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AUTOMORPHIC SETS AND BRAIDS AND SINGULARITIES

E. Brieskorn

INTRODUCTION

Singularities and braids are related in many ways. I decided to concen-
trate on one aspect of these relations, namely the Coxeter diagrams. These are
invariants of singularities which are obtained by the classical theory of Pi-
card and Lefschetz. The braid groups B, operate on the set of diagrams with
n vertices, and the invariant associated to a singularity is an orbit of dia-
grams.

When preparing this survey, I found an extremely simple concept unifying
many investigations on this subject as well as classical results of E. Artin
and A. Hurwitz and W. Magnus. This is the notion of an automorphic set. An au-
tomorphic set is a set A with a product such that all left translations
b~ axb are automorphisms. If A is an automorphic set, there is a canoni-
cal operation of the braidgroup B, on A" for any natural number n .

When I presented our results at the conference on Artin's braid group, I
learned that a special type of automorphic sets, namely those with the additio-
nal property a#a = a , had already been introduced and investigated by D.
Joyce, who calls such a set a quandle. I found the paper of D. Joyce very sti-
mulating. I have worked some of his ideas into this paper, and there may be
other possibilities of integrationyet to be discovered. However there is no
overlap with respect to the main point of this survey, the operation of B8,
on A" , which does not occur in Joyce's paper.

The beauty of braids is that they make ties between so many different
parts of mathematics, combinatorial theory, number theory, group theory, al-
gebras, topology, geometry and analysis, and, last not least, singularities.
Although I am very fond of these manifold connections, I have tried to isolate
the combinatorial, the algebraic and arithmetic aspects from the geometric ones
as clearly as possible. I hope that this will contribute to conceptual clarity
and will make the subject easily accessible to tnose who do not know singulari-
ties nor algebraic or analytic geometry.

The contents of the survey is as follows. § 1 is a brief introduction to
some of Artin's classical results on braid groups, presented in a way fit for
future developments. §2 introduces the automorphic sets together with a few
categorical definitions obviously related to this notion and gives many exam-
ples. § 3 deals with the operation of B, and certain other groups on the car-
tesian products A" of automorphic sets A and introduces invariants of the
orbits, in particular pseudo Coxeter elements, Coxeter diagrams and monodromy
groups. This is followed by a discussion of problems related to the operation
of B, on A" and a report on classical and recent work on these problems.
Much of this is related to root systems A , which are a particularly nice
:!ass of automorphic sets. §4 finally explains the applications to singulari-

ies.
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I regret that I am unable to give an account of the history of the sub-

Jject. If one sees it from a sufficient distance, many great mathematicians

have been involved. E. Artin, V.I. Arnold, H.S.M. Coxeter, P. Deligne, A. Gro-
thendieck, S. Lefschetz, J. Milnor and R. Thom are some of the names. Particu-
larly important was the work of V.I. Arnold and some of his students, especial-
1y A.M. Gabrielov. Also some work of E. Looijenga has played an important role.
A fair amount of the results forming the substance of this report has been ob-
tained by a group of young mathematicians in Bonn working on singularities:

W. Ebeling, P. Kluitmann, B. Kriiger and E. Voigt. I wish to thank them for let-
ting me report on their work, some of which is not yet published. I also want
to thank them and F.J. Bilitewski for their help in preparing this survey.

§1. BRAID GROUPS

There are many ways of defining the braid groups. The original geometric
definition of Emil Artin is very beautiful. It appeals to our geometric intui-
tion and it has deep roots in human culture. However I shall present these
groups in another way, which is very natural and fit for the representations
of the braid groups that we are going to study. This presentation is not new.
In substance it is contained in Artin's foundational "Theory of Braids".

Let me begin with a few trivial remarks about groups acting on sets. If
X s any set, I shall denote by S(X) the group of bijective maps of X on-
to itself. S(X) is also called the symmetric group of X . In particular
Sn = §({1,...,n}) 1is the usual symmetric group of permutations of the set
{1,...4n} . The group S(X) acts on X , and so does any subgroup G c S(X) .
When I say that a group is acting on a set I always mean that it is acting from
the left. Given a subgroup G c S(X) , we may consider its centralizer in
S(X)

G (X):=(yesS(X) | vge6 vye=g=g9°v}.

GO(X) = AutG(X) is the group of automorphisms of X considered as a G-set.
I shall write Go instead of GO(X) if X is determined by the context.

PROPOSITION 1.1. If the action of G c S(X) on X is simply transitive,
the following statements hold.
(i) The action of G° c S§(X) on X 1is also simply transitive.
(ii) For any x € X there is a unique antiisomorphism a: Go - G such
that a (v) (x) = v(x) for all ve€ G, -
(iii) G n G° = Z(G) is the centre of G .
(iv) Goo =6 .

In particular, if G is any group, X =G, and if G is identified
with the group G c S(X) of left translations, the group G° is the group of
right translations, and if we identify Go canonically with the opposite group

of G, then a, = idG . The subscript "o" refers to this opposite structure.
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DEFINITION. An equivalence relation Rc X x X is a G-equivalence for
GcS(x) if x ~y implies gx ~gy for all x,y € X and g € G , where we
write x ~y instead of (x,y) € R . Let R be a G-equivalence and x € X .
Then we define subgroups of G° and G as follows (G is assumed to be simp-
ly transitive):

GO(X)R:
G

(v €6 Jyx~x}={yeG |weXx vy~y}.

{g€G | gx~x} .

R,x
Conversely any subgroup H ¢ G° defines an equivalence relation RH on X
such that the orbits of H in X are exactly the equivalence classes of

RH .

PROPOSITION 1.2. If the action of G c S(X) on X 1is simply transitive,
the following statements hold.
(i) There is a bijective correspondence between the set of G-equivalences
R on X and the set of subgroups H of Go . It is given by the as-
signments R~ Go(X)R and H~ Ry
(ii) For any G-equivalence R and any x € X , one has u*(Go(X)R) = GR,x .
(ifii) If Ha G° is normal, ak(H) a G is also normal, and this defines a
canonical bijective correspondence between the sets of normal subgroups
of G° and G .

Thus we may define subgroups of Go by specifying suitable equivalence
relations on X . We shall apply this in the following situation: G 1is the
automorphism group of a free group of finite rank F , and X 1is the set of
all well ordered free systems of generators of F .

DEFINITION. For any free group F of finite rank n we define simply
transitive group actions as follows.

Xpi= (X senux ) € FP | F = <x seeaX )

F 1
A(F):= {9 € S(F) |va,b € F g(ab) = g(a)a(b)} .
(9(x,)s..050(x ) -

A(F) acts on XF by g(xl,...,xn)
A(F)°:= A(F)O(XF) .

Note that for n > 1 the centre of A(F) is trivial (c.f. (81], I, 4.3),
so that A(F) n A(F)° {1} and A(F) x A(F)° c S(XF) acts effectively on
XF .
We shall now define subgroups of A(F)° by specifying equivalence rela-
tions on XF . To begin with, define an equivalence relation for elements

X = (xl.....xn) and y = (yl,...,yn) of XP as follows:
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x~y=3nGSn Yi ® *ny
We denote the corresponding subgroup of A(F) = by S(F) . Of course S(F) s
canonically isomorphic to Sn , and S(F) 1is generated by the standard trans-
positions T, € S(F) , where

X ) .

ti(xl,...,xn) = (x1,...,x JUPTERETL

i-1 e %0%

A very useful element in S(F) is the element e, where pn(x1,...,xn) =
(xn,...,x1) . In order to define more interesting equivalence relations on

XF , we first introduce a very natural equivalence relation ~ on F itself,
namely conjugation:

vw,c€F b~ce3a€fF c-= aba~!

Moreover we define a very natural map x : XF - F by x(xl,...,xn) = XpeeeXo o
We also denote the value of x for x € XF by e = x(x) and call it the
pseudo Coxeter element associated to x . Now we are ready to define interest-

ing natural equivalence relations on XF

DEFINITION. The equivalence relations R; , R; and R
p,q = 0,1,2 for elements x = (xl....,xn) and y = (yl....,yn) of XF are
defined as follows.
(i) (x,y) € R; e 3n € Sn Y. o~ X_,. i=1,...,n
(1) (xy) €Rl = y, ~x i
(iii) (x,y) € Ré - Ja€F y; = ax;a i=1,...,n
(iv) (x,y) € R; e (x,y) € XF x X
(v) (x,y) € R; - cy ~ e
(vi) (x,y) € R; - c =,
(vii) (x,y) € qu (x,y) e R' n R"

)

A1l these relations are A(F)-equivalences on XF and so they define sub-
groups of A(F)° . For the moment we denote the subgroup of A(F)o corres-
ponding to qu by qu . One has the following diagram of inclusions:

/”\
/\/\

\/\/
\/°

00
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For every subdiagram of the following form
A
B c
D

onehas A=BrC and D=B - C and A< B and C < D . The notation qu
for these groups emphasizes the uniform logical structure of their definition.
However each group is an object of its own, and some of them are classical and
have been studied extensively. Therefore I shall now denote them individually

by letters which partly correspond to notation used in the literature. By this
change of notation, the diagram of the qu is transformed into the following
diagram:

C(F)
7N
Py I(F)
NN\
B(F) W) J(F)
N /S NS
6(F)  T(F)
U(F)

The most important group of all is the group B(F) , which is isomorphic to
the group of braids with n strings. P(F) 1is isomorphic to the subgroup of
coloured braids, and C(F) is its centre. J(F) is the normal subgroup of
A(F)° ;orresponding to the normal subgroup I(F) <« A(F) of inner automorphisms
of F . The group T(F) has been studied by S.P. Humphries [54]. The role of
G(F) will become clear in §3.

If one wants to analyze the structure of these groups and of their repre-
sentations it is very important to have a concrete description in terms of ge-
nerators and relations.

DEFINITION. For a free group F of finite rank n the elements
Rpoo Mg 0 T 0 O % € A(F)Q are defined as follows.

i - -1 -1 i =

(i) ui(x1,...,xn) = (xix‘xi seneaX X X, ) ‘ i=1,...,n
A _ -1 : . s

(i) uij(xl,....xn) = (xl,...,xj__i.xixjxi ,xj+1,....xn) i#®J, i, =1,...,n

(iii) ti(xt""’xn) (xi,...,x i=1,...,n-1

1151 7% R a0 0 %y)
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. -1 .
(iv) ci(xl,...,xn) = (xl,....xi_1 XXy a %y ,xi,x“z....,xn) i=1,...,n-1

(v) oij(xl,...,xn) = (xi,....x;) l1si<jsn
( xk k< i
(xix‘,')xk(xixj)'1 k =i
X = ["1"‘1]’&["1"‘;1]-1 i<k<]
Xg % "Il k=
X k>J

PROPOSITION 1.3. The following are some identities which hold for the

elements ”1'01’°1j € A(F)° .

: 2 -1
(i) Oy = (°5-1°j-2‘"°1+1)°1(°j-1°5-2"'°i+1) .
(1) w...m = (o,...0 n

. n-1
(iid) un...ul(x) = cx(x) .
(iv) " Jo* i,i+l
’1": = 3
Oy*4% ¢ K 3 !
"’1+l"‘1"’1+l J =il

THEOREM 1.4. The subgroups of A(F)° defined above are generated as fol-
Tows:

B(F) = <ys..0e0 > H(F) = <“1""'“n'°1j>

P(F) = <oij> G(F) = Ocl,....un.o .....cn’1>
C(F) = M ewy> T(F) = <"1j>

J(F) = Dyseeesk > U(F) = <uij,t1>

The proof for B(F) 1is classical and due to Artin (c.f. [12], theo-
rem 16). The proof for T(F) 1is similar and was given by Humphries (54]. The
case of P(F) 1is also classical. Nevertheless I shall indicate briefly how it
can be dealt with in the present context, since this leads to presentations of
P(F) and B(F) . The remaining cases are easy consequences of the preceding
ones.

In order to analyze P(F) by induction on n = rankF , we introduce two
new A(F)-equivalences for x,y € XF .

X=oY @ XppeenX 0> = <Y,y > and x =y and (x:y) € R,

X~y = N(xn) = N(yn) and A mod N(xn) and (x,y) € Rlz

where N(z) denotes the normal subgroup of F "generated" by z € F . The
corresponding subgroups of A(F)° are denoted as follows:
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"P(F) = (v € A(F)_ | yxe=x)
P(F)" = {v € A(F)_ | yx~+x}

Together with P(F) , they form a canonical short exact sequence split by in-
clusion:

(*) 1~ *P(F) = P(F) T P(F)* = 1

Choose any x = (X;,...,x ) € X, and put X = (Xgsevesx _,) and
f= WKyseensX > Then the exact sequence (#) identifies canonically with
the following split exact sequence:

1-F-FnpPF)sP(F)~1 ,
where the semidirect product is defined by the operation
o(y) = ui(orl)(y) for c€P(F) and yeF
Moreover o, € *P(F) is identified with x, € F and o4 € P(F)* is identi

fied with oij € P(?) for j < n . Hence one obtains P(F) = <o, .> by induc-

51

tion on n = rankF , and moreover this argument yields directly the following

presentation of P(F) .

THEOREM 1.5. For a free group F of rankn , the group P(F) is pre-
sented by the generators oij ,» where 1<1i<j<sn, with the following re-
lations, where 1 si<j<n and 1<sk<msn and j<m.

S k < i
ol k=i
)m %m jm -
-1 -1 . .
% %Ciy * [oim'o 1y-1 [°1m Jm] i<k<i
(04 T5m) ' m (CimCym ) k=3
O k>3]

The presentation of P(F) leads to a presentation of B(F) as follows.

DEFINITION. Bn is the group presented by generators O30 4 with
the following relations:

0,0, = 0,0, if |i-jl > 1
0;0,0; = 9,0,0; if |i-§l =1

Pn < Bn is the kernel of the homomorphism Bn *'Sn mapping o, onto the

i
standard transposition T -
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If one applies the Reidemeister-Schreier-method to a suitable Schreier
transversal for Pn c Bn , one obtains the same presentation for Pn as the
one for P(F) given in 1.5, where the o, € Pn are now defined as in 1.3.(i)
(c.f. Chow [27] or Magnus, Kariass, Solitar (82] or Birman [15]). However, we
do not need the full strength of the method, nor do we have to do all the cal-
culations involved. It is enough to prove Pn = <°ij> and to verify that the
generators oij of Pn satisfy the relations 1.5 of the generators oij of
P(F) and the generators o of B(F) satisfy the defining relations of the
generators o of Bn . After that, one obtains immediately the following the-

orem and therefore a presentation of B(F) .

THEOREM 1.6. For any free group F of rankn, there is a canonical iso-
morphism of short exact sequences

1 - P - B - S -1
n n

n
¢’ ¢ ¢

1 - P(F) =-B(F) -S(F)~ 1
sending the generators t.,0.,0.. of S ,B , P onto the generators
1 1 1 n n n

Tys 00 0 Of S(F), B(F), P(F) .

Finally, the exact sequence (%) is also useful in proving by induction
that the centre of B(F) is infinite cyclic. There are several useful descrip-
tions of a generator of this infinite cyclic group. One of them uses the funda-
mental element introduced by Garside [44]. The definition uses the generators
O, » SO we state it for Bn . The fundamental element is then represented by a
positive word in the generators. Therefore we shall denote it by w: and its

inverse by w; .

DEFINITION. The elements n,n',n",m;,m' € Bn are defined as follows:
n' = n o, and n" = n o, and n=n'n"
if(2) izo(2)
o - /2 for nz0(2) and o = (@)
n -1/ 2 for nz=1(2) n = %n

The element mﬁ is called the fundamental element of B . It has the
following important property: cim; = “£°n—i . A systematic treatment of the
fundamental element in the more general context of Artin groups of finite type

is to be found in [24].

DEFINITION. The elements El,...,En and gn € Bn are defined as fol-

Tows: Ej =937 %.1,5 and T =E...§ .

Tne following theorem is due to Chow [27].
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THEOREM 1.7. For a free group F of rankn 2 2 , the centre of P(F)
is the following infinite cyclic group:

2(P(F)) = C(F) = <C >

For n 23 one has Z(B(F)) = Z(P(F)) for the centre of B(F) . The genera-
tor Cn may also be described as follows:

L =w'?= (o

n
n " 1) =M LU

1...(:In_ N 1

The‘proof of the identity Cn =M ..M, uses the fact that conjugation
of an element of a group by itself is an idempotent operation. Later on, when
we are dealing with automorphic sets, we shall replace conjugation by a more
general operation which does not have to be idempotent. In this case, there
will be no analogue of the operation of the group G(F) on XF . Instead of
G(F) we shall have to consider the group

J(F) = B(F) ,

where the semidirect product is defined by means of the following operation of
B(F) on J(F) :

1

o(n) = oo for o €B(F), wu€J(F)

Because of 1.7 there is a canonical isomorphism
G(F) = J(F) » B(F) / <(u,...%;,C 1)>

In view of 1.3.(iv) we are led to the definition of the following groups

Jn » Bn - and Gn in terms of generators and relations, which are canonically
isomorphic to J(F) » B(F) and G(F) . Note that Bn and Jn are subgroups
of Jn » Bn and that Jn is free of rankn .

