle In either case we can choose Y2 E 'S-.

such that d(y1, Y2) < S.

We proceed inductively: at the (n + 1)-st stage we consider a geodesic triangle
which has in common with Lx,, the side containing and which

has as its third vertex where = + We choose Yn+I E "

with Yn+i) <
At the N-th stage of this construction we obtain a point YN which is a distance at

most SN from x, and which lies on an interval of length with endpoints in
the image of c If we define y to be the closest endpoint of this interval, then since

< I and 2" <1(c) we have d(x,y) S
I
log2 1(c)I + I El

c(1/2)

Fig. 11.2 Geodesics stay close to short curves (1 6)

We shall develop the theme of the preceding proposition by studying quasi-
geodesics in hyperbolic spaces. Quasi-geodesics were defined in (1.8.22). In arbi-
trary CAT(O) spaces quasi-geodesics can be fairly wild; in particular the image of a
quasi-geodesic need not be Hausdorif close to any geodesic (cf. 1.8.23). In contrast,
the large-scale behaviour of quasi-geodesics in S-hyperbolic spaces mimics that of
geodesics rather closely

1.7 Theorem (Stability of Quasi-Geodesics). For all S > 0, A I, e > 0 there
exists a constant R = R(S, A, e) with the following property:

If X is a S-hyperbolic geodesic space, c is a (A, s)-quasi-geodesic in X and [p. q]
is a geodesic segment joining the endpoints of c, then the Hausdorff distance between
[p, q] and the image of c is less than R.
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We defer the proof of this theorem for a moment while we consider some of its
consequences.

By definition, a (A, e)-quasi-geodesic triangle in a metric space X consists of three
(A, e)-quasi-geodesics (its sides) p, : [0, T,] —* X, i = 1, 2, 3 with p1(T1) (0)
(indices mod 3). Such a triangle is said to be k—slim (where k 0) if for each
i e { 1, 2, 3} every point x e im(p,) lies in the k-neighbourhood of im(p,_ j ) U

(indices mod 3).
As an immediate consequence of (1.7) we have:

1.8 Corollary. A geodesic metric space X is hyperbolic and only for every
A > 1 and every e > 0, there exists a constant M such that every (A, e)-quasi-
geodesic triangle in X is M—slim. (If X is 8-hyperbolic, then M depends only on 8, A
and e.)

The following result should be regarded as the analogue in coarse geometry of
the fact that a convex subspace of a CAT( —1) space is a CAT(— 1) space. It shows in
particular that hyperbolicity is an invanant of quasi-isometry.

1.9 Theorem. LetX andX' be geodesic metric spaces and letf : X' —* X be a quasi-
isometric embedding. If X is hyperbolic then X' is hyperbolic. (If X is 8-hyperbolic
andf : —* X is a (A, e)-quasi-isometric embedding, then X' is S'-hyperbolic,
where 8' is a function of 8, A and e.)

Proof Let be a geodesic triangle in X' with sides pj, p3. According to (1.8),
there is a constant M = M(8, A, e) such that the (A, e)-quasi-geodesic triangle in
X with sidesf o o p2.f o p3 is M—slim, i.e. for all x e im(pj) there exists
y e im(p2) U im(p3) such that d(f(x),f(y)) <M. Sincef is a (A, e)-quasi-isometric
embedding,

d(x, y) <A d(f(x),f(y)) + eA <AM + Ae.

Repeating this argument with P2 and in place of p', we see that is 8'—slim,
where 8' = AM + Ae.

Before proving (1.7) we mention one other consequence of it. The spiral described
in (1.8.23) shows that in general quasi-geodesic rays in CAT(O) spaces do not tend
to a definite point at infinity, whereas (1.7) implies that in 8-hyperbolic spaces they
do. (This observation will play an important role in section 3)

1.10 Proposition. Let X1 and X2 be complete CAT(0) spaces that are S-hyperbolic.
Consider X, = X, U with the cone topology (11.8.6).

(1) If c : [0, oc) —* Xj is a quasi-geodesic, then there exists a point of denoted
c(oc), such that c(t) —÷ c(oc) as t —÷ oc.

(2) 1ff : X1 —* X2 is a quasi-isometry, then the : —÷ which sends
the equivalence class of each geodesic ray c : [0, oc) —* X1 to the endpoint
(f o c)(oc) of the quasi-geodesic rayf o c, is a homeomorphism.
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Proof Exercise. (Stronger results will be proved in section 3 of this chapter.) E

Remark. If a finitely generated group I' acts properly and cocompactly by isometries
on geodesic spaces Xj and X2, then I', X1 and X2 are all quasi-isometric (1.8.19). In
particular, if X1 and X2 are CAT(0) spaces that are hyperbolic, then and will
be homeomorphic, by (1.10). Chris Croke and Bruce Kleiner have recently shown50
that in the non-hyperbolic case need not be homeomorphic to

We now turn to the deferred proof of Theorem 1.7. The following technical result
allows one to circumvent the difficulties posed by some of the more pathological traits
of quasi-geodesics

1.11 Lemma (Taming Quasi-Geodesics). LetX be a geodesic space. Given any (A, e)
quasi-geodesic c [a, b] —* X, one can find a continuous (A, e') quasi-geodesic
c': [a, bJ —* X such

(1) c'(a) c(a) and c'(b) c(b);

(2) e' = 2(A + e),

(3) l(c'I[(.']) k1 d(c'(t), c'(t')) + k2,for all t, t' e [a, bJ, where = A(A + e) and
k2 = (Ae' + 3)(A + e);

(4) the Hausdorffdistance between the images of c and c' is less than (A + e).

Proof Define c' to agree with c on = {a, b} U (Z fl (a, b)). Then choose geodesic
segments joining the images of successive points in and define c' by concatenating
linear reparameterizations of these geodesic segments. Note that the length of each
of the geodesic segments is at most (A + e). Every point of im(c) U im(c') lies in the
(A + e)/2 neighbourhood of thus (4) holds.

Let [t] denote the point of closest to t e [a, b]. Because c is a (A, e)-quasi-
geodesic and c([t]) c'([t]) for all t e [a, b],

d(c'(t), c'(t')) < d(c'([tJ), c'([t'])) + (A + e)

1)+(A+2e);

and

—2(A+e)< —1) —(A+2e)

-(A+2s)

< d(c'([tJ), c'([t'])) — (A + e)

< d(c'(t), c'(t'))

This proves that c' is a (A, quasi-geodesic with as in (2).

50"Boundanes of spaces with non-positive curvature", to appear in Topology
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For all integers n, m e [a, b],

1(C'I[nml)
=

d(c(i), c(i + 1)) (A + e)Im — ni,

and similarly 1(C'I[a.mI) (A + e)(m — a + 1) and 1(c'I[fl bI) (A + e)(b — n + 1).

Thus for all 1, t' e [a, bJ we have:

< (A + e)(I [t] — [t'J I + 2),

and

d(c'(t),c'(t'))> 1) —e'.

By combining these inequalities and noting that e <e' we obtain (3). 0

Remark. A slight modification of the preceding argument allows one to extend the
result to length spaces.

Proof of Theorem 1.7. First one tames c, in other words one replaces it by c' as in
the preceding lemma. We write im(c') for the image of c' and [p. q] for a choice of
geodesic segment joining its endpoints. Let D sup{d(x, im(c')) x e [p, qJ} and
let xo be a point on [p, q] at which this supremum is attained. The open ball of radius
D with centre does not meet im(c'). We shall use (1.6) to bound D.

Lety be the point of [p, xoj C [p, qJ that is a distance 2D fromx0 (if d(xo, p) <2D
then let y = p). Choose z e [xo, qJ similarly We fix y', z' e im(c') with d(y, y') D
and d(z, z') < D and choose geodesic segments [y, y'] and [z', z] (See figure H.3.)
Consider the path y from y to z that traverses [y, y'J then follows c' from y' to z', then
traverses [z', z]. This path lies outside B(xo, D).

Fig. 11.3 Quasi-geodesics are close to geodesics

Since d(y', z') <d(y', y) + d(y, z) + d(z, z') <6D, from 1.11(3) we have 1(y) <
+k2+2D. Andfrom(1.6),asd(x0, im(y)) = DwehaveD— 1 <8 log2 i(y)l.

Thus
D — 1 <8 log2(6Dk1 + k2 + 2D),

whence an upper bound on D depending only on A, e and 8. Let D0 be such a bound.
We claim that im(c') is contained in the k-neighbourhood of [p. q], where R' =

Do(1 + k1) + k2/2. Consider a maximal sub-interval [a', b'] c [a, b] such that
c'([a', b']) lies outside the D0-neighbourhood V00[p, q] Every point of [p, q] lies in
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V00(im(c')), so by connectedness there exist w e [p, q], t e [a, a'] and 1' e [b', b]
such that d(w, c'(t)) < D0 and d(w, c'(t')) < Do. In particular d(c'(t), c'(t')) <
2D0, so 1(c'I[,,']) < 2kjDo + k2, by (1.11(3)). Hence im(c') is contained in the R'
neighbourhood of [p, q]. From this and (1.11(4)) it follows that R = R' + A + e
satisfies the statement of the theorem. E

k-Local Geodesics

The following result provides a useful companion to Theorem 1.7. It gives a local
critenon for recognizing quasi-geodesics.

1.12 Definition. Let X be a metric space and fix k > 0. A path c: [a, b] —÷ Xis said
to be a k-local geodesic if d(c(t), c(t')) It — t'I for all t, t' E [a, b] with jt — t'j < k.

1.13 Theorem (k-Local Geodesics are Quasi-Geodesics). Let X be a S-hyperbolic
geodesic space and let c: [a, b] —÷ X be a k-local geodesic, where k> 88. Then:

(1) im(c) is contained in the 28-neighbourhood of any geodesic segment [c(a), c(b)]
connecting its endpoints,

(2) [c(a), c(b)] is contained in the 38-neighbourhood of im(c), and

(3) c is a (A, e)-quasi-geodesic, where e = andA = (k + 48)/(k —48)

Proof First we prove (1). Let x c(t) be a point of im(c) that is at maximal distance
from [c(a), c(b)]. First suppose that both (t a) and (b — t) are greater than 48 Then
we may suppose that there is a subarc of c centred at x of length strictly greater than
88 but less than k. Let y and z be the endpoints of this arc and let y' and z' be points on
[c(a), c(b)] that are closest toy and z respectively. Consider a geodesic quadrilateral
with vertices y, z, y', z' such that the sides [y, z] and [y', z'] are the obvious subarcs
of c and [c(a), c(b)]. By dividing this quadrilateral with a diagonal and applying the
8-hyperbolic criterion to each of the resulting triangles, we see that there exists w
on one of the sides other than [y, z] such that d(w, x) If w e [y, y'] then there
would be a path through w joining x to y' that was shorter than d(y, y'):

d(x, y') — d(y, y') < [d(x, w) + d(w, y')J — [d(y, w) + d(w, y')]

= d(x, w) — d(y, w)

<d(x,w) — [d(y,x) —d(x,w)]

= 2d(x, w) d(x,y)

<48—48 =0,

and this contradicts the choice of x. If w e [z, z'] then we obtain a similar contradic-
tion. Thus w e [y', z'] and hence the distance from x to [c(a), c(b)] is at most A
similar argument applies in the cases where at least one of (t — a) or (b — t) is less
than 48. (In fact, in those cases x lies in the 8-neighbourhood of [c(a), c(b)].)



406 Chapter IILH 8-Hyperbolic Spaces and Area

We now prove (2). Suppose that p e [c(a), c(b)]. Every point of im(c) lies in one
of the two open sets that are the 28-neighbourhoods of [c(a), p1 and [p, c(b)]. Since
im(c) is connected, some x e im(c) lies in both; choose q e [c(a), p1, r e [p. c(b)]
such that d(x, q) <28 and d(x, r) <28. By applying the 8-hyperbolic condition to a
geodesic triangle with vertices x, q, r, we see thatp e [q, r] is in the 8-neighbourhood
of [x, q] U [x, r] and hence d(p, x) <38.

For (3), note first that d(c(t), c(t')) < it — t'I for all 1, t' e [a, b]. In order to bound
d(c(t), c(r')) below by a linear function oft — we shall argue that if one divides
c into subpaths of length k' k/2 + 28 and projects the endpoints of these subarcs
onto [c(a), c(b)], then the points of projection form a monotone sequence. To this
end, we consider a subarc of c with length 2k'. Let x and y be the endpoints of this
arc and m be the midpoint of the arc; let x', y' and m' be points of [c(a), c(b)J that
are a distance at most from x andy and m respectively. We must show that m' lies
betweenx' and y'.

Let x0 (resp. Yo) be the point on the image of c that is a distance 28 from x
(resp. y) in the direction of m. By 8-hyperbolicity, any geodesic triangle x', xo)
is contained in the 38-neighbourhood of x and therefore (since d(x, m) = > 68)
any such triangle lies outside the 38-neighbourhood of m. Similarly, there exists a
geodesic triangle y', yo) outside the 38-neighbourhood of m. By applying the
8-hyperbolic condition to the (obvious) geodesic quadrilateral (x', xo, Yo. y') (divided
into two triangles by a diagonal), we deduce that m lies within a distance 28 of some
point rn" e [x', y'] C [c(a), c(b)]. Any point between m' and rn" is a distance at most
38 from m (by the hyperbolicity of m', m")). In particular, neitherx' nor y' lie
between m' and rn", which means that m' e [x', y'], as we wished to prove.

We express c as a concatenation of M < (b — a)/k' geodesics of length k' with a
smaller piece, of length say, at the end. By the preceding argument, the projections
(choice of closest points) of the endpoints of these geodesics on [c(a), c(b)] form a
monotone sequence. By (1), the distance between successive projections is at least

— 48. And by the triangle inequality, the distance from the last projection point to
c(b) is at least —

Thus we have
b — a = Mk' +

and

d(c(a), c(b)) > M(k' — 48) + — 28 = (b a) — 48M — 28.

Since M <(b — a)/k', we deduce that

d(c(a),c(b))> (b—a) — 28.

This together with the (tnvial) remark that a subpath of a geodesic is again a
k-local geodesic proves (3). 0

The above theorem shows that if k > 88 then there are no non-trivial closed
k-local geodesics in a 8-hyperbolic space:
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1.14 Corollary. If X is a S-hyperbolic geodesic metric space and c . [a, bJ —* X is

a k-local geodesic for some k > 88, then either c is constant (i.e., a b) or else
c(a) c(b).

Proof If c(a) = c(b) then by the above theorem im(c) is contained in the ball of
radius 28 about c(a). Since c is an 88-local geodesic, this implies that c is constant.

0

Remark. By combining (1.7) and (1.13) in the obvious way one gets a criterion for
seeing that paths which are locally quasi-geodesic (with suitable parameters) are
actually quasi-geodesics.

Although quasi-geodesics stay Hausdorif close to geodesics in 8-hyperbolic
spaces, trivial examples show that they need not be uniformly close. On the other
hand, in any metric space, if geodesics with a common ongin are Hausdorff close
then they must be uniformly close. In hyperbolic spaces one can say more:

1.15 Lemma. Let X be a geodesic space that is 8-hyperbolic and let c, c' [0, T] —÷

X be geodesics with c(O) c'(O). If d(c(to), im(c')) < K, for some K > 0 and
to e [0, TI, then d(c(t), c'(t)) < all t < t0 — K — 8.

Let cj : [0, J —* X and c2 : [0, T2] —* X be geodesics with cj (0) = c2(O). Let
T = max{Tj, T2} and extend the shorter geodesic to [0, TI by the constant map. If
k d(cj(T), c2(T)), then d(cj(t), c2(t)) < 2(k + 28)for all t e [0, TI.

Proof To prove the first assertion, we choose a geodesic co joining c(to) to a closest
point c'(tj) on the image of c'. By the triangle inequality to — tj

I
<K. Note that c(t)

is not 8-close to any point on co if t < to — K — 8. It follows from the 8-slimness of
the triangle with sides co, c([O, t0]), c'([O, tj]) that d(c(t), c'(t')) < 8 for some r'. By
the triangle inequality It — 8. Therefore d(c(t), c'(t)) <

To prove the second assertion we consider a geodesic triangle two of whose sides
are cj and c2. If cj(t) is 8-close to a point c2(t'), then as above It — t'I <8 and hence
d(cj(t), c2(t)) < 28. If cj(t) is 8-close to a point on the third side of the tnangle,
then it is (k + 8)-close to the endpoint of c2 and, as in the first case, this implies that
d(cj(t), c2(t)) < 2(k + 8). E

Reformulations of the Hyperbolicity Condition

In this section we shall describe some alternative ways of phrasing Gromov's hy-
perbolicity condition for geodesic spaces. Each of the reformulations that we shall
discuss is mentioned in Gromov's original article [Gro87].
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Thin Triangles

It is often useful to think of 8-hyperbolic spaces as being fattened versions of trees5
With this in mind, we wish to compare triangles in arbitrary metric spaces to tnangles
in metric trees.

Given any three positive numbers a, b, c, we can consider the metric tree T(a, b, c)
that has three vertices of valence one, one vertex of valence three, and edges of length
a, b and c. Such a tree is called a tripod. For convenience, we extend the definition
of tripod in the obvious way to cover the cases where a, b and c are allowed to be
zero. Thus a tripod is a metric simplicial tree with at most three edges and at most
one vertex of valence greater than one.

Given any three points x, y, z in a metric space, the triangle equality tells us that
there exist unique non-negative numbers a, b, c such that d(x, y) = a + b, d(x, z) =
a + c and d(y, z) = b + c; in the notation of (1.19), a = (y . b

(x an isometry from {x, y, z} to a subset of the vertices of T(a, b, c)
(the vertices of valence one in the non-degenerate case); we label these vertices
v,, in the obvious way.

Given a geodesic triangle, = y, z), we define TA T(a, b, c), and write

OA to denote the central vertex of TA (i.e., the point a distance a from vi). The
above map {x, y, z} —* extends uniquely to a map xA : —+ whose
restnction to each side of is an isometry.

A natural measure of thinness for is the diameter of the fibres of The
only fibre that may have more than two points is (oA), which contains one point
on each of the sides of The points of are called the internal points of

Note that these internal points are the images in of the points at which the
comparison triangle c W meets its inscribed circle (figure H.4).

1.16 Definition (8-Thinness and Insize). Let be a geodesic triangle in a metric
space X and consider the map XA —* TA defined above. Let 8 ? 0.

is said to be S-thin if p, q e implies d(p, q) <8, for all t e TA.
The diameter of (ott) is denoted insize

1.17 Proposition. LetX be a geodesic space. Thefollowing conditions are equivalent.

(1) There exists > 0 such that every geodesic triangle in Xis 8o-slim (definition
1.1).

(2) There exists > 0 such that every geodesic triangle in X is 8j -thin (definition
1.16).

(3) There exists 82 > 0 such that insize < 82 for every geodesic triangle in X
(definition 1.16).

See [Bow9l], [CDP9I], [Gro87] and [GhH9O] for precise results regarding approximation
by trees
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Fig. 11.4 The internal points of and the tripod

z

Proof It is obvious that (2) implies (1). To prove that (1) implies (3), we assume that
every triangle in X is 80-slim and consider a geodesic triangle y, z) with internal
points i, (where i, e [y, z], etc.). By hypothesis, i, lies in the So-neighbourhood
of either [y, x] or [z, xJ; say d(x, p) < 8o where p e [y, x]. By the triangle inequality,
Id(y,p) — d(y, ix)I < 8o Since d(y, ix) = d(y, ii), it follows that < 8o and
hence < 28o. Similarly, < and < Hence
insize 48o.

Now assume that (3) holds and let y, z) be a geodesic triangle in X with
internal points If p e [y, z] is such that d(y, p) < d(y, ix), then the fibre of

containing p is (p, q}, where q e [y, x] is the point with d(y, p) — d(y, q). We
shall bound d(p, q) by constructing a geodesic triangle for which p and q are internal
points.

Letc: [0, 1] —÷ Xbeamonotoneparametenzationof[y, zjandforeacht e [0, 1]
consider a geodesic triangle — y, c(t)) two of whose sides are [y, xJ C
and c([O, 1]). The internal point of on the side c([O, t]) varies continuously (though
perhaps not monotonically) as a function of t. At t 0 this point is y and at t = 1 it
is so for some t0 e [0, 1] it isp. And since d(y, p) d(y, q), it follows that q is
also an internal point of 0

1.18 Exercise. Prove that the above conditions are equivalent to: there exists > 0

such that for every geodesic triangle y, z) in X,

inf{diam(x', y', z')
I
x' e [y, z], y' e [x, z], z' e [x, y]} <

1
z

b

a
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The Gromov Product and a 4-Point Condition

The Gromov product on a metric space (sometimes called the overlap function)
measures the lengths of the edges of the tnpods described in the paragraph on thin
triangles.

1.19 Definition. Let X be a metnc space and let x e X. The Gromov product of
y, z e X with respect to x is defined to be

(y . Z)x is the distance from the companson point for x to the adjacent
internal points in a companson triangle y, z) C E2 (See figure H.4.)

Note that if y, z) is a geodesic triangle in any metric space X, then
d(x, [y, zi) < (y + insize And if is 8-thin, then Id(x, [y, z]) — (y < 8.

In the following definition X is not required to be a geodesic space.

1.20 Definition. Let 8 > 0. A metric space X is said to be (8)-hyperbolic if

(x Y)w

for all w, x, y, z e X

1.21 Remark. It is not difficult to show that if there exists some w e X such that the
above inequality holds for all x, y, z e X, then Xis (28)-hyperbolic, i.e. the inequality
holds for alix, y, z, w if one replaces 8 by 28 See [Gro87, 1 1B].

Henceforth, when we say that a metric space is hyperbolic we shall mean that it
is (8)-hyperbolic for some > 0. Proposition 1.22 shows that this usage agrees with
our previous convention (1.1) in the case where X is a geodesic space.

There is a disturbing asymmetry about the respective roles of w, x, y and z in the
above definition. To understand this, we first unravel the definition of the Gromov
product, rewriting the above inequality as a 4-point condition

(Q(8)) d(x, w) + d(y, z) < max{d(x, y) + d(z, w), d(x, z) + d(y, w)} +

for all w, x, y, z e X.
The geometry behind this equality becomes apparent if we think of w, x, y, z as

the vertices of a tetrahedron; d(x, y) + d(z, w), d(x, z) + d(y, w) and d(x, w) + d(y, z)
correspond to the sums of the lengths of the three opposite pairs of edges. With this
picture in mind, we call these three sums the pair sizes of {w, x, y, z} The inequality
Q(8) states that if we list the pair sizes in increasing order, say S < M < L, then
L M < 28.

Suppose S d(x, z)+d(y, w), M d(x, y)+d(z, w) and L = d(x, w)+ d(y, z).
In terms of comparison triangles, the inequality S < M means that by choosing
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adjoining comparison triangles w, y) and w, z) in E2 we obtain the con-
figuration shown in (H.5), with 1> 0. (For convenience, we have omitted the overbars
in labelling the comparison points.) We shall examine the inequality L — M < 28 in
terms of this comparison figure.

y

w

1.22 Proposition. LetX be a geodesic space Xis hyperbolic in the sense of (1.17)
and only if there is a constant 8 > 0 such that X is (8)-hyperbolic in the sense of

(1.20).

Proof First we shall show that if insize < 8 for all geodesic triangles in X, then
X is (8)-hyperbolic.

Given w,x,y, z e X, wemay assume withoutloss of generality thatS := d(x, z)+
d(y, w) <M := d(x, y) + d(z, w) <L := d(x, w) + d(y, z). What we must show
is that L < M + 28. Let (x, w, y) and w, z) be geodesic triangles,
and denote their interior points by (ii, and respectively (see figure
H.5). By considering the path from y to z that proceeds via ii,, and we get
d(y, z) < d(y, + + + + z), which, in the notation
of the diagram, is (b + + I + i'm) + d). Also d(x, w) = a + c I. Thus

Now we shall assume thatX is (8)-hyperbolic and deduce that insize < 68 for
all geodesic triangles = y, z) in X We first focus our attention on the internal
point i1 e [y, zi of and apply the condition Q(8) to the four points {x, y, z,
Note that d(x, + d(y, z) is the largest of the three pair sizes for {x, y, z, Indeed
2(d(x, z)) [d(x, z)]+[d(x, z)isgreaterthan
the perimeter P of & whereas the other pair sizes are (d(z, + d(x, y)) = (d(y, +
d(x, z)) = P/2. Therefore (d(x, + d(y, z)) <P/2 + 28. Since d(y, z) + d(x, =
P/2, we deduce that d(x, — d(x, 28. Similarly, Id(z, d(z, < 28.

Now consider the fourpoints {x, z, (see figure H.6). In this case the three pair
sizes are d(x, z) = d(x, + d(z, it), + d(x, z), and d(x, + d(z, is). By the
inequalities above, the third of these terms is < d(x, + d(z, + 48 = d(x, z) + 48.
Thus we see that the last two of the three pair sizes listed are the largest. And applying
Q(8) we deduce that < 68. Similarly, < 68 and i,) < 68. E

Fig. 11.5 The case y) + d(z, w) > d(x, z) + d(y, w)
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z

Fig. H.6 Proving that (5)-hyperbolic implies S'-hyperbolic

y

1.23 Exercise. Show that there exist quasi-geodesic rays in the Euclidean plane whose
images, equipped with the induced metric from 1E2, are not for any

> 0. (The spiral described in (1.8.23) provides one such example; the ray given in
rectangular coordinates by t i—* t) is another.) Deduce that hyperbolicity is not
an invanant of quasi-isometry among arbitrary metric spaces (cf. 1 9).

Divergence of Geodesics

A key difference between Euclidean and hyperbolic geometry is that in the Euclidean
plane if two distinct geodesic rays c1 and c2 have a common origin p then for all
1> 0 one can connect (t) to c2(t) by a path outside B(p, 1) that has length at most
in, whereas in the hyperbolic plane the length of the shortest such path increases as
an exponential function of t. In order to discuss such divergence properties in greater
generality we need the following definition.

1.24 Definition. Let X be a metric space. A map e : —> R is said to be a divergence
function for X if the following condition holds for all R, r e N, all x e X and all
geodesics : [0, a1] —÷ X and c2 : [0, a2] —÷ X with cj(O) = c2(O) = x.

If R + r < min{a1, a2} and d(c1(R), c2(R)) > e(0), then any path connecting
(R + r) to c2(R + r) outside the ball B(x, R + r) must have length at least e(r).

1.25 Proposition. Let X be a geodesic space. If X is hyperbolic, then X has an
exponential divergence function.

i
z

i
a:
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Proof Suppose that triangles in X are 8-thin. We claim that e(n) = max{38,
is a divergence function for X. Let c1 and C2 be as in the preceding definition and
suppose thatR, r e N are such that d(c1(R), c2(R)) > 38 and R + r < min{a1, a2}.

Let Yl = c,(R + r) for i = 1, 2, and consider a geodesic triangle with sides
([0, R + r]), c2([O, R + r]) and [yj y2]. Note that since d(c1 (R), c2(R)) > 38, the

internal points of on the sides R + rJ) are a distance less than R — 8 from
x = c,(O), and hence the internal point on Y21 (which is actually the midpoint
m) is a distance less than R from x. Thus B(m, r) C B(x, R + r), and hence any path
joining to y2 in the complement of B(x, R + r) lies outside B(m, r). According to
(1.6), such a path has length at least

c2( ) c2(R+r)

Fig. H.7 Exponential divergence of geodesics

There is a (strong) converse to the preceding proposition:

1.26 Proposition. Let X be a geodesic space If X has a divergence function e such
that lim e(n)/n = 00, then X is s-hyperbolic for some 3 > 0.

1.27 Exercise (The Proof of (1.26)). We sketch the proof, leaving the details as
an exercise for the reader (cf. [Sho9l, p 37]). Consider a geodesic triangle =

y, z). Let [0, a] —÷ X, I = 1, 2 be the sides of issuing from x and define
to be sup{to < e(0) Vt < t0} Define and similarly. Show that

if + > d(x, y) then is s-slim, where depends only on e. Now assume that if
we delete from the images of Tm]), j = 1, 2, w e {x, y, z}, then we are left
with three non-empty segments. Without loss of generality we may suppose that the
segment contained in [x, y] is the longest of the three and that the one contained in
[y, z] is the second longest; let p be the midpoint of the former and let q be the point
of [y, z] that is a distance L := d(y, p) from y. Show that there is a path of length

2L + 6e(0) from p to q outside the open ball of radius L about y and use the fact
that lim e(n)/n = oo to bound L. Deduce from this bound that triangles in X
are uniformly thin.
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2. Area and Isoperimetric Inequalities

In this section we shall describe notions of area that are useful in the context of
geodesic metric spaces and consider the relationship between curvature and isoperi-
metric inequalities, which relate the length of closed curves to the infimal area of
the discs which they bound. It is well-known that every closed loop of length £ in
the Euclidean plane bounds a disc whose area is less than £2/4ir, and this bound is
optimal Thus one has a quadratic isopenmetric inequality for loops in Euclidean
space. In contrast, loops in real hyperbolic space satisfy a linear isoperlmetnc in-
equality there is a constant C such that every closed loop of length £ in IHI" bounds a
disc whose area is less than or equal to CL The main goal of this section is to prove
that (with a suitable notion of area) a geodesic space X is if and only
if loops in X satisfy a linear isoperimetnc inequality. We shall also see that there is
a quadratic isoperimetric inequality for loops in arbitrary CAT(O) spaces (2.4), and
we shall see that the sharp distinction between linear and quadratic isoperimetric
inequalities is very general (2.13).

A Coarse Notion of Area

In order to begin a serious discussion of isoperimetric inequalities we must define a
notion of area that is sufficiently robust to withstand the lack of regulanty in arbitrary
geodesic spaces.

2.1 Definitions (s-Filling, Areas and Isoperimetnc Inequalities). Let D2 denote the
unit disc in the Euclidean plane (so 8D2 = A triangulation of D2 is a homeo-
morphism P from D2 to a combinatorial 2-complex in which every 2-cell is a 3-gon
(i.e. its attaching map has combinatonal length three see I.8A for definitions).
We endow D2 with the induced cell structure and refer to the preimages under P of
0-cells, 1-cells and as, respectively, the vertices, edges and faces of P.

Let X be a metric space. Let c : —* X be a rectifiable loop in X. An s-filling
(P, of c consists of a triangulation P of D2 and a (not necessarily continuous)
map : D2 —÷ X such that = c and the image under of each face of P is a
set of diameter at most s. We write to denote the number of faces of P and refer
to this as the area of the filling. One says that c spans The s-area of c is defined
to be:

:= an s-filling of c}.

(If there is no s-filling then oo.) An s-filling of c is called a least
s-area filling if =

A function f : [0, 00) —÷ [0, oo) is called a coarse isoperimetric bound for X
if there exists s > 0 such that every rectifiable loop c in X has an s-filling and
Area6(c) <f(l(c)).

1ff is linear (resp. quadratic, polynomial, exponential, etc.) then we say that X
satisfies a (coarse) linear (resp. quadratic, polynomial, exponential etc.) isoperimetric
inequality.
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Recall that, given two functionsf, g : [0, oo) —> [0, oo), one writesf g if there
exists a constant K> 0 such thatf(x) < Kg(Kx + K) + Kx + K for all x e [0, oo).
One writesf g if, in addition, g

2.2 Proposition. Let X' and X be quasi-isometric length spaces. If there exists e > 0

such that every loop in X has an e-fihling, and (c) -< f(l(c))for every rectifiable
loop c in X, then X' admits a coarse isoperimetric boundf' f.

Proof Exercise Follow the proof of (1.8.24) to construct fillings, and count the
number of faces. El

2.3 Remarks
(1) The triangulations P in definition 2.1 are not required to be simplicial, for

instance the attaching map of a 2-cell need not be injective, and a pair of closed
2-cells may have two faces in common.

The number of vertices, edges and faces in any triangulation of a disc satisfy the
obvious relations V 2E, E 3F, F < 2E/3 and hence, by Euler characteristic,
V 1 + 2E/3 Thus if one were to define area by counting the minimal number of
edges or vertices in a triangulation, instead of faces, the resulting notions would be

equivalent to the one that we have adopted.

(2) We shall use the following observation implicitly on a number of occasions.
Since e-fillings need not be continuous, if one has specified a filling map on the
vertices of a triangulation of the disc, then one can extend across edges and triangles
in the interior of the disc by simply sending them to the image of a vertex in their
boundary. Thus, given a loop, if one wishes to exhibit the existence of an e-filling
of a given area, then one need only specify a triangulation of the disc and specify a
map on the vertices of the triangulation, ensuring that the vertex set of each triangle
in the interior of the disc is sent to a set of diameter at most e, and ensuring that if a
triangle has sides in the boundary circle then the image of these sides together with
the set of vertices has diameter at most e.

(3) If e' > e then obviously Area6'(c) for all rectifiable loops c in a
given space X Thus as one increases e, the = 1(c) < l}
(which need not be finite) may decrease. For example, consider the closed unit disc
D c and the loops c,1 : —÷ X given in complex coordinates by c(z) = z". If
e > 0 is small, then for a suitable constant k > 0 we get > kn for all
n > 0, whereas if e > 2 then Area6(c) = 1 for all loops in D.

(4) Instead of insisting that e-fillings should be given by triangulations of the disc,
one could allow decompositions of the disc into combinatorial complexes for which
there is an integer k ? 3 such that the boundary of each 2-cell has at most k faces.
This leads to an equivalent notion of area, for if we write for the resulting
notion of area, then an obvious subdivision shows that Area6(c) < (k —

for all rectifiable loops, and trivially Area6(c)

(5) Let X be a metric graph in which all edges have length one. Given a loop
c: —÷ X, proceeding along c from a vertex u1 in the image we record the vertices
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that c visits v1, v2. = where we record v, only if it is distinct from (in
other words we do not record the occasions on which c returns to a vertex without
visiting any other vertices). Say v, = c(t1).

Let c' be the combinatorial loop in X obtained by concatenating the edges
[v1_1, vJ. If e > 2, then in order to construct an e-filling of c : S' —÷ X we can
inscribe an n-gon in with vertices t, map this n-gon to X by c' in the obvious
way, fill the n-gon with an e-filling of c', and then extend the given triangulation of
the n-gon to a triangulation of the disc by introducing extra edges and vertices (as
necessary) in the sectors bounded by the arcs and chords the image of the
boundary of each of these sectors has diameter less than 2, so it suffices (see (2)) to
introduce a new vertex on the arc joining t1 to and to introduce an edge joining
this vertex to each of the vertices of the filling of c' that lie on t,].

This construction bounds by a linear function of and 1(c). Thus
for any metric graph with unit edge lengths, if e > 2 then the described
in (3) is equivalent to the function

I
1(c') 1, c' an edge-loop}.

2.4 Example. Every CAT(O) space satisfies a quadratic isoperimetric inequality. In-
deed if X is a CAT(O) space, for every e > 0 and every rectifiable loop c . —> X one
has Areas (c) < 2(41(c)/e+ 1)2. To see this, divide S into L arcs of equal length, where
L is the least integer such that 41(c) < eL; let . . . , = be the endpoints of
these arcs. To define the 1-skeleton of an e-filling of c, for i = 2 Lone sends each
of the Euclidean segments a, = to the geodesic segment [c(Oj), c(01)] c X,
then one introduces equally spaced vertices = v,,o, v,1 ViL = 0, along each
a1, for i < L one connects each to both VHj,j and by line segments, and
one connects each V2j and to The convexity of the metric on X ensures that
this is an e-filling, and there are less than 2L2 triangular faces in the filling.

2.5 Exercises
(1) An (P, of a loop c in a metric space X is said to be piecewise

geodesic if the restriction of
of a geodesic segment in X. Suppose that X is a geodesic space and that c is

rectifiable. If c admits an e-filling, then it admits a piecewise geodesic 3e/2-filling
with =

(2) Let X be a geodesic space. Given e > > 0, if there exists a constant
K(e, e') > 0 such that Area6'(y) K for all rectifiable loops y with 1(y) <3e, then
there is a constant K' such that Areae'(c) K' AreaE(c) for all rectifiable loops c in
x.

(Hint: Given c, consider a piecewise geodesic filling as in (J) and choose a least-
area of the boundary of each face. The union of these e'-fillings gives a
combinatorial structure on the disc in which each 2-cell has (comfortably) less than
6K edges in its boundary — triangulate each of these 2-cells without introducing
new vertices.)

(3) Let X be a CAT(K) space. Prove that for all e' < e < there exists a
constant k = k(e, e', K) such that < k AreaE(c) for all rectifiable curves c
in X. (See (2) and (2.4). Compare with (2.17).)
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(4) Let X be a geodesic space. Suppose that there exists eo > 0 such that (c)
is finite for all rectifiable loops in X, and for all e > eo there is a constant K(e, eo)
satisfying (2). Use (2.2) to show that if X' is a metric space quasi-isometnc to X, then
for all sufficiently large e' and e" the (as defined in 2.3(2)) take
finite values and are equivalent.

(5) Let X be the Cayley graph of a finitely presented group F. Prove that if N e
is sufficiently large then f,5(l), as defined in (2.3(3)), is equivalent to the Dehn
function of F, as defined in (I.8A).

The Linear Isoperimetric Inequality and Hyperbolicity

The purpose of this section is to characterize geodesic spaces as those
which satisfy a linear isoperimetric inequality (in the coarse sense defined in (2.1)).
In the light of (2.2) and the quasi-isometry invariance of hyperbolicity (1.9), there
is no loss of generality in assuming that the spaces under consideration are metric
graphs with integer edge lengths. For hyperbolic graphs there is an efficient way of
filling edge-loops that is essentially due to Max Dehn52 [Dehnl2a]; the proof of (2 7)
is a straightforward implementation of this method.

2.6 Lenuna. Let X be a metric graph whose edges all have integer lengths, and
suppose that X is 8-hyperbolic where > 0 is an integei Given any non-trivial
locally-infective (hence rectifiable) loop c [0, 1] —÷ X beginning at a vertex, one
canfinds, t E [0, ljsuchthatc(s)andc(t)areverticesofX,d(c(s), c(t)) < l(cI[cf])—1
and d(c(s), c(t)) + < 16&

Proof Note that the difference in length between any two locally-injective paths with
common endpoints at vertices of X is an integer. According to (1.13), X contains no
closed loops which are k-local geodesics for k = + Choose a non-geodesic
subarc dES0 of c that has length less than + and choose a geodesic connecting
c(s0) to c(to). Define c(s) and c(t) to be the first and last vertices of X through which
this geodesic passes. (If c(so) is a vertex then s = 5o, if not then the edge containing
c(so) is the image under c of an arc one of whose endpoints is s. Likewise for t.) El

2.7 Proposition. Let X be a geodesic space. If X is s-hyperbolic, then it satisfies a
linear isoperimetric inequality.

Proof According to (1.8.44), X is quasi-isometric to a metric graph X' with unit edge
lengths, and according to (1.9) this graph is for some > 0. If we

52 his foundational paper [Dehnl2a], Dehn applied this method to graphs which anse as the
1-skeleton of a periodic tesselation of the hyperbolic plane, and used it to solve the word
problem for surface groups (see F 2 4).



418 Chapter 1I1.H S-Hyperbolic Spaces and Area

can show that X' satisfies a linear isoperimetric inequality, then it will follow from
(2.2) (where the roles of X and X' are reversed) that X satisfies a linear isoperimetric
inequality.

Assume that X is a metric graph with unit edge lengths. Assume that X is
hyperbolic where 8 1 is an integer. In what follows it is convenient to use the term
edge-loop in a metric graph to describe loops which are the concatenation of a finite
number of paths each of which is eitheraconstant speed parameterization of an edge
or a constant map at a vertex. As usual, we write 1(c) for the length of such a loop c
We write 1o(c) to denote the number of maximal non-trivial arcs where c —> Xis
constant. Note that 10(c) 1(c)+ 1. A standard e-filling of an edge-loop is an e-filling
given by a triangulation of the disc such that all of the vertices on the boundary circle
are points of concatenation of the given edge-loop, and each edge of the triangulation
is either mapped to a concatenation of edges in X or else is sent to a vertex of X by
a constant map. We shall prove by induction on 1(c) + 1(co) that every edge-loop in
X admits a standard 168-filling of area + 2)(1o(c) + 1(c)). In the light of 2.3(5),
it will follow that X satisfies a linear isoperimetric inequality.

The first few steps of the induction are trivial. For the inductive step, given an
edge-loop c : —÷ X with 1(c) > 2, we consider how to reduce I0(c) + 1(c).
If lo(c) = 0, then c is either locally injective or else it contains a subpath which
backtracks (i.e traverses an edge and then immediately returns along that edge). To
begin our construction of a filling for c, in the latter case we connect the endpoints s, I
of a backtracking subpath by a Euclidean segment in the disc and send this segment
to X by a constant map; in the former case we choose s and t as in Lemma 2.6 and
map the segment connecting s to Ito a constant speed parameterization of a geodesic
segment joining c(s) to c(t) in X. If 1o(c)> 1 then we focus on a subpath clEc!, which
is the concatenation of a maximal subpath of length zero (defined on a non-trivial
arc) and a subpath of length one. We again connect s to I by a Euclidean segment in
the disc and map this segment to X as a constant speed parameterization of a geodesic
segment [c(s), c(I)J.

In each of these three situations, we have begun to fill c by dividing the disc
into two sectors, one (the "small" sector) whose boundary maps to an edge-loop
(containing c([s, I])) of length at most J and one (the "big" sector) whose boundary
map is an edge-loop c' with 1o(c') + 1(c') < lo(c) + 1(c). By induction, we may fill this
big sector with a standard 1 (P, of c' that has at most +2)(lo(c')+I(c'))
faces Subdividing and adding two extra faces if necessary, we may assume that s
and I are vertices of P. The restriction of to the Euclidean segment [s, IJ is a

concatenation of at most 88 edges and hence its interior contains fewer than 83
vertices from the triangulation of the filling. To complete the desired standard
filling of c, we introduce edges connecting this set of vertices to a vertex introduced
on S' between s and I. El

2.8 Remarks
(1) By unraveling the various components of the above proof, one can show that

there exist universal constants e, > 0 such that for every 8 > 0, every 3-hyperbolic
geodesic space X and every rectifiable curve c in X, one has AreaP(s+ (c) 1).
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The following result provides a converse to (2.7) and thereby completes the
characterization of hyperbolic spaces as those which satisfy a linear isoperimetric
inequality. Our proof is based on that of Short [Sho9 1J. (See also [01911 and [Lys9OJ.)

2.9 Theorem (Linear lsoperimetric Inequality Implies s-Hyperbolic). Let X be a

geodesic metric space. If there exist constants K, N > 0 such that AreaN(c) <
Kl(c) + Kfor every piecewise geodesic loop c in X, then X is 8-hyperbolic, where
depends only on K and N.

Proof Again, in the light of (1.8.44), (1.9) and (2.2) it suffices to consider the case
where X is a metric graph with unit edge lengths. By increasing K and N ifnecessary,
we may assume that AreaN(c) < Kl(c) for every edge-loop c in X, and we may assume
that K and N are integers.

In order to show that there exists > 0 such that X is s-hyperbolic, we must
bound the size of integers n> 0 for which there is a geodesic tnangle in X which is
not (n + slim. To this end, we fix n and suppose that there is a geodesic triangle

= q, r) in X and a point a e [p. qJ so that the distance from a to the union
of the other two sides is greater than n + 1. We may assume that the sides of this
triangle are edge-paths. We may also assume that the length of the perimeter of
is minimal We replace a by an adjacent vertex v, which is a distance more than n
from [p, rJ U [r, qJ

Let k = 3KN2 and let m = 3KN. We suppose that n > 6k in order to avoid
degeneracies in the following argument.

Reversing the roles of p and q if necessary, there are only two cases to consider:
either [p. vJ is disjoint from the 4k neighbourhood of [r, q] and [v, qJ is disjoint from
the 4k neighbourhood of [p, rJ, or else there exists w e [v, q] and w' e [p, rJ with
d(w, w') = 4k.

r

Fig. H.8 (i) The hexagonal case, (ii) The quadrilateral case

In the first case (Case (i) of figure H.8) we consider the minimal subarc [u, wJ C
[p, qJ that contains v and has endpoints a distance exactly k from the union of the
other sides of let u' e [p, r] and w' e [r, q] be the points closest to r with
d(u, u') = 2k and d(W, ui') = 2k. Let [u', u"] C [u', r] and [W', W"J C [W', rJ

be the maximal subarcs for which the k neighbourhoods of the interiors of these

r

U V q
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First we consider the union of those 2-cells in P which intersect [u, w] (i.e.,
the star neighbourhood [u, wD; we take the minimal combinatonal subdisc D1 C P
containing this union. We then iterate this process: take the star neighbourhood of D1,
'fill in the holes' to form the minimal subdisc D2 containing this star neighbourhood;
repeat m times. The boundary of D,,1 lies in the k = mN neighbourhood of [u, w].
(Recall that m = 3KN and k = 3KN2.)

We shall estimate how many 2-cells are added at each stage of the above process.
Because d(u, w) = a and the perimeter of each face of P has combinatorial length
at most 3N, there are at least a/(3N) faces in D1. For i = 1, . . , m 1 there is a
(unique) injective edge-path connecting u to w in 8D, with no edge in [u, wJ. This
edge path has combinatorial length at least a = d(u, w). Because m = k/N, if any
of the edges of the path lie in N = 8P then they lie on [u, u'J or [w, w'], and hence
there are at most 2k of them. So since the boundary of each face in P contains at
most 3N edges, there are at least (a 2k)/(3N) faces in P N that abut this path,
and hence at least this many faces in D,+j N D,. Summing, we get a lower bound of

on the number of faces in the k-neighbourhood of [u, wJ in P. Since m = KN, this
simplifies to K(a 2k). Similarly, we get lower bounds of KCS — 2k) and K(y 2k) on
the number of faces in the k-neighbourhoods of [u', U"] and [w', w"J respectively. By
construction of N, these neighbourhoods are disjoint, so we may add these estimates
to obtain a lower bound on AreaN(N):

AreaN(N) > K(a + + y) — 6kK.

To improve this lower bound we note that NN intersects the k-neighbourhood
of v but d(v, N [u, wJ) n 2k. It follows that there is an arc of combinatorial
length at least n 3k in N and hence at least (n 3k)/(3N) faces of P that
abut this arc but which do not lie in the neighbourhoods of [u, w], [u', u"J, [w", w'J
considered above.

Thus we obtain a lower bound

AreaN(N) K(a + + y) — 6kK +
3N

But N has length 1(N) = a + + y + 6k, and according to the linear isoperimetric
inequality for X,

AreaN(N) <K 1(N).

Thus,
n — 3k

<l2kK.
3N

K and N are constant and k = 3KN2, so this inequality is clearly nonsense if n is
large. Thus we have bounded n and therefore can deduce that X is s-hyperbolic,
where depends only on K and N. El
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Subquadratic Implies Linear

It follows easily from the Flat Plane Theorem and the characterization of hyperbolic
spaces by the lineanty of their isoperimetric functions (2 7 and 2 9) that the optimal
isoperimetric inequality for any cocompact CAT(O) space is either linear or quadratic.
The following result shows that this dichotomy holds in much greater generality
This insight is due to Gromov [Gro87], and was clanfied by Bowditch
0l'shanskii and others (see [0191], [Paps95a] and references therein). Following
Bowditch, we consider notions of area that satisfy the following axiomatic scheme.

2.10 Definition. Let Ci, C2, c3 be rectifiable curves which have a common initial
point and a common terminal point. Let denote the concatenation where the
overline denotes reversed orientation and indices are taken mod 3. Then, fyi,
is said to be a theta curve spanned by C2, c3. Under the same circumstances, we
say that y' and Y2 are obtained by surgering along c2.

Let X be a geodesic space and let be a set of rectifiable loops in X. We consider
area functionals A : —÷ TR+ such that:

(Al) E <A(y2)+
A(y3).

(A2) (Quadrangle inequality) There is a constant K > 0 such that if y E is

the concatenation of four paths, y = then A(y) > where
= d(im(ci), im(c3)) and d2 =d(im(c2), im(c4)).

The usual notion of infimal area for spanning discs of piecewise smooth curves in
complete Riemannian manifolds satisfies these axioms A counting argument closely
analogous to the proof of (2.9) shows that for the set of edge-loops in a metric graph
with integer edge lengths, the notion of area defined in (2.1) satisfies axiom (A2). It
follows that the notion of area that one gets by counting vertices instead of faces also
satisfies this axiom (see 2 3(1)), and this latter notion also satisfies (Al), trivially.
Thus, in the light of (2.9), the following theorem implies in particular that if a metric
graph with integer edge lengths satisfies a subquadratic isoperimetric inequality, then
the graph is 8-hyperbolic.

A functionf : [0, oo) —÷ [0, oo) is said to be sub quadratic if it is 0(x2), that is
0. A class of loops is said to satisfy a subquadratic isoperimetric

inequality with respect to an area functional A if

= supfA(y)
I
y 1(y) <x)

is a subquadratic function.

2.11 Theorem (Subquadratic Implies Linear). Let X be a metric space, let be a
class of rectifiable loops in X that is closed under the operation of surgery along
geodesic arcs, and suppose that A : —÷ satisfies axioms (Al) and (A2). If
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satisfies a sub quadratic isoperimetric inequality with respect to A then it satisfies a

linear isoperimetric inequality.

Again following Bowditch, we present the proof in the form of two technical
lemmas. There is no loss of generality in assuming that K = I in (A2), and we shall
do so in what follows. Letf(x) =fArI(x) be as above

2.12 Lemma. For every x E [0, oo) there exist p. q E [0, oo) such that:

f(x) <f(p)+f(q),

p,q

p+q

Pro of In order to clanfy the idea of the proof, we only consider the case where the
supremum in the definition off(x) is attained, by y say. (The general case follows by
an obvious approximation argument.) Let C S' x S' be the set of points (t, u) such
that the restriction of y to each of the two subarcs with endpoints (t, u) has length
is at least x/4. Let L = min(d(y(t), y(u))

I
(t, u) E and (t0, u0) E be such

that d(y(t0), y(uo)) = L. Let and y_ be the paths obtained by restricting y to the
connected components of S' — ft. u}; these are chosen so that l(y) < 3x/4
and oriented so that each has initial point y(to) and terminal point y(uo).

Consider the theta-curve spanned by y_ and a choice of geodesic seg-
ment [y(t0), y(uo)]; let and be the loops obtained by surgering y along
[y(to), y(u0)]. Let a, b E [y(to), y(uo)] be such that d(y(to), a) d(a, b) =
d(b, y(uo) Let a1, a2 be geodesics whose images are the subarcs [y(t0), a], [a, b],
[y(to), of [y(to), y(uo)], respectively.

By construction d(ima1, ima2) = L/3. We claim that L/3. Once
we have proved this claim, by Axiom A2 we will have > (L/3)2, whereas by
Axiom Al

f(x) = A(y) < +

It therefore suffices to let p = and q =
It remains to prove the claim. Given z = y(v) E imy+ and z' E we

divide '+ into subarcs 01 and 02 with endpoint z. Without loss of generality we
may suppose that 1(o2) Note that l(oi) + l(o2) + l(y_) = 1(y) = x while
l(y) < + 1(o2). Since < and l(y_) < x/2, we see that (v, u0) E

Thus d(z, y(uo)) > L = d(y(to), y(uo)). Since z' E [a, it follows that
d(z, z') > d(z, y(uo)) — d(y(uo), a) > L 2L/3.

2.13 Lemma. Let g [0, oo) —÷ [0, oo) be an increasing function and suppose that
there exist constants k > 0 and A E (0, 1) such that for every x E [0, oo) one can
find p. q [0, oo) with
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g(x) _<g(p)+g(q),

p,q

p+q
If g(x) = o(x2) then g(x) = 0(x).

Proof By replacing g with a constant multiple we may assume that k = I Let
(I + A)/2 and fix x0 E [0, oo) such that ifx > xo then g(x) < (I j.t)2x2. Note

that if x> x0 then p, q < + (1 — j.t)x = Increasing xo if necessary, we may
assume that it is bigger than 1

Let h(x) = g(x)/x. If x> x0 then xh(x) <ph(p) + qh(q), so

h(x) h(p) + q h(q).

Without loss of generality we may assume that h(q) <h(p), so

(13.1) h(x) h(p)
<

h(p) + h(p).

Thus if x > x0, then there exists p E [1, with h(x) < (1 + We
want to show that it h(x) = o(x) ('little oh'), then h is bounded.

For this we fix s > 0 and x1 > 0 so that h(x) < for all x > x1. Let
B=max(h(x)I I
p /.tx. By using this inequality n 1 + log(x/x1 )/ log( I times, we obtain:

h(x) < B(1 + < B(1 + s)(x/xi)r,

where r = log( I + s)/ log( I We choose s small enough to ensure that r < 1.

Fix s> 0 with r < I — 2s. Then, h(x) = and so we may choose x2 with
h(x) for alIx > x2 > x1. But then, by equation (13.1):

h(x) < (1 +x5)h(p).

Again we iterate our estimate, k times,

h(x) < C(1 + x_s)(1 + . (1 +

where C = max{h(y)
I

I <y <x2} and k is the greatest integer such that >
Therefore, since log( I + y) <y for all y > 0,

log h(x) log C + x_s(1 + . +
(,ikx)s —

= logC+
1 —

logC+ 2

Thus h is bounded.
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More Refined Notions of Area

The notions of area considered above are rather crude but are well suited to our
purposes since they are technically simple and relatively stable under quasi-isometry

they describe something of the large-scale geometry of spaces, which is the main
theme of our book. However, there is a striking body of work by the Russian school
which deals with area in a more sophisticated and local sense In this paragraph
we describe some of the main concepts and results from this work, without giving
proofs For a more complete introduction, see the survey article of Berestovskii and
Nikolaev [BerN93].

The following definition of area was given by Nikolaev [Ni79] and is adapted
from an earlier definition of Alexandrov The basic idea is to define the
area of a surface to be the limiting area of approximating polyhedral surfaces built
out of Euclidean tnangles. Thus, in particular, this coincides with Lebesgue area for
surfaces in Euclidean space.

2.14 Definitions. Let X be a geodesic space and let D2 denote the unit disc in the
Euclidean plane. By definition, a parameterized surface in X is a continuous map
f —÷ X, and a non-parameterized surface is the image F of such a map.

Let! be a parameterized surface. Intuitively speaking, a complex for the surface
f is a polyhedral approximation to!. More precisely, given a triangulation of D2
with vertices A1 A,1, we choose points A1 E X such that A1 = 4 if and only if
f(A1) = if the vertices A, A a geodesic
in X, thus we obtain a set of triangles in X. This set of triangles is called a complex
for the surface! and the A, are called the vertices of the complex. Let 'IJ(f) denote
the set of sequences of complexes ('T/m) which have the property that as m —+ oo the
maximum of the distances d(A,,f(A,)) tends to zero and the maximum of the lengths
of the sides of the triangles in tends to zero.

The area of a complex 'I', denoted o-('IJ), is obtained by replacing the triangles
in 'I' with Euclidean companson triangles and summing the area of the latter. For a
parameterized surfacef one defines:

Area(f) inf(liminfo('IJm)
I
('I'm) E 'I'(f)}.

And for a non-parameterized surface F one defines:

Area(F) inf(Area(f) f(D2) = F}.

(Of course, these areas may be infinite)

One has the following basic

2.15 Lemma. Let X and Y be geodesic spaces.

(1) (Semicontinuity) If f,, D2 —* X is a sequence of parameterized surfaces in X
—÷ f uniformly, then Area(f)
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(2) (Kolmogorov's Principle) If p : X —÷ Y does not increase distances then for
every parameterized surface in X one has:

Area(p of) Area(f).

Let X be a CAT(ic)space and let c —÷ X be a rectifiable loop in X (of length
< if K > 0). A ruled surface bounded by c is a parameterized surface

f : D2 —÷ X obtained by choosing a basepoint o E and definingf so that for each
9 E S' the restriction off to the Euclidean segment [o, is a linear parameterization
of the unique geodesic segment joining c(o) to c(9) in X.

The following result, which is due to Alexandrov [A1e57], follows from the Flat
Triangle Lemma (11.2.9) and Kolmogorov's principle.

2.16 Proposition. The area of any ruled surface bounded by a triangle (ofperime-
ter less then in a CAT(ic) space is no greater than the area of the comparison
triangle in and is equal to it if and only if and are isometric.

From this Alexandrov deduces:

2.17 Theorem. Let X be a CAT(K) space and let c be a rectifiable loop in X (If
K > 0 assume that 1(c) Then, the area of any ruled surface bounded by
c is no greater than the area of a disc in whose boundary is a circle of length
1(c) Moreover; equality holds only if the disc and the ruled surface are isometric.

Notice that by reference to the classical cases E2 and 1H12, this result gives a
quadratic isoperimetric inequality for loops in CAT(O) spaces and a linear isoperi-
metric inequality in CAT(— 1) spaces (with respect to the notion of area defined in
(2.14)). In the same vein, the following theorem of Reshetnyak can also be
viewed as a strong isoperimetric result (via Kolmogorov's principle).

A convex domain V C is said to majorize a rectifiable loop c in a metric
space X if there is a non-expanding map V —÷ X which restriction to 8V is an arc
length parameterization of c.

2.18 Theorem. For any rectifiable loop c in a CAT(ic) space X (with 1(c)
if K > 0) there exists a convex domain V C which majorizes c

2.19 Remark (Plateau's Problem). Plateau's problem asks about the existence of
minimal-area fillings for rectifiable loops in a given space (see [A1m66]) Nikolaev
[Ni79] solved Plateau's problem in the context of CAT(ic) spaces
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3. The Gromov Boundary of a ö-Hyperbolic Space

In this section we describe the Gromov boundary 8X of a s-hyperbolic space X If
X is a proper geodesic space, then there is a natural topology on X U 8X making it
a compact metrizable space and there is a natural family of "visual" metrics on 8X.
The topological space 8X is an invariant of quasi-isometry among geodesic spaces,
as is the quasi-conformal structure associated to its visual metrics. If X is a proper
CAT(— 1) space, or more generally a CAT(O) visibility space, the Gromov boundary
is the same as the visual boundary and the topology on X U is the cone topology
(11.8.6).

This section is organised as follows. First we shall consider the case where X is
a geodesic space, describing 8X in terms of equivalence classes of geodesics rays
as we did for CAT(O) spaces in Chapter 11.8. We shall then interpret 8X in terms of
sequences of points that converge at infinity. As well as providing a definition of 8X
in the case where X is not geodesic, the language of sequences provides a vocabulary
with which to discuss the extension of the Gromov product from X to X U 8X. Taking
the case X = IHI'1 as motivation, we shall explain how this extended product can be
used to define metncs on 8X.

The Boundary 8X as a Set of Rays

Recall that two geodesic rays c, c' : [0, oo) —* X in a metric space X are said to be
asymptotic if sup, d(c(t), c'(t)) is finite; this condition is equivalent to saying that the
Hausdorif distance between the images of c and c' is finite. We define quasi-geodesic
rays to be asymptotic if the Hausdorif distance between their images is finite. Being
asymptotic is an equivalence relation on quasi-geodesic rays We write 8X to denote
the set of equivalence classes of geodesic rays in X and we write aqX to denote the set
of equivalence classes of quasi-geodesic rays In each case we write c(oo) to denote
the equivalence class of c.

3.1 Lemma. If X is a proper geodesic space that is s-hyperbolic, then the natural
map fmm 8X tO 8qX is a bijection

For each p E X and E 8X there exists a geodesic ray c . [0, oo) —+ X with
c(0) =p and c(oo) = 4.

Pmof The natural map 8X —÷ 8qX is obviously injective To prove the remaining
assertions, given p E X and a quasi-geodesic ray c [0, oo) —÷ X, let be a
geodesic with = p that joins p to c(n). Since X is proper, a subsequence of the
c,1 converges to a geodesic ray [0, oo) —* X (by the Arzelà-Ascoli Theorem
(1.3.10)). Theorem 1.7 provides a constant k such that the Hausdorif distance between
c([0, n]) and the image of is less than k; thus we obtain a bound on the Hausdorff
distance between c and LI
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3.2 Lemma (Visibility of 8X). If the metric space X is pmper geodesic and
hyperbolic, then for each pair of distinct points E 8X there exists a geodesic
line c : JR —* X with c(oo) = and c(—oo) =

Pmof Fix p E X and choose geodesic rays c2 : [0, oo) —÷ X issuing from p with
c1 (oo) = and c2(oo) = Let T be such that the distance from c1 (T) to the image
of c2 is greater than For each n > T we choose a geodesic segment [c1 (n), c2(n)]
and consider the geodesic triangle with sides ci([O, nil, c2([O, and [ci(n), c2(n)].
Since this tnangle is s-slim, [ci (n), must intersect the closed (hence compact)
ball of radius about c1(T), at a point Pn say. By the Arzelà-Ascoli Theorem, as
n —+ 00 a subsequence of the geodesics [pn, c2(n)] C [c1(n), c2(n)] will converge.
By passing to a further subsequence we may assume that the sequence [ci (n), c2(n)]
converges. The limit is a geodesic line which we call c.

