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Abstract. In this paper we construct families of knots which have genus
one free Seifert surfaces which are not disk decomposable.

O Introduction

A Seifert surface for a knok’ in the 3-sphere is an embedded orientable
surfaceX’, whose boundary equals the krifét Equivalently, it is a properly
embedded orientable surfak&n the exteriotX (K') of K, whose boundary
equals the longitude ot . A Seifert surfacev is freeif =1 (S \ X)) is a free
group; equivalentlyS3\intN (X)) is a handlebody.

Seifert’s algorithm [Se] will always build a free Seifert surface for a
knot K. In [Br] we showed that not all free Seifert surfaces can be built by
Seifert’s algorithm; we exhibited a family of hyperbolic knots havfreg
genusone, whose surfaces built via Seifert’s algorithm must always have
large genus.

In so doing, we introduced a fairly general procedure for producing knots
with genus 1 free Seifert surfaces. In this paper we show that many of these
surfaces fail to be disk decomposable.

A sutured manifold §/,v) is a compact 3-manifold/ together with a
collection of disjoint embedded loopsin O M, called the sutures. (Since
we will apply this theory to knots and Seifert surfaces, we will suppress
the possibility that whole components@#/ are sutures). The boundary of
M can be expressed 83/ = R () U R_(v), with R (y) N R_(y) = 7.

We give R, a transverse orientation pointing intd, andR_ a transverse
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Fig. 1

orientation pointing out ofi/. We think of each component efas having
a transverse orientation pointing from 5. side to itsR_ side. For further
details, see [Gal].

A decomposing surfader (M ,v) is a properly embedded, transversely
oriented surface” which is transverse te. We can , by matching the
transverse orientations fdt,, R_, andF', endow)M split open alongF,
M|F, with the structure of a sutured manifold; see Fig. 1. The new sutures
for M| F are obtained as an ‘oriented sum~p&nddF'. A sequence of such
splittings is called autured manifold decompositiafi (/7).

A Seifert surface is disk decomposabigthe sutured manifold

(SB\INtN (2),ZNIN (K)) = (X, 7)

admits a sutured manifold decomposition whose decomposing surfaces are
all disks, ending with a sutured manifold which is the disjoint union of
sutured manifolds of the form33, €), wheree is the equatorial circle of

the 3-ball B3. (A posteriori, S3\intN(X) is a handlebody, since it may

be cut open along disks to 3-balls, sbis free.) By Gabai [Gaz2], i is

disk decomposable, then the corresponding sutured manifééiisand

so in particulary’ has minimal genus among all surfaces representing its
homology class. In other words, the genustbéquals the genus df .

Disk decomposability therefore gives an effective way to compute the
genus of a knot. For example, Gabai [Ga2] has shown that every knot in the
standard tables [Ro] has a projection for which Seifert’s algorithm gives a
disk decomposable surface. A fairly natural question to ask, then, is: how
can we tell, short of producing a set of decomposing disks, that a Seifert
surface is disk decomposable? Our main result shows that being free and
having minimal genus, which are necessary, are not sufficient.

Theorem. There exist knotg in S which admit genus one incompressible
free Seifert surfaces which are not disk decomposable.

Our result leaves open the question of whether or not these knots ad-
mit other Seifert surfaces which are disk decomposable; we discuss this
possibility in the concluding section of the paper.



Free Seifert surfaces and disk decompositions 199

Fig. 3

"Inside” View "Outside" View_

Fig. 4

1 Building free Seifert surfaces

In[Br] we showed that, for the kndty and the free Seifert surfadg for K

in $3, shown in Fig. 21 /n Dehn surgery on any loop in the 4-punctured
sphereP pictured there will essentially re-embég) and F as a new knot

K and free Seifert surfacg in S3. (There is, in fact, nothing special about
this knot; any free Seifert surface for a knot admits similar 4-punctured
spheres.) What we will show now is that for appropriate choicdsaridn,