DEFINITION. Jn ) Bn is the group presented by generators RysenosM

and Oyseeas0 ) with the following relations:

0.0, = 0,0 if |i-j] > 1 " if j o i,i+l
_ . T -1 _ PO
0,0,0; = 9,0,0; if |i-j| =1 AN ®1 if j=1
-1 C

LU O if j = i+l .

. -1
G, is the group J % B /<(w ... ,T ")> .

Now that we have presented the groups which are going to operate, our
next task will be to introduce the structure which will be the substrate of
the operation.
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§2. AUTOMORPHIC SETS

A set with a product is a pair (A,») where A is a setand # is a
map A x A- A . The value of this map for (a,b) € A x A will be denoted by
a#b . We shall use the same symbol “"#" for different sets with product, un-
less there is danger of confusion, and we shall frequently write A instead
of (a,*) . A morphism of sets with product (a,#) - (a',#) is a map
©: A~ A' such that o(a+b) = o(a) # o(b) . The sets with product form a ca-
tegory. In particular, any set with product has an automorphism group

Aut(a,#) = (@ € S(8) | o(a*b) = o(a) * o(b)} .

We shall write Aut(a) instead of Aut(a,#) , if # is determined by the con-
text. For any set with product (A,») and a € A the left translation Aa
is the map Aa: A - A defined by

A‘(b) = asb

We now introduce the category of automorphic sets as a full subcategory of the
category of sets with products. Its objects are defined as follows.

DEFINITION. An automorphic set is a set with product such that all left
translations are automorphisms. In other words: A set with product (a,+) is
an automorphic set, if it has the following two basic properties:

(i) va,cea 3! bea asb=c

(ii) va,b,c €A (awb)#(axc) =ax(bec)

DEFINITION. For any automorphic set (A,») , the subgroup of inner auto-
morphisms I(A) c Aut(a) and its centralizer C(A) are defined as follows:

1(a) = aa!a € &> c Aut(a) ,
C(a) = {9 € Aut(a) | vaea o, =2 0)

& is called homogeneous, if Aut(a) acts transitively on a . If I(a) acts
transitively, A is called very homogeneous.

Note the following trivial consequence of the definitions: A.w(b) = mbcp'l
for all o € Aut(A) . In particular, for ¢ = Aa this means

-1
Aa *b - A’aAbAa *
Before I give examples, let me first make some trivial statements about

properties of the category of automorphic sets. The terminology concerning ca-
tegories is as in (88]. The empty set gz is a conull object. The sets
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A = {a} with a~»a =a are the null objects. The category has epimorphic
images. It has intersections for arbitrary families of subobjects. It has pro-
ducts for arbitrary families of objects (Ai,*) , 1 €1, namely

igI(Ai,*) = (igIAi.*) with  (x;)#(y,) = (x; *y;)

The category has disjoint sums for arbitrary disjoint families of automorphic
sets (Ai’*) , 1 €1 . They are defined as follows:
i

u (Ai,*) =(u Ai’*)

i€1 i i€1
a=b for a,b € 4,
axb = 1 i
b otherwise

However these disjoint sums are in general not coproducts in the sense of ca-
tegory theory. I call an automorphic set irreducible, if it cannot be presen-
ted in a nontrivial way as a disjoint union of automorphic sets. Every automor-
phic set has a unique decomposition into a disjoint sum of irreducible automor-
phic subsets called irreducible components. The decomposition is obtained as
follows.

DEFINITION. The relations 1 and ~ for elements a,b € A of an auto-
morphic set (A,#) are defined as follows:

alLbea#b=b and bxa =a

a~be 3a,...,a_ €A suchthat a =a and a_=b and
[o] r o r

for all i=1,...,r not a,  1a

1 i

Obviously ~ 1is an equivalence relation. We also define orthogonality re-
lation for subsets A',A" c A as follows: aA'_L A" iff aL b for all
a€EA and bea".

PROPOSITION 2.1. Let A be an automorphic set, and A',A" c A automor-
phic subsets. Then the following holds.
(i) a=a'LAaA"«=A"vuAa" =aA and A' N A" =2 and A'_L A"
(ii) The irreducible components of A are the ~-equivalence classes.

We have several methods for constructing new automorphic sets from a gi-
ven automorphic set (A,») . For any ¢ € C(A) we get a new automorphic set
®A with the same set A as underlying set and with the new product 3 de-
fined by agb = a#@(b) = @(axb) . Note that o € c(®a) , so that we can re-
construct A from ®A as follows: a4 = ¢’l(wA) . An important special case

is obtained by putting o = ta s where ‘A is defined as follows.
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DEFINITION. Let (A,*) be an automorphic set.
(i) For any a € 4, the element a € & is defined by a*a =a .
(ii) Themap ., : A~ A is defined by La(@) = a.

PROPOSITION 2.2. For any automorphic set (A,*) the following state-
ments hold:
(i) Ly € Z(Aut(a))
(i) '(a) = axa

(iiv) Az = xa .

DEFINITION. Let (a,#) be an automorphic set.
(i) (a,#) is idempotent if Ly = idA
(ii)  (a,#) is involutive if Li id,
(iii) The idempotent automorphic. set associated to (a,») is the automorphic
set (A,*) = (A,*) , where a*b = a#b . This is the automorphic set

‘a .

Associating (Z::T to (A,#) defines a covariant functor from the cate-
gory of automorphic sets to the subcategory of idempotent automorphic sets, and
moreover we have a distinguished element in C(3) , namely Ly Conversely, if
we are given an idempotent automorphic set A and an element ¢ € C(A) , then
U"1a will be an automorphic set with . = ¢ and with associated idempotent
automorphic set A . In this sense general automorphic séts are just pairs
(a,0) of an idempotent automorphic set and an automorphism ¢ € C(aA) . Anoth-
er simple covariant functor from the category of automorphic sets to itself is
obtained by associating to any automorphic set (A,#) the automorphic set
Lé;:) = (A,#) with the new product defined by

_ 41
asb = Aa (b)

One has (4,#) = (8,#) for all automorphic sets and (A,*) = (4,#) exactly
for those with Ai =1 forall a€a.

DEFINITION. An automorphic set is involutory iff all left translations
are involutions.

Note that "involutive" and "involutory" are completely different proper-
ties of automorphic sets. Idempotent automorphic sets were introduced and stud-
ied by D. Joyce [59]. He calls them quandles. His notation is be a for our
a*b and bo! a for our axb , and he considers A as equipped with both
products # and % .

It is now time to give some examples or rather classes of examples of au-
tomorphic sets. Some are obvious, some important ones were given by D. Joyce,
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and some come from the theory of root systems and from invariants of singulari-
ties.

EXAMPLE 1. Every set A can be given the trivial automorphic structure
defined by a*b =b for all a,be A .

EXAMPLE 2. Every group A has a canonical idempotent automorphic struc-
ture defined by a#b = aba"1 . Every homomorphism of groups is a morphism for
these automorphic structures. A is the canonical automorphic structure for
the opposite group of A . If A 1is any automorphic set and I(a) its inner
automorphism group with its canonical automorphic structure, the map A - I(a)
defined by a -~ 7\,al is a morphism of automorphic sets.

EXAMPLE 3. Let A be an abelian group. Let & be an automorphism of
the abelian group A and ¢ an endomorphism of A commuting with ¢ and
satisfying the equation @(@#b-1) = 0 . For example one can choose o = 1-4 .
Then A 1is an automorphic set with the product defined by axb = ¢(a) +¥(b) .
To put it another way: If A is any E[t,t’ll-module, it becomes an automor-
phic set with the product defined by a#b = (1-t)a + tb . An interesting spe-
cial case is Alexander invariant of a knot.

EXAMPLE 4. This example is due to David Joyce. We work in the category
of pairs of topological spaces (X,Y) with a base point x, € X-Y. Maps of
pairs f:(X,Y) = (X',Y') have to be such that f~ (Y ) = Y and f(x ) =
We define a particular pair (D,{0}) with base point z as follows Let
z, > 1 be a fixed real number chosen once and for all. Let Dc € be the
closed unit disk in the complex plane, and D the space D=Du [l.zol (see
figure 1).

FIGURE 1.

A "noose" in X around Y s a homotopy class of maps f:(ﬁ,{O}) - (X,Y) .
The set of nooses in X around Y with basepoint X, is denoted by

a(X,Y xo) For any noose a , restriction to the or1ented boundary of D de-
fines a homotopy class 23a of loops in X-Y based at X, - This defines a
natural augmentation map to the fundamental group:

3:A(X,Y,x°) - nl(X-Y,xo)
The fundamental group operates canonically on’ A(X,Y,xo) . For

B € nl(X-Y.xo) and b € A(X,Y.xo) the noose B(b) maps that half of the in-
terval [l,zol containing the initial point z, to X-Y by means of B,
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whereas B(b) maps the rest of D to X by means of b . Obviously

3(B(b)) = B(ab)B’1 , and therefore A(X,Y,xo) is an idempotent automorphic set
with the product defined by a«b = 3a(b) . This is the fundamental automorphic
set of (X,Y,xo) . This is the fundamental quandle introduced by D. Joyce. To
be precise: his definition is related to ours by bo a = a#b .

EXAMPLE 5. Let KcS> bea knot, p € $3-K a base point,
€ € H‘(S3-K,Z) a generator and 3 : A(S’,K,p) - Hl(Sz-K,Z) the composition
of the augmentation and abelianization maps. Then we get an automorphic subset
of A(S3,K,p) » namely A(K)e = 3'1(5) . This is the "knot quandle" of David
Joyce. For tame knots, a presentation of it is easily obtained from any regu-
lar projection. Joyce proves that it is a faithful invariant of unoriented
equivalence classes of knots and that its abelianization is the Alexander in-
variant.

EXAMPLE 6. Let A be a Riemannian symmetric space, i.e. a connected Rie-
mannian manifold such that for each point a € A there is an involutive isome-
try Sa of A with a € A as an isolated fixed point. Since Sa is neces-
sarily unique, A 1is an automorphic set with the product defined by
asb = s‘(b) .

EXAMPLE 7. Let V be a vector space with an alternating bilinear form
with value <a,b> for a,b € V. To each a € V we associate a transvection

Sa defined by s‘(x) = X - <x,a>a . Then A =V is an automorphic set with
product defined by a#b = s‘(b) .

EXAMPLE 8. Let V be a vector space with a symmetric bilinear form with
value <a,b> for a,b €V . Let A be the set of nonisotropic vectors,
A={a€eV | <a,a> +#0)} . Toeach a € A we associate the reflection S,
with respect to the hyperplane orthogonal to a defined as follows:

_ 5 <X,a>
sa(x) =X =2 s a

Then A 1is an automorphic set with the product defined by a#b = sa(b) .

EXAMPLE 9. This example is very classical and particularly interesting
in the present context. Let V be a finite dimensional euclidean vector space.
V-(0} is an automorphic set as before. Consider a subset A c V-{0} which
has the following two properties:

(i) A c V-{0} 1is a finite automorphic subset
(i) va,be A asb-beZa

The finite automorphic sets defined in this way are exactly the classical root
systems (c.f. Bourbaki (191, VI, §1). A root system A is irreducible as such
iff it is irreducible as an automorphic set, and the decompositions into irredu-
cible components for both types of structures are the same. The irreducible
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root systems are classified as An, Bn, Cn, Bcn, Ee’ E,» Ea’ F4, 62 . Figure 2
shows those of rank?2.

Tl G

A2 G2 82 8C2

FIGURE 2.

A root system is called homogeneous if all roots have equal length, and
in this case we assume <a,a> = 2 without loss of generality. The irreducible
homogeneous root systems are An , Nn2z1 and Dn , n24, and Es’ E7, Ea .
They are very closely related to the simple singularities of hypersurfaces.

We shall now describe a class of automorphic sets which is sufficiently
large to allow for the definition of the invariants corresponding to arbitrary
isolated singularities of hypersurfaces and complete intersections.

Let R be an integral domain and K its field of quotients. We shall
mainly be interested in the case where R is the ring of integers, but propo-
sition 3.7 shows that there are reasons to consider more general R . Let L
be a lattice over R , that is a freeR-module L of finite rank equipped with
a bilinear form

LxL-R
(a,b) =~ <a,b>

Within this common general context we shall be dealing with two different si-
tuations, which turn out to be intimately related and which we shall try to
treat simultaneously whenever this is feasible. We call these situations the
"symmetric case" and the "antisymmetric case".

SYMMETRIC CASE. In this case the bilinear form is assumed to be symme-
tric, i.e. <a,b> = <b,a> . Moreover in this case we always assume that the
form is even, i.e. <a,a> € 2R . When charK * 2 , we associate to the bili-
near form the quadratic form q:L - R defined by <a,a> = 2q(a) .

ANTISYMMETRIC CASE. In this case the bilinear form is assumed to be al-
ternating, i.e. <a,a> = 0 for all a €L . This implies that <a,b> = =<b,a> ,
and the converse is true if charK * 2 .

In both cases Aut(L) denotes the automorphism group of the lattice L .
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In the symmetric case this is an orthogonal group and will also be denoted by
0(L) , in the antisymmetric case it is a symplectic group and will also be de-
noted by Sp(L) . We now define certain automorphisms Sa,e € Aut(L) , where a
is an element of L and € = :1 . In the antisymmetric case a and € can
be arbitrary, but in the symmetric case they have to be such that e<a,a> =2 .

DEFINITION. The element S, ¢ € Aut(L) 1is defined as follows:

sa'e(x) = X - €<X,a>a

We shall write Sa instead of Sa e if € is determined by the context.

In the symmetric case, S, is an involution, and if charK # 2 , it is the
unique involution s such that s(a) = -a and s(x) = x for x orthogonal
to a . In the antisymmetric case, S, € is a symplectic transvection in the

direction of a . We have sale(a) = a , and the inverse of sa“e is s, ¢

DEFINITION. Let L be a lattice as above and € = :1 . The associated
automorphic set (At(L),g) is defined as follows:

{ael | e<a,a> =2} in the symmetric case,
a (L) =
in the antisymmetric case .
agh = Sa,e(b)

We shall write Ae(L) instead of (As(L),g) and » instead of % if
there is no danger of confusion. Obviously a = -a in the symmetric case, and
a =a in the antisymmetric case. Hence Ae(L) is idempotent in the antisym-
metric case and involutive in the symmetric. With respect to the functors de-
fined above, the two cases compare as follows (if Ae(L) # o and charK # 2):

L symmetric = a (L) = a(L) and At(L) * At(L)
L antisymmetric = Ae(L) = ALE(L) and Ae(L) = Ae(L)

We have chosen the underlying set Ae(L) as the largest possible set for
which the definition of the product given above makes sense. There are several
meaningful ways of passing to smaller automorphic subsets. For instance when-
ever we have a property for elements b € L which is invariant under all
sa g » We may consider the subset of those elements in & (L) which have this
property. One property of this kind is primitivity: b e L is primitive, if
it is part of some basis of L . Another one is strong primitivity, where we
require in addition that there exists an a € L such that <a,b> =1, so
that <L,b> = Z . In the symmetric case, if R 1is a principal ideal domain
and charK # 2 all elements of AE(L) will be primitive, but in general not
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all will be strongly primitive.

Since the automdrphic sets Ae(L) are imbedded into a linear structure,
namely the R-module L , it is natural to introduce automorphism groups which
take that linear structure into account and then to compare them with the au-
tomorphism groups defined for arbitrary automorphic sets.

DEFINITION. The subgroups we(L) and Ce(L) of Aut(L) are defined as
follows:

W (L) = <S.e | a € a(L)>
C(L)

We have the following canonical diagram of group homomorphisms:

{o € Aut(L) | va € As(L) os, ¢ = Sa,ew}

W (L) —= Aut(l) <— C(L)
e v (v
I(a (L)) —= Aut(a (L)) <— C(ag(L))

The horizontal arrows are inclusions of normal subgroups, the vertical arrows
are obtained by restricting the group operations to the invariant subset
Ae(L) . The homomorphism @ is always an isomorphism and will be used to iden-
tify the groups NS(L) and I(AE(L)) . The homomorphism ¥ is obviously in-
jective in the antisymmetric case. In the symmetric case, a sufficient condi-
tion for injectivity is that Ae(L) generates L ® K . This condition is sa-
tisfied in applications in singularity theory and is assumed in most results
of the following paragraph 3. However, conditions of this kind are not suffi-
cient for surjectivity. For example, ¥ and %' are not surjective for the
binary integral even symmetric bilinear form with associated quadratic form
a((x,y)) = X2 +3xy+y° .

