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Abstract 

We develop a representation for the topological struc- 
ture of subdivided manifolds (with and without 
boundary) of dimension d 2 1 which allows straight- 
forward access of the available order information. It 
is shown that there exists a large amount of ordering 
information in subdivided manifolds: given a (k-2)- 
cell in the boundary of a ()+l)-cell, 1 5 I: 2 d, all of 
the E- and (E-l)-cells ‘between them’ can be ordered 
‘around’ the (k-2)-cell. This includes the usual order- 
ings in 2- and J-dimensional objects. We introduce 
the ‘cell-tuple structure’, a simple, uniform represen- 
tation of the incidence and ordering information in a 
subdivided manifold. It includes the quad-edge data 
structure of Guibas and Stolfi [GS 851 and the facet- 
edge data structure of Dobkin and Laszlo [DL 871 as 
special cases in dimensions 2 and 3, respectively. 
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1 Introduction 

A traditional method of representing geometric ob- 
jects is as a collection of simple building blocks along 
with a relation between them. For instance, the build- 
ing blocks could be simplices or convex polytopes of 
various dimensions, and the relation could be inci- 
dence. One might implement such a description by a 
separate instance of a data structure for each building 
block, and a monolithic data structure for the rela- 
tion. Alternatively, it is possible to use a single type 
of basic unit, and represent both the building blocks 
and the relation implicitly. The aim of this paper is 
to investigate such alternative data structures in the 
general case of d 1 1, representing both topological 
structure and available ordering information in a sim- 
ple, uniform way. 

Subdivided manifolds: Let M be a topological d- 
manifold, and C = {c~)~c,~ a finite collection of dis- 
joint open k-cells whose union is M (for 0 5 k 5 d, co 
is an open t-cell if it is homeomorphic to the open unit 
k-ball). Informally, the pair (M, C) is a subdivided 
d-manifold if the boundary of every k-cell ca E C is 
non-self-intersecting and is equal to a union of cells in 
C of lower dimension. 
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Examples of subdivided manifolds: 
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it4 is a 2-sphere M is a Klein bottle 

M is a 3-manifold-with-boundary 

The cell-tuple structure: We will define the cell- 
tuple structure, which represents a subdivided d- 
manifold as a set of (d+l)-tuples acted on by simple 
operators switchk for 0 5 E < d. Theorem I will 
show that two subdivided manifolds are topologically 
equivalent if and only if their cell-tuple structures are 
equivalent. The cell-tuple structure may be thought 
of as: a set of tuples, acted on by a uniform set of 
operations following simple algebraic rules; as a graph 
with labelled edges; or as a triangulation of the under- 
lying manifold. It may be implemented as a relational 
database or as a pointer structure. Because of its uni- 
formity, one implementation may be written for all 
values of d 2 1. 

In case A, we are ordering l- and O-cells about a O-cell, 
and in case B we are ordering 0- and l-cells ‘within’ a 
a-cell. In case C, we are ordering 2- and 3-cells about 
a l-cell, in case D we are ordering the l- and a-cells 
within a 3-cell and about a O-cell, and in case E we 
are ordering 0- and l-cells within a 2-cell. All of these 
cases will be put into one framework, and Theorem II 
will show that this type of ordering information exists 
for all d 1 1. 

Manifolds-with-boundary: The objects being 
modelled in applications often have boundaries. To 
be useful, any representation of geometric structures 
must be able to handle objects with boundaries as el- 
egantly and uniformly as those without boundaries. 
The definition for a subdivision of a manifold-with- 
boundary is similar to that for the subdivision of a 
manifold. 

Ordering: Many algorithms in computational geome- The dual subdivision: For every C-cell in (M, C), 
try have made use of ordering information. Two exam- a dual (d&)-cell can be defined, giving the dual sub- 
ples are the three dimensional convex hull algorithm division. There is a l-l correspondence between the 
of Preparata and Hong [PR 771, and the Delaunay di- original cells and the dual cells, and incidence and or- 
agram algorithm of Guibas and Stolfi [GS 851. Both der are preserved when going to the dual. It is often 

give optimal divide-and-conquer algorithms using or- 
dering in P-dimensional subdivisions. Some examples 
of ordering: 

In two dimensions 

In three dimensions 
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useful to maintain both the original subdivision and 
its dual simultaneously, and to be able to access both 
with equal ease. For instance, the Voronoi diagram 
and Delaunay diagrams are dual to each other, as are 
the convex hull and halfspace intersection. Producing 
one implicitly produces the other. 