Since each [ci(n), c2(n)] is contained in the s-neighbourhood of the union of the
images ofc1 and c2, the image of c is also contained in this neighbourhood. Thus the
endpoints of c are and

3.3 Lemma (Asymptotic Rays are Uniformly Close). Let X be a proper s-hyperbolic
space and let c1, c2 [0, oo) —÷ X be geodesic rays with c1 (00) = c2(oo)

(I) Ifci(O) = c2(O) then d(c1(t), c2(t)) < all t > 0.

(2) In general, there exist T1, T2 > 0 such that d(ci (T1 + t), c2(T2 + t)) for
all t> 0.

Proof (I) follows immediately from (1.15).
In order to prove (2), we apply Arzelà-Ascoli to obtain a subsequence of the

geodesics c, = [ci(O), c2(n)] that converges to a geodesic ray c'1 with c'1(O) = ci(O).

Since the triangles c2(O), c2(n)) are s-slim, all but a uniformly bounded
initial segment of each is contained in the s-neighbourhood of the image of c2,
and hence a terminal segment of c'1 is also contained in this neighbourhood. In other
words, there exist T1, T2 > 0 with d(c2(T2), c'1 (T1)) < such that for all I 0 one
can find t' with d(c2(T2 + t'), (T1 + t)) By the triangle inequality, t and t' differ
by at most Thus for all t Owe have d(c2(T2 + t), c'1(T1 + t)) < 3& And from
(1) we know that d(c1(T1 + t), + t)) < for all t > 0.

3.4 Remark (Busemann Functions and Horospheres). Let X be a proper geodesic
space that is 8-hyperbolic and let c: [0, oo) —÷ X be a geodesic ray. The Busemann
function of c is : = lim d(x, c(t)) — t. (The triangle inequality ensures that

< d(c(O), x).) It follows from the preceding lemma that if c' is a geodesic ray

with c(oo) = c'(oo), then — is a bounded function of x E X. On the other

hand, if c(oo) c'(oo) then — is obviously not a bounded function.
This observation allows one to construct 8X as a space of equivalence classes of
Busemann functions in analogy with (11.8.16) see section 7.5 of

If we choose a basepoint p E X and alter each be an additive constant so that
= 0, then the (modified) Busemann functions associated to asymptotic rays
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differ by at most a fixed multiple of& (To remove this mild ambiguity one might take
the supremum or infimum over all rays c with c(oo) = to define "the" Busemann
function of Horospheres and horoballs about (the level sets and sub-level sets
of Busemann functions) are well-defined in the same sense. See [CDP9O], Chapter
8 in [GhH9OI and [Gro87] for applications.

The Topology on X U 8X

The description that we are about to give of the topology on X = X U 8X is closely
analogous to (11.8 6) As was the case there, it is convenient to consider generalized
rays.

Notation. A generalized ray is a geodesic c : I —÷ X, where either I = [0, R] for
some R > 0 or else I = [0, oo). In the case I = [0, it is convenient to define
c(t) = c(R) fort E [R, oo]. Thus X := XU 8X is the set (c(oo) c a generalized ray}.

3.5 Definition (The Topology on X = X U 8X). Let X be a proper geodesic space that
is s-hyperbolic Fix a basepoint p E X. We define convergence in X by: x,, —+ x as
n —+ 00 if and only if there exist generalized rays c,1 with = p and =
such that every subsequence of (ca) contains a subsequence that converges (uniformly
on compact subsets) to a generalized ray c with c(oo) = x This defines a topology
on X: the closed subsets B c are those which satisfy the condition [x, E B, Vn >

xEB.

3.6 Lemma (Neighbourhoods at Infinity). Let X andp E X be as above. Let k>
Let c0 : [0, oo) —* X be a geodesic ray with co(O) = p and for each positive integer n
let V,1(co) be the set of generalized rays c such that c(0) = p and d(c(n), co(n)) < k.

Then (V,1(co) n E N} is afundamental system of (not necessarily open) neighbour-
hoods of c(oo) in X.

Pmof Let c' be a ray in X with c'(O) = p. It follows from (3.3) that c'(oo) = co(oo)
if and only if c'(n) E for all n > 0 And if c is a sequence of generalized rays
in X with c1(0) = p and c1 then by the Arzelà-Ascoli theorem there is a
subsequence that converges to some c V,,(co), hence c does not converge to
c0 in X. Thus c1 —* c0 in X if and only if for every n > 0 there exists N,1 > 0 such
thatc1 E for all i >

3.7 Proposition. Let X be a pmper geodesic space that is s-hyperbolic.

(1) The topology on X = X U 8X describedin (3.5) is independent of the choice of
basepoint, and

(2) if X is a CAT(0) space this is the cone topology (II 8.6).
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(3) X X is a homeomorphism onto its image and 8X C X is closed.
(4) X is compact.

Pmof (1) follows easily from Lemmas 3.6 and 3.3(2).
Suppose that X is CAT(O). In (II 8.6) we described a fundamental system of

neighbourhoods U(co, r, s) for co(oo) E 8X Fix such a neighbourhood. Also fix
k> 2& If N> n> rand c: [0, N] —÷ X lies in (the neighbourhood of co(oo)
defined in (3.6)), then d(c(r), co(r)) < r/nd(c(n), co(n)), because of the convexity
of the metric on X. It follows that if n is sufficiently large, then C U(co, r, s).
Conversely, ifs < k then U(co, r, s) C Vr(co). This proves (2).

(3) Let x E X and let [0, —* X be a sequence of geodesics issuing
from a fixed point p E X. By the Arzelà-Ascoli theorem, if —* x as n -÷ 00
then every subsequence of (ca) contains a subsequence that converges to a geodesic
joining p to x. Conversely, if does not converge to x as n —+ oo, then some
subsequence of (ca) does not contain a subsequence that converges to a generalized
ray with terminal point x. Thus X X is a homeomorphism onto its image. X is
obviously open in X

(4) The balls B(x, r), with r> 0 rational, form a fundamental system of neigh-
bourhoods about x E X c This observation, together with the preceding lemma,
shows that the topology on satisfies the first axiom of countability. Thus it suffices
to prove that X is sequentially compact, and this is obvious by Arzelà-Ascoli L

3 8 Exercise Let X be a geodesic space that is proper and hyperbolic. Prove that the
natural map 8X —÷ Ends(X) is continuous and that the fibres of this map are the
connected components of ax.

3.9 Theorem. Let X and X' be pmper s-hyperbolic geodesic spaces. If f : X —÷ X'
is a quasi-isometric embedding, then c(oo) i—f (f o c)(oo) defines a topological
embedding!a ax —÷ ax'. Iff is a quasi-isometry, thenf8 is a homeomorphism.

Pmof Suppose thatf : X —÷ X' is a (A, s)-quasi-isometric embedding, fix p E X
and letp' = f(p). If c2 : [0, oo) —÷ X are geodesic rays with c1(0) =p, then! o c1

andf o c2 are (A, s)-quasi-geodesics withf o c1(0) = p'. These rays
are asymptotic (i.e. their images are within finite Hausdorif distance of each other)
if and only if c1 and c2 are asymptotic. Thus, in the light of(3.I),fa is well-defined
and injective.

Fix k > 2& In order to see that fa is continuous, for i = 1, 2 we choose a
geodesic ray with = p' and c(oo) = f o c,(oo). The Hausdorif distance
between and! o c1 is bounded by a constant K depending only on A and s
(see 1.8). lies in the k-neighbourhood of the image ofc2, thenfo ci(n) lies
in the (Ak + s)-neighbourhood of the image of f o c2 and hence c (t0) lies in the
(2K + Ak + s)-neighbourhood of the image of for some to > K — s + n/A. Let
n' denote the least integer greater than n — (K — s + n/A + As in (1.15) we have
d(c'1 (t), < for all t < n'. Thus, in the notation of Lemma 3.6, c1 E
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implies E and hence fa is continuous. A similar argument shows that
f8c(oo) i—f c(oo) is also continuous.

1ff is a quasi-isometry then it has a quasi-inverse!' : X' —* X (see 1.8.16), and
since d(f'f(x), x) is bounded, (f'f)a = is the identity on 8X. LI

3.10 Corollary. The real hyperbolic spaces H!' and are quasi-isometric if and
only = n.

Proof 81H1" is an (n 1)-dimensional sphere. LI

0X as Classes of Sequences

Let X be a CAT(—1) space with basepoint p and consider a sequence in X In
order for there to exist a point in the visual boundary of X such that —÷ it
is necessary and sufficient that the distance from p to the geodesic [x1, should
tend to infinity as i,j —* oo (see 11.9.30). And as we indicated after (119), this is
equivalent to saying that (x1 . —÷ oo as i,j —÷ oo Using the description of the
basic neighbourhoods of points at infinity given in (3.6) it is easy to generalize this
observation:

3.11 Exercise. Let X be a geodesic space that is proper and s-hyperbolic. Fix p E X.
Show that a sequence (x,1) in X converges to a point of 8X C X if and only if
(x, —+ 00 as i,j —* 00

Motivated by this exercise, we define:

3.12 Definition. Let X be an arbitrary space. A sequence in X
converges at infinity if (x1 . xj),, —* oo as i,j —* oo Two such sequences (x,) and
(y,i) are said to be equivalent if (x1 . yj)p —÷ oo as i,j —÷ oo. The equivalence class
of (x,1) is denoted and the set of equivalence classes is denoted (These
definitions are independent of the choice of basepoint p.)

Remark. The "equivalence" of sequences defined above is obviously a reflexive and
symmetric relation, but for arbitrary metric spaces it is not transitive (consider E2
for example). However, it follows immediately from (1.20) that in hyperbolic spaces
this is an equivalence relation.

3.13 Lemma. If X is a pmper geodesic space that is s-hyperbolic, then there is a
natural bijection —÷

Pmof It follows from exercise 3.11 that limo induces a well-defined map
—÷ 8X that is injective. To see that this map is surjective, note that given any

geodesic ray c in X, the point lim c(n) E maps to c(oo).
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3.14 Example. In general is not a quasi-isometry invariant among (non-geodesic)
hyperbolic spaces. For example, consider the spiral c: [0, oo) —÷ 1E2 given in polar
coordinates by c(t) = (t, log(1 + t)). In (1.23) we noted that the image of c, with the
induced metric from 1E2, is not 8-hyperbolic. However, the intersection of im(c) with
any line through the origin in 1E2 is hyperbolic; indeed, since it is a subset of a line,
it is (0)-hyperbolic. Let S denote such an intersection.

We claim that although and S are quasi-isometric, their boundaries are
different Indeed, since the spiral c crosses any half-line infinitely often, has two
elements, whereas c [0, oo) has only one element.

Metrizing

In order to discuss metncs on the boundary of a hyperbolic space X, we need to extend
the Gromov product to For this it is convenient to consider the boundary in the
guise of and the symbol shall have that meaning throughout this section. If
X is a CAT(—1) space, the product on the boundary can be defined by the simple
formula (limx, := 1im11(x1 yj)p (see 3.18). But for hyperbolic spaces in
general this limit may not exist (3 16).

3.15 Definition. Let X be a (8)-hyperbolic space with basepoint p. We extend the
Gromov product to X = X U by:

(x y)p := sup liminf(x,

where the supremum is taken overall sequences (x,) and in X such thatx = limx,

The following example illustrates the need to take lim inf and sup rather than just
lim in the above definition.

3.l6Example. LetXbetheCayleygraphofZ x = (a,b
I [a,bI = b2 = 1).

Note that X is hyperbolic and that consists of two points (which we call a_ and
a+). Consider the following sequences: x,1 := y,1 = a", z,1 = ba'. Define
w,1 to be equal Yn if n is even and if n is odd. As n —+oo, the sequences y,1, z,1
and w,, converge to a+ while x,, converges to a_. For all positive integers i,j we
have (x, . yj)i = 0 and (x, . = 1. Thus liminf,1.00(x1 yj)i is not equal to
lim in particular . does not exist.

3.17 Remarks. Let X be a (8)-hyperbolic space and fix p E X. Let X = X U ax.
(1) ( ),, is continuous on X (not X).

(2)(x Y)p = oo if and only ifx = yE
(3) For all x, y E there exist sequences (x,1) and (j',1) in X such that x =

limx,, y = limy,, and (x .Y)p = lim,1(x,, y,,)p. If x E X then one can take (x,,) to be
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the constant sequence, and in the cases where x or y belongs to one can construct
(x,1) and (y,1) by a diagonal sequence argument.

(4) For all x, y, z E X we have (x y)p > rnin{(x. Z)p, (z y)p} — 28. To see this,
choose sequences in X with x = limx,1, y = limy,, and z = limz,, = such
that lim,,(x,, = (x and y,,),, = (z y)p. then take liminf,1 through
(x1 Yj)p > min{(x, . . y1)p} — 28, noting that = 00.

(5) For all x, y E X with x and
y = limy31,

(x y)p —28 < liminf(x )')p < (x Y)p.

The second inequality is true by definition, and the first is obtained by taking lim
in > (x1 yi)p. (yi y)p} —28, where (x1) and (yj) are as in remark
(3). (Note that and yJ)p tend to infinity as i,j —÷ 00.)

(6) If X is proper and geodesic, and if (c,,) is a sequence in (identified with
as in (3.13)), then —÷ in the sense of (3.5) if and only if (c,, 00 as

n —+ 00.

To see this, choose geodesics c,, issuing from p with c,,(oo) = and define
c,(n). Note that —÷ as n —+ 00 if and only if x,, —+ which is equivalent

to (x,, . —÷ 00. As n —+ 00, (c,, . x,,),, 00, and from (4) we have (c,, >

• x,1),,, (x,, — 28 and (x,, > x,,),,, (c,, 28.

3.18 Exercises
(1) Let X be a space and fix p E X. Show that there exists a

constant ij such that if (x1) and are sequences in X that converge in X, then
> (x1 . yj)p — (x,.yj for all 1, i',j,j' sufficiently large.

(2) Show that if X is a CAT(— 1) space, p E X, and (x,), are sequences in
X converging to then . c'),, = lim1(x1 y,),,. Show further that in the case
X = IHI" this limit is the distance from p to two of the internal points of the ideal
triangle c'), i.e. the points at which the inscribed circle meets the rays [p,
and [p, c']. (The third internal point of is the foot of the perpendicular
fromp to )

(3) Fix 8 > 0. Show that there is a constant k such that if X is a proper geodesic
spacethatis 8-hyperbolic, then Id(p, <kforallp E E

X with c(—oo) = and c(oo) =
(4) (Uniform Structure on X). The purpose of this exercise is to indicate that,

for rather general reasons, if X is a proper 8-hyperbolic geodesic space, then X is
a compact metrizable space (cf chapter 7 of [GhH9OI). To see this, recall that if
X is a set then a family 13 of symmetric subsets B ç X x X form a base ("are the
basic entourages") for a uniform structure on X if each B E 13 contains the diagonal

C X x X, for each B E 13 there exists E E 13 such that (x, y), (y, z) E E implies
(x,z) E B, and for all B1,B2 E 13 there exists B3 E 13 such that B3 c B1 n
The uniform structure is said to be separated if B = A separated uniform
structure with a countable base gives rise to a metric by a well-known construction
(see sections II. I and IX.4 of [BourS3I or [Jam89])
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Show that if X is a proper 8-hyperbolic geodesic space and p E X, then the sets
Br = I c'),, > r}, with r> 0 rational, form a base for a separated uniform
structure on whose associated topology is that defined in (3.5). Descnbe a base
for a separated uniform structure on X.

Visual Metrics on OX

In this subsection we shall construct explicit metrics on the boundary of proper
8-hyperbolic spaces X. In order to motivate the construction we first consider the
example X = W.

3.l9ConstructingVisualMetricsonW. Ifwefixp E i—÷

defines a metric on making it isometric to I; since 4, describes the geometry
of as seen fromp, it is called a visual metric on We wish to interpret Z,, in
terms of the Gromov product and the distances between points and geodesics in IHI'1

To this end, we apply the basic construction of (1.1 24) to the function p on
aIHI'1 x defined by

p the geodesic line in IHI'1 with endpoints
and Associated to p we have the (pseudo)metnc

ri—I

:=

where the infimum is taken over all chains = = no bound on n.
According to (1.6.19(3)), = If a, b E [0, then

tan(a + b) > tana + tanb And lim10 tant = 1. It follows from (1.3.6) that
is the length metnc associated to c'). Since d,, is itself a length
metric, we have = tip. Thus the visual metric 4, on can be constructed from
the function Moreover, since tan 0 E [0, 20] if 0 E [0, and tan =

we have
< <

E

According to exercise (3.18(3)), there is a universal bound on c')— I.

Hence there exist constants k1, k2 independent of p such that

<

E

3.20 Definition. Let X be a hyperboiic space with basepointp. A metric don is

called a visual metric with parameter a if there exist constants k1, k2 > 0 such that

<

EX.
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In [Bou96] Marc Bourdon shows that if X is a proper CAT(—b2) space, then for
each number a E (1, eb] and each p E X, the formula := defines
a metric on ax. However one cannot construct visual metrics on the boundary of
arbitrary hyperbolic spaces in such a direct manner. To circumvent this difficulty we
mimic the construction of (3.19).

The following discussion follows section 7 3 of [GhH9O].

Constructing Visual Metrics. Let X be a hyperbolic space with basepoint p. Let
s > 0 and consider the following measure of separation for points in aX:

It is clear that = pa', From remark 3.17(2) we see that = 0

if and only = and from remark 3.17(4) we see that

(#) (1

for all E ax, where e' = — 1.

It may be that does not satisfy the triangle inequality, but we can apply the
general construction of (1.1.24) with p = to obtain a pseudo-metric, since we
wish to retain e in the notation, we write d6 rather than for this pseudo-metric.
Thus on ax we consider

= inf>

where the infimum is taken over all chains = = c'), no bound on n.

3.21 Proposition. Let X be a (8)-hyperbolic space. Let e > 0 and let = — 1.

Ifs' < — 1, then d6 is a visual metric on ax, indeed

(1 — < <

E ax.
IfX is a proper geodesic space, then the topology which d6 induces on ax is the

same as the topology described in (3 5).

Proof The inequality d6 is obvious. The proof of the other inequality between

Pe and is based on the standard technique for constructing a metric from a uniform
structure. Following [Bour53} (IX 1 4) and [GhH9OI, we proceed by induction on n,
the size of chains to prove that

(1 <

For brevity we write S(p) = The inequality is obvious if n = 1 or
S(n)> 1 — 2s', so we suppose that n > 2 and S(n) < I — 2s'. Letp be the greatest
integer such that S(p) < S(n)/2. (So S(n) — S(p + 1) < S(n)/2.) By our inductive
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hypothesis, both and v,,) are no greater than S(n)/(2 — 4e'). Also
S(n) And applying inequality (#) twice we have

<(i

Hence (1 — < (1 + s')2S(n)max{1 —2s', 1/2} In order to complete
the induction, it only remains to note that (1 + 61)2(1 — 2e') < I for all e' > 0 and
(1 + < 2 for all positives' — 1.

The topology associated to d6 is the same as the topology defined in (3.5), because
by definition —÷ 0 as i 00 if and only if v),, —÷ oo, and by (3 17(6))
this is equivalent to convergence in the sense of (3.5).

Finer Structure

We shatl briefly describe, without giving proofs, the natural quasi-conformal structure
on the boundary of a (8)-hyperbolic space.

Let (X, d) be a metric space and let k 1. A k-ring of d in Xis a pair of concentric
balls (B(x, r), B(x, kr)). Following Pansu, we say that two (pseudo)metrics d1, d2 on
X are quasi-conformally equivalent if there exist functionsfi ,f2 [I, oo) —÷ [1, oo)
such that for every k-ring (B1, B2) of (resp. d2) there is anf1(k)-ring of d2 (resp. an
f2(k)-ring of (B'1, B'2) such that

C B1 ç ç

A quasi-conformal structure on X is a class of metrics which are equivalent in
this sense, and a map between metric spaces : (X, d) —÷ (X', d') is called quasi-
conformal ifdis :=

Let X be a (8)-hyperbolic space. Note that all visual metrics on FiX are equivalent.
Thus X has a canonical quasi-conformal structure, namely that associated to the
metncs described in Proposition 3.21. The following is a generalization of a
classical result of Margulis (see [GrPan9 1] section 3 10) It was first stated by Gromov
and a detailed proof was given by Bourdon [Bou96b]

3.22 Theorem. Let X and Y be proper geodesic spaces that are 8-hyperbolic and
equip FiX and FiY with their canonical quasi-conformal structures. 1ff : Y —÷ X is

a quasi-isometric embedding, then the associated topological embedding FiY —p FiX

(see 1.9) is a quasi-conformal map.

3.23 Corollary. The canonical quasi-conformal structure on FiX is an invariant of
quasi-isometry among hyperbolic spaces that are proper and geodesic.

3.24 Remark. In [Pau96] Paulin proves that under certain hypotheses
(which are satisfied if X is the Cayley graph of a finitely generated group for example),
the quasi-conformat structure on FiX uniquely deterrmnes the space X up to quasi-
isometry.
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There are many interesting aspects of the boundary of hyperbolic spaces that
we have not discussed at all. In particular we have not said anything about the
Hausdorif and conformal dimensions of the boundary, nor the action of Isom(X) on
ax and the structure of limit sets, nor the construction of measures at infinity and
their relationship to rigidity results. We refer the reader to [CDP9O] and [GhH9OI for
basic facts in this direction and [Gro871, [Gro931, [Pan89,90], [Bou951 and [BuM96I
for further reading.

Bowditch has given a topotogical characterization of groups whose Cayley graphs
X are 8-hyperbolic by examining the nature of the action of the group on and he
and Swarup have shown that the structure of local cutpoints in ax tell one a great deal
about the graph of groups decompositions of the group (see [Bow98a], [Bow98b],
[Sw96] and references therein). Also in the case where X is a Cayiey graph, Bestvina
and Mess [BesM9l] have explained how the dimension of dX is related to the virtual
cohomological dimension of the group. Vanous other notions of dimension for ax
are discussed at length in [Gro931.



Chapter lilT Non-Positive Curvature
and Group Theory

We have already seen that one can say a good deal about the structure of groups which
act properly by isometries on CAT(O) spaces, particularly if the action is cocompact.
One of the main goals of this chapter is to add further properties to the list of things
that we know about such groups. In particular, in Section 1, we shall show that if a
group acts properly and cocompactly by isometries on a CAT(O) space, then the group
has a solvable word problem and a solvable conjugacy problem. Decision problems
also form the focus of much of Section 5, the main purpose of which is to demonstrate
that the class of groups which act properly by semi-simple isometries on complete
CAT(O) spaces is much larger and more diverse than the class of groups which act
properly and cocompactly by isometries on CAT(O) spaces; this diversity can already
be seen among the finitely presented subgroups of groups that act cocompactly.

The natural framework in which to address the issues that shall concern us in this
chapter is that of geometnc and combinatorial group theory We shall be concerned
mostly with the geometric side of the subject, regarding finitely generated groups
as geometric objects, as in Chapter 1.8. Within this framework, we shall examine
the extent to which the geometry of CAT(O) spaces is reflected in the large-scale
geometry of the groups which act properly and cocompactly on them by isometries,
and the extent to which the basic properties of such groups can be deduced directly
from features of the large-scale geometry of their Cayley graphs. Once the salient
features have been identified, results concerning such groups of isometries can be
extended to larger ci asses of groups whose Cayley graphs share these features.

This approach leads us to consider what it should mean for a finitely generated
group to be negatively curved, or non-positively curved, on the large scale. We saw
in the previous chapter that Gromov's notion of captures the essence
of negative curvature in a manner that is invanant under quasi-isometry In Section
2 of the present chapter we shall discuss the algorithmic properties of groups whose
Cayley graphs are 8-hyperbolic (i.e. hyperbolic groups) and in Section 3 we shall
present further properties of these groups. Our presentation is phrased in such a way
as to emphasize the close parallels with results concerning groups that act properly
and cocompactly by isometnes on CAT(—1) spaces. The study of hyperbolic groups
is an active area of current research and our treatment if far from exhaustive.

In Section 4 we present the basic theory of semihyperbolic groups, following
[AIoB95]. The theory of finitely generated groups which are, in a suitable sense,
non-positively curved is less developed than in the negatively curved (hyperbolic)
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case. Nevertheless, we shall see that most of the results concerning groups which act
properly and cocompactly by isometries on CAT(O) spaces can be recovered in the
setting of semihyperbolic groups.

In Section 6 of this chapter we shall examine the circumstances in which the
gluing constructions from (11.11) can be used to amalgamate group actions on CAT(O)
spaces. In Section 7 we discuss the (non)existence of finite-sheeted covenng spaces
of compact non-positively curved spaces.

1. Isometries of CAT(O) Spaces

Let us begin by compiling a list of what we already know about groups which act by
isometries on CAT(O) spaces.

A Summary of What We Already Know

1.1 Theorem. If a group r acts properly and cocompactly by isometries on a CAT(O)
space X, then:

(1) r is finitely presented.

(2) r has only finitely many conjugacy classes offinite subgroups.

(3) Every solvable subgroup of r is virtually ahelian.

(4) Every abelian subgroup of r is finitely generated.

(5) If r is torsion-free, then it i.s the fundamental group of a compact cell complex
whose universal cover is contractible.

If H is a finitely generated group that acts properly (but not necessarily cocom-
pactly) by semi-simple isometries on X, then.

(i) Every polycyclic subgroup of H is virtually abelian.

(ii) Every finitely generated abelian subgroup of H is quasi-isometrically embedded
(with respect to any choice of word metrics).

(iii) H does not contain subgroups of the form (a, t
I

= with

(iv) If A Z'1 is central in H then there exists a subgroup of finite index in H that
contains A as a direct

(v) If X is 8-hyperbolic then every element of infinite order y E H has finite index
in its cent

The class of groups which act properly and cocompactly by isometries on CAT(O)
spaces is closed under the following operations:

(a) direct products,

(b) free products with amalgamation and HNN extensions along finite subgroups,

(c) free products with amalgamation along virtually cyclic subgroups.
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Proof (1) is a special case of (1.8.11) and (2) was proved in (11.6.11). Parts (3), (4)
and (i) were proved in Chapter 11.7, and (5) was proved in (11.5.13)

Part (ii) is a consequence of the Flat Torus Theorem (11.7.1), as we shall now
explain. By passing to a subgroup of finite index we can reduce to the case Z'1
A H. We choose a minimal generating set for A and extend this to a set of
generators for H (thus ensuring that dg(a, a') dA(a, a') for all a, a' E A). By the
Flat Torus Theorem, Min(A) contains an isometrically embedded subspace F IE?z

on which A acts as a lattice of translations. Fix a basepoint xo E F. By apptying the
Lemma (1.8.19) to the action of A on F, we obtain a constant A > 0

such that dx(a.xo, a'.xo) > AdA(a, a')e for all a, a' E A (in fact one can take e = 0).

And (1.8.20) yields a constant > 0 such that dg(a, a') > /.L dx(a.xo, a'.x0). Thus
dg(a, a')> a') — > a') /he.

To prove (iii), first note that (a, t = is an I-INN extension of 7L, and
hence it is torsion free (6.3). In particular a has infinite order. The action of H on
X is proper and semisimple, so if such a subgroup were to exist then a would be a
hyperbolic isometry. By (11.6.2(2)) we would have = and (11.6.8(1)) would
then imply that = Iqi, contrary to hypothesis.

Part (iv) is (11.6.12). Statement (v) is a consequence of (iv) and (II 6.8(5)): from
(iv) we know that Cg(y) has a subgroup of finite index of the form K x ( y ); according
to (11.6.8(5)), this acts on Min(y), which splits isometrically as Y x R; because the
action is proper, if K were infinite then Y would have to be unbounded; but X is
8-hyperbolic, so there is a bound on the width of flat strips in X.

Items (b) and (c) were proved in Chapter 11.11. To prove (a) one simply notes
that, given a proper cocompact action of a group r by isometries on a space X1, for
i= 1,2,theinducedaction(y1,y2)(x1,x2) := (yi Xi, y2.x2)ofr1 x r2 onX1 x X2
is also proper and cocompact.

Decision Problems for Groups of Isometries

1.2 Dehn's Formulation of the Basic Decision Problems

Combinatorial Group Theory is the study of groups given by generators and defining
relations. This method of describing groups emerged at the end of the nineteenth
century. Much of the subject revolves around the three basic decision problems that
were first articulated by Max Dehn in 1912. Dehn was working on the basic problems
of recognition and classification for low-dimensional manifolds (see [Dehn87I). In
that setting, the key invariant for many purposes is the fundamental group of the space
at hand. When one is presented with the space in a concrete way, the fundamental
group often emerges in the form of a presentation. In the course of his attempts
to recover knowledge about fundamental groups (and hence manifolds) from such
presentations, Dehn came to realise that the problems he was wrestling with were
manifestations of fundamental problems in the theory of groups, which he formulated
as follows (see [Dehnl2b]).
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"The general discontinuous group is given by n generators and m relations
between them, as defined by Dyck (Math. Ann., 20 and 22). The results of those
works, relate essentially to finite groups. The general theory of groups
defined in this way at present appears very undeveloped in the infinite case. Here
there are above all three fundamental problems whose solution is very and
which will not be possible without a penetrating study of the subject.

1. The Identity [Word] Problem: An element of the group is given as a product
of generators. One is required to give a method whereby it may be decided in afinite
number of steps whether this element is the identity or not.

2. The Transformation [Conjugacy] Problem: Any two elements S and T of
the group are given. A method is sought for deciding the question whether S and T
can be transformed into each i.e. whether there is an element U of the group
satisfying the relation

5= UTU*
3. The Isomorphism Problem: Given two groups, one is to decide whether

they are isomorphic or not (and whether a given correspondence between
the generators of one group and elements of the other is an isomorphism or not).

These three problems have very different degrees of difficulty. 1. . . I One is already
led to them by necessity with work in topology. Each knotted space curve, in order
to be completely understood, demands the solution of the three above problems in a
special case."

1.3 Remark Given the nature of our study, we should augment Dehn's last remark
with the observation that he was led to these problems while studying surfaces
and knots, and all surfaces of positive genus and all knot-complements (viewed as
compact manifolds with boundary) support metrics of non-positive curvature.

We should also remark that the word and conjugacy problems are closely related
to filling problems in Riemannian geometry (cf. [Gro93]).

Terminology The explicit nature of the decision problems that we shall discuss here
is such that we shall not need to delve deeply into the question of what it means
for an algorithm or "decision process" to exist (See [Mi11711 for background.) For
completeness, though, we should mention that a group r with a finite generating set
A is said to have a solvable word problem if and only if the set of words w such
that w = 1 in r, and the set of words w such that w 1 in r, are both recursively
enumerable subsets of the free monoid on A U A—'.

A finitely presented group has a solvable word problem if and only if its Dehn
function, as defined in (I.8A), is a computable function.

The main result of this section is:

1.4 Theorem. If a group r acts properly and cocompactly by isometries on a CAT(O)
space, then its word and conjugacy problems are solvable.
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We shail treat the word and conjugacy problems separately, obtaining estimates
on complexity in each case. In the next section we shall see that the efficiency of the
solutions can be sharpened considerably if one assumes that the CAT(0) space on
which F acts does not contain a flat plane. In Section 5 we shall see that the above
theorem does not remain valid if one replaces the hypothesis that the action of F is
cocompact by the hypothesis that it is semi-simple.

The Word Problem

Let F be a group acting properly and cocompactly by isometnes on a CAT(0) space X.
Fixxo E XandletD> ObesuchthatXistheunionoftheballsy.B(x0, D/3), y E F.

1.5 Lemma. 1fF and Dare as above, then A = {a E F
I

d(a.xo, x0) < D + 1}
generates F And given y E F, if d(xo, y.xo) < 2D + 1 then y = a1a2a3a4 for some
a E A.

Proof To say that A generates is a weak form of (1 8 10). We leave the proof of
the assertion concerning elements with d(xo, y x0) < 2D + I as an exercise for the
reader.

Given a set A, to check if two words represent the same element of the free group
F(A) one simply looks at the reduced words obtained by deleting all adjacent pairs
of letters the original words represent the same element of F(A) if and only if
the corresponding reduced words are identical. It follows that one can easily decide
if an arbitrary word belongs to a given finite subset of F(A) We shall solve the word
problem in F by showing that in order to decide if a word represents I F, one
need only check if the word belongs to a certain finite subset of the free group on the
generators of F.

We shall always write wI to denote the number of letters in a word w.

1.6 Proposition. Let F and A be as in the preceding lemma, and let fl. C F(A) be
the set of reduced words of length at most ten that represent the identity in F. A word
w in the letters represents the identity in F and only if in the free group F(A)
there is an equality

w = flxjrjxl1,

where N <(D + 1)1w12, each E fl., and x,I (D + l)IwI. In particular F has a
solvable word problem.

Proof To each y E F we associate a word in the generators A as follows. Let
be the unique geodesic joining x0 = to y.x0 in X. For each positive integer

i <d(x0, y.xo) let E F be such that < D/3, define =
and = y for i d(xo, y.xo). Note that a1 := — E A. Define a),
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to be a1 where n is the least integer greater than d(xo, y.x0). Note that y =
in F. We choose a1 to be the empty word.

We fix y E F and b e A and compare with where y' = yb. By appending
letters a1 that represent the identity if necessary, we may write = a1 a. and

= n(y, y')= y'xo)< D+1
(because b E A), so from the convexity of the metric on X we have (i), (i)) <
D+ 1 for all i. Hence (i).x0, < 2D+ 1 For each i we choose a word cr(i)

of length at most 4 that is equal to (i) Note that cr(i+ 1

—
E

fl.. We choose cr(n) to be b (the difference between y and y') and cr(O) to be the empty
word.

If we write py(i) for the word al a, (the i-th prefix of ar), and similarly for
y', and we define Py'(O) to be the empty word, then we have the following equality
in the free group on A (see figure F.!):

(1.6 1) = fl +

Each of the words in square brackets belongs to fl.

1

a
-y

Fig. I'! The Equality in Equation 1 6 1

Finally, wc consider the given word w = b1 b,, that rcpresents the identity in
F, where each b, E (so m = wi) Let Yo I and let E F be the element
represented by b1 Note that y,,, = I and a>,, = a>,0 is the empty word Tnvially,
in F(A) we have the equality

(1.62)

By replacing each factor on the nght hand side of this equality with the right hand
side of the previous equation (with y = b =

b

>
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desired expression for w as a product of conjugates of defining relations. We claim
that this product has the desired number of factors.

To see this, consider the image in X of F under the map y i-÷ y.x0. Under
this map the sequence of elements form a sequence of m points beginning and
ending at x0. Since each successive pair of elements differ by right multiplication by
a single element of A, their images in X are a distance at most D + 1 apart. Hence

(D+ forj = I m. It follows that each of the integers
n(yj, in equation (1.6.1) is no greater than 1 + (D + The final equality
for w is a product of m = w terms, thejth of which (coming from (1.6.1)) consists
of conjugates of relators. Thus we have less than (D + factors in
total.

The conjugating elements in our final equality are the prefixes coming from
(1.6.1), and the lengths of these are bounded by the integers

1.7 Remarks
(1) The equality displayed in the statement of the proposition shows that w is in

the normal closure of 7?. C F(A) and hence (A 7?.) is a finite presentation for F.

(2) Proposition 1.6 states that the Dehn function for the presentation 7?. c F(A),
as defined in (I 8A), is bounded above by a quadratic function. It follows that the Dehn
function for any finite presentation of F is bounded above by a quadratic function
(see [A1o90], H.2.5(5)).

w

(3) The fact that one gets a quadratic bound on the number of factors on the right
hand side of the equality in the statement of this proposition is closely related to the
quadratic isoperimetric inequality for fillings in CAT(O) spaces (H.2.4).

Fig. I'.2 Constructing a van Kampen diagram with quadratic area
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Figure (F.2) illustrates the scheme by which relations were applied in the proof.
By removing faces whose boundaries map to the trivial path in CA(F) one obtains a
van Kampen diagram for w.

The Conjugacy Problem

The way in which we shall solve the conjugacy problem for groups that act properly
and cocompactly by isometnes on CAT(O) spaces is motivated by the following
geometnc observation.

1.8 Proposition. Let Y be a compact non-positively curved space If two closed
rectifiable loops c0, c1 —÷ Y are freely homotopic, then there is a homotopy

x [0, 1] —* Yfrom co to c1 through loops c, such that 1(c1) < max{l(co), l(ci)}
(where 1 denotes length).

Proof Parametenze both co and ci proportional to arc length. By hypothesis, there
is a homotopy H : x [0, 1] —* Y from co to ci. For each 6 E we replace the
path t i-÷ H(6, t) by the unique constant-speed local geodesic pg : [0, 1] —÷ Yin the
same homotopy class (rel. endpoints). Let c1(6) = p9(t).

We fix an arc [6, 6'] in and in Y, the universal covenng of Y, we con-
sider the geodesic rectangle obtained by lifting the concatenation of the four
paths p9, ?i and where the overline denotes reversed onenta-
tion. By the convexity of the metnc on Y, for sufficiently small 6 — we have
d(c,(6), c,(6')) = d(p9(t), p9(t)) (I — t) d(co(6), co(6')) + t d(c1 (6), ci (6')) (see
11.2.2 and 11.4.1). Hence l(c,) < (I — t) 1(co) + t l(ci).

Free homotopy classes of loops in a connected space correspond to conjugacy
classes of elements in the fundamental group of the space. With this correspondence
in mind, we define an algebraic property motivated by the above proposition. In this
definition, the elements E F play the role of the intermediate loops c, in
(1.8).

1.9 Definition (q.m.c.). A group F with finite generating set A is said to have the
quasi-monotone conjugacy property (q m.c.) if there is a constant K > 0 such that
whenever two words u, v E F(A) are conjugate in F, one can find a word w =
a1.. with a, E such that = v andd(l, wliuwj) < Kmax{IuI, vI}
fori=l

In this definition, the existence of K does not depend on the choice of generating
set A but its value does.

1.10 Lemma. If a group F acts properly and cocompactly by isometries on a CAT(0)
space X, then F has the q. m. c. properly.
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Proof Fix x0 E X. We choose generators A for F as in (1.5) and represent elements
y E F by words as in the proof of (1.6). We claim that there is a constant K> 0,
depending only on the parameters of the quasi-isometry y i—÷ y.x0, such that if two
words u and v are such that yuy — = v in F, then w satisfies the requirements
of(1.9).

To see this one uses the convexity of the metnc on X and compares the geodesic
quadnlateral in X with sides [x0, y.xo], [xo, u x0], y [xo.u.xO] and [u.xo, yu.xo] to a
quadrilateral Q in the Cayley graph CA(F). The vertices of Q are (1, y, u, yu = vy },

two of its sides are labelled and the other sides labelled u and v. We leave the
(instructive) venfication of the details to the reader (cf. 4.9(3)).

1.11 An Algorithm to Determine Conjugacy. Let F be a group with finite gen-
erating set A. Suppose that F has a solvable word problem and also has the q.m.c.
property. Let the constant K be as in (1.9).

For each positive integer n, we consider the set B(n) of words in F(A) that have
length at most n. Because F has a solvable word problem, given a pair of words
v1, V2 E B(n) one can decide if there exists a E such that v1a = v2 in F; if
such an a exists we wnte vl v2.

Consider the algorithmically constructed finite graph g(n) with vertex set B(n)
that has an edge joining v1 to v2 if and only if v1 V2. The q.m.c. property says
precisely that two words u and v are conjugate in r if and only if u and v lie in the
same path connected component of g(n), where n = K IvI}. Thus we may
decide if u and v represent conjugate elements of F.

Note that g(n) has less than vertices, and hence any injective edge-path in
g(n) has length less than (2 A Any path of length ljoining u to v in g(n) determines
a word of length I which conjugates u to v in F, and therefore u is conjugate to v in
F if and only if there is a word w of length < such that uw = v in F,
where i =

1.12 Theorem. 1fF acts properly and cocompactly by isometries on a CAT(0) space
X, then for any choice of finite generating set A there exists a constant i > 0 such
that words u, v E F(A) represent conjugate elements ofF and only there is a
word w of length < such that = v in r. In particular F has a
solvable conjugacy problem.

Proof F has a solvable word problem (1.6) and the q.m.c. property (1.10), so algo-
rithm (1.11) applies.
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Conjugacy of Torsion Elements

It is unknown whether, in general, one can significantly improve the exponential
bound on the length of the conjugating element in (1.12) However one can do better
for elements of finite order.

1.13 Proposition. Let F be a group which acts properly and cocompactly by isome-
tries on a CAT(O) space X. If A is a finite generating set for F, there exists a finite
subset of the free group F(A) and a constant K such that a word u E F(A) repre-
sents an element offinite order in F if and only there exists a E and w E F(A),
with <K ui, such that = a in F.

Proof Choose a ball B B(xo, D) big enough so that its translates by F cover X. By
the Lemma (1.8.19), there exist positive constants A and e such that

y.xo)—e <d(I, y)< Ad(xo, y.xo)+e,

for all y E F, where F is equipped with the word metnc associated to A
Let be a subset of F(A) which maps bijectively under F(A) —* F to the union

of the stabilizers of the points of B. This set is finite because the action is proper.
Suppose that y E F is an element of finite order, represented by the word u E

F(A). We know that y fixes a point of X (11.2.8); choose a fixed point x1 closest to
x0 and let g E F be such that x1 E B. Note that yg lies in the image of It
suffices to bound d(1, g) as a linear function of ui.

Wnting d(xo, x1) = we have:

d(g.xo, x0) d(g.xo, xi)+d(xi,xo) < D+p,

and hence d(1, g) A(p + D) + e. Thus it only remains to bound p by a linear
function of ui d(1, y).

Claim. There exist positive constants and such that for all torsion elements y E F,

We write V1 (y) to denote the set of points a distance exactly I from Fix(y).
Consider the (finite) set S C consisting of elements a such that (a) := V1 (a) fl

D + 1) is non-empty. Let L(J = inf{d(x, a.x) x E > 0, and let
L = a E S}.

Given a torsion element y E F and a point x E V1 (y), let y E Fix(y) be the point
closest to x, and fix h E F such that h.y E B. Let a = hyh1; so h.x E We
have d(x, y.x) = d(h.x, hyh .(h x)) = d(h.x, a.(h.x)). Thus d(x, y.x) > L.

Now let z E X be any point such that p = d(z, Fix(y)) > 1, let y be the closest
point of Fix(y) and let x be the point a distance 1 from y on the geodesic [y, zi. The
CAT(0) inequality for the triangle z, y.z) gives d(z, y.z) > p d(x, y.x)> pL.

To complete the proof of the claim, we cast xo in the role of z, recall that y i-÷ y.x0
is a (A, e) quasi-isometry, and let = L/A and = e.



448 Chapter III r Non-Positive Curvature and Group Theory

1.14 Corollary. Let F be a group with finite generating set A Suppose that F acts
properly and cocompactly by isometries on a CAT(O) space. Then:

(1) There is an algorithm to decide which words u E F(A) represent elements of
finite order in F.

(2) There is a constant k such that in order to decide two words u and v in the
generators represent torsion elements of F that are conjugate, it suffices to
check = v in Ffor some word w with wi < k max{IuI, vI}.

2. Hyperbolic Groups and Their Algorithmic Properties

We now set about the second main task of this chapter: we want to use the tools
of geometric group theory to study the structure of groups which act properly and
cocompactly by isometnes on CAT(0) spaces and, more generally, groups which
in a strict metric sense resemble such groups of isometnes. We begin with the 8-
hyperbolic case. In this section we shall use the results of the previous chapter (in
particular results concerning quasi-geodesics) to examine the algorithmic structure
of groups whose Cayley graphs are 8-hyperbolic (i.e. hyperbolic groups). We shall
describe solutions to the word and conjugacy problems for such groups — these are
considerably more efficient than the solutions described in the previous section
and we shall explain a result of Jim Cannon which shows that geodesics in the Cayley
graphs of hyperbolic groups can be described in a remarkably simple algorithmic
manner (2.18).

Hyperbolic Groups

We saw in (H.1.10) that being hyperbolic is an invariant of quasi-isometry among
geodesic spaces. Hence the following definition does not depend on the choice of
generators (although the value of S does).

2.1 Definition of a Hyperbolic Group. A finitely generated group is hyperbolic (in
the sense of Gromov) if its Cayley graph is a 8-hyperbolic metric space for some
8>0.

2.2 Proposition. Every hyperbolic group is finitely presented.

Proof This is a weak form of (2.6). We give an alternative (more direct) proof, the
scheme of which is portrayed in figures (F.!) and (F.2).

Fix a finite generating set A with respect to which F is 8-hyperbolic. Given a
word w E F(A) which represents 1 E F, consider the loop in the Cayley graph
CA(F) that begins at I and is labelled w. Let w(i) be the ith vertex which this loop
visits (i.e. the image in F of the ith prefix of w). Let a1 be a geodesic from I to w(i).
Suppose that w(i + 1) w(i)b. Note that d(a1(t), (t)) 2(8 + 1) for all integers
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i < and all t> 0 for which a,(t) and are defined (H 115). As in equation
(1.6.1), one can express a product of conjugates of relations of
length at most (48 + 6). And from equation (1.6.2) it follows that w is also equal in
F(A) to a product of conjugates of relations of length at most (48 + 6). LI

Since much of the essence of a CAT(— I) space is encoded in the geometry of its
geodesics, and since we know from the previous chapter that the geometry of quasi-
geodesics in hyperbolic spaces mimics the geometry of geodesics rather closely, a
great deal of the geometry of CAT(— 1) spaces ought to be transmitted to the (quasi-
isometnc) groups which act properly and cocompactly on them by isometnes. With
this in mind, when attempting to understand hyperbolic groups in general, it is often
useful to regard them as coarse versions of CAT(— 1) spaces. This viewpoint will be
the dominant one in Section 3

An alternative perspective, which can be useful in motivating proofs, e.g. (2.8),
is to regard hyperbolic groups as fattened-up versions of free groups. After all, a
geodesic space is 0-hyperbolic if and only if it is a metnc tree, and if the Cayley
graph of a group is a tree then the group is free.

2.3 Remarks
(1) In a certain statistical sense (see [Gro87], [Cham93] and [0192]), almost all

finitely presented groups are hyperbolic

(2) At the time of writing, it is unknown whether every hyperbolic group F acts
properly and cocompactly by isometnes on some CAT(0) (or even CAT(— 1)) space.
In the torsion-free case, this would mean that F would be the fundamental group
of a compact non-positively curved space. In general F will not be the fundamental
group of a compact non-positively curved n-manifold with empty or locally convex
boundary, because such a fundamental group has cohomological dimension53 n (if
the boundary is empty) or n — 1, and there are hyperbolic groups of cohomological
dimension two, for example, that are not the fundamental group of any manifold of
dimension two or three the construction of (11.5.45) gives many such groups.

Dehn's Algorithm

Dehn's algorithm is perhaps the most direct approach that one can hope for whereby
the information in a finite presentation is used directly to solve the word problem in
the group presented. It is the algonthm that Dehn used to solve the word problem in
Fuchsian groups [Dehnl2a].

2.4 Dehn's Algorithm for Solving the Word Problem. Given a finite set of genera-
tors A for a group F, one would have a particularly efficient algorithm for solving the
word problem if one could construct a finite list of words v1, u2, v2

53We refer to [Bro821 for basic facts concerning the cohomology of groups
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with u v1 in F, whose lengths satisfy < and which have the property that
if a word w represents the identity in F then at least one of the is a subword of w.

If such a list of words exists, then given an arbitrary word w one looks for a
subword of the form u1; if there is no such subword, one stops and declares that w
does not represent the identity, if u, occurs as a subword then one replaces it with v,
and repeats the search for subwords of the (shorter) word obtained from w — this
new word represents the same element of the group as w. After at most wi steps
one will have either reduced to the empty word (in which case w = 1 in F) or else
venfied that w does not represent the identity.

2.5 Definition. A finite presentation (A
I

fl.) of a group F is called a Dehn pre-
sentation if fl. = {u1 }, where the words u1, v1 v,1 satisfy the
conditions of Dehn's algonthm

2.6 Theorem. A group is hyperbolic and only it admits a (finite) Dehn presen-
tation.

As we noted above, Dehn proved that Fuchsian groups admit Dehn presentations.
Jim Cannon extended Dehn's theorem to include the fundamental groups of all closcd
negatively curved manifolds [Ca84]. Theorem 2.6 is due to Mikhael Gromov [Gro87]
(Cannon gave a proof in [Ca9 I] and alternative proofs can be found elsewhere,
e.g. [Sho9l].)

Proof Suppose that (A 7?.) is a Dehn presentation for F and let p be the length
of the longest word in R. Consider an edge-loop c of length n in the Cayley graph
CA(F). This is labelled by a word w in the generators and their inverses, and this
word represents the identity in F The Dehn algonthm of the presentation yields a
subpath (corresponding to a subword u of w) which is not geodesic there is a
shorter path with the same endpoints that is labelled v.

Let c' bc the edge-loop obtained by replacing the subpath of c labelled U by
the path labelled v. Given a standard p-filling D2 —* CA(F) of c' (terminology of
1-1.2.7), one can obtain a standard p-filling of c by adding an extra polyhedral face to
the filling in the obvious way (figure F.3) and adding extra edges to divide this face
into p triangles. By induction on n = 1(c), we may suppose that there is a standard
p-filling whose p-area is < p1(c'). Hence p1(c). This implies that CA(F)
is hyperbolic (H.2.9).

Conversely, suppose that the Cayley graph of F with respect to some finite gen-
erating set A is 8-hyperbolic. Fix an integer k > 88. Every edge-loop in CA(F)
contains a subpath p of length at most k that has its endpoints at vertices and is not
a geodesic (see H.2.6). If a word in the generators represents 1 F then it is
the label on an edge-loop in CA(F), and the non-geodesic subpathp descnbed in the
preceding sentence is labelled by a subword u that is equal in F to a shorter word v
(the label on a geodesic in CA(F) with the same endpoints as p). Thus we obtain a
Dehn presentation (A R) for F by defining R. to be the set of words where
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C

Fig. I'.3 Applying a relation in Dehn's algorithm

u, vanes over all words of length at most k in the generators and their inverses and
v1 is a word of minimal length that is equal to u in F.

2 7 Remarks
(1) As a consequence of the above theorem, we see that if a group admits a Dehn

algonthm with respect to one set of generators then it admits such an algorithm with
respect to every set of generators. (This is not obvious a priori)

(2) It follows from the above theorem and (H.2.7,9 and ii) that a group admits a
finite Dehn presentation if and only if its Dehn function (as defined in I.8A) is linear
(equivalently, sub-quadratic).

(3) The reader might like to prove directly that Z2 does not have a (potentially
obscure) Dehn presentation.

The Conjugacy Problem

2.8 Theorem. Every hyperbolic group has a solvable conjugacy problem.

Hyperbolic groups have the q.m.c. property (1.9), hence they have a solvable
conjugacy problem Indeed it is easy to check that if two words u and v in the
generators of a 8-hyperbolic group F are such that yuy = v in F, and if w is a
geodesic word representing y, then w satisfies the requirements of( 1 9) (with respect
to a constant K that depends only on 8).

The bound on the length of the minimal conjugating word that one obtains from
the algonthm based on the q.m.c. property is an exponential function of ui and vi
(see (1.12)). We shall descnbe a more efficient algorithm that gives a linear bound.
A still more efficient algonthm was recently discovered by David Epstein. In order
to motivate our algonthm, we reflect on our earlier remark that it is often worthwhile
to regard hyperbolic groups as fattened-up free groups.

In a free group one solves the conjugacy problem in the following manner. By
definition, a word w = a0 . in the free group on A is cyclically reduced if
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aT' for 1 0 n — 1 and Given a word in the letters A and
their inverses, one can cyclically reduce it by repeatedly performing the following
operations: delete any subword of the form and delete the first and last letters
of the word if u = The cyclically reduced word that one obtains in this way
is unique up to cyclic permutation of its letters. (For example, can be
reduced to baa or aab.) Given two words u and v, in order to check if they define
conjugate elements of F(A), one cyclically reduces both words and then looks to see
if one of the resulting words is a cyclic permutation of the other.

Motivated by the example of free groups, given a group F with a fixed finite
generating set, we say that a word w in the generators and their inverses is fully
reduced if w and all of its cyclic permutations label geodesics54 will henceforth in
the Cayley graph of F

2.9 Lemma. Let F be a group that is 8-hyperbolic with respect to the finite generating
set A If two fully reduced words u, v E F(A) represent conjugate elements of F,
then

(1) max(IuI, vi) < 86 + 1, or else

(2) there exist cyclic permutations u' and v' of u and v and a word w E F(A) of
length at most 26 + 1 such that

w in F(A) such that wuw' = v. Consider a geodesic
quadrilateral Q in the Cayley graph of F whose sides (read in order from a vertex)
trace out edge paths labelled w, u, and v in that order. We shall refer to the
sides of Q that are labelled as the vertical sides and we shall refer to the other
sides as the top and bottom.

U

V

Fig. r.4 Arranging the conjugacy diagram

By replacing u and v with suitable cyclic permutations if necessary (see fig F.4),
we may assume that each vertex on the top side of Q is a distance at least from
each vertex on the bottom. Consider the midpoint p of the top side This is a distance
at most 28 from a point on one of the other three sides. If it were within 28 of a point

Such words are often called geodesic words Likewise, it is common to speak of a word
as being a k-local geodesic, meaning that the path which it labels in the Cayley graph is a
k-local geodesic.
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p' on the bottom, then the vertices closest to p and p' would be a distance at most
28 + 1 apart; if iwi > 28 + 1, then this cannot happen.

Suppose now that p is within 28 of a point q on one of the vertical sides. Let x
andy be, respectively, the top and bottom vertices of the side containing q. From the
inequalities wI —(1/2) <d(p, y) 28 +d(q, y) and d(q, y) = wi — d(x, q), we get
d(x, q) 28 + (1/2), and therefore d(p,x) <d(p, q) + d(x, q) <48 + (1/2). And
d(p,x) = lul/2.

An entirely similar argument shows that if wi > 28 + 1, then the bottom side
of Q also has length at most 88 + 1. 0

If applied naively, the preceding lemma would yield a solution to the conjugacy
problem involving an unacceptably large number of venfications to see if the words
considered were fully reduced. To circumvent this difficulty, instead of using (2.9)
directly we use (2.11), whose proof is essentially the same as that of(2.9) once one
has observed the following consequence of (H. 1.7) and (H. 1.13)

2.10 Lemma. LetX be a 8-hyperbolic geodesic space. There is a constant C, depend-
ing only on 8, such that if the sides of a quadrilateral Q c X are all (88 + 1)-local
geodesics, then et'ery side of Q lies in the C-neighbourhood of the union of the other
three sides.

2.11 Lemma. Let F be a group that is 8-hyperbolic with respect to the finite gen—
erating set A. There is a positit'e constant K, depending only on 8, such that if
u, V E F(A) represent conjugate elements of F, and if u, v and all of their cyclic
permutations are (88 + 1)-local geodesics, then

(1) max{iul, lvii <K, or else

(2) there exists a word w E F(A) of length at most K such that w 'u'w = v' in F,
where u' and v' are cyclic permutations of u and v

2.12 An Algorithm to Determine Conjugacy in Hyperbolic Groups. Let F be
a group that is 8-hyperbolic with respect to the finite generating set A. Given two
words u and v over the alphabet one looks in u, v and their cyclic permutations
to find subwords of length at most 88 + 1 that are not geodesic. If one finds such a
subword, one replaces it with a geodesic word representing the same group element.
One continues in this manner until u and v have been replaced by (conjugate) words
u' and v' all of whose cyclic permutations are (88 + 1)-local geodesics. (Working
with cyclic words, this requires the application of less than ui + lvi relations from a
Dehn presentation of F.) Lemma 2.11 provides a finite set of words such that u is
conjugate to v in F if and only if w E (One can take
to be the set of words of length at most K together with a choice of one conjugating
element for each pair of conjugate elements u0, v0 with max{luol, ivol} K ) Using
Dehn's algonthm, one can decide whether any of the putative relations u'w =
is valid in F.
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2.13 Remark (Annular Diagrams). Let 7' be a finite presentation of a group F, and
let K be the corresponding 2-complex (as descnbed in I.8A). Showing that a word
w in the generators represents 1 E F is equivalent to showing that the edge-loop in

labelled w is homotopic to a constant map. We explained in (I.8A) how one can
construct a planar van Kampen diagram that portrays this homotopy, and the number
of 2-cells in a minimal such diagram is the minimal number of defining relations that
one must apply to show that w = 1 in F.

Showing that two words u and v in the generators represent conjugate elements
of F is equivalent to showing that the corresponding edge-loops in are freely
homotopic, in other words there is a continuous map from an annulus into K that
sends the boundary curves to these edge-loops. As in the case of a disc, one can
use cellular approximation and combinatonal arguments to deduce the existence of
annular t'an Kampen diagrams.

Such a diagram is a finite, planar, combinatonal 2-complex, homotopy equivalent
to an annulus, that portrays the homotopy between the curves representing u and v.
The 1-cells of the complex are labelled by generators, the word labelling the boundary
cycle of each 2-cell is one of the defining relations, and the words labelling the two
boundary cycles of the diagram (suitably onented) are u and v. The number of 2-
cells in a minimal such diagram is the minimal number N of factors among all free
equalities of the form

=

where the are any words and each r is one of the defining relations (or its inverse).

The algonthm for solving the conjugacy problem in hyperbolic groups that is
descnbed above yields the following analogue of the linear isopenmetric inequality
for the word problem. We leave the proof as an exercise for the interested reader

2.14 Proposition. If F is a hyperbolic group with finite presentation 7' = (A
I

then there exists a constant M such that if two words u, v in the letters define
conjugate elements of F, then one can construct an annular t'an Kampen diagram
ot'er 7', with boundary labels u and v, that has at most M max { u , v } 2-cells.

2.15 The Isomorphism Problem. Zlil Sela [5e195] has shown that there is an al-
gonthm that decides isomorphism among torsion-free hyperbolic groups. More pre-
cisely, there exists an algorithm which takes as input two finite group presentations
of torsion-free hyperbolic groups, and which (after a finite amount of time) will stop
and answer yes or no according to whether or not the groups being presented are
isomorphic. One requires no knowledge of 8: the simple fact that the groups being
presented are hyperbolic and torsion-free is enough to ensure that the algonthm will
terminate.

The proof of this result is beyond the scope of the techniques that we have
descnbed.
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Cone Types and Growth

The purpose of this subsection is to show that there is a simple algorithmic procedure
for recognizing geodesics in hyperbolic groups. More precisely, given a finite gener-
ating set A for a hyperbolic group I', using the notion of cone type one can construct
a finite state automaton which accepts precisely those words in the free monoid on

that label geodesics in the Cayley graph CA(F) It follows that oflA(n)t' is
a rational function oft, where flA(n) is the number of vertices in the ball of radius n
about 1 E CA(F) (see 2.21). This important discovery is due to Jim Cannon [Ca84].
In [Gro87] Gromov discusses related matters under the heading "Markov properties"
(see also chapter 9 of [GhH9O]).

Cannon's insights concerning the algonthmic structure of groups of isometnes
of real hyperbolic space were the starting point for the theory of automatic groups
developed in the book by Epstein et al. [Ep+92].

2.16 Definition (Cone Types). Let F be a group with finite generating set A and
corresponding word metnc d. The cone type of an element y E F is the set of words
v E F(A) such that d(1, yv) = d( 1, y) + vi. In other words, if y is represented by
a geodesic word u, then the cone type of y is the set of words v such that uv is also
a geodesic.

2.17 Example. A free group of rank m has (2m + 1) cone types with respect to any
set of free generators, and so does a free abelian group of rank m

2.18 Theorem. If a group F is hyperbolic, then it has only finitely many cone types
(with respect to any finite generating set).

Proof We follow the proof of Cannon LCa84] (see also [Ep+92, p 70]). The idea of
the proof is to show that in order to determine the cone type of y E F, we only need
to know which vertices near y in the Cayley graph are closer to 1 E F than y is.
Thus, given k > 0, we consider the k-tail of y E F, which is the set of elements
hE Fsuchthatd(1,yh) <zd(1,y)andd(l,h)<zk.

Let C be the Cayley graph of F with respect to a fixed finite generating set A;
suppose that it is 8-hyperbolic. Let k = 28 + 3. We claim that the k-tail of each
element y E F determines which words v belong to the cone type of y We shall
prove this by induction on the length of v. (The first few steps of the induction are
trivial.) We fix an arbitrary y' E F that has the same k-tail as y and choose a geodesic
word u representing y'. In order to complete the induction we must show that if a
word v is in the cone type of both y and y', and if a E A is such that va is in the
cone type of y, then va is also in the cone type of y'.

If va were not in the cone type of y', then there would exist a geodesic word
w E F(A) of length less than d(I, y') + lvi + 1 such that w =y'va. We wnte w as
w1w2, where Iwi = d(1, y') — land 1W21 + I.





Cone and Growth 457

A subset of the free monoid on B is called a regular language if it is the accepted
language of some finite state automaton over B. We refer the reader to [Ep+92] for
a detailed account of the role which regular languages play in geometry and group
theory.

2.20 Corollary. Let F be a hyperbolic group with finite generating set A.

(1) The set of words in the free monoid (A U A' )* that label geodesics in the
Cayley graph CA(F) is a regular language.

(2) F is biautomatic.