Let L be a lattice and radl its radical, radL ={ael | vxel
<x,a> = 0} . We have a canonical morphism Ae(L) - I(At(L)) given by a - Aa .
Note that it has the following properties:

(i) Aa =1 = aeradl
(ii) A=At l « a=4 and a,b € radlL

In order to say something about Ce(L) and C(Ae(L)) » we look at the
decomposition of At(L) into irreducible components A, , j € J . This decom-
position was described in 2.1 by means of the relation _ . For the automorphic
sets AE(L) this is just the usual orthogonality relation:
alLbe<a,b>=0.The sublattices generated by the Aj are orthogonal to
each other. However, two of them may intersect in a nontrivial isotropic sub-
lattice. This makes it difficult to determine CE(L) and C(Ae(L)) . A1l we
can say is the following. Let 9 be any map 9:J - {+1} . Then ® defines an
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automorphism 8 of AE(L) as follows: §(a) =9(j)a for ae Aj . In the
symmetric case, it is easy to prove:

v (C (L)) < (137 < c(a (L)) .

Both inclusions may be strict. The binary form mentioned above is an example
of that for the second inclusion. At any rate if AS(L) is irreducible, we
know at least that w'(ce(L)) = {t1} . For the very special case of homogene-
ous root systems we can do better.

PROPOSITION 2.3. Let A be a homogeneous root system and A = jghAj
its decomposition into irreducible components. Let A(A) be the stabilizer of
A in the orthogonal group O(L) of the root lattice L and W(a) c A(a)
the Weyl group. Then the groups I(a) , Aut(a) and C(A) of the automorphic

set A are determined as follows:
(1) I(a) = W(a)

(i) Aut(a) = A(a) = O(L)
(iii) c(a) = {:1)°

PROOF: Statements (i) and (iii) follow from the remarks above and from
(ii), which is proved as follows. For a,b € A one has <a,b> = #2 if a=0»b
or a=b,and <a,b>=0,t1 otherwise. It is trivial to prove the following
equivalences:

<da,b>= 0 =« asb=b
<a,b> = 1 = (axb)sb=a
<a,b> = -1 « (as#b)sxb =2

Therefore <o(a),o(b)> = <a,b> for all a,b € A and any ¢ € Aut(a) . This
implies o € A(a) .

Note that the root system A of type B2 is an example where
A(a) < Aut(a) .

Let me close this paragraph by pointing out that in the symmetric case
the automorphic set Ae(L) may be constructed from the canonical structure of
a group. The next proposition explains how this is done. For basic notions con-
cerning Clifford algebras I refer to Bourbaki [18].

PROPOSITION 2.4. Let L be an even symmetric lattice over an integral
domain of characteristic #2 . Let q be the associated quadratic form and
C(L) the Clifford algebra for (L,q) . Let C(L)* be the group of units of
C(L) with its canonical automorphic structure. Let C(L) be the automorphic
subset {a € C(L)* nL i q(a) = €} , where € = :1 Th1s subset is invariant
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under the principal automorphism of C(L) , and its restriction ¢ 1lies in
the centre of Aut(C(L):) . Then one has the following identities of automor-
phic sets:

8 (L) = “’C(L)‘e’ and ZE(L) = c(n.);

PROOF. The underlying sets are obviously identical. Moreover
o(a) =-a=a for ac Ae(L) . Therefore the following chain of identities
for a,b e Ae(L) proves that the products agree.

a®*b = -b + e<b,a>a = -b + <b,a>a”’ = (-ba+<b,a>)a'1 = aba”!

§3. BRAIDS AND AUTOMORPHIC SETS

The basic fact relating braids to automorphic sets is the existence of a
canonical operation of the braid group Bn on the cartesian product A" of
any automorphic set A . In addition, some other groups related to braid
groups such as the groups Jn x Bn or Gn introduced in §1 also operate ca-
nonically on A" , and these operations are relevant to applications in singu-
larity theory. We shall first introduce these operations for arbitrary automor-
phic sets and then specialize to the automorphic sets Ae(L) in lattices.

Let A be an automorphic set and C(A) the centralizer of its inner au-
tomorphism group I(a) in Aut(A) . Then we can extend Bn by the direct
product C(A)n x Jn as follows. Bn operates on the free group Jn as de-
scribed in the definition of Jn x Bn » and Bn operates on C(a)" via the
canonical permutation representation Bn - Sn . Explicitly °i(°1""’wh) =
(¢1""'¢1-1’°i+1’w1""’mh) . The resulting semidirect product will be deno-
ted by (C(a)" xJ ) %8B .

PROPOSITION 3.1. For any automorphic set (A,#*) and any integer n 21
there is a canonical operation

(c(a)™ x J) =B x A" — A"

defined as follows:

oi(xl,...,xn) = (xl....,xi_i,xi nxi+1,xi,xi+2,...,xn) l1si<n
uj(xl,...,xn) = (xj 4x1,...,xj'»xn) l1<sj<n
@ (Xyaeeeax ) = (0 (X )sen0s0 (X)) o € C(a)"

This operation induces an operation of the group C(a)" » Gn if and only if
A is idempotent.
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The proof is easy. The last statemert follows from formulas (iv) and (v)
in proposition 3.2 below. Note that the group Aut(A) also operates on A"
by o(xl,...,xn) = (w(xl),...,m(xn)) . This operation commutes with the opera-
tion of Jn » Bn . Note also that we may replace C(A) by some subgroup
CcC(a) . If C is in the centre of Aut(a) , the group (C" x J) B
operates on A" as a group of Aut(A)-automorphisms of 4" . There is no uni-
versal choice of C for arbitrary automorphic sets & leading always to the
same nontrivial group C . However if we specialize to the class of automor-
phic sets Ae(L) , there is a natural universal choice, namely C = {:1} .
And in point of fact, in singularity theory the basic invariants will be or-
bits of ({1} xJ ) =8 in a(L)".

We may also generalize some of the other group actions introduced in §l.
In particular one has a canonical operation of Sn on A" . We shall need the
element of greatest length e, € Sn » which operates as follows:

pn(xl,...,x ) = (xn,...,xl)

n

The group operations introduced in 3.1 are not new: particular cases of
them occur as early as the braid groups themselves. In combinatorial group
theory, the operations o and o;l on A" for an arbitrary group A with
its canonical automorphic structure are known as Peiffer-transformations of
the first kind (c.f. [81], p. 157).

It turns out that it is quite difficult to understand the operations which
we have just defined so easily and so naturally, even if we restrict our inves-
tigation to very nice particular automorphic sets such as root systems. It is
therefore natural to try to simplify the situation. One way of simplifying is
to introduce invariants.

DEFINITION. Let A be an automorphic set and x any element x € A" .
Then we define a subgroup r, < I(a) , an element ¢ €T, and a subset
8, cb as follows.

(1) Px = <xx ""’Ax > ¢ I(a)
1 n
(i) e, = Axl s A €T
n
(iii) 8 = Fx{xt,...,xn} c A

I shall call rx the monodromy group associated to x and Cy the pseu-
do Coxeter element. This terminology refers to applications to root systems
and singularity theory. The pseudo Coxeter element plays a very important role
in what follows. In particular, it is closely related to the fundamental ele-
ments mﬁ,w; € Bn and to the generator of the centre Cn € Bn defined in §1.
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PROPOSITION 3.2. Let (4&,») be an automorphic set. The group ‘Jn * B

n
operates on A" and A" . The automorphisms of A" and 4" corresponding to

an element y € Jn n Bn are denoted by v and y respectively. The follow-
ing identities hold for any x = (x;,...,X ) € A"

(1) °ij(x) = (xi,...,x;) » where
( Xy k< i
Ax Xx Ax (xl) k=1
)qczﬁ [Ax’Ax](xk) i<k<y
i %y .
xxi(xj) k=13
L X\ k>3
(ii) w;(x) = (x{s---5x1) where x; = x, (e (ea(x iex L))
(0 o - e
(iv) C (x) = ¢ (X
(v) uh...ul(x) = cx(x)
(vi) g ...00...0 () = (e,x()'(m)*xl,...,cx()'(n)*xw_1 ,cx(;(n))

Our next proposition determines the extent to which L rx and A&
are invariant with respect to the action of the various groups that we consi-
der.

PROPOSITION 3.3. The objects e, qx » A depend on the group ac-

tions as follows.

(i) r_ depends only on the x-orbit of (C(a)® x J) = 3

(i1) ¢, depends only on the x-orbit of C(a)® » Bn

(iii) The conjugacy class of c, in r; depends only on the x-orbit of
(C(a)" x J ) = B

(iv) 8, depends only on the x-orbit of J X B . It is an automorphic sub-
set of A, and A& contains the x-orb1t of J » B

(v) a':= C(a)a, depends only on the x-orbit of (C(A)n x Jn) » Bn , and it
is an automorphic subset of A such that A;“ contains this orbit.

The proofs are easy. Of course we may replace C(A) by suitable subgroups
and get similar statements. In the linear case A = Ae(L) we may work with

Ce(L) instead of C(A) or with a suitable subgroup such as {:1} . In fact in
the linear case we define A;:= {+1}1a , since this is the invariant which is

meaningful in applications. Frequently one has A; =4 .
In the linear case 4 = Ae(L) I want to introduce yet another invariant.
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Let me begin with a trivial remark about the linear algebra of bilinear forms.
Let L be a free R-module of rankn as before, and let L¥® = Hom(L,R) be
its dual R-module. Then there is a canonical bijective correspondance between
regular bilinear forms £:L x L = R and isomorphisms v:L® <L , which is de-
fined by

£(a,b) = v (b)(a)

If x = (x5...0x ) isabasisof L and if X = (il....,in) is the dual
basis of L, we may specify v and hence £ by defining the value
V(X) = (v(X))se.00v(x)) €L7 .

DEFINITION. Let L be an R-lattice of rankn which is either alternat-
ing or symmetric and even. Let Ac(l.): be the following set of bases of L :

B (L)ie ((xpaeeeak ) € 8 (L™ | Rxy 4. +Rx = L) .

For any x € A (L) the isomorphisms v::I.”* L and the bilinear forms
4L x L =R are defined as follows:

G = oex) ) = e

-1 - - -
gab) = (7b)a)  and  £5(ab) = (v))H(b)(a)

E 4

We call Ve the variation operators and t; the Seifert-forms associated to
X .

PROPOSITION 3.4. Let L be a lattice of rankn as above and
x €4,(L)] . Let v and £ the variation operators and Seifert forms and
% the pseudo Coxeter element nfsociated to x . Put E‘ = e, * b, S0 that
e = -, in the symmetric and e = ¢ in the antisymmetric case. Then the
following statements hold.

(1) v: and l.: depend only on the x-orbit of {:1)" » 8
(ii) (:(l,b) = £ (b.a) .
2 2wt . (yv)-1
(i) g, vx (vx) .
(v)  eca,b> = gf(a,b) + £5(a,b) in the symmetric case.
e<a,b> = -z;(a,b) + z;(a,b) in the antisymmetric case.

(v) €<X WX > if i<
g(x %)= 1’1 if
xl'j) =3

0 if i>3j

() L) gl (s, (), ((0))
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The proof is not difficult if one uses our proposition 3.2 and exercise 3
in §6 of chapter V of Bourbaki [19]. We may interpret proposition 3.4 as fol-
lows. The matrix describing Ex with respect to the basis x 1is the product
of the upper and lower triangular matrices describing v; and (v;)'1 with
respect to x and x . But the decomposition of a matrix as a product of an
upper triangular matrix and a lower triangular matrix, both with diagonal ele-
ments equal to 1, is unique, if it exists. Therefore C, v: . Li and the
given bilinear form on L are all mutually equivalent invariants of the x-or-
bit of {+1}" = Bn in the following sense. If we know the value of one of
these invariants for one element x_  of the orbit, we know the values of the
other invariants for X, and hence we know all the other invariants.

Proposition 3.4 motivates the definition of an operation for lattices
which I shall call suspension for lack of a better name. We consider lattices
L with a bilinear form b:L x L = R which is either even and symmetric or
alternating. It is convenient to distinguish both cases by an index n = *1 .
We put n(b) = +1 in the symmetric case and n(b) = -1 in the alternating
case. The suspension of a symmetric lattice will be antisymmetric and vice
versa.

DEFINITION. Let (L,b,e) as above, n =n(b) and x € AE(L): . Then
the suspension zx(L.b,e) = (L',b',€') 1is defined as follows:

L'=L and b' = e‘(: + el; and €' = -en and n' =-n,

where C: are the Seifert forms associated to «x .

PROPOSITION 3.5. The suspension operation for lattices has the following
properties.
(1) Z,(L,b,e) = (L',b',€') depends only on the x-orbit of (+1}" =B .
(i)  x €8, (L"), .
(iii) The (1" = B, -orbits of x in Ae(L): and in Ae.(L'): are identi-
cal, and the operations of {+1}" = B, on these two orbits are the

same.

(iv) The Seifert forms Z: with respect to Ae(L) and Ae,(L') are identi-
cal.

(v) z has period 4. If we begin with (L,b,e) with (e,n) = (1,1) and
if b', b", b™ are the bilinear forms of E:(L,b,e) , k=1,2,3, we
have

b = +g) + £

b' = -&f + ¢
x
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bn

"
'
o~
X +
~

b™ = +£ - £
X b3

The proof follows easily from proposition 3.4. The application of the
suspension operation in singularity theory will be explained in §4.

Let R be an integral domain, and Mn(R) the R-algebra of nxn-matrices
with coefficients in R . For any R-lattice (L,b) as above we have a natural
map

. n -
&:L Mn(R)

8(x) = (b(x;.%,))

If we restrict &6 to Ae(L)n , the image is contained in the following set of

matrices:
= ! - =
"n(R)en = {(aij) € Mn(R) ! aij = naji T €(1+n)}
For n = ranklL , the map & induces an injective map

6:8.(L), / Aut(L) =M LRy

If we let (L,b) vary, the images of & cover M (R) » and the action of
{:1}" on all A (L) induces an action of this group on "n(R)en It
is easy to write this down explicitly for the generators o, of Bn . We have
oi(ajk) = (a;k) » where a;k is the value of the linear or quadratic polyno-

mial in the coefficients a

110 given in the following table.
k =i k = i+l k + i,i+l
3 =1 €(14n) 3,141 341,k " %541,i%k
J = i+l °ai+1,i €(1+n) 3k
J #i,i+l aj,i+1 °eai+1,1aji aji ajk

Note that some of the polynomials are definitely quadratic and not linear! For
arbitrary o € Bn the coefficients of o(ajk) will be polynomials in the

ajk of a degree which may be arbitrarily large. We may also describe these po-
lynomials as follows.

Let R = R[t ] be a polynomial ring over R with generators t al-
gebra1cally 1ndependent over R ,where 1< i< j<n.let e-= (e .e )
be the standard basis of the free R -module R“ Define a bilinear form b
on Rn as follows:
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- D
Eii if i J

ben(ei'ej) = ntji if i>3
e(1l+n) if 1=

We denote the matrix (b, (e;.e;) by T, or T . The R -module RY with
the linear form b is symmetric if n 1 and antlsymmetric if n= l .
So we can apply our theory of automorphic sets A (L) to L= (Rn b ) .

have an automorphic set A a(R):= 8 (Rn be,) » we have an element

e € A (R)* , and we have ltS monodromy group P generated by S, = Se €
The bra1d group Bn operaties on the orbit of e in Atn(R) » and to any

c € Bn we associate canonically the matrix

= &(o(e)) = of(T) € Mn(Rn)en H

where our notation suppresses the dependence on (eg,n) . This matrix 8, with
polynomial coefficients is the matrix describing the operation of Bn on
Mn(R)en . For any matrix A€ Mn(R)en we have o(A) = eb(A) » where qo(A)

is the matrix in Mn(R) obtained from 65 by substituting the coefficients
aij of A for the generators tij . The following theorem was found by Ber-
tolt Kriiger, who kindly explained to me all the essential ideas of the proof
that follows.

THEOREM 3.6. Let R be an integral domain with infinitely many elements,
n 22 an integer and €,n = :1 . The braid group B operates canonically on
the set of matrices M (R), by o(A) = 6 (A) . The element g =w? ope-
rates trivially, and the induced action of Bn/<cn is effective

The proof will follow from the following proposition.

PROPOSITION 3.7. The operation of B, on the orbits Bne c A.:n(R)n and
BnT c Mn(Rn)en has the following invariants and properties of invariance.
(i) For n = -1 the monodromy group r, is the free group of rankn free-
1y generated by SyreeesS, -
(ii) For n = +1 the monodromy group r, is the universal Coxeter group ge-
nerated by SyseeesS, 5 i.e. T, = <SyseeesS, | sf = .= s: =1> .

(iii) 8, = Teo€ <Cn> .