Previous work: Guibas and Stolfi [GS 851 pioneered 
the idea of such alternatives with the introduction of 
the ‘quad-edge data structure’ for the representation 
of subdivisions of P-manifolds (without boundaries). 
Dobkin and Laszlo [DL 871 defined an analogous struc- 
ture, the ‘facet-edge data structure’, to represent sub- 
divisions of 3-manifolds which are homeomorphic to 
open or closed unit 3-balls. Both the quad-edge and 
facet-edge data structures represent their subdivisions 
up to topological equivalence, represent the dual and 
original subdivisions in a similar fashion, and allow cell 
boundaries to self-intersect under appropriate restric- 
tions. Note that our definition allows a larger class 
of manifolds, by allowing arbitrary manifolds with or 
without boundary, but restricts the class of cells by 
not allowing self-intersecting cell boundaries. 

2 The Cell-Tuple Structure 

In this section we will define a partial ordering on the 
set of cells, introduce the switch operator, and de- 
fine the cell-tuple structure. Then we will state The- 
orem I, give several characterizations of the cell-tuple 
structure, and briefly discuss implementation. 

We gave an informal definition of subdivided manifolds 
in the introduction. Using terminology from algebraic 
topology, a subdivided d-manifold (M, C) is a finite, 
regular CW complex C = {c~}~~I~ whose underlying 
space is the topological d-manifold M. (The reader 
is referred to [Br 881 for details, and to [Mu 751 and 
[Mu 841 for definitions of basic topological terms.) If 
c~, is contained in the boundary of cap we will write 
Cal < cag7 and say that c,, is a face of caa. If in addi- 
tion, dim(c,,) = dim(c,,) + 1, we will write Cal 4 cp,, 
and say that cq, and ca, are incident. Two subdi- 
vided d-manifolds are equivalent if there is a home- 
omorphism between M and N carrying k-cells onto 
k-cells. For notational convenience, we assume the ex- 
istence of a cell cam1 of dimension -1 and a cell Cad+, 
of dimension d + 1, such that c,-, < ca < cad+l for 
all c, E C. This is notation only; for example, when 
we write ccrkWl 4 car 4 c~,+~, where dim(ca;) = i, it 
will be understood that if k = 0, this simply means 
Ca0 4 Cal, and if A = d, it means cad-, 4 c,, . 

An important fact, interesting in its own right, is given 
by the following lemma. 

Lemma 1: If (M,C) is a subdivided d-manifold, 
C Uk-1 + ca, 4 ca,+x 3 where 0 2 k < d, cai E C, and 
dim(cai) 
that c 

= i, then there is a unique ca; # c,, such 
ah-1 + Co; -( Cak+l - 

Proof : See Appendix or [Br 881. I 

Under the conditions of this claim, define the switch 
operator, switch(c,,,-, , Car, cay+l) = ca:. For exarn- 
ple, in the Klein bottle example, switch(ca-, , car ca) = 
Cd, switch(cb, Cl, CA) = c7, and switch(cq,~c,q-,~) = 
CD- 

If Cao 4 . . . 4 ca, 1 then the (d+l)-tuple (caO,. . . , cad) 
will be called a cell-tuple. The set of all cell- 
tuples formed by cells in C will be denoted by TM. 
If t E TM is % cell-tuple and 0 < k s d, we denote 
the kth component by tk. If t = (cqO,. . . , c,,), de- 
fineswitc~(t)=(~,,,...,~a,_,,~a~,~a,+,,...,~~,), 
where ca; = switCh(Ca,-, , ca, , c,,+, f. The cell-tuple 
structure, 7~ = (TM, {switchk}), is simply the set 
of cell-tuples taken with the switchr operations, for 
0 i k < d. Pictorially, each cell-tuple t can be thought 
of as a dot in cell td, ‘near’ each of the cells to, . . . , t&i. 
The following figures illustrate this for the P-sphere ex- 
ample pictured in the introduction: 

e 

CM, Cl 
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TM as dots, with switcht(t), t = (a, 6, B) 