Proof A group with finite generating set A is biautomatic if and only if there is a
regular language £ in the free monoid (Au A_I)* that satisfies the following two

properties. First, every y E F must be represented by at least one member of the
language, i.e. the restriction to £ of the natural map . (A U A' )* F must
be surjective. Secondly, one requires the language to satisfy the "fellow-traveler
property": there must exist a constant K > 0 such that if u, v E £ are such that
d(a.,a(u), < 1, where a E AU (1), then the edge-path in CA(F) that begins at
the identity and is labelled v must remain uniformly K-close to the path that begins
at the vertex a and is labelled u.

We have just seen (2.19) that the language of geodesics in any hyperbolic group
is a regular language, and for the fellow-traveler property it suffices to take K =
2(28 + 1) (cf H 1.15). El

For an alternative proof of (2.20), due to Bill Thurston, see LBGSS9 I].

In Chapter 1.8 we discussed the growth function of a group F with respect to a
finite generating set flA(n) is the number of elements y E F such that d( I, y) n,
where d is the word metric associated to A. We now also wish to consider the function
aA(n) := {y E F d(1, y) = n) It is convenient to encode the sequences
and (aA(n)) as the coefficients of formal power senes:

fA(t) = and =
n=O '1=0

Note that, as formal power series,fA(t) = t).
I' is said to have rational growth with respect to A if is a rational function,

i.e. it is the power senes expansion of p(t)/q(t), where p(t) and q(t) are polynomials
with integer coefficients

2.21 Theorem. If F is hyperbolic then the growth of F with respect to any finite
generating set is rational.

Proof Let A be a finite generating set for F. We choose a linear ordenng on the
alphabet A U and impose the associated lex-least ordenng -.< on finite words
over AU A—',that is w -.< v if and only if wi < or iwl = lvi and w precedes v
in the dictionary.
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Let £ be the set of words in the free monoid on A U that occur as labels
on geodesic edge-paths in CA(F) (i.e. geodesic words). We have seen that £ is a
regular language. General considerations concerning regular languages imply that
C = {w E £ I Vv EL, w r v implies w v}isalsoaregularlanguage(seepage
57 of [Ep+92]). Note that the natural map (A U A_l)* F restncts to a bijection
from the set of words of length n in C to the set of elements a distance n from the
identity in F.

Since C is regular, it is the accepted language of a connected finite state automaton
over A U Let be the initial vertex of the automaton and note that since every
prefix of a word in C is again in C, every vertex of the automaton is an accept vertex
We consider the transition matnx M of this automaton. The rows and columns of M
are indexed by the vertices v, of the automaton and the (i, j)-entry, which we denote
M(i,j), is the number of directed edges from v1 to v3.

The number of words of length n in £' is the number of distinct edge-paths of
length n that begin at the initial vertex v10, and this is the sum of the entries in the
i0th row of M". Thus

=
n=o 3

Let co + c1t + be the minimum polynomial of M over Z and let q(z) ck +
ck_lt+ +ckM" = 0.

It follows that is a polynomial of degree at most k — I, because for ,n > k
the coefficient of t"2 is

. +

which equals zero

We close this section by noting a further consequence of (2.18)

2.22 Proposition. If a hyperbolic group is infinite then it contains an element of
infinite order (More generally, this is true of any group F with finitely many cone
types).

Proof Because F is infinite, there is a geodesic edge-path in its Cayley graph that
begins at the identity and has length greater than the number of cone types. Let w
be the word labelling such a geodesic and decompose w as ulu2u3, where u2 is the
label on a path that connects two vertices of the Cayley graph that have the same
cone type. By definition, lies in the cone type of the first vertex, which is the
same as the cone type of the second vertex. Hence lies in the cone type of the
first vertex.

Iterating this argument we see that ui is a geodesic word for every positive
integer n. Since a subword of a geodesic word is geodesic, it follows that is a
geodesic word for every n > 0. In particular does not represent the identity, and
hence the image of u2 in F is an element of infinite order. 0
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3. Further Properties of Hyperbolic Groups

In this section we shall present more of the basic properties of hyperbolic groups. We
shall see that our earlier results concerning isometnes of CAT(—1) spaces, including
parts (1) to (5) and (i) to (v) of Theorem 1.1, all remain valid in the context of
hyperbolic groups Specifically, we shall prove that if a group F is hyperbolic then it
contains only finitely many conjugacy classes of finite subgroups, the centralizer of
every element of infinite order contains a cyclic subgroup of finite index, and if I' is
torsion-free then it is the fundamental group of a finite cell complex whose universal
cover is contractible. We shall also describe an algebraic notion of translation number
and show that the translation numbers of elements of infinite order in hyperbolic
groups are positive and form a discrete subset of (cf. 11.6.10(3)); in fact they are
rational numbers with bounded denominators (3.17).

The results in this section all originate from [Gro87].

Let's begin by noting the direct connection between hyperbolic groups and isome-
tries of CAT(0) spaces. This comes from the Flat Plane Theorem (H. 1.5) and the
quasi-isometry invariance of hyperbolicity (H. 1.10)

3.1 Theorem. If a group F acts properly and cocompactly by isometries on a CAT(0)
space X, then F is hyperbolic if and only if X does not contain an isometrically
embedded copy of the Euclidean plane

Finite Subgroups

The proof of the following theorem illustrates how arguments concerning groups of
isometries acting on CAT(K) spaces, K < 0, can be transported into the world of
hyperbolic and related groups. The key to such adaptations is that one must find an
appropriate way to "quasify" the key role that negative curvature is playing in the
classical setting; one then attempts to encapsulate a robust form of the salient feature
of curvature in the more relaxed world of hyperbolic spaces We apply this general
philosophy to the study of finite subgroups. The following result should be compared
with (11 2.8).

3.2 Theorem. If a finitely generated group F is hyperbolic, then it contains only
finitely many conjugacy classes of finite subgroups.

As in (11 2.8), we shall deduce this result from the existence of an appropriate
notion of centre for bounded sets

The first example of this is the very definition of a 5-hyperbolic space one observes that
many of the global implications of the CAT(— I) inequality stem from the slim triangles
condition
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3.3 Lemma (Quasi-Centres). Let X be a 8-hyperbolic geodesic space. Let V c X be
a non-empty bounded subspace. Let ry = inf{p > 0

I
V c B(x, p), some x E X}.

For all s > 0, the set C6(Y) = (x E X I V c B(x, ry + s)} has diameter less than
(48 + 2s).

Proof Given x, E C6(Y), let m be the midpoint of a geodesic segment Lx, x']. For
each y E V we consider a geodesic triangle with vertices x, x', y and with Lx, x']
as one of the sides. Because X is 8-hyperbolic, m is within a distance 8 of some
p E [x, y] U [x', y]; suppose that p E [x, y]. Then, since d(x, m) = d(x, x')/2 and
d(p, x) > d(x, m) —8, we have d(y, p) = d(y, x) d(p, x) <d(y, x) + 8 — d(x, x')/2,
and since d(x, y) < ry + s,

d(y, m) <d(y, p) + m) <ry + s + 28 — x').

But d(y, m)> ry for some y E Y, hence s + 28 — x') > 0 El

Proof of Theorem 3.2. Let F be a group whose Cayley graph C with respect to
some finite generating set is 8-hyperbolic. Let H c F be a finite subgroup, and
let C1(H) c C be as in the lemma. C1(H) contains at least one vertex and the
action of H leaves C1 (H), and hence its vertex set, (set-wise) invanant. If x is one
of the vertices of C1(H), then leaves invanant. Since
which is a set of diameter less than (48 + 2), contains the identity 1, it also contains
x Hx = Hx). 1. Thus every finite subgroup of F is conjugate to a subset of the
ball of radius (48 + 2) about the identity. El

The proof given above does not appear in the literature but the idea behind it was
known to a number of researchers in the field, in particular Bnan Bowditch, Noel
Brady and Ilya Kapovich. Alternative proofs have been given by Ol'shanskii and by
Bogopolskii and Gerasimov [BoG95].

Quasiconvexity and Centralizers

Recall that a subspace C of a geodesic space X is said to be cont'ex if for all x, y E C
each geodesicjoiningxtoy is contained in C. Following Gromov [Gro87], we quasify
this notion.

3.4 Definition. A subspace C of a geodesic metric space X is said to be quasiconvex
if there exists a constant k > 0 such that for all x, y E C each geodesic joining x to y
is contained in the k-neighbourhood of C

3.5 Lemma. Let G be a group with finite generating set A and let H C F be a
subgroup. If H is quasiconvex in the Cayley graph CA (F), then it is finitely generated
and H F is a quasi-isometric embedding (with respect to any choice of word
metrics)
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Proof Let k be as in (3 4). Given h E H, we choose a geodesic from I to h in CA(F);
suppose that it is labelled a1 . a,,. For i = 1, , n we choose a word u, of length
at most k so that h, := E H (where u0 and u,, are defined to be the empty
word). (See figure F.6.)

We have h = h1 . h,,. It follows that H is generated by the (finite) set of elements
h, E H that lie in the ball of radius (2k + 1) about I E F It also follows that the
distance from 1 to h in the word metric associated to this generating set is at most
n = dA(1, h), and hence H F is a quasi-isometric embedding. El

3.6 Corollary. Let F be a hyperbolic group and let H C F be a finitely generated
subgroup.

(1) If H is quasicont'ex with respect to one finite generating set, then it is quasi-
cont'ex with respect to all finite generating sets. (Thus we may unambiguously
say that H is a quasicont'ex subgroup ofF.)

(2) H c F is quasicont'ex if and only if it is quasi-isometrically embedded.

Proof One direction of(2) is proved in the lemma. For the converse, we fix finite gen-
erating sets A for F and B for H and suppose that H is quasi-isometrically embedded
in F, which implies that there is a quasi-isometric embedding 4 : CB(H) —± CA(F)
Given two points h, h' E H, we join them by a geodesic c in CB(H) and consider the
quasi-geodesic 4 o c joining h to h' in CA(F). According to (H. 1.7), any geodesic
joining h to h' in CA(F) is k-close to this quasi-geodesic, where k depends only on
the hyperbolicity constant of F and the parameters of the quasi-isometry 4. Thus H
is quasiconvex in CA(F), and (2) is proved.

The statement "H F is a quasi-isometric embedding" does not depend on a
choice of generating sets, so (I) follows from (2). El

By combining (H. 1.9) and (3.6) we get:

3.7 Proposition. The quasicont'ex (equwalently, quasi-isometrically embedded) sub-
groups of hyperbolic groups are hyperbolic.

3.8 Remarks
(1)The converse of (3.7)is not true: there exist pairs of hyperbolic groups H C F

such that H is not quasi-isometrically embedded in F (examples are given in (6.21)).

Fig. r.6 A Quasiconvex Subgroup
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(2) Proposition 3.7 shows that quasi-isometrically embedded subgroups of hy-
perbolic groups are finitely presented; the same is not true of semihyperbolic groups,
for example the direct product of two finitely generated free groups (see 5.12(3)).

(3) The construction described in (II 5.45) yields examples of hyperbolic groups
with finitely generated subgroups that are not finitely presented and hence not hy-
perbolic. It is more difficult to construct finitely presented subgroups that are not
hyperbolic, the only know examples are due to Noel Brady56.

The following results are due to Gromov [Gro87]. The ideas underlying them
have been used by other authors to obtain similar results in wider contexts (e.g.,
[Ep+92], [GeS9I], [AIoB95I). In the next section we shall provide proofs in a wider
context see (4.13) and (4.14).

3.9 Proposition. Let F be a hyperbolic group.

(1) The centralizer C(y) of every y F is a quasiconvex subgroup

(2) If the subgroups H1, H2 C F are quasiconvex then so is H1 fl

3.10 Corollary. Suppose that F is a hyperbolic group and that y e F has infinite
order

(1) The map Z —+ F given by n i—p is a quasi-geodesic.

(2) (y) has finite index in C(y). In F does not contain Z2.

Proof of Corollary. C(y) is quasiconvex, hence finitely generated and hyperbolic. By
intersecting the centralizers of a finite generating set for C(y), we see that the centre
Z(C(y)) is also quasiconvex, hence finitely generated and hyperbolic. It is easy to
see that a finitely generated abelian group is hyperbolic if and only if it contains a
cyclic subgroup of finite index. Hence Z(C(y)) contains (y) as a subgroup of finite
index. Moreover, since Z(C(y)) C C(y) and C(y) C F are quasiconvex, the maps
(y) c* Z(C(y)) C(y) and C(y) F are quasi-isometric embeddings, by (3.5),
and hence so is (y) F This proves (1).

Fix a finite generating set A with respect to which F is 8—hyperbolic and suppose
that y e I' has infinite order. It follows from (1) that if y" is conjugate to yq then
p1 = For if t1 = yq, then t_myPlnhl = y'7" for all integers m 1, which
means d(1, 2md(1, t) + pjtm d(1, y), and if were less than qj this would
contradict the fact that n i—p is a quasi-geodesic.

Since the positive powers of y define distinct conjugacy classes, by replacing y
with a suitable power if necessary, we may assume that y is not conjugate to any
element a distance 48 or less from the identity. We claim that if g E F commutes
with y then g lies within a distance K := 2d(1, y) + 48 of (y). Suppose that this
were not the case and suppose that d(g, (y)) = d(g, y'). Replacing g by ytg, we

56"Branched covenngs of cubical complexes and subgroups of hyperbolic groups", J London
Math. Soc, to appear.
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'7 ,yg=g,y

<2(5

I 9

d(I,'y)+2(5

Fig. I'.7 Centralizers are virtually cyclic

may assume that d(g, (y)) = d(g, 1) > K. Consider a geodesic quadrilateral Q in
CA(F) with sides ([1, y], [1, g], g.[1, y], y.[l, g]}. Letg, denote the pointa distance
t from I on [I, g]. (See figure ['.7.)

Because CA(F) is 8-hyperbolic, g, lies a distance at most 28 from some point p on
one of the remaining three sides of Q. Ifwe choose t so that d( 1, g) — d( I, y) —28 >
t> d(I, y)+28,thenpmustbelongto[y, yg],sayp = = d(yg,, (y))
and t = d(g,, (y)), we have It — "I < 28 and hence d(g,, < 48. But this means
d(I, yg,) <48, contrary to our hypothesis on y. This contradiction proves (2).

LI

As a further illustration of the general approach of quasification, we adapt the
existence of projection maps in CAT(O) spaces (11.2.4).

3.11 Proposition (Quasi-Projection). If X is a 8-hyperbolic geodesic space and
Y c X is a quasiconvex subspace, then there exists a constant K > 0 with the

following property: given s > 0, if ir X —÷ Y assigns to each x e X a point
ir(x) e Y such that d(x, ,r(x)) <d(x, Y) + s, then ir(x')) <d(x, x') + K + 2s
forallx,x' EX.

Proof Let k > 0 be as in definition (3 4) We shall show that it suffices to take
K =88+2k.

Given x, x' e X, we choose geodesic segments joining each pair of the points
{x, x', ir(x), ir(x')} and consider the geodesic quadrilateral formed by the trian-
gles A1 = A([x, ir(x)], [ir(x), x'], [x, x']) and A2 A([ir(x), ir(x')], [ir(x), x'],
[x', ir(x')]). There is a point p E [ir(x), x'I which is within 8 of both [ir(x), ir(x')] and
[x', ir(x')] (the 8-hyperbolic condition for A2), and p is also within 8 of a point on
[x, ir(x)] U [x, x'I (the 8-hyperbolic condition for A1) Each point on [ir(x), ir(x')] is
within k of Y. Hence the point q' e [x', ir(x')]) closest to p is within 28 + k of Y
Therefore, sinced(x', ir(x')) = d(x', q')+d(q', ir(x'))andd(x', ir(x')) <d(x', Y)+s,
we have d(q', ir(x')) < 28 + k + s. For future reference we also note that

(#) d(p,ir(x'))< 38+k+s.

If p is within 8 of q e [x, ir(x)], then, as above, d(q, ir(x)) <28 + k + s. Hence
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,r(x')) <d(,r(x), q) + d(q, p) + d(p, q') + d(q',

<K + 2e.

So we are done if p is a distance at most S from [x, Jr(x)]. If it is not, then instead
andA2 weconsiderA = [7r(x),7r(x')], [x,ir(x')])

and A = A([x, x'], [x, ir(x')], [x', ir(x')]). Let p' be a point of [x, ir(x')] that is a
distance at most S from both [x, ir(x)] and [ir(x), As above, ifd(p', [x', jr(x')])
is at most 5, then we are done.

It remains to consider the case where p e [x', ir(x)] is within S of a point r e

[x, x'], and p' e [x, ir(x')] is within S of some r' E [x, x']. Since r and r' both lie on
[x, x'], we have d(r, r') <d(x, x'). Thus, using (#) twice, we have:

d(ir(x), ir(x')) <d(ir(x), p') + d(p', r') + d(r', r) + d(p, r) + d(p,

<2(35+k+s)+28 +d(x,x')

LI

In the special case Y = Z, the following corollary answers a question raised by
Alonso et al. [Alo+98] in the course of their work on higher order Dehn functions.

3.12 Corollary. Let H and F be hyperbolic groups. The image of every quasi-
isometric embeddingf : H —+ I' is a quasi-retract, i.e there exists a map p F —+ H
such that, givenany choice of word metrics dr and dH, there is a constant M such that

<tvlforally E Hand p(x')) <tvldr(x,x')forallx,x' eF.

Proof The image off is quasiconvex in F. Let ir : F —÷ f(H) be a choice of closest
point and define p to bef' o ir, wheref' is a quasi-inverse forf in the sense of
(1.8.16). LI

Translation Lengths

In Chapter 11.6 we saw that one can deduce a good deal about the structure of a group
I' acting by isometries on a CAT(0) space X by looking at the translation numbers

= inf{d(x, y.x) x e X}. We also noted (11.6.6) that = y'.x)
and that if F acts properly and cocompactly then the set of numbers : y E F} is
discrete (II 6.10(3)).

3.13 Definition. Let F be a group with finite generating set A and associated word
metric d. The algebraic translation number of y e F is defined to be

rrA(y) := lirn±d(1, y").
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(The function n i—p d(1, is sub-additive and hence exists — see

11.6.6.) Normally we shall write yr or r instead of rr.A, thus suppressing the depen-
dence on A.

3.14 Remarks
(1) r(y) depends only on the conjugacy class of y.

(2) r(ym) = ml r(y) for every m e 7Z.

(3) If a finitely generated subgroup H C F is quasi-isometncally embedded, then
for any choice of word metrics there is a constant K such that < rjj(h) <

Krr(h) for all h E H.

3.15 Proposition. 1fF is a hyperbolic group with finite generating set A, then for
every R> 0 there exist only finitely many conjugacy classes [y] such that rr A(Y) <
R.

Proof Suppose that CA(F) is 8-hyperbolic. Let u be the shortest word among all those
which represent elements of the conjugacy class [y]. If u has length at least (88 + 1),
then for every integer n > 0 the edge-paths in CA(F) labelled are (88 + 1)-local
geodesics It follows from (H.1.13) that these edge-paths are (A, s)-quasi-geodesics,
where A and s depend only on 8. Therefore r(u) = r(y) > ui/A. LI

3.16 Proposition. Let F be a hyperbolic group Ifa subgroup H C F is infinite and
quasiconvex, then it has finite index in its

Proof Fix finite generating sets for H and F, and let d be the associated word metnc
on F. We know from (2.22) that H contains an element of infinite order, a say, and we
know from (3.10) that (a) has finite index in the centralizer Cr(a), i.e. there exists
a constant k > 0 such that if g e Cr(a) then d(g, (a)) k.

Since H is quasiconvex, there is also a constant K> 0 such that if y — is in H,
then TH(y'ay) < K Tr(y1ay) = K rr(a). By applying the preceding proposition
to H, we see y'ay must belong to one of finitely many conjugacy classes in H,
we choose representatives for these classes, where c, e F (only
one of the c, is in H).

Given an element e F in the normalizer of H, there exists c1 such that
= h—1 cT'acjh for some h e H, which implies that yoh1ci' belongs to

Cr(a). Thus (a)) <k, and writing h'yo we have:

d(y0,H)=d(h'yo,H)

d(h'yo, h' yoci1 , H) + d(h'yocT1)

= d(1, c,) + d(y0h1c11, H)
< maxd(1,9)+k.

Thus d(yo, H) is uniformly bounded, i.e. H has finite index in its normalizer. Li
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The following remarkable theorem is due to Gromov [Gro87].

3.17 Theorem (Translation Lengths are Discrete). ff1' is 8-hyperbolic with respect
to afixed generating set A, then {r(y) y E F} is a discrete set of rational numbers
Indeed there is a positive integer N such that Nr(y) E Nfor every y E F.

Proof We follow a proof ofThomas Delzant [De196]. Given y, let u be the shortest
word among those which represent elements in the conjugacy class of y. Ignoring
finitely many conjugacy classes, we may assume that u has length at least (88 + 1).
Consider the bi-infinite path Pu in the Cayley graph CA(F) that begins at the identity
and is labelled by the powers of u. This is an (88 + 1)-local geodesic, and hence it is a
quasi-geodesic Let U_, e 81' = 8CA(F) be the endpoints of this quasi-geodesic.
(H.3.2) guarantees the existence of a geodesic line with endpoints U_ and and
(H 1 .7) implies that any such geodesic is contained in the R-neighbourhood of Pu,
where R depends only on 5.

We fix a linear ordenng on the generators and consider the induced lex-least
ordering -< on the finite geodesic edge-paths in CA(fl: one path is less than another
if it is shorter or else has the same length but its label comes before that of the other
path in the dictionary.

For each positive integer m, let Irn be the geodesic that is lex-least among those
geodesic edge-paths that are contained in the K-neighbourhood of Pu and have end-
points within a distance K of u'7' and urn respectively For each n < m, let 'rnn be

the minimal sub-segment of 'rn that has endpoints within a distance K of u'1 and
respectively. For fixed n, there are only finitely many possibilities for 'rnn, so by a
diagonal sequence argument we may extract a subsequence of the 'rn such that 'rn,,
remains constant for all n as m —+ oo. The union of the geodesic segments in this
subsequence gives a geodesic line joining U_ to This (oriented) line has
the property that all of its subsegments are minimal in the lexicographical ordenng
-.< on segments in the Cayley graph that have the given length. (Delzant calls such
geodesics "special".)

Through each point of CA(F) there is at most one special geodesic with endpoints
U_ and because a segment of such a geodesic cannot have two extensions (both
forwards or both backwards) of a given 'ength that are both lexicographically least
Since any geodesic joining U_ to is contained in the R-neighbourhood of
it follows that there are at most V special geodesics joining U_ to where V
is the cardinality of a ball of radius R in F. The action of u by left multiplication
permutes this finite set. Therefore some power uT, where rdivides V!, fixes a special
geodesic and acts by translations on it; let a e N be the translation distance of the
action of ur on this geodesic. If x is a vertex on this line, then x) = na for
all n > 0 and hence 1) = na. Dividing by n and taking the limit, we get
rr(y) = rr(u) = r(u') = a e N Thus we may take the integer N in the statement
of the theorem to be V!. LI
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Free Subgroups

The following result is due to Gromov [Gro87, 5 3B]. The first detailed proof was
given by Delzant [De19 1] One might think of this result as a strong form of the
assertion that two genenc elements in a hyperbolic group generate a free subgroup.

3.18 Theorem. If I' is a torsion-free hyperbolic group and H is a two-generator
group that is not free, then up to conjugacy there are only finitely many embeddings
H F.

We recall the "ping-pong" construction of Fricke and Klein 12] (cf. [Har83])

3.19 Lemma (Ping-Pong Lemma). Let h1, . hr be bijections ofa set and suppose
that there exist non-empty disjoint subsets A1 A1 — ,. . , Ar._ i C such that

C A_6fors = ±1, i I r Thenh1,. ,hrgenerateafree
subgroup of rank r in

Proof Exercise. LI

3.20 Proposition. 1fF is hyperbolic, then for every finite set of elements h1,. , hr E
F there exists an integer n > 0 such that {h?,.., generates afree subgroup of
rank at most r in F

Proof Let C be the graph of F with respect to a fixed finite generating set and
suppose that C is 8-hyperbolic. By replacing each h, with a sufficiently high power
and throwing away those which become trivial, we may assume that each of the h,
has infinite order. Define t, r(h1).

As in the proof of (3.17), by raising the h, to a further power we may assume
that there is a geodesic line c : —÷ C which is invariant under the action of the
action is h,.c1(s) = c(s + t1). Define = c,(±oo).

We claim that if c,(oo) = c3(oo), then some powers of h and h3 generate a cyclic
subgroup of F (and hence c(—oo) = c3(—oo)) To see this, first note that according
to (H.3 3), we may parameterize the lines c, and so that d(c,(s), < 58 for
all s > 0. For each integer r > 0 we shall estimate c3(t3)). For this
purpose it is convenient to use the notation a b to mean a — < s; thus
d(y, c(s)) d(y, c3(s)) for afl s > 0 and all y e F.

9(o)) d(hj.c1(rt1), h.c3(t3))

d(h1 c1(rt1), h .c1(tj))

= d(1(t3 + rt1), + rt,)) <58.

Thus < 158 for all r > 0, which means that c'(O) =
c1(0) for some integers r, s with 0 < r — s < v, where v is the number of
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elements in a ball of radius 158 in F. Since the action of F on C is free, it follows
that lies in the centralizer h3, which according to (3.10) is virtually cyclic. This
proves the claim.

If h, and have powers that generate a cyclic subgroup, then we may replace
them with a generator of that cyclic subgroup. Thus it only remains to consider the
case where the 2r points E 8F are distinct.

For each x E F, let x, be a point on the image of c, that is closest to x. We
claim that if R > 0 is sufficiently large then the following 2r sets are disjoint:

= {x
I
x e c1(—oo, —R]} and A1, = {x x1 E c,[R, oo)}, wherei = 1,. ., r.

It is clear that by replacing the h with sufficiently high powers we can ensure that
their action on the above sets satisfies the hypotheses of the ping-pong lemma, thus
it only remains to prove that the Ae really are disjoint.

To see this, we fix a constant p > 0 that is sufficiently large to ensure that the
closed ball B of radius p about I e F contains c,(0) for i = I, .. , r, and every
geodesic segment of the form [x,, Xj] intersects B Given x e F, since A(x, x,, is

8-slim, there is a point p on [x, x1] or [x, that is within a distance 8 of [x,, x3] fl
B. Suppose that p E [x, x,]. Since d(c1(0), p) > d(x1, p) (by definition of x,), and
d(c1(0),p) < d(c1(0), 1) + d(1,p) < 2p + 8, we have d(c1(0),x1) < d(c1(0),p) +
d(p, x) <2 d(c1(0), p) < 4p + 28.

It follows that if R> 4p + 28, then each x E F can belong to at most one of the
sets A16 defined above. LI

The Rips Complex

We continue the work of deciding which of the properties listed in (1.1) are en-
joyed by all hyperbolic groups This paragraph concerns (1.1(5)). We describe a
construction due to E. Rips which shows that every torsion-free hyperbolic group
has a finite Eilenberg-MacLane space. It also shows that every hyperbolic group has
an Eilenberg-MacLane space with finitely many cells in each dimension (see 3.26).

3.21 Theorem. Every hyperbolic group F acts on a simplicial complex P such that:

(1) P is finite-dimensional, contractible and locally finite;

(2) F acts simplicially, with compact quotient and finite stabilizers;

(3) F acts freely and transitively on the vertex set of P.

In if F is torsion-free then it has a finite Eilenberg-tvlacLane space
K(F, 1), namely ]T\P.

Remark. The complex described in this theorem has no particular local geometric
features; in particular there is no reason to expect it to support a CAT(0) metric.

3.22 Definition. Let X be a metric space and let R> 0. The Rips complex PR(X) is

the geometric realization of the simplicial complex with vertex set X whose n-
simplices are the (n + 1)-element subsets {x0,.. C X of diameter at most
R.
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One usually endows PR(X) with the weak topology, which is the same as the
metric topology (1.7) if each vertex lies in only finitely many cells, i.e. B(x, R) is
finite for every x e X. (In any case, the weak topology and the metric topology
define the same homotopy type [Dow52]). Note that PR(X) is finite dimensional only
if there is a bound on B(x, R)I as x vanes over X.

Let r > 0. Recall that a subset X of a metric space Y is said to be r-dense if for
every y e Y there exists x e X with d(x, y) <r.

3.23 Proposition. Let Y be a geodesic space and let X be an r-dense subset. If Y is
8-hyperbolic then PR(X) is contractible whenever R > 48 + 6r.

Proof The complex PR(X) is contractible if and only if all of its homotopy groups
are trivial (see [Spa661). The image of any continuous map of a sphere into PR(X)
(with the weak topology) lies in a finite subcomplex (because it is compact), so it
suffices to prove that any finite subcomplex L C PR(X) can be contracted to a point
in PR(X). We fix a basepoint xo e X.

Case 1: If the distance in X between xo and each vertex of L is at most R/2 then
L is contained in a face of a simplex of PR(X), and hence it is contractible.

Case 2: Suppose that there is a vertex v E L such that d(xo, v) > R/2, and choose
v so that d(xo, v) is maximal. (Beware: the metric d is on X, not L.) The idea of the
proof is to homotop L by pushing v towards x0 while leaving the remaining vertices
of L alone. If we are able to do this, then by repeating a finite number of times we
can homotop L to a complex covered by Case 1.

We choose a point y on a geodesic [xo, v] C Y with d(v, y) = R/2, and then
choose v' E X with d(y, v') < r. Let p = d(v, v') and note that p e [28 + 2r, (R/2) +
r]. We claim that if u is a vertex of L and d(u, v) <R then d(u, v') <R.

Consider a geodesic triangle A(xo, u, v) C Y with y e [x0, v]. This is 8-s'im, so
either d(y, u') < 8 for some u' e [xo, u] or else d(y, w) < 8 for some w e [u, v].
(Readers will find the ensuing inequalities easier to follow if they draw a picture of
each situation and label the lengths of arcs.)

In the first case, by hypothesis,

d(xo, v') + d(v', v) > d(xo, v) > d(xo, u) = d(xo, u') + d(u', u),

and d(xo, v') < d(xo, u') + d(u', v') < d(xo, u') + (8 + r). Thus p = d(v, v') >
d(u', u)—(8+r),and henced(u, v') <d(u, u')+d(u', v') < (p+8+r)+(8+r) < R.

In the second case, d(v', w) < r + 8 and we have p = d(v, v') < d(v, w) +
d(w, v'),sod(v, w)> p—(8+r).Whenced(u, w) = d(u, v)—d(v, w) <R—p+8+r,
and d(u, v') <d(u, w) + d(w, v') <R — p + 2(8 + r) <R.

Thus we have shown that if a vertex u of L is in the star of v then it is also in
the star of v'. Moreover, v' is also in the link of v. Let L' be the complex obtained
from L by replacing each simplex of the form {v, Xi,. . , Xr} with {v', x1 Xr}.

The obvious (affine) homotopies moving each {v,x1, .. ,Xr} to {v',x1, . ,Xr} in
the simplex fu, v', x1, . , Xr}, together with the identity map on L N st(v), give a
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homotopy from L PR(X) to L' PR(X), and (as we noted above) by iterating
this operation we can contract L to xo. D

Proof of Theorem (3.21). The inclusion ofF as the vertex set of its Cayley graph is 1-
dense, so we can apply the preceding proposition to deduce that PR(F) is contractible
when R is large enough. Because there is a bound on the number of points in any ball
of a given radius in F, the complex PR(F) is finite dimensional and locally finite.

One extends the action of F on itself by left multiplication to a simplicial action
on PR(F) using the affine structure (I.7A) in the obvious way. The action of F on
PR(F), which is obviously free and transitive on vertices, is simplicial in the sense
that it takes simplices to simplices setwise, but if the group has torsion then certain
simplices will be sent to themselves without being fixed pointwise (and as a result
the quotient space will not be a complex).

Consider the stabilizer of a simplex a = {x1 Because the action of F
is free on vertices, the representation of Stab(a) into the symmetric group on the
vertices is faithful, and hence IStab(a)I <n!. LI

3.24 Remarks
(1) The dimension of the complex PR(F) is one less than the cardinality of the

largest set in F of diameter R. This is bounded (crudely) by the number of words of
length R in the generators and their inverses, which is less than

(2) Let F be a group equipped with the word metric associated to the finite
generating set A, and let B be the set of non-tnvial elements in the ball of radius R
about the identity. The 1-skeleton of the Rips complex PR(F) is the Cayley graph of
F with respect to B.

3.25 The Finiteness Conditions and We remind the reader that an
Eilenberg-MacLane complex K(F, 1) for a group F is a CW complex with funda-
mental group F and contractible universal cover. Such a space always exists and its
homotopy type depends only on F.

If there exists a K(F, 1) with a finite n-skeleton, then one says that F is of type
Being of type F0 is an empty condition, being of type F1 is equivalent to being

finite'y generated, and being of type F2 is equivalent to being finitely presented.
A group F is said to be of type (resp. if Z, regarded as a trivial module

over the group ring ZF, admits a projective (resp. free) resolution in which the first
(n + 1) resolving modules are finite'y generated. F is said to be of type if it is

for every n. A fimtely presented group F is of type if and only if it has a
K(F, 1) with finitely many cells in each dimension (see [Bro82] or [Bi76b]).

The cohomology of F with coefficients in a ring R can be defined as H*(F, R) :=
H*(K(F, 1),R).

3.26 Corollary. Let F be a hyperbolic group.

(1) 1fF is torsion-free then it has afinite K(F, 1).
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(2) In general, F is of type FP00, and

(3) Q) = Ofor all n sufficiently large.

Proof (1) follows immediately from Theorem 3.21. Parts (2) and (3) are standard
spectral sequence arguments (see [Bro871, for example), we omit the details LI

3 27 Remark We mentioned earlier that if a group I' acts properly and cocompactly
by isometries on a CAT(O) space X then X is F-equivariantly homotopy equivalent to
a finite-dimensional cell complex on which F acts cellularly and cocompactly with
finite stabilizers (cf. 11.5.13). As in the hyperbolic case, this implies that F is fimtely
presented and of type and H*(F, Q) is finite dimensional.

4. Semihyperbolic Groups

Let F be a finitely generated group that acts properly and cocompactly by isometries
on a CAT(O) space X. By fixing a basepoint xo e X we obtain a quasi-isometry
y i—p y.xo from F to X. One of the main goals of this chapter is to understand how
the geometry that is transmitted from X to F by such quasi-isometries is reflected
in the structure of F. In the case where X is a visibility space, we have seen that
a great deal of the geometry of X is transmitted to F through the slim triangles
condition. In this section we consider the case where X is an arbitrary CAT(O) space.
We shall describe a weak convexity condition that F inherits from the convexity of
the metric on X. The groups that satisfy this condition are called semihyperbolic
groups. Following the treatment of [A1oB95], we shall see that most of our previous
results concerning isometries of CAT(O) spaces can be extended to semihyperbolic
groups.

If F acts properly and cocompactly by isometries on a CAT(O) space X, then there
is a natural correspondence between the sets of quasi-geodesics in X and F. However
we have seen that in general the set of all quasi-geodesics in a CAT(O) space Xis not a
very manageable object (cf. 1.8.23). With this is mind, given a quasi-isometry X —+ F
associated to an action of F on X, we restrict our attention to those quasi-geodesics
in F that are the images of geodesics in X. In a coarse sense, the convexity properties
of the metric on X will be reflected in this set of quasi-geodesics. In order to describe
the resulting weak convexity properties, we need the following definitions.

Definition of a Semihyperbolic Group

4.1 Definitions. Let X be a metric space and let P(X) be the set of eventually constant
maps p : N —+ X, thought of as finite discrete paths in X. Let denote the integer
at which p becomes constant, i.e. the greatest integer such that p(T,, — 1). A

(discrete) bicombing of X consists of a choice of a path 5(x,y) e P(X) joining each
pair of points x, y e X; in other words a bicombing is a maps : X x X —+ P(X) such
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that e o s is the identity on X x X, where e : P(X) -÷ X x X is the endpoints map
e(p) = (p(O), The path S(x.y) is called the combing line from x to y.

A bicombing s is said to be quasi-geodesic if there exist constants A and e such
that, for all x, y E X, the restnction of 5(xy) to [0, ] is a (A, e)-quasi-geodesic.

A bicombing s is said to be bounded if there exist constants k1 > 1, ? 0 such
that for all x, y, x', y' E X and all t E N

(4.1.1) s(X'y)(t)) < k1max {d(x, x'), d(y, y')} + k2.

Ifs is a bounded bicombing by (A, e)-quasi-geodesics and the constants k1 and k2
are as above, then we say that s has parameters [A, e, k1, k2J

Let F be a finitely generated group. We use the term metric F—space to mean a
metric space X together with an action of F on X by isometnes. X is said to be F-
semihyperbolic if it admits a bounded quasi-geodesic bicombing which is equivanant
with respect to the action of F, that is y = for all x, y E X and t E N.

Fix a word metric on F. The action of F on itself by left multiplication makes
it a metric F—space. F is said to be semihyperbolic if, when viewed in this way,
it is a F-semihyperbolic metric space, with bicombing s, say. Let [A, e, k1, k2J be
the parameters of s. Because s is equivariant, it is entirely determined by the map

F —÷ P(F) that sends y to 5(1 One calls o a semihyperbolic structure for F
with parameters [A, e, k1, k2J.

4.2 Lemma. The definition of a semihyperbolic group does not depend on the choice
of generators (word metric).

Proof Let F be a finitely generated group. Any two word metrics d, d' on F are
Lipschitz equivalent, i.e. there exists a constant K> I such that kd(x, y) <d'(x, Y)
K d(x, y) for all x, y E F. Therefore any semihyperbolic structure o for (F, d), with
parameters [A, e, k1, k2J, is a semihyperbolic structure for (F, d') with parameters
[KA, Ks, K2k1, Kk2].

4.3 Example. If F acts by isometries on a CAT(0) space X, then X is F-semihyper-
bolic: for all x, y E X there is a unique geodesic : [0, d(x, y)J -÷ X joining x to
y, and the desired F-equivanant bicombing s : X x X -÷ P(X) is s(X,y)(t) :=
for all t E N fl [0, d(x, y)] and = y for all t> d(x, y).

4.4 Exercise. Let F be a group with finite generating set A. There is natural map
from the free monoid )* to P(F) that sends each word w to the path t w(t),
where w(t) is the image in F of the prefix of length t in w.

Show that if F admits a semihyperbolic structure o : F P(F), then it admits a
semihyperbolic structure o' : F -÷ P(F) (close to o) whose image lies in (Ak' )* c
P(F). (cf. [A1oB95J Section 10.)

This exercise shows that one can express the definition of a semihyperbolic group -
in purely algebraic terms:
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4.5 Proposition. Let F be a group with finite generating set A. Then F is semihy-
perbolic if and only if there exist positive constants A. e, k and a choice of words

y E F) C such that = y in F, the discrete paths t w7(t)
determined by the words WY are (A, e)-quasi-geodesics, and

d(W7(t), a.Wa-Iya(t)) < k,

foralla,a' E U{1}andalltE N

Proof The displayed condition is illustrated in figure (F 8). If there exist words W7 as

described then the triangle inequality in F implies that the paths s(,))(t) = X.WX-I)(t)
satisfy condition (4.1.1) with k = k1 and k2 = 0 Thus y WY is a semihyperbolic
structure for F The converse is the content of the preceding exercise.

Fig. F.8 A semihyperbolic structure for F

4.6 Proposition. Every hyperbolic group is .semihyperbolic.

Proof Let F be a hyperbolic group with finite generating set A For each y E F,
choose a geodesic word WY that represents it. In any s-hyperbolic geodesic space,
geodesics that begin and end a distance at most one apart are uniformly + 2)-
close By applying this observation to the Cayley graph of F, we deduce y WY is

a semihyperbolic structure for F.

Basic Properties of Semihyperbolic Groups

Since the definition of semihyperbolicity is given in terms of F—spaces and not just
metric spaces, the natural morphisms under which to expect this property to be pre-
served are not quasi-isometries but rather F-equivariant quasi-isometries. Thus the
following result provides an analogue of the quasi-isometric invariance of hyper-
bolicity (H. 1.9) In contrast to the hyperbolic case, the following theorem does not
extend to the case of quasi-isometric embeddings (cf. 5 12(3))



474 Chapter III r Non-Positive Curvature and Group Theory

4.7 Theorem (Invanance Under Equivanant Quasi-Isometries). Let X1 and X2 be
metric f-spaces and suppose that there exists a f-equivariant quasi-isometry f
X1 -÷ X2. If the action off on X1 is free andX2 is f-semihyperbolic, then X1 is also
f-semihyperbolic. Conversely, if F acts freely on X2 and X1 is F-semihyperbolic,
then X2 is f-semihyperbolic.

The proof of this result is straightforward but involves some quite lengthy ver-
ifications so we omit it see [AI0B95]. Our main interest lies with the following
corollanes.

4.8 Corollary.

(1) 1ff acts properly and cocompactly by isometries on a CAT(O) space X, then F
is semihyperbolic.

(2) If G is setnihyperbolic and H c G is a subgroup of finite index, then H is
semihyperbolic.

(3) Let I F -÷ F Q -÷ I be a short exact sequence 1fF is finite and Q is
semihyperbolic, then F is semihyperbolic.

Proof (I) Fix Xtj E X In the light of (4.3), we may apply the theorem with X1 =
F, X2 = X andf(y) = y x0

(2) If we fix a word metric on G, then left multiplication by H is an action by
isometries If G is G-semihyperbolic then it is a fortiori H-semihyperbolic. The
action of H is free and H G is an H-equivariant quasi-isometry, so we may apply
the theorem with H = F, = H and X2 = G.

(3) is a F-equivariant quasi-isometry, where F acts on Q by y.q =
Thus we may apply the theorem with X1 = F and X2 = Q

Finite Presentability and the Word and Conjugacy Problems

4.9 Theorem. Let F be a group with finite generating set A. 1ff is semihyperbolic
then there exist positive constants K1 and K2 with the following properties.

(I) is the set of words in F(A) that have length at most K1 and represent I F,

then (A I is a presentation off.

(2) A word w in the letters represents the identity in F if and only if in the free
group F(A) there is an equality

w = flxjrixil,

where N < K21w12, each r1 E 7?, and K21w1. In particular F has a
solvable word problem.

(3) F has the quasi-monotone conjugacy property (1.9). In particular F has a
solvable conjugacy problem (1.11); indeed there exists a constant > 0 such
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that words u, v E F(A) represent conjugate elements off if and only if there
is a word w E F(A) of length with = v inf.

Proof We arranged the proofs in the special case of groups which act properly and
cocompactly on CAT(O) spaces precisely so that they would generalize immediately
to the present setting. Thus the proof of (1.6) remains valid with an arbitrary semihy-
perbolic structure y in place of the explicit one constructed in that proof. the
distance between o7(t) and aya(t) is now bounded by the parameters of the semihy-
perbolic structure rather than in terms of D (notation of (1.6)), but modulo a change
of constant the proof is exactly the same. This proves (1) and (2)

The fact that F has the q.m.c. property follows immediately from the defini-
tion of semihyperbolicity: if 0 is a semihyperbolic structure for F with parameters
[A, e, k1, k2J and u and v are words in the generators such that y — uy = v for some
y E F, then w = o>, satisfies the requirements of (1.9) with constant K = k1 + k2.

Subgroups of Semihyperbolic Groups

In this section we generalize the subgroup results in (1.1) to the class of semihyper-
bolic groups. In particular we shall prove the following algebraic analogue of the Flat
Torus Theorem (11.7 1), and we shall also prove an analogue (4.21) of the Splitting
Theorem (11.6 21)

4.10 Algebraic Flat Torus Theorem. If F is semihyperbolic and A is a finitely
generated abelian group, then every monomorphism A F is a quasi-isometric
embedding (with respect to any choice of word metric.s).

We defer the proof to (4 16).

When is a subgroup of a semihyperbolic group itself semihyperbolic? Motivated
by the hyperbolic case (3.7), one might ask if being quasi-isometrically embedded or
quasi-geodesic is a sufficient condition. However, being quasi-isometrically embed-
ded does not force a subgroup to be semihyperbolic, it does not even force it to be
finitely presented (5 12(3)). However, when suitably adapted to the semihyperbolic
structure, the notion of quasiconvexity does provide a useful criterion for showing
that subgroups of semihyperbolic groups are semihyperbolic. This was recognised by
Gersten and Short, who were working in the context of biautomatic groups [Ge591J.

4.11 Definition. Let X be a metric space with a bicombing s. A subset C C X
is said to be quasiconvex with respect to s if there is a constant k > 0 such that
d(5(Ay)(t), C) <k for all x, y E C and t N.

If F is a group with semihyperbolic structure o, then a subgroup H ç F is said
to be if it is quasiconvex with respect to x oX-I)(t). This is
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equivalent to requiring that there exist a constant k> 0 such that d(oh(t), H) <k for
all h E H and t N.

As in the hyperbolic case (3.7) we have:

4.12 Proposition. Let F be a group with a semihyperbolic structure o. If a subgroup
H C F is ci-quasiconvex, then it is finitely generated, quasi-isometrically embedded,
and semihyperbolic.

Proof Suppose that with respect to a fixed word metric dA, each of the paths op,, y E
F, is a (A, s)-quasi-geodesic. Let k be the constant of quasiconvexity for H (as in
4.11) and let B be the intersection of H with the closed ball of radius (2k + A + e)
centred at I E F.

The idea of the proof is as shown in figure (P.6). Given h E H with combing line
[0, ThJ F, for each integer t T, we choose a point p, E H closest to o,(t)

Let b = Note that b, E H and dA(1, b,) = dA(p,,pj_l) < o,1(i)) +
dA(ci,1(i),0,1(i— I))+dA(oh(i— I),pi—) <k+(A+e)+k,thereforeb, E B

The word = b1 . . is equal to h in H, therefore B is a finite generating set
for H Moreover, h) < T,1 <AdA(1, h) + e, and hence H is quasi-isometrically
embedded in F. Finally, since dA(o,7 (t) , cih(t)) <k for all h E H and t N, we see
that is a semihyperbolic structure for H with parameters that depend only on k
and the parameters of ci.

The following result is due to Hamish Short57.

4.13 Proposition. Let F be a group with a semihyperbolic structure cr. The in-
tersection of any two ci—quasiconvex subgroups off is ci-quasiconvex (and hence
semihyperbolic).

Proof See figure (F.9). Suppose that H2 C F are ci-quasiconvex. If A0 is a finite
generating set for F, then for some A I and e 0 each of the combing lines ci>, (t)
is a (A, e)-quasi-geodesic in the word metric associated to A0. Let A C F be the set
of elements with dA0(1, a) A + e. Note that A is finite and generates F; we shall
work with the associated word metric d. Note that + 1)) < I for all
y E F and t N. Let k be a constant of quasiconvexity (as in 4.11) for both H1 and
H2.

Fixh E [0, T,1J -÷ F. Foreachinteger
andj = 1, 2 we choose a point h1(t0) E H, such that d(oh(to), h1(t0)) < k.

Note that d(h1(t0). h2(t0)) <2k.
We claim that d(oh(to), H1 fl H2) < V2, where V is the number of points in the

ball of radius k about I E F. To see why, we write y = ah(to) and consider those
words w over the alphabet which have the property that yw E H1 fl H2 and
for every prefix u of w we have d(yu, < k forj = 1, 2. Let Il denote the set of

ups and combings", prepnnt, ENS Lyon, 1990
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A Z(Cp(q5(A))) F

In the light of (4.12) and (4.15) we know that the last two of these maps are quasi-
isometric embeddings, so since the composition of quasi-isometric embeddings is
a quasi-isometric embedding, it suffices to show that A Z(Cp(4(A))) is a quasi-
isometric embedding. But Z(Ci-'(tP(A))) is a finitely generated abelian group, and it
is easy to see that any monomorphism from one fimtely generated abelian group to
another is a quasi-isometric embedding

In Chapter 11.7 we used the Flat Torus Theorem to see that a polycyclic group
cannot act properly by semisimple isometries on a CAT(O) space unless it is virtually
abelian (11 7.16) One can use the Algebraic Flat Torus Theorem in much the same
way.

4.17 Proposition. A polycyclic group P is a subgroup of a semihyperbolic group if
and only if P is virtually abelian.

Proof If P is virtually abelian then it acts properly and cocompactly by isometnes
on a Euclidean space of some dimension (11.7.3), and hence it is semihyperbolic.

To show that if P is not virtually abelian then it is not a subgroup of a semihyper-
bolic group, we use an idea due to Gersten and Short [Ge591J. As in (11.7.16), induc-
tion on the Hirsch length reduces the problem to that of showing that if E GL(n, Z)
has infinite order then H = (t) cannot be a subgroup of any semihyperbolic
group.

Consider the £1-norm on GL(n, Z) c Since has infinite order, the func-
tion k grows at least linearly, and hence for some basis element a E
the function k 1) grows at least quadratically. But in H we have
t'<a'<i'< = showing that k 1) grows linearly. Thus Z'1 is not
quasi-isometrically embedded in H (nor any group containing it, a fort ion), and
hence H cannot be a subgroup of any semihyperbolic group. LI

In (1.1) we showed that if then groups of the form (x, t =
cannot act properly by semisimple isometries on any CAT(O) space. We did so by
means of a simple calculation involving translation lengths This is one of a number
of results that one can recover in the setting of semihyperbolic groups using algebraic
translation lengths (3.13) in place of geometric ones

4.18 Lemma. If r is semihyperbolic and y E F has infinite order then r(y) > 0.

Proof The inclusion into F of the infinite cyclic subgroup generated by y is a quasi-
isometric embedding (4.10). LI

4.19 Corollary. If then (x, t
I

= cannot be a subgroup of a
semihyperbolic group.
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Pro of In any finitely generated group F, the number r(y) depends only on the
conjugacy class of y E F and r(y'1) = ni r(y) for all n E Z. Thus if }n° is conjugate
to yq in F, then

r(y) = r(y") =

r(y) =
I

=
(as we explained in the proof of (1.1)), it follows from (4.18) that B C F implies F
is not semihyperbolic.

Direct Products

In analogy with (1.1(a)) we have:

4 20 Exercise. The direct product of any two semihyperbolic groups is semihyper-
bolic.

And in analogy with the Splitting Theorem (11.6.2 1) we have:

4.21 Theorem (Algebraic Splitting). If F = F1 x F2 is semihyperbolic and the
centre ofF2 is finite, then F1 is semihyperbolic.

Proof Since F is finitely generated, so too are F1 and F2. Let A be a finite generating
set for F2. Let S = {(1, a) a E A) c F and note that Cp(S) = F1 x Z(F2). From
(4.15) we know that Cr(S) is semihyperbolic, and since F1 has finite index in C1'(S),
it too is semihyperbolic.

4.22 Remarks. At this stage we have established that most but not all of the properties
listed in (1.1) remain valid in the context of semihyperbolic groups. We conclude by
saying what is known about the remaining points.

The class of semihyperbolic groups is closed under free products with amalga-
mation and HNN extensions along finite subgroups (see [A1oB9SJ). It is also known
that every semihyperbolic group F is of type F

it is unknown if semihyperbolic groups can contain
solvable subgroups that are not virtually abelian or abelian subgroups that are not
finitely generated.

In contrast to (1.1 (iv)), if F is semihyperbolic and y E F has infinite order, then in
general (y) will not be a direct factor of a subgroup of finite index in Cp(y) Indeed,
following a suggestion of Thurston and Gromov, Neumann and Reeves [NeR97J
showed that if G is a hyperbolic group and A is a finitely generated abelian group,
then every central extension F of the form I A -÷ F G -÷ I is semihyperbolic
(indeed biautomatic) in general such central extensions F do not have subgroups
of finite index that are non-trivial direct products.

In the above construction, F is quasi-isometric to G x A (although in general
they are not commensurable, cf. 1.8.21). Using this fact one can show that there exist
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semihyperbolic groups F1 and F2 such that F1 and F2 are quasi-isometric and F1
is the fundamental group of a closed non-positively curved manifold, yet F2 cannot
act properly by semi-simple isometries on any CAT(O) space. For example, if is

a closed hyperbolic surface, then one can take F1 to be x Z and F2 to be the
fundamental group of the unit tangent bundle to (This example is explained in
detail in vanous places, including [Ep+92J and Section 8 of [AI0B95].)

5. Subgroups of Cocompact Groups of Isometries

We have said a great deal about groups which act properly and compactly by isome-
tries on CAT(O) spaces. In the case of some results it was sufficient to assume that
the groups concerned were acting properly and semisimply (see (1 1)), in other cases
we definitely used the fact that the groups concerned were acting cocompactly. The
main purpose of this section is to show that in the latter case the results concerned do
not remain valid if one assumes only that the group is acting properly by semisimple
isometries Specifically, we shall prove that the finiteness properties that we estab-
lished for cocompact groups of isometries are not inherited by finitely presented
subgroups, and we shall show that the solutions to the word and conjugacy prob-
lem established in Section 1 are not inherited by finitely presented subgroups. In
the course of our discussion of decision problems we shall also prove that there are
compact non-positively curved spaces X for which there is no algorithm to decide
isomorphism among the finitely presented subgroups

The underlying theme throughout this section is that subgroups of groups which
act properly and cocompactly by isometries on CAT(O) spaces can be rather compli-
cated.

Our discussion of finiteness properties is motivated by examples of John Stallings
[5t631 and Robert Bien [Bi76bJ Our discussion of decision problems is based on that
in the papers of Baumslag, Bridson, Miller and Short ([BBMS98J and subsequent
preprints).

Finiteness Properties

The most common and useful finiteness properties of groups are finite generation
and finite presentability. In (3 25) we described three conditions that measure higher-
dimensional finiteness, FP, and FL,1. (See [Bro82] or [Bi76b] for a detailed
introduction to these conditions.)

If we wnte to denote the nth homology group of F with coefficients in the
trivial F-module Z, then
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Bestvina and Brady [BesB97] recently proved that there exist finitely generated
groups which are of type FP2 but not of type F2.

We saw in (11.5.13) that if I' is the fundamental group of a compact non-positively
curved space, then F is of type for every n E N. Our purpose in this subsection is
to show that this property is not inherited by arbitrary finitely presented subgroups of
F. In the process of doing so we shall construct explicit examples of finitely presented
subgroups that cannot be made to act properly and cocompactly by isometries on
any CAT(0) space (cf. 5.10).

Any direct product of finitely generated free groups is the fundamental group of
a compact non-positively curved space, namely the cube complex obtained by taking
the Cartesian product of graphs which have one vertex and the appropriate number of
loops. Such direct products have a surprising variety of finitely presented subgroups,
as the following theorem illustrates. We shall use this theorem as a convenient focus
for our discussion of finiteness properties, but we should offset this by emphasizing
that results of this type apply to many groups other than direct products of free groups
(see [BesB97I, [MeiMV97I,

Given a group G, a subgroup H C G and a positive integer m, we write H)
to denote the free product of m copies of G amalgamated along H (see 6.5) and
refer to the m distinguished copies of G as the factors of H). There is an
implicit isomorphism from each factor to G and these isomorphisms agree on H. It
is sometimes convenient to regard L\m(G, H) as a subgroup of H) if m < n,
namely the subgroup generated by the first m factors. Note that there is then a natural
retraction H) —÷ H) this retraction is the identity on the first m
factors and sends each of the remaining factors to the first factor by means of the
implicit isomorphisms with G.

5.1 Theorem. L be afree group of rank m 2 and denote the direct pmduct
of n copies of L Let L —'i Z be an epimorphism and let K,1 be the kernel of the
induced homomorphism —'* 7L. For every n? 1,
(1) and

(2) is of type F,,.1 but is not finitely generated.

5.2 Exercises With the notation of (5.1):
(1) Show that up to isornorphism is independent of the

(2) Let 'I' : —+ 7Z be a homomorphism. Show that if ker 'I' is of type Fr hut
not type Fr+i, then the restriction of 'I' to exactly (n — r — 1) of the direct factors of

is tnvial. (Hint: If H has finite index in G, then G is of type if and only if H
is of type Fr.)

We shall present the proof of (5.1) as a series of lemmas. The following simple
lemma indicates how the lack of finiteness described in 5.1(2) begins.

5.3 Lemma. Let L be a finitely generated free gmup and let N C L be a non-trivial
normal subgroup. If L/N is infinite then Hi (N) is not finitely generated.
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Pmof L is the fundamental group of a finite graph X with a single vertex Consider
the covering space X = X/Ncorresponding to N. Because L/N acts freely and
transitively on the vertices of X, if L/N is infinite then X contains infinitely many
disjoint loops. Thus the lemma follows from the fact that the fundamental group of
a connected graph is freely generated by the set of edges in the complement of any
maximal tree.

5.4 Example (The Groups of Bieri and Stallings).
Let L be a free group of rank two with basis (ai, a2}. Let denote the direct

product of n copies of L, and let . —÷ (t) Z be the homomorphism that
sends each of the generators (1 ,..,a1,..., 1) tot. Let ker in the notation
of (5.1), this is in the case m = 2.

Lemma 5.3 says that SB1 is not finitely generated If n 2 then is finitely
generated, for example SB2 is generated by

1), (1, (ai, ar'), (a2,

Theorem 5 1 says that SB2 is not finitely presentable and that SB3 is finitely pre-
sentable but H3 (SB3) is not finitely generated. SB3 was the first example of a group
with these properties; it was discovered by John Stallings [5t631. Robert Bieri [Bi76b1
recast Stallings's example in the terms we have used and proved that SB, is of type
F,,_1 but not type this was the first such sequence of groups to be discovered.
There is now a substantial theory of finiteness properties of groups see [Bi981 for
a recent survey and references

The first of the following lemmas provides a tool for showing that groups are not
of type F,,, the second provides a tool for showing that groups are of type

F = A *c B. If A andB are of type but is not finitely
generated, then H,,(F) is not finitely generated.

Proof Consider the Mayer-Vietoris sequence for F A *c B:

—* H,, (A) H,, (B) —* H,, (F) (C) —* (A) H,,. (B)

5.6 Corollary. Let A and C be finitely generated groups, let m 2 he an integer;
and let L\m(A, C). If A is of type but H,11(C) is not finitely generated, then
Hn(Dm) is not finitely generated

Proof As we noted before stating (5 1), there is a retraction of Dm onto D2 = A *c A.
Thus H,(D2) is a direct summand Of Hn(Dm), and we can apply the lemma.

5.7 Lemma. IfA is of type F,, and C is of type then L\m(A; C) is of type
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Pmof Let XA be an Eilenberg-MacLane complex for A that has a finite n-skeleton.
Let Xc be an Eilenberg-MacLane space for C that has a finite (n — 1)-skeleton. Let

f : XA be a cellular map that induces the inclusion C A. One obtains an
Eilenberg-MacLane complex X for C) by taking (rn 1) disjoint copies of
the double mapping cylinder forf and joining them at one end:

((XA, 0, i) U (Xc x [0, 1,

(x, 0, 1) (x, 0, i), (y, 0, i) (f(y), 0, i) and (y, 1, i) (f(y), 1, i)

wherexEXA, yEXcandi= I rn—I.
The open n-cells in X are of two kinds: there are the open n-cells in the images

of XA, and there are the products e x (0, 1) where e is an open (n — 1)-cell in Xc.
Thus X has only finitely many n-cells.

We need two more lemmas.

5.8 Lemma. If N C G is norrnal then there is an ernbedding

N) '-* GIN) x G.

Proof Let : Am (G; N) —÷ be the quotient by N, and let (G; N) —÷

G be the natural retraction onto the first factor (copy of G). N and the
restriction of to N is injective. Thus := is injective

In the following lemma it is convenient to write the infinite cyclic group (r)
additively.

5.9 Lemma. Let G be a group. Let h G —÷ (r) be an epirnorphisrn to an infinite
cyclic gmup and let N = ker h. Choose a E G with h(a) = r and let denote the
irnage of a in GIN. Let hr GIN) x G —÷ (r) be the rnap that is given on each

of thefree factors of by = —r and is such that hIG h Let be as

in (5.8). Then ker h = im

Proof N) is generated by N and a1,. , where = a) and
generates the i-th free factor of For each g E N we have = (I, g),
and hence h(g) = 0. For each a1 we have: = a) —r + r
Thus im C kerh.

Now suppose (u, v) E kerh. Write u as a word . . ajfr) and let

SIy = (a1(1).. u.

Obviously lies in N = kerh, so the first coordinate is u On the other
hand, because —h(u) = h(u) = h(u), we have = h(u), and therefore the second
coordinate of is u. El
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Proof of Theorem 5.1

In the notation of (5.1). Lemma 5 8, with G = gives an embedding K,1)

'—* ( 7L) x and Lemma 5 9 shows that (modulo the natural
identifications) the image of this embedWng is This proves 5.1(1)

We shall prove 5.1(2) by induction on n, using 5.1(1). In the induction we shall
use the fact that is of type Fr for every r E N. (It is the fundamental group of
the compact non-positively curved cube complex obtained by taking the product of
n metric graphs each of which has one vertex and m edges.)

The case n = I is covered by Lemma 5.3. Thus we may suppose that n 2 and
that K,1 C is of type but that is not finitely generated. According to
(5.6), the (n + 1)st integral homology of K,) is not finitely generated. And
according to (5.7), K,1) is of type F,1 This completes the induction.

The first part of Theorem 5.1 enables one to write down a simple presentation
of We give this description in the case m = 2, in which case the n-th
Stallings-Bieri group.