F will be incompressible but not disk decomposable. Our sutured manifold
Xp = S3\intN (F) will be a genus-2 handlebody, and the suture will be a
loop v = FNOX (K') which splitso X r into two once-punctured tori. The
essential idea is that i is complicated enough with respect to a set of
cutting disks forX i, thenF must be incompressible ik (K), but not disk
decomposable.
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Ourargumentwill be based ontechniques of Goda [Go], who first showed
that there exist taut sutured handlebodifsy) which are not disk decom-
posable. Our main task will be to show that his arguments can be applied to
some of the sutured handlebodies built as in Fig. 2. Because Goda’s tech-
nigues use the standard view of a handlebody, as the inside of a standardly
embedded genus two surface, we first need to produce an ‘external’ view
of Xf,. In other words, we need to understand what our sufuoeks like
whenXFp, is pictured as the interior of a standardly embedded handlebody in
S3. This involves, essentially, determining what the two annuliify, that
are cut off byo P would look like on a standard handlebody, while keeping
track of the pattern of intersectionsoaindd P with a set of three ‘obvious’
cutting disks forX g, whose boundaries are shown in Figures 3 and 4. This
pattern determinegup to homeomorphism, in fact, up to Dehn twists along
the three cutting disks, since these disks form a complete system of cutting
disks for X, .

This change of viewpoint is carried out in Fig. 4. Our sutyrean be
thought of as four arcs lying on a 4-punctured sphere (essentrliy, X r, ,
together with two pairs of arcs spiralling through the complementary annuli
in 0Xp, . The amount of spiralling is determined by how many full twists
we put in each arm of our original Seifert surfakg and will not play a
large role in our further discussions (although thiection of spirallingis
important).

2 Choosing loopsL

It is easy to see what effetyn Dehn filling on a loopL in P will have on
the picture of our sutured handlebod¥ £, v) above. The loof. will lie
slightly inside of the 4-punctured sphefelying on 0.X r,, and the diskD

it bounds will lie for the most part outside of the handlebody,, since it
mostly lies inN (Fy). Inside of our handlebody we will see only an annulus
running fromL to a parallel loop I, say) inP. 1/n Dehn surgery alond

will have the effect of replacing the sutusewith its ‘sum’ with n parallel
oriented copies of the loap/ (Fig. 5). It will in fact be the result of applying

n Dehn twists in an annular neighborhooddfto ~. This gives us a large
family of sutured handlebodies to work with, each of which is realized as
the complement of some genus one free Seifert surfagé.in



Free Seifert surfaces and disk decompositions 201

We illustrate this with a somewhat more complicated léaom Fig. 6; it
meetsK) in 8 points, and sa Dehn twists alond. will result in a knotk,
which onoH will be represented by the ‘sum’ &, and 8n parallel copies
of L. We show the results of one Dehn twist, in Fig. 7.

This new suture”’ meets the standard cutting disks for the handlebody
H (which are the three disks where a horizontal plane perpendicular to the
paper meets the middle of the figure) only in arcs joining distinct cutting
disks. These arcs run, in each of the pairs of panésHh above and below
the cutting disks, between any pair of the cutting disks. It is also easy to
see that there are no trivial arcs, running from a cutting disk to itself. This
implies thatoH \ C' is incompressible ind ([St],[Kol]), and (H,C) is
therefore taut.

We can ‘encode’ this construction, and the Dehn twisting information,
into a train trackr on 9 H (Fig. 8a) carrying bothy, L, and the resulf’ of
‘right-handed’ Dehn twists off along L. This allows us to see, even for a
large number of Dehn twists, that all of the loops so built represent sutures
of taut sutured handlebodies, since it is easy to see that any loop (which
separated H) carried with full support byr has arcs running between any
pair of the cutting disk®);, on each side, as before, and has no trivial arcs.
This is most easily seen by cuttidd? (andr) open along our cutting disks
(Fig. 8b); the resulting train tracks carry no trivial arcs or circles.

This curveL (and the resulting sutures) will, in the end, still not be
sufficiently ‘complicated’ for our purposes. But several, which will be, share
many of the same properties, being carried by the same traintrack



202 M. Brittenham

& )—)Zfl

Fig. 9

3 Complicated intersections imply no disk decomposition

Goda [Go] determined sufficient conditions, based on the intersections of
the suture”' in the boundary of a genus two handlebddyith a system of
cutting disksD+, Dy, D3 for H, to guarantee that the sutured handlebody
(H,C) is taut but not disk decomposable. We will prove here a slightly
weaker form of Goda’s criterion, which is sufficient for our purposes. Note
thatany loog” in 0 H locally separate8H (i.e., it separates a neighborhood

of itself), so we can always unambiguously talk about being on the ‘same
side’ of C'in 0H.