Two cell-tuple structures are equivalent if there is 
a bijection J : TM + TN which preserves the 
switch operation, by which we mean switchk(J(t)) = 
J(switchk(t)) Vt E !I-“, 0 < k 5 d. The following 
theorem shows that the cell-tuple structure represents 
subdivided manifolds up to equivalence: 

Theorem I: If (M, C) and (N, D) are subdivided 
d-manifolds, then (M, C) and (N, D) are equivalent if 
and only if TM and IN are equivalent. 

Proof : See Appendix or [Br 881. I 

It is useful to think of TM as an undirected graph 
GM with labelled edges. The vertex set is TM, and 
two vertices t and t’ are joined by an edge labelled 
k if t = switchk(t’) (the edges are well-defined, as 
switch:(t) = t for all t E TM). This allows the use 
of results from graph theory, and the application of 
graph algorithms. 

0 

GM 

IfW= WI . ..W E (0, . . . . d}‘, define 

. switch,,(t) if w # X, 
ifw=X. 

If I C (0,. . . ,d}, define switchp(t) = 
{switch,(t) 1 w E I*}, and let I-orbit(t) = 
switchp(t). In terms of the graph, I-orbit(t) is the 
set of all vertices reachable from t using edges whose 
labels are in I. Let k = (0,. . . ,d} - {k}. Then &- 
orbit(t) = switchjo ,..., k-l,k+l,..., d)-(t). 

If c, is a k-cell of C, the set of cell-tuples assoc(co) = 
(t E TM 1 tk = c,} will be called the set of associated 
cell- tuples of co. The next lemma describes the basic 
relationship between cells of C and orbits in TM: 

Lemma 2: There is a l-l correspondence between 
k-cells and k-orbits: if c, is a k-cell, and t E TM such 
that tk = cQ, then IZSSOC(C~) = switchy. (t). 

Proof : See Appendix or [Br 881. I 
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Examples of assoc 

The following lemma, interesting in its own right, gives 
an algebraic characterization of TM, and will prove 
Useful in Connecting TM t0 earlier work: 

Lemma 3: If t E TM and i # j E {O,...,d}, 
then: 

(CTO) switchi # t and switchij(t) # t, 

(CTl) switchi:, = t, 

(CT2) if j = if 1, 3m 2 2 s.t. (switchii)m(t) = t, 

(CT3) if j # if 1, then (switchij)2(t) = t. 
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Proof : See Appendix or [Br 881. I 

A natural way to implement a data structure for 7~ 
is by creating two (d+l)-vectors for each cell-tuple t E 
TM. The kth entry in the first vector represents the 
cell tk, and the kth entry in the second vector points 
to s?&&(i). The cell-vectors may be thought of as 
forming a database, allowing relational queries, and 
graph algorithms may be applied to the pointers in 
the switch-vectors. 

For instance, if c, is a k-cell, assoc(ca) may be ob- 
tained by a relational query asking for all cell-vectors 
whose kth entry is co. Alternatively, by choosing a 
cell-tuple t such that tk = co, a depth-first search of 
all edges of GM whose label is not k gives assoc(c,) 
in linear time, since assoc(c=) = switchk.(t). Either 
method gives a way of accessing incidence information. 

The set of cells forming the boundary of a cell may be 
formed in a similar way, by either a relational query 
or a graph search. If k > 1 then the boundary of a 
k-cell ccr is a (k-1)-subdivided manifold, and a (k- 
l)-dimensional cell-tuple structure may be created for 
the boundary by creating switch{o,...,k,l}‘(t), where 
tk = c,, and simply ignoring all but the first k entries 
of the cell-tuples. Taken in reverse, this gives a natural 
way of building objects recursively (on dimension) by 
constructing boundaries of k-cells, associating these 
boundaries with k-cells, and then attaching these to 
each other by ‘identifying faces’ to give a subdivided 
E-manifold. 