5.10 Proposition (A Presentation for SB,,). If n 2: 2 then is generated by 3n
elements x1 , y'1 subject to the relations

= = [xj,yjl = [yj,yj] = —

forl

Proof Let L2 be a free group with basis (x,y} and let x,,y,, i = I n be the
obvious generators for (that is, x = (1, . . , x 1) etc.). The group is

the kernel of the map 'I' : Z that sends each x to the identity and each yj to a
fixed generator of Z.

The presentation displayed above describes H), where H is the subgroup
generated by {x1, . , x,1, . , According to 5.1(1), in order to prove
the present proposition, it suffices to show that H = ker 'I' It is clear that H C ker 'I'.
Conversely, suppose that y . . y,, ker II', where y, is a word in the generators
x, andy1.

Each is equal in the free group on (xi, yj} to a word of the form

For example,
If i> 2, then = and we also have

Hence all elements of the form are
contained in H. Thus in order to show that ker 'I' C H, we need only show that H
contains all elements of the form y = . . . with q 0. But in this case, in

we can write



486 Chapter HI r Non-Positive Curvature and Group Theory

and since each in H, we are done.

5./i Remarks
(1) The paper of Bestvina and Brady that we mentioned earlier [BesB97I clarified

the relationship between various finiteness properties of groups. Their main tool for
doing so was a Morse theory that they developed for CAT(0) cube complexes. If F
is the fundamental group of a compact non-positively curved cube complex X and
h : F—÷ Z is an epimorphism for which there is an h-equivanant Morse function58

X —+ then Bestvina and Brady are able to relate the finiteness properties of
ker h to the connectedness properties of the sub-level sets of

The maps : —+ Z considered in (5.4) were the prototypes for this approach;
the complex X is a product of graphs each with one vertex and two edges; can
be identified with the vertex set of X and if one identifies with the zero-skeleton
of the universal covering X, then extends uniquely to a Morse function X -+

(2) For n > 2, the Dehn functions of the groups described in Theorem 5 1 are
quadratic [Bri99bI. Thus the existence of a quadratic isoperimetric inequality for a
group does not constrain the higher finiteness properties of a group, in contrast to
the subquadratic (i.e. hyperbolic) case (3 21).

5.12 Exercises
(1) Let Land K2 be as in (5.1). We have shown that K2 is not finitely presentable.

There is a theorem of Baumslag and Roseblade [BR84] which states that a subgroup
of is finitely presentable if and only of it contains a subgroup of finite index
that is either free or a direct product of free groups. By examining the structure of
centralizers, verify directly that K2 does not contain such a subgroup of finite index

(2) (The HNN analogue of Lemma 5.8.) Let G be a group and let A C G be a
normal subgroup. Show that the HNN extension (G, t

I
= a, Va E A) can be

embedded in the direct product of G and (G/A) * 7L.

(3) In the notation of (5.1): Show that K,, is an isometrically embedded subgroup
of if n ? 2 (Note that in the case n = 2 this shows that an isometrically embedded
subgroup of a semihyperbolic group need not be finitely presented cf. 3.7.)

(Hint: Follow the last part of the proof of (5.10))

58 e. a map X —÷ that is affine on cells, constant only on 0-cells, and has the property
that the image of the 0-skeleton is discrete
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The Word, Conjugacy and Membership Problems

We now turn our attention to decision problems for finitely presented subgroups of
groups which act properly and cocompactly by isometries on spaces of non-positive
curvature. We shall say something about each of the basic decision problems that
lie at the heart of combinatorial group theory: the word problem, the conjugacy
problem, and the isomorphism problem. We shall also say something about the
generalized word problem. At the end of the section we shall explain how these group
theoretic results impinge on the question of whether or not there exists an algorithm
to determine homeomorphism among compact non-positively curved manifolds.

The Word Problem

If a group has a solvable word problem then so do all of its finitely generated sub-
groups: any word in the generators of the subgroup can be rewritten in terms of the
generators of the ambient group, and by applying the decision process in the ambient
group one can decide if the given word represents the identity

The complexity of the word problem is a more complicated matter. The Dehn
function of a finitely presented group, as defined in (I.8A), estimates the number of
relations that one must apply in order to decide if a given word in the generators and
their inverse represents the identity in the group. If F acts properly and cocompactly
by isometries on a CAT(O) space, then the Dehn function for any finite presentation
of F is bounded above by a quadratic function (see 1.7). Since there is no obvious
way to bound the Dehn function of a finitely presented subgroup in terms of the Dehn
function of the ambient group, given a group that acts properly and cocompactly by
isometries on a CAT(O) space one might be able to use Dehn functions to identify
finitely presented subgroups that cannot themselves act properly and cocompactly
by isometries on any CAT(O) space. Here is an example of this phenomenon.

5.13 Theorem. There exist closed non-positively curved 5-dimensional manifolds
and finitely presented subgmups H C ir1M such that the Dehn function of H is
exponential.

Proof Let N be a closed hyperbolic 3-manifold that fibres over the circle with com-
pact fibre E (see [0t96J for examples). Let S = E. The Dehn function of the
double S) is exponential (see 6.22). Lemma 5.8 gives an embedding of

S) into the direct product ir1N x F, where F is a free group of rank 2. This
direct product is a subgroup of any closed non-positively curved 5-manifold of the
form M = N x Y where Y is a closed surface of genus at least two.

5.14 Remark. Examples such as (5.13) show that the difficulty of the word problem
in a group G is not completely described by the Dehn function the Dehn function
measures the complexity of the challenge that one faces when trying to solve the word
problem using only the information apparent in a given presentation, but extrinsic



488 Chapter 1H r Non-Positive Curvature and Group Theory

information, such as the existence of a nice embedding, might facilitate a more
efficient solution

The Membership Problem

The generalized word pmblem (often called the Magnus problem or membership
pmblem) asks about the existence of an algorithm to decide whether words in the
generators of a group G define elements of a fixed subgroup H. If H and G are finitely
generated and G has a solvable word problem, then the generalized word problem
for H c G is solvable if and only if the distortion of H in G, as defined in (6.17),
is not bounded above by any recursive function.

5.15 Proposition. There exist compact negatively curved 2-complexes K and finitely
generated subgmups N C Kfor which there is no algorithm to decide membership
of N (equivalently, the distortion of N in ir1K is non-recursive).

Proof There exist finitely presented groups G with unsolvable word problem (see
[Rot951). Let G be such a group and let (xi x,1

I ri be a finite presenta-
tion of G. The generalized Rips construction (11.5.45) associates to this presentation
a short exact sequence

I N -* rr1K G I

K is a compact, negatively curved, piecewise-hyperboflc 2-complex whose funda-
mental group ir1K has a finite presentation

(xl aI aM Irk = Uk, =
1 <i<M, 1 I <k<m, €=±I),

where Uk and are words in the generators a {al aM} andN is the subgroup
generated by a.

The key thing to observe is that a word w in the letters x = {xi, . , and
their inverses represents an element of N C I' if and only if w = I in G. We chose
G specifically so that there is no algorithm to decide if w = I in G, and therefore
there is no algorithm to decide whether words in the letters x represent elements of
NCF. El

The groups N considered in (5.15) are never finitely presented (11.5.47) In order
to construct finitely presented examples of a similar nature we shall use the following
theorem of Baumslag, Bridson, Miller and Short The name of this theorem comes
from the fact that the groups appearing in the short exact sequence are assumed to
be of types F1, F2 and F3 respectively. (Type was defined in (3.25).)

'Fibre products, non-positive curvature, and decision problems", Preprint 1998
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5.16 The 1-2-3 Theorem. Suppose that I —÷ N —÷ I' G —÷ I is exact, and
consider the fibre product

P {(y, Y2) I p(y) CF x F

Suppose that N is finitely generated, that F is finitely presented and that G of type
F3 Then P is finitely presented.

It is easy to show that if N has finite generating set a and F is generated by (qUx),
then P is generated by the elements (a,, I), := (I, at), and where

a, E a and x. The key to proving the theorem lies in understanding all of the
relations that hold in N c F The proof is long, technical, and purely algebraic, since
it would add little to the present discussion, we omit it.

5.17 Proposition. There exist compact non-positively curved 4-dimensional com-
plexes X and finitely presented subgmups P C jr1Xfor which there is no algorithm
to decide membership of P (i.e., the distortion of P in 7r1X is non-recursive).

Proof Collins and Miller [CoMi98] have constructed examples of finitely presented
groups of type F3 that are torsion-free and have an unsolvable word problem. By
applying the construction of (11.5.45) to a finite presentation of such a group G we
obtain a short exact sequence

I N 4 G I,

where K and N are as in the proof of (5.15). Let X K x K.
Take generators and a, for K as in (5.15) and consider the associated gen-

erators 1), (1, xi), (a,, 1), (1, a1) for ,r1X. Theorem 5.16 tells us that the subgroup
P {(yi, Y2) I p(y) = p(Y2)} C is finitely presented. Given a word w in the
generators I), we ask if this word defines an element of P. The answer is "yes"
if and only if the word obtained from w by replacing each (xj, I) by represents the
identity in G. Thus membership of P is undecidable.

The Conjugacy Problem

In general, the conjugacy problem is less robust than the word problem. For example,
there exist finitely presented groups which have a solvable conjugacy problem but
which contain subgroups of index two that have an unsolvable conjugacy problem
[CoMi77I. In (1.12) we showed that if a group F acts properly and cocompactly by
isometries on a CAT(O) space then it has a solvable conjugacy problem Thus we
might use the (un)solvability of the conjugacy problem as an invariant for identifying
finitely presented subgroups of F that cannot act properly and cocompactly on any
CAT(O) space.

Notation. We shall continue our earlier practice of writing Cr'(g) for the centralizer
of the element g in the group F.
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5.18 Lemma. Let H C Q C F he finitely generated groups. Suppose that H is
normal in F and that there exists h0 E H such that c Q.

If there is no algorithm to decide membership of Q, then Q has an unsolvable
conjugacy pmblem

Proof We fix finite generating sets B for F and A for H, and for each a E A, b E B
and ±1 we choose a word Ua be in the generators A±l so that = ua b.c

in H. Fix a word in the generators A that equals ho in F.
Given an arbitrary word w in the generators we can use the relations

= Uab( to write wh0w' as a word w' in the generators Ak'. (The length
of w' is bounded by an exponential function of the length of w and the process of
passing from W to W' is entirely algorithmic)

Now ask if W' is conjugate to h0 in Q. Well, there exists q E Q such that
q'hoq w', then qw E Cr'(ho) c Q, whence W E Q. Thus w' is conjugate to h0 in
Q if and only if W E Q. And there is no algorithm to decide membership of Q.

5.19 Theorem. There exists a negatively curved 2-dimensional complex K and a
finitely presented subgroup P C ir x K) such that P has an unsolvable conjugacy
problem.

Proof Let K, N and P be as in the proof of (5 17). Fix one of the generators a of N
(each generator is non-trivial, 11.5.46) Let h0 = (a, a) E irjK x ir1K. Because ir1K
is torsion-free (11.4.13) and hyperbolic, the centralizer of a in K is cyclic (3 10)
Moreover, a is not a proper power, because the closed geodesic in K representing a
is the shortest homotopically non-trivial loop in K (11.5.46) Thus the centralizer of
a in ir1K is (a) and the centralizer of h0 (K x K) is ar) n, m E Z}, which
is contained in N x N C P. Therefore we may apply Lemma 5 18 with H = N x N
andQ=P.

5.20 Remarks
(1) There exists a negatively curved 2-dimensional complex K and a finitely

generated normal subgroup N C ir1K such that N has an unsolvable conjugacy
problem. To see this, let K and N be as in the proof of (5.15) and apply Lemma 5.18
with N = H = Q and one of the generators a E N in the role of h0.

(2) At the time of writing, there are only a few known examples of non-hyperbolic
finitely presented subgroups in hyperbolic groups The known examples all have a
solvable conjugacy problem
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Isomorphism Problems

The main result of this subsection is:

5.21 Theorem. There exists a compact, non-positively curved 4-dimensional poly-
hedral complex X and a recursive sequence of finitely presented groups (n E N)
with explicit monomorphisms —÷ rr1 X, such that there is no algorithm to determine
if is (abstractly) isomorphic to P1.

This theorem is due to Baumslag, Bridson, Miller and Short. The original proof
was algebraic. We shall give a shorter geometric proof based on the Flat Torus
Theorem (11.7 1).

Whenever one is trying to prove that the isomorphism problem is undecidable
in a certain class of groups, one is invariably faced with the difficulty of ruling
out "accidental" isomorphisms — one needs invanants that allow one to deduce that
if some obvious map is not an isomorphism then the groups in question are not
isomorphic. The invariants that we shall use for this purpose are the centralizers of
elements, our previous results concerning centralizers in groups that act by semi-
simple isometries on CAT(O) spaces will be useful in this regard

In the following lemma we can ignore the obvious basepoint difficulties associ-
ated to statements about because we are only interested in specifying elements
and subgroups up to conjugacy

5.22 Lemma. Let H be a group acting freely and pmperly by semisimple isometries
on a complete CAT(— 1) space X. Let c0, c1 . S —÷ H\X be isometrically embedded
circles (of the same length) and let Y be the space obtained by gluing the ends of a
cylinder C S x [0, to H\X along c0 and c1 respectively. Let C be the image of
C in Y

(1) If the images of co and c1 are not the same, then Y does not contain a subgroup
isomorphic to

(2) If the images of co and c1 are the same, then Y contains subgroups isomorphic
to Z2, and any such subgroup is conjugate to a subgroup of In C C jr1Y

Proof Note that the local gluing theorem (11.11 .6) implies that Y is non-positively
curved in the quotient path metric, and H\X '—* Y is a local isometry.

(2) If the images of and c1 coincide, then C is an isometrically embedded flat
torus or Klein bottle, and by (11.4.13) C C Y is isomorphic to the fundamental
group of the surface. Moreover, since H\X is locally CAT(—1), the image of any
local isometry from a torus to Y must be contained in C. The Flat Torus Theorem
tells us that every monomorphism : ÷ ,r1Y is represented by such a map from
a torus, and therefore the image of is conjugate to a subgroup of C C ,r1Y.

(1) Suppose that the images of c0 and c1 do not coincide, and consider a point p that
is in the image of but not in the image of c1. In Y, this point p has a neighbourhood
that is obtained by gluing a Euclidean half-disc (a neighbourhood of a boundary
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point in C) to a CAT(— 1) space B(p, e) C H\X. In particular, given any Euclidean
disc B(O, r) C 1E2, there does not exist an isometric ernbeddingf : B(O, r) Y with
f(O) p. Thus if is a geodesic line in Y that covers c0, then cannot be contained
in any fiat plane. Hence the strip x [0, 1] in the pre-irnage of C that is attached to

is not contained in any flat plane. Since the complement of the of C is
locally CAT(—1), we have proved that there are no flat planes in Y, and therefore,
by the Flat Torus Theorem, no subgroup of Y is isomorphic to 7L2. U

5.23 Corollary. Let N and K he as in the modified Rips construction (11.5.45) and
fix one of the generators a E a described there.

(1) If a suhgmup of the HNN-extension

(7riK, t t'at = a)

is isomorphic to Z2, then it is conjugate to a subgroup of(a, t).

(2) If y E 7r1K, then the HNN-extension

(N, t f1at = y'ay)
contains a copy of Z2 if and only if y E N.

Pmof We pointed out in (11.5.46) that the free homotopy class of loops representing
the conjugacy class of a E 7r1 K is represented by a unique isometrically embedded
circle, c : S K say. By the Seifert-van Karnpen Theorem, the HNN extension
displayed in (1) is the fundamental group of the space obtained from K by attach-
ing both ends of a cylinder S x [0, 11 along c. Thus assertion (1) is an immediate
consequence of 5.22(2).

(2) In N\K, the conjugacy classes in N of a and y1ay E N are each represented
by a unique isometrically embedded circle call these circles co and c1 ,respectively.
These circles have the same image if and only if a and y — 'ay are conjugate in N.

K is a CAT(— 1) space, so we can apply the lemma with X = K and H = N. By
the Seifert-van Kampen Theorem, the space Y obtained by attaching the ends of a
cylinder to c0 and is According to (5.22), this group contains 7L2 if and only
if a is conjugate to y'ay in N.

If there exists n E N such that n'an = y'ay, then ny' E Cr'(a) But, as we
noted in the proof of (5.19), Cr(a) = (a) C N. Thus a is conjugate to y'ay in N
if and only if y E N. U

We need one more lemma in order to prove Theorem 5.21.

5.24 Lemma. Let H he a gmup. For all a, h E H, the following HNN extensions are
isomorphic:

(H, t ('at = (H, x r'ar = a).

Proof The desired isomorphism sends H to itself by the identity and sends t to xh.
The inverse sends r to th— . U
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The Proof of Theorem 5.21. Let N, K and P be as in (5.17) and let I' We
shall work with the presentation of F = ir1 K described in the proof of (5.15); in
particular F has generators (a U We write B to denote the set of generators for
P described immediately following (5.16), namely = (a1, 1),

a E a, and (x, x), x E x. Let (B R.) be a finite presentation for P.
Given a reduced word in the letters x±1, we can use the relations xajxJ6 =

in our presentation of F to rewrite w'a1w as a word W in the letters that
represents the same element of N C F We write for the word in the generators
of P obtained from W by replacing each a by = (a,, I).

The length of W is bounded by an exponential function of the length of w and the
process of passing from w to W is entirely algonthmic. Thus we obtain a recursive
family of group presentations indexed by the set of reduced words w in the letters

—I L —I R — R aEc1.
Note that is a presentation for the HNN extension of P by a single stable letter

that commutes with P fl ({ 1) x F) and conjugates to W'. Let denote this
HNN extension

We also consider the following HNN extensions of F

F an F x F with stable letter 1).

Let be the subgroup of F generated by P and
Each element of P c F x F is of the form p = (y, ya) where a E N Thus

p E (WL, aR) if and only if p E (WL) x F. Similarly, p E (at, aR) if and only if
p E (a1) x F. It follows that if an element of the HNN extension is in reduced
form (in the sense of (6.4)), then its image in is also in reduced form Hence, for
each word w, the natural map —* P0 C Ft,, x F is injective.

By combining these natural maps with the explicit isomorphisms F de-
scribed in LemmaS 24, we get explicit embeddings into F1 x F of the groups given
by the presentations

xF.
F1 is the fundamental group of the compact non-positively curved complex K1

obtained by attaching both ends of a cylinder along the closed local geodesic in K
that represents a1. We claim that a space X as required in the statement of Theorem
5.21 can be obtained by setting X = K1 x K, in which case = F1 x F. We
will be done if we can show that there does not exist an algorithm to decide if is

isomorphic to P1.
There is no algorithm to decide if a word w in the generators x±1 represents an

element of N c F (see 5.15), and therefore the following lemma completes the proof
of Theorem 5.21.

5.25 Lemma. is isomorphic to P1 if and only if contains a suhgmup isomor-
phic to 7L3, and it contains such a subgroup if and only if w represents an element of
N c F.



494 Chapter III F Non-Positive Curvature and Group Theory

Proof Since F is torsion-free and hyperbolic, any homomorphism 7L3 r must
have cyclic image. Applying this observation to the projection of c x I' onto
the second factor, we see that contains a subgroup isomorphic to Z3 if and only
if := fl x fl}) contains 7L2. Note that since the action of(x,x) E P by
conjugation on x fl} is the same as the action of (x, 1), in fact is normal in

x (1); the quotient is G, in the notation of (5.17), which is torsion-free.
Applying (5.23(1)) to (via the isomorphism in (5.24)), we see that

contains 7L2 if and only if contains a conjugate of a subgroup of finite index in
(at, where (w, 1) E x F. Since is normal and contains at, it
contains such a conjugate only if it contains a power of Since G is torsion-
free, this happens only if E And since E this is equivalent to
saying that = (w, 1) lies in P. in other words (w, 1) EN X f 1) = Pfl (F x fl}).

U

5.26 Remarks
(1) One can subdivide the complex constructed in (11.5.45) and remetrize it as

a cubical complex. If one does so, then one gets an induced cubical structure of
non-positive curvature on the complex X constructed in the proof of (5.21).

(2) In the notation of the proof of (5.21), the group of (5.23(2)) is given by
the relative presentation (N, = W). As above, for each word w in the
generators x there is a natural monomorphism ir1 K1, and there is no algorithm
to decide if is isomorphic to N1. Indeed if and only if contains Z2,
and by (5.23(2)) we know that this happens if and only if w E N, and membership
of N is algorithmically undecidable.

Distinguishing Among Non-Positively Curved Manifolds

Closed 2-manifolds were classified in the nineteenth century they are determined
up to homeomorphism by orientability and Euler characteristic. If Thurston's Ge-
ometrization Conjecture [Thu82] is true then the homeomorphism problem for com-
pact 3-manifolds is also solvable. In other words, there is an algorithm which takes
as input pairs of compact 3-manifolds and answers YES or NO, after a finite amount
of time, according to whether or not the manifolds are homeomorphic. An easy
consequence of this is that there is an algorithm that will produce a list of compact
3-manifolds such that every compact 3-manifold is homeomorphic to exactly one
member of the list. (We are implicitly assuming that the manifolds under considera-
tion are described as finite objects. For the sake of argument, since all 3-manifolds
are triangulable, let us suppose that they are specified as finite simplicial complexes.)

Markov [MarkS8] showed that in dimensions n 4 there can be no algorithm
to decide homeomorphism among closed (smooth, PL or topological) manifolds,
because the existence of such an algorithm would contradict the fact that the isomor-
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phism problem for finitely presented groups is However, if one restricts
one's attention to closed manifolds of negative curvature then the homeomorphism
problem is solvable in dimensions n > 5. To see this one needs the following deep
topological rigidity theorem of Farrell and Jones [FJ93]

5.27 Theorem. Let n > S and let M and N he closed non-positively curved mani-
folds. If ,r1M ir1N then M and N are homeomorphic.

Farrell and Jones worked in the smooth category For an extension to the polyhe-
di-al case see [Hu(B)93]. Fundamental groups of closed negatively curved manifolds
are hyperbolic and torsion-free so, as Sela points out in [Se1951, by combining the
solution to the isomorphism problem for torsion-free hyperbolic groups [Se195] with
(5.27) one gets.

5.28 Theorem. Let n S he an integer There exists an algorithm which takes as
input two closed n-manifolds that support metrics of negative curvature, and which
(after a finite amount of time) will stop and answers YES orNO according to whether
or not the manifolds are homeomorphic.

There is a technical problem here with how the manifolds are given. They must be
given by a finite amount of information (from which one can read off a presentation
of the fundamental group). Cautious readers should interpret (5.28) as a statement
regarding the homeomorphism problem for any recursive class of negatively curved
manifolds.

5.29 Remarks
(I) Let n E N At the time of writing it is unknown whether or not there exists an

algorithm which takes as input two compact non-positively curved n-manifolds, and
(after a finite amount of time) stops and answers YES or NO according to whether
or not the manifolds are homeomorphic.

(2) By a process of relative hyperbolization, one can embed any compact non-
positively curved piecewise Euclidean complex isometrically into a closed manifold
of higher dimension that has a piecewise Euclidean metric of non-positive curvature
(see [Gro87], [Hu(B)93]). Thus, in the light of (5.26(1)), the space X in Theorem
5.21 can be taken to be a closed manifold with a piecewise Euclidean metric. The
connected covering spaces of this manifold are Eilenberg-MacLane complexes and
hence the homotopy type of each is determined by its fundamental group Thus (5.2!)
implies that there exists a closed non-positively curved manifoldM and a sequence of
covering spaces M M, i E N, with each jr1M1 finitely presented, such that there
does not exist an algorithm to determine whether or not M, is homotopy equivalent

60For each n > 4, there is an algonthm that associates to any finite presentation 'P a closed
n-manifold with fundamental group P1 Markov shows that if one could decide homeo-
morphism among the resulting manifolds then one could decide isomorphism among the
groups being presented
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to M0. (Again, one has to be careful about how the sequence A1, is given in this
theorem.)

In this section we have seen that the finitely presented subgroups of the funda-
mental groups of compact non-positively curved spaces form a much more diverse
class than the fundamental groups themselves. We have essentially shown that if
a property of cocompact groups is not obviously inherited by all finitely presented
subgroups, then in general it will not be inherited However we should offset this
statement by pointing out that in general it is difficult to distinguish those subgroups
which can act cocompactly by isornetries on CAT(O) spaces from those that cannot.
For instance.

5.30 Theorem. Let M he a closed hyperbolic 3-manifold that fibres over the circle.
There exist subgroups G C (M x M x M) such that

(1) GhasacompactK(G, 1),
(2) G has a quadratic Dehn function,

(3) G has a solvable conjugacy pmhlem,

(4) the centralizer C of every element of G has a compact K(C, 1), hut

(5) G is not semihyperholic

The point here is that G acts properly by semi-simple isometries on a CAT(O)
space and satisfies most of the properties associated with groups that act cocompactly,
and yet G cannot be made to act properly and cocompactly by isornetries on any
CAT(O) space.

We should also mention that, in contrast to the general theme of this section,
there are certain classes of non-positively curved spaces for which it is true that if X
is in the class then any finitely presented subgroup of X is also the fundamental
group of a space in the class. We saw in (11.5.27) that 2-dimensional MK-complexes
have this property. Compact 3-dimensional manifolds 6! form another such class
this is explained in [Bri98b]

6. Amalgamating Groups of Isometries

A basic way of constructing interesting new groups is to combine known examples
using amalgamated free products and HNN extensions. The Seifert-van Kampen
theorem tells us that these processes appear naturally in geometry and topology:
they describe exactly what happens when one starts gluing spaces along ,n -injective
subspaces.

In this section we shall use our earlier results concerning gluing and isometries
of CAT(O) spaces to address the following.

The manifolds may have boundary, and the boundary need not be convex
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6.1 Question. If the gmups F1 and F2 act pmperly and cocompactly by isometries
on CAT(O) spaces, then under what circumstances can one deduce that various
amalgamated free pmducts of F1 and I'2 also act pmperly and cocompactly by
isometries on a CAT(O) space Similarly, if F acts properly and cocompactly by
isometries then under what circumstances can one deduce that a given HNN extension
ofF acts in the same way'

The analogous questions forgroups which act semisimply will also be considered,
but only in passing

We shall give criteria for showing that certain amalgamated free products and
HNN extensions do act nicely on CAT(O) spaces, and we shall also present some
sobering counterexamples to illustrate what can go wrong.

For results concerning the question of when an amalgamated free product of
8-hyperbolic groups is 8-hyperbolic, see [BesF92J.

Amalgamated Free Products and HNN Extensions

Amalgamated free products and HNN extensions have appeared a number of times
at earlier points in this book, but since they are central to the present discussion we
take this opportunity to recall their definitions.

6.2 Definitions. Let H be a group and let (FA : X E A) be a family of groups.
Associated to any family of monomorphisms (ØA : H FA : X E A) one has an
amalgamated free product, which is the quotient of the free product *A€AI'A by the
normal subgroup generated by the conjugates of the elements f ØA(h)ØA(hY1

I
h E

H, X, X' E A). The natural map from each FA to the amalgamated free product is
injective, and we identify "A with its image in order to realise it as a subgroup of the
amalgamated free product.

In the case A = (1, 2), it is usual to write F F2 to denote an amalgamated free
product (suppressing mention of the given maps H I'), and to refer toF1 *H F2

as "an amalgamated free product of

F a group and let 0 : A1 A2 be an isomorphism between subgroups
of F Associated to this data one has an HNN extension62 of G: this is the quotient
of F * (t) by the smallest normal subgroup containing tØ(a)t' a E A1 }. This
quotient may be described by the relative presentation

= (F, t f'at = 0(a), Va E A1),

or by a phrase such as "an HNN extension ofF by a stable letter t conjugating A1 to
A2".

62The initials HNN are in honour of Graham Higman, Bernhard Neumann and Hanna Neu-
mann, who first studied these extensions [HNN49J See [ChaM82I for historical details.
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The group F is called the base of the extension. The natural map F —p
F a subgroup of

Following common practice, we shall normally use the more casual notation F*n
to describe whereA is an abstract group isomorphic toA1 andA2. And we shall
refer to F*A as "an HNN extension ofF overA." In the special case where A C F is
a specific subgroup and 0 is the identity map, one has the trivial HNN extension of
F over A, which we denote

= (I', t
I
t'at = a, Va E A).

6.3 The Bass-Serre Tree. Free products with amalgamation and HNN extensions
are the basic building blocks of graphs of groups63 in the sense of Bass and Serre
[Ser77]. (The fundamental group of any graph of groups can be described by taking
iterated amalgamated free products and HNN extensions.)

An amalgamated free product of the form F1 *H F2 is the fundamental group of
a i-simplex of groups, where F1 and ['2 are the local groups at the vertices of the
simplex ("the vertex groups") andH is the local group at the barycentre of the I-cell
("the edge group"). An HNN extension F*n is the fundamental group of a graph of
groups with a single vertex group F and a single edge group A The homomorphisms
between the local groups are those implicit in the notations ['1 *H F2 and F*A.

All graphs of groups are developable in the sense of Chapter C (see C.2.17).
The universal development gives an action of the fundamental group of the graph
of groups on a tree called the Bass-Serre tree. The tree for F1 *H F2 was described
explicitly prior to (11 1118), and the tree for F*A was described explicitly in the proof
of (11.11 21). The vertex stabilizers for these actions are the conjugates of the given
vertex groups. Thus, as a special case of (11.2.8), we see that every finite subgroup
of ['1 *H r2 is conjugate to a subgroup of F1 or F2, and every finite subgroup of F*A
is conjugate to a subgroup of the base group F.

We shall need the following well-known fact (see [Ser77], 5.2, Theorem 11)

6.4 Lemma. LetG = F1 *HF2. Letx0 x,1 E F1 andyo,. . , y,, E F2 he elements
suchthatx1 Hifi> Oandy1 Hifi <n. Then xoyo. .XnYn 1 mG. When an
element of G is expressed as such a product, it is said to he in reduced form. Every
element of G f 1) can be written in reduced form.

In = (F, t I f'at = Va E A), ..
where the m are non-zero integers. Suppose A if m, <0 and 0(A) if m, > 0.

Then . . . / 1 in When an element of G*ct, is expressed as such
a product, it is said to he in reduced form. Every element of can he written in
reduced form.

The above fact concerning HNN extensions is often called Britton's Lemma.

I -complexes of groups in the language of Chapter C.
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6.5 Doubling Along Subgroups and Extending Over Them. In (11.11.7) we dis-
cussed the construction of doubling a space X along a closed subspace Y. As a set,
the double of X along Y is the disjoint union of two copies of X (denoted X and X)
modulo the equivalence relation generated by [y Vy E Y]. When endowed with
the quotient topology, this space is denoted D(X; Y). More generally, one can take m
copies of X and identify them along Y; the resulting space is denoted Dm(X, Y). We
also considered the analogous construction X*y, which is the disjoint union of X and
Y x [0, 1] modulo the equivalence relation generated by [y (y, 0) (y, 1)Vy E YJ.

There are analogous constructions for groups. As in (5.1), given a group F and
a subgroup H, one can consider the amalgamated free product of m copies of F
along H, denoted H). In the terminology of (6.2), this is an amalgamated free
product whose index set A has m elements, each FA is F, and each of the maps is

the inclusion H F. One can also consider the trivial HNN extension F*H.
If X is a path-connected topological space, Y is a path-connected subspace that

has an open neighbourhood which retracts onto it, and Y X induces an injection
of fundamental groups, then by the Seifert-van Kampen Theorem the fundamental
group of Dm(X; Y)is 7rjY) and 7r1(X*y)

6.6 Proposition. Let F he the fundamental gmup of a compact non-positively curv-
ed space X, let Z he a compact geodesic space and letf Z X he a local isometry.
Let H = C F Then F*H and H) are the fundamental gmups of
compact non -positively curved spaces

Proof These are special cases of our earlier results concerning equivariant gluing,
(11.18) and (11.2!), but for clanty of exposition we repeat the details in the present
simpler setting.

(11.4.14) and (11.11.6) show that the quotient Q of XII (Z x [0, ii) by the equiv-
alence relation generated byf(z) (z, 0) is non-positively curved. Let Y denote the
image of Z x { I } in Q and note that Dm(Q; Y) and are non-positively curved
(II 11.7). The obvious homotopy equivalence between Q and X gives an isomorphism

Q F identifying Y C Q with H. We know from (11.4.13) that ir1 Y Q
is an injection, so the general remarks immediately preceding the proposition apply.

U

6.7 Exercises
(1) Show that if the trivial HNN extension acts properly and cocompactly by

isometries on a CAT(0) space, then A is quasi-isometrically embedded in F. (Hint:
Argue, perhaps using (6.4), that the centralizer of the stable letter t is A x (t). Apply
(4.14).)

(2) If H is normal in F and F/H Z, then A2(F; H) is isomorphic to the trivial
HNN extension F*H.

We shall show in (6.16) that the converse to (6.7(1)) fails there exist groups
F that act properly and cocompactly by isometries on a CAT(0) space and quasi-
isometrically embedded subgroups A C F such that does not act properly and
cocompactly by isometries on any CAT(O) space.
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Amalgamating along Abelian Subgroups

In Chapter II.! 1 we proved that if two groups F1 and F2 act properly and cocompactly
by isometries on CAT(O) spaces, then so too does any amalgamated free product of
the form F2. In this subsection we examine the extent to which this result can
be generalized to the case of amalgamations along other abelian groups. In the next
subsection we shall consider amalgamations along finitely generated free groups.

6.8 Proposition. If F acts properly and cocompactly by isometries on a CAT(O)
space, then so too does every amalgamated free product of the form

and every HNN extension of the form

(F, t
I
t'at = a, a E A),

where A is virtually ahelian.

Proof We proved in (11.7.2) that if F acts properly and cocompactly by isomeiries
on a CAT(O) space, and A C F is a virtually abelian subgroup of F, then there
is a proper cocompact action of A on a Euclidean space and an A-equivariant
isometry X. Thus we may apply the equivariant gluing techniques described
in(11.11.18)and(11.11.21).

One would like to generalize the preceding proposition to cover, for example,
the case of arbitrary amalgamations of the form F1 F2, where the F, are the
fundamental groups of compact non-positively curved spaces. One can do so in
certain special cases for example (11.11.37) where the groups F, are non-uniform
lattices in SO(n, 1). However, if n 2 then in general one cannot make F1 F2 the
fundamental group of a compact non-positively curved space. Let us consider why.

In the case n = 1, one can take compact non-positively curved spaces X1 and X2
with F1 = 7r1X, and then scale the metrics on them so that the closed geodesics in the
free homotopy class of the generators of the subgroups being amalgamated have the
same length; one then attaches the ends of a tube to these closed geodesics. Consider
what happens when we try to imitate this construction with subgroups A,
where n > 2: the Flat Torus Theorem provides us with local isometries IE"/A1 —*
that realise the inclusions A, F (these maps play the role of the closed geodesics
in the case n = 1), but in general one cannot make the fiat ton IE"/A1 and IE"/A2
isometnc simply by scaling the metric on each by a linear factor it might be that
they are not conformally equivalent.

In some cases one can vary the metnc on the spaces that are to be glued and thus
realise the desired amalgamated free product as the fundamental group of a compact
non-positively curved space (cf. 11.11.36). But in other cases the shape of the torus
associated to a particular abelian subgroup is an invariant of the group rather than
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simply the particular non-positively curved space at hand. We illustrate this point
with some specific examples.

6.9 The Groups T(n). Let

T(n) = (a, h, ta, tb [a, hJ = 1, ç'ata = ç'htb =

As Dani Wise pointed out in [Wi96bJ, T(n) is the fundamental group of the non-
positively curved 2-complex X(n) that one constructs as follows: take the (skew)
torus formed by identifying opposite sides of a rhombus whose sides have length
n and whose small diagonal has length 1; the loops formed by the images of the
sides of the rhombus are labelled a and h respectively; we attach to two tubes
S x [0, 1], where S is a circle of length n, one end of the first tube is attached to the
loop labelled a and one end of the second tube is attached to the loop labelled h, in
each case the other end of the tube wraps around the image of the small diagonal n
times.

There is some flexibility in how one attaches the tubes in this example, but
because a is conjugate to hand to the shape of the torus C X(n) supporting
the abelian subgroup = (a, h) is entirely determined by the algebra of the group.
More precisely, given any proper action of T(n) by semisimple isometries on a
CAT(O) space one considers the induced action of on each of the fiat planes E
yielded by the Flat Torus Theorem, modulo a constant scaling factor, the quotient
metric on must make it isometric to the torus described above, because the
translation lengths of a, hand (ah)?t have to be the same.

If n m, then the tori and cannot be made isometric simply by scaling
the metric on each. Thus we have:

6.10 Proposition. In the notation of(6 9), if n m and if I' is an amalgamated free
pmduct of T(n) and T(m) ohtained hy identifying A,, with Am, then I' does not act
properly hy semisimple isometries on any CAT(O) space.

The interested reader should find little difficulty in producing many variations
on this result, we note one other:

6.11 Example. Let I' = (a, h, t [a, h] = 1, rat = h2). This is the fundamental
group of the non-positively curved 2-complex obtained as follows: one takes the
torus formed by identifying opposite sides of a rectangle whose sides c1 and c2 have
length 1 and 2, respectively; to this one attaches a cylinder S x [0, 1], where S is a
circle of length 2; the end S x f0) wraps twice around the image of c1 and the end
S x f 1) is identified with the image of c2. —

We take two copies of F and consider the amalgamated free product G = I'
obtained by making the identifications a = h and h = a. Writing to denote

conjugacy in G, we have a h2 = — = a'1. We claim that G cannot
act properly by semisimple isometries on any CAT(0) space. Indeed, given any
action of G on a CAT(0) space, the translation lengths (11.6.3) of a and h satisfy:
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2jbj = b21 = = 4jaj, thus aj = = 0. Thus if the action is semisirnple,
a and b must be elliptic, and since they have infinite order in G, the action will not
be proper.

The same calculation with algebraic translation numbers in place of geometric
ones shows that if Q is semihyperbolic, then the image of (a, b) under any homo-
morphism G —÷ Q must be finite (see 4.18).

For our last example of a bad amalgamation along abelian subgroups we take
two n-torus bundles over the circle with finite holonomy and equip them with flat
metrics, then we ask when they can be glued along their fibres so as to produce a
compact non-positively curved space.

6.12 Proposition. Let 0, GL(n, Z), i = 1, 2 be elements of finite order and
consider the corresponding semidirect products G, = Z'1 let,j Z. The amalgamated
free product 02) *7zn G2 is the fundamental group of a compact non-
positively curved space if and only the subgroup C GL(n, Z) is finite.
Moreover; if is infinite then 02) does not act properly by semi-simple
isometries on any CAT(O) space, it is not semihyperbolic, and its Dehn function
grows at least cubically.

Proof The quotient of 02) by the normal subgroup Z'1 is free of rank two, so
02) = : F2 —* GL(n, Z)isH := Ø).IfH

is finite then we can choose an H-equivariant flat metric on the n-torus E. Regard each

0, as an isornetry of E. For I = 1, 2, the mapping torus M, E x [0, 1]/[(x, 0)
1)] is a compact non-positively curved space with fundamental group G1, i =

1, 2. By gluing to M2 along E x {O} we obtain a non-positively curved space with
fundamental group 02).

If H is not finite, then the normal subgroup Z'1 is not virtually a direct factor
of its normalizer in 02) does not act properly by
semi-simple isometrics on any CAT(O) space (11 7.17). To see that 02) is not
semihyperbolic in this case, one can argue that H = 02) contains an element
of infinite order and appeal to (4.17). AlternativelyTM, since we know that the Dehn
function of a semihyperbolic group is linear or quadratic (4.9(2)), we can appeal to
the Main Theorem of [Bri95b], which implies that if 02) is infinite, then the
Del-rn function of will be either exponential or polynomial of degree d,
where 3 < d n + 1 (it will be exponential if and only if H contains an element
with an eigenvalue of absolute value bigger 1).

6.13 Example. SL(2, Z) is generated by the following two matrices of finite order

64This argument was discovered independently by Natasa Macura and Chnstian Hidber
[Hid97]
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Since SL(2, Z) contains matrices that have eigenvalues of absolute value bigger than
1, the group F(Ø,, 0-2). which is the fundamental group of a space obtained by gluing
two flat 3-manifolds along tori, has an exponential Dehn function and does not act
properly by semi-simple isometrics on any CAT(O) space.

Amalgamating Along Free Subgroups

Let F be a finitely generated free group. In order to realise f, *FF2 as the fundamental
group of a compact non-positively curved space, one should look for compact non-
positively curved spaces X1 with f1 = where the inclusions F f, can be
realized by local isometrics Y —* X,, where Y is a metric graph with fundamental
group F. A simple instance of this is:

6.14 Lemma. Let B = B(l,,. ., be a metric graph that has one vertex and n
edges with lengths 1, Let : B —* X, and 02 B —* X2 be local isometries
to compact non-positively curved spaces. The double mapping cylinder

U(B x [0, 1])UX2

(b, 0) Ø,(b), (b, 1)

is non-positively curved (when endowed with the quotient path metric).

Such embeddings B —* X, arise naturally in the case of spaces built by attaching
gluing tubes as in (11.11.13).

Let X and be compact non-positively curved spaces with basepoints
p and q,, respectively, and let 0'' : Y1 —* X be local isometrics with
0° '(qi) = = p for all i. (11.11.13) tells us that

— x{O,l])U. .U(Y,1x{0,1])

n

is non-positively curved when endowed with the quotient path metric. Associated to
this descnption of Q we have the relative presentation

nI

= Vg1 E qj).

The homotopy class s contains the loop based at p E Q which is the image of the
path t i—+ (q,, t) in Y, x [0, 1]; let a, denote this loop.

6.15 Lemma. Let Q be as in the preceding paragraph. Let B be the metric simplicial
graph that has one vertex v and n edges of length I. Let : B —+ X be the map that
sends v top E Q and sends the i-th edge of B isometrically onto the loop a1. Then
is an isometry onto its image.
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Proof By construction i,lr is length-preserving and injective. By composing the pro-
jection Y1 x [0, 1] —* [0, 1] with the arc length pararnetenzation of the i-th edge in
B one obtains maps Y, —* B. These maps, together with the constant map X —* {v}
induce a map f : Q —÷ B that does not increase lengths and which is such that
fi/i = idB. Thus ifr is an isometry.

An application of this lemma is given in (7 9)

Bad Amalgamations Along Free Subgroups

Recall that a subgroup H C f is said to be a retract if there is a homomorphism
f —* H that restricts to the identity on H. Given any finite generating set for H, one
can extend it to a finite generating set for F by adding generators for the kernel of
the retraction f —* H. With respect to the resulting word metrics, H f is an
isometry

Part (2) of the following proposition illustrates the point that we made
ing (6.7): in order for to be semihyperbolic it is necessary for A to be
isometrically embedded in G, but this condition is not sufficient.

6.16 Proposition. Let and F2 be free groups of rank Iwo. Choose generators
E F1 and a2, b2 E F2 and let L denote the subgroup of x F2 generated by

a = a b2. (By projecting into F2 one sees that L is free.)

(1) L C x F2 is a retract. (In particular; for a suitable choice of word metrics
L x F2 is an isometry.)

(2) The trivial HNN extension E = x F2, t it = I Vl E L) is not semihy-
perbolic.

(3) The double = x L) is not semihyperbolic.

(In fact both E and have cubic Dehn functions.)

Proof One obtains a retraction from x F2 to L by sending to the identity, a2
to a and b2 to

In order to see that E is not semihyperbolic, we look at centralizers (4.15). We
claim that the intersection of the centralizers of t, and is L fl F2, which is the
kernel of the map L —* 7L that sends each of a and to a fixed generator. This kernel
is not finitely generated (see 5.3), so (4.15) tells us that E is not semihyperbolic.

To see that the intersection of centralizers is what we claim, note first that by
(6.4) the centralizer of t is L, then note that the centralizers of ai and in E are
the same as their centralizers in F1 x F2, and that the centralizer of in x F2
is (as) x F2 while that of b! is (b1) x F2. The second assertion is a consequence of
(6.4), but can also be seen by looking at the action of E on the Bass-Sen-c tree: each
of a and b is an elliptic element with a single fixed point, the stabilizer of which is

x F2; and the centralizer of any elliptic isometry of a CAT(0) space must preserve
its fixed point set.
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A similar argument shows that in the intersection of the centralizers of the two
copies of a1 and the two copies of is again L fl F2.

We shall sketch a proof of the parenthetical assertion concerning the Dehn func-
tions of E and The required cubic upper bound is proved in (6.20) It is enough to
establish the lower bound for E, because retracts onto a copy of E and the Dehn
function of a group gives an upper bound on the Dehn function of any retract of that
group [A1o90]. (To get a retraction from onto a subgroup isomorphic to E, leave
one of the natural copies of F! x F2 in alone and in the other send the generator

to 1 and the other generators to themselves.)
To obtain a cubic lower bound on the Dehn function of E we work with the

following presentation

(as, a2, b1, b2, t
I

a2], [a1, /.,2], [by, a2], [by, b2], [t, a1a2], [t, a1b2])

Let u, = let v, = (tb1)'1 and let w,, = Note that w,1 = I in E.
We claim that the area of any van Kampen diagram for is bounded below by a
cubic function of n.

There are two important observations to be made First, because no subword
of w,, equals I in E, any van Kampen diagram for w,1 must be a topological disc.
Second, since the only relations involving t are of the form {t, x], if one enters a
2-cell in a van Kampen diagram for w,1 by crossing an edge labelled t, then there is
a unique other edge labelled r which you can cross in order to exit the 2-cell; thus
one enters a second 2-cell, from which there is a unique way to exit crossing an edge
labelled t, and so on. Continuing in this way, one obtains a chain of 2-cells crossing
the diagram (see figure I'.I 1). The chains of 2-cells that one obtains in this manner
are called t-corridors. There is one such r-corridor incident at each edge labelled t
in the boundary of the diagram. See [BriG96] for a careful treatment of t-corridors.

In exactly the same way, one obtains a by-corridor incident at each edge labelled
in the boundary of the diagram. The onentations on the ends of the comdors force

them to cross the diagram in the manner shown in figure f. II
The key parts of the diagram on which to focus are the gaps between corridors.

The top and bottom of each r-comdor is labelled by a word in the free group on
(a1 b2) and a2) that freely reduces to (ala2)'1 (a! b2)'. The side of each b -corridor
is labelled by a word in the free group on a2 and b2 that freely reduces to The
subdiagram between each pair of adjacent corridors is as drawn in figure f. 12. It may
be regarded as a diagram over the natural presentation of (a2, b2) x (as) F2 x
and as such it has area n2 Hence the area of the whole diagram in figure f II is
?n3.
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Fig. ['.12 The subdiagram showing that = (aia2)'(aib2)".

Subgroup Distortion and the Dehn Functions of DoubLes

The following notion of distortion has been lurking in the background of several
earlier proofs (for example the preceding proposition and (5.15)).

6.17 Definition (Subgroup Distortion). Let H c f be a pair of finitely generated
groups, and let dr and d,, be the word metrics associated to a choice of finite gener-
ating set for each. The distortion of H in f is the function

= max{d11(l, h) I h E H with dr(1, h) <n}.

One checks easily that, up to Lipschitz equivalence, this function is independent of
the choice of word metrics dr and d11.

nn 22

Fig. F.11 A van Kampen diagram for

a2

'f' ' a1'f'

Un

a1

a1

• a1

a1
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6.18 Remarks
(1) H f is a quasi-isometric embedding if and only if there exists a constant

K such that <Kn.
(2) The definition of distortion that we have adopted differs from that of Gromov

[Gro93] in that we have omitted a normalizing factor of 1/n on the nght hand side.
Authors vary in this convention

6.19 Exercises
(1) Suppose that H and f are finitely generated and that H C f is normal. Prove

that there is a constant k > 0 (depending on the choice of word metrics) such that
distortion of H in f is bounded above by n F—+ k". (Hint: Take k to be the maximum
of the distances dH (1, b ab) where b runs over a set of generators B = for F
and a runs over the generators of H.)

(2) Letf : N —+ M be a bi-Lipschitz map from one closed Riemannian manifold
into another. Suppose thatf is and consider a liftingf : N —* M to the
universal cover Consider the relationship between the length metric on N given
by its Riemannian structure and the metnc d(x, y) := After taking
note of(I 8.19), bound y) in terms of d(x, y) and the distortion of jr1N C

We have introduced subgroup distortion at this time so that we can formulate
the following theorem. We recall that A) is the amalgamated free product
of m copies of F along A. As we noted prior to (5 1), if m > 3 then there is a
canonical retraction of A) onto A), sending the first two copies of F
to themselves and sending the other (m — 2) copies of F to the first copy by the
identification implicit in the notation. Similarly, by identifying the m natural copies
off, one obtains a retraction from A) onto (the first copy of) F

We recall that modulo the equivalence relation described in (I.8A.4), the Dehn
function of a finitely presented group does not depend on the choice of finite presen-
tation. And if H is a retract of a finitely presented group F, then the Dehn function
of H is s-bounded above by that off in the sense of (I.8A.4)— see [A1o90].

6.20 Theorem. Let m 2 be an integer Let F be a finitely presented group with
Dehnfunctionfr' and let H c F by afinitely presented subgroup Let 8(n) be the
distortion ofH in F with respect to some choice of word metrics. The Dehn function

of &L = H) satisfies

8(n)} nfr'(S(n)),

and the Dehn function of the trivial HNN extension I' = F*11 satisfies

n8(n)} -< nfr'(S(n)).

Proof First we consider the lower bound for Because retracts onto F, we
have fr'(n) -< so it only remains to show that 8(n) Because
retracts onto 2
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We fix a finite presentation (A I 7?.) for f, where A includes a generating set
B for H. Let dH be the word metric on H associated to B. We shall work with the
following presentation of

(A, A' 7?., 7?.', = I Vh E B).

We choose a sequence of geodesic words w,1 in the generators A so that w,, E
H, <n and dH(l, w,1) = 8(n). Let be the same word in the alphabet A' and
consider a least-area van Kampen diagram D,1 for the word w1 (which represents
the identity in

Across the interior of each 2-cell (digon) corresponding to relators of the form
we draw an arc connecting the vertices. These arcs form a graph C

whose edges we label with letters h E B in the obvious way. The basepoint of the
diagram and the endpoint of the arc of SD,, labelled w,L are two vertices of
We claim that these two vertices lie in the same connected component of If this
claim were false, then there would be an arc through the interior of that joined a
point on the arc of labelled w,, to a point on the arc labelled and did not pass
through any digon labelled h'. But this is clearly impossible, because each edge
in the portion of the boundary labelled w,, lies in the closure of a 2-cell labelled by a
relator from and each edge in the portion of the boundary labelled lies in the
closure of a 2-cell labelled by a relator from 7?.', and the only relators involving both
primed and unprimed letters are those of the form h = h'.

Thus we can connect the basepoint of D,, to the endpoint of the arc of labelled
w,L by a path in we choose a shortest such path a. The edges of a are labelled by
generalors h,...,

h1 . . h1,, = w,,

in I'. Thus m> 8(n), and since the 2-cells (digons) of D,1 corresponding to the edges
of a are all distinct, we deduce that D,1 has at least 8(n) 2-cells. The integer n is
arbitrary and has length 2n, thus the Dehn function for the given presentation
of H) > 8(n) for all n

We now consider the case of HNN extensions. Again, since r is obviously a
retract off, the inequalityfr(n) is clear.

f*H has finite presentation (A, t
I

7?., {t, h] = I Vh E B). For each positive
integer n consider a least-area van Kampen diagram D for where the
words w,1 are chosen as above. One obtains a lower bound of n8(n) on these diagrams
by getting lower bounds on the length of t-comdors as in (6.16) we omit the details.

We now turn our attention to the upper bounds. We give the details only in
the case of The argument for is entirely similar (but notationally a bit more
complicated). The HNN case is also entirely similar, except that one uses the reduced
form for elements in HNN extensions in place of the reduced form for amalgamated
free products (see (6.4)).

We continue to work with the presentation (A, A' I 7?., R/, = I Vh E 13)

of Let 8(n) be the distortion of H C f with respect to the word metrics associated
to 13 and A.
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Any word in the given generators is equal (purely as a word) to a product of the
form w = u1 where each u1 is a word in the generators A and each in
the generators A', and all but possibly and v1 are non-empty. The integer! is called
the alternating length of w. The idea of the proof is to reduce the alternating length
of words representing the identity by applying a controlled number of relations.

Letn = wi and suppose thatw = I Lemma 6.4 implies that one of the u,
or represents an element of H. Suppose that it is u, and let be the shortest word in
the generators B that represents the same element of H. By definition, <
Let m = iUii + 1u11. Let U,' be the word obtained by replacing the letters of by the
same letters primed.

By the definition of the Dehn function, in the free group F(A) there is a product
P of at mostfr'(m) conjugates of relators r E such that u, UI = P. And there is
an obvious way to wnte as the product Q of IU,I m conjugates of relators

Thus PQP/_! is a product of at most 2m + 2f1'(m) conjugates of relations.
In the free group on A U A' we have: u, = =

Thus

We move the subword PQP'' by conjugating it with the suffix s of w that follows
it. As a result we obtain the following equality in the free group

w = . . .. .

The subword of the right hand side that precedes (s PQP' — 's) has smaller alternating
length than w because the term in square brackets is a word over A'. Repeating this
argument some number N n = wi times, we obtain w = Wil, where W is a word
of length at most n in either the generators A or the generators A', and where H is
the product of at most 2N(m +fr'(m)) conjugates of relations obtained by gathering
the products at the right after each stage of the argument

Finally, by the definition of the Dehn function of (A 7?.), we may write W as
a product of at most fr'(n) conjugates of relations from 7?. or 7?.' Thus w can be
expressed in the free group on AU A' as a product of at mostfr'(n) + 2N(m +fr'(m))
conjugates of relators. By definition, fr' is non-decreasing, n -< 8(n), N < n, and
m = + n + 8(n). Thus'the theorem is proved.

In the light of 6.19(1), the following proposition shows that if F is hyperbolic
then the distortion in F of any infinite, finitely generated, subgroup of infinite index
is actually k'1, where k > 1. (Recall that k'1 for any constant k > 1.)

6.21 Proposition. Let F be a hyperbolic group and let N C F be afinitely generated
normal subgroup. Suppose that N and F/N are both infinite. Then there exists a
constant k> 1 such that > k". (The value of k depends on the choice of word
metric, but its existence does not.)

Proof Let A be a generating set for N and extend this to a generating set A U B
for F We also regard B as a generating set for F/N. Let C be the Cayley graph
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of f with respect to the generators A U B and let C be the Cayley graph of IT/N
with respect to the generators B. There is a unique way to extend the quotient map
IT —* IT/N to a map C C that sends directed edges labelled by each b E B
isometrically onto edges labelled b and collapses edges labelled a E A. Note that
d(,r(x), ir(y)) <d(x, y) for all x, y E C.

Assume a E A c N is an element of infinite order n F—+ a'1 is a quasi-geodesic
(3.10), hence there exists an integer X > 0 such that d(1, 41r1 for all r E Z.
Moreover, since (a) is quasiconvex (3.6), there exists a constant K > 0 such that
for every r E Z and y E IT, any geodesic in C joining y to yar must lie in the
K-neighbourhood of the edge-path labelled a' that begins at the vertex y.

For each integer n > K we choose a geodesic edge path of length n beginning at
1 E C. Let u,1 be the word in the letters that labels this path. Let w,1 be a word
of minimal length in the generators A that is equal to in IT Our goal is to
show that the length of w,1 is bounded below by an exponential function of n. Since

is a word of length n(2 + X), this will prove the proposition.
We fix a geodesic segment in C joining U,1 E IT to Ufla E IT, let m be the midpoint

of this segment. In the light of (H.1.16), we will be done if we can show thai the
edge-path in C that begins at u,1 E IT and is labelled lies outside the ball of
radius (n — K) about m (see figure P.13). For the subpaths labelled u,1 and this
is clear, because they have length n and they have an endpoint a distance at least 2n
from m. And the subpath labelled w,, is sent by to 1 E C, whereas the geodesic
containing m is send to a point a distance at most K from u,1 E C. Since does not
increase distances, the arc labelled must lie entirely outside the ball of radius
(n—K) about m.

Hyperbolic Surface Bundles. There are many hyperbolic 3-manifolds which fibre
over the circle with compact fibre (see [0t96]), indeed Bill Thurston conjectured
that every closed hyperbolic 3-manifold has a finite-sheeted covering that fibres in
this way [Thu82]. If M3 admits such a fibration then from the long exact sequence
of the fibration we get a short exact sequence 1 —+ S —+ —* Z —* 1, where S
is the fundamental group of the surface fibre. The previous proposition shows that
the distortion of S in is exponential, so as a consequence of (6.20) we have:

6.22 Corollary. Let M3 be a hyperbolic 3-man that fibres over the circle with
compactfibre E and let S = The Dehn function of 5) is 211.

Similar arguments apply to hyperbolic knot complements that fibre over the circle,
and to free-by-cyclic hyperbolic groups, examples of which are given by [BesF92].



7. Finite-Sheeted Coverings and ResiduaL Finiteness

In this section we shall explain how to construct compact non-positively curved
spaces that have no non-trivial, connected, finite-sheeted coverings. We shall also
construct groups which act properly and cocompactly by isometnes on CAT(O) spaces
but contain no torsion-free subgroups of finite index

Residual Finiteness

A connected, locally simply-connected space X has no non-tnvial, connected, finite-
sheeted covenngs if and only if has no non-trivial finite quotients65. Thus as a
first step towards trying to build spaces with no connected, non-trivial, finite-sheeted
coverings, we look for spaces whose fundamental groups do not satisfy the following
condition.

7.1 Definition (Residual Finiteness). A group G is residually finite if for every
g E G {1} there is a finite group Q and an epimorphism 0 : G —+ Q such that
0(g) 1. Equivalently, the intersection of all subgroups of finite index in G is { I }.

Let X be a connected complex and suppose that is residually finite. The
topological content of residual finiteness is that given any homotopically non-trivial

If G is a group and H C G is a subgroup of finite index, then there is a subgroup of finite
index N C H that is normal in G

N
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Fig. L13 Normal subgroups are exponentially distorted
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loop in X, there is a connected finite-sheeted covering of X to which this ioop does
not lift. And the reformulation of residual finiteness given in the second sentence of
the above definition implies that if jr1X is residually finite then the universal covering
of X is the inverse limit of a sequence of finite-sheeted coverings. (If X is compact
and 7r1X is infinite, then this can be useful because the finite-sheeted coverings are
compact whereas the universal cover is not.)

The fundamental groups of the most classical examples of non-positively curved
spaces, quotients of symmetric spaces of non-compact type, are residually finite. In
the light of this, it may seem natural to ask whether the fundamental group of every
compact non-positively curved space is residually finite. However, in the classical
setting residual finiteness appears as an artifact of lineanty rather than considerations
of curvature per se the fundamental groups in question can be realised as groups
of matrices, and a theorem of Mal'cev [Ma1401 shows that every finitely generated
linear group is residually finite.

Dani Wise produced the first examples of compact non-positively curved spaces
whose fundamental groups are not residually finite EWi96a]. Some of the groups
he constructed have no non-trivial finite quotients. Subsequently, Burger and Mozes
[BuM97] constructed compact non-positively curved 2-complexes whose fundamen-
tal groups are simple. The situation for negatively curved spaces is less clear it is
known that hyperbolic groups are never simple [Gro87J, [0195], but it is unknown
whether they are always residually finite.

In the following statement the term non-trivial is used to mean that a covering
Z —+ Z is connected and Z Z is not a homeomorphism.

7.2 Embedding Theorem. Every compact, connected, non-positively curved space
X admits an isometric embedding into a compact, connected, non-positively curved
space X such that has no non-trivialfinite-sheeted coverings. If X is a polyhedral
complex of dimension n > 2, then one can arrange forX to be a complex of the same
dimension

We shall give a self-contained proof of this theorem, following EBri98a]. The
main work goes into the construction of a compact non-positively curved 2-complex
K whose fundamental group has no finite quotients (7.9). With K in hand, the proof
of (7.2) becomes straightforward.

Proof Choose a finite set of generators Yi YN for where no = 1, and
let . . , be closed local geodesics in X representing the conjugacy classes of
these elements. Lemma 7.9 (alternatively [Wi96aJ or [BuM97]) gives a compact non-
positively curved 2-complex K whose fundamental group has no finite quotients; fix
a closed local geodesic c0 in K. Take N copies of K and scale the metric on the i-th
copy so that the length of co in the scaled metric is equal to the length 1(c1) of c, then
glue the N copies of K to X using cylinders 5, x [0, U where S is a circle of length
1(c1); the ends of S, x [0, U] are attached by arc length parameterizations of co and c•
respectively (cf. 11.11.17) Call the resulting space X.
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(11.11.13) assures us that Xis non-posilively curved. Moreover, if the length L of
the gluing tubes is sufficieniiy large, then the natural embedding X X will be an
isometry. The Seifert-van Kampen Theorem describes the fundamental group of X:
it is an iterated amalgamated free product; one first amalgamates and 7r1K by
identifying (Yi) C 7r1X with an infinite cyclic subgroup C c 7r1K represented by the
closed local geodesic c0; the result of this first amalgamation is then amalgamated
with a further copy of 7rjK, identifying (Y2) C X with the copy of C in this second
7r1K, and so on. The key point to note is that 7r1X is generated by the N (obvious)
copies of K that it contains, and since each of these copies of jr1K must have trivial
image under any homomorphism from 7r1X to a finite group, has no non-trivial
finite quotients. D

By using equivanant gluing (11.11.19) instead of local gluing (11.11.13), one can
extend the above result as follows

7.3 Theorem. If a group F acts properly and cocompacily by isometries on a CAT(0)
space Y then one can embed F in a group F that acts properly and cocompactly by
isometries on a CAT(0) space Y and has no proper subgroups of finite index. If Y is
a polyhedral complex of dimension n 2 then so is Y

If the group F in (7.3) is not torsion-free, then F will be a semihyperbolic group
that does not contain a torsion-free subgroup of finite index, and the complex of
groups associated to the action of F on Y will be a finite, non-positively curved,
complex of finite groups that is not covered (in the sense of Section C.5) by any
compact polyhedron (i.e. a complex of groups whose local groups are trivial) An
explicit example of such a group is given in (7.10).