PROOF: (i) We describe the elements of r; by their matrices with re-
spect to the basis e . The matrix of g -1 has only one non zero line, name-
!y the.i~th one, which is (-etli. ti 1, i,O,eti PR ,et ) Mu]tiply-
ing this line with any integer d we get the only non zero llne of g a.1 .
Using this as the beginning of an induction over the number k of factors one

easily proves the following statement.
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d
(F) For sii ...sit with d, #0 and i, # i, the highest order
terms of the coefricients a. of this matrix are monomials in the tij of
order k with coefficient :d, ...d . They occur exactly in the coefficients

. 1 k
a with s #* i
i,,s

Obviously the statement (F) implies the freeness of P = <sl,...,sn> ,
since s’: S #1 for k>0.

(ii) The proof for the symmetric case is analogous to (i), since there
is an analogue of (F) with all exponents d, = ... = dk =1.

(ii1) The statement to be proved is the following one. Let o € Bn and
o(e) = (e;,...,e)) . Then the following equivalence holds:

) (] = s . -
<ei,ej> tij for i< o€ <Cn>

The direction "<" follows from 3.2.(iv). We prove the other direction. It is
enough to give a proof for the antisymmetric case, because the proof for the
symmetric case follows from it by our results on suspension stated in proposi-
tion 3.5. v

Let a € Aut(R:.ben) be the unique automorphism such that a(e) = o(e) .
We shall prove a € T, - Assume that it is proved. This implies
°(s1""’sn) = ia(si,....sn) » where o(st,...,sn) is the result of the cano-
nical operation of o € Bn on rz and ia is the inner automorphism of re
corresponding to a € re . But re is a free group with free system of gene-
rators (sl....,sn) . Therefore °(51"'°’sn) = ia(si....,sn) implies
o€ B(Pe) n J(re) = C(qe) = <L > by the classical results of §l.

Thus it remains to prove a € qe . Obviously there are 9ys---99, € r,

and a permutation neE S such that ei = 98004 . Since

91 n(i) n(i)mod(t k) » the hypothesis <ei,ej> = t 13 implies mw =1 . Put
= g1 9, and e1 h (ei) Then. <ei,e;> = tij and in particular

<el.hjej> = t T From this and (F) applted to hj one easily deduces

hj =,sljsjj . Hence (e!,.. ,en) (el.s €y-. ,s:“en) . By the same kind of

reasoning we then deduce from <e;.e"> = tij that €, = ... =C =ic. There-

;o;eo e = slei and e/ = g,sTe, for all i . Hence finally a = 9,s] €T,

The proof of theorem 3.6 now follows easily from proposition 3.7. Suppose
o€ Bn is such that o(A) = A = (aij) for all A€ l“In(R)r‘e . This means
e (A) = T(A) for any substitution of L R for the t, 15 But this implies

b]
8, = T (c.f. Bourbaki [17] IV. §2, proposition 9). Thus o € <’ > by 3.7.
1.E.D.

The essential statement 3.7.(iii) may be transformed as follows. Denote
the coefficient of the matrix qo = o(T) in the j-th row and k-th column by
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o(T)jk . The elements o(T)jk with 1< j <k <n are algebraically indepen-
dent generators of the polynomial ring Rn . Therefore we get an automorphism
o of this ring when we define the values of o for the generators t as
follows:

jk

ot = o(T)jk for 1<j<ksn

k)
In this way for given (e,n) we get an operation of Bn on the polynomial
ring R[tjk] by ring automorphisms. For the generators o. the table above

i
gives the following explicit formulas:

/

tjk J’k ] 'l,'i+l
tik J =i+l
t J<i and k = i+l
ji

oi(tjk) 9 . ) .
i j=i and k = i+l
ti+1,k-enti,i+1tik J=1 and k > i+l
tjli"’l -enti,1+1tji J <1 and k =i

So we have just two different operations of Bn on Rn ,one for en=1 and
one for en = -1 . Moreover they are not essentially different, since they are
conjugate by the transformation t;k = -tjk .

COROLLARY 3.8. Bn/’<(n> operates effectively on the polynomial ring
R[tij] .

A result very similar to 3.8 was already proved in a different context by
W. Magnus (c.f. [85], Corollary 4.1). Magnus has a slightly different opera-
tion of B on R[tij] . In our context it might be obtained by using the as-
sociated idempotent automorphic set Afl'l(R) . Magnus does not mention a re-
sult 1ike 3.6. On the other hand we did not know Magnus' paper when Kriiger
proved 3.6 and did not think of the equivalent statement 3.8 before we saw
that paper. I think it is justified that I presented Kriiger's proof since it
is very transparent and puts the result in a new perspective.

The operation of the braid group on matrices is very difficult to under-
stand. It has turned out that in many cases it is helpful to represent the ma-
trices by diagrams and to interpret the generators o, of Bn as simple
transformations of diagrams. This is done as follows. We assume that € and
n are determined by the context. Therefore a matrix A € Mn(R)en is deter-
mined by its coefficients aij for i < j . These data are represented by a
graph with vertices 1,...,n and with edges joining vertices i,j with

aij +# 0 . Such an edge with i < j is given the value eaji . For R=1Z
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and small values of }ai ', one uses the following convention for the graphic

3
representation of the values. The vertices i < j are represented by !aij!
uninterrupted lines if €a,; < 0 , and by }aij! dotted lines, if ea; > 0.

For example if n =1 , we have the following representation of matrices by

graphs:
.1_2. represents [-l '21] for € =1 and ['12 _12] for €= -1.
l---i represents [ i ; ] for €¢=1 and [:% :;] for €= -1.

Note that the numbering of the vertices is essential from our point of view.

It may be omitted only in those rare cases where the numbering can be changed
arbitrarily by operations o € Bn . It follows from a theorem of P. Deligne
quoted below (3.16) that this is the case for the classical diagrams represent-

ing the irreducible homogeneous root systems Ak , D , E_, E, , E

k 6 7 8 °

These diagrams are shown in figure 3.

FIGURE 3

These diagrams are usually called Dynkin diagrams. However according to A.J.
Coleman they first appeared in an appendix to mimeographed notes of Brauer on
lectures of H. Weyl given in 1934-35 at Princeton. This appendix was written
by H.S.M. Coxeter. After that they appeared in 1941 in a paper of Witt and fi-
nally also in a paper of Dynkin. Therefore I shall call the diagrams represent-
ing the matrices &(x) the Coxeter diagrams of x .

It is easy to interpret the formulas for the operation of o, on matri-
ces as transformation rules for diagrams. For instance, if € =n =1 and
ai'i+1 =0 or 1, the subdiagram with vertices i and i+l is transformed
as shown in figure 4.

i i+l ci i+l 4
[ ]
i i+l % il i FIGURE 4
[ — .o.-r.oo. ]
i i+l o i+l i
ooooo ‘ ’——’ H

After the transformation the edges connecting i+l with any k # i,i+l are
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the same as those connecting 1 with k before the transformation. The val-
ves of edges connecting i with k after the transformation are given by
a - and the edges between j and k for j,k # i,i+l

' -
3k T Yet,x T dier,i

are unaffected.
Here are two examples for the transformation of diagrams. We start with

the diagram A shown in fiqure 5.

2 4 6 8
1 3 5 7
We define two elements o,0' € B8 as follows. o' = 02203 and
6 -1 -1 -1 -1 -1
o = 0,0, 0, 0,.0,0, 0.0.0,0,0,0.0,0. G, O

173 2 343 56712345 21
The transformed diagrams o(A) and o'(A) are shown in figure 6.

L2 3568738

o(A)

FIGURE 6

The transformation o was found by Gabrielov [40] and I got it from Wolfgang
Ebeling who is a master in the art of transforming diagrams. Both diagrams
have a geometric meaning related to the famous icosahedral singularity of the
surface with equation x%+y>+2° = 0 . This will be explained in §4. At this
moment I shall only show two pictures of real plane'curves (figure 7). They
are obtained by deformation of the plane curve with equation y3 +2° =0 . The
picture on the right hand side is already to he found in a 1893 paper of Char-
Totte Angas Scott [102].

FIGURE 7

The rule by which one gets the diagrams from the curves was given by N. A‘'Cam-
po [ 3]. Roughly speaking it is this: The points of the diagram correspond to
nodes and to regions bounded by the curve. Dotted lines describe adjacencies
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of regions along arcs, and uninterrupted lines come from adjacencies of nodes
to regions.

In the particular case of this example o(A) 1is the Coxeter diagram of
type E8 . The corresponding root lattice is positive definite, the root sys-
tem A and the Bn~orbit of A are finite. Its cardinality was calculated by
Deligne [32]:

Card(B,A) = 283%5® = 324 000 000 .

Within this orbit, the 8! diagrams of type E8 (with any numbering of the
vertices) are distinguished, since they are the only ones with no cycles and
no dotted lines. So in this case the Bn-orbit has a class of distinguished
normal forms coming from the classical Coxeter diagram. However from our point
of view other diagrams in the orbit also have geometric meaning, as illustra-
ted above.

Apart from root systems, there are a few other classes of diagrams which
may be considered as natural distinguished normal forms in their Bn-orbit.
These diagrams come from certain singularities of hypersurfaces. The normal
forms of these diagrams qur and Spqr were obtained by Gabrielov [41] and
Ebeling. Figure 8 shows Spqr

p+qer
poqor-;ii"‘-..

p+q-2

FIGURE 8

The diagram qur is obtained from Spqz by omitting the last vertex. In sin-
gularity, only the qur with 1/p+1/q+1/r s 1 are relevant, and of the
qur there occur only 14 triples p S q s r . These are the diagrams of the
simplest singularities. For higher singularities there is no hope of defining
a uniquely determined geometrically meaningful normal form for their diagrams.
The best one can hope for is to single out a finite set of normal forms in
their braid group orbit of diagrams. However at present there is no theory
which does that. The state of the art is that it is a craft. The one who is
best at it is Wolfgang Ebeling. He has worked out useful “normal forms" for
many classes of singularities of hypersurfaces and complete intersections
(36], [38]. However in order to use these diagrams in an effective way one
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needs answers to the problems about the braid groups which I shall state below.

Before we go into those problems we should see some examples. Let us now
look at the two simplest non trivial examples for the action of Jn " Bn on
Ae(L): . The first example is the root system A of type A2 . The set A
is a configuration of 6 vectors in the euclideanplane. It is shown in figure 9
together with its Coxeter diagram.

FIGURE 9

The root lattice L is the lattice generated by A . The inner automorphism
group I(A) equals the Weylgroup W(A) and is isomorphic tc S3 . The non
trivial elements are three reflections and two rotations by 120° and 240°. The
automorphism group is Aut(A) = A(A) = I(A) x C(A) , and C(A) = {:1} . The
set Ai of ordered bases of L consisting of root vectors has 24 elements.
We may visualize the operation of J2 % 82 on Ai by means of the graph with
coloured edges shown in figure 10.

oo G,
[ ETETRY TR
om0 x,

FIGURE 10

The graph is connected, so we see that J2 » B_ operates transitively on Ai .

2
Therefore we have only one monodromy group T , namely the Weylgroup. The
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graph has two ol-cycles, both of length 12. These are the two orbits of 82 s
and they correspond bijectively to the two Coxeter elements in the Weylgroup,
which are the rotations by 120° and 240°. There are 4 orbits of J2 . tach of
them is a cycle of length 6 with alternating edges of type IOV 0f course
these four J -orbits may also be seen as the orbits of the Weylgroup operating
on A There are two Coxeter diagrams corresponding to the two possible posi-
tions of an unordered pair of roots forming a basis. To each of the two dia-
grams there belong to J2-orbits, which are interchanged by Cz = of . Finally
32 / <£2> is the cyclic group of order 2 permuting the two Coxeter diagrams.
The second example is the antisymmetric Az-case obtained by suspending

the root lattice of type A and with € =n =1 with respect to a basis

-(ei,e ) with standard Coxeter diagram. The result of g3 is the hyperbo-
Tic unimodular plane Z?® with standard basis e = (el,ez) . The matrix of
the bilinear form (<ei,ej>) equals

5]

The transvections s

4 =S, are the following matrices:

[1 1] [1 0]
S, = S. =
! 0 1 2 -1 1

Therefore the monodromy group is Ty = <548, = SL(2,Z) . Therefore

o,(e) = (e 2t €;) 1mp11es that (r, =B, )e = A2 , and therefore J, » B, ope-
rates transitively on A . We 1dent1fy A with GL(2,Z) Then the opera-
tion of J2 B2 is descrlbed as follows. For X € GL(2,Z) with determinant
|x| , we have

(x) [le 1 J [ 1 ix[] 1 0
g, (X) =X H .
A - ui(x) X o 1 uz(x) X [-le . ]

The pseudo Coxeter element for e is the matrix

0 1
Cc =
€ -1 1 ’

which is cyclic of order 6 with centralizer <e>c SL(2,Z) . The set of all
pseudo Coxeter elements is in bijective correspondence with SL(2,Z)/ <c >
As in the first example we may describe the action of J » Bz on

= GL(2,Z) by means of a graph with coloured and d1rected edges. Since the
graph is infinite, we shall build it by infinite repetition of a finite build-
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ing block which 1¢ datéribad By figure 11.

a
[ o o ‘4
@ooee O Wy
! ]
o-+v-0 X b, a, < FIGURE 11

The diagram D shown in figure 11 has 24 vertices. These form three subsets,
the "sides" of D , namely aa(v) = {ai,ai} and ab(D) = {bi’bi} and

ac(v) = (ci,ci} . Along these three sides we attach three other copies ;s
02, 03 of the building block by identifying aa(v) with aa(vl) and

3,(D) with 3 (D)) and a3 (D) with 3_(D;) . The identification is done in
such a way that points a,, bi. < of D are identified with the correspond-
ing points ai, bi, ci in the sides of 01, 02, 03 and conversely points

ai, bi, ci of D are identified with points a,, bi’ ¢, of vl, 02. 03 .
The process is repeated with the free sides of 01’ 0., 03 and so on ad infi-

2
nitum. The building blocks are connected according to the scheme of figure 12.

FIGURE 12

Note that each building block contains exactly one Bz-orbit. namely a ol-cyc]e

of length 12. Again there is a bijective correspondence between Bz-orbits and
pseudo Coxeter elements.

Let me now state some problems. A1l of them are related to the operation

”
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of the braid groups Bn and of the groups Jn » Bn on the cartesian products
A" of automorphic sets A . For all of them there are many possible varia-
tions, such as working with a group like (Cn x Jn) ] Bn , where C is some
subgroup of C(A) , or such'as working with suitable subsets A: c A", or
passing to quotients of A: with respect to suitable group actions or some
other equivalence relations. For all problems at least some work has been done,
but more remains to be done. All problems make sense only if we restrict to
suitable classes of automorphic sets A or suitable subsets A: c A" . It is
part of the problems to find suitable restrictions so that they make sense.

Now let me name the problems.

The representation problem.

The problem of invariants.

The inverse problem of invariants.
The equivalence problem.

The embedding problem.

THE REPRESENTATION PROBLEM. For any given automorphic set A and any
natural number n, the braid group Bn and the group Jn x Bn operate on
A" . We may look at this action as a representation of Bn , and the problem
is to determine this representation explicitly. We may simplify the problem by
considering only the actions on certain orbits in quotients of suitable sub-
sets A: . Even then the problem may be quite hard even for some specific sim-

ple A . In this way one gets many interesting representations of the braid
groups. Some are old ones, and some are new.

THE PROBLEM OF INVARIANTS. We have defined invariants of the action of
Bn » J; » Bn and other groups on A" , namely the monodromy group
r, c I(a) , the pseudo Coxeter element SRS o and the automorphic subset
A& c A . The problem is to determine these invariants. To begin with, this may
mean to calculate e T, or A explicitly for some specific x € A" and
some specific A . This may already be a non trivial problem of arithmetical
nature. More ambitiously we may ask for the determination of these invariants
for classes of x € &' and for specific classes of A . For instance we may
ask whether in the case of an automorphic set Ae(L) there are only finitely
many conjugacy classes of pseudo Coxeter elements e € we(L) associated to
X € Ab(L): » where n = ranklL . Other refinements are to ask for specific pro-
perties of the invariants, if x € A" comes from some geometric situation.
For example, for x € Ae(L)n : When is e, quasi unipotent or even of finite
order? When is r c Aut(L) arithmetic? When do we have s, = Ae(L) ?

THE INVERSE PROBLEM OF INVARIANTS. The inverse problem is this: To which
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extent are the orbits of Bn , Jn » Bn and other groups determined by their
invariants? It turns out that in this respect the invariants L and A,
behave quite differently. For instance work of W. Ebeling quoted below (c.f.
3.21) shows that for many lattices L and x € AE(L): coming from applica-
tions in singularity theory, Px and Ax depend only on L and do not de-
termine the x-orbit of ({:1}” x J ) »B_ . On the other hand, in arithmetic
situations e, turns out to be a relatively strong invariant, so that the

following problem makes sense. Let x be the map
x:a" = I(a)

defined by x(x) = e, - We shall call x the characteristic map. Bn oper-
ates on the fibres of x . Problem: Determine the Bn-orbits in x-l(cx) n A;
for specific e, =CE€ I(A) and special classes of automorphic sets A . In
particular, answer these questions: Are there only finitely many orbits in
x'l(c) n A§ ?Is Bn even transitive on x'l(c) ? If one has positive answers
to these questions and if there are also only finitely many pseudo Coxeter ele-
ments of specified type, this would give an answer to the finiteness problem:
Is a,/J =B finite?