Two important issues which will be explored in fu- 
ture work are the size of the cell-tuple structure, and 
the maintenance of the connection between topological 
structure and geometric information. 

3 Order Information in the 
Topology 

The examples of ordering given in the introduction 
may be put into one framework, and generalized to 
the general case of d 1 1. If c,~-~ < car+,, where 
1 I k I 4 ~a,-, is a (k-2)-cell, and car+, is a (k+l)- 
cell, let 

S(Cah-2, Ca,+l) = {C* E C 1 Cake2 < Ca < Cu,+l}- 

It is this set which can be ordered. Note that in the 
cases that k = 1 and k = d, the cells cakWa (= c,-,) 

and c~~+~ (= c,~+~), respectively, are only notational 
conveniences - only one actual cell is specified, as 
long as d > 1. In the special case of d = 1, it must be 
that k = 1, cqy,o = c,-, , and c,,,+~ = c,,+,; a circular 
ordering is possible only if M is connected. This is the 
only exception which must be treated separately. 

7 m = IS(C,~-,,~~,+, )I. A circular ordering of 
C ah-2 1 %+I ) IS an ordering c,o, . . . , can- 1 of its cells 

such that: 

(1) c,i is a (k-1)-cell if i is even, and is a k-cell if i 
is odd, 

(2) c,i and c;+ , Imoan areincidentforO<i_<m-1. 

(A more descriptive way of stating condition (2) is to 
say that c,i-1 mod ,,. and c!,++l mod n ‘share’ C,i .) 

The idea is that given a (k-2)-cell contained in the 
boundary of a (k+l)-cell, all of the cells ‘between’ 
them may be put into a circular order ‘around’ the 
(k-2)-cell. Th is order alternates between (k-l&ells 
and k-cells so that two cells are consecutive in the or- 
dering if and only if they are incident. Recalling the 
Klein bottle example, one possible circular ordering 
of S(c,, c,,) is ~2, CB, ~3, CA, cl, CC, ~4, Q. The reason 
this idea is not more obvious when trying to generalize 
from two and three dimensions is that of the five cases, 
namely d = 2, k = 1,2 and d = 3, k = 1,2,3, only one 
case specifies two cells; in the the other four, either 
k = 1 or k = d. Theorem II shows that circular order- 
ings involving (k-l)- and k-cells are always present for 
1 5 k 5 d, and that the cell-tuple structure contains 
this ordering information in a directly accessible form 
via the switch operator. 

Theorem II: Under the conditions given above 
there exists a circular ordering of S(ccrr-), c~,,+~). Fur- 
thermore, if to E TM such that tiB2 = c,,,-, and 
to k+i = Cah+l) define 

t’ = switchk(t”‘) i even, 
SWitchk,l(t’-‘) i odd. 

m-2 m-1. Then t~_,,t:,t~_,,t~,..,,tk-l ,t, is a circular or- 
dering of S(carma, cab+,). 

Proof : See Appendix or [Br 881. I 

This gives a straightforward way of accessing order 
information by alternating applications of switchk and 
switchk-1. 
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4 Extensions 

4.1 Manifolds-with-Boundary 

In generalizing the cell-tuple structure from mani- 
folds to manifolds-with-boundary, the problem is that 
s~itch(c~~-~, cQd, c=~+~) is not defined when cadql E 
aM. Stated in terms of cell-tuples, swit&(t) is not 
defined if t&i E aM. 

There are two possible approaches. The first is to set 
switch to some special value in the undefined cases, 
indicating that an attempt was made to ‘pierce the 
boundary.’ Then the definition of circular ordering 
may be modified so that when k = d and c,,-, s aM, 
the ordering is a simple path rather than a simple 
cycle. The theorems may then be proved as before. 

