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Abstract. In this paper we construct families of knots which have genus
one free Seifert surfaces which are not disk decomposable.

0 Introduction

A Seifert surface for a knotK in the 3-sphere is an embedded orientable
surfaceΣ, whose boundary equals the knotK. Equivalently, it is a properly
embedded orientable surfaceΣ in the exteriorX(K) ofK, whose boundary
equals the longitude ofK. A Seifert surfaceΣ is freeif π1(S3 \Σ) is a free
group; equivalently,S3\intN(Σ) is a handlebody.

Seifert’s algorithm [Se] will always build a free Seifert surface for a
knotK. In [Br] we showed that not all free Seifert surfaces can be built by
Seifert’s algorithm; we exhibited a family of hyperbolic knots havingfree
genusone, whose surfaces built via Seifert’s algorithm must always have
large genus.

In so doing, we introduced a fairly general procedure for producing knots
with genus 1 free Seifert surfaces. In this paper we show that many of these
surfaces fail to be disk decomposable.

A sutured manifold (M ,γ) is a compact 3-manifoldM together with a
collection of disjoint embedded loopsγ in ∂M , called the sutures. (Since
we will apply this theory to knots and Seifert surfaces, we will suppress
the possibility that whole components of∂M are sutures). The boundary of
M can be expressed as∂M = R+(γ) ∪ R−(γ), withR+(γ) ∩ R−(γ) = γ.
We giveR+ a transverse orientation pointing intoM , andR− a transverse
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orientation pointing out ofM . We think of each component ofγ as having
a transverse orientation pointing from itsR+ side to itsR− side. For further
details, see [Ga1].

A decomposing surfacefor (M ,γ) is a properly embedded, transversely
oriented surfaceF which is transverse toγ. We can , by matching the
transverse orientations forR+, R−, andF , endowM split open alongF ,
M |F , with the structure of a sutured manifold; see Fig. 1. The new sutures
forM |F are obtained as an ‘oriented sum’ ofγ and∂F . A sequence of such
splittings is called asutured manifold decompositionof (M ,γ).

A Seifert surfaceΣ is disk decomposableif the sutured manifold

(S3\intN(Σ),Σ∩∂N(K)) = (XF , γ)

admits a sutured manifold decomposition whose decomposing surfaces are
all disks, ending with a sutured manifold which is the disjoint union of
sutured manifolds of the form (B3, e), wheree is the equatorial circle of
the 3-ballB3. (A posteriori,S3\intN(Σ) is a handlebody, since it may
be cut open along disks to 3-balls, soΣ is free.) By Gabai [Ga2], ifΣ is
disk decomposable, then the corresponding sutured manifold istaut, and
so in particularΣ has minimal genus among all surfaces representing its
homology class. In other words, the genus ofΣ equals the genus ofK.

Disk decomposability therefore gives an effective way to compute the
genus of a knot. For example, Gabai [Ga2] has shown that every knot in the
standard tables [Ro] has a projection for which Seifert’s algorithm gives a
disk decomposable surface. A fairly natural question to ask, then, is: how
can we tell, short of producing a set of decomposing disks, that a Seifert
surface is disk decomposable? Our main result shows that being free and
having minimal genus, which are necessary, are not sufficient.

Theorem. There exist knotsK inS3which admit genus one incompressible
free Seifert surfaces which are not disk decomposable.