THE EQUIVALENCE PROBLEM. This is the problem of deciding whether two
given elements x,y € A" are in the same orbit of Bn or Jn n Bn or some
other group of this type. Of course one may try to use the invariants, and in
some cases this is the only method we know. But it would be very desirable to
have some kind of algorithm deciding the equivalence problem for suitable
classes of automorphic sets A and subsets 4] c &” or quotients of them,
or for the operation of Bn on Mn(l)en . A related problem is the problem
of normal forms. This is the problem of defining a suitable set of normal
forms in each orbit - hopefully finite - and of giving a reduction procedure
reducing each element of A& to one of its normal forms. For instance it
would be very desirable to have such a "braid-reduction-theory" for Mn(E)en .
I expect that such a theory would have to be much more subtle than the classi-
cal reduction theory of quadratic forms. For n = 3 the theory exists by work
of B. Kriiger, on which I shall report below.

THE EMBEDDING PROBLEM. The problems which we have stated so far refer to
the action of Bn or Jn ] Bn on A" for a fixed natural number n . How-
ever there is a natural problem which is important for applications to singu-
larity theory in which we have to compare the orbits of xe€ A" and y € A"
for m different from n . Note that there is a canonical inclusion

J »B cJ =8B for m<sn ,
m m n n
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identifying Hiseoosky € Jm with LIERERRL € Jn and Oys--esC 4 € Bm

with o,...,0 , €B . This inclusion is compatible with the operations on
& and A" and with the projection A" - A" mapping (XgseeeaX ) to

(xl,...,xm) . This means that the following diagram is commutative:

J »B xa*-a"
n n

U |
J »B x A" -4
m m

$ )

J »B x A" 4"
m m

This implies that one can define a partial order relation for the disjoint
union of the orbit spaces A"/ Jm » Bm as follows. Denote the J xB -orbit of
x € &* by [x) . For x=(x1,...,xm)€A and x' = xk)EA com-
position gives the element (x,x') = (xl,.u..x ,x xk) € AP*k Warning:
This does not induce a composition of orbits! We deflne a partial order on

the disjoint union 1A% as follows: For x € & and y € A" we have x <y
iff m<n and there is an x' € A" such that (x,x') =

DEFINITION. The partial order relation < for elements
(x] €a"/9 %8B and [yl € &"/J =B  of the disjoint union U&“/J_»B
is defined as follows.

[x] £ [y] = 3 z€(y] Xsz

Now we can state the embedding problem: Given [x] and [y] , decide
whether [x] < [y] . Obviously the equivalence problem is the special case
m = n of the embedding problem. But the general embedding problem for m % n
appears to be much harder than the equivalence problem. Another version of the
problem is the embedding problem for Coxeter diagrams. Define a partial order
for matrices in the disjoint union 11M (R) as follows. If A€M (R) and
B€M(R) then AsB iff msn and A is the submatrix of B consisting
of the first m rows and columns. Also denote the Bm-orbit of Ae Mm(R)en
by [A] .

DEFINITION. The partial order relation for elements [A],[B] of the
disjoint union of orbitspaces of matrices an(R)en/Bk is defined as follows:

[A] < [B] = 3 Ce[B] AsC

Obviously the diagram maps 6:A8(L)k - Mk(R)en have the following pro-
perty: (x] < [y] = [8(x)]) < [8(y)] . The embedding problem for diagrams is to
decide for given matrices A, B whether [A] < [B] . At present there is no
theory for solving this problem. Even for specific simple matrices and
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n = m+l the decision can be too tough. This embedding problem is much harder
than the embedding problem for quadratic forms, at least in the indefinite
case, where there is a good theory (c.f. Nikulin [90]).

I shall now report on some of the work that has been done in connection
with the problems which I have stated. Since the problems are all related to
each other the order of subjects will not be determined by the list of prob-
lems, but rather by the nature of the objects which have been investigated.

One of the most basic objects from an algebraic point of view is a free
group. Let F be a free group of finite rankn > 1 . Consider F as an au-
tomorphic set A =F . Since F has trivial centre, F identifies with the
inner automorphismgroup I(a) = F . Let A: = XF c A" be the set of well or-
dered systems of free generators of F as in §1. The operation of Bn on A"
leaves A7 invariant. Its restriction to ) identifies with the operation
of B(F) on XF defined in §l. The characteristic map x:A: - I(a) identi-
fies with the characteristic map x:XF - F of §1, defined by x(xl,...,xn) =
XX The classical results of §1 can now be stated as follows.

THEOREM 3.9. For A =F a free group of rankn>1 and x € Ai = XF .
the following statements hold for the canonical operation of Bn on A: :
(i) r F

=X

el X
1 n

= {laxa™t JaeF, i=1,...,n

: e = =1 n

(ii) Bn X =X (cx) na

(iii) The operation of Bn on the orbit Bn x is simply transitive.

x

c
x

4

Statements (i), (ii) and (iii) solve the problem of invariants, the in-
verse problem of invariants and the representation problem for the operation
of B on 8 .

The basic object for geometric applications of the braid groups is the
disk. Let D be a closed 2-dimensional oriented disk with boundary 3D . More-
over let {zl,...,zn} c D beasetof n>1 different points in the interior,
and let z, € 3D a base point. Consider the fundamental group

F = nl(D - {zl.....zn},zo) .

This is a free group of rankn , and we may take it as our basic automorphic
set A =F in our algebraic description of the geometry of D . Within A

we get additional structure coming from the topology and geometry of the disk.
First of all we have the fundamental automorphic set b, := A(D,{zl,...,zn},zo)
introduced by D. Joyce (c.f. §2, example 4). The augmentation map identifies
Af with an automorphic subset A_ of A . By its very definition, the pair

f
(A,Af) is a homotopy invariant of the pair of spaces (D,(zl,...,zn}) with
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base point as an object of the category introduced in §2. But in addition to
this we have a particular element c ¢ F = [(A) , namely the homotopy class of
the boundary circle with positive orientation. This is definitely not an in-
variant of the homotopy type - it is really associated to the geometry of the
disk. We shall see that the triple of invariants (A,Af,c) contains all the
geometric information we need.

Let A c A be the automorphic subset of primitive elements - an element
is primitive if it can be part of a free system of generators. We define an
automorphic subset A_ ¢ A by Afp = A, N Ap . Note that among other things

fp f
¢ codes the orientation, and therefore using c we can decompose Afp into
the disjoint subsets of primitive nooses with positive and negative orienta-

tion:

Now let me describe the geometric information which we want to extract from
these data. First of all we want to use a special type of positively oriented
primitive nooses, namely those which can be represented by an embedding of
(0,{0}) in (0,{z;,...,2,}) , where D was defined in §2, example 4. We
shall call these nooses "geometric". Figure 13 illustrates the difference bet-

ween a general noose, a primitive noose and a geometric noose - all positively
oriented.

SECES

general noose primitive noose geometric noose

FIGURE 13

We shall call a free system of generators x = (xl,...,xn) € A: geometrically
distinguished, if X oeeeaX o cCAN be represented by positively oriented geome-
tric nooses meeting only at the base point z, € 3D , and if XjeedX = C .

The last condition allows to determine the ordered n-tuple (xi,....xn) from

the set {xi....,xn} . Figure 14 shows an example of a geometrically distin-
guished system of generators for n =2 .

FIGURE 14
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Using the Schoenflies theorem one can prove that all geometrically distin-
guished systems of generators are topologically equivalent. This statement can
be made precise as follows.

Consider the mapping class group of (D,(zl,...,zn}) . This is the group
of isotopy classes of homeomorphisms of the pair (D,{zl,...,zn}) which are
the identity on 3D . I have only few letters left, so let me denote this
group by Q(D,{zl,...,zn)) or @ for short. Q operates canonically on
nl(D - {zl,...,zn),zo) . This operation is effective, and therefore we may
identify Q with the corresponding subgroup of Aut(F) , thus passing from
geometric topology to homotopy theory:

Q(D,{zl,...,zn}) c Aut "1(0 - {zl,....zn}.zo)

Now if we use the language of automorphic sets, we may summarize some of the
classical geometric results of Artin on the braid group as foilows.

THEOREM 3.10. Let D be a closed oriented disc, (z,,...,2.} c D and
2, €030 . Llet F= nl(D - {zl,...,zn},zo) and c € F the class of 3D . Let
Q c AutF be the mapping class group. Let A = F as automorphic set, s, ca
the fundamental automorphic set and A;p < A the automorphic subset of posi-
tively oriented primitive nooses. Let Aﬁ be the set of well ordered free
systems of generators of F and A7 c A} the subset of geometrically dis-
tinguished systems of generators. Let x:A: - F be the characteristic map.
Finally, let Bn be the braid group acting on A2 . Then the following state-
ments hold.
(i) Q= Stab(Af) n Stab{c} c AutF

(1) &, = & nx'(c)

(iii) Q and Bn both act on A:* . Both actions are simply transitive and
= n - n
Q-= AutBn(A»*) Bn = Autg(A**)
(iv) For all x €4, we have
= A = At
(a) an =4, =Qx (c) Ax'Afp
(b) Q= “k(Bn) (d) r, = F and e, = ¢

So we see that the data (A,Af,c) on one hand and the Bn-orbit A:* cA®
are equivalent. They determine each other, and both determine the mapping
class group Q c Aut(F) .

Now let us come to the earliest explicit occurence of the braid groups in
mathematics. They first appeared in a 1891 paper of A. Hurwitz: "Ober Riemann-
sche Flachen mit gegebenen Verzweigungspunkten" [56] (c.f. also W. Magnus
[84]). The following remarks on the subject are not intended to be historical-
ly faithful.

Let D be a closed disk {zl,...,zn) cD and z, € 3D . As before, let
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F be the fundamental group and Q c Aut(F) the mapping class group. Consider
m-fold ramified coverings p:X - D ramified over {21....,zn} . We assume
n>1 and m>2 so that F and Sm have trivial centre. Two coverings of
this kind are called equivalent if there is a homeomorphism of the covering
spaces such that the following diagram commutes:

X' — X
D
We denote the set of equivalence classes by Covm(D.{zl,...,zn}) . There is a
canonical action of Q on this set. A mapping class represented by ©:D -~ D
sends p:X~-D to o  p:X =D . The problem is to study this action. We
first transform this problem into an algebraic problem.
The equivalence classes of coverings p:X - D can be described algebrai-

cally as follows. Let X, = p'l(zo) be the fibre over the base point and
S(X,) = Sm its symmetric group. The canonical homomorphism

u:ni(D - {zl....,zn}.zo) - S(X,)

is called the monodromy representation of the covering. Its image ru is
called the monodromy group. Equivalent coverings define similar representa-
tions. In this way one gets a canonical bijective correspondence between
Covm(D.{zt,...,zn}) and similarity classes of permutation representations
T Sm . The correspondence is compatible with the canonical actions of Q,
where [@] € Q acts by uren 'w'l .

Now F s a free group of rankn . Let us choose a system of generators
X = (xl....,xn) . Then permutation representations u:F - Sm identify with
n-tuples u(x) = (u(x;)s....u(x )) € S; . Now we consider S as an automor-
phic set A = Sm . The set of permutation representations F - Sm identifies
with a" . Similarity classes of such representations correspond bijectively
to elements of A"/ I(a) = A" /d_ . The action of @ may then be described as
follows. Assume that x was chosen as a geometrically distinguished set of
generators. By 3.10 and 1.1 there is a canonical antiisomorphism c:,x:Bn -Q .
We define an isomorphism &'.X:Bn - Q by ,Ek(o) = ak(o'l) . Then the operation
of Q on Covm(D,{zl,....zn}) and on similarity classes of permutation re-
presentations identifies with the canonical operation of Bn on AP‘/Jn . Let
us summarize.

PROPOSITION 3.11. After a choice of a geometrically distinguished set of
generators of nl(D - {zi,...,zn},zo) , the Q(D,{z1,...,zn})-set
Covm(D.(zl,...,zn}) identifies with the Bn-set A" /Jn » where A = Sm as
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automorphic set.

Let us single out some types of coverings distinguished by special geome-
tric properties. One natural property is that the covering space should be
connected. This will be the case iff the monodromy group is a transitive per-
mutation group. Another interesting property is that the covering should be
“simple". This means that there is exactly one ramification point in X over
each z, and that this is a simple ramification point, i.e. of multiplicity
two. Algebraically this means that the monodromy representation u has trans-
positions as values u(xi) for all XpseoosX of any geometrically distin-
guished system of generators x = (xl,...,xm) . So the simple coverings corre-
spond to elements of mAP , where nd < Sm is the automorphic subset of all
transpositions. For <t = (11,....tn) € mAP the monodromy group
rt = <TyseeasT > is generated by transpositions. Therefore Pt is transitive
iff r, = Sm

ADDENDUM. The Q-set of equivalence classes of m-fold simple connected
coverings with n ramification points identifies with the Bn-set m&:/'dn ,
where '

n,_ n -
pbei= (T€ AT | T =S} .
P. Kluitmann has obtained very nice results concerning the operation of

Bn on mAt » which he presented at the Santa Cruz conference on Artin's braid

group. Let me briefly quote some of them. For details, see [66]. First he
solves the inverse invariant problem.

THEOREM 3.12. Bn operates transitively on the fibres of the character-
istic map x:mA: -S, -

The next result of Kluitmann is a description of mA:/‘hn in terms of
diagrams. Note that nd is the quotient of the root system of type Qm-! by
the group {:1} . Diagrams for root bases are integral matrices with entries
0,:1 off the diagonal. Since we divide by {:1} , it is natural to reduce to
coefficients in F,. Explicitly: we associate to T = (t,,...,T ) € A, the
matrix &(t) = (a;;) €M (F)) , where a,, =0 iff tv =77 . let Ly
be the image of this map G:NA'; - Mn(l-'z) . There is an induced operation of
Bn on AQ » and Kluitmann proves the following result:

PROPOSITION 3.13. For m # 4 the diagram map G:mA::/Jn - A: is an

isomorphism of Bn‘-sets, and A: can be described constructively in graph-
theoretic terms.

By an ingenious analysis of the diagrams Kluitmann is able to solve the
representation problem in a number of cases. Let me quote some of his results.
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Consider the set of equivalence classes of (n+l)-fold connected simple cover-
ings with n ramification points. This set identifies with *1"/ J_ and
has cardinality (n+1)"'2 . The image of the characteristic map is the conju-
gacy class of cycles of maximal length. Therefore Bn acts transitively on
A" /.J by 3.12. But Kluitmann's solution of the representation theorem

n+l o ®
shows that much more is true!

THEOREM 3.14. For n = 0(4) the braid group B acts on the set
nel ’/.J of cardinality (n+1)"" "2 as its full symmetr1c group. For
n s 0(4) , it acts as the alternating subgroup.

Kluitmann also has analogous results for the case where the root system
An is replaced by Dn

THEOREM 3.15. Let x: A“/J - / I(S )} be induced by the character-
istic map. S /I(S ) consists of three conjugacy classes: [(1)], {(1,2)],
[(1,2,3)] . The permutation groups Gc of the three fibres X~ (c) induced
by the operation of Bn on the fibres can be identified with affine or pro-
Jective symplectic groups as follows:

(i) 6, = PSp(n-Z,F3) for ¢ = [(1)] and n 24 even,
(i) Gc =z ASp(n-Z,FS) for ¢ =[(1,2,3)] and n 22 even,
(ii1) G, = PSp(n-l,Pa) for ¢= [(1,2)] and n23 odd.

Statement (i) was proved by David Cohen (29], whereas (ii) and (iii) were
proved by Kluitmann [66] using Cohen's result. Note that case (ii) for n =2
Just gives Gc = {1} . This should be compared with our previous discussion of
the root system A2 (example 1, figure 10). Kluitmann also identifies the
kernel of the representation Bn - Gc using recent results of J. Birman and
8. Wajnryb (16].

One case where the problem of invariants and the inverse problem of in-
variants are very well understood is the case of homogeneous root systems.