The second approach may be described intuitively as 
imagining that the space ‘outside’ of the d-manifold- 
with-boundary is simply another d-cell (though in gen- 
eral, the complement of a d-manifold-with-boundary 
embedded in lR” is not a d-cell). An abstract object 

cff, is added to C, such that for every ccr contained 
in 13it4, cp < ca,. Now switch may be defined as 
before on the set C U {c,, }, and all of the results 
for subdivided manifolds can be proved for subdivided 
manifolds-with-boundary (see [Br 881 for details). In 
addition, this makes it possible to find the ‘next’ cell 
on the boundary. An example of circular ordering at 
the boundary: 

Y 
. . 

SW1 I f SW1 
l 

T 

. 

SW2 

Cells Cell-tuples 
First approach 

C.&S = c, 

y=*~ 
. 
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l 

T 

b 

SW2 

Cells Cell-tuples 
Second approach 

4.2 The Dual Complex 

For every h-cell in (M, C), a dual (d&)-cell can be eas- 
ily defined (see [Br 881). There is a l-l correspondence 
between original cells and dual cells, and incidence and 
order are preserved when going between the original 
and the dual. The cell-tuple structure maintains both 
the original and dual complexes simultaneously. To 
operate in the dual, note that switchk in the original 
subdivided manifold is the same thing as switch&k in 
the dual. Thus the same ordering results apply in the 
dual, by replacing le with d - k, and one way to think 
of operating on the dual is to think of substituting 
Switch&k for every Use Of switchk. 

An alternative, which will make the connection with 
earlier work straightforward, is to introduce a new op- 
eration which reverses the order of a cell-tuple’s en- 
tries, SwitchR(f&, . . . , car) = (car,. . . ,ca,), and de- 
fine ?d$‘a’ = {Switchi 1 t E 2’~). Thus switchR 
maps TM onto Tea’ and vice versa. 

Examples of SWitChR 

Consider the set of tuples TM U T&O’, acted on by 
switchR and Switch&, 0 2 k 5 d. A new property may 
be added to (CTO) - (CT3) of Lemma 3: 

(CT4) switchRiR(t) = switch&t). 

4.3 The Augmented Incidence Poset 

If (M, C) is a subdivided manifold, the relation < 
is a strict partial ordering on C. The resulting par- 
tially ordered set (C, <) represents the topology of 
(M,C); a theorem analogous to Theorem I may be 
proved. This is essentially the same thing as the fa- 
miliar incidence graph. By adding the switch opera- 
tion, all ordering information becomes directly acces- 
sible - given c,~-, < c,~+,, a circular ordering is 
obtained by applying a sequence of switch operations: 
if cak-,, l tc,o+c,~+c,,+, and2si<m-1 then 

c,i = 
switch(c,,-, , c,i-a, c,i- I) i even, 
Switch(c,i-1, Coi-3, c=~+~) i odd, 
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gives a circular ordering f&O,..., 

S(C~~-~, ~a~+~). Such c,o and c,l always e%:l 
of 

Any data structure for representing graphs will sufice 
to represent the incidence poset. The switcht oper- 
ator may be represented for any subset of (0,. , . ,d}; 
for a given k, this means representing a function whose 
domain is the set of all cell-triples ccl*-, 4 co‘ 4 c,,+, 
and whose range is the set of k-cells. This may be an 
advantage if ordering information is needed in only a 
small number of dimensions. If switchk is included for 
all 0 < 6 5 d, the resulting augmented incidence 
pcset contains all of the ordering information via the 
switch operations. 

5 Relation to Earlier Work 

5.1 The Quad-Edge Data Structure 

Guibas and Stolfi [GS 851 introduced the quad-edge 
data structure for the representation of subdivided 2- 
manifolds (without boundaries), in which cell bound- 
aries are allowed to self-intersect under appropriate 
restrictions. Subdivisions are represented up to equiv- 
alence, and the dual subdivision is represented in a 
symmetric fashion to that of the original subdivision. 
Four ‘directed, oriented edges’ are produced for each 
edge in the original and dual subdivisions, correspond- 
ing to the four ways of giving direction and orientation 
to the edge. We will draw a directed, oriented edge 
as a large arrow giving the direction, with a small ar- 
row sticking from its side giving the orientation (which 
direction ‘to rotate in’). There are three operations 
defined on directed, oriented edges: Flip reverses the 
orientation, Rot essentially rotates about the midpoint 
by 90 degrees (into the dual), and Onett gives the 
next directed, oriented edge encountered when rotat- 
ing about the larger arrow’s base. These operations 
satisfy ten algebraic rules. 