Proposition 1. If D is a compressing disk fa?H, with 9D transverse to
C, such thatC| D contains three parallel arcs whose ends all lie on the same
side ofo D, then {H, C) is not disk decomposable alorig

Proof. The picture we have is as in Fig. 9. (All other possible choices of
normal orientation can be obtained from the one pictured by some combi-
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nation of changing every orientation or reflecting in a vertical axis, which
will not change the essential features of our argument.) Given a transverse
orientation on the disk, the sutured manifold obtained by cuttifigalong

D is one or two solid tori| D, whose sutures are obtained by cutting and
pastingC anddD near their points of intersection, as in Fig. 1. However,
because of our hypothesis, the sutures of the resulting sutured solid torus
(M, C") will include a component which is null-homotopicdh\/ (Fig. 9),

and so( M, C") cannot be taut. The key point here is tliaseparated H,

and so the transverse orientationsgfseen alon@ D, must alternate. O

The reader can note that in Fig. 7, each of the disksvill have 3 such
arcs on each side. We illustrate one such collection in Fig. 10.

We now assume thdt satisfies the conditions thus far introduced: the
cutting disksD; cut C' into arcs in the two pairs of panés? |(0.D1U0D2U
0D3)=P; U P». Each arc joins distina@-components in thé’;, and there
are arcs running between all possible pairg-@omponents of thé;. We
also have, for each disk;, a set of three parallel arcs & |0D;, as in
Proposition 1.

Proposition 2. Any diskD, isotopic to one of the disks;, i = 1,2,3 and
transverse t@’, is not a decomposing disk f¢H, C').

Proof. This is essentially Claim 3.6 of [Go]; for completeness, we reproduce

the argument here, since many of the same ideas will be used later.
Without loss of generality, we may assume hés isotopic toD ; then

by [Ep,Lemma 2.5] there is an innermost digkin 9 H whose boundary

consists of an are of 9D, and an ar@ of 9D. C intersectsA in arcs, and by

our hypothesis, none of these arcs have both endpointslbany have both

endpoints or, then there is an outermost such &rbut then it is easy to see

that either decomposing{(, ') alongD yields a trivial suture, implying the

(H,C) is not disk decomposable alog(Fig. 11a), or we may isotop@

across the outermost disk cut off bywithout altering the sutured manifold

obtained by decomposing alodg (Fig. 11b). Continuing, we can remove

all such trivial intersections @' with D (or obtain our desired conclusion).
We may therefore assume thl@tmeetsA only in arcs running fronax

to 3, which must therefore all be parallel to one another (Fig. 11c), and so
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we can isotop@ D acrossA, removing two points of intersection &fD
with 9Dy, without changing the intersections@b with C'. Continuing, we
can then assume tha andoD; are disjoint, and so by [Ep,Lemma 2.4]
they cobound an annulus. By the same argument, we may assume that
C meetsB only in arcs running fron®D to 0D;, and so we may isotope
0D to 0D, without changing the intersections 8f) with C'. Therefore
the sutured manifold resulting from decomposing aléhig identical with
the one obtained by decomposing aloRyg. But by our hypotheses and
Proposition 1{ H, C) is not disk decomposable alorg , and so it cannot
be disk decomposable alodg O

Next we give a criterion which is sufficient to guarantee that every com-
pressing disk fob H has a trio of parallel arcs i@y'.

Proposition 3. Suppose that for every pair of cutting disks and D,

1 # 7, and for each side a#D; COH, there is a collection of three parallel

subarcs ofC, with endpoints on the same sideddd;, which on both ends

crossD; immediately before meeting; (see Fig. 12). Then for every disk
Din H, withdD COH transverse ta’, (H, C) is not disk decomposable
along D.

Proof. Suppose thabD is a decomposing disk fqrH, C'). By Proposition
2, D is not isotopic to any of thé,. Because it is a compressing digk,)
cannot be trivial in0H. But since every simple loop in a pair of pants is
either trivial or isotopic to one of th@-components, this means thab
cannot be isotoped to be disjoint from all of tA®;; it would then lie in
one of our two complementary pairs of pants.