The Hopf Property

An effective way of showing that certain finitely generated groups are not residually
finite is to exhibit an isomorphism between the given group and one of its proper
quotients.

7.4 Definition (Hopfian). A group H is said to be Hopfian if every epimorphism
H —+ H is an isomorphism. In other words, if N C H is normal and H/N H then

7.5 Proposition. If afinitely generated group is residually finite then it is Hopfian.

Proof Let G be a finitely generated group and suppose that there is an epimorphism
G —÷ G with non-trivial kernel. We fix go '... (1} and for every n> Owe

choose g,1 E G such that =
If there were a finite group Q and a homomorphism p G Q such that

1, then all of the maps p/Y' would be distinct, because 1

1 if m > n. But there are only finitely many homomorphisms from
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any finitely generated group to any finite group (because the image of the generators
determines the map). 0

The Hopf property is named in honour of H. Hopf. It arose in connection with his
investigations into the problem of deciding when degree one maps between closed
manifolds give rise to homotopy equivalences. Zlil Sela [Sel99] has shown that if
a torsion-free hyperbolic group does not decompose as a free-product, then it is
Hopfian In particular this shows that the fundamental groups of closed negatively
curved manifolds are Hopfian.

7.6 Examples. The following group was discovered by Baumslag and Solitar
[BSo62!:

BS(2, 3) = (a, I f1a2t = a3).

The map a a2, I I is onto; a is in the image because a = a3a2 =
However this map is not an isomorphism: [a, 11at! is a non-trivial element of the
kernel. Meier [Me82! noticed that the salient features of this example are present
in many other HNN extensions of abelian groups. Some of these groups were later
studied by Wise [Wi96b], among them

T(n) = (a, b,
I
[a, b! = 1, = (ab)", btb =

which is the fundamental group of the compact non-positively curved 2-complex
X(n) described in (6.9). If n > 2 then certain commutators, for example go =

frJ, lie in the kernel of the epimorphism T(n) —'+ T(n) given by a
a", b b", tb. Britton's Lemma (6.4) implies that I in T(n).
The proof of (7.5) shows that g0 has trivia! image in every finite quotient of T(n).

Groups Without Finite Quotients

In this subsection we describe a technique for promoting the absence of residual
finiteness to the absence of subgroups of finite index.

7.7 Proposition. Let be a class of groups that is closed under the formation of
HNN extensions and amalgamated free products along finitely generatedfree groups.

E is finitely generated, then it can be embedded in afinitely generated group
G E that has no proper subgroups offinite index

The following proof is not the most direct possible. It is chosen specifically so
that each step can be replicated in the context of compact non-positive!y curved
2-complexes (Lemma 7.9). In [Bri98a] this construction is used to prove other con-
trolled embedding theorems. A similar construction was also used in [Wi96a].

Proof We may assume that G contains an element of infinite order go G whose
image in every finite quotient of G is trivial, for if itis does not then we can replace it
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with G*BS(2, 3) E by forming G*{!} G* (a) and then taking an HNN extension
by a stable letter t conjugating a2 to a3. We may also assume that G is generated by
elements of infinite order, because if {b1, , b,1 } generates G then {a. t, tb1, . tb,1)

generates G * BS(2, 3), and the natural retraction G * BS(2, 3) BS(2, 3) sends lb1
to t, which has infinite order in BS(2, 3)

Let A (a1. . . , a,) be a generating set for G where each a1 has infinite order.

Step / We take an HNN extension of G with n stable

E1 = (G,s1, ,s,1 =gg, 1=1 n),

where the p1 are any non-zero integers. Now, since each a1 is conjugate to a power of
go in E1, the only generators of E1 that can survive in any finite quotient are the Si.
However, since there is an obvious retraction of E1 onto the free subgroup generated
by the Si, the group E1 still has plenty of finite quotients.

Step 2 We repeat the extension process, this time introducing stable letters to
make the generators conjugate to go:

E2 = (E1, Ti T,1 = I 1, . . n).

Step 3: We add a single stable letter a that conjugates the free subgroup of E2
generated by the 5, to the free subgroup of E2 generated by the r,:

E1 = (E2, a a1s1a = i = I n).

At this stage we have a group in which all of the generators except a are conjugate
to go In particular, every finite quotient of E3 is cyclic.

Step 4. Because no power of a1 lies in either of the subgroups of E2 generated
by the .s, or the T1, the normal form theorem for HNN extensions (6.4) implies that
{a1, a} freely generates a free subgroup of E3.

We define G to be an amalgamated free product of two copies of E3,

G = E3 *F E3,

where F = F(x, y) is a free group of rank two; the inclusion of F into E3 is x a1

andy a, and the inclusion into E3 is x and y äj All of the generators
of G are conjugate to a power of either go or and therefore cannot survive in any
finite quotient. In other words, G has no finite quotients. 0

Complexes With No Non-Trivial Finite-Sheeted Coverings

In (7 2) we reduced the Embedding Theorem to the claim that there exist compact
non-positively curved 2-complexes whose fundamental groups have no non-trivial
finite quotients We shall construct such a complex by following the scheme of the
proof of (7.7), but first we must condition our complexes in the following manner.

Recall that a closed local geodesic in a metric space is a local isometry from a
circle to the space.
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free group generated by (YI y,,}. As generating set for ir1(K. x0) we choose
(h,y1. h,y,2

I
i = I n}.

The concatenation of any non-trivial locally geodesic loop in X, based at x0, and
any non-trivial Locally geodesic loop in A based at v0 is a closed local geodesic in K.
Thus f3,e, and are closed local geodesics in K: the former has length 2 and
the latter has length 3; the former represents h1y, and the latter represents U

The following lemma completes the proof of The Embedding Theorem (7.2).

7.9 Lemma. There exists a cmnpact. connected, non—positive/v caned. 2-complex
wiwse /u,idwiieiiial group has nofmite

Proof. Let X be a compact, connected, non-positively curved. 2-complex whose
fundamental group is not residually finite (for example one of the complexes X(ii) in

(7.6)). Let E jr1X be an element whose image in every finite quotient is trivial. Let
K be the 2-complex obtained by applying the construction of the preceding lemma.
and let g of that lemma.

We shall mimic the proof of Proposition 7.7 with ir1 (K. in the role of Ci At each
stage we shall state what the fundamental group of the complex being constructed
is: in each case this is a simple application of the Seifert-van Kampen theorem.

Let Co be the closed local geodesic of length I representing Let (a,
be the generators given by 7.7(l). let a, be the closed local geodesic through x0 that
represents a,. and suppose that a, has length A. For each 1, we glue to K a cylinder
SA, x 10. II, where is a circle of length A, with hasepoint u,; one end of the
cylinder is attached to a, and the other end wraps A-times around and v, x (0. I}
is attached to Let K1 be the resulting complex. In the notation of (7.7) we have
r,(K1, xo) = E,. Moreover K, is non-positively curved (11.1 1.6).

The images in K1 of the paths t', x 10. II give an isometric embedding into K, of
the metric graph Y that one vertex and n edges of length I : call the corresponding
free subgroup F, C E, (it is the subgroup generated by the s, in (7.7)).

Step 2 of (7.7) is achieved by attaching n cylinders of unit circumference and
length to K1, the ends of the i-th cylinder being identified to and to the image
of t, x [0. II. The resulting complex K2 has = E2. As in the previous
step, the free subgroup F2 C E2 generated by the basic loops that run along the new
cylinders the 1r1-image of an isometric embedding Y K2 (it is the subgroup
generated by the r, in (7.7)).

To achieve Step 3 of(7.7). we now glue Y x [0. LI to K2 by attaching the ends ac-
cording to the isometric cinbeddings that realise the embeddings F,. F2 C v0).

This gives us a compact non-positively curved complex with fundamental group
(in the notation of(7.7)). Let ,' be the vertex of Y, observe that v x (0, L) is attached

to E and let a E xo) he the homotopy class of the loop 10. LI
given (t',i).

We left open the choice of L. the length of the mapping cylinder in Step 3. we now
specify that it should be A,. the length of the geodesic representing the generator a1.
An important point to observe is that the angle at v0 between the image of p x [0. LI
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and any path in K1 C is Thus the free subgroup (a1, a) is the 7r1-image in
ui (K3, of an isometry from the metric graph Z with one vertex (sent to x0) and
two edges of length L = A1 (cf. 6.15) In fact, we have two such isometries Z K3,

corresponding to the free choice of which edge of Z to send to the image of v x [0, LI.
We use these two maps to realise Step 4 of the construction on (7.7), appealing to
(6.14) to see that the resulting 2-complex is non-positively curved. 0

7.10 A Semihyperbolic Group That Is Not Virtually Torsion-Free. We close this
section with an explicit example to illustrate the remark that we made following
Theorem 7.3. This example is essentially contained in Wise's thesis [Wis96a].

In the hyperbolic plane we consider a regular geodesic quadrilateral Q with vertex
angles 7r/4. Let a and $ be hyperbolic isometries that identify the opposite sides of
Q. Then Q is a fundamental domain for the action of F (a, $). The commutator
[a, $1, acts as a rotation through an angle ur at one vertex of Q, and away from the
orbit of this vertex the action of F is free. Thus the quotient orbifold V F\1H12 is a

torus with one singular point, and at that singular point the local group is Z2
Let X(n) and T(n) be as in (7.6), let g0 be a non-trivial element in the kernel

of a self-surjection T(n) —* T(n) and consider the amalgamated free product G =
T(n) I' in which go is identified with Note that since go has trivial image in
every finite quotient of T(n), the commutator [a, = [a, go], which has order two,
has trivial image in every finite quotient of G.

The equivariant gluing described in (11.11.19) yields a proper cocompact action
of G by isometries on a CAT(0) space. The quotient space Y can be described as
follows: scale the metric on X(n) so that the closed local geodesic c representing go
has length 1 = = then glue X(n) to V using a tube S, x [0, 1] one end of
which is glued to c and the other end of which is glued to the image in V of the axis
of $. When viewed as a complex of groups, Y has only one non-trivial local group,
namely the Z2 at the singular point of V.

In the case n = 2, if we choose as in (7.6), then G can be presented as follows:

=[s(ab)s',b], = 1, =sas =(ab)2)
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Roughly speaking, complexes of gmups were introduced to describe actions of groups
on simply connected simplicial complexes in terms of suitable local data on the
quotient. They are natural generalizations of the concept of graphs of groups due to
Bass and Serre. A technical problem arises from the fact the quotient of a simplicial
complex by a simplicial group action will not be a simplicial complex in general.
Indeed, even if the set-wise stabilizer of each simplex is equal to its point-wise
stabilizer, faces of a given simplex might get identified. (For example, regard the
real line as a one-dimensional complex with vertices at the integers and consider the
action of Z by translations.) Because of this problem, it is more natural to work with
polyhedral complexes.

To describe a polyhedral complex K combinatorially, it is natural to take its first
barycentric subdivision K' and view it as the geometric realization of the nerve of
a category whose objects are the barycentres of cells of K and whose non-trivial
morphisms correspond to the edges of K'. Such a category is a particular case of
what we call a small category without loops (scwol). The geometric realization of
a category without loops is like a simplicial complex, but the intersection of two
distinct simplices may contain more than a common face Small categories without
loops serve as combinatorial descriptions of polyhedral complexes.

In the first section of this chapter we introduce scwols and their geometric real-
izations, and we define what it means for a group to act on a scwol. The reader in a
hurry may wish to read only the definitions (1.1), (1 5) and (111) and then proceed
to the next section

In the second section we give the basic definitions of a complex of groups G(Y)
overa scwol )) and of morphisms of complexes of groups Associated to each action
(in a suitable sense) of a group Gon ascwol X there is a complex of groups G(Y) over
the quotient scwol)) = G\X. The construction of G(Y) depends on some choices
but it is unique up to isomorphism A complex of groups that arises in this way is
called developable In contrast to the case of graphs of groups, in general a complex
of groups G(Y) does not arise from an action of a group when the dimension of)) is
bigger than one. We give a quick proof of the developability of complex of groups
over scwols of dimension one (a result due to Bass and Serre E5er77]).

The fundamental group G of a complex of groups Go) is defined in the third
section and a presentation of this group is given. In the case of a developable complex
of groups Go), it is possible to construct a simply connected category without loops
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X and an action of the fundamental group G on X so that G(Y) is the complex of
groups associated to this action.

Every complex of groups is locally developable; this is explained in the fourth sec-
tion where the local development is constructed explicitly; thus non-developability is
a global phenomenon. In the next chapter we shall prove that if a complex of groups
carries a metric of non-positive curvature, then it is always developable.

The theory of coverings of complexes of groups is explained in the last section.
It should be compared to the theory of coverings of graphs of groups in the sense of
Bass IBass93I.

It turns out that many concepts such as morphisms of complexes of groups,
coverings of complexes of groups, and so on, become more natural if we interpret
them in the framework of category theory. For this reason we recall in an appendix
the basic notions of small category, the fundamental group of such a category and
coverings. We hope that this will help the reader to realize that many complicated
formulas displayed elsewhere in this chapter are simply explicit descriptions of
elementary concepts.

Our treatment of complexes of groups is very similar to the combinatorial ap-
proach of Bass-Serre to graphs of groups. A special case of complexes of groups,
triangles of groups, was first studied by Gersten and Stallings ESta9l]. They proved
the developability theorem for non-positively curved triangles of groups. The general
case of complexes of groups was considered by Haefliger [Hae9 and (in dimension
2) independently by J.Corson ICors92J.

There is one important aspect of the theory of complexes of groups that we have
neglected here, namely the construction of their geometric realizations and their
relationship to complexes of spaces. This interpretation is useful for topological
and homological considerations. For this aspect of the theory we refer the reader to
[Hae9 1,92], [Cor92] and, in the case of graphs of groups, to ESc0W79].

1. Small Categories Without Loops (scwols)

Small categories without loops (abbreviated scwol) are algebraic objects which can
serve as combinatorial substitutes for polyhedral complexes. Canonically associated
to each polyhedral complex K there is a scwol X whose set of vertices is in bijection
with the set of cells of K. The geometric realization of X is a cell complex isomorphic
to the first barycentric subdivision of K. In this section we first give the basic def-
initions of scwols, their geometnc realizations, and morphisms between them. The
notions of fundamental group and covering for scwols are then introduced; these
correspond to the usual topological notions for their geometric realizations. We also
define what it means for a group G to act on a scwol X; when X is associated to
a polyhedral complex K, actions of G on X correspond to actions of G on K by
homeomorphisms that preserve the affine structure of the cells and are such that if
an element of G maps a cell to itself, then it fixes this cell pointwise. At the end we
analyse the local structure of scwols (this will be needed in sections 4 and 5).
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Scwols and Their Geometric Realizations

1.1 Definitions. A small category without loops X (briefly a scwol)66 is a set X
which is the disjoint union of a set V(X), called the vertex set of X (the elements of
which will be denoted by Greek letters r, a, p, .), and a set E(X), called the set
of edges of X (the elements of which will be denoted by Latin letters a, b, c, ...).
Two maps are given

1: E(X) V(X) and 1: E(X)

i(a) is called the initial vertex of a E E(X) and 1(a) is called the terminal vertex of a.
Let denote the set of pairs (a, b) E E(X) x E(X) such that i(a) = 1(b)

A third map
E(X)

is given that associates to each pair (a, b) an edge ab called their composilion67.
These maps are required to satisfy the following conditions:

(1) for all (a, b) E we have i(ab) = i(b) and 1(ab) = 1(a);

(2) associativily: for all a, b, c E E(X), if 1(a) = 1(b) and i(b) 1(c), then (ab)c =
a(bc) (thus the composition may be denoted abc);

(3) no loops condition: for each a E E(X), we have 1(a) 1(a).

If we exchange the roles of i and 1, we get the opposile scwol.
Consider the equivalence relation on V(X) generated by r a if there is an

edge a such that 1(a) = a and 1(a) = r. The scwol X is connected if there is only
one equivalence class.

A subscwol X' of a scwol X is given by subsets V(X') c V(X) and E(X')
E(X) such that if a E E(X'), then i(a), 1(a) E V(X'), and if a, b E E(X') are such
that i(a) 1(b), then ab E E(X'). Every scwol X is the disjoint union of connected
subscwols, called its connected components.

We can consider X as the set of arrows of a small category 68 with set of objects
V(X): each vertex a is identified to a unit element and we define = t(lg)
a, each edge corresponds to an element of X which is not a unit. When we view X
in this way, unspecified elements of X will be denoted by Greek letters a, $, .. ; an
element a E X is either an edge a or the unit identified to an object a. A subscwol
corresponds to a subcategory.

1.2 Examples
(1) To any poset Q we can associate a scwol as follows. The set of vertices is Q

and the edges are pairs (r, a) E Q x Q such that r < a; the initial (resp. terminal)

In [Hae92] a scwol (or rather its geometric realization) was called an ordered simplicial cell
complex
If (a, b) E one says that a and b are composable One thinks of ab as "a following
b"
See the appendix for basic definitions concerning categories
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vertex of the edge (r, a) is a (resp. r); the composition (r, a)(a, p) is defined to be
(r, p).

(2) Product of scwols. Given two scwols X and X', their product X x X', is the
scwol defined as follows- V(X x X') := V(X) x

E(X x X') (E(X) x V(X')) 11Ex x E(X')) 11wx x E(X'))

The maps i, t X x X' V(X) x V(X') are defined by i((a, a')) = (1(a), i(a'))
and t((a, a')) = (1(a), t(a')), and the composition (a, a')($, $'), whenever defined,

is equal to (crn, a'$'). This is a particular case of the product of two small categories
(see A.2(2))

Notations For each integer k > 0, let be the set of sequences (a1,.. , at.)

of composable edges (a1, a1+i) E for i = I k I. By convention
= V(X). The dimension k of X is the supremum of the integers k 0 such

that is non empty.

1.3 The Geometric Realization. For an integer k > 0, let be the standard k-
simplex, i.e. the set of points 1k) E R'1' such that 1, > 0 and 1, =
Recall that the 1, are the barycentric coordinates in &

We shall define the geometric realization I X
I
of X as a polyhedral complex whose

cells of dimension k are standard k-simplices indexed by the elements of
Fork > I and i = 0 k, let 8, . be the maps defined by

ak) = (a2, .. ,ak)

ak) = (a1, . . , at.) I < i < k

ak) (al ak_I).

For k = 1, we define = i(a1) and = 1(aj). The following relations

follow from the associativity axiom 1.1(2):

(1 3-1) = j <j.

We also define maps

fori=0,. .,k.

By definition d sends E 'to . t_ 0, 1, j) E
Thus 1)

is the face of consisting of points (to, .. , 1g.) such that = 0. More
generally, the face of codimension r defined by i, = ... 0, i1 > > 15

the subset d1 .

We have the obvious relations:

(1.3-2)
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The Construction of the Geometric Realization
On the disjoint union

x {A},

where k> 0 and A E we consider the equivalence relation generated by

(d1(x),A) (x, 81(A)),

where (x, A) E x We define the geometric realization of X, to be
the quotient by this equivalence relation, it is a piecewise Euclidean complex whose
k-cells are isometric to The simplex x {A} maps injectively to the quotient
(see exercise below) and its image will be called the k-simplex of IXI labelled by A,

or simply "the k-simplex A" Thus the letters denoting elements of V(X) and E(X)
will also be used to denote the corresponding vertices (0-simplices) and 1-simplices
of XI. If A = (a1, .. at.), we call i(ak) the initial vertex of A.

1.3.3 Remarks

(1) Note that in general the intersection of two simplices in lxi is not a common
face, rather it is a union of faces

(2) In general we consider as a piecewise Euclidean complex with the topol-
ogy associated to its intrinsic metnc Later we shall identify each simplex x {A}

to a simplex in some M in such a way that the inclusions (x, 8,A) -÷ (d,(x), A) are
isometries, thus metrizing lxi as a MK-polyhedral complex. If the set of isometry
types of simplices is finite, then the topology associated to this new metric is the
same as the topology defined above.

(3) The geometric realization of the scwol associated to a poset Q is the same
as the geometric (or affine) realization of Q as defined in (11.123) The geometric
realization of the product of two scwols is homeomorphic to the product of their
geometric realizations.

(4) The dimension of X is equal to the dimension of its geometric realization.
As observed above, the 1-simplices of XI correspond bijectively to the edges of
X; they inherit an orientation from this correspondence If one follows an edge path
consisting of I -simplices in the direction of the given orientations, one never gets a
closed circuit. The set of vertices of a k-simplex is ordered

I 3.4 Exercise. We use the notations of 1.3. Prove that the map An associating to
(x,A) E x its equivalence class in is injective on x {A}.

(Hint Suppose that x E is contained in the interior of a face of codimension
r defined by t11 0, > i be the unique point of
such that d1 . = x and let A = 81,(A). Using the relations 1.3-1 and
1.3-2, show that (i,A) is the unique representative of (x,A) in x
This implies that the restriction of An to{(x,A) XE interior of is injective. The
injectivity of follows from 1.1(3)
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1.4 Examples
(1) If X is connected and 1-dimensional, its geometric realization is a connected

graph with two kinds of vertices: sources are initial vertices of edges and sinks are
terminal vertices of edges. This graph is bipartite and oriented. There are no edge
loops, but it is possible to have several edges connecting a given source to a given
sink.

/UO

0

a'

Fig. C.2 A scwol of dimension one

(2) Naturally associated to any MK-polyhedral complex K there is scwol X whose
geometric realization is the first barycentric subdivision of K. The set of vertices V(X)
of X is the set of cells of K (equivalently the set of barycentres of the cells of K). The
edges of X are the 1 -simplices of the barycentric subdivision K' of K: each 1-simplex
a of K' corresponds to a pair of cells T C S; we define i(a) to be the barycentre of S
and t(a) to be the barycentre of T.

A connected, one-dimensional scwol X is associated to a 1-dimensional polyhe-
dral complex (i.e. a graph) if and only if each vertex of X which is a source is the
initial vertex of exactly two edges.

Fig. C.1 The geometric realization of a scwol of dimension 2
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V(Y) = {p,a,T}
E(Y)={ai,a2,bi,b2,b3,ci,c2,c3}

(elements with the same
label should be identified)

Fig. C.4 The scwol associated to two congruent n-gons glued along their boundary

(3) Figure C.4 shows the scwol X associated to the polyhedral complex obtained
by gluing two congruent n-gons in along their boundary. There are n vertices
tk corresponding to the vertices of the polygons, n vertices crk corresponding to the
barycentres of the sides and two vertices p and p' corresponding to the barycentres
of the two polygons. There are 6n edges, ak, a'k, bk, ck, C'k with k = 1

and i(bk) = i(ck) = p. = = p', t(bk) = = = t(c'k)
i(ak) = = 0k and t(ak) = tk, = tkl mod n. We have ck = akbk

a2

cT0

a1

a2

Fig. C.3 The scwol associated to the dunce hat (cf. 1.7.41(2))

ak
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1.5 Morphisms of Scwols. Let X and Y be two scwols A non-degenerate morphism
f: X —* Y is a map that sends V(X) to V(y), sends E(X) to E(Y) and is such that

(1) for each a E E(X), we have i(f(a)) =f(i(a)) and t(f(a)) =f(t(a)),

(2) for each (a, b) E we have f(ab) =f(a)f (b), and

(3) for each vertex a E V(X), the restriction of f to the set of edges with initial
vertex a is a bijection onto the set of edges of Y with initial vertexf(a).

More generally, a morphismf : X —* Y is a functor from the category X to the
category Y (see Al). An automorphism of X is a morphism from X to X that has
an inverse, i.e. a functorf' : X —* X such thatf 'f = is the identity of X.

A morphismf X Y induces a map Lfl : lxi Yi of the geometric
realizations: [fl maps each vertex a of lxi to the vertexf(a) of IYI and its restriction
to each simplex of lxi is affine. In the particular case wheref maps E(X) to
(for instance whenf is non-degenerate), If I maps a point of the k-simplex of IXI
labelled (ai ak) to the point in the simplex of IY1 labelled (f(ai ) f(ak)) that
has the same barycentric coordinates. 1ff is an isomorphism, then [fl is an isometry.

If X and Y are associated to polyhedral complexes K and L, then a morphism
f: x Y is non-degenerate if and only the restriction of Ill to the interior of each
cell of K is a homeomorphism onto the interior of a cell of L.

The Fundamental Group and Coverings

1.6 Edge Paths. Let x be a scwol. Let be the set of symbols
a E E(X) The elements e of E±(x) can be considered as oriented edges of

x For e = a+, we define i(e) = t(a), t(e) = i(a) and e1 = a; for e = a, we
define i(e) = 1(a), t(e) = t(a) and = a path in

a the vertex a sequence c = (ei,. . , e,<) of elements of
such that i(ei) = a, t(e,) = i < k — 1, and t(ek) = r. We call

a (resp r) the initial vertex i(c) of c (resp. the terminal vertex t(c) of c). If a =
we allow k to be 0, giving the constant path at a. Note that x is connected if and
only if for any a, t V(x), there is a path joining a to r. If c' (e'1, .. e',<,) is

a path in x joining a' = r to r', then one can compose c and c' to obtain the path
c * c' = (el,.. , e'1 e'k) joining to r', called the concatenation of c and
c'. Note that this concatenation operation is associative. The inverse of the path c is
defined to be the path = (es, . . , joining r to a, where eJ =

If i(c) = t(c) = a, then c is called a loop at o.

1.7 Homotopy of Edge Paths. Let c = (ei ek) be an edge path in xjoining
to r Consider the following two operations on c:

(i) Assume that for somej < k, we have ej = Then we get a new path c' by
deleting from c the subsequence

(ii) Assumethatforsomej < k,wehavee, = a+, = b+ (resp = b, ej+j =
a), and therefore the composition ab is defined; we get a new path c' in x by
replacing the subsequence of c by (resp. (abfl.
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Under the circumstances of (i) or (ii), we say that c and c' are obtained from
each other by an elementary homotopy (thus implicitly allowing the inverses of
operations (i) and (ii)). Two paths joining a to r are said to be homotopic if one can
pass from the first to the second by a sequence of elementary homotopies (cf. I.8A
and A. 11). The set of homotopy classes of edge paths in X joining a to r is denoted
jri(X, a, r). The set jri(X, a, a) will also be denoted jri(X, o).

Note that the path c * c is homotopic to the constant path at a and that c_l * c is
homotopic to the constant path at r. The homotopy class of the concatenation c * C'
of two paths depends only on the homotopy classes of c and c'.

1.8 Definition of the Fundamental Group. Let X be a connected scwol and let
a E V(X). The set jri(X, ao) of homotopy classes of edge loops at ao, with the law
of composition induced by concatenation, is a group called the fundamental group
of X at ao.

If c is an edge path in Xjoining to r, then the map that associates to each loop
tat a the loop * / * cat r induces an isomorphism ofjri(X, a) onto jr1(X, r) A
scwol X is said to be simply connected if it is connected and Jr1 (X, a) is the trivial
group for some (hence all) a E V(X).

It is a classical fact that there is a natural isomorphism from Jr1 (X, ao) to
Jr(IXI,oo)[Mass911.

1.9 Definition of a Covering. Let X be a connected scwol and let X' be a (non-empty)
scwol. A morphism p: X' X is called a covering of X if, for every o' E V(X'),
p sends the set (a' E E(X')I t(a') = a'} bijectively onto (a E E(X)I t(a) = p(a')}
and sends the set {a' E E(X')Ii(a') =a'} bijectively onto (a E i(a) = p(o')}.
If p: X' —* X is a covering then one says that X' covers X.

Remarks
(1) Note that the geometric realization : X'I IXI of p is a topological

covering. If X' covers X and X is a scwol associated to a poset, then X' is also
associated to a poset. The converse is not true in general.

(2) Let p : X be a covering. An edge path c' (e'1,.., e'k) in X' with
i(c) = a' is called a lifting at a' of the path c =p(c') = (ej,.. , ek) if e1 =
(where, by definition, = if a' E E(X')). It follows immediately from
the definition of a covering that if p(a') = a, then any edge path in X issuing from a
can be lifted uniquely to an edge path in X' atIn particular, as X is assumed to be
connected, p is surjective. Moreover if two edge paths c', in X' issuing from o' are
mapped by p to homotopic edge paths, then c'1 and c'2 are also homotopic. Therefore
the map associating to the homotopy class of an edge loop c' at a' the homotopy class
of its image underp induces an injective homomorphism jri(X', a') —* jrj(X, a).

(3) If X is not connected, it is reasonable to define a morphism p : X' X to

be a covenng if p is surjective and if, for each connected component 24 of X, the
restriction of p top' (24) is a covering of X0 as defined above.
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1.10 Construction of a Simply Connected Covering. Let X be a connected scwol
and let a0be a base vertex We construct a simply connected scwol X and a covering
map p: X —* X as follows. The set of vertices V(X) of X is the set of pairs (a, [c]),
where a E V(X)and [cJ is the homotopy class of an edge path c in X that joins cro
to o. The set E(X) consists of pairs (a, [cJ) where a E E(X) and [c] is the homotopy
class of an edge path c joining cr0 to i(a). The initial vertex of the edge (a, [cJ) is
(1(a), [cJ) and its terminal vertex is (t(a), [c * a J); the image under p of (a, [c]) is
a. The composition (a, [c])(a', [c']) is defined if [c] = [c' * d], in which case it is
(aa', [c']). It is clear that p is a morphism which is a covering. For instance, if [ci and
a are such that t(c) = t(a), then (a, [c * at]) is the unique edge of X with terminal
vertex (t(a), [c]) that is sent by p to a. It is clear that X is connected To see that X
is simply connected, consider ö0 = (°o. [coJ) E V(X), where [c0] is the homotopy
class of the trivial loop at ao; the lifting at of an edge loop c in X based at cr0 will
be an edge loop if and only if the homotopy class of [C] is trivial.

Group Actions on Scwols

1.11 Definition. An action of a group G on a scwol X is a homomorphism from
G to the group of automorphisms of X such that the following two conditions are
satisfied:

(1) for all a E E(X) and g E G, we have g.i(a)

(2) for all g E G and a E E(X), if g.i(a) = i(a) then g.a a.

(Here g.a denotes the image of a E X under the automorphism of X associated to
g E G; thus condition (2) means that the stabilizer of i(a) is contained in the stabilizer
of a.)

1.12 Remarks
(a) Condition (1) is automatically satisfied if X is finite dimensional. It is not

satisfied, for example, if X is the category associated to the poset 7L with its natural
ordering and G is the infinite cyclic group whose generator maps n to n + I.

(b) The induced action on IXI. The action of G on X induces an action of G
by isometries of the geometric realization IXI in the obvious way; the isometry
induced by g E G is denoted gi. Geometrically, condition (2) in the above definition
means that if fixes a vertex o, then it fixes (pointwise) the union of the simplices
corresponding to composable sequences (ai,.. , with i(ak) o. In particular,
if X is the scwol associated to a polyhedral complex K and leaves a cell of
K invariant, then its restriction to that cell is the identity. (When K is a graph, an
action satisfying condition (2) is called an action without inversions.) This condition
is always satisfied for the action induced on the barycentric subdivision of K by a
polyhedral action on K.
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1.13 The Quotient by an Action. Condition (1) ensures that the quotient Y = G\X
of X by the action of G is naturally a scwol Y with V(Y) = G\V(X) and E(Y) =
G\E(X). The initial (resp. terminal) vertex of the G-orbit of an edge a is the G-orbit
of i(a) (resp. t(a)), and if the composition ab is defined, then the orbit of ab is the
composition of the orbit of a with the orbit of b. Letp: X -+ Y denote the natural
projection. Condition (2) implies that p is a non-degenerate morphism. Note that if
Y is connected, then p: X —÷ Y is a covering provided the action of G on V(X) is
free.

A Galois covering of a scwol)) with Galois group G is a covering p: X -+ Y
together with a free action of the group G on X such that p induces an isomorphism
from G\X to y. In particular G acts simply transitively on the fibres of p.

1.14 Examples
(0) Let X be a connected scwol with a base vertex and let p X -+ X be

a covering such that X is simply connected. Then p can be considered as a Galois
covering with Galois group n1(X, cr0).

To see this, let E V(X) be such that = For each V(X), there
is an edge path joining 50 to this edge path is unique up to homotopy. Given
[c] E n1(X, cr0), by definition the image of under the action of [Cl is the
terminal vertex of the lift at of the edge path c * p(s). For each E(X) with
p(â) = a and i(â) = we define [c].a to be the unique edge that projects by p to a
and has initial vertex [c].6. This completes the definition of the action of ,ri(X, cro)
on X. The action is simply transitive on each fibre of p.

Fig. C.5 The quotient of an n-gon by a rotation

(1) Let P be a regular n-gon in E2 centred at 0 (see figure C.5) with vertices
Pi (in cyclic order). Let be the midpoint of the side joining Pk to Pk+I (the
indices are taken modulo n). Let X be the scwol whose set of vertices V(X) is the

crk

bk
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union of the origin r = 0, the n points or,, and the n points Pk, where 1 <k < n. The
set of edges E(X) contains 4n elements: n edges ak with i(Qk) = 0k and t(ak) = r; n

pkandt(bk) = = pkandt(bk) = ak_I);
and n edges Ck with i(ck) = Pk and t(Ck) = t. Moreover, Ck = akbk = The
geometric realization of X is isomorphic (as a simplicial complex) to the barycentric
subdivision of P.

Let G be the cyclic group of order n. The action of G by rotations of E2 fixing
the origin induces an action on X; the quotient is the scwol 3) with 3 vertices r, a, p
and 4 edges a, b, b', c, where r = t(a) = t(c), a = i(a) = t(b) = t(b') and
p = i(b) = i(b'). The geometric realization of Y is a union of two triangles whose
intersection is the union of two sides. Although the category X is associated to a
poset, Y is not associated to a poset.

Note that if one were to replace X by the opposite category (interchanging i and
t), then condition (2) in the definition of an action would not be satisfied.

7-,

Fig. C.6 The action of the subgroup G C Isom+(E2) that preserves a tesselation by regular
hexagons

(2) Suppose that we are given a tesselation of by regular n-gons with vertex
angles and let G be the group of orientation preserving isometries of that

a1

a1
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preserve this tesselation. We consider an associated polyhedral subdivision K of
the 2-cells of K are the quadrilaterals formed by pairs of triangles from the barycentnc
subdivision of the tesselation that meet along an edge joining the barycentre of an
n-gon of the tesselation to a vertex of that n-gon (figure C.6 shows the case of the
tesselation of 1E2 by regular hexagons).

The group G preserves the cell structure of K and if an element of G leaves a cell
invanant, then it fixes it pointwise. It follows that G acts on the scwol X associated
to K (in the sense of 1.11). The quotient y of X by this action is the scwol associated
to the polyhedral complex L obtained by identifying two pairs of adjacent sides in a
quadrilateral 2-cell OABA in figure C.6.

Y has 6 vertices, three of them, r, r', r1, correspond to the three vertices of L,
two, a and al, correspond to the 1-cells of L, and one, p, corresponds to the 2-cell of
L. AndY has 12 edges: eight of them b1, b1, b'1, b', C1, C'1, have initial vertex p.

and t(b1) = t(b1) = a, = = a1, t(ci) = r, = r1, = = r'.

1.15 Lifting Actions to a Simply Connected Covering. Let X be a scwol with base
vertex a0 and letp: X X be the simply connected covenng constructed in 1.10.
Given a group G acting on X, we consider a group G whose elements are the pairs
([c], g), where g E G and [c] is the homotopy class of an edge path in X joining oo to
g.ao, the composition of elements in G is defined by ([c], g)([c'], g) = ([c*g.c'], gg')
The group G acts on X as follows: given (a', [c'J) E X, the action of ([c], g) E G is

([c],g).(a', [c']) =(g.a', G —* Gbethehomomorphismmapping
(g, [c]) to g. We have an obvious exact sequence

1 n1(X, ao) -* O G 1.

The projection p : X —* X is an isomorphism of G\X to
G\X. The subgroup n-i(X, ao) of G acts freely on X with quotient X.

The Local Structure of Scwols

1.16 Definition of the Join. Let X and X' be two scwols The join69 X * X' of X
and X' is the following scwol, which contains the disjoint union of X and X' as a
subcategory:

V(X * X') := V(X) U V(X'), E(X * X') := E(X) Uwx x V(X')) U E(X')

(the edge corresponding to (a, a') E V(X) x V(X') is denoted a * a'); the maps
1, t E(X * X') V(X * X') restrict to E(X) and E(X') in the obvious way and
i(a * a') := a' and t(a * a') := a. The composition of the edge a E E(X) with
the edge i(a) * 0' V(X) x V(X') is given by a(i(a) * a') := t(a) * a' and the
composition of the edge * t(a') E V(X) x V(X') with the edge a' E E(X') is
defined by (a * t(a'))a' := a * i(a')

691fl general X * X' is not isomorphic to * X
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Given two morphisms of scwolsf : X Y andf' : X' Y'. their join is the
unique morphismf *f' : X * X' —* Y * Y' which extendsf andf' and which maps
the edge a * a' to the edgef(a) *f'(a').

The geometric realization of X * X' is affinely isomorphic to the simplicial join
of the geometric realizations of X and X'.

Lk°(X), X0, X°, X(a).
For a E V(X), we define a scwol (X) = called the upper link of o, by

setting

V(Llc,(X)) = (a E E(X): t(a) = a}

E t(a) =

defining maps i, t : by i((a, b)) = ab, t((a, b)) = a, and
defining composition when ab = a' by

(a, b)(a', h') = (a, bb').

The natural morphism X mapping (a, h) E E E(X) is in general
not injective on the set of vertices.

The lower link Lk°(X) is a scwol defined similarly:

V(Lk°(X)) = {a E E(X): i(a) = a}

E(Lk°(X)) = ((a, b) E : i(b) = a},

with i((a, h)) = h, t((a, h)) ab and composition is defined by

(a, b)(a', h') = (aa', b').

There is a natural morphism X mapping (a, b) E E E(X).
Regarding a as a scwol with a single element a, we define

Xa = a * Lk,7(X), X' = Lka(X) * a

X(a) = Lka(X) * a * = * = Lka(X) *

X J) induces, for each a E V(X), an isomor-
phism from X' onto Note that if Y is connected and X non-empty, then f
is a covering if and only if f induces an isomorphism from X(a) to Y(f(a)) for all
a E V(X)

Note that if we replace X by the opposite scwol, then the roles of Xa and are
exchanged.

We have a natural morphism

Xci = a *

mapping a to a, whose restriction to is as above and which maps the edge a * a

to a. Similarly we have a morphism



We also have a morphism

—÷ x.

X

that extends the morphisms defined above and maps the edge a * b E E(Lk7 * to
the edge ab E E(X), where i(a) = t(b) = a. This morphism is injective if and only
if any two distinct edges with initial vertex a (resp. terminal vertex a) have distinct
terminal vertices (resp. initial vertices).

1.18 Examples

(1) If X is associated to aposet P (as in 1.2(1)), then (resp. X° or X(a))
is the category associated to the subposet (resp. or P(a)) as defined in
11.12.3.

(a1 ,b2)

(a1 ,b3)

(a2,b1)

(a1,b1) (a2,b2)
• >0 •C2

a1 a2

(a2,b3)

Fig.C.8 in the scwol associated to the dunce hat (see figure C.3)

(2) Let X be the scwol associated to an MK-polyhedral complex K (see example
1.4(2)). Let V(X) be the barycentre of a cell of K which is the image under p,,
of a convex cell CA (in the notations of 1.7.37). Note that the geometric realization
of is the barycentric subdivision of CA. Therefore, the morphism X" -+ X is
injective if and only if the map PA is injective.

b
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Ix(a)I

S ( S

lxi = IX(T)l

Fig. C.7 Examples
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If a is a 0-cell of K, then there is a natural bijection from the geometric realization
of to the geometric link of a in the barycentric subdivision of K as defined in
1.7.38. (See figure C.8.)

(3) Let I be the scwol whose geometric realization is the barycentric subdivision
of the unit interval. Thus I has three vertices t0, t1, a and two edges aD, a1 with
t(ao) = t(a1) = r1, and i(a0) i(a1) = a. The geometric realization of the
n-fold product is the barycentric subdivision of the n-cube.

A scwol X is associated to a cubed complex if and only if, for each a E V(X),
the scwol XU is isomorphic for some k.

1.19 Exercise. Show that the geometric realization of the morphism X(a) —÷ X
induces an affine isomorphism of the open star of a E IX(a)I onto the open star of
a E XI.

2. Complexes of Groups

Let G be a group acting on an MK-polyhedral complex K by isometries that preserve
the cell structure. Assume that if an element of G leaves a cell of K invariant, then it
fixes the cell pointwise. The quotient of K by this action is again an MK-polyhedral
complex, which we denote L. For each cell a of L, we select a cell of K in the orbit
a. Let be the isotropy subgroup of If r is a face of a, the isotropy subgroup
of the corresponding face of is a subgroup of therefore the isotropy subgroup

of the chosen representative ? oft is conjugate to a subgroup of The family
of abstract groups (Ge) together with the injective homomorphisms —÷ and
some additional local data define on L what we call a complex of groups G(L) over
L. The are called the local groups of G(L) When L is one dimensional, G(L) is
a graph of groups. Remarkably, if K is simply connected then one can reconstruct
from G(L) the complex K, the group G, and its action on K. On the other hand,
when L is of dimension greater than one, it is in general not the case that an abstract
complex of groups G(L) over L is developable, i.e. that it arises from an action of a
group on a polyhedral complex K.

In order to describe complexes of groups over polyhedral complexes combina-
tonally, it is convenient to pass to the associated scwol and to develop the theory in
this framework. We can then come back to geometry using geometric realizations of
scwols

The essential points of this section are the definition (2.1) of a complex of groups
G(Y) over a scwol Y, the definition (2.4) of morphisms of complexes of groups, and
the construction in (2.9) of the complex of groups GQ)) associated to an action of a
group G on a scwol X (where is the quotient of X by G), and finally the notion
of developability. If G(Y) is a complex of groups associated to an action of a group
G on a scwol X, then there is a morphism tj : G(Y) G which is injective on the
local groups Conversely, one can associate to any such morphism an action of G on
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a scwol D(Y, called the development of Y with respect to (This construction,
described in (2.13), generalizes the Basic Construction in 11.12.18.)

Basic Definitions

The next definition will be justified by the considerations in (2.9).

2.1 Definition of a Complex of Groups
Let Y be a scwol. A complex of groups GO)) = (Ge, lfra, ga.b) over Y is given

by the following

(1) for each a E V(Y), a group called the local group at a,

(2) for each a E an injective7° homomorphism 1,/Ia . Gi(a) + G,(a),

(3) for each pair of composable edges (a, b) E E

Gz(a),

with the following compatibility

(i)

Ad(gab) is the conjugation by gab in G,(a);
and for each triple (a, b, c) E of composable elements we have the cocycle
condition

(ii) 1/fa(gb c)ga.bc gab gab.c.

A simple complex of groups over 3) is a complex of groups over 3) such that all the
twisting elements ga.b are trivial. A complex of groups over a poset is by definition
a complex of groups over the associated scwol. A simple complex of groups over a
poset as defined in (11.12.11) is a simple complex of groups over the scwol associated
to this pOset.

Note that condition (i) (resp. condition (ii)) is empty if 3) is of dimension 1
(resp. 2) because in that case (resp. is empty.

Suppose that we are given a map that associates to each edge a E E(Y) an element
E G,(0). The complex of groups G'(Y) over 3) given by = =

and b = is said to be deduced from GO)) by the coboundary of
(ge). Note that G(Y) is deduced from G'(Y) by the coboundary of (g;').

2.2 Notation. We wish to use the description of a scwol as (the arrows of) a category,
identifying vertices a to units I We define : as before if a E E(Y)
and as the identity of if a = For composable morphisms a, $ 3), we define

as above if a, E(Y) and as the unit element of otherwise. Conditions (i)

could develop the theory of complexes of groups without this injectivity assumption.
the only serious modification would be that local developability (in the sense of section 4)
would then be equivalent to the injectivity of the ?,1a.
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GT, GT

a' a •
3) o -<-——— • —>- o o a

U T
a' 43

0
T3

(1) (2) (3)

Fig. C.9 Complexes of groups over scwols of dimension one

and (ii) of 2.1 are still satisfied if we replace a, b, c in those formulae by composable
elements a, y E X.

2.3 Remark. Every complex of groups over the poset associated to the faces of an
n-simplex can be deduced from a simple complex of groups over this poset by a
suitable coboundary.

More generally, let )) be a scwol which has a vertex a0 such that for each vertex
a ao, there is a unique edge with = a0, = a. Then any complex
of groups G(Y) over 3) can be deduced from a simple complex of groups over 3)
by a coboundary. Indeed it is straightforward to check that the complex of groups
deduced from GO)) by the coboundary of is simple.

2.4 Morphisms of Complexes of Groups. Let G(Y') = i/ia, be a com-
plex of groups over a scwol 3)' Letf: 3) 3)' be a (possibly degenerate) morphism
of scwols. A morphism = from G(Y) to GO)') overf consists of:

(1) a homomorphism : —÷ of groups, for each a E V(Y), and

(2) an element E for each a E E(y), such that

(i)

and for all (a, b) E

(ii) =

1ff is an isomorphism of scwols and is an isomorphism for every a E V(Y),
then is called an isomorphism.

With the point of view of (2.2) (which we shall often take implicitly in what
follows), given a E 3), we define a as the identity
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GT3 GT,/\
GT-<--—— GT, Gc, GT,

73
0

0 -.<—--— • —).- 0 0 -.<—--— • • 0

a a2 T1 a1 a' a2 T2

x
Fig. C.1O A morphism of one-dimensional complexes of groups (homomorphisms between
local groups with the same label are isomorphisms)

element of if a = Conditions (i) and (ii) are still satisfied if a, b are
replaced by composable elements a, E Y

Homotopy. Let and be two morphisms from G(Y) to G(JY) overf given respec-
tively by and A homotopy from to is given by a family
of elements E indexed by a E V(Y) such that

and = Va E V(Y), a E E(Y)

If such a homotopy exists, we say that and are homotopic.

Composition. If = : G(Y) G(J7) and
(G(Y') G(JY') are morphisms of complexes of groups over morphismsf . Y
3)' andf' : 3)' —+ 3)", then the composition o : G(Y) —÷ G(J7') is the morphism
overf'f defined by the homomorphisms o o and the elements

o =
Let us repeat the definition of morphism in the important special case where 3)'

has only one vertex, i.e. G(J7) is simply a group G.

2.5 Definition. A morphism = from a complex of groups GO)) to a
group G consists of a homomorphism : G for each a E V(Y) and an
element E G for each a E E(Y) such that

— and =

We say that is infective on the local groups if each homomorphism is injective.

2.6 Remark. Let G(Y) be a simple complex of groups. A morphism : G(Y) —÷ G

is called simple if I for all a E E(Y). We shall see later (3.10(3)) that if 3)
is simply connected, then every morphism : G(Y) G is homotopic to a simple
one.
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2.7 Induced Complex of Groups. 1ff 3) —÷ 3)' is a morphism of scwols and if
G(Y') lka, ga'.b') is a complex of groups over 3)', then the induced complex
of groups f*(G(Yl)) is the complex of groups (Ge, lka, gab) over Y' where

= V/a lkf(a). gai, gf(a)f(b)-

(Note that there is an obvious morphism —* GQ)') overf, where is

the identity and is the unit element of
if)) is a subscwol of))' andf is the inclusion, thenf G(JY) is called the restriction

ofGo') to 3)

2.8 The Category CGoY) Associated to a Complex of Groups Go)
The definitions of complexes of groups and morphisms between them appear

more natural if we interpret them in the framework of category theory (see A. 1).
We associate to the complex of groups Go) the small category CG(Y) whose

set of objects is VoY) and whose set of elements (arrows) are the pairs (g, a), where
a E Y and g E We define maps i, t: CGoY) Vo))) by i((g, a)) = i(a) and
t((g, a)) = t(a) The composition (g, a)(h, is defined if i(a) = and then it is
equal to

(g, a)(h, = an).

Conditions (i) and (ii) in (2.1), when taken together, are equivalent to the associativity
of this law of composition. The map (g, is afunctor CGoY) —÷ Y.

A morphism : Go) Go') of complexes of groups overf: 3) —÷ 3)' gives

a functor —÷ CGQY) of the associated categories, namely the functor (also
denoted mapping (g, a) E CGoY) to E CGoY'). Conversely,
any functor CG0Y) CG(Y') projects to a functorf 3) —÷ 3)' and defines a
morphism (also denoted from Go) to Go') overf the homomorphisms
and the elements are determined by the relations: = and

a) =
If /' : GQ)') Go") is a morphism overf' : 3)' 3)", then the composition

o is the morphism Go) Go") overf' of: 3) 3)" corresponding to the
composition of the associated functors.

Developability

2.9 The Complex of Groups Associated to an Action

(1) Definition. Let G be a group acting on a scwol X (in the sense of definition 1.11).
Let 3) = G\X be the quotient scwol and let p : X 3) be the natural projection.

For each vertex a E VoY) choose a vertex V(X) such that p(W) = a. For
each edge a E E(X) with i(a) a, condition (2) of (1.11) implies that there is a
unique edge a X such that = a and = If r t(a), then in general

choose ha E G such that ha.t(ä) ?. For a E VQ)), let be the isotropy
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T

ci
ci

Fig. C.11 Associating a complex of groups to an action

subgroup of and for each a E E(Y), let 1,/la Gi(a) G,(a) be the homomorphism
defined by

l/fa(g) — hagh;'.

Condition (2) of (1.11) implies that the image of 1/Ia lies in Gj(a) For composable
edges (a, b) E define

ga.b =

an element of Gt(a) (see figure C. 11). The complex of groups over Y associated to
the action of G on X (and the choices above) is

G(Y) = (Ga, lila, gab).

it is easy to check that the two conditions (i) and (ii) of (2. J) are satisfied.
There is a natural morphism associated to the action:

G(J)) G,

= where : G is the natural inclusion and = This
morphism is injective on the local groups (In (2.13) we shall see that all morphisms
with this local injectivity property arise from the construction described above.)

(2) Different Choices. A different choice of elements ha in the above construction
would lead to a complex of groups deduced from G(Y) by a coboundary. A different
choice of representatives in the G-orbits of a and associated choices would lead
to a complex of groups G'(Y) = over Y that is isomorphic to G(Y). An
isomorphism A = (Ac, A(a)) from G(Y) to G'(Y) is obtained by choosing elements

E = = andA(a) =
(Different choices of the elements give homotopic isomorphisms.) Note that the

9ab

a
a

b

p
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determine a homotopy from to where : G'(Y) —÷ G is the natural
morphism described above.

Note also that if one can find a strict fundamental domain for the action of G,
i.e if one can choose the liftings such that for each a E E(Y) with r = t(a) we have

?, then by choosing the ha to be trivial, we get a simple complex of groups.

(3) When Y is connected, one way of choosing the liftings is to first construct a
maximal tree Tin the 1-skeleton of the geometric realization of Y and to lift it
to a tree 1 in so thatp(T) = T (this is possible because p is non-degenerate).
Then choose to be a vertex of and ha to be the identity if i(a) = a and t(ä)
is a vertex of T (where as above is the umque edge in X projecting to a with
i(d) = If X containing T and if G0 is the
subgroup of G leaving X0 invariant, then the inclusion X) —* X induces a bijection
G\X0 —÷ G\X = Y and the complex of groups associated to the action of G0 on
is canonically isomorphic to G(Y).

(4) Equivariant Actions. Let G' be a group acting on a scwol X' and let p' be the
natural projection from X' to Y' :== G'\X' Let G(Y') = Via, ga'.b') be the
complex of groups associated to this action with respect to choices a' E V(X') and

E G' as above. Let : GO)') G' be the associated morphism. Suppose that we
have a morphism L: X —÷ X' that is equivarlant with respect to a homomorphism
A : G G' (i.e. L(g.a) = A(g).L(a) for all a E X and g E G). This induces a
morphism 1: Y Y', for which there is a commutative diagram

X

4
y

For each a E V(Y) we choose an element E G' such that L(W) = 1(a) For
each a E V(Y) let A7 : Ge,, be the homomorphism g and
for each a E E(Y) let A(a) = E

It is straightforward to check that A = (An, A(a)) defines a morphism G(Y) —÷
G(Y') over 1: 3) 3)' and that we get a diagram that commutes up to homotopy

G(Y)
A

G(Y')

G
A

G'

The family (ku) gives the homotopy from to

2.10 Examples
(1) We describe the complex of groups associated to the action considered in

example 1. J 4 (1) (maintaining the notation established there). As representatives for
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0 r, a, p, choose respectively 0, a1, p1. Then b b1, = and hb' is the
rotation R about 0 that sends aD = to a1. All the local groups are tnvial except
GT = (R), and the only non-trivial twisting element is gab' = R.

(2) Let G(Y) be the complex of groups associated to an action of a group G on
a connected scwol X with choices and ha as in (2.9(1)). For convenience, as in
(2.9(3)), we assume that the vertices belong to a tree T that projects to a maximal
tree T in the 1-skeleton of the geometric realization of Y = G\X. We pass to the
universal coveringp: X X of X, and as in (1. J 5) we construct an action of a group
G on X and a homomorphism G G so that p is and the kernel
of acts freely on X with quotient X. There is an isomorphism G\X G\X = Y
induced by p. and we identify G\X with G\X by means of this map. To construct a
complex of groups associated to this action of G on we can lift T to a tree T in
the I-skeleton of the geometric realization of X and for each a E V(Y) define the
vertex & E V(X) by: p(&) = and T. For each a E E(Y) with i(a) = a, let
a be the edge in X with i(a) = & and p(ä) = Then choose an element ha E G
such that ha and = f where r = t(a). Note that maps the isotropy
subgroup isomorphically onto the isotropy subgroup =

If we identify these subgroups by this isomorphism, then the complex of groups
over Y associated to this action of G on X, with respect to the choices that we have
made, is exactly G(Y)

(3) We describe the complex of groups associated to the action considered in
example 1.14(2). Let C be a 2-cell of K which is the union of two adjacent triangles
in the barycentric subdivision of the tesselation with vertices 0, A, B, A, where 0 is
the barycentre of an n-gon of the tesselation and B a vertex of this n-gon (see figure
C.6). Lets (resp. r') be the element of G fixing 0 (resp. B) and mapping A to A,
and let t be the half turn fixing A. As representatives for the vertices of Y we choose
the barycentres of those faces of C that are contained in the tnangle OAB. Then the
non-trivial local groups are = GTI = Z3, = Z2, generated respectively
by s, r, t. The non-trivial twisting elements are = s, t, = r1.
(See figure C. 12.)

2.11 Developability. A complex of groups G(Y) is called developable if it is iso-
morphic to a complex of groups that is associated, in the sense of 2.9(1), to an action
of a group G on a scwol X with 3) = G\X.

In general, complexes of groups are not developable if the dimension of 3) is

greater than one. Conditions for developability will be discussed in (2.15) and Chapter
iii.g.

2 12 Remark. If a complex of groups G(Y) over a connected scwol 3) is developable,
then it is isomorphic to a complex of groups associated to an action of a group G on
a simply connected scwol.

Indeed, given an action whose associated complex of groups is isomorphic to
G(Y), we can first restrict this action to a connected component as indicated in
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1

a- <1>

z2

-7-,

non-trivial
twisting elements:

Fig. C.12 The complex of groups associated to the action of figure C.6

(2.9(3)) and then pass to the universal covering of this component as in example
2.10(2).

The Basic Construction

2.13 Theorem (The Basic Construction). Let G(Y) = (Ge, lka, gab) be a complex
of groups over a scwol Y.

(1) Let G be a group. Canonically associated to each morphism G(Y) —f G

there is an action of G on a scwol D(Y, with quotient Y. (D(Y, is called
the development of Y with respect to is infective on the local groups, then
G(Y) is the complex of groups (with respect to canonical choices) associated
to this action and G(Y) G is the associated morphism.

(2) If G(Y) is the complex of groups associated to an action of a group G on a
scwol X (with respect to some choices) and G(Y) —÷ G is the associated
morphism, then there is a G-equivariant isomorphism D(Y, X that
projects to the identity of Y.

Z31
a1 <1>

a'

9a,bj = 5 = t

gai,bç =r1
z6
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Proof For (1) we define the scwol DQ), as follows:

V(D(Y, = a)I a E V(Y), E

E(D(Y, = a E E(Y), g E E G/q')i(a)(Gi(a))};

the maps i, r E(D(Y, —÷ V(D(Y, are

i((gti(a) (Gi(a))), a) i(a)),

a)) = r(a));

and the composition is

b)

b) E E G and
The map t is well-defined because if x E Gi(a), then by (2.5)

= modulo

It is straightforward to check that X is a scwol. For instance to see that

ab)) = a)),

we need to check that provided that g =
for somex E Gi(a). Using 2.5 we get:

=

= hIJa(X)) h/(ab)' mod

The group G acts naturally on X: given g, h E G and Y, define
a) := a). It is clear that Y G\X. Consider

the complex of groups G(Y) associated to this action and the (natural) choices
= (a, = =

the restnction of to and = E

Ifeach is injective and we identify with its image then G(Y) G(Y).

E D(Y, E = G\X. Usingthe notation of 2.9(1), let
be the unique element (edge or vertex) of X such = a and = i(a) It is

straightforward to check that (g a) g defines a G-equivariant isomorphism

2.14 Remark. Given a complex of groups G(Y) = (Ga, lka, gab) and a morphism
G(Y) G to a group (where is not necessarily injective on the local groups), one
can consider the complex of groups G(Y) lka' (where =
etc.) and the induced morphism = G(Y) —÷ G, where —÷ G
is simply the inclusion and It is clear that D(Y, = D(Y, and by
2.13(1) the complex of groups canonically associated to the action of G on D(Y,
is GO)).
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2.15 Corollary. A complex of groups GO)) is developable and only there exists
a morphism çbfrom G(Y) to some group G which is infective on the local groups

2.16 Remark. Let)) be the scwol associated to a poset Q (see 1.2(1)). Let Go) be a
simple complex of groups and let 4) . Go) G be a morphism that is injective on
local groups and simple in the sense that çb(a) = 1 for all a e Eoy). Then Do, 4))
is the scwol associated to the poset yielded by the basic construction of 11.12. 18

As mentioned in remark 2.6, if)) is simply connected then any morphism from
G(Y) to a group G is homotopic to a simple one (see 3.10(3)). Therefore a simple
complex of groups over Q is strictly developable if and only if the corresponding
complex of groups over the associated scwol is developable. In particular, for sim-
plices or n-gons of groups the notions of developability and strict developability are
equivalent See parts (5) and (6) of 11.12.17 for examples of complexes of groups
which are not developable.

2.17 Corollary (Bass-Serre). Any complex of groups GO))) over a scwol Y of dimen-
sion one is developable.

Moreover; if)) is finite and all of the local groups are finite, there is an action of
a finite group on afinite scwol X (which is connected is connected) such that
the associated complex of groups is isomorphic to Go).

Proof Before beginning the proof properly, we remark that whenever one has two
free actions of a group H on a set Z such that the sets of orbits have the same
cardinality, one can find a permutation of Z that conjugates one of the actions to the
other To see this, we write G to denote the group of permutations of Z and write the
actions as homomorphisms 4), 4)': H G. In each orbit of both actions we choose
a representative, let 4 ç Z and Z be the sets of chosen representatives. By
hypothesis, there is a bijectionfo : 4 As the actions are free, for each z e Z
there is a unique Zo e 4 and a unique h0 e H such that z = 4)(ho)(zo). Thus we may
define a mapf : Z Z by sending z to This map is a bijection, and
by constructionf4)(h) = 4/(h)f for each h e H.

We now turn to the proof of the corollary. Consider first the case where all the local
groups Ga have a bounded order. Let Z be a finite set whose cardinality is divisible
by the cardinality of each Ga, and let G be the group of permutations of Z. For each
a e Vo))) we can construct an injective homomorphism 4a : Ga G whose image
acts freely on Z by choosing a partition of Z into subsets whose cardinality is the
order of Ga and taking an arbitrary free action of Ga on each subset.