Eight directed, Examples of 
oriented edges Flip, Rot, and Onezt 

Corresponding 
section of GM 

There is a 1-l correspondence between directed, ori- 
ented edges in the quad-edge data structure and cell- 
tuples in TM u Tea’. A cell-tuple t E TM repre- 
sents a directed, oriented original edge: tl gives the 
edge, to gives the direction (as the base of the larger 
arrow), and t2 gives the orientation (which face the 
little arrow points into). Similarly, if t E PGa’, 
t represents a directed, oriented dual edge, by tak- 
ing the duals of to, tl and t2. The connection be- 
tween the operations in the two structures is given by: 
Onezt = switchIs, Flip = switchz, Rot = switchzli. 
To show that the quad-edge data structure and TM are 
equivalent on the structures for which they are both 
defined (subdivided 2-manifolds as defined in this pa- 
per) means showing that the properties (CTO) - (CT4) 
hold if and only if the ten rules for quad-edge opera- 
tions hold. It is interesting to note that the explicit 
inclusion of dual elements is not necessary in the quad- 
edge data structure for representational power. Using 
only directed, oriented original edges, and the opera- 
tions One&, Flip and Sym (Sym = Rot2 can be writ- 
ten as Sym = switchol) gives a structure equivalent 
to TM. 

5.2 The Facet-Edge Data Structure 

Dobkin and Laszlo [DL 871 created the facet-edge data 
structure to represent subdivided 3-manifolds, which 
is analogous to the quad-edge data structure. For ev- 
ery (face,edge) pair such that the face and edge are 
incident, there are four ‘facet-edges’, corresponding 
to the ways of defining ‘clockwise’ directions within 
the face, and around the edge. Similar basic units 
are created for pairs in the dual. An original facet- 
edge may be represented by a cell-tuple as follows: 
tl gives the edge, t2 gives the face, to gives the di- 
rection within the face, and t3 gives the direction 
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around the edge. A similar representation holds for 
dual pairs and dual cell-tuples. The basic opera- 
tions can be rewritten in terms of the switch opera- 
tions: Clock = switches, Enext = switchol, Fnext = 
switchgz, R.ev = switcha, Sdual = SWitChR. The un- 
derlying spaces are 3-manifolds which are homeomor- 
phic to open or closed unit 3-balls, and cell boundaries 
are allowed to self-intersect under appropriate restric- 
tions. 

Acknowledgement: I would like to thank my advi- 
sor, Richard Anderson, for introducing me to [GS 851 
and for his continuing help, support, and encourage- 
ment. 

Appendix - Proofs 

In this appendix we will give proof sketches for the 
lemmas and theorems. 

Define an order relation on the index sets to agree with 
< on cells: If al, QZ E Ic, then or < cyg ++ co1 < c~, . 
Also, let dim(a) = dim(c,). Let PM = (Ic, <) de- 
note the resulting incidence poset on indices. Two 
such posets PM and PN are equivalent if there exists 
a bijection between their index sets preserving < and 
dim. We briefly describe a method of triangulating a 
subdivided manifold, such that there is a l-l corre- 
spondence between cell-tuples and d-simplices. This 
allows the use of theorems from algebraic topology 
which apply to triangulated manifolds, when prov- 
ing properties of ?M. If (M,C) is a subdivided d- 
manifold or a subdivided d-manifold-with-boundary, 
define AM = { {aio, . . . , CY~() 1 aio < . . . < CX~~, .f 2 0). 
AM is an abstract simplicial complex. Two such 
abstract simplicial complexes AM and dN are equiv- 
alent if there exists a bijection between their vertex 
sets which preserves dim and simplices. Let KM be 
any geometric realization of dw (which always exists 
by [Mu 841 Theorem 3.l.a), and let IK,l = Uo~~Mu 

be its underlying space. For each Q E Ic, let u, be the 
corresponding vertex in KM, and define label(u,) = 
dim(o). Let b(ai,,, . . . , oiL) be the !?-simplex defined 
bY Vaio 3 * * * 9 wait * KM and K,v are equivalent if there 
exists a linear simplicial map f : IKMI + I KNI which 
is bijective and preserves label. The following lemma 
makes an important connection between any such KM 
and (M, C): 