Consider an aré of D N (D; U Dy U D3) C D which is outermost in
D. The arcp of 9D which ¢ cuts off then lies in one of our two pairs of
pants, call itP. If §is a trivial arc inP, then, together with an ar¢in one
of the 9D;,, it bounds a diskA in P. The suture” meetsA in arcs, and,
by applying the argument of the previous proposition, we may assume that
each arc runs from: to 3, since, if not, then either decomposing alabg
will create a trivial suture, implying thab is not a decomposing disk for
H, or we can isotopé& D across”' without changing what the sutures in the
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oD, oDi
oD, oD,

Fig. 13

sutured manifold obtained by splitting alohgwill look like. The pictures
are identical to those of Figures 11a and b. A trivial arc cannot lie on the
d-side of A, by hypothesis.

But then, as before, we can isotop® acrossA to reduce the number
of points of intersection od D with the 9 D;, without changing the sutured
manifold (H| D, W). After repeatedly carrying out these isotopies, we can
then assume that every outermost ar@ims non-trivial. By our argument
above, there must be at least one non-trivial arsjnce otherwis®, hence
0D, is disjoint from theD,.

The arcg that « cuts off indD, lying in one of the pairs of pant®,
must therefore separate the tWecomponent$)D; anddD; of P which
it doesn’t meet. It therefore must intersect the three arcs runningdiom
to itself, just before and after passing through;, which were given by
our hypothesis (Fig. 13). As before, we may assumethatets each arc
of C' running betwee®D; and0dD; exactly once, since otherwise we can
find a trivial subarc of3 in P|C, allowing us, as before, to either reduce the
number of points of intersection ¢f with C, or find a trivial suture after
decomposing along. But then by truncating the three arcs given by our
hypothesis, by removing the short subarcs lying at the ends bet@en
andoD, we obtain three parallel arcs whose ends all lie on the same side
of 9D. Together with the obvious arcs &, they bound a rectangl® in
OH.
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Fig. 15

These arcs i’ may not lie in0H |0D (Fig. 14); but since we may, as
above, assume that every other arcRrfio D has no trivial intersections
with our triple of arcs, some subrectangle bounded by aré<odill lie in
0H|0D, with opposite transverse orientations on the ends. The intersection
of this subrectangle with' will give us a triple of arcs with all of their ends
on the same side @D, giving us the triple of arcs i’ which we need to
apply Proposition 1. Therefore decompositid, C') along D will yield a
trivial suture, sd H, C') is not disk decomposable alotig

Note. We can weaken our hypotheses somewhat while still retaining the
conclusion. From the proof we see the we need a trio of arcs vdiiblr

end atD; after passing through; or end atD; after passing through;,
since we really only need the fact that the ends of the arcs are passween

D; andD;. This gives us only half as many conditions to check.

4 The examples

It is fairly easy to build examples of knofs satisfying the conditions of
Propositions 1 and 3, by our initial Dehn twisting construction. We should
note that the example given in Fig. 7 doeat satisfy the conditions of
Proposition 3; there is no trio of arcs running from the middle disk which
immediately run through the right hand disk on both ends. However, a still
more complicated choice of initial twisting curdewill produce the exam-
ples we seek. Essentially, we need only make sure to choose d.lsop
that, for every choice of a pair of cutting disks, ther@igsuch arc inL;

then the fact that Dehn twisting alorilgadds many parallel copies @fto

Ky will provide may parallel copies of each arc. One such example is given
in Fig. 15. It is easy to verify that for each choice of diB, side ofdD;,



Free Seifert surfaces and disk decompositions 207

and choice of diskD;, j # ¢, there is an arc it beginning and ending d2;

on the chosen side, which immediately passes thrdught each end (or
vice versa, which suffices for our purposes by the comment following the
proof of Proposition 3). Properly chosen subarcs of the pair of arcs shown
in Figures 16ab will suffice.

To be certain that, when we perform a Dehn twist alénghe resulting
loop C” will have at least three arcs parallel to each of the arcs given in the
above figures, we must check that templemenof each arex in L meets
C at least three times. This is because as we travergeery time we cross
C one of the arcs i’ parallel toa has been grafted t6' and (we must
assume) no longer runs parallel¢oSince we start withC' N L| (= 22, in
this case) arcs af” running parallel tax at the start, and lose one at each
crossing, we simply need to insure that we crésso more than 19 times
to ensure that three arcs will run parallekion C’. The reader can readily
verify that for the arcs shown in Fig. 16, the complementary arcs always
meetC at least 6 times, by comparing with Fig. 15.