For each a e E(Y), the images of under the injective homomorphisms 4)i(a)
and act freely on Z and in each case the action has IZI / I G(a) orbits Therefore
our opening remark yields an element 4)(a) e G such that 4)r(a) 1/'U = Ad(4)(a))4)1(U). In
this way we obtain a morphism GO))) —÷ G, denoted 4) = 4)(a)), that is injective
on the local groups. If)) is finite, then the development DO)), 4)) is a finite scwol
on which G acts and the associated complex of groups is GO))). If)) is connected,
we can consider a connected component of Do, 4)) as in 2.9(3) to prove the last
assertion of the corollary.
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In the general case, we let

Z fl Ga,
aEV(Y)

and we again take G to be the group of permutations of Z. We let Ga act by left
translations on the factor Ga and trivially on the other factors. For each a e E(Y) the
homomorphisms 4)i(a) and a permutation 4)(a) of Z because
the cardinality of Gl(a) is equal to the cardinality of G,(a) x Thus we
may conclude as above.

2.18 The Functorial Properties of the Basic Construction. Let G(Y) = (Ga, 1//a,

gab) and GQY) = (Ga', be complexes of groups over scwols Y and Y'.
Letçb GQ)) Gandq5' G(Y') G' G'bea
group homomorphism.

(1) Let A : G(Y) G(Y') be a morphism over I : )) —+ Y'. Functorially asso-

ciated to each homotopy from A4) to 4)'A there is a A-equivariant morphism
L D(Y, 4)) 4)') that projects to I: )) JY'.

(2) If A is an isomorphism and 4), 4)' are infective on the local groups, then ker A

acts simply transitively on the fibres of L, and L is surjective if and only if A is

surjective.

(3) If 4) and 4)' are infective on the local groups then every A-equivariant morphism
L D(Y, 4)) 4)') arises as in (1).

Proof (1) A homotopy from A4) to 4)'A is determined by a family of elements ka E G'
(notation of 2.4). It is straightforward to check that the map

(Gj(a)),

is well-defined and that it is a A-equivanant morphism L : D(y, 4)) —÷ D(y', 4)')
which projects to 1.

(2) If A is an isomorphism and if 4) and 4)' are injective on local groups, then ker A
acts freely on D(y, 4)), because for each a e V(Y) the equality 4)'Aa = (Adka)A4)a
implies that ker An 4)a (Ga) = 1. Let us check that ker A acts transitively on the fibres
of L. If two vertices of D(Y, 4)) are mapped by L to the same vertex, then they are
of the form (gi4)a(Ga), a) and (g24)a(Ga), a) with A(g1)k;' modulo

As Aa is surjective, there exists x Ga such that gi)k;' =
This implies that = hence h := e

kerA, and therefore h.(gi4)a(Ga), a) = (g24)a(Ga), a).

(3) This was already observed in 2.9(4).

The case where A is the identity is already interesting:

2.19 Corollary. Let 4), 4)': G(Y) —÷ G be two morphisms which are injective on
the local groups. 4) and 4)' are homotopic if and only if there is a G-equivariant
isomorphism D(y, 4)) —÷ DQ), 4)') projecting to the identity on Y.
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2.20 Exercise (The Mapping Cylinder). Let = 4)(a)) G(Y0) G(Y1) be a
morphism of complexes of groups over a non-degenerate morphism f Yo —÷

which is injective on the local groups.

(1) Define the mapping cylinder of f. This should be a scwol M1 that contains
the disjoint union of Yo and Y1 as subscwols and has extra edges ua indexed by
the elements a E with 1(Ua) i(a) and = f(t(a)). For each pair of
composable elements a, e one should have compositions defined by the
formulas = =f(a)ufl. Show that M1 is indeed a scwol.

(2) Construct the mapping cylinder G(M1) of 4). This should be a complex of
groups over M1 whose restriction to is G(Y1), for i = 0, 1. The homomorphisms
associated to the new edges should satisfy = Complete these data to
obtain the desired complex of groups G(M1).

(3) Given 00 E V(yo), show that the homomorphism

—÷

induced by the natural inclusion G(Y1) —÷ G(M1) (see 3.6) is an isomorphism

3. The Fundamental Group of a Complex of Groups

In this section we define the fundamental group of a complex of groups G(Y) and we
give a presentation of this group in terms of presentations for the local groups and a
choice of a maximal tree in Y. For a developable complex of groups, we construct its
universal covering explicitly. Our treatment is a natural generalization of the theory
of graph of groups due to Bass and Serre [Ser77]. Before reading this section, the
reader may wish to look at paragraphs A. 10 to A. 13 in the Appendix, where the
corresponding notions for small categories are described.

The Universal Group FG(Y)

3.1 Definition. Let G(Y) = (Ga, li/a, gab) be a complex of groups over the scwol )).
The group FG(Y) is the group given by the following presentation. It is generated
by the set

U
aEV(Y)

subject to the relations

the relations in the groups Ga,

= a and

= V (a, b)

i,1i0(g) = Vg e
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There is a natural morphism

= ('a, t(a)) : G(Y) FG(y),

where 'a : Ga FG(Y) is the natural homomorphism mapping g e Ga to the
corresponding generator g of FG(Y) and t(a) = at (The relations defining FG(Y)
are the least set that one must impose in order to make t a morphism.)

If one regards a group G as a complex of groups over a single vertex, then FG is
canonically isomorphic to G

3.2 The Universal Property and Functoriality of F
Given a morphism 4) GO)) —÷ G, there is a unique group homomorphism

FG(Y)—÷ Gsuch that (F4))ot =4).
More generally, 4) GQ)) —÷ G(Y') is a morphism of complexes of groups

over a morphism f )) Y'. then associated to 4) there is a homomorphism
P4) FG(Y) —÷ FG(Y') such that the following diagram commutes

G(Y) > FG(Y)

G(Y') > FGQY)

Proof Let 4) = (4)a, 4)(a)) : GO)) —÷ GO)') Then F4) maps the generator g e Ga
to 4)a (g) and the generator to It is straightforward to verify that F4) is
well defined.

3.3 GQ))-Paths. Let )) be a scwol and let GO)) = (Ga, 1,/ta, gab) be a complex of
groups over)) as defined in (2 1). Given a0 e VoY), a G(Y)-path issuing from a0 is
a sequence c = (go, e1, ek, gk) where (ei ek) is an edge path in )) that
issues from (in the sense of 1 6), go e Ga0, and gj e Gl(e) for I < i < k. The
vertex a0 is called the initial vertex 1(c) of c and a = t(ek) is called the terminal
vertex t(c) of c; we say that cjoins a0 to a. A GoY)-path joining a0 to a0 is called a
GQ.')-loop at a0.

If c' = (gb, e'1, g'1,.., is a GoY)-path issuing from the terminal vertex
of c, then the composition or concatenation of c and c' is the Goy)-path

This partially defined law of composition is if c, c', c" are GoY)-paths
such that c * c' and c' * c" are defined, then (c * c') * c" = c * (c' * c"); this
is denoted c * c' * c". The inverse c is the GoY)-path e'1, . .

g = and
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3.4 Homotopy of G(y)-Paths. To each G(Y)-path c = (ge, g, , ek, gk) we
associate the element ir(c) of FG(Y) represented by the word goeigi By
definition, two G(Y)-paths c and c' joining a to r are homotopic if ir(c) = ir(c')
The homotopy class of c is denoted [c] and the set of homotopy classes of G(Y)-paths
joining ao to a is denoted ir1(G(Y), a0, a).

Note that the homotopy class of the composition of two GQ.')-paths depends only
on the homotopy class of those paths.

The Fundamental Group ir1(G(Y),

3.5 Definftion. The operation := [c*c'] defines a group structure on the set of
homotopy classes of G(Y)-loops at a0. The resulting group is denoted it1 (G(y), ao)
and is called the fundamental group of G(Y) at a0.

Note that, by definition, the map ir identifies the group 7r1 (G(Y), ao) to iri(G(Y),
a0, a0), which is a subgroup of FG(Y) If c is a G(Y)-path joining a0 to a, then the
map associating to each G(Y)-loop £ at a0 the G(Y)-loop (c' * £ * c) at a induces
an isomorphism it1 (GQ)), ao) —÷ ir (G(y), a). If we identify these groups to the
corresponding subgroups of FG(y), then this isomorphism is the restriction of the
inner automorphism Ad(ir(c)).

If G(Y) is the trivial complex of groups over )) (i.e. all of the Ga are trivial),
then iri(G(Y), a0) = ir1(Y, a0). More generally, the map associating to each G(Y)-
loop c = (go, e1, ek, at a0 the edge loop (e1, .. , induces a surjective
homomorphism 1r1 (G(Y), ao) r1(Y, ao)

Any morphism 4) = 4)(a)) from G(Y) to a group G induces a homomorphism
ir (4), ao) : (G(y), ao) —* G mapping the homotopy class of a G(Y)-loop c to the
element (F4))(ir(c)) e G

More generally, we have.

3.6 Proposition. Every morphism 4) = (4)a, 4)(a)) of complexes of groups G(Y)
GQY) over a morphismf . Y' induces a natural homomorphism

(4), ao) : (G(Y), ao)

namely the restriction of Fçb : FG(Y) FGQY).

Proof We only need to check that F4) maps the subset iri(G(Y), a0, a) c FG(Y) to
the subset (GQY),f(ao),f(a)) c FG(Y').

For each e e we shall define a G(Y')-path denoted 4)(e) such that
= Assume e = If f(a) e E(Y'), then 4)(e) is the

lf(i(a))); iff(a) is a unit then 4)(e) is the G(Y')-path (la). For each
element g e Ga, we define 4)(g) to be the G(Y')-path For each G(Y)-path
c = (go, e1 we define 4)(c) to be the concatenation of the GQY)-paths
4)(go) * 4)(e1) * * It is clear that F4) maps the homotopy class of c to the
homotopy class of F4).
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A Presentation of ir1(G(Y), o0)

Consider the graph which is the 1-skeleton of the geometric realization of
its set of vertices is V(Y) and its set of 1-cells is E(y). We assume that)) is connected
(equivalently, that this graph is connected). Let T be a maximal tree in this graph,
i.e. a subgraph which is a tree containing all the vertices. Such a maximal tree is
not unique in general. any subgraph T' of which is a tree can be extended to a
maximal tree.

3.7 Theorem. The fundamental group ir1(GoY), ao) is isomorphic to the abstract
group 7r1 (Go), T) generated by the set

U Ga U
aEV(Y)

subject to the relations

the relations in the groups Ga,

= a and = a+,

= V (a, b) E

= Vg e GI(U),

a+ = 1, Va e T.

Proof Identify ir1(GoY),ao) with ir1(GoY), a0, ao) and let 'I' ir1(GoY),ao) —÷
iri(GoY), T) be the homomorphism obtained by restricting the natural projection
FG0Y) in (Go), T). For each vertex a e Voy), let ca = ek) be the
unique edge path in Y joining a0 to a such that no two consecutive edges are inverse
to each other and each e is contained in T (i e e = with a1 E T). Let ira be
the corresponding element e1 . . . e iri(GoY), a0, a) ç FG0Y). Note that if a e
then either = irl(U)a+ or irl(U) = irI(U)a . Note also that the image of Ira in
ir1(GQ)), T) is trivial. Let CE) : ir1(GoY), T) iri(GoY), a0) be the homomorphism
mapping the generator g e Ga to and the generator a+ to the element

This homomorphism is well-defined because the relations are satisfied,
in particular e T

The elements of the form Ira gir;', where g E Ga, together with those of the
form where a e Eoy), generate 7r1 (Go), ao). Their images under 111
are, respectively, g and a+. This shows that 'I' and e are inverse to each other.

The fundamental groups of the complexes of groups of dimension one shown in
figure C 9 are, respectively, the amalgamated product an HNN-extension
GT*G,, and the amalgamation of the groups along their isomorphic subgroup
lfrOGa). The morphism of complexes of groups described in figure C. 10 induces an
isomorphism on the fundamental groups.
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3.8 Corollary. If all of the groups Ga are finitely generated (resp. finitely presented)
and if Y is finite, then r,(G(Y), a) is finitely generated (resp. finitely presented).

The criterion of developability given in 2.15 can be reformulated as follows.

3.9 Proposition. A complex of groups G(Y) over a connected scwol)) is developable
if and only if each of the natural homomorphisms Ga —* (G(Y), T) (equivalently
Ga —+ FG(Y)) is infective.

Proof According to 2.15, G(Y) is developable if and only if there is a morphism 4)
from G(Y) to a group G which is injective on the local groups Ga. The universality of
FG(Y) (3.2) shows that such a morphism exists if and only if the canonical morphism
t G(Y) —÷ FG(Y) is injective on the local groups. Moreover the quotient map
FG(y) ir,(G(Y), T) is injective on the subgroups ta(Ga). Indeed, by choosing
a0 a in the proof of 3.7, we see that the map e o 'I' restricted to ia(Ga) is the
identity.

3.10 Let G(Y) be a complex of groups over a connected scwol Y, let
T be a maximal tree in and let G be a group.

(1) Given a morphism 4) = 4)(a)) : GQ)) G. define

ir(4), T) ir,(G(Y), T) G

by composing the natural isomorphism e . ir,(G(Y), T) ir,(G(Y), cr0) with

the homomorphism ir1(4), ao) iri(G(Y), ao) —p G defined in (3.6). If 4) is such
that 4)(a) = 1 for each a e T, then iv, (4). T) maps each generator g e Ga to
4)a (g) and each generator a+ to 4)(a).

(2) Every morphism 4)': G(Y) —* G is homotopic to a morphism 4) G(Y) —* G

such that 4)(a) = I for each a e T Moreover 4) is unique up to conjugation by
an element of G. Therefore the map associating to a morphism G

G gives a bijection

H'(G(y), G) H' (iri(G(Y), ao), G),

where H' (G(Y), G) is the set of homotopy classes of morphi sins of G(Y) to G,
and H' (it1 (GQ)), ao), G) is the set of homomorphisms from ir,(G(Y), a0) to G
up to conjugation by an element of G.

(3) If G(Y) is a simple complex of groups over a simply connected scwol then
every morphism G(Y) G is homotopic to a simple morphism.

Proof We use the notations established in the proof of 3.7. Part (1) follows imme-
diately from the observation that Jr1 ob) maps each ira to 1 E G.

To prove (2), considerthe image ka Of Ira under ir1(4)', ao). Let4) =
the morphism, homotopic to 4)', defined by 4)a Ad(ka and 4)(a) =
For each a e T, we have = kl(U)4Y(a) or = therefore 4)(a) = 1.
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It remains to show that 4) is unique. Let = 4)(a)) : G(Y) G be another
morphism such that = 1 for a e T. If (ka)aEV(y) is a homotopy between and
4,, the relation 0(a) = applied to the edges a e T implies that k7 is an
element g e G independent of a, therefore 4) is the conjugate of 4) by g.

To prove (3), we first observe that if 4)' G(y) —÷ G is a morphism, then
a F—* 4)'(a) gives a morphism from the trivial complex of groups over)) to G By
(2), since)) is simply connected, there is a family (ku) of elements of G such that

= 1 for each a e Eo))). Therefore (ka) defines a homotopy between 4)'
and a simple morphism 4): Go) G.

3.11 Examples
(1) Assume that Go) is a simple complex of groups (so all the elements gab

are trivial). Then the subgroup of (Go), T) generated by a e EoY)} is
isomorphic to the fundamental group of )). It follows that if )) is simply connected,
then (Go), a0) = ir1(GoY), T) is the direct limit (in the category of groups) of
the family of subgroups Ga and inclusions Indeed all the generators of the form

a e E(Y), represent the trivial element of iri(G(Y), T)
In particular if G(Q) is a simple complex of groups over a poset Q, and the

geometric realization of Q is simply connected, then the group (denoted

G( Q) in 11.12.12) is the fundamental group of the corresponding complex of groups.
It follows that G(Q) is strictly developable (in the sense of II 12.15) if and only if it
is developable.

(2) Let 4) = (4)a, 4)(a)) GO))) —÷ Go') be a morphism of complexes of groups
overf: )) ))' and suppose that one can find maximal trees T in and T' in

such thatf(T) c T' and 4)(a) = I for each a e T Then the homomorphism
induced by 4) on the fundamental groups 7r1 (Go), T) ir1(GQ)'), T') (via the
isomorphisms of 3 7) maps the generators g e Ga (resp. a+) to the generators 4)a (g)
(resp.

(3) A presentation of the fundamental group of the complex of groups Go) in
example 2.10(3).

If we choose the maximal tree T in to be the union of the edges
=a=a' =a1 =

= = 1, we see successively that I = = c1 = =
Besides the relations = r3 = t2 = 1, we are left with the four relations

+_ +L.+ ,+_ + — +1.1+gabci — a g, bc1 — a v1 , — a1 , — a1

Asga.bj s, gab 1, t, gab =a=a=a1 =
= these relations are equivalent to

s — = = =

After eliminating + and we get only one relation rst = 1. Eventually we
get the presentation

ir1(G(Y), T) = (t,s, = r3 = s' = rst = 1).
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This is a presentation that we would have obtained directly by applying Poincaré's
theorem (cf.[Rh7 1]) to the quadrilateral C = QABA (see figure C.6).

More generafly, consider the scwol)) associated to the polyhedral complex ob-
tained by identifying the sides OA, OA and the sides BA, BA of the quadnlateral C
(in the notation of figure C.6). Consider a complex of groups G(Y) such that the
local groups associated to the vertices p, a, a1 are trivial. After modification by a
coboundary, we can assume that the only twisting elements that might be non-trivial
are gab E gd.b; e and e The same calculation as above shows
that 7r1 (G(Y), T) is isomorphic to the quotient of the free product * * by
the normal subgroup generated by ga

(4) On the scwol obtained by gluing two congruent n-gons along their boundary
(see 1.4(3)), we consider a complex of groups G(Y) such that the only non-trivial
local groups are the groups Gk = After modification by a coboundary we may
assume that the only non-trivial twisting elements are then elements b,. = Sk e
We leave the reader to check that, as above, the fundamental group of G(Y) is the
quotient of the free product of the groups by the normal subgroup generated by
the elements1 .

(5) Kampen Theorem. Let G(Y) be a complex of groups over a scwol
Y. Assume that)) is the union of two connected subscwols and Y2 such that the
intersection Yo = Y1 fl Y2 is connected. Let a0 e V(Y0) be a base vertex. Let
be the complex of groups which is the restriction of G(Y) to the subscwol )),, for

= 0, 1,2. Then ir1(Go))), a0) is the quotient of the free product ir1(GoY1), a0) *
ir1(GoY2), ao) by the normal subgroup generated by the elements]1 (y )j2 (y for all
y e ir (Go0), a0), wherej1 ir1(G(Yo), ao) 7r1 (G())1)ao) is the homomorphism
induced by the inclusion of Go0) into Go,), for i = 1, 2.

To see this, choose a maximal tree T0 in iYoiO) and extend it to maximal trees T1
and T2 in I)) and Then T = T1 U is a maximal tree in It is clear
from the presentation in (3.7) that 7r1 (Go), T) is the quotient of the free product of
ir1(G(Y1), T1) * iri(G(Y2), T2) by the normal subgroup generated by the elements

forall y e ir1(G(Yo), T0), : ir1(G(Yo), T0) ir1(G(Y1), T,) is
the homomorphism induced by the inclusion of Go0) to Go1), for i = 1, 2. And
we can identify iri(G(Y1), with ir1(G(Y,), ao) (hencej toj,) as in (3.7).

3.12 Exercise (HNN-Extensions). Let G(Y1 ) be a complex of groups over a connected
scwol Y and let Go0) be its restriction to a connected subscwol Yo. We assume that
if a e EoY1) has its terminal vertex in then a e Eo))0). Let 4: Go0) Go1)
be a morphism over a non-degenerate morphismf . and assume that 4 is
injective on the local groups.

(1) Following (2.20), construct a new scwol )) containing as a subscwol,
with the same set of vertices and new edges ua indexed by the elements E Y0.
(Construct )) from the mapping cylinder M1 of f by identifying in M1 the subscwol
y0 c Y1 c Mj- to the subscwol Yo C

(2) Construct a complex of groups Go) whose restriction to Yi is Go1), the
homomorphisms associated to the new edges ua being defined by =
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(3) Choose e V(Yo) and an edge path c in joining a0 tof(ao). Let
it ao) —÷ ir1 (G(Y1), ao) be the homomorphism induced by the inclusion
Yo and let : ir1(GQ)o),ao) ir1(GQ)1),ao) be the homomorphism
sending the homotopy class of each G(Yo)-loop 1 based at to the homotopy class
of the G(Yi)-loop (c * 4)(1) * Show that iri(G(Y), ao) is isomorphic to the
quotient of the free product ir1(G(Y1), * 7Z by the relations =
for all y e ir1(G(Yo, where t is the generator of 7Z (If is an injection, this
group is an HNN-extension.)

The Universal Covering of a Developable Complex of Groups

Let GQ)) be a developable complex of groups over a connected scwol Y. Choose a
maximal tree T in the 1-skeleton of the geometric realization of Y. Let

'r G(Y) iri(G(Y), T)

be the morphism mapping each element of the local group Ga to the corresponding
generator of ir1(G(Y), T) and each edge a to the generator a+. The developments
associated to morphisms to groups were defined in (2.13).

3.13 Theorem. The development D(y, ti-) is connected and simply connected.

Proof We identify the groups Ga to their images in iri(G(Y), T). Thus the elements
of D(y, ii-) are pairs (gGi(a), where e )) and g e iri(G(Y), T). We prove first
that X .= D(y, ii-) is connected.

For each a e V(Y) let be the vertex (Ga, a) of D(Y, and for each a e EQ))
the edge (GI(U), a) Let W be the subset of the geometric realization of DQ), 4))

consisting of the images of the edges a e E(Y)}.The images of the with a e T
form a tree 7' c W that projects to T. Since i(a) for every a e E(Y), the tree
7' contains all of the vertices and hence W is connected. To prove that D(y, ii-)
is connected, it is sufficient to prove that, for each genelator s of iri(G(Y), T), the
intersection W fl s. W is non-empty But this is clear for both s g e Ga and s =
because this intersection contains and either t(a) or i(a).

If D(Y, ii-) were not simply connected, we could consider as in 2.10 (2)) its
universal covering p X X = D(Y, ii-), which is equivariant with respect to the
homomorphism : G G := ir1(G(Y), T) (in the notation of 2.10 (2)) Using the
choices made in 2.10(2), the complex of groups associated to the action of G on X
can be identified to G(Y); the corresponding homomorphism 4) : G(Y) —÷ G is such
that 4)(a) = 1 when a e T. Therefore the map associating to each generator g e Ga
of ir1 (G(Y), T) the element 4)(g), and to each generator

a homomorphism : G —÷ G Moreover o is the identity of G. The map
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X X sending (gGj(a), a) to 4(g).(&) is a morphism andp is the identity of
X. As X is connected, is a bijection and X is simply connected.

Note that if is a graph of groups, then D(Y, LT) is called the associated
Bass-Serre tree (see 11.18 and 11.21).

The following is a generalization of 11.12.20.

3.14 Properties of the Development D(y, Let 3) be a connected scwol and
choose a base vertex oo E V(Y). Let G(Y) —* G be a morphism which is
infective on the local groups and let D(Y, be the corresponding development on
which the group G acts. Let ao) : a0) G be the homomorphism
induced by

The connected components of D(Y, correspond bifectively to the elements
of the cosets in G of the image ao)).

(2) If D(y, 0) is connected (equivalently, ao) is surf ective), the fundamental
group of D(Y, is the kernel of r1(çb, ao) In particular D(Y, is simply
connected and only if ao) is an isomorphism.

Proof Let T be a maximal tree in the 1-skeleton of the geometric realization of
y. As D(y, depends up to isomorphism only on the homotopy class of (see

2.19), we may assume that = I for every a E T, and hence replace ao)
by the homomorphism A = T) ir1(g(Y), T) —* G that sends the generator
g E Ga to and the generator to Let G0 C G be the image of this
homomorphism. We have ALT and is equal to the composition of a morphism

G(Y) —* G0 with the inclusion Go G.

According to 2.18, the map L: D(Y, IT) —* D(Y, defined by

(YG,(a), a) '—÷ a),

where y E ir1(G(Y), T), is a Galois covering in the sense of 1.13 with Galois
group the kernel of A. In particular L is surjective, D(Y, is connected and the
fundamental group of DO), is isomorphic to the kernel of A. It is easy to see that
D(Y, is a connected component of D(Y, and the connected components of
D(Y, are in bijection with the elements of GIG0.

3.15 Corollary. Let G be a group acting on a simply connected scwol X with quo-
tient 3) G\X and let GO)) be the complex of groups associated to this action (with
respect to some choices). Let T be a maximal tree in the 1-skeleton of the geomet-
ric realization of 3). Then G is isomorphic to ir1(G(Y), T) and X is equivariantly
isomorphic to D(y,

3.16 Example. This corollary can be used to give a presentation of such a group
G (compare with 11.12.22). For instance, one sees that the subgroup of the group of
orientation preserving isometries of S2, or ]H12 leaving invanant a tesselation by
regular n-gons with vertex angle 2ir/3 is generated by three elements r, s, t subject
to the relations s" = r3 = t2 = rst = I (cf. 3.11(3)).
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4. Local Developments of a Complex of Groups

In this section we show that complexes of groups are always developable
(Thus non-developability is a globa' phenomenon.) We construct local developments
at the vertices (4.10, 4.21) and edges (4.13) of the underlying and show that
in the developable case these are faithful models for the local structure of the devel-
opment (4.11). We shall also explain how the different developments are re'ated to
each other (4. H and 4.22).

For the duration of this section we fix a scwol 3).

The Local Structure of the Geometric Realization

Recall that the geometnc realization IYI of a scwol 3) is the comp'ex obtained as the
quotient of the disjoint union of simplices

U
,i>O.

by the equivalence relation generated by the identifications

(d1(x),A) (x, a•(A))

where (x, A) E x and the maps d, and

are defined as in (1.3).

4.1 Definition of st(a). Given a E V(Y), we define the open star st(a) of a in 13)1
to be the union of the interiors of the simplices containing a (This is an open subset
of 13)1.)

Given a E V(Y) andp, q > 0, let C be the subset consisting
of sequences of edges

(zi ,..,z,,, c1 cq)

such that i(z,,) = a ifp > 0, t(c1) = a if q > 0; ifp = q = 0, then by definition
= {a}. The elements of label the simplices of 3)1 containing a.

For 0 < i <p (resp. p < i <p + q), the map —* restncts
to a map : (resp —*

4.2 Definition of St(a). Given a E V(Y) we define St(a) to be the complex obtained
as the quotient of the disjoint union

U x {A},
p.q,A

with p > 0, q > 0, A E by the equivalence relation generated by the
identifications

(d1(x), A) (x, a,(A)),
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where (x,A) E x and i p. The vertex x {a}) will also be
denoted a. There is a natural affine map St(a) IYJ which induces a bijection from
the set of simplices containing a E St(a) to the set of simplices containing a e
and which restricts to an affine isomorphism from the open star of a E St(a) onto
the open star of a E IYI. We identify these two open sets st(a) by this isomorphism.

4.3 Remark. The projection St(a) —* YJ is not injective if there are at least two
distinct edges with initial vertex a (resp. with terminal vertex a) arid the same
terminal vertex (resp. the same initial vertex).

We leave the reader the exercise of proving that St(a) is the geometric realization
of the scwol Y(a) defined in .17).

4.4 Definition of st(a). Given a E E(Y), we define the open star st(a) of a to be the
union of the interiors of those simplices in YI that contain the 1-simplex labelled a
(which we also denote a).

Let C be the subset consisting of sequences

(zi z,,,a1, ..,ak,cI,.. ,Cq)

such that a1 . = a. The elements labe' the simplices of IYI contain-
ing a.

4.5 Definition of St(a). Given a E(y), to construct the complex St(a) we start
with the disjoint union of Euclidean simplices

u x
p.k,q.A

where p > 0, k > 1, q > 0 and A E and form the quotient by the
equivaknce re'ation generated by the identifications (d1(x), A) (x, a,(A)), where
(x, A) E x f(pk.q)(a) and i p, p + k (We write a to denote the 1-simplex
of St(a) labeUed (a) E

There is a natural map St(a) YI whose restriction to the open star in St(a) of
the 1-simplex a is an affine isomorphism onto st(a) As above, we identify these two
sets by means of this isomorphism.

4.6 Exercise. Show that for a, r E V(y), the intersection st(a) fl st(r) is the
disjoint union of the connected open sets st(a), where a is any edge such that its
initial vertex is a and its terminal vertex is r or vice versa.

Let a, a' be two distinct edges of Y such that t(a) = t(a'). Show that st(a)flst(a')
0 if and only if there exists b E E(Y) such that either a = a'b or a' ab. In the
latter case st(a) fl st(a') is contained in the disjoint union JJb st(b), where b E E(Y)
is such that a' = ab.

Consider the case where i(a) i(a') and st(a) fl st(a') 0.
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The Geometric Realization of the Local Development

Let G(Y) = (Ga, li/a, gab) be a complex of groups over 3). For each a E V(Y) we
shafi construct a comp'ex with an action of the group such that St(a) is the
quotient of by the action of Ga. (The construction is motivated by Proposition
4.11.) First we need another definition.

4.7 Definition of The elements of are sequences

Zp,Cl, .

where (Zi, . z,,, c',.. , c11) = A E c = c1, . . . and E

If q = 0, by convention Ga, so is in bijection
with

We define

Ei" for 0 < i <p and
forp < i p + q

a,A)ifi <p+qori =p+qand0 < q < 1,

and if i = p + q, q> 2, then by definition

z,,, c1, . , ce,) =

z,,, C1 , . ,

where c' = c1 . .

The group Ga acts naturally on by left translation on the first component
and the maps are Ga-equivanant The quotient by this action is

4.8 Lemma. If i andj satisfy 0 i <f <p orp <i <f <p + q, then

a1aj =

Proof Only the casej = p + q and i = p + q — 1 is not obvious. In that case, one
must apply condition 2.1 (ii).

4.9 The Construction of St(&) and st(&). We start from the disjoint union of
Euclidean simplices

x {A},

p(j A

where p> 0, q> 0 and A E On this we consider the equivalence relation
generated by

(d,(x),A) (x, a,(A)),

where (x, A) E x and 0 < i <p orp < i $ p + q.
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The group Ga acts naturally on this disjoint union by the identity on the first factor
arid as in (4.7) on the second factor. This action is compatible with the equivalence
relation.

In the light of Lemma 4.8, we know that the quotient by this equivalence relation
is a complex (with an action of Ga); it is denoted The (p+q)-simplex A)

is mapped onto a (p + q)-cell of which we regard as being labelled
A E Forp = q = 0, there is only one such 0-simplex and it will be denoted

The set of simplices of containing are in bijection with the set of their
labels.

If 3) is the scwol associated to a poset Q and if G(Y) is a simple complex of
groups, then is isomorphic to the complex constructed in 11.12.24.

4.10 Definition. The open star of in is denoted it is invariant by the
action of Ga. We cal' equipped with this action of Ga, the geometric realization
of the local development of G(Y) at a.

The natural projection —* induces a projection —* St(a)
and an isomorphism St(a). The restriction of the projection to is

denoted
Pa —* st(a) c 13)1.

4.11 Proposition. If the complex of groups G(Y) is associated to an action of a
group G on a .ccwol X (with respect to some choices, as in 2.9(1)), then there is a
canonical -equivariant isomorphism

fa : —*

where is the vertex of IXI chosen as the representative of a.

Proof We use the notations established in (2 9). As the projection p : X
is non-degenerate, given a simplex of 13)1 that contains a and is labelled A =

z,,, c1 cq) E there is a unique simplex of XI labelled A pro-
jecting to A with initial vertex the chosen representative of the initial vertex i(cq)
of A. The simplices of XI containing and projecting by to the simplex la-
belled A = (zi, .. , z,,, c1 cq) E

E E G G mapping to
They are in bijection with the elements of Therefore the map

A) i-÷

gives a bijection denoted A" : which is Ga-equivariant.
We claim that these maps A" commute with the maps It will then follow that

the maps (x, A) i-÷ (x, A""(A)) from x to x induce a
Gaequivasiant isomorphism from to
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To see this, first observe that, for A = (Zi z,,, c1, . .., E we
have a,(A) = a1(A) for i p,p + q and = hcq.ap÷q(A). We check commu-
tativity only in the non-trivial case i = p + q and q > 2. In this case, A" maps

A) = ap÷qA) to

hc').a,,÷q(A) = (ggc' eqhc'hcq =

which is equal to A) (Here we appealed to (2.9(1)) for the last
equality.) LI

The construction of is functonal with respect to morphisms of comp'exes
of groups.

4.12 Proposition. If çô = : G(Y) G(Z) is a morphism of complexes
of groups over a non-degenerate morphismf . 3) —*Z, then it induces, each

vertex a E V(Y), cba-equivariant maps —* St(f(a)) and —* st(f(a)).

Proof Forp 0, q > 0, let : be the
map

A) i—÷

whereA=(zi,..

f(A) = (f(zi), . . ,f(z,,),f(c1)

We claim that the maps commute with the maps defined in (4.7). Again
we check only the non trivial case where i = p + q and q 2. We have

o A)) =

f(a,,+qA)),

where c' = .. . Using condition (ii) of (2.4), we see that this is equa' to

o A)) =

Therefore the maps

(id, x FP' x

induce a map —* St(f(a)), and by restnction a map —*

st(f(a)). D
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4.13 The Construction of and Let a E E(Y) with i(a) = a and t(a) =
Let C be the set of sequences

A = (glfrC(Gj(a)), zi a1 ak, C1 cq),

where a = a1 . . c c1,.. cq and E We have maps

0 < i < p
a p < t + k

which are the restriction to of the maps defined above in (4.7).
To construct the complex we start from the disjoint union

u
where p > 0, k > 1, q > 0 and A E and then we form the quotient
by the equivalence relation generated by (d1(x), A) (x, where (x, A) E

<p+q+k,
The group acts naturafly on this disjoint union and the action is compatible

with the equivalence relation.
The quotient of this equivalence relation, equipped with the induced action of

Ga, is denoted The (p + k + q)-simplex A) is mapped injectively to
the quotient, its image is a simplex which we label A. Forp = q = 0 and k = 1,

there is on'y one such 1-simplex arid it will be denoted
Finally, we define to be the union of the interiors of those simplices of

that Note that the natural projection St(a) St(a) induces an affine
isomorphism —* St(a).

Note also that there is a natural Ga-equivariant map induced by
the inclusion

This map sends by an affine isomorphism onto the union of the interiors of
the simplices that contain the 1-simplex labelled (Ga, a). This simplex will be also
denoted We identify to its image in

4.14 Proposition. Let a E(Y) with i(a) = a and t(a) = r. There is a
equivariant map

f0 :

sending isomorphically onto an open set, and the induced map that one gets
st(a) = st(r) = is the natural inclusion. Moreover; for all
(a, b) E

E
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4.15 Remark. One can show that and St(a) are the geometnc realizations of
and that the maps defined above —* and St(?) are

geometric realizations of morphisms of scwols (see 4.21).

Local Development and Curvature

Assume that the geometric rea'ization IYI of the scwol 3) is endowed with the
structure of an MK-complex with a finite set of shapes in the sense of Chapter 1.7
(cf 1.3.3(2)) For each a E V(Y), we can use the affine maps discussed above to
endow St(a) and with an induced MK-complex structure such that —*

St(a) restricted to each simp'ex is a isometry. From this inhents an
induced length metric and the : —* constructed in (4.14) are local
isometries.

4.16 Definition. Let G(Y) be a complex of groups over a scwol 3) such that 13)1 is

metrized as an MK-complex. We say that G(Y) has curvature < K if in the
induced metric described above, has curvature < K for each a E V(Y). If K <0 then
we also say that G(Y) is non-positively curved.

In the next chapter, we shall prove the following theorem which is a generalization
of Gersten-Stallings theorem [St9 1] for triangles of groups. See also [Gro87], [Hae90,
91], [Spi92] and [Cors92], in the case dim)) = 2.

4.17 Theorem. If the complex of groups GQ)) is non-positively curved then it is

developable.

If)) is connected and Go) is of curvature < K, where K <0, then the geometnc
realization of the simply connected development of 3) as constructed in Theorem
3.13 is an MK-polyhedral complex which is CAT(K). It is equipped with an action of
the fundamenta' group of Go) by isometries, and Go) is isomorphic to the complex
of groups associated to this action.

4.18 Remark Assume that 3) is the scwol associated to an complex
K. Then Go) is of curvature K in the sense of (4 16) if and only if, for each
vertex r of K, the geometric link of in with the induced spherical structure,
is CAT(1). To see this one simply applies the argument given in (11.5.2).

4.19 Examples
(1) In the notation of 1.4(3) and 3.11(4), if we assume that the two congruent

n-gons in have an angie Jr/nk at the vertex tk, where nk is the order of 5k E Gk,

then the complex of groups GO))) is of curvature < K. If K 0, then Go) is
developable.

(2) The following is an alternative construction of an example due to Ballmann
and Swiatkowski (see Theorem 2 and section 4 of [Ba5w97]) We take m copies
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tk the local development is isometnc to the interior of a hexagon in the Euclidean
plane, and at the vertex r' the local development is isometnc to the interior of m
Euclidean rectangles glued along a geodesic; in particular these local developments
are of non-positive curvature. In the local development st(?) at r, the link of? is the
following graph L: the vertices of L are the elements of H; the edges of L are labelled
by the integers 1 m and each edge has length two vertices h, h' are joined
by an edge labelled k if h' = hsk.

The complex of groups G(Z) has non-positive curvature if and only if the girth
of L is at least 6 If this is the case, then G(Y) is developable and the geometric
realization of the simply connected development of Y as constructed in (3.13) is a
piecewise Euclidean complex K whose 2-cells are equilateral Euclidean tnangles;
the link of each vertex will be isomorphic to L. The fundamental group G acts on K;
the action is transitive on the set of vertices and the isotropy subgroup of a vertex
is isomorphic to H. The isotropy subgroup of each 2-cell is the dihedral group with
six elements. (The triangulation of K corresponding to the triangulation of is

obtained by dividing each 2-cell of K into three congruent quadnlaterals and passing
to the barycentric subdivision of this cell decomposition of K.)

The Local Development as a Scwol

Here we construct the local development purely in the framework of scwols. Specif-
ically, given a complex of groups G(Y) = (Ga, g0i,) over a scwol Y, for each
vertex o E V(Y) we construct a scwol with an action of such that the
geometric realization is equivariantly isomorphic to

4.20 The Construction of Lka. The upper link Lka of 0 V(Y) was defined
in (1.17). The natural morphism —÷ 3) defined in (1.17) induces a complex
of groups G(Lka) over from G(Y) by the construction of (2.7). There is a
natural morphism : —÷ mapping the local group Gj(a) associated to
a E V(Lka) c E(Y) to the group Gg by and associating to each edge (a, b) of
Lka the element E Ga. The development D(Lk.I, of associated to
this homomorphism shall be denoted

More explicitly, the scwol is defined as follows:

= a E E(Y), t(a) = o; E G(l/1/Ia(Gi(a))}

E t(a) = 0, E

The maps i, t: —÷ are defined by

a, b)) = ab)

a, b)) = a).

Composition is defined when a' = ab and g' = gg0b mod by the
formula
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a, a', b') = a, bb').

The group Ga acts naturally on namely h E acts on (glfrob(G,(b)), a, b) E
E(Lk;) by

h a, b) =
a a, b) to (a, b),

this induces an isomorphism —÷ L1ç1.

4.21 Definition of the Local Development The local development of the
complex of groups G(Y) at the vertex a E V(Y) is the scwol (Y1 *

= * a * together with an action of on it: acts trivially on the
first factor and as above on the second factor We write to denote the subscwol
(a*Lkn)cy(a).

We have a natural morphism

-± Y(a)

inducing an isomorphism G(, —÷ Y(a). This is simply the join of the identity
on the first factor and the morphism —÷ on the second factor.

4.22 Proposition. is isomorphic to the geometric realization of

Proof We leave the proof as an exercise for the reader We only point out the natural
bijections

4.23 Proposition. Let = G(Y) —÷ G(Z) be a morphism of complexes
of groups over a non-degenerate morphism of scwols f Y —÷ Z, and let a E
V(Y). Then induces a morphism —÷ Z(f(a)) of the local
developments.

Proof The non-degenerate morphism f Y —÷ Z induces a morphism —÷

sending the vertex a E to the vertex f(a) E and the edge
(a, b) E E The desired morphism =

* a * Lkñ) —± Z(f(a)) *f(a) * is the join of the following
morphisms of the three factors. On the first it is the morphism just described; on the
second it maps a tof(a); and the morphism on the third factor is described on the
set of vertices (resp edges) of by the following formulae (where a E E(Y) has
i(a) = a, (a, b) E E

(g a)

(g a, b)

It is clear that this morphism is (Compare with 2 18(1).)



566 Chapter III C Complexes of Groups

5. Coverings of Complexes of Groups

In this section we define coverings of complexes of groups and reformulate the
definitions in several ways. We also define the fibres and monodromy of a covering.
We show that a covering is determined up to isomorphism by its monodromy. The
theory of coverings in the framework of small category theory is somewhat simpler
and its relation with the theory of coverings of complexes of groups is indicated at
the end of the appendix.

In the particular case of graphs of groups, our theory of coverings should be
equivalent to the theory of Bass [Bass93J, although it is not clear if his notion of
morphism is the same as ours.

Definitions

5.1 Definition. . G(Y) be a morphism of complexes of groups over
a non-degenerate morphism of scwolsf : —÷ where )) is connected. We say
that is a covering if for each vertex a' E V(Y'):

(i) the homomorphism : —÷ Gf(a') is injective, and

(ii) the -equivarlant map st(o') —÷ st(f(o-')) induced by (see 4.12) is a bijection.

•

0 T z2

Z2.

5.2 Lemma. Condition (ii) is equivalent to the conditionS

(ii)' For each a E E V(Y') with t(a) a =zf(a'), the map

jJ
((a )=1

induced by g F-+ is bijective

Fig. C.15 A covering of a 1 -dimensional complex of groups
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Proof The proof is in terms of the maps defined in the proof of (4.12). If(ii)
is satisfied, then the map '(o') : —÷

of this map is clearly equivalent to (ii)'.
(a') is bijective, then is bijective for allp, q. This is obvious ifq = 0

becausef is assumed to be non-degenerate. Let us prove surjectivity for q> 1. Let
A = = (zi C, cq) E = c1 ..
By hypothesis (ii)', there exists a unique element c') E

mapped by '(a') to c). As f is non-degenerate, there is a unique
A' = (z',,.., C'1,.., c'q) E with initial vertex i(c') = i(c'q) projecting

byf to A. Therefore A') is mapped to A The proof of the injectivity is
similar.

5.3 Remark. Conditions (ii) or (ii)' are equivalent also to the condition that the map
—÷ induced byf, as defined in 4.23, is bijective. This in turn is equivalent

to the condition that the map Y'(&') —* is bijective.

5.4 Examples
(1) In the case where G(Y') and G(Y) are trivial complexes of groups (i.e all

the local groups are trivial), definition (5.1) reduces to the definition of a covering
of scwols (1.9) However if the local groups are not trivial, then the underlying
morphism of scwols will not in general be a covering. (This is the case in figure
C.15.)

(2) In the notation of 2.9(1), consider an action of a group G on a scwol X and
an associated complex of groups GQ)) over the quotient Y. We shall describe how
to associate to this situation a covering A : X —÷ G(Y) (where we consider X as the
trivial complex of groups over X) over the morphism p X —÷ Y = G\X. For each

V(X) we choose an element E G such that = where is the chosen
representative in the orbit of a. We define A to be the morphism that maps each edge

E E(X) to the element

= E

It is straightforward to check that A is a morphism, namely

A(ab) =

A a covering, because condition (ii)' of 5.2
is satisfied. In this natural sense, the scwol D(Y, constructed in 3.13 can be
considered as a simply connected covering of G(Y).

We generalize the preceding construction. With the notation of 2.9(4), consider
actions of groups G and G' on scwols X and X' respectively. Let L: X —÷ X' be a
morphism which is equivariant with respect to a homomorphism A : G —÷ G'. Let
A : G(Y) —÷ G'QY) be an associated morphism for the corresponding complex of
groups as defined in 2.9(4). Assume that X is connected. Then A is a covering if and
only if both of the following conditions hold: L is a covering and the restnction of A
to the isotropy subgroup of each vertex of X is injective.
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The Fibres of a Covering

5.5 Definition. Let = : —÷ G(Y) be a morphism of complexes
of groups over a non-degenerate morphismf : —÷ Y. The fibre over a vertex
a E V(Y) is the set

F(, = U

with the natural action of by left multiplication.
For a E E(Y), let

F0 —± FI(a)

be the ifr0-equivariant map which is the union of the maps defined by

=

where a' Ef'(a) and g E

One calculates (using 2.1(i) and 2.4(u)) that for composable edges (a, b) E
we have

F0 o Fb = g0,b.F0b.

5.6 Proposition. Condition (ii)' of 5.2 holds for every a' Ef' (a) if and only

(ii)" Va E E(Y) with t(a) = a, the map F0 : F,(0) —÷ F,(0) is a bijection.

In the proof of this proposition we shall need the following general observation.

5.7 Lemma. Let H and K be subgroups of a group G, and let (gj)JEJ be a family
of elements of G We consider the action of H on G/K by left translations and
similarly the action of K on G/H. For eachj E J, let H3 be a subgroup of H that fixes

E G/K. Note that the subgroup ïç := fixes E G/H. Thefollowing
conditions are equivalent:

(1) The H-equivariant map

jEJ

given by hI-I1 F-÷ hg1K is a bijection.

(2)
= H fl and G = U Hg1K.

j€J

(This last condition means that {gj}j€j is a set of representatives for the double
cosets H\G/K, i.e. the set of subsets of G ofthe form HgK.)

(3) The K-equivariant map
UK/Ic -* GIN
iEJ

given by kK3 F—* kg1'H is a bijection.



The Fibres of a Covering 569

Proof The injectivity of H/11 —÷ G/K is equivalent to the condition that
H the condition that is the isotropy

subgroup of g'H E G/H. The map associating to the H-orbit of gK E G/K the
double coset HgK induces a bijection from the set of H-orbits in G/K to the set of
orbits in G under the action (h, k) g F-+ hgk' of H x K on G. Therefore
is a set of representatives for the H-orbits in G/K, if and only if {gj}j€j is a set of
representatives for the double cosets H\G/K in G Interchanging the roles of H and
K, we see that it is also equivalent to say that is a set of representatives for
the K-orbits in G/H. Thus (1), (2) and (3) are equivalent.

Proof of the proposition 5.6. Condition (ii)" is equivalent to the statement that for
every Cr' Ef'(Cr) and every a E E(Y) with t(a) = a, the map

jJ (G,(0')) —÷

dEf'(a)

which is the restnction of F0, is bijective.
We apply the lemma with the following choices:

G = K = H =

J = {a'

E J and H0 =

Condition (ii)" corresponds to condition (1) of the lemma, while condition (ii)' cor-
responds to condition (3)

Our next goal is to establish a converse to 5.6: given an appropriate system of
bijections F0 one can reconstruct an associated covering

5.8 Proposition. Let G(Y) be a complex of groups over a connected scwol Y. Suppose
that for each o• E V(Y) a set Fa is given with an action of and for each
edge a E E(Y) a bijection F0 : F1(0) —+ F,(0) is given such that
F0 o Fb = g0.b for a/I (a, b) E Then one can construct a covering

G(Y') —÷ GQ)) over a non-degenerate morphismf : —÷ Y such that the Fa
are naturally the fibres Moreover G(Y') is unique up to isomorphism and is
unique up to homolopy.

Proof For each a the subsetf'(a) C V(Y') will be a set of representatives for the
Ga-orbits in For each o' Ef'(o) there will be an edge a' = (a, a') in Y' that
projects byf to a; the initial vertex i(a') is a' and the terminal vertex t(a') will be
the chosen representative in the G,(O)-orbit of F0(a'). When the composition of two
edges (a, a')(b, p') is defined, it is equal to (ab, p'). This information specifies the
scwol Y' and the morphismf : —÷ Y.

Define to be the subgroup of G(1 fixing a' E and let : —÷ be the
natural inclusion. For each a' E V(Y') withf(a') = a, choose an element E G,(0)
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G,(O)-orbit

L

.i(a)

Fig. C.16 Construction of a covering from the monodromy

such that = t(a') and define a homomorphism —÷ G,(a) by
the formula

=

For composable edges (a', b') E define

= E G,(0').

It is straightforward to check that the above data define a complex of groups G(y')
over Y' and a morphism : —÷ G(Y) overf : y' —÷ Y defined by the
and the elements The fibre over a is the disjoint union of the Ga/Ga' for
a' E (a); it can be identified to by the map sending the coset to the point
g.a'. Under this identification, the map from the fibre over i(a) to the fibre over t(a),
associated to a as in (5.5), is precisely F0. Moreover, as these maps are bijections,
(5.6) shows that the morphism is a covering.

It is clear that any other choice for the representatives a' of the orbits, or for the
elements would lead to a homotopic morphism.

5.9 Galois Covering. An important special case of the preceding construction arises
naturally when one has a morphism = from a complex of groups G(Y)
to a group G.

For each a E V(Y) we define Fa = G with the action of given by right
translations via (i.e. for h E G, define h.g = If F0 : G —+
G is defined to be the right translation by then Fa is and
(Fa o = = g0,b.F0b(g). Following the construction of(5.8),
we give an explicit description of the covering : G(Y') —÷ G(Y) over the morphism

f: Y' —÷ Y in this special case.

a
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Y' will be the development D(y, as constructed in (2.13) andf: D(Y, —÷

Y will be the natural projection. Thusf'(o) is the set of pairs a) E

x {a) andf1(a), a E E(Y), is the set of pairs a' = a)
with i(a') = i(a)) and t(a') = t(a)). The group G
acts on Y' = D(y, andf induces an isomorphism G\Y' —÷ Y.

For each a' E c V(Y'), the group is the kernel of and
Gcy is the inclusion In order to define and gab we need to choose for

each a representative in G; we again denote this a', thus identifying
a' to the coset a' c E(Y') an
element E G1(0) such that

= t(a').

We then define . Gj(a) _+ by = o

For composable edges (a', b') E with a =f(a'), b =f(b'), we define

g0'b = E ker

The complex of groups G(Y') is defined to be and the morphism
G(Y') —÷ G(Y) is given by the homomorphisms and the elements

5.10 Examples
(1) Even if G(Y) is a simple complex of groups, in general a Galois covering

G(Y') will not be isomorphic to a simple complex of groups, as the following example
illustrates.

Let )) be the scwol associated to an n-gon P. The set of vertices of G(Y) has n
vertices tk corresponding to the vertices of P, has n vertices corresponding to the
barycentres of the sides of P, where k = 1 n, and has a vertex p corresponding
to the barycentre of P. The set of edges has 2n elements ak, with i(ak) =
ak, t(ak) = tk, = tk_I (indices mod n), and a further 2n elements bk, ck with
i(bk) = j(Ck) = p. t(bk) = ak, t(Ck) = Moreover akbk = = We
consider on y the complex of groups where is trivial, is cyclic of order two
generated by sk, and is the dihedral group of order generated by the images
of sk and Sk÷ I.

Let : G(Y) —÷ Z2 be the morphism associating to each element sk the generator
of Z2 and to each edge the trivial element. We construct the associated Galois

covering : G(Y') —÷ G(Y). The scwol Y' is associated to the complex obtained
by gluing two copies of P along their boundary in the notation of figure C.4,
the vertex p corresponds to the coset {t} and p' corresponds to the coset {1}. The
local groups associated to the vertices tk are the cyclic groups of order generated

by SkSk+I; the other local groups are trivial. To determine the twisting elements we
choose coset representatives, these are trivial except for p, where we have the coset
{t}. The elements associated to the edges a' of Y' are trivial except 4(bk) = sk
and 4(ck) = sk+I. With these choices, all the twisting elements are trivial except

= SkSk÷j fork = 1 n.
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(2) We reconsider the tnangle of groups Gk(Y) studied in 11.12.34(5) and maintain
the notation established there. Thus Y is the scwol associated to a Euclidean triangle

with angles (k yr/k at the vertices r0, ti respectively. Consider
the dihedral group D3 generated by the elements t1 and t2 of order 2. Fork odd, there
is a simple morphism : G(Y) —÷ D3 sending s2 to t2, both s, and s3 to t1, and s0

to 1.
The corresponding Galois covering gives a simple complex of groups G(Y'),

with respect to suitable choices (cf. [Hag93J), where Y is the scwol associated to
the polyhedral complex K obtained by gluing three isometric copies of along the
edge [to, nj. Let i 1, 2, 3, denote the remaining three vertices of K The local
group at is the dihedral group generated by two involutions, t and the local
group at to is the cyclic of order two generated by t; and the local group at n0 is
isomorphic to Z2 x Z2, the three non trivial elements being xi, x2, x3 (the elements
labelled by the same letter are identified by the edge monomorphisms). The groups
associated to the barycentres of the 2-simplices and to the edge [n0, n1j are all trivial,
and the groups associated to the edges other than [no, nj are cyclic of order two. We
leave the reader to check that Gk(Y') is simply connected if k = 3.

The Monodromy

5.11 Construction of the Monodromy. Let G(y) be a complex of groups over a
connected scwol Y and let the system of maps F0) be as in (5.8). For each
g E let FR : F(, —± be the bijection x F-+ g x given by the action of g on

For each oriented edge e E define Fe : FI(e) ± Fi(e) to be F0 if e =
and F;' if e = a. Given a G(Y)-path c = e1, g,. . , gk) joining o to t,
let = . . —÷ Note that if c and c' are homotopic, then
F, = Also i = and if the concatenation c * c' of two G(Y)-paths c and
c' is defined, then o

Fix a vertex o(-). The monodromy associated to Fa) is the action of 7r,(G(Y),
0o) on Fa0 where the homotopy cJass of a G(Y)-loop c at °o acts as the bijection

: Fa0 —± Fao.When(Fa, F0) is the fibre system : G(Y') —÷
this action is called the monodromy of the covering.

We end this section by stating the classification of coverings in terms of mon-
odromy.

5.12 Theorem. Let G(Y) be a complex of groups over a connected scwol Y. Fix a
vertex Ob E V(Y). Suppose that we are given an action (G(Y), a0) on a set F0.
Then there is a covering : G(Y') —÷ G(Y) whose fibre over o•o is F0 and whose
monodromy is the given action of (G(Y), o0). This covering is connected if and
only if the monodromy action is transitive.

Let : GQY) —÷ GQ)) overf' : —÷ Y, and : G(Y") —÷ G(Y) over
—÷ y, be two coverings such that there is an equivariant bijection fo from

the fibre over a0 to the fibre of çô" over ao (equi variance is with respect
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to the monodromy actions). Then there is an isomorphism : G(Y') —÷ G(Y") over
f: Y' —÷ Y" such that o = and induces the mapfo on the fibres over

Proof The proof of this result follows from the corresponding result proved in the
more general framework of coverings of small categories in the Appendix. (The
relationship between the general framework and coverings of complexes of groups
is explained in A.24.)

Appendix: Fundamental Groups and Coverings
of Small Categories

As we indicated in the introduction to this chapter, the notational complexity that
necessarily accompanies definitions concerning complexes of groups (morphisms,
homotopy, fundamental groups, etc.) can obscure what are actually very natural and
general constructions. In this appendix we strip away the specific notation associated
to complexes of groups and explain these definitions in the general context of small
categories. Thus the notions of morphisms of complexes of groups and homotopies
between them are shown to correspond to functors and homotopies for the associated
categories.

We give the definition of the fundamental group of a small category and give
a presentation of this group using a maximal tree in the graph naturally associated
to the category. The fundamental group of a complex of groups is the fundamental
group of the associated category.

The theory of coverings for small categones is parallel to the theory of cov-
erings for topological spaces. If : G(Y') —÷ GQ)) is a morphism of complexes
of groups which is a covering as defined in 5.1, then the corresponding functor
CG(Y') —÷ CG(Y) for the associated categories is not a covering in general, but it
is the composition of an equivalence CG(Y') —÷ C' and a covering C' —÷ CG(y).
(The fact that the equivalence depends on some choices explains why the theory of
coverings for complexes of groups is somewhat more complicated than the theory
of coverings of categories.)

Basic Definitions

A.1 Category. A (small) category7' C consists of a set C, an auxiliary set 0(C),
ca/led the set of objects of C, and two maps i : C —÷ 0(C) and t : C —÷ 0(C).
The maps i and t associate to each element 72 y E C its initial object i(y) and
its terminal object t(y). Given a, r E 0(C), we let CTa denote the set of y E C

71 In this chapter we deal only with small categones, so for us "category" will always mean a
small category

72 In the literature, elements of C are often called morphisms, but we shall not use this termi-
nology We interpret the elements of C as arrows -y with source i(-y) and target t(-y)
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such that i(y) = a, t(y) = r. A law of composition (partially defined) is given
in C: two elements y, y' E C can be composed and only — t(/); their
composition y/ belongs to To each object a E 0(C) is associated an
element which is a unit: E Cr0., then Yl0. = y = The law of
composition is associative: and y'y" are defined, then (yy')y" =
and this composition is denoted yy'y".

We shall often identify 0(C) to a subset of C by the inclusion a i—÷ 10.. An
element y E Cr0. is called invertible if there is an element E such that

= andy'y = 1(7.

A subcategory C' of a category C consists of a subset C' c C and a subset
0(C') c 0(C) such that if y C' then i(y), t(y) E 0(C'); if y, y' E C' are
composable in C then yy' E C'; and if a E (9(C'), then E C'.

On (9(C) there is an equivalence relation generated by [a r if The
category C is connected if there is only one equivalence class in 0(C). In general,
given an equivalence class, the union of the with a and r in that class is a
subcategory of C; it is called a connected component. C is the disjoint union of its
connected components.

We write to denote the set of pairs of composable elements, i.e. pairs Y2) E
C x C with = t(y2). More generally, we wnte to denote the set of k-tuples

Yk) for which the composition . . . is defined. In particular = C.

By convention, is the set of units of C, often identified to 0(C).

A.2 Examples
(0) A group can be considered as a category with one object where all elements

of the category are invertible.

(1) Let G be a group acting on a set X. Let C = G x X, (9(C) X and let
i, t: C -÷ 0(C) be the maps defined for y = (g,x) by i(y) = x, t(y) = g.x. The
composition (g, x)(g', x') is defined if x = g'.x' and is equal to (gg', x'). For each
object x E X, we define = (1, x). These data define a categoly denoted G v X. The
connected components of G v X are the subcategories associated with the restnction
of the action of G to the orbits.

There are two extreme cases. If X is a single point, then G v X can be identified
to the group G. If G is the trivial group, then G v X is reduced to its set of units X.

(2) Product of two categories. Given two categories C and C' we can consider
their product C x C' as a category: the set of objects is 0(C) x 0(C'), the maps
i, t Cx C' (9(C) x 0(C') send (y, y') to (i(y), i(y')) and (t(y), t(y')) respectively;
and the composition whenever defined, is equal to Y2.

(3) A small category C is a scwol (i.e a small category without loops) if and only
if every invertible element of C is a unit and every element of C with the same initial
and terminal vertex is a unit.

A.3 Functors and Equivalence. Afunctor tl' from a category C to a category C' is
a map : C C together with a map 0(C) 0(C') (also denoted such that
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(1) for y E C, = and =
(2) for composable y, y' E C, =
(3) fora E

A functor : C C' is said to be an isomorphism if there exists a functor
C' C such that is the identity of C and is the identity of C'.

Two functors : C C' are homotopic if for each object a e C there is
an invertible element Ka E such that for each y E C we have =

If for some a0 E 0(C) we have = (a0), and if Kao can be
chosen to be we say and are homotopic relative to ao.

A functor : C C' is an equivalence if there is functor : C' C such that
is homotopic to the identity of C and is homotopic to the identity of C'. In

that case we say that C is equivalent to C'.

A.4 Proposition. For each category C, there is a subcategory C0 C such that the
inclusion C0 —* C is an equivalence and C0 is minimal in the sense that E C0

is invertible, then i(y) = t(y) Any two such subcategories of C are isomorphic.

Proof In 0(C) we consider the following equivalence relation: r a if there is an
invertible element y such that i(y) = a and t(y) = r. For each object a E C, choose
a representative a0 in its equivalence class and an invertible element E

choose = 1 The set of objects of the subcategory C0 is the set of representatives
of the equivalence classes, and for a0, r0 0(Co) we have =

C C0 be the functor mapping y E C to E C0. Then is the identity
of C0 and is homotopic to the identity of C, the homotopy being determined by
the choices We leave to the reader to check that other choices would lead to
isomorphic subcategories.

A.5 Example. Let G be a group acting on a scwol X as in (1.11). Associated to such
an action is a category denoted G v X whose set of objects is V(X) and whose set of
morphisms consists of pairs (g, a) E Gx X with i((g, a)) = i(a), t((g, a)) = g.t(a);
the composition (g, a)(h, whenever defined, is equal to (gh, (h Let G(Y)
be the complex of groups over the scwol Y = G\X associated to this action (as in
2.9(1)) with respect to some choices and ha. Let CG(Y) be the category associated
to G(Y) as in (2.8). Consider the map that sends (g, a) E CG(Y) to the element
(g, G v X, where is the unique element of X such that = i(a) and
p(a) = a. This map gives an inclusion of CG(Y) into G v X, and in this way we
identify CG(Y) to a minimal equivalent subcategory of G v X.

We now characterize categories associated to complexes of groups.