THEOREM 3.16. Let A be a homogeneous root system of rankn such that
no irreducible component is of type A, . Let L(a) be the root lattice gene-
rated by A and W(A) the Weyl group. Let A: be the following subset of

A"

& = (xea Zx +...+Zx =Ll(a)} = {x € 4| r, = Wa) .
Let x:AP - W(a) be the characteristic map defined by x(x .,xn) =
Sy +++Sx_ . Then the braid group B acts canonically on A , and the action
on the fibres X (c) of x is transittve
This theorem solves the inverse problem of invariants for homogeneous
root systems. The problem of invariants is also solved. One has A =4 and
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r, - Ula) for all «E A, . The conjugacy elacses of the elements ¢ in the
image x(A:) » the so called quasi Coxeter elements, have been determined ex-
plicitly by E. Voigt [109] by using the work of R.W. Carter on conjugacy clas-
ses in the Weyl group [26]. For An there is only the conjugacy class of the
classical Coxeter elements. But for Dn there are [n/2] conjugacy classes
of quasi Coxeter elements, and there are 3 for Es’ 5 for E7 and 9 for E8. -
Theorem 3.16 was proved by stages. E. Looijenga [79] did the case An and P.
Deligne with the help of J. Tits and D. Zagier proved the case where A is
general, but ¢ € W(a) is a classical Coxeter element. Finally the general
case was done by E. Voigt (109] (c.f.[109']for details). The cardinality of the
Bn-orbits in A: and related numbers have also been computed by P. Deligne,
E. Voigt and P. Kluitmann. The 1ist of Voigt in[109]p.189 and [109']p.91 con-
tains some errors. The representation problem for the operation of Bn on the
fibres of x has not been investigated, apart from Kluitmann's work on An
and Dn quoted above. This might be an interesting and difficult problem for
Ee' E,» E8 .

The next two theorems describe another case where the inverse problem of
invariants was solved by P. Kluitmann [67]. Let A be a root system of type
En » h=26,7,8 . Choose a simple system of positive roots and add the Tongest
roct. The resulting configuration of n+l roots is described by the classical
extended Coxeter diagrams shown in figure 14.

FIGURE 14

Notice that the. triples (p,q,r) which give the length of the branches
of these trees are just those for which 1/p+1/q+1/r = 1 . Now remove the
central node of the graph. The resulting graphs are shown in figure 15.

*—e *—=9 [ Y ) >——e e *>——~O—0—@
l ) )
A2+A2+A2 A1+A3+A3 A1+A2+AS
FIGURE 15

The corresponding n roots generate a sublattice of rankn in the root lat-
tice. This sublattice is the root lattice of a root subsystem A' c A of

rank n and of type Ab- + Aq_ + A:- . Kluitmann proves the following theo-

1 1 1
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rem.

THEOREM 3.17. Let A be a root system of type En , and let A' c A
be a root subsystem of type A.p_l +Aq.l+Ar_1 as above. Let W(A) be the
Weyl group of A and let c € W(A) be the element corresponding to a Coxeter
element of A' . Let A c W(A) be the automorphic subset of all reflections,
and let &7*2 be the following set:

n+2 _ - m+2 =
877 = {s = (5y5..005 ) €A | r, = W(a)}

n+2

Finally let x:A."" = W(A) be the characteristic map defined by x(s) =

Sy -Spea Then the braid group Bn+2 acts transitively on the fibre

xHe) .

There is a 1ot of beautiful geometry associated to the pseudo Coxeter
elements ¢ of 3.17, which is related to the classical configurations of the
27 lines on a cubic surface and the 28 bitangents of a plane quartic. Theorem
3.17 is an essential step in the proof of the next theorem, which is the main
result of Kluitmann's thesis [67].

Let (p,q.r) be one of the triples above and n = p+q+r-3 . Let L
be the integral lattice Z™*2 with that even symmetric bilinear form fggr
which the standard basis e has the Coxeter diagram T and

RN
<e,.e.> = 2 . The reduced I;ttice nt:qz,/rad qur is the root lattgce of type
En . The automorphic set AI(qur) and the group “1(qur) are defined as
before. Let ¢ € "1(qur) be the product ¢ = Sy Spe2 of the reflections
Sy corresponding to e - The conjugates of ¢ and ¢l in H(qur) are
called the Coxeter elements of qur . Kluitmann proves that they are exactly
the Coxeter elements in the sense of K. Saito's theory of extended affine root

systems [98].

THEOREM 3.18. Let (p,q,r) be one of the triples (3,3,3) or (2,4,4)
or (2,3,6) and n = p+q+r-3 .

n+2 _ n+2 -
(L e = xea(l ) | L e S IX AT x L)
. +2 s
Let x:a,(L r): < W(L__) be the characteristic map, and let c € W(L )

be a Coxeter element of T . Then the braid group B acts transitively
on -l(c) pqr n+2
X .

Let me now report on Bertolt Kriiger's thesis [69] dealing with braid re-
duction theory for even symmetric ternary forms which are minimally generated.
Let us return to the operation of the braid group Bn on the set of matrices
Mn(R)en which we discussed before. By theorem 3.6 we know already that the
operation of Bn/ <Cn> is faithful if R has infinitely many elements. In
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particular this applies if R=R or R =2Z . These are the cases which we
want to study under the additional assumption n =3 and n=€ =1 . Let us
simplify the notation. We put M;(R) = M3(R)1 L So this is the space of ma-
trices

2 Xy Xy
Xy 2 Xq
Xy Xq 2

where x = (xl,xz,xa) €R® and R=R or R=2Z . We shall also denote
this matrix by x . Recall that for minimally generated even symmetric ternary
R-lattices L the diagram map induces an injection 6:A1(L)i/’0(L) - M;(R) .
The images of these maps are exactly the "classes" of ternary forms, where two
matrices B,B' are in the same class, if there is an A € GL(3,R) such that
B' = “ABA . Conversely we can associate to any x € M (R) the free R-module
Lx R3 with the bilinear form defined by the matrIx X for the standard ba-
sis e . The class of x will then be the image 6(A (L ) /O(L )) . We can
now associate to x the invariants of e € AI(L )’ , i.e. the monodromy group
T, = <515,,8> ¢ o(L,) < GL(3,Z) generated by the reflections $)s8
corresponding to the standard basis vectors e, e
element $45,85 €T,

We have a canonical action of B3 on M;(R) and we want to study the
equivalence problem, the invariant problem and the inverse problem of this ac-
tion. Of course the discriminant is an invariant of this action. Up to a fac-
tor 2 it is the following cubic form:

X XXy = xf - xi - xg +4

Such forms have already been studied. Mordell [89], page 106, treats the dio-
phantine equation xz-»yz'fzz -axyz = b , and our cubic form also occurs in
papers of Rosenberger [97], Horowitz {53] and Magnus [85]. Using some of their
ideas, B. Kriiger gave a very careful analysis of-the action of B on M;(R) .

Here are some of his results. He uses the square norm Q(x) = x2 +x§ +x§ .

2 3

21€3 s and the pseudo Coxeter

DEFINITION. The matrix x € M*(R) is a local minimum in its B -orbit,
if Q(x) < Q(of(x)) for i =1,2 and €=l .

It is a basic elementary fact that the set of x which are a local mini-
mum in their orbit form a semialgebraic set in R? consisting of the four
octants X X, Xg S 0 together with the subset of the other four octants de-
scribed by the inequalities 2]x ERLY xk] » where {i,j,k} = {1,2,3} . In
particular, if x 1is a local mlntmum. any x' obtained from x by an even
number of sign charges and by permutations of the coordinates is also a local
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minimum. Let us call such local minima x and x' equivalent if they lie in
the same orbit of B3

DEFINITION. Regular and ordinary orbits of B, in M;(IQ) are defined
as follows:
(1) R:={ceR | |c|]22 or |c|
R':={ceR | [c] >2}
(11) B,x is regular iff B x c R}
(i) B is not ordinary iff det x

cos(n/k) , k 22}

*

*

uw

‘3
0 and B3x < lR‘

The orbit of an integral matrix x € M;(ZZ) is always regular and ordi-
nary. Kriiger's main result is the following theorem.

THEOREM 3.19. The action of B, on M‘;(R) has the following proper-
ties:
(i) Every regular ordinary orbit contains a local minimum, and this is
unique up to equivalence.
(ii) For a regular ordinary orbit B X  the monodromy group T, is a Coxe-
ter group with Coxeter system {sl,s } .

Note that (ii) solves the invariant problem, since the Coxeter matrix of
the Coxeter system is easily determined from x . Note also that (i) almost
solves the equivalence problem, since there is an obvious reduction process
for getting from x to a local minimum x, in finitely many steps. There are
at most 24 local minima equivalent to x, . Once they are determined, one has
a well defined set of normal forms computed for x , and two elements x,x'
are in the same Ba-orbit iff they have the same set of normal forms.

The inverse problem of invariants in its most naive sense does not make
sense in the real case, since Bn-orbits are countable, whereas the fibres of
the characteristic map x may be real algebraic varieties of positive dimen-
sion, so that there will be uncountably many B“-orbits in the fibres. But for
integral matrices Krliger obtains the following result.

THEOREM 3.20. The action of 83 on M;(ZZ) has the following proper-

ties.

(i) There are only finitely many Ba-orbits in each class of M*(ZZ) . In
other words: For each x € M*(ZZ) there are only finitely many B,-or-
bits in 4 (L )3/0(L ) .

(i1) Moreover, 1f det)( * 0 » there are only finitely many B -orbits in the
fibres of the characteristic map x: 8 (L )3 - O(L ) .

Krliger also deals with the representation problem. In particular he de-
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termines the isotropy groups for the B3-actions on the regular orbits 1in
M;(R) . There are orbits on which B,/<{,> acts freely, i.e. with trivial
isotropy groups.

The corresponding problems for the action cf Bn on n xn-matrices with
n > 3 appear to be extremely difficult. But at least Kriiger is able to deal
with matrices of rank1l. Even this very degenerate case is interesting, since
it is very closely related to the known integral symplectic representations of
Bn studied by V.I. Arnold [ 5] and Magnus - Peluso [83].

Most of the problems discussed so far are genuine combinatorial problems.
On the other hand there is one problem of another character. This is the pro-
blem of calculating monodromy groups for the automorphic sets coming from lat-
tices. This is mainly an arithmetic problem. There has been much progress with
respect to this part of the problem of invariants. After important contribu-
tions of many people including A'Campo, Arnold, Chmutov, Pinkham and Wajnreb,
the final results were obtained by W. Ebeling [37],(39] and W.A.M. Janssen
{57],[58]. Here is an extremely condensed version of a report which I got from
Wolfgang Ebeling.

Let L be an integral lattice, even symmetric or antisymmetric.
At(L) clL and s, € Aut(L) for a € At(L) are defined as before. For any
subset Ac a (L) let T, € Aut(L) be the group Ty =<s, |a € A>.

DEFINITION. The pair (L,A) is a vanishing lattice, if it satisfies the
following conditions:
(i) A generates L .
(ii) A 1is an orbit of Ty in L.
(iii) If rankL > 1, there exist a,b € A such that <a,b> =1,

The connection with our previous theory of automorphic sets is obvious.
For any x € A.e(l.)m we have the automorphic subset a < At(L) and the mono-
dromy group r, - If we put A = A, ,weget I'y=T , and (L,A) is a good
candidate for a vanishing lattice. Condition (i) was almost always part of our
assumptions. Condition (ii) means that 8, is very homogeneous. In applica-
tions in singularity theory all conditions wil be satisfied.

Let j:L - L¥ be the canonical map to the dual and Aut™L) c Aut(L)
the subgroup operating trivially on L“/J(L) . Then r‘A c Aut®(L) . For sym-
metric L let ve:Aut(L) = {1} the real e-Spinornorm. We define a subgroup
0F(L) c O(L) as follows:

02(L) = Aut®(L) n ker v
Using a result of M. Kneser [63], W. Ebeling proved the following theorem.
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THEOREM 3.21. Let (L,A) be an even symmetric vanishing lattice. Sup-
pose that L contains a 6-dimensional sublattice M c L , such that M is
the orthogonal direct sum of two unimodular hyperbolic planes and a lattice of
type eAz . Suppose moreover A > Ae(M) . This implies the following state-
ments.

(i) A=f{ael! <,a>=2 and <a,l>=2Z}c a.(L) .

(1) Ty =Ty oy = We(L) = 0Z(L) -
€

Now let (L,A) be an antisymmetric vanishing lattice. Choose a symplec-
tic basis e1.f1,....em.f'm,gi,...,gk such that <ei.fi> = -<fi,ei> = di €N
with di |di+1 and such that all other scalar products of basis vectors are
zero. Let vz(L) be the exponent of 2 in the prime factorization of dm . If
a €L is such that there exists an element b € L with a-2b€ A, we
write a € Amod2 . W.A.M. Janssen proved the following theorem.

THEOREM 3.22. For any antisymmetric vanishing lattice (L,A) the fol-

lowing statements hold:

(i) A={a€el |<a,l>=Z and a € Amod2} v. (L)

(i) Tx contains the congruence subgroup modulo 2 2 of the restricted
symplectic group SpP(L) .

Moreover Janssen gets a complete classification of skew symmetric vanish-
ing lattices. There is also work of S.P. Humphries [55] which is related to
this subject.

Note that in general the vanishing lattice (L,Ax) contains less infor-
mation than L together with the orbit B x of the braid group in A: .

Finally I have to say that very little has been done concerning the em-
bedding problem. A few isolated results have been announced in [25].

§4. BRAIDS AND SINGULARITIES

The past thirty years have been an exciting period for those who work on
singularities. There was a great confluence of ideas of outstanding mathemati-
cians and physicists coming from algebraic geometry, complex analysis, diffe-
rential topology and many other fields. It is impossible to present this rich
variety of ideas and their manifold connections on a few pages. For those who
want to ge a first impression I recommend reading the beautiful article of
V.1. Arnold on "Critical points of smooth functions" and J. Milnor's classical
work on "Singular points of complex hypersurfaces" ([ 71,(87]). I also recom-
mend the books of E. Looijenga [80] and V.I. Arnold [ 8] and V.I. Arnold, S.M.
Gusein-Zade, A.N. Varchenko [10] as well as the proceedings of the summer in-
stitute on singularities 1981 (91]. I shall now restrict myself to one ap-
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proach, which has its deep roots in the mathematics of the last century.

The essence of the theory which I want to explain is the application of
the "analysis situs" to analytic or algebraic entities, to objects of algebra-
ic or analytic geometry. This way was opened by the genius of Bernhard Riemann
in his thesis and in his work on Abelian integrals. After that it was followed
by Picard and Simart in their treatise on algebraic functions of two variables
{95], in Poincaré's "Quatriéme complément & 1'analysis situs” and finally in
Lefschetz' famous work "L'analysis situs et la géeométrie algébrique" [77].
Lefschetz' work was pioneering work using the tools of algebraic topology
while or even before they were being developped. So it is not easy to read. A
very readable modern exposition was given by K. Lamotke [71]. Lefschetz pre-
sented his ideas in transcendental form - the only form possible at his time.
But the same ideas can be given an algebraic form using the fundamental ideas
of Grothendieck. This was done and very important new results were obtained
around 1967-1969 by A. Grothendieck, P. Deligne and N. Katz in the Séminaire
de Geometrie Algebrique "Groupes de Monodromie en Géométrie Algebrique" (47],
[31]. This work was very important in connection with P. Deligne's celebrated
proof of the Weil conjectures. At about the same time Lefschetz' ideas were
also applied on a much more modest scale in the analysis of isolated singula-
rities of complex hypersurfaces. They were combined with R. Thom's ideas on
the universal unfolding of singularities, work of J. Mather on stable map
germs and ideas of V.I. Arnold and G.N. Tjurina. This approach was developped
by F. Pham [93],(94), L& Dung Trang [76]), K. Lamotke [70) and A.M. Gabrielov
(40],(41],(42]). I myself was also involved (see e:g. [21], Appendix). A very
useful survey was given by S.M. Gusein-Zade (49].

We want to study singular points of complex analytic functions of several
complex variables and of their level sets. A singular point is a point where
the level set passing through this point is not smooth. The equivalent condi-
tion for the function is the vanishing of all partial derivatives at this
point. A singular point is isolated iff it is the only singular point in a
suitable neighbourhood. The simplest isolated singularities are the ordinary
double points. These are the singular points with nondegenerate Hessian. If a
function f of k variables has an ordinary double point at p and if
f(p) = 0, one can find local coordinates x = (xx,...,xk) centered at p
such that

f(x) = xf+...+xi

Isolated singularities are a local phenomenon. In order to study them lo-
cally, we always restrict the functions to a closed ball of small radius p
with centre the singular point, and we intersect the level sets with this ball.
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1f we choose p sufficiently small and if we then choose the level set suffi-
ciently near the singular level, our constructions will not in an essential
way depend on these choices.

Now let us look at the simplest singularity, the ordinary double point.
Figure 16 should support your intuition, although it is only the picture of a
real analogue of a complex situation which cannot be described properly by
pictures.