Lemma 4: If (M,C) is a subdivided d-manifold 

or a subdivided d-manifold-with-boundary, then 
3$~ : IKMI + M such that: 

(a) 4~ is a homeomorphism, 

(b) ca = U ~~(00,. . . , CY~, a), 

Po<...<Ot<P 

where cs(aiO,. . . , ai,) = $M(Int u(oi,,, . . . , ai,)), and 
the set of sequences over which the union is taken in- 
cludes the sequence consisting only of cy. 

.Proof : A construction of such a $JM is given 
in the proof sketch of [LW 691 Theorem 111.1.7. A 
construction is also given in [Br 881. I 

Let C,d = {cs(cYiO,. . .,&i,) I U(ai,,, . . . , ai,) E KM}. 
(M, C,d) is a subdivided manifold itself, which will 
be called the generalized barycentric subdivision 
of (M,C). (Note that this generalization is different 
than that given in [Mu 841, and that the generalized 
barycentric subdivision in two dimensions is called the 
‘completion’ in [GS 851.) Because the characteristic 
maps which define C are not part of the definition of 
subdivided d-manifolds, the barycentric subdivision is 
not unique, but is unique up to equivalence. 

By their definitions, there is a l-l correspondence be- 
tween the cell-tuples in TM and the d-simplices in 
KM: (cao,..., cm,) corresponds to u(ao, . . . , ad), Fur- 
thermore, if t,t’ E TM, and u,u’ are the correspond- 
ing d-simplices in KM, then t’ = switchk(t) e 
u’ n u is a (d-1)-simplex labelled by k . Using this, 
and [Mu 841 exercise 35.4, it is easy to prove that if 
Cai, < ..a < Gaily then there exists a t E TM such 
that tij = caij , 0 5 j 5 L. Lemma 1 follows from 
this correspondence, the definition of cell-tuples, and 
[Mu 841 exercise 35.4. 

We can now sketch the proof for a generalization of 
Lemma 2. First generalize the definition of assoc: If 
cmiO < . . . < caiL, then assoc(cqiO,. . . , cai,) = {t E 
TM 1 tij = caij,O 5 j 5 t}. If I c (0 ,..., d], let 

i = {O,...,d} - I. 

Lemma 2’: If cojO < . . . < cqi(, and t E TM such 
that tij = caij,O 5 J < e, then assoc(caiO,. . . ,cai,) = 
switchi.( where I = {is,. . . , it}. 

Proof (sketch) : To see that switchp(t) c 

assoc(cOiO, . . . , c,J is easy: If k E i, then switchk 
doesn’t change tj for any j E I. So if t’ = switch,(t), 

225 



for any w E i*, then ti 
t’ E assoc(c,io) . . . , ca;,). 

= tj for all j E I, i.e. 

That USSOC(C~~~, . . . , co;,) C switchi. (t) follows from 
this claim: If ccriD < . . . < cai,, where caij E C, and 
I= {iI),..., it}, then the subgraph of GM induced by 
assoc(c,io,. . . , cLli,) is connected and its edges are all 
labelled by elements off. Thii claim is proved by first 
showing that /Star b((YiO, . . . , ail)1 in KM is a compact 
triangulated relative homology d-manifold. Then con- 
nectivity follows from [Mu 841 Corollary 70.3 and the 
correspondence between cell-tuples and d-simplices. If 
t, 1’ E assoc(cai, ) . . . ) c,~~), then they agree on all 
components in I, so that if t’ = swit&(l), then k E i. 
This gives the claim. Details in [Br 881. I 

Now we can prove Lemma 3. 

Lemma 3: If t E TM and i # j E (O,...,d}, 
then: 

(CTO) switchi # t and switchij(t) # t, 

(CTl) switchia(2) = t, 

(CT2) if i = i f 1, 3m 2 2 S.t. (5WitChij)m(t) = t, 

(CT3) if i # if 1, then (swi2chij)2(t) = t. 