A.6 Proposition. A small category C is associated to a complex of groups by the
construction of(2.8) and only it satisfies the following conditions:

(1) For each object a of C, the subcategory is a group (which we denote Ge).
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(2) For each pair of objects (a, r), if y E h e and g E then the
equality gy = y implies g = and the equality y = yh implies h =

(3) For each y and h E there is an element E such that
yh. (By (1) and (2), is unique and the map G1 is

an infective homomorphism of groups.)

(4) if y E C is invertible, then y E

Proof These four properties are clearly satisfied if C is the categoiy associated to
a complex of groups. Conversely, assume that C satisfies properties (i) to (4). Such
a category has a natural quotient Y which is a scwol. The set of objects V(Y) of
Y is equal to the set of objects of C. The elements of)) are equivalence classes of
elements of C: two elements y, y' E C are equivalent if i(y) = i(y'), t(y) = t(y')
and y' = gy for some g E Letp C )) be the map associating to an
element y its equivalence class. If we define the composition of two classes to be
the class of the composition of elements in these classes, whenever defined, then p
is a functor. Condition (4) implies that Y is a scwol.

For each edge a E EoY), choose a representative a in the class a. Let G(Y) be the
complex of groups over given by the groups the
and the elements ga,b E G,(0) that are uniquely defined by the equality = àb in

C. Then C is clearly isomorphic to the category associated to G(Y): the isomorphism
sends (g, a) to gà. Another choice of representatives would give a complex of groups
deduced from G(Y) by a coboundary (in the sense defined in (2 1)).

A.7 Definition of a Pre-Complex of Groups. A category C satisfying conditions
(1), (2) and (3) of(A.6) is called apre-complex of gmups.

A.8 Example. Let G be a group acting on a category without loops X. The category
G v X defined in (A.5) is a pre-complex of groups.

A.9 Proposition. If a category C is a pre-complex of groups, then it is equivalent to
the category associated to a complex of groups, and this complex of groups is unique
up to isomorphism.

Proof The minimal subcategory C0 of C constructed in (A.4) satisfies the conditions
of (A.6), and is therefore the category associated to a complex of groups.

The Fundamental Group

A.1O C-paths
We wish to define a notion of cornbinatonal path in a category C. To this end,

we associate two symbols y+ and y E C. The set of symbols
with y C is denoted Given e E we define its initial object i(e) and

its terminal object t(e) by the formulae:
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i(y) t(y) = t(y).

Fore = y+ (resp. we define = (resp. y+).
A path in C joining an object a to an object r is a sequence c = ek),

where each E = for] = 1 k 1, and = a, = r.
The initial object i(c) of c is a, and its terminal object t(c) is r. If a = r, then
we also admit the constant path at a (with k = 0) Note that C is connected if and
only if for all a, r 0(C), there is a path joining a to r. If c' = (es, .. , is a
path in C joining a' = r to r', then one can compose c and c' to obtain the path
c * c' = ek, . , joining a to r', called the concatenation of c and
c' Note that this composition is associative. The inverse of the path c is the path

= r to a, where eJ =
If i(c) = t(c) = a, then c is called a ioop at a.

A.11 Homotopy of Paths
Let c = (e',.. , be a path in C joining a to r. Consider the following three

operations on c:

(1) Assume that for sornej <k, we have y+ and (resp. e1 =
and = Then the composition (resp. is defined and we
get a new path c' in C by replacing the subsequence of c by
(resp.

(2) Assume that for some j <k, we have = Then we get a new path c' by
deleting from c the subsequence

(3) Assume that for somej, the edge e1 is associated to a unit (i.e. e1 = for some
object p). Then we get a new path c' by deleting

If c and c' are related as in (1),(2) or (3), then we say that they are obtained
from each other by an elementary homotopy (thus we implicitly allow the inverses
of operations (1) to (3)) Two paths joining a to r are defined to be homotopic if one
can pass from the first to the second by a sequence of elementary homotopies. The
set of homotopy classes of paths in C joining a to r is denoted (C, a, r). The set

a, a) will also be denoted jn(C, a).
Note that ifcjoins a to r, then the path c * is homotopic to the constant path

at a and that c is homotopic to the constant path at r. The homotopy class of
the concatenation c * c' of two paths depends only on the homotopy classes of c and
c'.

Another equivalent way of defining homotopy is to introduce the group FC with
presentation (C± I 7Z) where the relations 7?. are

= V (y, y') E

= Vy E C.

Two paths c = (e',.. , ek) and c' = (e',. ., joining a to r are homotopic
if and only if the elements of FC represented by the words . . ek and e' ..
are equal. In this way we identify n-1(C, a, r) to a subset of FC, in such a way that
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the homotopy class of the concatenation of two paths is the product in FC of the
homotopy classes of those paths.

A.12 The Fundamental Group. The set (C, cr0) of homotopy classes of ioops at
a0, with the law of composition induced by concatenation of ioops, is a group. It is
called the fundamental group of C at a0.

If c is a path in C joining a to r, then the map associating to each loop I at a the
loop c induces an isomorphism a) onto ,r1(C, r). A category C is
simply connected if it is connected and (C, a) is the tnvial group for some (hence
all) a E 0(C).

Let : C C' be a functor. For each y e C, we define = and

= And if c = (e', .. is a path in C joining a to r, its image
under is the path = in C' joining to The map
c induces a homomorphism

a0) : cr0) —*

In fact this homomorphism is the restriction of the homomorphism

Fçb FC FC'

mapping each generator of FC to the generator of FC'.
If : C C' are functors such that = (cro) and if and

are homotopic with respect to ao (see A.3), then the homomorphisms induced by
them on (C, a0) are equal. Indeed if the homotopy is defined by the family of
elements and we write ec,. = E C/±, then for every e E C±, the paths

e,(e)) and are homotopic, so in particular the images of each loop
at 00 are homotopic. This shows in particular that the inclusion into C of a minimal
equivalent subcategory C0 of C induces an isomorphism on fundamental groups.

If C is the category associated to a complex of groups G(Y), then (G(Y), a) as
defined in (3.5) is canonically isomorphic to a). Indeed there is a natural iso-
morphism FG(Y) —* FC that restricts to an isomorphism a) —* a),
this is obtained by sending each g E to (g, E and E to
(1,(a), a)±.

A.13 A Presentation of the Fundamental Group. Assume that the category C is
connected. Consider the graph whose set of vertices is 0(C) and whose set of
1-cells is C, an element y E is considered as an edge joining the vertices a and
r. Let Thea maximal tree in

Let (C, 7') be the quotient of the free group on by the relations:

1+ +1+ - I +(yy) = y y , (y ) = y Vy, y E C and y = I Vy E T.

Then (C, 7') is canonically isomorphic to (C, cr0).

Proof The proof is the same as the proof of 3.7.
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A.14 Remark. For any category C one can construct a classifying space BC which
is the geometric realization of the nerve of C (see and [Se681). BC is a cell
complex whose set of 0-cells is 0(C) and whose 1-skeleton is the graph defined
above. The fundamental group (BC, cr0) is naturally isomorphic to (C, a0). The
covering spaces of BC are the geometric realizations of the nerves of the coverings
of C as defined below

Covering of a Category

A.15 Definition. Let C be a connected category. A functor : C' C from a
category C' to a category C is a covering if for each object a' of C' the restriction of

to the subset of morphisms that have a' as their terminal (resp. initial) object is a
bijection onto the set of morphisms of C with terminal (resp. initial) object

It follows from A.17 that is surjective As in remark 1 9(3), if when C is not
connected, one could define a covering : C' —* C as a functor which is surjective
and satisfies the above condition

A.16 Examples
(1) For a connected category without loops X, the notions of coverings defined

in (1 9) and (A 15) are the same.

(2) A covering of the category CG(Y) associated to a complex of groups G(Y)
is in general not associated to a complex of groups, but it is a pre-comptex of groups
(A.7).

(3) Let G be a group acting on a connected scwol X and let G be the extension
of G by the fundamental group of X acting on the universal covenng X of X as in
(1.15). Then the natural functor G v X G v X is a covering.

A.17 Proposition (Path Lifting). Let : C' C be a covering of the connected
category C. Let a 0(C) and a' E 0(C') be such that = a. Any path in C

starting at a can be lifted uniquely to a path in C' starting at a'. Moreove, two
paths issuing from a' project by to homotopic paths in C, then the paths are also
homotopic in C'. Thus induces an injection of a') into a).

Let C0 be a connected category and fix 00 E 0(C0). Let C0 C' be two
functors such = and Then =

Proof The first part follows directly from the definition of a covering and of homo-
topy, and the second part follows from the first.

A.18 Definition. Let C be a connected category. A covering : C' C, where C'
is connected, is a universal covering if it satisfies the following condition: for every
covering . C" —* C and every a' E 0(C') and a" 0(C') there is a functor

C' C" such that o = and =
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It follows from the above proposition that is unique, and therefore the universal
covering : C' C is unique up to isornorphism.

A.19 Proposition. A universal covering : C' C of a connected category
C always exists and it is necessarily simply connected. Conversely, any covering

C" C such that C" is simply connected is universal.

Proof Choose a0 E 0(C). We define a category C' whose set of objects 0(C') is the

set of homotopy classes ofpaths issuing from a0. The functor will map to the

terminal object of c. The set of elements of C' with initial object [c] are pairs (y, [c]),
where y E C with i(y) = The terminal object of (y, [ci) is the homotopy
class of the path c * y. The object is identified to the pair [c}). The
composition (y', [c'])(y, [c]) is defined if [c'] = t((y, [c])) and is equal to (y'y, [c]).
The functor maps (y, [c]) to y. It is straightforward to check that C' is a connected
category and that : C' C is a covering. Let denote the object of C' which is

the homotopy class of the constant loop at a0.
We shall prove that is a universal covering Let : C" C be a covering.

Let 0(C") be such that = 00. Let : (9(C') (9(C") be the map
associating to each object [c] the terminal object of the path in C" issuing from
whose projection by is c. We extend this to a functor C' C" by mapping
(y, [c]) to the unique element y" E C" such that i(y") = and = y.
This functor maps the homotopy class of the constant path at 00 to (If we want

to map a certain object r' to a preferred object r" with = = r, then
it is sufficient to choose appropriately: choose a path c' in C' joining r' to then

define to be the terminal object of the lifting of with initial object r".)
To see that C' is simply connected, note that the map associating to the homotopy

class of a loop c at 00 the terminal point of the lifting of c with initial object gives

a bijection from jn(C, 00) to from which it follows (A.17) that every loop
at is homotopic to a constant loop.

If C" is simply connected, then it is easy to see that is a bijection Since
= ac' and = it follows from (A.18) that is an isomor-

phism.

A.20 Examples
(1) Suppose that the category C is just a group G with a single ob,!ect identified

to the unit element of G. Then its universal covering is the category C whose set of
objects is G and whose set of elements is G x G, where for each (g, x) E G x G
we define i(g, x) = x and t(g, x) = gx; the composition (g, x)(h, y), when defined,
is equal to (gh, y).

(2) Let G be a group acting on a connected scwol X. One can check that the
fundamental group (G v X, a0) of the associated category is isomorphic to the
extension G of G by 00) descnbed in (1.15).
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A.21 The Monodromy of a Covering
Let : C' C be a covering. The fibre of over a E 0(C) is the set =

C O(C'). For y E C with i(y) = a, let be the map
associating to each a' E F0. the terminal object of the unique element y' of C' such
that = y and i(y') = a'. This map is a bijection because is a covering.
Moreover, for composable morphisms (yi, Y2) E we have = Fr,, and
FL is the identity of F0.. In other words F can be considered as a functor from the
category C to the category whose elements are bijections of sets.

We can reconstruct C' and : C' C from the functor y i—÷ as follows.
The set 0(C') is the disjoint union of the a E 0(C), and : 0(C') 0(C) is

the projection to the index set of the disjoint union. To recover the elements of C' we
consider the set C X0(C) 0(C') of pairs (y, a') E C x 0(C') such that i(y) =
This becomes a category with set of objects 0(C') if we define i((y, a')) = a'
and t((y, a')) = the composition is a)(y2, a'2) = a'2), when
defined The functor C xQ(C) 0(C') C sending (y, a') to y is a covering which
is equal to if we identify C' with C x 0(C) 0(C') by the map sending y' to the pair
(çb(y'), i(y')).

The monodromy of the covering is defined as follows. For each e E C±,

define Fe : F,(e) F(é) to be if e = and if e = For each path
c = (e', . . , joining a to r, define = Fe : (Note that the
unique path in C' that issues from a' e and projects to C joins a' to

If the concatenation c * c' is defined, then = F, and = . If c and
c' are homotopic paths, then F, = In particular the map associating to each loop
cat a0 the map : gives a homomorphism M from (C, cr0) to the group
of bijections of This homomorphism is denotedM and is called the monodromy
representation at ao. The image M(7r1(C, cr0)) is called the monodromy group of

at ao.

A.22 Proposition. Let C be a connected category and let : C' —* C be a covering.
Let E C' and let a0 =
(1) The homomorphism (C', —* (C, ao) described in (A. 17) is injective and

its image is precisely the subgroup ofn1 (C, a0) that fixes in the monodromy
action M described above

(2) C' is connected and only fundamental group (C, a0) acts transitively
on the fibre via the monodromy

of the proposition follows directly from the definitions. Let us
prove the second part. Suppose that C' is connected. Given x, y E there is a
path c' in C' joining x to y whose projection by is a loop c at ao. The bijection
F. of associated to the homotopy class of c by the monodromy maps y to x.
Conversely, if the monodromy group acts transitively on then C' is connected:
given two objects x E F0.0 and z E F0., let c be a path in C joining a0 to a; the map
F, : maps z to some y E Frn,; by hypothesis there is a loop c' such that
maps y to x; therefore the path in C' that issues from x and has projection c' * c joins
xtOz.
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Given two actions of a group G on sets and X2, one says that a bijection

f X2 intertwines the actions if g.f(x) =f(g.x)Vg E G, Vx E

A.23 Proposition. LetC be a connected category and let : C' C and : C"

C be two coverings of C. Assume that there is a bijectionfo from the fibre of çb'

over a0 to the fibre of over 00 intertwining the monodromy representations
M' and M" of and Then there is a unique isomorphism : C' C" with

= b' such that the restriction to is the given bijectionfo.
Given an action (C, a0) on a set F0, there is a covering C' C (unique

up to isomorphism) whose fibre above ao is equal to F0 and whose monodromy at 00
is the given action.

Proof For each object a of C, choose a path in C joining a0 to a. Let (resp.
be the fibre (resp. above a. Let : (resp.

be the bijection determined by As in (A.21), we identify C' with C xQ(C) 0(C')
(resp. C" with C x 0(C) 0(C")). Let

f°. . FZ.

Given y' (y, a') E C', where y C, i(y) = = a and t(y) =r, we define

= (y,fa(a')).

We claim that the map : C' C" is a functor. Clearly Let
us check that = By hypothesis, fo conjugates the monodromies
around the loop cv * *

=

Hence

t(çb(y')) =

= = çb(t(y')).

It follows that if the composition a2) = Y2' a'2) is defined in C',
then the composition 02)) is also defined in C" and is equal to

Y2,f(02)) = Y2, a'2)). It is clear that is bijective, therefore it is an iso-
morphism.

Given an action M of ir1(C, ao) on a set Fo, we construct an associated covering
• C' C as follows. The set 0(C') will be the product 0(C) x F0 and : 0(C') —*

0(C) will be the natural projection. The set C' is the set C x F0. We define i((y, x)) =
(i(y), x) and t((y, x)) = (t(y), M([c]).x), where c is the loop * cj(g). Given

xi) and x2) in C' such that xi)) = t((y2, X2)), the composition is defined
to be equal to Note that = because the loop

* * r) is homotopic to the loop * * * * *
This shows that C' with this partially defined law of composition is a category and
that is a covering with the prescribed monodromy (if we identify the fibre above
a0 to Fo by the map (ao, x) i—÷ x). 0
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The Relationship with Coverings of Complexes of Groups

A.24 Proposition. Let G(Y) be a complex of groups over a connected scwol Y and
let C = CG(Y) be the associated category.

(1) Let : GQI) G(Y) be a covering of GQ)) in the sense of(5.1). There is a
canonical covering : C' C = CG(Y) and an inclusion A CG(Y') —* C'

which is an equivalence, such that =
(2) Conversely, : C' C = CG(Y) is a covering, then C' is a pre-complex of

groups, and for any inclusion A : CG(Y') C' which is an equivalence, the
composition : CG(Y') —* CG(Y) is associated to a covering G(Y')
G(Y).

Proof (1) Let = (h', GQP) G(Y) be a covering over a morphism
f: Y' Y. Let tl': CG(Y') CG(Y) be the associated functor. For each a e V(y),
let be the fibre over a with the action of as in 5.5. Every element of CG(Y) is of
the form y = (g, a), where a E Y and g E G,(a); define = FgFa _4 F,(a)
using the notations of 5.11 (if a = 1 then Fa is the identity of Fe). For composable
elements y, y' of CG(Y), we have = Let . C' C be the associated
covering as in A.23: the set of objects O(C') is the disjoint union of the fibres Fc,. and
C' is the set of pairs (y, x) E CG(Y) XO(C) 0(C') with x E the functor maps

(y, x) to y.
We now define the inclusion A CG(Y') C'. Let y' = (g', a') E CG(Y'),

where a' E Y' with i(a') = a', t(a') = r' and g' E Then A(y') = A(a')),
where A(a') = E C To show that A is a functor, the
main point to check is that t(A(y')) = A(t(y')). We have

t(A(y')) = =
= = A(t(y')).

Thus if y E CG(Y') are composable, then and are composable and
= = =

Part (2) essentially follows from the proof of (5 8). Indeed let C' C =
CG(Y) be a covering; for a E V(Y) let = (a), and for y E C let : -4

be as defined in A.21. The elements y such that i(y) = t(y) = a form a group
isomorphic to and in this way we get an action of on If y = (1 z(a), a), we
put F,, = Fa; for (a, b) E we have F0Fb = Let : —*

be the covering overf: Y' )) constructed in (5.8). The functor A : CG(y') C'

maps y' to the pair E CG(Y) XO(C) O(C') = C', where a' is the chosen
representative of i(y') in the



Chapter iii.q Groupoids of Local Isometries

The purpose of this chapter is to prove a general result concerning the developability
of groupoids of local isometries. We shall show that if such a groupoid is Hausdorif
and complete (in a suitable sense, 2.10), and if the metric on the space of units of is

locally convex, then is equivalent to the groupoid associated to the proper action of
a group of isometnes on a complete geodesic space whose metric is (globally) convex
in the sense of (11.1.3). This result unifies and extends several earlier developability
theorems, as we shall now explain

Groupoids of local isometries appear naturally in several contexts, for instance
as holonomy groupoids of Riemannian foliations and as the groupoids associated to
complexes of groups over Mt-polyhedral complexes (C.4.16 and 4.17) In the first
case, the developability theorem which we prove (Theorem 2.15) generalizes a result
of Hebda [Heb86], and in the second case it generalizes results of Gromov [Gro87,
p.127-i 28], Gersten-Stallings [St9 1], Haefliger [I-Iae9O,9 11. Corson73 [Cors92} and
Spieler [Spi92]. In its outline, our proof of Theorem 2.15 follows the Alexander-
Bishop proof of the Cartan-Hadamard Theorem, which was explained in Chapter
11.4. The proof of our main lemma (4.3) is also adapted from their proof.

In order to smooth the reader's introduction to the concepts of covenng, equiva-
lence and developability in the general setting of étale groupoids, we shall dedicate
section 1 of this chapter to a discussion of these concepts in the more familiar context
of differentiable orbifolds. Such an orbifold is said to be developable if it arises as
the "quotient" of a differentiable manifo'd M by the faithful, proper action of a group
of diffeomorphisms. We shall use the notion of covering to prove that an orbifold
with a geometric structure (for instance an orbifold of constant curvature) is always
developable; this was first proved by Thurston [Thu79].

The developability of complete Riemannian orbifolds of non-positive curvature
is a deeper theorem; it is closely related to the Cartan-Hadamard theorem and was
first discovered by Gromov. This result is subsumed by our main theorem (2.15), and
although we do not give a separate proof in the special case of orbifolds, we advise
the reader to keep this special case in mind while reading the proof.

In section 2 we define the basic objects of study in this chapter: étale groupoids,
equivalence, and developability. We also define Hausdorff separability and complete-
ness for groupoids of local isometries. By the time that we reach the end of section 2,

results of Gersten-Stallings [St9 1] and Corson [Cors92] also apply to certain non-metric
2-complexes where Theorem 2 15 does not apply
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the reader will be able to understand a precise statement of the developability theorem
(2.15).

In section 3 we introduce the notions of fundamental group and covering for
étale groupoids. Our approach to the fundamental group of a topological groupoid
g is parallel to the usual descnption of the fundamental group of topological spaces
in terms of homotopy classes of continuous paths. We first define the notion of an
equivalence class of c-paths (a notion which appears already in [HaeS8D, these
classes play the role that continuous paths do in the topological case. We then define
the notion of homotopy of c-paths, and define the fundamental group to be the group
of homotopy classes of c-loops at a base point. In both sections 2 and 3 we illustrate
the main ideas with exercises and examples.

The proof of the main theorem is given in section 4. In order to follow the proof,
the reader will need to understand the vanous definitions in sections 2 and 3, and the
basic facts established in (2.14), (3 14) and (3.19).

1. Orbifolds

The notion of orbifold was introduced by Satake ([SatS6J and [SatS7]) under the
name of V-manifold. It was rediscovered in the seventies by Thurston [Thu79} who
introduced the term "orbifold". Thurston also defined the notion of covering of
orbifolds and derived from it the notion of fundamental group of an orbifold. In
this section we shall consider covenngs of orbifolds, but postpone discussion of the
fundamental group to section 3 where we work in the more general framework of
étale topological groupoids. (As indicated above, our treatment of the fundamental
group, unlike Thurston's, is based on an appropriate notion of homotopy of paths.)

Basic Definitions

1.1 Definitions. A (differentiable) orbifold structure74 of dimension non a Hausdorif
topological space Q is given by the following data:

(i) An open cover of Q indexed by a set!.

(ii) For each i E I, a finite subgroup F, of the group of diffeomorphisms of a
simply connected n-manifold X, and a continuous map q, : X, —÷ called a
un(formizing chart, such that q, induces a homeomorphism from F,\XI onto

(iii) For all E X, and x1 E such that q(x,) = there is a diffeomorphism h
from an open connected neighbourhood W of x, to a neighbourhood of x, such
that q, o h = q,Iw. Such a map h is called a change of chart; it is well defined
up to composition with an element of (see exercise 1.5(1)). In particular if

= j then h is the restriction of an element of F,.

To simplify, we shall consider only differentiable orbifolds in this section, because the
analogue of exercise 1 5(1) is more difficult to prove in the topological case (cf remark
1 6(2))



586 Chapter Groupoids of Local Isometries

The family (X,, is called an atlas (of uniformizing charts) for the orbifold
structure on Q

By definition, two such atlases of uniformizing charts (X,, and (X1,

define the same orbifold structure on Q if (X,, satisfies the compatibility
condition (iii).

Note that if all of the groups F, are trivial (or more generally if they act freely on
X), then Q is simply a differentiable manifold.

The orbifold structure on Q is said to be Riemannian (complex analytic, etc)
if each X, is a Riemannian (complex analytic, etc.) manifold and if the changes of
charts are accordingly Riemannian isometries (complex analytic, etc.).

If the orbifold structure on Q is Riemannian, there is a natural pseudometric on
Q, namely the quotient of the Riemannian length metnc on the disjoint union of the
X1. The assumption that Q is Hausdorif implies that this pseudometric is actually a
metnc and induces the given topology on Q. This metnc will be called the quotient
metric on Q.

1.2 The Pseudogroup of Changes of Charts. Let X be the disjoint union of the X,.
We identify each X to a connected component of X and we call q the union of the
maps qj. Any diffeomorphism h of an open subset U of X to an open subset of X
such that q = qh on U will be called a change of charts. The change of charts form a
pseudogroup75 fl of local diffeomorphisms of X called the pseudogroup of changes
of charts of the orbifold Q (with respect to the atlas of uniformizing charts (X1,
It contains in particular all the elements of the groups F,. If h : U —÷ V is a change
of charts such that U and V are contained in the same X, and if U is connected, then
h is the restnction to U of an element of (see 1.5(1))

Two points x, x' E X are said to be in the same orbit of fl if and only if there
is an element h E 7-1 such that h(x) = x'. This defines an equivalence relation on
X whose classes are called the orbits of ?-1 The quotient of X by this equivalence
relation (with the quotient topology) will be denoted 7-I\X The map q X Q
induces a homeomorphism from 7-I\X to Q.

1.3 Developable Orbifolds
Let F be a subgroup of the group of diffeomorphisms of a manifold M and

suppose that the action of F on M is proper. Let f M —÷ Q be a continuous map
that induces a homeomorphism from F\M with the quotient topology to Q. Note that
Q is Hausdorff (1.8.4(2)).

A pseudogroup 71 of local homeomorphisms of a topological space X is a collection 71 of
homeomorphisms h U —÷ V of open sets of X such that

(I) if h U V and h' U' —÷ V' belong to 71, then their composition hh' fl
V') h(U fl V') belongs to 7-1, as does

h of to

of X belongs to 7-1,

(4) if a homeomorphism from an open set of X to an open set of X is the union of elements
of 71, then it too belongs to
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The definition of a proper action ensures that one can find a collection of open
balls X, c M such that:
(i) the subgroup F, = {y E F y.X1 X,} is finite and if y.X, fl X1 0, then

)/ E

(ii) the open sets V, cover Q.

Let q be the restriction of f to Then the atlas (X1, q,) defines an orbifold
structure on Q. This structure depends only on the action of F and not on the choice
of the open sets X; it is called the quotient of M by the proper action ofF.
We shall say that an orbifold structure on Q is developable (good in the terminology
of Thurston [Thu79]) if it arises from an action in this way.

1.4 Examples
(1) Examples of Structures on the 2-Sphere Identify with CU

let V0 = C C and let = N {O). Given two positive integers m, n, we define
an orbifold structure on using the two uniformizing charts qo C —÷ V0 and

C —÷ defined by qo(z) = and = 1/w'. These two charts define
a complex orbifold structure denoted on 52: the group F0 (resp. consists
of all the rotations of order m (resp. n) of C fixing 0; the changes from the chart qo
to the chart are local determinations of the multivalued holomorphic function
z w =

This orbifold is developable if and only if m = n. Indeed if m = n, then the
map z gives an isomorphism from the quotient of C U by the action
of the group generated by z to the orbifold ,,• Conversely, if is

developable, then there exists a connected manifold M, a subgroup F of the group
of diffeomorphisms of M that acts properly, and a F-invariant continuous mapf
M —÷ = Cu inducing the orbifold structure on S2. The restriction off
toM' = M Nf 1({0, oo}) is aconnectedcovenngofC* = C N {0) whose number
of sheets must be equal to both m and n, hence m = n

(2) Construction of 2-Dimensional Hyperbolic Orb j[olds Consider a convex
polygon P in the hyperbolic plane 1H12 such that the angle at each vertex v1 of P is
Jr/n1, where nj> 0 is an integer One can define an orbifold structure on P such that
the uniformizing charts are defined on open subsets of and the changes of charts
are restrictions of hyperbolic isometries. One of these charts is the inclusion qo of
the interior of P into P; and for each vertex v1 there is a uniformizing chart q defined
on an open ball B(v1, s) of small radius. The group F1 associated to this latter chart
is generated by the reflections of 1H12 in the sides of P adjacent to and q1 maps
x E B(v1, s) to the unique point of P which is in its F-orbit. Similarly, if y is a point
of P in the interior of a side, a uniformizing chart is defined over a ball B(y, s) and
maps x E B(y, s) to itself if x E P and otherwise to its image under the reflection
fixing the side containing it. A classical theorem of Poincaré (see for instance [Rh7 11,

[Har9l], [Rat94}) asserts that the subgroup of lsom(W) generated by the reflections
fixing the sides of P acts properly on with P as a stnct fundamental domain; it
follows that the orbifold structure defined above on P is developable. This will also
be a consequence of Theorem 1.13.
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The same considerations apply to convex polygons P in E2 and S2 with vertex
angles ar/n,. Note that in these cases, however, there are very few possibilities for
such a polygon. (Exercise: List them.)

Let Q be the 2-sphere obtained by gluing two copies of P along their common
boundaries. There is an obvious way to define a hyperbolic (resp. Euclidean or
spherical) orbifold structure on Q with conical points corresponding to the vertices
of P. (Exercise: Describe an atlas of uniformizing charts giving this structure)

1.5 Exercises
(1) Let F be a finite subgroup of the group of diffeomorphisms of a connected,

paracompact, differentiable manifold M. Let q: M —÷ F\M be the natural projection.
Letf: V —÷ W be a diffeomorphism between connected open subsets of M. Show
that if q of = qlv thenf is the restriction of an element g E F.

(Hint: Start from any Riemannian metnc on M and by an averaging process
prove the existence of a F-invariant Riemannian metric. Using the local exponential
maps for this metric, show that one can introduce local coordinates around each
point x E M such that, with respect to these coordinates, the action of the isotropy
subgroup of x is orthogonal. Show that the open set M0 c M on which the action of F
is free is everywhere dense. The restriction off to V fl M0 is a Riemannian isometry,
hence by continuityf itself is a Riemannian isometry. Given a point x E U fl M0,
there is a unique g E F such that g.x =f(x). Thenf is equal tog on a neighbourhood
of x, hence the two isometriesf and are equal.)

(2) Let F be a group acting properly by diffeomorphisms on a smooth paracompact
manifold M. Using a suitable partition of unity on M, show the existence of a F-
invariant Riemannian metric on M.

(3) Show that every differentiable orbifold structure on a paracompact space Q
carnes a compatible Riemannian orbifold structure.

1.6 Remarks
(1) In the definition (1.1) of an orbifold, it is common to assume that the sources

X, of the uniformizing charts are open balls in W. This leads to the same definition
as ours. Equivalently we could have assumed that the sources X1 of the uniformizing
charts q, : V1 are differentiable manifolds on which the groups F1 (not supposed
to be finite) act effectively and properly so that the maps q, induce homeomorphisms
F1\X1 V1. And one could say that a connected orbifold is developable if and only
if it can be defined by an atlas consisting of a single uniformizing chart.

(2) Topological orbifolds are defined in the same way as differentiable orbifolds:
in definition (1.1) one replaces diffeomorphism by homeomorphism everywhere. It
is still true that the changes of charts defined on a connected open set are well defined
up to composition with an element of a finite group (see 1.1 (iii) and 1.5(1)), but this
is harder to prove than in the differentiable case. A proof of this fact, communicated
to us by Bob Edwards, is based on the following basic theorem of M H. A. Newman:
if a finite group acts effectively by homeomorphisms of a connected manifold, then
the set of points with trivial isotropy is open and dense ([New3 11 and [Dre69]).
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Coverings of Orbifolds

1.7 Definition of a Covering of an Orbifold. Consider an orbifold structure on
a space Q defined by an atlas {qj : X1 —÷ of uniformizing charts inducing
homeomorphisms F,\X, —* V1. We assume that the X1 are disjoint; let X be the union
of the X and let q X —÷ Q be the union of the qj. Let fl be the pseudogroup of
changes of charts (1.2).

Letp X —÷ X be a covering of X. On X there is a unique differentiable structure
such that p is locally a diffeomorphism. We assume that for each change of charts
h U —÷ U' in '1-1, there is a diffeomorphism h : p'(U) —÷ p'(U') commuting with
p which is such that, for all h, h' E '1-1,

hh' = hh' and h—' = h'.
In particular this gives an action of each group F, onp'(X1) that projects to the given
action ofF1 on X,.

Let 7-1 be the pseudogroup generated by the diffeornorphisms h. (More precisely
the elements of 7-1 are the restrictions of the elements h to the open subsets ofX and
alt unions of such restnctions.) Then 7-1 is the pseudogroup of changes of charts of an
orbifold structure on the quotient Q of X by the equivalence relation whose classes
are the orbits of 7-1. We shall now define this orbifold structure. Let : X Q be the
natural projection. There is a continuous map Q —÷ Q which makes the diagram

x k

(1.7-1)

Q of the connected compo-
nents of p' (X1). The group acting on such a component is the group formed by the
restriction of those with y E that leave this component invanant. The only
point to check is that Q with the quotient topology is Hausdorif This follows easily
from the hypothesis that Q is Hausdorif and the fact that the quotient of the open set

(X,) by the action of the finite group F, is Hausdorif.

A covering of the orbifold Q is a commutative diagram like (1 7-1). The orbifold
Q is called a covering orbifold of the orbifold Q and the map Q —÷ Q is the
corresponding covering map.

1.8 Exercise. Show that, up to natural isomorphism, the notion of covenngs for
orbifolds is independent of the choice of atlas for the orbifold structure.
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1.9 Galois Coverings. We maintain the notation of 1 7. Let G be a group acting
on X so that the action is simply transitive on each fibre of p (in other words p is a
Galois covering with Galois group G), and assume that the liftings h commute with
the action of G. Then we say that Q is a Galois covering of Q with Galois group G.
The action of G on k gives an action of G on Q and Q = G\Q We shall see shortly
that this action is proper.

As the sources X1 of the uniformizing charts are assumed to be simply connected,
the covenng p is trivial After choosing a section X, —÷ p'(X1), we can identify
p'(X1) with G x X1; thus p becomes the projection on the second factor, and the
action of G is by left translations on the first factor and is trivial on the second factor.
The lifting of y E F is of the form (g, x) y.x), because commutes
with the action of G Moreover y qj(y) gives a homomorphism çDj : F, —÷ G

LetX1 := {1} x X, Cp—'(X,) and let ç,1 := The connected components
of Xare the open sets g X,, indexed by (g, i) E G x I, and the uniformizing charts
for Q are the maps —* g.V1 which are the restnctiorls of Let F(8,i) be the
group of diffeomorphisms of g.X, formed by the restnctions to g.X, of the elements

where y E kerp, (in this way F(gj) is isomorphic to kerp1). The uniformizing
charts —÷ induce homeomorphisms —÷

We have = g V. The subgroup p(F,) c G leaves V, invariant. Moreover

g.\"/1fl 0 if and only if g E Indeed if g.e', n 0, then there exists
Vandy E F1 such that y.V1, which implies thatg = This shows

that the action of G on is proper.

1.10 Lemma. With the notations above, j[the homomorphisms : F, —÷ G associ-
ated to the Galois covering are infective, then Q is naturally a differentiable manifold
on which G acts properly by diffeomorphisms and the orbifold structure on Q is the
quotient of Q by this action.

Proof The restrictions of to the open sets g are homeomorphisms g .X —* g V
which define on Q the structure of a differentiable manifold (because the changes
of charts are the elements of '1-1 and therefore are differentiable). Clearly G acts
on Q by diffeomorphisms. The restnctions : V1 —* V, of to the open sets
V are the uniformizing charts for the quotient orbifold structure on Q. For each
i E 1, let f, X1 —* V1 be the diffeomorphism sending x to the image under of
the point (1, x) E This map is a diffeomorphism which is q,-.equivariant, i.e
f,(y.x) = q1(y).f,(x) for all y E F,. Indeed,

= y x)) = =

Moreover = q,(x). Therefore, via the isomorphisms f,, the atlases (X,, q,)
and (V1. Ab,) are the same. 0
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Orbifolds with Ceometrk Structures

1.11 (G, Y)-Geometric Structure. Let G be a group acting by diffeomorphisms on
a simply connected differentiable manifold Y. We assume that the action is quasi-
analytic; this means that if the restriction of an element g E G to an open set U of Y
is the identity of U, then g is the identity element of G.

A (G, fl-geometric structure (or simply a (G, Y)-structure) on a differentiable
manifold X is defined by a maximal atlas A made up of charts which are diffeomor-
phisms i,lr from open sets of X to open sets of Y such that.

(i) the sources of the charts cover X,

(ii) for all i,li' E A, the change of charts where it is defined, is locally
the restriction of an element of G to an open set of Y.

Given (G, Y)-structures on X1 and X2, with maximal atlases A1 and A2, a diffeo-
morphism of an open subset of X1 to an open subset of X2 is called an isomorphism
of (G, Y)-structures if the composition of h with any chart of A2 is a chart of A1.

For instance, a Euclidean, spherical or hyperbolic manifold of dimension n is an
n-manifold with a (G, Y)-structure, where Y is respectively JE', S'1, NI' and G is the
full group of isometries of Y. An n-manifold with an affine structure is, by definition,
a manifold with a (G, Y)-structure, where Y is the Euclidean space W and G is
the group of affine transformations of R'. Interesting examples of (G, fl-structures,
where Y is the 2-sphere §2 and G the group of Möbius transformations, can be found
in [SuTh83] (see also [Sco83]).

1.12 Orbifolds with a (0, Y)-Geometric Structure. Consider an orbifold structure
on a space Q given by an atlas of uniformizing charts qj : X, —÷ V1. A (G, Y)-
geometric structure on this is given by a (G, fl-geometric structure on each
X, which is left invariant by the changes of uniformizing charts (in particular by the
groups Ft).

If Y is a Riemannian manifold and if G is a subgroup of the group of isometries of
Y, then an orbifold with a (G, fl-structure inherits a compatible Riemannian metric
for which the charts of the (G, fl-structure are Riemannian isometries.

Typical examples of such orbifolds are obtained by taking the quotient of Y by
a subgroup of G acting properly on Y, or by taking the quotient of an open subset
Yo c Y by a subgroup of G that leaves Y0 invariant and acts properly on Yo. For
interesting examples of hyperbolic orbifolds, see [Thu79, chapter 11] and [Rat94}.

1.13 Theorem. Let Q be a connected orbifold with a (G, Y)-geometric structure.
Then

(1) Q is developable. More precisely, there is a subgroup F of G acting properly
on a connected manifold M endowed with a (G, Y)-structure such that Q with
its (G, Y)-structure is naturally the quotient of M by this action ofF Moreover
there is a map D : M —÷ Y which is F-equivariant and which is locally an
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isomorphism of (G, Y)-structures. The map D is called the development of Q
and F is called the holonomy group; both D and IT are well defined up to
conjugation by an element of G.

(2) Assume that Y is a Riemannian man j[old and that G is a subgmup of the group
of isometries of Y (so the structure on Q is Riemannian). Assume also
that Q is complete with respect to the quotient metric (this is the case Q is
compact) Then there is a natural identification of M with Y under which D
becomes the identity map

Before giving the proof of this theorem, which is very similar to the proof of
(1.3.32), we follow a digression concerning the spaces of germs of continuous maps

1.14 Spaces of Germs. Let X and Y be topological spaces Consider the set of pairs
(f, x), wheref is a continuous map from an open subset U c X to Y and x E U. We

introduce an equivalence relation on this set: (f, x) (f', x') if and only if x = x' and
f is equal tof' on some neighbourhood of x. The equivalence class of(f, x) is called
the genn off at x. The point x (resp.f(x)) is called the source (resp. the target) of the
germ off at x.

Let M(Y, X) be the set of germs of continuous maps from open sets of X to Y
and let a : M(Y, X) —÷ X (resp. w : M(Y, X) —÷ Y) be the map associating to a
germ its source (resp. its target). On M(Y, X) there is a natural topology, a basis of
which consists of the subsets U1 which are the unions of the germs of continuous
mapsf: U —÷ Y at the various points of U. The projections a and w are continuous
maps and a is an étale map, i.e. a maps open sets to open sets and its restriction
to any sufficiently small open set is a homeomorphism onto its image Note that in
general M(Y, X) is not a Hausdorif space.

Consider a topological space Z, continuous mapsf : U —÷ Y andf' U' —* Z,
where U and U' are respectively open sets of X and Y, and a point x E U such that
f(x) E U'. The germ of f'f f '(U') —÷ Z at x depends only on the germ g off at
x and of the germ g' of f' atf(x) and is called the composition g'g of those germs.
Let M(Z, Y) x y M(Y, X) be the subspace of M(Z, Y) x M(Y, X) formed by pairs
(g', g) such that a(g') w(g). The composition of germs gives a continuous map
M(Z,Y)xyM(Y,X)—+ M(Z,X).

Proof of Theorem 1.13. To a (G, fl-structure on an orbifold Q we shall associate a
Galois covenng with Galois group G satisfying the hypothesis of Lemma 1.10.

We can assume that the sources X of the uniformizing charts q X, —÷ V, are
disjoint and are the sources of charts X —* C Y for the given (G, Y)-
geometric structure. Let X be the union of the X, and let q : X —÷ Q be the union of
the uniformizing charts Let X be the space of germs of all the charts from X to Y
defining the (G, fl-structure on X (this is an open subspace of the space of all germs
of continuous maps from open sets of X to Y). The group G acts by diffeomorphisms
on k: if g E G and is the germ of a chart i,lr at x, then gi is the germ of the chart
g 0 at x.
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We have two projections p X —* X and : X Y associating to each germ,
respectively, its source arid target. Clearly p is G-invariant and is both G-equivariant
and locally a diffeomorphism.

We first claim that p X —* X is a Galois covering with Galois group G, i.e. G
acts simply transitively on the fibres of p. To see this, let X be the union of the germs
of at the points x E X.It follows from condition (ii) in (1.11) is the
union of the open sets g.X,, where g E G, and the condition of quasi-analyticity on
the action of G on Y implies that these open sets are disjoint.

Let h U —÷ V be an element of the pseudogroup 7-1 of changes of uniformizing
charts Such a map has a canonical lifting h p'(U) —+ U flp'(U') is the
germ at x E U of a chart i,1r for the(G, Y)-structure on X, then is the germ at
h(x) of the chart haveh' = h', and if h' : U' —÷ V' is another orbifold
change of charts, then hh' = hh' onp'(h'(U'). Note that each h commutes with
the action of G.

Letfl be the pseudogroup of local diffeomorphisms of X generated by the ele-
ments h. Let be the quotient of k by the equivalence relation whose classes are the
orbits of 7-1. Let be the natural projection —÷ Q and let . Q —÷ Q be the map
such that qp =

According to (1.8), these data define an orbifold structure on Q which can be
considered as a covering of Q with covering projection : Q —÷ Q. Moreover, as
the elements h commute with the action of G on we can consider as a Galois
covenng of Q (see 1.9); the group G acts properly on Q with quotient Q

As k —÷ Y obviously commutes with the action of 7-1, we get a continuous
map D : Q —÷ Y such that = D o Therefore we have the commutative diagram

p

Q

It follows that the restriction of to each of the open sets X, is a homeomor-
phism onto its image (denoted V1 C Q) because is a local isomorphism. Also the
restnction of to g.k, is a homeomorphism onto g V1. Since X is locally diffeomor-
phic to Y, this implies that Q is a manifold. It also implies that the homomorphisms
çDj : F, G described in (1.9) are injective. According to lemma 1.10, the orbifold
Q is the quotient of the manifold Q by the proper action of G. Moreover Q is endowed
with the (G, fl-structure for which D is locally an isomorphism of (G, Y)-structures

The connected components of Q are permuted by the elements of G. Fix a con-
nected component M of Q. Let F be the subgroup of G leaving M invariant and let
D be the restriction of b to M. As Q is connected, it is the orbifold quotient of M by
the action ofF. This proves (1).

Suppose that G leaves invariant a Riemannian metnc on Y. Then there is on X a
unique Riemannian metric such that all of the maps are isometries. This metric
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is invariant by the pseudogroup of changes of uniformizing charts. k also has a
unique Riemanman metric such that is locally an isometry; it is invariant by the
action of G and the pseudogroup Assume that the metric on Q which is the quotient
of the metric on X associated to this Riemannian metric is complete. This metric is
the same as the quotient metric on Q associated to the action of F by isometries of
the manifold M. As the action of F is proper, it follows that the metric on M is also
complete. According to (1.3.28), this implies that D : M —÷ Y is a covering. And as
Y is assumed to be simply connected, this implies that D is an isometry. This proves
(2). LI

2. Etale Groupoids, Homomorphisms and Equivalences

Etale Groupoids

2.1 Definition of an Etale Groupoid. A groupoid X) is a small category (see
CA. 1) whose elements are all invertible; X is the set of its objects, identified to the
set of units of by the map associating to x E X the unit The projection
g —÷ X that associates to each element of its initial object (resp. its terminal object)
will be denoted a (resp. w) (these maps were denoted i and tin C). Given g E the

object a(g) (resp. w(g)) will be called its source (resp. its target).
Given x E X, the set = {g E

I
a(g) w(g) = x} is a group called the

isotropy group of x. The subset g.x = {y E X
I

E a(g) = x, w(g) = y} is the
c-orbit or simply the orbit of x The g-orbits form a partition of X and the set of
c-orbits will be denoted

A topological groupoid X) is a groupoid with a topology on and X such that
the natural inclusion X —÷ is a homeomorphism onto its image, and the projections
a, w, as well as composition and passage to inverses, are continuous. The space of
orbits is endowed with the quotient topology.

We say that a topological groupoid is étale if the maps a and w are étale maps,
i e. are locally homeomorphisms.

Associated to each étale groupoid X) there is a pseudogroup of local home-
omorphisms of X. The elements of this pseudogroup are the homeomorphisms
h : U—÷ Voftheformh = wos,wheres U —÷ gisacontinuous section
of a over U, i.e. a(s(x)) = x, Vx E U. If X is a differentiable manifold and if the
elements of the associated pseudogroup are diffeomorphisms, then X) is called
a differentiable étale groupoid.

2.2 The Groupoid Associated to a Group Action. Let F be a group acting by
homeomorphisms on a set X. The étale groupoid (F v X, X) associated to this action
is the category whose space of objects is the space X and whose space of elements is
g = F x X, where F is endowed with the discrete topology. The projections a and
w are defined by a(y, x) = x and w(y, x) = y.x. The composition (y, x)(y', x') is
defined if x = y'.x' and is equal to (yy', x'). The inverse of(y, x) is y.x).
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We describe a series of other basic examples.

2.3 Examples
(1) Among the étale groupoids, we have two extreme cases, namely:

(a) X is a single point and is just a discrete group;

(b) X is a topological space and all the elements of are units (equivalently, the
inclusion X —÷ is a bijection) We say that this is the trivial groupoid X.

(2) The Etale Groupoid Associated to a Pseudo group of Local Homeomorphisms.
Let be a pseudogroup of local homeomorphisms of a topological space X Its
associated étale groupoid X) is the groupoid of all the germs of the elements
of 7-i, with the germ topology. (This is an open subspace of the space of all germs
of continuous maps from open sets of X to X.) The natural inclusion of X into g
associates to x E X the germ atx of the identity map of X. The projections a and
w associate to a germ its source and target, and the composition is the composition
of germs. From one can reconstruct 'H as the pseudogroup associated to

In general, is the pseudogroup associated to an étale groupoid X) (see 2 1),
then the étale groupoid of germs associated to is a quotient of X). (Consider
for instance example 2.3(la).)

(3) The Etale Groupoid Associated to an Atlas of Charts for an
This is the étale groupoid X) associated to the pseudogroup of changes

of charts (cf. 1.2); it determines the orbifold structure on Q if one identifies Q with
the quotient of X by the equivalence relation whose classes are the orbits of g.

(4) The Etale Groupoid Associated to a Complex of Groups. Let G(Y) =
(Ga, be a complex of groups over a scwol Y as defined in (C.2.1). We
construct an étale groupoid Y) canonically associated to G(Y) as follows (see
fig C.13). We use the notations of (C 4 9, 4 13, 4.14). The space of units Y will be
the disjoint union of the spaces st(&), where a E V(Y). The groupoid will be
the disjoint union of the subspaces of elements with sources in st(s) and targets
in st(f). There are three cases to consider.

First case: a = r. In this case (caa. st(&)) will be the groupoid

(Ga V st(ñ), st(&))

associated to the action of Ga on st(&).
Second case There is an edge in E(Y) with initial vertex a and terminal vertex r.
In this case

a = U
X st(a),

where a E E(Y) with i(a) = a and t(a) = r Recall that the subspaces st(â) are
disjoint in st(&) (exercise C.4.6). The projection a (resp. w) maps (g, x) E x st(a)
to x (resp. wherefa is as defined in (C.4. 14)). For this reason, it will be more
suggestive to use the notation (g, x) x st(a).

If(h, y) E caa is such thatx = h.y, the composition (g, J'a, x)(h, y) is defined to be
y). If (g', x') E with x' = the composition (g', x)
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is equal to (g'g,fa, x). If (a, b) E with i(b) = p and if x) E

and (h,fb, y) E with x = h.fb(y), the composition (g,fa, x)(h,fb, y) is equal to
y).

As a set is equal to but the projections a and w are exchanged, thus its
elements are (a priori formal) inverses of the elements of cia. Thus to each element

x) E is associated a symbol (g,fa, x)' E such that a((g,fa,
x)) = x. The composition is defined accordingly. For instance, if

(g', y') E with g'.y' = g.fa(x), then
x) (h, = h x)'. Now assume that a, a'

are two distinct elements of E(Y) with t(a) = t(a') = r and i(a) = a, i(a') =
a'. Let x) E ct,a and x') E a' be such that =
Then x) and x)1(g',fa, x') should be defined. The natural
projections from st(&) and st(a') to map x and x' to a point in st(a) fl st(a'); it
follows (see exercise C.4.6) that there is a unique b E E(Y) such that either a' = ab
or a = a'b; exchanging the roles of a and a' we can assume that a = a'b We
then define the composition as the unique element (h,fb,x) E
ca.a such that x) = x')(h,fb, x), where h is defined by the equation

= g. The composition x') is defined to be (h,fb, x)'
One proceeds similarly to define, for instance, the composition
when i(a) = i(a').

Third case: a and r are distinct and not joined by an edge. In this case cr.a is empty
We leave the reader to check that the law of composition defined above is asso-

ciative (one needs to refer to (C.2.1) and (C.4.14)).

(5) The Holonomy Groupoid of a Foliation. A foliation of codimension n on a
manifold M of dimension m can be defined by a family of mapsf : U, where

is an open cover of M. The maps called local projections, are submersions
from U1 onto open sets V1 of IR!' with connected fibres (i.e. '(x) is a connected
submanifold of U, for each x e Vi). The following compatibility condition must be
satisfied: for each y E U, fl there is an open neighbourhood c U fl and a
homeomorphism h] : J((4') —÷ such =
of submersions define the same foliation if their union still satisfies the analogous
compatibility conditions. The leaves
of are the connected components of M endowed with the topology whose
basis is the set of open sets in the fibres of the submersionsf,.

LetX be the disjoint union of the open sets V1. The holonomypseudogroup of.2',
defined by the family of submersions U —÷ V1 C X}, is the pseudogroup of local
homeomorphisms of X generated by the germs of the The holonomy groupoid of

is the groupoid of germs associated to its holonomy pseudogroup. The holonomy
groupoid associated to a different family of compatible submersions that defines the
same foliation will be equivalent to the previous one in the sense of the definition
that follows.
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Equivalence and Developability

2.4 Homomorphisms and Equivalences of Groupoids. A homomorphism
from an étale groupoid X) to an étale groupoid (a', X') consists of a continuous
functor : —÷ inducing a continuous mapf : X —÷ X'. We say that (q,f) is an
étale homomorphism iff is an étale map.

(q,f) is an equivalence iff is an étale map and if the functor is an equivalence
in the sense of (C.A.3), i.e

(1) for each x E X, induces an isomorphism from onto

(2) f : X —÷ X' induces a bijection —÷ of the orbits sets.

In this case we say that the étale groupoids X) and X') are equivalent.
This generates an equivalence relation among étale groupoids

If(c, X) and X') are differentiable étale groupoids (see 2 1), a homomorphism
(q,f) : X) —÷ (a', X') is called a differentiable equivalence if it is an equivalence
andf is locally a diffeomorphism. The equivalence generated by this relation is called
differentiable equivalence.

2 5 Remark. One can check (see exercise 2.8(1)) that two étale groupoids X)
and X') are related by the above equivalence relation if and only if there is an
étale groupoid (a", X") and étale homomorphisms (q,f) : (a", X") —÷ X) and
(q,',f') (c", X") —÷ X') which are equivalences

There is a more general way of describing directly an equivalence from X)
to (a', X'). We shall explain this through a series of exercises (see 2.8(3)).

2.6 Definition of Developability. An étale groupoid X) is developable if it is
equivalent to the groupoid (F x X, X) associated to an action of a group F by home-
omorphisms of a space X (see 1.3).

2.7 Examples

(1) Let X) be an étale groupoid and let U ç X be an open subset meeting
all the c-orbits. Let U) be the restriction of X) to U, i.e. the subgroupoid
formed by the elements with source and target in U. Then the natural inclusion
(clu, U) —÷ (c, X) is an equivalence.

(2) Let F be a group acting freely by homeomorphisms on a topological space X so
that the natural projection p : X —÷ F\X = Xis a covering map. Let : F x X —÷ X
be the map sending (y, to = p(yi). Then the étale homomorphism (7r, p)
from the étale groupoid associated to the action of F on X to the trivial groupoid X
is an equivalence.

More generally, if X) is an etale groupoid such that the natural projection of
X onto with the quotient topology is étale, and if is trivial for all x E X, then
(c, X) is equivalent to the trivial groupoid For instance the groupoid of germs
of all the changes of charts of an atlas defining a given structure on a manifold M is
equivalent to the trivial groupoid M.
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(3) The étale groupoid of germs of changes of charts of an orbifold is developable
if and only if the orbifold structure is developable.

An orbifold structure on a topological space Q could be defined as a differ-
entiable equivalence class of differentiable étale groupoids X) together with a
homeomorphism from onto Q, such that:
(i) is Hausdorff, and
(ii) each point of X has a neighbourhood U such that the restriction of X) to U

is the groupoid associated to an effective action of a finite group on U.

(4) The Developability of Complexes of Groups. A complex of groups G(Y)
over a scwol Y is developable in the sense of (C.2. 11) if and only if its associated
groupoid Y) is developable.

To see this, let us first assume that G(Y) = (Ga, gab) is developable: thus
there is a group G acting on a scwol X such that Y = G\X and G(Y) is the associated
complex of groups with respect to some choices (we use the notations of C.2.9( 1)).
Let X be the geometric realization of X and let G x X —÷ X be the corresponding
action. For each a E VQ2), there is a canonical

is is a unique étale homomorphism (q, f)
(g(y), Y) —÷ (G v X, X), wheref : Y —÷ Xis the union of the mapsfa, and is
defined by:

ço(g,x) = if (g,x) E G0 X st(&) = caa
q(g, x) = (gha,f,(a)(x)) if (g, x) E Gi(a) X st(a) ct(a).i(a).

These formulae define a functor : —÷ G v X. To check that this is the case,
note that for each x E st(a), we have haj;(a)(x) =ft(a)(fa(X)) and we use C.2.9(1) and
C.4.14. It is clear that (q,f) is an equivalence

Conversely, assume that Y) is equivalent to the étale groupoid associated
to the action of a group G acting by homeomorphisms on a topological space X. Let
Y be the geometric realization of Y We can identify Y to and to

By exercise 2.8(3)(e), there is an étale homomorphism (q,f) : Y)—÷

(G v X, X) which is an equivalence (because each connected component of Y is
simply connected), andf : Y —÷ X induces the identity on Y. Therefore, for each
a E V(Y), the homomorphism maps (g, x) E Ga x st(&) to an element of the form

E G x X, and the map g i—÷ is an isomorphism onto the isotropy
subgroup of = f(a). If a E E(Y) and x E st(a), then co(l,(a), x) E G x X is of
the form (q(a),f(x)). It is easy to check that the injective homomorphisms and
the elements q(a) E G define a morphism G(Y) —÷ G, hence G(Y) is developable
by (C.2.15). It is also easy to see that X is G-equivariantly homeomorphic to the
geometric realization of the development of )) associated to this morphism (cf.
C.2. 13).

(5) It is a remarkable fact that any connected étale groupoid of germs associated
to a pseudogroup of analytic local diffeomorphisms of an analytic one-dimensional
manifold is always developable. Indeed such a groupoid is equivalent to the groupoid
associated to a quasi-analytic action of a group I' on a simply connected analytic
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manifold of dimension one (this manifold is not Hausdorff in general). This applies
in particular to the groupoid (classically denoted of all germs of analytic lo-
cal diffeomorphisms of or to the holonomy groupoid of an analytic foliation of
codimension one. This follows from the main lemma in [Hae581, its interpretation
in [Hae7OJ and the criterion for developability given in exercise 3.20(2). The cone-
sponding statement is not true in general if "analytic" is replaced by "differentiable".

(6) Let be a foliation on a connected manifold M defined by a family of
submersionsf,: U, —÷ V1 c W and let X) be the associated holonorny groupoid
of (see 2.3(5)) The induced foliation p'(.F) on a covering p : M —÷ M of
M can be defined by the family of submersions obtained by composing j with the
restrictions of p to the connected components ofp1(U1)

The developability of the holonomy groupoid X) of can be interpreted in
terms of foliation theory One can show that X) is equivalent to the groupoid
associated to an action of a group F on a connected manifold76 X if and only if there
is a Galois covering p M —÷ Mwith Galois group F and a F-equivariant submersion
f M —÷ k with connected fibres which are the leaves of the foliation

2.8 Exercises

(1) Let (g1, X1) and (p2, X2) be two equivalent étale groupoids. Show that there
is a groupoid X) and two étale homomorphisms : (c, X) —÷ X),

= 1, 2, which are equivalences.
(Hint: If h1) : (Ge, X1) —÷ (a', X') are two étale homomorphisms which are

equivalences, let = {(g1,
I gi E = and letX = {(x1,x2)

I

E X,, h1(x1) = h2(x2)}. Show that (g,X) is naturally an étale groupoid and that
the natural projections X) —÷ X1) are equivalences.)

(2) Given an étale groupoid X) and an open cover U = { U,}jEJ ofX indexed by
a set!, let U be the disjoint union of the namely the set of pairs (i, x), with x E U,.

Fori,j E I,letg(/bethesetoftriples(i, g,j)whereg E ganda(g) E L5, w(g) E U,.

Let cu be the disjoint union of the Define on U) the structure of an étale
groupoid such that the natural projection (i, g,j) i—÷ g gives an étale equivalence to
(g, X). We say that U) is the groupoid obtained from X) by localization on
the cover U.

Show that two étale groupoids X) and (a', X') are equivalent if and only if
there exist open covers U and U' of X and X' such that the localizations U) and

U') are isomorphic.

(3) In this series of exercises, we present a more direct definition of equivalence
between two topological groupoids (p1, X1 ) and (p2, X2). This definition can be found
in Jean Renault (see [Ren82J); it is equivalent to the definition given in (2 4).

Consider a topological space E with two surjective étale maps a —+ X1

andw : —÷ X2 Arightactionofg1 onE,overa : E—÷ X1,isacontinuous

76 manifold is not Hausdorif in general but the action is always quasi-analytic



600 Chapter III.g Groupoids of Local Isometries

map E XX E, written (e, g1) i—÷ e.g1, where E XX is the subspace of
x consisting of pairs (e, such that a(e) = w(g1). This action must satisfy

the following conditions: if e E E, g E are such that a(e) = and
a(g1) = then (e.gi = e.(g1 and e. la(e) = e.

This action is said to be simply transitive with respect to w —÷ if each
point of X2 has an open neighbourhood U with a continuous section s : U —÷
of w over U such that the map (u, g1) i—÷ s(u).g1 of U XX to is a

homeomorphism, where U Xx is the subspace of U x consisting of pairs
(u, g1) with a(s(u)) = w(g1).

Similarly, a left action of on E, over w E X2, is a continuous map
e) i—± g2.e of XX, E toE, where a(g2) = w(e), and, if g2 E e Ej are

such that a(g2) = w(g) and a(g) = w(e), then one requires g2.(g.e) = (g2g).e
arid lw(e).e = e.

An equivalence from (ui, X1) to (p2, X2) is a space E, with two étale maps
a : E —÷ X1 and w : E —÷ X2, a right action of on E over a : E —÷ X1 and a left
action of on E over w : E —÷ X2 such that

(i) the action of commutes with the action of g2,

(ii) the action of (resp. is simply transitive with respect tow E —÷ X2 (resp.
a : E X1)

A typical example to bear in mind is the following. Let and be the
pseudogroups of changes of uniformizing charts of two atlas A1 and A2 defining
the same orbifold structure on a space Q. Let(g1, X1) and (p2, X2) be the associated
groupoids of germs. Let E be the space of germs at the points of X1 for the changes
of charts from the atlas A1 to the atlas A2, with the source (resp. target) projections
a E —÷ X1 (resp. w: E X2). The groupoid acts on the right on over a by
composition of germs, and similarly acts on the left over w. Clearly E gives an
equivalence from X1) to (p2, X2).

(a) Let E2 be an equivalence from the étale groupoid X1) to the étale
groupoid (p2, X2). Show there is an equivalence E,2 from (p2, X2) to (p1, X1). (Hint:
take E,2 = and reverse the roles of a and w.)

(b) Let E32 be an equivalence from (p2, X2) to the étale groupoid Xi). Con-
struct an equivalence E3,1 from (g1,X1) to X3).

(Hint: Considerthe subspace E3,2 XX2 of E3,2 consisting of pairs (e, e')
with a(e) = w(e'), and define E31 as the quotient of E3,2 XX2 E2,i by the equivalence
relation which identifies (e.g2, e') to (e, g2.e'), where p2.)