FIGURE 16

The singular level set of an ordinary double point is a cone over a quadric.
The nearby nonsingular level sets are complex "spheres" with equation
xf-+...-+x: = s . Let us choose s real and positive. Then we have a real
(k-1)-sphere of radius VS sitting in the complex sphere, namely the subset
where all coordinates are real. The complex sphere is easily identified with
the tangent bundle of the real sphere so that the real sphere identifies with
the O-section. The intersection Ys of the complex sphere with the ball gives
a disc bundle in the tangent bundle. So the level set Y8 can be retracted to
the real sphere. In particular its homology is the same as that of the real
(k-1)-sphere. The only non zero reduced homology group is the (k-1)-th homolo-
gy group, and it is generated by this real (k-1)-sphere, considered as a (k-1)-
cycle in the level set Ys . Strictly speaking we only get a cycle and hence a
generator of Hk_l(Ys,ZZ) after choosing an orientation of the real sphere.
There is no preferred choice, and this ambiguity will persist everywhere in
our theory. Note that the real sphere shrinks to a point as s tends to zero.
Therefore the corresponding cycles are called "vanishing cycles". This name
adopted by Lefschetz goes back to Poincaré [96]) p.415.

Now the basic idea for studying arbitrary isolated singular points of an
analytic function f is to deform the function f slightly so that the com-
plicated singularity decomposes into a certain number of simple ordinary
double points. The configuration of the vanishing cycles corresponding to
these ordinary double points can be described by a diagram, and these diagrams
are Coxeter diagrams to which we can apply our theory of braids and automor-
phic sets.
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There are several theories describing deformation processes which can be
used to carry out this program. One is the semiuniversal deformation of isola-
ted singularities of complex spaces constructed by G.N. Tjurina [107] and A.
Kas - M. Schlessinger [60] for complete intersections and by H. Grauert (46]
for the general case. Another possibility is the universal unfolding of func-
tions, initiated by R. Thom [(105] and worked out by G. Wassermann [110] on the
basis of unpublished notes by J. Mather on right equivalence. For simplicity
we choose the approach by unfoldings.

DEFINITION. An unfolding of a holomorphic germ of a function
foz(tk,O) - (€,0) is a holomorphic germ of a map F:(€* xCP,0) - (€ x€P,0)
of the form F(x,t) = (f(z,t),t) with f(x,0) = f (x) . A morphism of unfold-
ings F,G of f, is a commutative diagram of germs of maps

(€< x€2,0) ¥ (€*x¢P,0)
6 VO
(¢ x€2,0) Y (€ x €P,0)

where ¥(x,0) = (x,0) and where @ is of the form &(s,t) = (s+o(t),T(t)) .
An unfolding F of f_ is versal if every unfolding G of f, can be in-
duced from F by a morphism from G to F . It is universal if in addition
the dimension p of the parameter space CP is minimal.

For germs of functions f, with isolated singularities, a universal un-
folding exists and is unique up to a non canonical isomorphism. It is con-
structed as follows. Consider the local Artinian algebra
Cix sennsx B/ (3F5/0% 5. ..,3f,/3% ) . This is an important analytic invariant
of f . In fact by a recent result of J. Scherk [99] this algebra determines
f, up to right equivalence. (Two germs are right equivalent if they are in
the same orbit of Autt{x1,...,xk}) . A much simpler but basic invariant of
f, is the dimension n(f,) of this algebra, considered as a complex vector
space. This number n = n(f,) is usually called the Milnor number of f, and
is denoted by u in the literature. It equals the dimension of the target
space of the universal unfolding, which we now construct as follows.

Let 9ys--e09, € t{xl,...,xk} be power series representing a basis of
t(xl,...,xk}/ (afO/axl....,afO/axk) . Assume 9, = 1 and define f(x,t) as
follows:

n
f(xi.....xk.tz,....tn) = f°(x1,...,xk) + jfzgj(xl""’xk)tﬁ

Then F(x,t) = (f(x,t),t) is "the" universal unfolding of f_, . For example
the universal unfolding of f_(x) = x™*! s F(xstys.oat ) =
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n+1 n-1.
(x +tx +...+tnx,t2,...,tn) .
So far the universal unfolding was defined as a germ of a map. However if
we want to understand the geometry hidden in this germ, we have to choose an
actual map representing the germ, and we have to choose it properly. We define

spaces X,S,T as follows.

T={t=(ty..,t)et™ | [t]| <
S=((s,t) x| Isj <o, |t <1}
X = {(x,t) € < <! | Ixll £, |f(x,t)| 0, Il < =}

Here p,0,t are positive real numbers which are choosen small with respect

to each other in the following order: 0 << T << 0 << p << 1 . By this I mean
the following: If we choose first p sufficiently small, then o sufficient-
1y small with respect to p etc., all statements which we are going to make
about our representative of the universal unfolding will hold. Now we repre-
sent the universal unfolding by the map F:X - S with F defined as above.
Let p:S =T be the projection p(s,t) =t . Let C c X be the critical set
of F . This is a smooth connected complex submanifold in X of dimension
n-1, i.e. codimension k . Its image D = F(C) ¢ S is called the discrimi-
nant. It is an irreducible hypersurface in S , and F:C - D is the normali-
zation map. The projection p induces an n-fold ramified covering map

n:D - T , which is regular exactly in the regular part Dr of D . The singu-
lar part D of D is of codimension 1 in D . Its image B = n(Ds) cT is
a hypersurface in T which is called the bifurcation set. For t € T we put
S, = p"(t) . This is a closed disk in the complex s-plane. We put

X, = F'!(St) and we denote the restriction of F to X by F :X =S .
This function depending on the parameter t € T 1is viewed as a deformation of
the function F_ representing the given germ LA

PROPOSITION 4.1. Llet n = n(f)) be the Milnor number of the germ of
function f_ . Then for t € T-B the function Ft:xt - St has exactly n
critical points Pyse-esP - These critical points are ordinary double points.
The corresponding critical values z, = Ft(pi) are n distinct points
ZiseensZ, in the interior of the closed disk St . They are the points in
which St intersects the discriminant D c S .

Figure 17 illustrates 4.1 for the simplest non trivial case fo(x) = x3
by its real analogue. The germ of the discriminant at the origin determines
the germ of the hypersurface fo(xl,....xk) = 0 at the origin by a theorem of
K. Wirthmiller [111]). Therefore the geometry of the discriminant is very impor-
tant for the geometry of the singularity itself. Many investigations have been
devoted to the geometry and topology of the discriminant. This is one of the
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FIGURE 17

points where braid groups or generalisations of them 1ike the Artin groups
make contact with singularities. Since I cannot explain this in detail, let me
Jjust give some references: [9],(22],[23],(30],(52]},(68),(108].

The next theorem is essentially due to J. Milnor [87] (c.f. also H.A.

Hamm [50]).

THEOREM 4.2. Let F:X - S represent the universal unfolding of
fo(xl....,xk) as above. Let S' =S-D be the complement of the discriminant
and X' = X-F 1(D) its inverse image. Then the restricted mp F:X' - S'
has the following properties.

(1)
(i)

(iii)

(iv)

(v)

F:X' = S' is a C"-smooth locally trivial fibre bundle.

The typical fibre Ys = F'l(s) , S€S' is a compact C"-manifold with
boundary of real dimension 2(k-1) . This manifold which is called the
Milnor fibre has the homotopy type of a bouquet of n(f ) spheres of
dimension k-1 .

The boundary aYs is a closed (k-3)-connected manifold of dimension
2k-3 . This holds for all fibres Y =F'(s), se§ .

The boundaries 3Y, , s €S , are the fibres of a trivial fibre bundle
over S .

The fibres Ys s S €3S forma locally trivial fibre bundle over the
boundary 23S = s x T which is trivial in the direction of T . This
means the following: Choose any t € T , and restrict the fibre bundle
X' - S' to the circle ast . The bundle over 23S 1is then obtained by
lifting the bundle over aSt by means of the projection 23S - 35c .

Consider the fibre bundle over the circle 3S, with fibres Ys of

t
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statement (v). According to J. Milnor, it can be identified with the fibra-
tion of the complement of a generalized knot which is usually called the Mil-
nor fibration and which is constructed as follows. The singular fibre

Y, = f;‘(O) c ¢* intersects the sphere Sp bounding the ball Bp c ¢®
tran;versally in its boundary I<.p = 3Y, ¢ Sp . This is a smooth closed subma-
nifold of real codimension 2 in the (2k-1)-sphere Sp .For k=2 it isa
link, for k > 2 it is connected and hence a knot. The diffeomorphism type of
(Sp,Kb) does not depend on the choice of p and is called "the" knot of the
singularity. Ko may be an exotic sphere ([20],(51]). The complement of the
knot can be fibered over the unit circle S' in the complex plane by means of
the map Sp"Kb - s! defined by x= f (x)/ Ifo(x)l . This fibration gives an
open book structure around K.p . The Milnor fibration is the restriction of
the fibration Sp--Kp - s! to the complement of a small open tubular neigh-
bourhood of K_ in Sp . We shall say that two singularities of germs of
functions are topologically equivalent if their Milnor fibrations are diffeo-
morphic. This implies that there is a homeomorphism of neighbourhoods of the
singular points, which is a C -diffeomorphism on the punctured neighbourhoods
and identifies the singular level sets. J. Milnor proved ((87]):

PROPOSITION 4.3. The restriction of Ft:Xt - St to the circle aSt
bounding the disk St can be identified with the Milnor fibration.

We can now associate several algebraic-topological invariants to the geo-
metric situation described in 4.1, 4.2 and 4.3. First of all the Milnor fibre
Ys » S €E€S8', is a smooth compact manifold with boundary of real dimension
2(k-1) . Its interior is a complex manifold, so that Y8 is oriented. We con-
sider the homology and cohomology of Ys with integral coefficients. Composi-
tion of the natu;fl map H _, (Y.)) = Hk_i(Ys,aYsl 1with Poincare duality
ey (Yg03Y,) = H7(Y_) and the isomorphism H - (Ys) = Hom(H__, (Y.),Z)
gives a natural homomorphism Hk-x(vs) - Hom(Hk_I(Ys)) . We denote the image
of ace€ Hk_1(Ys) by a' and define a natural intersection pairing

Hk_l(Ys.E) x H,M(Ys,l) -z
(a,b) » <a,b>:= a'(b)

In this way Hk-l(Ys) becomes an integral lattice which is symmetric and even
if k-1 1is even and antisymmetric if k-1 1is odd.

DEFINITION. The Milnor lattice L, of a germ foz(tk,O) - (€,0) with
isolated singularity is the homology group of the Milnor fibre Hk_l(Ys.Z)
with the intersection form defined abové. The monodromy of f° is the canoni-
cal homomorphism
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u M (S',8) & Aut(L,)
Its image is called the monodromy group of the singularity.

Note that u is a homomorphism and not an antihomomorphism. We define
the product structure of the fundamental group as usual in homotopy theory.
With this definition the monodromy operation defined by most authors would be
an antihomomorphism. Since we want the monodromy to be a homomorphism, our
operations of elements of nl(S'.s) are the inverse of the ope:. ations used by
these authors, and the corresponding formulas differ by a sign. For the same
reason, the definition of a geometriéally distinguished basis given below dif-
fers from that of those authors by reversing the order of the vectors of the
basis.

In addition to the invariants defined above, we get a particular element
in the monodromy group, if we choose the base point s in the voundary 35S ,
for it lies on the circle aSt » where t = p(s) , and this circle with posi-
tive orientation gives us a particular homotopy class x € nl(S‘,s) . The cor-
responding element "3(“) in the monodromy group describes the monodromy of
the Milnor fibration.

DEFINITION. The element wu_(x) € Aut(L_) of the monodromy group is
called the classical monodromy transformation.

The classical monodrpmy is the automorphism h. of the homology lattice
H _,(Yg) induced by a homeomorphism h:Y, - Ys such that hlaY8 = id . To any
such homeomorphism determined up to isotopy one can associate a well defined
homomorphism v:Hk_l(Ys,aYs) - Hk-l(vs) . If ¢ is a relative cycle and
lc) € H _,(Y,,3Y ) its homology class, v([c]) = [h(c)-c] , the class of the
absolute cycle h(c)-c . One has v * J, = h, -id for the homomorphism j_
induced by the inclusion j:(Ys,¢) - (Ys,aYs) . Using Poincaré-duality, we can
identify v with a homomorphism v:L¥ L -, where L% = Hom(L_,Z) is the
dual of Ls

DEFINITION. The homomorphism v:L‘:-— L, » s €35, is called the varia-
tion of the singularity.

Using the variation v , we can define a bilinear form £: L xL -Z by
L(a,b) = v~ (b)(a) Up to a sign depending on choices of or1entat1ons and up
to transposition this bilinear form can be identified with the linking form
familiar from knot theory (c.f. J. Levine (78] 2.5).

DEFINITION. The bilinear form £: L xL - Z defined by £(a,b) =
'1(b)(a) is called the linking form of the singularity.
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Now let me come to the decisive construction implementing the ideas of
Lefschetz. This construction leads to a class of geometrically distinguished
integral bases of the Milnor lattice Ls » where s € 3S . Consider again the
map Ft:Xt - St obtained by restricting our good representative of the uni-
versal unfolding to the inverse image Xt of the complex disc St . Assume
that p(s) =t € T-B . As stated in 4.1, the function Ft has n ordinary
double points Pys---sP, as its only critical points, with n distinct cri-
tical values Zys.nZ in the interior of St . In a suitable neighbourhood
of P; » the function Ft looks exactly 1ike that which describes the stand-
ard ordinary double point. Therefore we can choose a closed ball Bi of small
radius Py with centre Py and apply our previous analysis to FtlBi . In
particular, if we choose any s, € St sufficiently near to z, but different
from s; » we find a vanishing sphere in the intersection Ysi n B; . Hence
we get a vanishing cycle in Hk_l(Ysi) , Which is uniquely determined up to
sign. In this way, after choosing orientations, we get n vanishing cycles,
one for each ordinary double point p; - However they all lie in the homology
lattices of different fibres. We have to move them into one common fibre, the
fibre over the base point s € aSt . It is exactly at this point that the geo-
metry of the disk and its relation to the braid groups discussed in §3 plays
an important role.

Choose any geometrically distinguished system of generators
E = (gl....,gn) of “1(Sc -(zl,....zn}.s) as defined in §3. In order to sim-
plify the notation denote the point “"inside" the loops of the noose X, by
z, . (The order of (gl,...,gn) does matter, but any ordering of {21....,zn}
is irrelevant.) The loops corresponding to the nooses 51""’En can be
made arbitrarily small by a suitable choice of the maps representing the homo-
topy classes gi . Make them so small that the "eye" of the noose, i.e. the
point Si where the rope passes into the loop, is sufficiently near to 2z
in the sense of the previous paragraph (Figure 18).

i

(S
g g FIGURE 18

Move the vanishing cycles in the fibres over si into the fibre over the base
point s by means of a continuous family of homeomorphisms of the fibres cov-

ering the path from s; to s . In this way we get an n-tuple of homology
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classes e = (el....,en) € L: . It is easy to prove that e is an integral
basis of the lattice Ls . Let us say that such a basis belongs to the geome-
trically distinguished system of generators E = (El,....En) . Because of the
choices of orientations, there are exactly 2" bases belonging to any given E .

DEFINITION. For any fixed choice of t € T-B and of the base point
S € aSt , the geometrically distinguished bases of the Milnor lattice Ls are
the bases e = (el,...,en) belonging to the geometrically distinguished sys-
tems of generators E = (51""'§n) of (S -{zl,...,zn},s) .

Figure 19 illustrates the simplest non-trivial case. This is the case
where the Milnor number n = 2 . This implies that the singularity is of type
A2 . For k =1 this is the germ of the function f(x) = x> . Its universal
unfolding was the example considered above (Figure 17). For k = 3 the Az'
singularity is the germ of the function x3-+y2 +22 . The base space S of
the universal unfolding and the discriminant D c S are the same as for
k =1, but the fibres of F:X =S are now complex surfaces. Figure 19 shows
the real part of three of these fibres: Two surfaces are singular with an or-
dinary double point. They lie over the two critical values z,,2, where the
cuspidal cubic D intersets Sc . The third surface is nonsingular and is the
real part of the Milnor fibre. On it there are two vanishing cycles. They
shrink to the two singular points when we approach the singular level. The
surface in the middle should be seen as lying over the one to the left and
under the one to the right. Pictures like this occur already in a paper of
Felix Klein [64].

]
i
/

FIGURE 19

THEOREM 4.4. Let f_:(€*,0) - (€,0) be a germ of a complex analytic
function with an isolated singularity. Put € = (k) = (-l)k‘k'”/2 . Let
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n = n(f,) be the Milnor number of f, . Choose a representative of the uni-
versal unfolding F:X - S as above. Choose a disk Sg €S and a base point
s € 35, as above. Let {zl,...,zn} =S5, NnD be the intersection with the
discriminant. Then the topological invariants of F:X - S defined above and
the invariants defined in the theory of automorphic sets are related as fol-
Tows.

(0) The geometrically distinguished bases of the Milnor lattice Ls form a
{+1)" # B -orbit in A(L)" .