To see whaL looks like in the complement of our original Seifert surface
X7, we work with the train track in 0H of Fig. 8. L is carried byr with
weights 2, 3, and 5, as in Fig. 17a. By keeping track of the intersections of
7 with our cutting disks and<,, we can reconstruct how would look in
the interior version of our picture of i ; see Fig. 17b. This in turn allows
us to reconstruck, as it sits on our 4-punctured sphe?gFig. 18).

According to the computer program SnapPea [We], the kndlhat we
obtain from K by 1/1 Dehn filling alongL is hyperbolic; by the above
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work, the Seifert surfacgy is carried under the Dehn filling to a genus one
free Seifert surfacé’ for K, which is not disk decomposable.

We can readily construct many more such examples, since any collection
of largerweights on the train track of Fig. 16b (which represent a connected
loop, which essentially means that our replacements for 2 and 3 must be
relatively prime) will also yield a knot and Seifert surface satisfying our
theorem. Similarly,1/n Dehn filling alongL or these more complicated
loops will also suffice, since more twists simply provide more parallel arcs
for our arguments to use. We can also add full twists to the ‘arms’ of our
original Seifert surface, without changing the essential features of the con-
struction.

5 Concluding remarks

The examples the we have obtained here, in some sense, manage to raise
more guestions than they answer. Perhaps the most pressing question raised



Free Seifert surfaces and disk decompositions 209

is: do these knots that we build possesgerSeifert surfaces whichre disk
decomposable? These other surfaces must, of course, also be free and have
genus one. More generally, we might ask:

Question 1.If the genus of equals the free genus &f, doesK always
possess a disk decomposable Seifert surface?

One way to show that the answer to this question is ‘No’ would be to show
that some of our examples possess only one minimal genus (free) Seifert
surface. There are several techniques for showing that a knot possesses a
unigue minimal genus Seifert surface (see, e.g., [Ko2],[Ko3],[KK]). Most
of these can be phrased as saying that the khist ‘simple enough’; since
our approach to non-disk-decomposability is that the suture (= the knot) is
‘complicated enough’, applying such techniques will no doubt require some
finesse.

While the Seifert surfaces that we build fail to be disk decomposable,
they do have minimal genus, and so Gabai [Gal] assures us that there is
some sequence of decomposing surfaces which will split our sutured han-
dlebody to trivially sutured 3-balls. What we have really shown here is that
the first surface cannot be a disk. Since the decomposing surfaces must be
incompressible, they will always (inductively) split our sutured handlebody
at each stage to another sutured handlebody. The first splitting cévemot
reducethe genus of the sutured handlebody (and, except for the case of a
non-separating annulus, muatseit). An intersting question to ask, then,
is: how high must the genus of the handlebody go? Are there, for example,
(free) Seifert surfaces (of minimal genus) for which the filstomposing
surface must raise the genus by an arbitrarily large amount?

Finally, we could attempt to strengthen our result by trying to replace
‘disk decomposability’ with somethingeaker For example, a disk decom-
posable Seifert surface is always the leaf of a depth one foliation of the knot
exterior [Ga2], and so the kndt must have depth [CC] (at most) one. So
one can ask theveakerquestion:

Question 2.1f genus() = free genusk)), then doed< have depth (at most)
one?

An answer of ‘No’ would be a stronger result. There is in fact a fairly
simple necessary condition for a Seifert surface to be the leaf of a depth
one foliation [CC]: the result of attaching a 2-handle to the suture of the
associated sutured manifold must be the total space of a fiber bundle over
the circle. See [Ko3] for an example which uses the Thurston norm to check
this condition. Examples giving a negative answer to Question 1, which
failed to satisfy this property, would also give a negative answer to Question
2.
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Nowhere in our arguments is it really essential that our system of cutting
disks consists dhreedisks. The exact same conditions used here, describing
how the suture”’ meets a complete system of cutting disks for a higher
genus handlebody, can therefore be used to find higher genus examples
of sutured handlebodies which are not disk decomposable. One must use
different arguments to show that the sutured handlebody is in fact taut; the
conditions we impose only guarantee that the complement of the suture in
OH is incompressible i, and do not imply minimal genus.
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