Proof : CT0 and CT1 follow from Lemma 1 and 
the definition of switch. 

Let t E Z”, and I = (0,. . . ,d} - {i,j}. Let 
h* = ti, for ik E I, SO that {caio,. . . ,caid-,} = 
{tk 1 k E I}. The subgraph of GM induced by 
ussoc(c~io 3 * * ’ 9 &id ,) is connected, by Lemma 2’. 
Since every vertexis incident to exactly one edge la- 
belled i and one labelled j, this subgraph is a cycle, 
with alternating edges labelled i and j. If j = i f 1, 
this gives CT2. If j # if 1, then there are exactly two 
i-cells cai , cai, satisfying ii-1 + cp i tit1 and there are 
exactly two j-cells Ccrj, Caj, satisfying tj-1 -! Ca l ttj+l. 
Thus assoc(c,+ , . . . , cai,-,) has exactly four elements. 
This gives CT3. I 

We give a generalization of Theorem I, which shows 
that both the cell-tuple structure and the incidence 
poset are powerful enough to represent subd,ivided 
manifolds up to equivalence. For each of the struc- 
tures discussed, the symbol N means ‘is equivalent’. 

Theorem I’: If (M, C) and (N, D) are subdivided 
d-manifolds, then the following are equivalent: 

(1) (MY C) = (N, q, 
(2) PM N- PN, 

(3) 7&f 2 7N. 

Proof (sketch) : 

(M,C)N(N,D)~PMZPN: Leth:M-+Ngive 
an equivalence between (M, C) and (N, D). Define an 
equivalence a : IC + ID by r(a) = indez(h(Ca)). 

PM E PN + KM 21 KN: Let 1 : Ic -+ ID give 
an equivalence between PM and PN. First show 
that z preserves simplices, hence gives an equivalence 
between & and AN. The result then follows from 
[Mu 841 Theorem 3.l.b, when it is noted that the is& 
morphism produced there preserves labels. 

KM N KN =S (M, C) 2 (N, D): Let f : ~KAJ~ 4 IKNI 
give an equivalence between IKMI and IKNI. Let 
$M : IKM I-+ M and $N : IKNI -+ N be maps giving 
generalized barycentric subdivisions. These exist by 
Lemma 4. Define h : M + N by h = $NOfO$&‘. This 
is a composition of homeomorphisms, so is a home+ 
morphism. Now show that h takes k-cells onto k-cells, 
using Lemma 4, the definition of h, and the fact that 
f is an equivalence. 

PM N PN j 7~ N IN: Let 8 : Ic 4 ID be an 
equivalence between PM and PN. Define 3 : TM - TN 
bv((ca,,..., car)) = (d,(,,), . . . ,+,,I). The desired 
properties follow from the l-l correspondence between 
maximal paths in PM and cell-tuples in TM, and the 
fact that t’ = switchk(t) if and only if t and t’ agree 
on all components except the kth. 

TM z 7~ j PM N PN: Let J : TM -+ TN 
give an equivalence between 7M and 7~. Define 
1 : Ic + ID by ~(0) = indez(assoc-l(j(assoc(c,)))). 
If c, is a k-cell, and t E TM such that tk = c,, then 
Ib~S4Cc2 1) = j(switchi* (t)) = switch&. (3(tth; 
assoc(da) for a unique k-cell da E D. , 
and the fact that assoc (as a function from 1~ 
to 2T”) is bijective with its range, gives z(a) = 
indez(assoc-‘(assoc(dp))) = p, so t is well-defined 
and preserves dim. z is bijective, since ussoc is bi- 
jective with its range, and indez and J are bijective. 
To show that a preserves order, use these two facts: 
assoc(dg) = J(USSOC(C~)); and al < ~2 e dim(al) < 
dim(az) and assoc(cal) n assoc(ca,) # 0. 

See [Br 881 for details. I 

Finally, Theorem II follows from Lemma 2’ in the 
same way that property (CT2) of Lemma 3 did. 
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