(1) Let E = (El,...,En) be any geometrically distinguished system of gene-
rators of “1(Sc -{zl,...,zn}.s) and let e = (ei....,en) be a geome-
trically distinguished basis belonging to E . Then the monodromy
ub:nl(st -{21,...,zn},s) - Aut(Ls) satisfies the following Picard-Lef-
schetz-formula:

u (g = Sei,e

(2) The monodromy group Pe in the sense of the theory of automorphic sets
equals the monodromy group imu.s

(3) The pseudo Coxeter element Ce equals the classical monodromy “b(“) of
the Milnor fibration.

(4) The variation operator v: and the variation operator v of the Milnor
fibration are related as follows: v: = -gev .

(5) The Seiffert form L: and the linking form £ of the singularity are
related by L: = -el .

The central result is the Picard-Lefschetz-formula. Qualitatively it goes
back to Picard-Simart, and the exact formula was proved by Lefschetz [77],
Théoréme Fondamental, p.23 and p.92.

There is a suspension operation for singularities related to the suspen-
sion operation for lattices introduced in §3.

DEFINITION. The suspension of the germ f:(tk,O) - (€,0) is the germ
of: (€¥*1,0) - (€,0) defined by BF(X aeenakyy) = Flx +oex ) + 2,

Conversely one might call f a desuspension of If . We may also intro-
duce corresponding operations for right equivalence classes of germs of func-
tions with isolated singularities and get well defined suspension and desus-
pension operations on this level. This is the contents of the generalized
Morse lemma, which says that for each right equivalence class there is a
unique minimal iterated desuspension, i.e. one with the minimal possible num-
ber of variables. The class of f is minimal iff the Hessian of f is zero.
Germs obtained from each other by suspension or desuspension are called stab-
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1y equivalent. In several respects such as their behaviour with respect to de-
formations they do not differ essentially. Therefore in Arnold's classifica-
tion of singularities it is enough to classify them up to stable equivalence.
It is clear from the construction of universal unfoldings that the universal
unfoldings F of f_ and F of zf, are very closely related. We can chose
them so that

F(XpoeeooXat) = (Fo(XseeenX ) + B0 (X 5enisX )st)
= 2
F(xl,...,xk+1,t) = (fo(xl....,xk) t X t Ztigi(xl,...,xk),t)
Therefore representatives of these germs F:X - S and F:X =~ S can be chosen

so that the target spaces S , the discriminants D c S , the projections
p:S+-T and n:D - T and the bifurcation sets B c T are identical.

THEOREM 4.5. The relation between the invariants of a germ
f:(tk,D) - (€,0) and of its suspension =f is as follows. Put € = e(k) and
€' = g(k+l) . Choose representatives of the universal unfoldings of f and
of with common target space S and common base point s as above. Let
Ls(f) and Ls(zf) be the corresponding Milnor lattices, and let
e €a(L(f)" be a geometrically distinguished basis. Then

(Ly(=f)ee’) = 5 (L (F)€)
where Z, is the suspension operation defined in §3. The {:1}" an-orbits of
geometrically distinguished bases of Ls(f) and Ls(zf) identify in such a
way that the relation with geometrically distinguished systems of generators

of the fundamental group is preserved. The vanishing spheres of Ef are the
suspensions of the vanishing spheres of f .

In the constructions above we have made many choices. One way of miti-
gating the dependence on the base point would be to pass from orbits of
{+1)}" = Bn to orbits of ({:1}" xJn) n Bn in At(Ls)n . This is perhaps too
generous, but the example of the root system A2 discussed above shows that
it leads to a nice combinatorial structure. On the other hand this enlarged
object would still be a subset of the set Ae(Ls)n » thus depending in a for-
mal sense on the choice of s and other choices. The following definition
leads to invariants which do not depend on any choice.

DEFINITION. The diagrams of a germ of a function with an isolated singu-
larity are the Coxeter diagrams of the geometrically distinguished bases of a
Milnor lattice of the germ.

The diagrams of f form a {:1}" xBn-orbit of matrices in M (Z).
where € = ¢(k) and n = (-l)"’l . This orbit is an invariant of f which
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does not depend on any choice. The following theorem was proved by Alan Durfee
[33].

THEOREM 4.6. For k 2 4 there is a one-one correspondence of isotopy
classes of fibered knots in g2k-1 and equivalence classes of integral unimo-
dular bilinear forms given by associating to each fibered knot its linking

form.

In view of 4.4.5 we have the following corollary:

COROLLARY 4.7. For k #* 3 the diagrams of a germ f:(ck,O) - (C,0) de-
termine f up to topological equivalence.

There is a notion of equivalence of germs of functions which may be a
bit finer than topological equivalence, although I do not know an example
which would show that it is really finer. This equivalence is usually called
u-homotopy. I shall call it u-equivalence. In order to define it, identify the
set of germs of functions with the ring of convergent power series
cfxl....,xk} . Let m be its maximal ideal. ¢{x1,...,xk} is given the
coarsest topology such that all projections to c{xl,....xk} /m" are continu-
ous. This is the weak topology of coefficientwise convergence (c.f. [45] I,
§3, Satz 6).

DEFINITION. Two germs fo,f1 Emc C{xl,...,xn} with isolated singula-
rities are u-equivalent if there is a continuous mapping g:(0,1] - m such
that ¢(0) = f_ , g(1) = f1 and the Milnor number n(g(t)) is constant. The
u-equivalence class of a germ f 1is denoted by [f] .

THEOREM 4.8. u-equivalent germs are topologically equivalent for k # 3 .

This theorem was proved by L& Ding Trang - C.P. Ramanujam [75]. The case
k = 3 has been an open problem for many years. B. Perron claimed to have a
proof (92], but apparently this claim was withdrawn. For k > 3 the theorem is
also a consequence of Durfee's result 4.7 and the following proposition (c.f.
[14] 4.1.9).

PROPOSITION 4.9. wu-equivalent germs have the same diagrams.

Whenever one classifies certain objects, one wants more than just an enu-
meration. One also wants to see how the different classes are related to each
other. One wants to compare different classes and one wants to know if one is
simpler than the other. This might be expressed by the introduction of a par-
tial order relation on the set of classes. For singularities first steps in
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this direction were taken by G.N. Tjurina [106]. However the problem is rather
subtle and its treatment in the literature is sometimes superficial or even
wrong. A notable exception is the thesis of D. Balkenborg - R. Bauer - F.J.
Bilitewski [14], which leads us to the following sequence of definitions.

DEFINITION. Let f,gemc C{xl,...,xk} be germs of functions with iso-
lated singularities. We say that g is simpler than f and write g £ f if
every neighbourhood of f in m contains elements of the u-equivalence class
(gl .

In the literature one can find an apparently similar definition where u-
equivalence is replaced by the much finer right equivalence. However this is
not adequate. Right equivalence is too fine an equivalence relation for the
description of the deformation phenomena in question. Note that the relation
for germs defined above is not a partial order relation. Note also that the
validity of the relation g = f obviously depends only on the u-equivalence
class [g] . But contrary to assertions in the literature (c.f. [103] 9.9) it
does definitely not depend only on the equivalence class [f] . Counterexam-
ples are given by Bauer - Balkenborg -Bilitewski [14]. In view of this, we have
at least two possibilities of introducing a relation of this kind for u-equi-
valence classes.

DEFINITION. The relations § and = for u-equivalence classes [fol,[g]
are defined as follows:
(i) [g]ilfol - vfe[f,] g=f

(i1) (gl =1(f,] = 3afe(f,] g=f

Relation s has the advantage of being a partial order relation, but it
has the disadvantage of ignoring the subtle phenomenon discovered by Balken-
borg - Bauer -Bilitewski. Relation = takes this phenomenon into account, but
it is not a partial order relation. Examples show that it is not transitive.
But this can be repaired by the following final definition.

DEFINITION. The partial order relation g for u-equivalence classes
(f] and [g] is defined as follows. [g] 5 [f] iff there exists a chain of
relations of u-equivalence classes

(9] = (fo) = [f,] 5 ... <[] = (f]
So we have two partial order relations. Relation < is the one used by

A
V.1. Arnold, and I propose 5. Of course [g] < [f] implies [g] 5 [f] , but
the converse does not hold. Both partial order relations are compatible with
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the partial order relations for braid group orbits of bases and diagrams in-
troduced in §3. In fact, one has to use an obvious analogue of these partial
order relations for orbits of ({:1}" xJn) » Bn and {+1}" » Bn . The follow-
ing result is due to G.N. Tjurina (106] and D. Siersma [103].

THEOREM 4.10. Let {f] and [g] be u-equivalence classes of germs of
functions with k variables. Let n,m be the Milnor numbers and L,M be
Milnor lattices of f,g . Let &(f] and 6&(g] be the sets of diagrams of
[f] and [g] . These are orbits of {(+1}" = Bn and {+1)™ = Bm respectively.
Then the relation [g] § [f] implies that there is a primitive embedding
Mc L such that the ({:1}" me) me-orbit of distinguished bases of M is
less or equal to the ({+1}" xJ ) »B -orbit of distinguished bases of L . In
particular the following implication holds:

(q] 5 [fl =» 6&[g] < &[f]

This theorem shows the relevance of the embedding problem for diagrams
for the problem of determining the "adjacency"-relations g for singularities.
In [25] 1 have conjectured the converse of the implication 4.10. However Bau-
239 of Ar-
nold's u-equivalence class E14 is a subdiagram of a diagram with one more
vertex, which belongs to Arnold's u-equivalence class Sf'l . But the relation

=3
E‘4 5 SI" does not hold (c.f. [14] p.127).

In the present context the following problems are obviously important:

er - Balkenborg -Bilitewski found a counterexample: The diagram S

(A) Determination of u-equivalence classes of singularities.

(B) Determination of diagrams of these classes.

(C) Determination of adjacency relations between classes of singulari-
ties.

An enormous amount of computational work has been done in connection with
these problems. By far the greatest contribution to (A) has been made by VI,
Arnold (7],(8]. In particular, he has determined the classes of all O-modular,
1-modular and 2-modular singularities. The O-modular singularities are by de-
finition the simple singularities. They are classified as the classes Ak' nk,
EG, E7. E8 . The classical Coxeter diagrams of these types are diagrams for
these singularities. These singularities have been discovered again and again
during the past 100 years. Their equations occur already in a paper of H.A.
Schwarz on the hypergeometric series of Gauss [101] and in F. Klein's lectures
on the icosahedron. After that they were discovered by P. Duval [35], by D.
Kirby (62], by M. Artin {13] and by V.I. Arnold (6]). In addition to the char-
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acterization of the simple singularities found by these authors, there are
many others, see A. Durfee (34] for a survey. The simple singularities are ba-
sic entities of the mathematical world, l1ike Platonic solids or root systems,
simple Liegroups, and they are related to all these objects (see P. Slodowy
(104] for a survey). The u-equivalence classes of l-modular singularities are
of three types: simply elliptic singularities with diagrams T333, T244, T236 ,
cusp singularities with diagrams qur , where 1/p+1/q+1l/r <1, and 14 ex-
ceptional classes with diagrams Spqr . A11 these singularities have been
thoroughly investigated from many points of view, but this work is beyond the

scope of my report.

Concerning problem (B), several methods for computing diagrams have been
developped and applied to particular cases by N. A'Campo [3], A.M. Gabrielov
{40),(41],(42], S.M. Gusein-Zade (48] and A. Hefez - F. Lazzeri [52]). W. Ebe-
1ing found "normal forms" of diagrams for many classes of singularities, which
reflect to a certain extent the structure of V.I. Arnold's classification,
where certain infinite series of classes form families such as the qu!-series
(c.f. [36],[38]).

Concerning problem (C), many authors have contributed to the determina-
tion of at least some adjacency relations. The most comprehensive work on this
problem based on an enormous amount of computations is that of Bauer - Balken-
borg -Bilitewski [14].

Thé definitions and results quoted above establish a close link between
orbits and invariants of actions of the braid groups Bn on cartesian pro-
ducts At(L)n of the automorphic sets At(L) associated to lattices and in-
variants of classes of singularities such as geometrically distinguished bases
of Milnor lattices, Coxeter diagrams, monodromy groups, classical monodromy,
variation operator and linking matrix of the Milnor fibration. Certain of the
familiar relations between these invariants of singularities are simply spe-
cial cases of the corresponding relations in the general context of the auto-
morphic set At(L) . However the invariants associated to singularities do
have special properties. I shall finish my report by quoting the most impor-
tant ones. There may be others which we do not yet know.

THEOREM 4.11. Let f be a germ of a function with an isolated singula-
rity which is different from an ordinary double point with an even number of
variables. Let L be a Milnor lattice of f as above and let s, c AE(L) be
the automorphic subset belonging to any geometrically distinguished basis
e € At(l.)n . Then this "set of vanishing cycles" A = a, is independent on
the choice of e , and (L,A) 1is a vanishing lattice. In particular A is
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very homogeneous, i.e. the monodromy group acts transitively on A . Therefore
A is irreducible and the Coxeter diagrams of the singularity are connected.

This theorem is essentially due to F. Lazzeri [73], who noticed that this
is a consequence of the irreducibility of the discriminant (c.f. A.M. Gabrie-
Jov [43] and E. Looijenga [80] 7.8). Because of 4.11 one can apply theorems
3.21 and 3.22. In particular this leads to the following theorem of W. Ebeling
[37]. (It was noticed by E. Looijenga that the last statement (ii) is a conse-
quence of Ebeling's result (i).)

THEOREM 4.12. Let f be a germ of a function of an odd number k of
variables. Assume that f is not a cusp singularity with a diagram qu: .
where 1/p+1/q+1l/r <1 and (p,q,r) # (3,3,4),(2,4,5),(2,3,7) . Let L be
a Milnor lattice of f , let I c O(L) be the monodromy group, A c At(L)
the set of vanishing cycles and € = k(k-1) . Then

. _ n*
(1) r = 0Z(L)

(ii) A={ac€ Ae(l') | <a,L> = Z})

In (ii) it is assumed that f 1is not an ordinary double point.

The next theorem, which is sometimes called the monodromy theorem, an-
swers a question of J. Milnor [87], p.72. This theorem and also various global
versions were proved by several authors and by widely different methods (c.f.
A. Landman (72], A. Grothendieck, SGA 7,1, Exposé I [47], C.H. Clemens [28],
E. Brieskorn [21], N. Katz [61], A. Borel, W. Schmid [100], N. A'Campo [4]).

THEOREM 4.13. The classical monodromy of a germ of a function with an
isolated singularity is quasiunipotent, i.e. its eigenvalues are roots of uni-
ty.

For irreducible singularities of plane curves the monodromy is not only
quasiunipotent, but even of finite order (L& Dung Trang [74]). But for reduc-
ible singularities of plane curves the monodromy is not semisimple in general
(N. A'Campo [2]). The size of the blocks in the Jordan normal form has been
estimated by several authors and by different methods. Qur last theorem was
proved by N. A'Campo [1].

THEOREM 4.14. The classical monodromy of a germ of a function of k
variables with an isolated singularity has trace (-l)k .

Let me finish with a few words on complete intersections, i.e. germs of
maps (€%,0) - (€3,0) with fibres of codimension q > 1 with isolated singu-
larities. They are treated in an important forthcoming paper of W. Ebeling
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139]. The basic approach of Lefschetz can still be applied in this more gene-
ral situation. One has the Milnor lattice L , the monodromy group I < Aut(L)
and the set of vanishing cycles A c L . One also constructs geometrically
distinguished systems of generators of L , but now these do not form a basis
of L . Therefore the situation is more complicated than for q =1 . But the
braid groups still operate on these systems of generators, and one can define
and compute invariants of the orbits such as diagrams and monodromy groups. By
developping this general theory and analyzing these data very carefully for a
number of special classes of singularities Ebeling finally arrives at a per-
fect analogue of theorem 4.12 for complete intersections. Let me close this
report by expressing my admiration for this beautiful work of Wolfgang Ebeling.

POSTSCRIPTUM. In §1 we introduced the groups T(F) . These groups are in-
teresting in the context of singularity theory, because there is a relation
between these groups and so called "weakly distinguished bases" of Milnor lat-
tices which is analogous to the relation between the braid groups and geome-
trically distinguished bases. It is in this context that S.P. Humphries (54]
proved that T(F) 1is generated by the elements uij . The work of W. Ebeling
{36] shows that weakly distinjuished bases are really a relatively weak invar-
iant (see also E. Voigt [109]). This is why I did not mention them in this re-
port. On the other hand, the group T(F) is interesting in itself (see S.P.
Humphries [54],[55])). Therefore it is also interesting to have a presentation
of T(F) . Just a few days ago, Aleksandar Lipkovski and Sava Krstit from the
university of Beograd kindly sent me a preprint of J. McCool [86], where such
a presentation is proved. Here it is:

“1j“km = "km"ij where ®(i,j,k,m) =4 ,
uijnik = “ik"ij where (i,j,k) =3 ,
“ij(“ki“kj) = ("ki"kj)"ij where u(i,j.k) =3
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