(c) Let (q,f) : X1) —÷ (p2, X2) be a homomorphism which is an equivalence
in the sense of (2.4). Let = x x2 X1 be the subspace of x X1 formed by the
pairs x) such that a(g2) =f(x). Define a(g2, x) = x and w(g2, x) = w(g2). The
map ((g2, x), g1) i—÷ (g2q'(gl), a(g1)), where g1 E with w(g1) = x, defines a right
action of on over a Similarly the i—÷ defines
a left action of over w. Show that E2. defines an equivalence from (g , X1) to

(g2,
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The map s : X1 —÷ E2.i sending x to is a section of a. Show that
conversely an equivalence E2.1 is associated to a homomorphism (q,f) if and only
there is a continuous section s : X1 —÷ E2 of a.

(d) Using exercise (1), show that (p1, X1) is equivalent to (p2. X2) in the sense of
(2.4) if and only if there is an equivalence E2 from X1) to (p2, X2).

(e) Assume that (p2, X2) is the étale groupoid (F v X2, X2) associated to an action
of the group F by homeomorphisms of X2. Let be an equivalence from X1)

to (p2, X2). Show that a —÷ X1 is a Galois covering with group F.
Using (c) and (d), show that this implies the following: let (p1, X1) be an étale

groupoid which is equivalent to the groupoid associated to an action of a group F on
a spaceX2; if each connected component of X1 is simply connected, there is an étale
homomorphism (q,f): X1) —÷ (I' v X2, X2) which is an equivalence.

Groupoids of Local Isometries

2.9 Definition. A groupoid X) of local isometries is an étale topological groupoid
with a length metric on its space of umts X that induces the given topology on X and
is such that the elements of the associated pseudogroup (see 2.1) are local isometries
of X

Equivalence among groupoids of local isometries is the equivalence relation gen-
erated by étale homomorphisms (q,f) : X) —÷ (a', X') which are equivalences
and are such thatf : X —+ X' is locally an isometry.

2.10 Hausdorif Separability and Completeness. A groupoid(g, X) of local isome-
tries is said to be Hausdoiff if is Hausdorff as a topological space and for every
continuous map c : (0, 1] —÷ if lim,0 a o c and lim,0 w o c exist, then c(t)
exists.

A groupoid X) of local isometries of X is said to be complete if X is locally
complete (i.e. each point of X has a complete neighbourhood) and if the space of
orbits with the quotient pseudometric is complete.

2.11 Remark. To justify the second condition in the definition of Hausdorff separa-
bility, consider the following example. Suppose that the metric space X is just the
Euclidean space and that is generated by an isometryf from an non-empty open
subset U of to a disjoint open subset V of (i.e. the elements of g are the germs
of the identity map of IE' and the germs of f and its inverse at the points of U and
V respectively). Then X) is a groupoid of local isometries which is complete but
not Hausdorff: the second condition in the definition of Hausdorff separability is not
satisfied. Note that the quotient X' of IE'1 by the equivalence relation which identifies
x E U tof(x) E V is a non-Hausdorff space and that X) is equivalent to the trivial
groupoid X'.

In general, if X) is Hausdorff, then the space of orbits need not be
Hausdorif in general (see the first example below).
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2.12 Examples

(1) If a group F acts by isometries on a length space X, then the associated
groupoid (F v X, X) is a groupoid of local isometries, and it is Hausdorif. It is
complete if and only if X is a complete metnc space.

(2) The groupoid X) of germs of changes of uniformizing charts of a Rie-
mannian orbifold is a groupoid of local isometries, and it is Hausdorff (in this case
Hausdorff being equivalent to the condition that the orbit space Q is Hausdorif). The
quotient pseudometric on Q is always a metric, and X) is complete if and only if
Q is complete.

(3) Let G(Y) be a complex of groups over a scwol Y whose geometric realization
is a MK-simplicial complex with finitely many shapes (see C.4.16). Then the

associated étale groupoid Y) is a groupoid of local isometries; it is always
Hausdorff and complete Indeed the quotient pseudometric on the space of orbits
is the length metric associated to the given MK-structure, which is always complete
by (17.13).

(4) Assume that X is a Riemannian manifold and that X) is an étale groupoid
such that the elements of the associated pseudogroup are Riemannian isometries.
Then X) is a groupoid of local isometries, called a groupoid of local Riemannian
isomer ries

The holonomy groupoid of a Riemannian foliation (see [Mo188]) is a typical
example of a groupoid of local Riemannian isometries. A Riemannian foliation

on a Riemannian manifold M is by definition a foliation such that the leaves
are locally at constant distance; equivalently, if is given by local submersions

• U1 —÷ V1 C W, there should exist on each V1 a Riemannian metric such thatf
is Riemannian submersion (meaning that, for each point x E U1, the restriction of
the differential of f to the subspace of orthogonal to the tangent space of the
leaf through x is an isometry onto the tangent space of V1 atf(x)) It follows that the
associated holonomy groupoid is a groupoid of local Riemannian isometries If the
Riemanman manifold M is complete, then the holonomy groupoid is Hausdorif and
complete

For a systematic study of closures of orbits in Hausdorff and complete groupoids
of local Riemannian isometries, see [Hae88], where examples of such groupoids that
have a single orbit but are non-developable are exhibited.

2.13 g-Connectedness. An étale groupoid X) is said to be connected (equiva-
lently X is "c-connected") if for any two points x, y E X there is a sequence of points
(x1 Xk, Yk) such that x1 = x, Yk = y, the point x1 is in the c-orbit ofy1+i for
= 1 k 1 and there is a path joining x, toy1 for each i = 1 k.

To illustrate the notion of Hausdorff separability and completeness, we prove the
following lemma, which will be useful later.

2.14 Lemma. Let X) be a groupoid of local isometries which is Hausdoiff Let
x E X and s > 0 be such that the closed ball B(x, s) is complete Given a path
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C: [a, bJ —÷ X of length < s and an element g E with c(a) = a(g) and w(g) = x,

there is a unique continuous map t i-÷ g(t)from [a, bJ to such that g(a) = g and
a(g(t)) = c(t), for all t E [a, b].

Thus, if a g-orbit is a pseudodistance less than s from the g-orbit of x, then it
meets B(x, s).

Proof Let I be the maximal subinterval of [a, bJ containing a on which g(t) can be
defined; note that g(t) is unique because is a Hausdorff space. Because is étale,
the interval I is open in [a, b] The length of the path t i-3 w(g(t)) is equal to the
length of the path c restricted to I, hence is smaller than s. Using the hypothesis that

is Hausdorff and B(x, s) is complete, we see that I is also closed, hence equal to
[a,bJ.

To prove the second assertion of the lemma, note that if in the orbit of y is
within a pseudodistance of the orbit of x, then there is a sequence (x1, xL, yL)
of points of X such thatx1 x, = y, the points x, and are in the same orbit
and there are paths c1 joining x, to such that the sum of the lengths of the paths c,
is smaller than s. Thus we can apply the first part of the lemma successively to the
pathsc,. LI

Statement of the Main Theorem

The aim of this chapter is to prove the following result.

2.15 Developability Theorem. Let X) be a connected groupoid of local isome-
tries which is Hausdoiff and complete. If the metric on X is locally convex77, then
(g, X) is developable.

The conclusion of the theorem is that X) is equivalent to the groupoid asso-
ciated to an action of a group F by isometries on a metric space X. The group F will
be the fundamental group of X) and the space X will be the space of equivalence
classes of g-geodesics issuing from a base point x0 E X with free endpoint. (All
of these terms will be defined in the next two sections.) The space X has a natural
length metric making it locally isometric to X. As X is complete and simply con-
nected, its metric is globally convex by the Cartan-Hadamard theorem (11.4.1). If X
is non-positively curved, then X is a CAT(O) space.

As a special case of 2.15 we have

2.16 Corollary (Gromov). Every complete Riemannian orbifold of non-positive
curvature is developable.

2.17 Corollary. Every complex of groups of non-positive curvature (see C.4.16) is
developable

in the sense of Busemann, see III 18 and 114 I
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This follows from (2.15) because non-positive curvature implies that the metnc
is locally convex and the developability of a complex of groups is equivalent to the
developability of its associated étale groupoid (see 2.7(4)).

By definition, a Riemannian foliation F is transversally of non-positive curvature
if it is defined by local Riemannian submersionsf, U, —÷ where the Riemannian
metric on V1 is of non-positive curvature. The proof of the following corollary is left
as an exercise (see 2.7(6)).

2.18 Corollary (Hebda). Let F be a Riemannian foliation on a complete Rieman-
nian manifold M which is transversally of non-positive curvature. Then the foliation
induced on a suitable Galois covering p . M —÷ M is defined by a Riemannian
submersion with connectedfibresf M —÷ X, where X is a Riemannian manifold of
non-positive curvature.

3. The Fundamental Group and Coverings of Etale Groupoids

Equivalence and Homotopy of c-Paths

3.1 c-Paths. Let X) be an étale groupoid A c-path c (go, cl, .. ,

over a subdivision a = t0 ... < tk = b of the interval [a, b] C R consists of:

(1) continuous maps c, : tJ —÷ X,

(2) elements g, E c such that a(g,) = for i = 0, 1,.. , k — 1 and w(g,) =
c,(t,) for i = 1 k.

The initial point of c is x := w(go) andy := a(gk) is its terminal point. We say
that c joins x to y If = and = are units, they can be dropped in the
notation for c. (If c : [a, b] —÷ Xis a path joining x toy, it can be considered as the
c-path c, lv).)

If X) is a groupoid of local isometries, then the length 1(c) of the c-path c =
(ge, c1, ck, gk) is the sum of the lengths of the paths c,. The pseudodistance
between the c-orbits of x andy is the infimum of the lengths of c-paths joining x
toy.

Fig. g.i A c-path

3.2 Equivalence of c-Paths. Among c-paths parameterized by the same interval
[a, b] we define an equivalence relation generated by the following two operations.

Cl
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(i) Subdivision: Given a path c = (go, c1 g,) over the subdivision a =
t0 < t1 < tk = b, we can add a new subdivision point tJ
together with the unit element g = to get a new sequence, replacing Ci
by g, c', where and are the restnctions of c, to and t,].

(ii) Replace the c-path c by a new path c' = (gb, Cj, gi,.. , over the same
subdivision as follows: for each i = 1,. . , k, choose a continuous map h,

tJ —÷ such that a(h,(t)) = C : t w(h,(t)), g =
h1(t,) for i = 1 k 1, = and =

Fig. g.2 Equivalent c-paths

Note that if two c-paths are equivalent, then under a suitable common subdivision
one can pass from the first to the second by an operation of type (ii). Note that two
equivalent c-paths have the same initial and terminal points. We also note that if

X) is Hausdorff, then the continuous maps h, in (ii) above are uniquely defined
by C and c'.

If a c-path C joining x to y is such that all the are constant maps, then the
equivalence class of C is completely characterized by an element g E c with a(g) = y
and w(g) = x.

3.3 Examples

(1) Let M be a differentiable manifold whose differentiable structure is given by
an atlas of charts qj : X, where the V1 cover M and the X, are disjoint Let X be
the union of the X, and let q be the union of the q,. Let X) be the étale groupoid
of germs of all the changes of charts. Then the set of equivalence classes of c-paths
joining x toy corresponds bijectively to the set of paths in M joining q(x) to q(y).

More generally, : X) —÷ (a', X') is an equivalence of étale groupoids,
then q induces a bijection from the set of equivalences classes of c-paths joining x
to y to the set of equivalence classes of c'-paths joiningf(x) tof(,y).

(2) Let X be R2 with rectangular coordinates (x, y). Let Q be the half-plane
defined by y> 0 and let q . X —÷ Q be the projection (x, y) (x, lyl). Let F be the
cyclic group of order two generated by the symmetry a : (x, y) (x, —y). The map
q induces a homeomorphism F\X —÷ Q and can be considered as a uniformizing
chart defining an orbifold structure on Q. The pseudogroup 7-1 of changes of charts
is generated by a; let c be the étale groupoid of germs of elements of 7-1.
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Consider the c-paths c = (Cl, gi. and c' = (Cl, g'j, C2) parametenzed by
[0, 1] joimng (0, 1) to itself, where maps t [0, 1/2] to (0, 1 — 2t), C2 maps

E [1/2, 1] to (0, 2t 1) and (resp. is the germ at (0, 0) of the identity (resp.
of a). The images under q of these paths look the same, but they are not equivalent
(not even homotopic in the sense of (3.5)).

3.4 Inverse c-Paths and Composition. From now on, unless otherwise specified,
all c-paths will be parametenzed by 10, 1]. Let C = (go, Ci,. , be a c-path
over the subdivision 0 = to .. , < tk = 1. The inverse of C is the c-path
C' = c'1 = = 1, where = 1 —1,,

g = and = — t). Note that the terminal point of C 15 the initial
point of and vice versa. The inverses of two equivalent paths are equivalent.

Given two c-paths, C = (go, Ci,. . gi) over the subdivision 0 =to < ...
tk = 1 and C' = C'1 over the subdivision 0 = < .. 1, such
that the terminal point of C is equal to the initial point of C', their Composition C* C' (or
concatenation) is the c-path C" = (gg, C'1' defined over the subdivision

for 1 < I < k; = Ck(2t 1) fork < i < k + k',

= gj for 0 < I <k, g' for k < i < k + k'.

Note that if C is equivalent to and C' is equivalent to then C * C' 15 equivalent
to * a'.

3.5 Homotopies of c-Paths. Two c-paths C and C' (parameterized by the interval
[0, 1]) are homotopic78) if one can pass from the first to the second by a finite sequence
of the following operations:

(1) equivalence of c-paths,
(2) elementary homotopies: an elementary homotopy between two c-paths C and

C' 1S a family, parameterized by s E [so, 51], of c-paths = over the
subdivisions 0 = = 1, where and depend continuously
on the parameters, the elements and are independent of s and CV0 = C, C'

C will be denoted [C]. Note that two equivalent
c-paths are homotopic. If C and C' are composable c-paths, the homotopy class
of c * C' depends only on the homotopy classes of C and c' and will be denoted
[C * C'] = [C] * [C']. If C, C' and c" are three c-paths which are composable, then
[C * C'] * [C"] = [C] * [C' * C"]. Note that although (C * C') * C" 1S not equivalent to
C' * (C' * C"), the homotopy class of (C * C') * C" 1S equal to the homotopy class of

78 Always, implicitly, relative to their endpoints
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Fig. c.3 An elementary homotopy between c-paths

c * (c' * c"); it will be denoted [c] * [c'] * [c"]. All these properties are proved as in
the usual case of paths in topological spaces.

In the notation of example 3.3(1), there is an obvious bijection between the
homotopy classes of c-paths joining two points x, y E X and the homotopy classes
of paths in Mjoining q(x) to q(,y).

The Fundamental Group 1r1 X), xo)

3.6 Definition. Let X) be an étale groupoid. A c-loop based at xo E X is a path
parameterized by [0, 1] joining x0 to x0 With the operation of composition, the ho-
motopy classes of c-loops form a group called the fundamental group ,r1((c, X), xo)
of(c, X) based at xo.

Let : X) —÷ (a', X') be a continuous homomorphism of étale groupoids.
Given a c-path c = (go, g,) over a subdivision t0 < < ti,, its image under

is the c'-path q(c) = o over the same subdivision. It
is clear that if two c-paths are equivalent (resp. homotopic), then their images under
any continuous homomorphism are equivalent (resp. homotopic). In particular
induces a homomorphism

((c, X), x0) ((c', X'),f(xo)).

The first part of the following proposition is proved as in the special case of
topological spaces. The second part is left as an exercise.

3.7 Proposition. Let X) be an étale groupoid and let x0 E X be a base point. Let
a be a c-path Joining XO to a point x1 Then the map that associates to each c-loop
c atx0 the c-loop * c * a) atx1 induces an isomorphism from ir1((c, X), x0) to

x), x1).
Let : X) —÷ (c', X') be a continuous étale homomorphism of étale

groupoids. !f(ço,f) is an equivalence, then the induced homomorphism on the fun-
damental groups is an isomorphism.

3.8 Definition. Recall that an étale groupoid (c, X) is connected (equivalently X is
c-connected) if any two points of X can be joined by a c-path. It is simply connected
if it is connected and if ,r1 ((c, X), xO) is the trivial group.
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3.9 Examples
(1) Assume that X) is the étale groupoid associated to an action of a group

F by homeomorphisms on X. Then any c-path (ge, c1, gi Ck, gk) joining x to y
defined over the subdivision 0 = < = I is equivalent to a unique c-path
of the form (c, g), where c : [0, 1] —÷ X is a continuous path with c(O) = x and

g = (y, y) with y.y = c(1). Indeed if gj = x,) E F x X, and we choose c to be
the path mapping t [ti_i, t,] to Yo• . y = Ye.. then the
given c-path is equivalent to the c-path (c, g), where g = (y, Xk)

We descnbe the group X), xo) in this special case. Let X0 be the path
component of x0 and let F0 be the subgroup formed by the elements y E F such
that y.xo Xo. Every c-loop at x0 is equivalent to a unique g-loop of the form
(c, g) where c [0, 1] —÷ Xo is a continuous path with c(O) = x0 and g = (y, x0),
with y.xo = c(1); therefore y E F0. Another such c-loop (c'. g') with g' = (y', x0)
represents the same element of,r1 ((a, X), x0) if and only if y = y' and c is homotopic
to c'. Hence we have the exact sequence (compare with C. 1.15):

1 —÷ —÷ 1

(2) Consider an orbifold structure defined on a space Q by an atlas of uniformizing
charts, and let X) be the étale groupoid of germs of changes of charts The orbifold
fundamental group of Q based at xo E X is by definition the group X), xo) If
Q is connected, then up to isomorphism this group is independent of the choice of
base point and the choice of a compatible atlas of uniformizing charts (see (3.6) and
(3.7)).

3.10 Exercises
(0) Show that an equivalence X) —÷ (c', X') of étale groupoids induces

a bijection from the set of equivalence classes of c-paths joining x to y to the set of
equivalence classes of c'-paths connectingf(x) tof(y). Show that induces an
isomorphism X), x0)) X'),f(xo)).

(1) What are the fundamental groups of the trivial examples 2 3(1 )') Show that the
fundamental group of the orbifold descnbed in 1.4(1) is a cyclic group whose
order is the greatest common divisor of m and n.

(2) Let R) be the étale groupoid of the germs (at all points of R) of the elements
of the group of diffeomorphisms of R that is generated by the diffeomorphisms
h1 h,1, where each is the identity on some non-empty open set U,. Show that
(c, R) is simply connected. (Consider first the case where n = 1.)

(3) Let G(Y) be a complex of groups over a connected scwol Y and let Y)

be the associated étale groupoid (see 2.3(4)). Show that the fundamental group of
G(Y) as defined in C.3.6 is isomorphic to the fundamental group of Y).

(4) The Seifert-van Kampen Theorem. Let X) be an étale groupoid and let
X1 and X2 be two open subsets of X such that X = X1 U Let Xo = X1 fl X2. We
assume that the restnction (a,, X,) of X) to X, is connected for i = 0, 1, 2. Let
xo E X0 be a base point. Show that X), xO) is isomorphic to the quotient of
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the free product ,ri((c1, X1), x0) * ,ri((c2, X2), x0) by the normal subgroup generated
by the elements of the form where y E ,r1((co,Xo),xo) and], is the
homomorphism induced on the fundamental groups by the inclusion from X0)

into 1,2.

(5) Let F be a foliation on a connected manifold M, and let X) be its holonomy
groupoid as descnbed in 2.3(5). Show there is a surjective homomorphism from the
fundamental group of M to the fundamental group of X). (Thus X) is always
simply connected if M is simply connected.)

(Hint: In the notations of example 2.3(5), let c : [0, 1] —÷ M be a loop in M
with c(O) = c(1) = Yo E Let 0 = t0 < t1 < < = 1 be a partition such
that each c([t, ti) is contained in some for i = 1 k — 1; let = c(t,) and

= x0 = let = (go, Ci Ck, g,) be the c-loop at xo defined as
follows: c, : [t,_1, t1] maps t gj is the germ (yj) and

the germ at xo of Show that the map associating to the homotopy class of c the
homotopy class is a surjective homomorphism from ,r1(M, Yo) to ,r1((g, X), xo).)

Coverings

3.11 The Action of a Groupoid on a Space. Let X) be an étale let
be a topological space and let p : X —* X be a continuous map. Let c = X

X of pairs g) = w(g). A right action of
(c, X) on X over p is a continuous map (1, g) of ç to X, such that:

(1) p(1.g)=a(g),
(2) if a(g) = w(g'), then I.(gg') = (1 g).g',

(3) ifi then =1.
To such an action is associated the étale groupoid X) where w((1, g)) = I

and a((I, g)) = a(g) = the composition g)(i', g') is defined if i' = I g and
is equal to (I, gg'); the inverse of(I, g) is c'). The map g) g) is
a continuous homomorphism denoted (n, p) X) —÷ (g, X).

Note that any right action of c on X over can be converted into a left action of
g overp by defining gi = where a(g) = p(I).

3.12 Definition of a Covering. In the preceding definition, if p . X —÷ X is a
covenng, we say that (,r, p): X) —÷ (c, X) is a covering of étale groupoids

Moreover, if p : X —p X is a Galois covering such that the action of its Galois
group F on X commutes with the action of then we say that (,r, p) is a Galois
covering with Galois group F.

3.13 Examples
(1) Coverings of a Groupoid Associated to an Action of a Group. Let F be a group

acting by homeomorphisms on a simply connected topological space X. Let F0 be a
subgroup of F. Let = x X, where F/F0 has the discrete topology. The group
F acts naturally on X by the rule y.(y'F0, x) = (yy'Fo, y.x). Letp : F/F0 x X —÷ X
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be the natural projection. The functor r x X mapping (y, 1) to (y,
gives a morphism (,r, p) : (F x k) —÷ (F x X, X) which can be considered as
a covering. The natural inclusion F0 x X —* F x X sending (yo, x) to (yo. (F0, x))
defines an étale homomorphism x X, X) —* (1' x X, X) which is an equivalence

In fact the equivalence classes of connected coverings of the groupoid (F x X, X)
are in bijection with the conjugacy classes of subgroups of r.

(2) Coverings of an Orbifold. Consider an orbifold structure on a space Q defined
by an atlas of uniformizing charts and let X) be the associated groupoid of germs
of changes of charts. Then any covering X) of X) is the groupoid of changes
of charts of an orbifold structure on the space of orbits Q = g\X, and Q is a covenng
orbifold of the orbifold Q, in the sense of (1.7).

(3) The Orientation Covering. Let X) be the étale groupoid of germs of a
pseudogroup of local homeomorphisms of a manifold X. Let p : X —÷ X be the 2-
fold orientation covering of X: the points of the fibre are the two possible local
orientations of X at x. The groupoid (Q, X) acts naturally on k The corresponding
étale covenng is called the orientation covenng of X). The groupoid is defined
to be onentable if there is a continuous section s X —÷ X which is invanant by

We considered the following lemma earlier in the special case of orbifolds (1.10)

3.14 Lemma. With the notations of 3.12, let (ir,p) : (ç,X)—÷ (g,X) bea Galois
covering with Galois group r. If the natural projection : X —÷ X := = X/c
is étale and if = 1; for each £ E X, then X) is equivalent to the gmupoid
(F x X, X) associated to the natural action ofF on X

Proof Let x be the étale groupoid defined as follows. The space F x is the
subspace of the product F x k x (where the topology on r is discrete) consisting
of the triples (y, g) with = w(g). The source and target projections a and w
are 1, g)) = and w((y, g)) — yi. The composition (y, g)(y', g') is

defined if I.g = y'i' and is equal to (yy', y'' i, gg'), and the inverse of(y, g)
is yI.g,

The lemma follows from the following two assertions.

(1) The étale homomorphism (F x k) —÷ X) sending (y, £, g) to g and
to is an equivalence. - -

(2) The étale homomorphism (F x (r' v X, X) sending (y, g) to
(y, and to is an equivalence.

To prove (1), we only use the hypothesis that (,r, p) is a Galois covenng. The
group F acts transitively on each fibre of p, hence the homomorphism induces a
bijection on the spaces of orbits. The isotropy group of a point X with x = p(i)
consists of the triples (y, i', g) such that g E and £ = i'.g = yi'; equivalently
it consists of the pairs (y, g) with y E r, g E and yi Given g E
there is a unique y satisfying this equality, hence the homomorphism induces an
isomorphism from the isotropy group onto
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To prove (2), we observe that the étale homomorphism (F x X) —÷ (F x X, X)
induces a bijection (F x G)\X —÷ The isotropy subgroup of is the set of
y E F such that yi = l.g for some g E The hypothesis that is trivial implies
that this element g is uniquely determined by y. Therefore the homomorphism
induces a bijection of the isotropy subgroups. E

The theory of coverings for étale groupoids is strictly parallel to the theory of
coverings for topological spaces, as the following sequence of results illustrates.

3.15 Proposition (Liftings of c-Paths). Let (pr, p) X) —÷ X) be a covering
of etale groupoids, let 1o E X be a base point and let x0 = For every c-path
c = (go, Ci, , gk) issuing from xO, there is a unique c-path issuing from such
that = c. If C' is a c-path homotopic to c, then its lijflng issuing from 10 is
homotopic to

Proof Let c = (ge, c1,.. , g,,) be defined over the subdivision 0 = to

tk = 1. The lifting = (go, .. of c is constructed by induction as follows:
= (Io, ge), : tJ —÷ X is the unique continuous path such that C, = p?,

and = = gi) Each stage of the construction is uniquely
determined by the previous stage and is uniquely determined. Itis clear that the
liftings issuing from of two equivalent c-paths are equivalent c-paths, and the
lifting of an elementary homotopy is an elementary homotopy because p is a covering
projection This proves the proposition. E

3.16 Corollary. The homomorphism X), —+ ((a, X), xo) induced by
(it, p) is injective.

3.17 Proposition. Let (a', X') (c, X) be a continuous homomorphism of
étale groupoids and let (pr, p) . X) —÷ X) be a covering. Assume that X' is c'-
connected and locally arcwise connected. Suppose that (a', X') is simply connected
and fix base points E X' and io X such that = p(1o) = xo. Then there is

a unique continuous homomorphism (a', X') —÷ k) such thatf = p

Proof Let c be a c'-path issuing from If exists, then is a c-path issuing
from 1o such that q(c) As such a path is unique (by (3.15)), this shows the
uniqueness

Given a point x' E X', there is a c'-path c joining 4 to x', because X' is assumed
to be c'-connected. Moreover, as is simply connected, the homotopy class of
such a path is unique. Let be the c-path issuing from lo whose projection by ,r is
q(c). Letf : X' —÷ be the map associating to x' the end point of To check that
this map is continuous at x', choose a neighbourhood (i of f(x') that is mapped by
p homeomorphically onto an open set U C X; as f is continuous and X' is locally
arcwise connected, f' (U) contains an arcwise connected neighbourhood V of x';
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we claim that contains V. Indeed for each point z E V. we may choose a
continuous path in V joining x' to z; its image underf can be lifted uniquely as a
path 2, in (i issuing fromf(x'); considering as a c'-path and as a c-path, the
lifting off(c * is * contains v'.

3.l8Corollary. Let (ir,p): (g,X)and(ir',p'): (g',X') —÷ (c,X) be two
simply connected coverings of(c, X), and choose E X E X' such

that = Then there is a unique isomorphism X) —÷ (g', X')

such that = o and =

By definition, an automorphism y of a covenng (pr, p) X) —÷ X) is a
homeomorphism y X —÷ X that commutes with the projection p and the right
action of namely y = p and for all g E X with = w(g) we have
y.(I.g) = (yi).g.

3.19 Corollary. Let X) be an étale groupoid and assume that X is locally arcwise
connected and c-connected Any simply connected covering X) —÷ (c, X)
is naturally a Galois covering, with Galois group r ((a, X), xo)

Proof Fix a base pointx0 E X By Corollary 3.18, the group F of automorphisms of
(n,p) acts simply transitively on the fibre E Given y E r,
let be a c-path joining y 1o to 10. Let be the hornotopy class of the c-loop
p(s) at x0; it is independent of the choice of because is simply connected.
As in the case of topological spaces, one shows that the map F —÷ X), xo)
is an isomorphism; we leave the details as an (instructive) exercise. E

3.20 Exercises
(1) Construction of the Universal Covering. Let X) be an arcwise connected

étale groupoid such that X is locally simply connected (this means that each point
x E X has a fundamental system of neighbourhoods which are simply connected).
Construct a simply connected covering (,r, p) : k) —÷ (ç, X) using an analogue
of the classical construction of the universal covering of a locally simply connected
space

(Hints: X will be the set of homotopy classes [c] of c-paths c issuing from a base
point xo E X (all the paths are parameterized by [0, 1]); the projection p X —÷ X
will map [c] to the endpoint of c. Define a topology on as follows: given a simply
connected open set U in X and [c] E X with x = j([c]) E U, there is a canonical
lifting U U one associates the homotopy class of the
composition of c with a path in U connecting x to y (this homotopy class is well
defined because U is simply connected) Show, that the subsets of the form
constitute a basis for a topology on X and that p . X X is a covering.

Consider the map that associates to each ([ci, g) E X x with w(g) = p([c]) the
element [c * g] E X. Show that this map defines a right action of X) on X over
p. Let [c'] E X), x0). Check that ([c'I, [cI) [c' * ci defines a left action of
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F = X), x0) on k which is simply transitive on each fibre
of

the action of X) X overp, and
: —+ : (g,X) —* (c,X)

is a simply connected covering.)

(2) A Criterion for Developabilily Let X) be a connected étale groupoid such
that Xis locally simply connected. Show that the following conditions are equivalent

(i) (c, X) is developable, i.e equivalent to the étale groupoid associated to an
action of ((a, X), x0) on a simply connected space X.

(ii) Each point of X has a simply connected open neighbourhood U such that: if
g E is not a unit and a(g), w(g) E U, and if C: [0, 1) —p U is a continuous
path with c(1) = w(g) and c(O) = a(g), then the homotopy class of the c-loop
(c, g) is non-trivial.

(Hint for (ii) (i): Using the notations of the preceding exercise, letX be the
quotient space of X by the equivalence relation which identifies [c] e with [c].g,
where g E and w(g) = Let ij . X —÷ X be the map associating to [c] its
equivalence class. Check that if condition (2) is satisfied, then is an étale map. (It
is sufficient to check that the restriction of to an open subset of the form is

injective.) Then apply lemma (3.14).)

4. Proof of the Main Theorem

Outline of the Proof

We first outline the proof, which is adapted from the proof of the Cartan-Hadamard
Theorem given by S. Alexander and R. L. Bishop (see II 4). Given a groupoid
(c, X) of local isometnes, we first define the notion of c-geodesic. Assuming that
c is Hausdorff and that the metnc on X is locally complete and locally convex, we
introduce a topology (see 4.4) on the set X of equivalence classes of c-geodesics
issuing from a base point x0 E X; for this topology the projection p : X —÷ X sending
each c-geodesic to its endpoint is étale.

The groupoid ç acts naturally on the nght on X over p. Let X be the
quotient of X by this action. The natural projection : X —÷ X is étale (4.5) and
the groupoid X) associated to the action is equivalent to the trivial groupoid X.
Moreover the space X is contractible, in particular it is simply connected Hence
the equivalent groupoid X) associated to the action of c on X is also simply
connected

If (g, X) is complete, then X —* X is a covering (4 7). Therefore X) —÷

(ç, X) is a Galois covering with Galois group F = X), xo). The action of F
on X by covering automorphisms commutes with the right action of ç. hence it also
acts on X It then follows from lemma 3.14 that X) is equivalent to the groupoid
associated to the action of F on X.
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c-Geodesics

4.1 c-Geodesics. Let X) be a groupoid of local isometries. A c-geodesic is a
c-path c (go, C1, gi ck, g,à over the subdivision 0 to < < = I that
satisfies the following conditions for i = 1,..., k.

(I) c, [t1_i, t,] —÷ X is a constant speed local geodesic.
(2) If : U —* is a local section of a defined on an open neighbourhood of

a(g1) such that = g,, then for s > 0 small enough, the concatenation
of Cult_eli and w o o is a constant speed local geodesic

Note that any c-path which is equivalent to a c-geodesic is a c-geodesic. If
(c, X) is the groupoid associated to an action of a group I' by isometries on a length
space X, then any c-geodesic joining x to y is equivalent to a unique c-geodesic
of the form c = (Ci, gi) where Cl : [0, 1] —* X is a constant speed local geodesic
issuing from x and gi = (y, y) with y.y = c(1) (see 3 9(1)).

4.2 Lemma. Let X) be a groupoid of local isometries which is Hausdorff Fix
g e with x = a(g), y = w(g) and let r> 0 be such that the closed balls B(x, r)
and B(y, r) are complete and the metric restricted to these balls is convex (see 11.1.3).
Then there is a unique continuous map : B(x, r) —* c such that = g and a o
is the identity of B(x, r); moreover h : = w o is an isometry from B(x, r) onto B(y, r).

Proof Let c,? [0, 1] —* B(x, r) be the unique constant speed geodesic segment
joining x to x' e B(x, r). As X) is Hausdorif and r) is complete, there is a
unique continuous lifting : [0, 1] —* c such that and = g
(see 2.14) We define this gives a map : B(x, r) —* c which
is continuous (because geodesics vary continuously with their endpoints in B(x, r)
where the metric is convex) and w o is a local isometry from B(x, r) to B(y, r). The
same argument applied to the inverse of g shows that this map has an inverse which
is also a local isometry, Hence w o is an isometry from B(x, r) onto B(y, r).

The next lemma is the analogue of lemma 11.4.3.

4.3 Main Lemma. Let (c, X) be a groupoid of local isometries which is Haus-
dorff Assume that the metric on X is locally complete and locally convex. Let
c = (go, c1, g1 ck, be a c-geodesic joining x to y over the subdivision
0=t0 < . 1. Thenthereisans > Osuchthat:

(i) for each i there are unique continuous maps : B(a(g1), —* c which are
sections of a, and are such that = g,;

(ii) for each pair ofpoints e X with d(x, <s, d(y, <s, there is a unique
geodesic = c' . . , that is defined over the same subdivision
as c, joins i to and is such that d(c,(t), < and = for
i=0 kandt e [0, 1]. Moreover

l(c) < l(c)+d(x,x)+d(y,yl.
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Proof The proof is an adaptation of the argument of Alexander-Bishop [AB9O] used
in lemma 11.4.3. In the proof of 11.4.3, instead of dividing the interval [a, fri into three
equal parts, one can use any fixed partition of the interval.

Chooser> 0 small enough so that, for each i = I,.. , k and each t e ti],
the closed balls r), as well as the closed balls B(x, r) and B(y, r), are complete
and the distance function is convex on these balls

It follows from (4.2) that, for each i = 0,.. , k, there are unique continuous
maps : B(a(g,), r) —* g which are sections of a such that = g, and
h1 = w o is an isometry from B(a(g1), r) onto B(w(g1), r).

We first assume the existence assertion in (ii) and deduce from it the uniqueness
assertion in (ii) and the inequality for the lengths Consider two g-geodesics and
E' defined over the subdivision 0 = to < .. < 1, = I, as in (ii), with endpoints

Y and y'. Assume S < r. The function mapping t e tJ to is

continuous on the interval [0, 1] and locally convex, hence convex. This shows that if
and have the same endpoints, then they are equal. The stated inequality concerning

lengths is proved like in lemma 11.4 3 Also, provided s < r, any Cauchy sequences
in B(x, s/2) and in B(y, E/2) will converge to points e B(x, s/2) and

e B(y, E/2), and the above convexity argument shows that the sequence of unique
g-geodesics joining to will converge (uniformly) to the unique c-geodesic

To prove the existence of for small enough, we shall argue by induction on
k. The case k — 1 follows from (11.4.3).

We may assume by induction that the analogue of the lemma is true for the g-
geodesic c' = (go,. . , gk—l) obtained by restricting the c-geodesic c of the
lemma to the subdivision 0 = to < ... < tk_ I of the interval [0, tk_ j and for some

smaller than r. Let 8 < 0 be small enough so that 8 < s' and tk_I — 8 > tk_2.

Let c" : [1k_I 8, tkj —* X be the local geodesic defined by c"(t) = Ck(t) for
e [tk_ , and (c"(t)) = ck_ (t) for I e [tk— I — 8, tk_ j Let = C"(tk_ i)

and C"(tk_I — 8). Inductively, we define sequences of points and in

B(ck(tk_l), s'). Assume z,_1 and are already defined. The first paragraph of the
proof shows that our inductive hypothesis on c' gives a unique c-geodesic c, over
the subdivision to < . . < joining to Let . [tk_1 — 8, tkl —* X be the
unique local geodesic joining to which is r-close to c"(see 11.4.3). Define

4, = = —8)).
By convexity we have

< tk_l 8
d(411, 4,) forn> I,

tk_

tk — tk_l
forn I,

— tk_l + 8
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and
'S

d(Z0,Z1)< d(yJ).
tk—l + 8

Choose a number A > 1/2 such that

tk 8
max{ ,

tk_1 tk_l +8J

< < <
and < An+e1 hence and are both smaller than

s'. Therefore, if we assume that s < then the sequences and that

we have defined inductively, are Cauchy sequences. As the closed balls B(c(t), s)
are complete and the metric is locally convex, the sequence of g-geodesics
converges uniformly to a c-geodesic = gk—) over the subdivision
0 = to < < (k—I; this c-geodesic joins

to a local geodesic : — 8, —* Xjoining
= to hkt5). Moreover = Ck_I(1) fort e [tk— — 8, There-

fore, if we = C =
the c-geodesic joining x to y that we were looking for.

The Space of Issuing from a Base Point

Let X be the set of equivalence classes of g-geodesics parameterized by [0, 1] that
issue from a base point x0 e X Let p X —* X be the map associating to each
equivalence class its terminal point. Let denote the point of X represented by the
constant c-geodesic atx0, namely (go, c1, g1), where g U0 and =
for eachi e [0,11.

C,

C"

Fig. The proof of the main lemma
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Given a c-geodesic c = (go, , ct,.... gk) joining xo to a pointy over the subdi-
vision 0 = to < < t/, = 1, we shall write to denote the set of g-geodesics
given by (4 3) that join x0 to the various points of B(y, s), and we write to denote
its image in X. The projection p maps bijectively onto B(y, s). This shows that
the map —* sending each c-path to its equivalence class is injective.

Note that if we refine the subdivision of c we don't change Therefore there
is no loss of generality if we assume in what follows that the c-geodesic c =
(go, . ., Ck, gk) satisfies the following condition. there exists r > 0 such that the
closed balls of radius r centred at the sources and targets of the gj, and at each point
c,(t), are complete geodesic spaces on which the distance function is convex; we also
assume that cI([tI_!, t,]) C r/3) (in particular each c1 is a constant speed
geodesic segment). We shall consider sets with S < r.

4.4 Proposition. With the assumptions of lemma 4.3, the subsetsX form a
basis for a Hausdorff topology on X, which respect to which p is étale.

Proof Consider two sets and which intersect. Without loss of generality,
we can assume that c and c' are defined over the same subdivision 0 = t0 <

< tk = I and satisfy the condition preceding the statement of the proposi-
tion. By construction and are balls B(y, s) and B(y', s') in X Assume

g-geodesics. The image under p of the equivalence classes of and is a point
z E B(y, s) fl B(y', s').

The proposition is a consequence of the following assertion

ClaimS If 8 is such thai B(z, 8) C B(y, e) fl B(y', s'), then B(z, 8) C n

By definition, there are continuous maps h, [t,.1, tJ —* g such that a(h1(t)) =
w(h1(t)) = and = (t,) for i = 1, . . k — 1, also = (0)

and Using lemma 4.2, we can find liftings h, : 8) —* c of
a such that = h,(t1_1). As the projection a is étale and c is Hausdorff, for
each i = I,.. k — I and u e B(c,(t,), 8) we have

= (u))) (u),

also = hi(u) and = for each u in, respec-
tively, (0), 8) and 8), because these two last equalities are true when u
is the centre of the ball. This implies that the h, induce an equivalence from elements
of C XP to elements of C Xi'. Thus = This proves the claim.

C C C ( C C

The Space g =

i e a c-geodesic c = ci,. ,

g E c with w(g) = p(I), we wnte for the element of X represented
by the c-geodesic c.g obtained from c by replacing its last entry with gkg. This
defines a continuous nght action of c on X over p : X —* X.
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Let k) be the étale groupoid associated to this action (see 3.11). The following
lemma is analogous to (11.4.5).

4.5 Lemma. Let X be the quotient of X by the right action of g described above,
with the quotient topology. (X is also the space of orbits of the groupoid Then X is
Hausdorff and contractible. The natural projection X —* X is étale and induces
an equivalence from X) to the trivial groupoid X. In particular the groupoid
(ç, X) is simply-connected.

Proof We first note that if g e is not a unit and if w(g) is the terminal point of c,
then c.g is not equivalent to c, because is Hausdorif (see 3.2). More generally, if

B(a(g),s) —* B(w(g),s) is aliftingofa such that = =
0. This shows that : X —* X is étale, that X is Hausdorif, and that the map

g) ij(I) gives an equivalence from the groupoid X) to the tnvial groupoid
x.

It remains to check that X is contractible. Given s e (0, 1] and e X represented
by the c-geodesic c = (go, ..., over the subdivision 0 = < .. < = 1,

let e X be the element of X represented by the c-geodesic obtained from c
by restricting the parameter t to the interval [0, .sj and reparametenzing by [0, 1]
(Note that if s then the g-geodesics (go, c1, . , c,) and (go, c, g1) over
the subdivision 0 = t0 < . . . = s of[0, 5] (reparametenzed by [0, 1]) represent the
same point of X.) Then (s, is a continuous map [0, 1] x X —* X defining a
homotopy that connects the constant map from X to to the identity map of X.

The Covering p : —* X

4.6 Lemma. With the assumptions of Theorem 2.15, given k and a rectifiable
path s F-± in X parameterized by s e [0, 1], with y0 = there is continuous
paths inX such that p(jY) = and 57° = 1.

Proof We assume that s yc is a constant speed parametenzation. As p is étale,
the maximal interval containing 0 on which the lifting s F-± can be defined is
open. So it will be sufficient to prove that if a lifting s is defined on [0, a), then

exists. Let £ be the sum of the length of the path s yc and the length of
a c-geodesic representing y0

Let q : X —* be the natural projection. We endow with the quotient
pseudometnc and its associated topology. For s e [0, a), if is represented by the
c-geodesic c5 = . . g,S) over the subdivision 0 < .. < = I, then
the map C : [0, 1] x [0, a) —* sending (t, s), with t e t,], to is

well-defined Fort1, t2 e [0, 1] and e [0, a), by (4.3) we have

d(C(t1, si), C(t2, s2)) < £(jt1 — t21 + Is 521)

Therefore the map C extends to a continuous map [0, 1] x [0, a] —* c\X, still
denoted C. By the compactness of the interval [0, 1], we can find a subdivision
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< < t,, = 1,anumbers > Oandpointsxo,x1,. .,xkinXsuchthat
q(x,) = C(t,, a), xk = y(a), the balls B(x1, 3s) are complete and geodesic with convex
distance function, and each (t1 — (i—I) is smaller than

Let s1 e [0, a) be such that the length of the curve s restncted to [s1, a]
is smaller than s and d(C(i, si), C(t, a)) < s for all t e [0, 1]. Using (2.14) we
can find points e B(x,, s) for i = 1 k I such that q(z,) = C(t,, si), let
zo = xo and Zk = yr'. Using (2.14) again, we can find a representative of of the
form = over the subdivision 0 = to < < = I, where

= and is the unit We claim that we can also find, for each
s e [si, a), a unique representative = ci,..., defined over the same
subdivision 0 = lo < . . = 1, where and vary continuously with s. By
lemma 4.3 this is possible for s close to s1. Suppose that can be defined on the
interval [s', the length of each path is smaller than S. as is the length of each
path s (because its length is no greater than that of the corresponding path
s y(s), by lemma 4.3); therefore each path is contained in B(x1_1, 3E); as the
closure of these balls is assumed to be complete, we can define as the limit of
c5 ass —* and hence CS can be defined on the interval [Si, 52]. Ifs2 < 1, we can
extend the construction of to a larger interval using (4.2), and eventually to the
whole interval [si, a].

4.7 Corollary. If(g, X) is a groupoid of local isometries which is connected, Haus-
dorif complete and such that the metric on X is locally convex, then p X —* X is a
covering of X.

Proof Let c = (ge, be a rectifiable c-path defined over a subdivision
0 = 5o < < = I such that w(go) = xo. Using the preceding lemma, we
can construct, by induction on n, a c-path = defined over the
same subdivision such that = go), and : s,] —* X is the unique path
in X such thatp(s) = c,(s) and = In particularp maps the
terminal point of c. As Xis c-connected, this shows that p
is surjective The preceding lemma implies that p is a covering over each connected
component of X. 0

The End of the Proof of the Main Theorem. Let it . —* g be the map (1, g) g. We
have just seen that (ir,p) : X) —* (c, X) is a covenng. By (4.5), X) is simply
connected, therefore (it, p) is a Galois covering with Galois group I' = ir1((g, X),
(see (3.18). Thus the theorem follows from 3.14. El
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Index

(dihedral group), 378
(diameter of 24
23

O(n, 1), 307
P(n,IR), 314
P(n,IR)1, 324
S(n,IR), 314
U(n, 1), 307

301
IR—tree, 167, 399
c-paths, 604

482
8-hyperbolic (see hyperbolic), 398, 407, 448
ic-cones, 59
— curvature of, 188
Ox(Q), 307
w-limit, 79

158
ir1-injectivity of local isometries, 200
c-filling, 414
c(x), 100, 114
(G,Y)-structure, 591
étale map, 42

1-2-3 Theorem, 488

3-manifold, 258, 496, 502, 510

4-point condition
— for CAT(,c) spaces, 164
— for hyperbolicity, 410

action of a group
— cobounded, 137
— cocompact, 131

— extension to the universal covering, 380
— on a scwol, 528
— on a space (terminology), 131
— proper, 131

— quasi-analytic, 591
— strata preserving, 372

action of a groupoid, 599, 609
Alexandrov's Lemma, 25
Alexandrov's patchwork, 199
algebraic group, 327
all-nght sphencal complex, 127, 210
amalgamated free product, 377, 497
— along a free subgroup, 503
— along an abelian subgroup, 500
amalgamation of metnc spaces, 67
angle, 9
— ic-companson, 25
— Alexandrov (upper), 9, 173
— alternative notions of, 162
— between points at infinity, 280
— companson, 8

— continuity properties, 184, 278
— in CAT(ic) spaces, 184
— in the bordification, 278, 281
— notation for, 184
— Riemannian, 39, 173
— strong upper angle, 11
angular metnc, 280
annular diagrams, 454
apartment, 337, 343
approximate midpoints, 30, 32, 160, 164
area, 414
— of a surface, 425
AreaE, 414
Arzelà-Ascoli theorem, 36
ascending chain condition, 247
aspherical manifold, 213
asymptotic
— geodesic lines, 182
— geodesic rays, 260, 427, 428
axis (of an isometry), 231

Banach space, 5
barycentre, 116
barycentric
— coordinates, 124, 125
— subdivision, 116—118, 125
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Basic Construction, 381, 542
— properties of, 384, 545
bicombing, 471
Bieberbach Theorem, 246
bordification, 260
Borromean rings, 224
boundary at infinity
— is a CAT( 1) Space, 285
— as an inverse limit, 263
— horofunction construction, 267
— of 90
— of KH?Z, 309

— of a 8-hyperbolic space (see Gromov
boundary), 427

— of a product, 266
— of an IR—tree, 266
Britton's Lemma, 498
building (spherical, Euclidean, thick), 343
Busemann function, 268, 273, 428
— in P(n, IR), 335

Cartan-Hadamard Theorem, 193
CAT(ic)
— 4-point condition, 163

— implies CAT(ic1) if ic ic', 165
— inequality, 158, 161
— limits of, 186
— space, 159
category
— associated to a group action, 574
— equivalence, 575
— small, 573
— without loops (scwol), 519
Cayley complex, 153
Cayley graph, 8, 139
Cayley transform, 90
centralizers
— in hyperbolic groups, 462
— in semihyperbolic groups, 477
— virtual splitting, 234
centre of a bounded set, 178
characteristic map of a cell, 101
circle isometncally embedded, 202
circumcentre, 179
Clifford translation, 235
CN inequality, 163
coarse, 138
coboundary, 535
cocompact
— group action, 131
— space, 202
collapse, 219
combinatorial complex, 153

combinatorial map, 153, 217
combing line, 471
commensurable groups, 141
companson angle, 8
— lower semicontinuity, 286
companson point, 158
companson tnangle, 8, 158
completion of a CAT(0) space, 187
complex
— Mn-polyhedral, 114
— (abstract) simplicial, 123
— cubed, 115
— cubical, 111,212
— metric simplicial, 98
— squared, 115,223
complex of groups, 535
— associated category, 538
— associated to an action, 539
— developable, 541
— fundamental group of, 548
— induced, 538
— non-developable, 379
— of curvature < ic, 562
— simple, 375, 535
concatenation of paths, 12, 547, 606
cone
— asymptotic, 79
— Euclidean, 60
— over a metric space, 59
— simplicial, 124
cone topology, 263, 281, 429
cone type, 455
conjugacy problem, 441, 446, 453, 474, 489
convex
— r-convex, 4
— function, 175
— hull, 112
— metric, 159, 176, 193, 603
— subspace, 4, 176
convexity
— of balls in CAT(ic) spaces, 160
— of the metric, 176
covering, 42
— Galois, 46
— map, space, 42
— ofacategory, 579
— of a complex of groups, 566
— of scwols, 527
— of étale groupoids, 609
Coxeter
— complex, 393
— graph, group, system, 391
cross ratio, 82, 85
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cubical complex, Ill
— of non-positive curvature, 212
— with specified link, 212
curvature
— < (in the sense of Alexandrov), 159
— in the sense of Busemann, 169
— non-positive, 159
— of complexes, 206
— of K}1?z, 304

— sectional, 171

Davis Construction, 213
decision problems, 440, 494
Dehn complex (of a knot), 222
Dehn function, 155, 444,451,487, 504, 507
Dehn presentation, 450
Dehn twist, 257
Dehn's algorithm, 417, 449
developable
— étale groupoid, 597
— complex of groups, 541
developing map, 46
development
— of a (G, Y)-structure, 592
— of an m-stnng, 104
development 542
disjoint union of metnc spaces, 64
displacement function, 229
distance, 2
distortion, 488, 506, 509
divergence function, 412
doubling
— along a subgroup, 482, 498, 504
— along a subspace, 498
dunce hat, 115,533

edge path, 526
Eilenberg-MacLane space, 470
elementary homotopy, 154, 527, 577
Embedding Theorem, 512
ends of a space, 144, 430
equivalence
— of functions, 415
— of c-paths, 604
— of categones, 575
— of étale groupoids, 597, 600
equivanant gluing, 513, 518
Euclidean
— de Rham factor, 235, 299
— space, IS

excess of a triangle, 168
exponential map, 94, 170, 196, 316

fibre of a morphism, 568
fibre product, 488
filter, 78
finite presentation of a group, 135
finite state automaton, 456
finiteness conditions 470, 481
Finsler metnc, 41
first vanation formula, 185
flag, 340
flag complex, 210
flat, 321
— half-plane, 290
— manifold, 246, 255
— polygons, 181

— sector, 283
— subspaces, 247, 278, 296
— tnangle, 180
Flat Plane Theorem, 296, 459
Flat Strip Theorem, 182
Flat Torus Theorem, 244, 254
— algebraic, 475
foliation, 596
— Riemannian, 602
frame, 340
free face, 208
free group, 134
functor, 574
— homotopic, 575

geodesic, 4
— k-local, 405
— closed local, 38
— local, 4, 160, 194
— parallel, 182
— ray (see asymptotic), 4
— regular, singular, 322
— terminology for, 4
— uniqueness in CAT(,c) spaces, 160
— word, 452
geodesic extension property, 207, 237
geodesic metric space, 4
geodesic simplex, 98
geodesic space, 4
geometric realization
— of a poset, 370
— of a scwol, 522
— of a simplicial complex, 124
geometnc structure, 591
germ, 45, 592
— topology, 46
girth, 210
gluing, 67
— equivanant, 355
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— of CAT(,c) spaces, 347
— using local isometries, 351
Gluing Lemma for Triangles, 199
graph
— Cayley, 8

— combinatorial, 7

— metric, 7

— of groups, 498, 534, 554
graph product of groups, 390
Gromov boundary, 427
— as a set of rays, 427
— as classes of sequences, 431
— topology, 429
— visual metric, 435
Gromov polyhedra, 394
Gromov product, 410, 432
Gromov-Hausdorff (see also limit)
— distance, 72
— pointed convergence, 76
groupoid, 594
— étale, 594
— associated to a complex of groups, 595
— associated to an action, 594
— complete, 601
— connected, 602, 607
— Hausdorif, 601
— of local isometries, 601
— simply-connected, 607
— topological, 594
— trivial, 595
groups
— amalgam of, 376
— as geometric objects, 139
— direct limit of, 376, 386
— hyperbolic, 509
— n-gon of, 379
— nilpotent, 149
— polycyclic, 149, 252, 479
— semihyperbolic, 472
— triangle of, 377
growth of groups, 148, 391
— polynomial, 148

— rational, 457

Hadamard space, 159
Hausdorif distance, 70
Hubert space, 47
Hirsch length, 149
HNN extension, 492, 497, 552
— trivial, 498
holonomy
— pseudogroup, 596
— group, 46, 592

— groupoid, 596
homogeneous coordinates, 81, 302
homology manifold, 209
homomorphism of groupoids, 597
— étale, 597
homotopy of c-paths, 606
Hopf link, 224
Hopf-Rinow theorem, 35
Hopfian groups, 513
horoball, 267
horofunction, 267
horosphere, 267, 428
— inK}1?z,310

horospherical subgroup, 332
hyperbolic (see also 8-hyperbolic)
— (8)-hyperbolic, 411
— group, 448
— metric space, 398
— quasi-isometry invariance, 402, 412
hyperbolic space (IHI?z and KR'1), 19, 302
— ball model, 310
— embedding in P(n, IR), 330
— hyperboloid model, 18
— Klein model, 82
— parabolic model, 310
— Poincaré ball model, 86
— Poincaré half-space model, 90
hyperplane
— bisector, 16, 18,21
— inE?z, 15
— inS?z, 18
— in ]HJ?z, 21

incoherence, 227
injectivity radius, 119, 202
internal points of a triangle, 408
inversion, 85
isometries, 2
— elliptic, 229
— finite groups of, 179
— hyperbolic, 229, 231
— of 26
— of ]HJ'1, 229
— of KH?Z, 307

— of a compact space, 237
— parabolic, 229, 274
- Riemannian, 41

— semi-simple, 229—231, 233, 331
isomorphism problem, 441
isoperimetric inequality, 414
— linear,417, 419, 449
— quadratic, 416, 444
— sub-quadratic, 422
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Iwasawa Decomposition of GL(n, IR), 323

Jacobi vector field, 171
join
— curvature of, 190
— of morphisms, 532
— of posets, 371
— of scwols, 531
— simplicial, 124
— sphencal, 63

Klein bottle, 246
knots and links, 220

lattice, 142, 249, 300, 362
law of cosines
— Euclidean, 8

— hyperbolic, 20
—

in IKH?Z, 303

— sphencal, 17

length
— of a chain, 65
— of a curve, 12
— of a string, 99
— Riemannian, 39
length metnc, 32
— induced, 33
— on a covenng, 42
length space, 32
limit
— 4-point, 186
— Gromov-Hausdorff, 72, 186
— of CAT(,c) spaces, 186
link
— geometric, 102, 103, 114
— lower, 532
— simplicial, 124
— upper, 370, 532
link condition, 206
— for 2-complexes, 215
local development, 388, 558, 565
local groups, 535
local homeomorphism, 42
loxodromic, 332

manifold of constant curvature, 45
map
— étale, 42
— simplicial, 124
mapping class groups, 256
Markov properties, 455
membership problem, 488

metnc
— convex, 159
— Finsier,41
— induced, 2

— induced length metric, 33
— locally convex, 169
— Riemannian, 39
metric space, 2
— geodesic, r-geodesic, 4
— locally uniquely geodesic, 43
— proper, 2

— totally bounded, 74
— uniquely geodesic, 4
Min(-y), 229
monodromy of a covering, 572, 581
morphism
— homotopy of, 537
— non-degenerate, 371, 526
— of complexes of groups, 536
— of posets, 371

— of scwols, 526
— simple, 376
— strata preserving, 372
Moussong's Lemma, 212
Möbius group, 85

nerve of a cover, 129
no tnangles condition, 210
non-positively curved, 159
norm, S
—

— of a quaternion, 301
normal closure, 134

orbifold, 585
— change of charts, 585
— developable, 587
— Riemannian, 586
orbit of a point
— under a groupoid, 594

parabolic subgroup, 332
parallelogram law, 48
ping-pong lemma, 467
Plateau's problem, 426
points at infinity, 260
poset, 368
— affine realization, 370
pre-complex of groups, 576
pre-Hilbert space, 47
presentation of a group, 134
product decomposition
— and the Tits metnc, 291
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— of Min(-y), 231
Product Decomposition Theorem, 183, 239,

291
product of CAT(ic) spaces, 168
product of metnc spaces, 56,58
projection (orthogonal)
— onto convex subspaces, 176
projective space, 81, 302
proper
— group action, 131
— metnc space, 2
pseudogroup, 586
— associated to an étale groupoid, 594
pseudometnc, 2
— positive definite, 2

q.m c. property, 445
quasi-centre, 459
quasi-conformal structure, 436
quasi-geodesics, 142
— in hyperbolic spaces, 401
— taming, 403
quasi-isometric embedding, 138, 507
quasi-isometries, 138
— invariants of, 142
— preserve hyperbolicity, 402, 412
quasi-projection, 463
quasiconvexity, 460, 475
quaternions, 301
quotient pseudometric, 65

rank
— of a symmetnc space, 299
— of an abelian group, 247
rays (see geodesic, asymptotic)
— quasi-geodesic. 427
realization
— affine, 124, 125,370,371
— all-nght sphencal, 127
— Euclidean, 127
rectifiable curve, 12
reflection through a hyperplane, 16, 18, 22,

85
regular geodesic, 335
regular language, 457
residually finite group, 511
reverse-inclusion, 371
Rips complex, 468
Rips construction, 224, 488
ruled surface, 426

Sandwich Lemma, 182
scalar product, 47

scwol, 521
— associated to a poset, 521
— connected, 521
— geometric reaiization, 522
— opposite, 521
— vertex and edge of, 521
Seifert-van Kampen Theorem
— for complexes of groups, 552
— for étale groupoids, 608
semi-direct product of groups, 52
semi-simple
— isometry, 229, 331
— matrix, 331
semihyperbolic, 472
Shapes(K), 98
simple complex of groups, 375
— of curvature < ic, 388
— simple morphism of, 376
simple groups, 512
simplicial complex
— abstract, 123
— metric, i e piecewise 98
small cancellation, 216, 220
Solvable Subgroup Theorem, 248
source, 594
— of a germ, 592
space of directions, 190
spherical join, 63
— as the boundary of a product, 284
Splitting Theorem, 239, 291
— algebraic, 480
Stallings-Bieri groups, 483, 485
star (open, closed), 99, 114, 125, 369, 555
stereographic projection, 84
stratified
— complex, 369
— complex, set, space, 368
strict fundamental domain, 372, 373
strictly developable, 377, 389
string, 99
— taut, 106
subem bedding of a 4-tuple, 164
subgroup
— abelian, 244, 249, 475
— centrai, 234
— distortion, 488, 506
— finite, 459
— finite index, 511
— free, 467
— quasi-isometrically embedded, 461
— reductive, 327
— retract, 504
subscwol, 521
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support, 99, 113
Svarc-Milnor Lemma, 140
symmetnc space, 299
— of non-compact type, 299
— rank of, 299
systole, 202
— of complex, 203

tangent cone, 190
tangent vectors in IKH?Z, 302
target, 594
— of a germ, 592
tesselations of jp1i2 384
Tits boundary, metnc, 289
— is CAT(1), 289
torsion groups, 250
torus bundles, 141, 502
totally geodesic submanifold, 324, 334
totally real subspace, 306
tower, 217
translation length
— algebraic, 464, 466
— of an isometry, 229, 253
transvection, 315
tree, 7
— Bass-Serre, 355, 358, 554
triangle
— 8-slim, 399
— 8-thin, 407
— companson, 24, 158
— geodesic, 158
— hyperbolic, 20, 303

— insize of, 408
— internal points of, 408
— spherical, 17

triangulation, 414
truncated hyperbolic space, 362
twisting element, 535

ultrafilter (non-pnncipal), 78
ultralimit, 79, 186
uniform structure, 433
uniformly compact, 74
universal development
— of a complex of groups, 553

van Kampen diagram, 155, 505
Vandermonde determinant, 330
virtual properties of groups, 245
visibility
— local, uniform, 294
— of hyperbolic spaces, 400, 428
— spaces, 294
visual boundary, 264
visual metric, 434

weak topology, 125, 368
Weyl chamber, 322, 337
word
— geodesic, 452
— reduced, 134
word metric, 139
word problem, 441, 442, 449, 474, 487
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