Our result leaves open the question of whether or not these knots ad-
mit otherSeifert surfaces which are disk decomposable; we discuss this
possibility in the concluding section of the paper.
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1 Building free Seifert surfaces

In [Br] we showed that, for the knotK0 and the freeSeifert surfaceF0 forK0
in S3, shown in Fig. 2,1/n Dehn surgery on any loopL in the 4-punctured
sphereP pictured there will essentially re-embedK0 andF0 as a new knot
K and free Seifert surfaceF in S3. (There is, in fact, nothing special about
this knot; any free Seifert surface for a knot admits similar 4-punctured
spheres.) What we will show now is that for appropriate choices ofL andn,
F will be incompressible but not disk decomposable. Our sutured manifold
XF = S3\intN(F ) will be a genus-2 handlebody, and the suture will be a
loop γ = F∩∂X(K) which splits∂XF into two once-punctured tori. The
essential idea is that ifγ is complicated enough with respect to a set of
cutting disks forXF , thenF must be incompressible inX(K), but not disk
decomposable.
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Ourargumentwill bebasedon techniquesofGoda [Go],whofirst showed
that there exist taut sutured handlebodies (H,γ) which are not disk decom-
posable. Our main task will be to show that his arguments can be applied to
some of the sutured handlebodies built as in Fig. 2. Because Goda’s tech-
niques use the standard view of a handlebody, as the inside of a standardly
embedded genus two surface, we first need to produce an ‘external’ view
ofXF0 . In other words, we need to understand what our sutureγ looks like
whenXF0 is pictured as the interior of a standardly embedded handlebody in
S3. This involves, essentially, determining what the two annuli in∂XF0 that
are cut off by∂P would look like on a standard handlebody, while keeping
track of the pattern of intersections ofγ and∂P with a set of three ‘obvious’
cutting disks forXF0 , whose boundaries are shown in Figures 3 and 4. This
pattern determinesγ up to homeomorphism, in fact, up to Dehn twists along
the three cutting disks, since these disks form a complete system of cutting
disks forXF0 .

This change of viewpoint is carried out in Fig. 4. Our sutureγ can be
thought of as four arcs lying on a 4-punctured sphere (essentially,P ) inXF0 ,
together with two pairs of arcs spiralling through the complementary annuli
in ∂XF0 . The amount of spiralling is determined by how many full twists
we put in each arm of our original Seifert surfaceF0, and will not play a
large role in our further discussions (although thedirectionof spiralling is
important).

2 Choosing loopsL

It is easy to see what effect1/n Dehn filling on a loopL in P will have on
the picture of our sutured handlebody (XF0 , γ) above. The loopL will lie
slightly inside of the 4-punctured sphereP lying on∂XF0 , and the diskD
it bounds will lie for the most part outside of the handlebodyXF0 , since it
mostly lies inN(F0). Inside of our handlebody we will see only an annulus
running fromL to a parallel loop (L′, say) inP . 1/n Dehn surgery alongL
will have the effect of replacing the sutureγ with its ‘sum‘ with n parallel
oriented copies of the loopL′ (Fig. 5). It will in fact be the result of applying
n Dehn twists in an annular neighborhood ofL′ to γ. This gives us a large
family of sutured handlebodies to work with, each of which is realized as
the complement of some genus one free Seifert surface inS3.
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We illustrate this with a somewhat more complicated loopL, in Fig. 6; it
meetsK0 in 8 points, and son Dehn twists alongL will result in a knotK,
which on∂H will be represented by the ‘sum’ ofK0 and 8n parallel copies
of L. We show the results of one Dehn twist, in Fig. 7.

This new sutureC meets the standard cutting disks for the handlebody
H (which are the three disks where a horizontal plane perpendicular to the
paper meets the middle of the figure) only in arcs joining distinct cutting
disks. These arcs run, in each of the pairs of pants in∂H, above and below
the cutting disks, between any pair of the cutting disks. It is also easy to
see that there are no trivial arcs, running from a cutting disk to itself. This
implies that∂H \ C is incompressible inH ([St],[Ko1]), and (H, C) is
therefore taut.

We can ‘encode’ this construction, and the Dehn twisting information,
into a train trackτ on∂H (Fig. 8a) carrying bothγ, L, and the resultC of
‘right-handed’ Dehn twists ofγ alongL. This allows us to see, even for a
large number of Dehn twists, that all of the loops so built represent sutures
of taut sutured handlebodies, since it is easy to see that any loop (which
separates∂H) carried with full support byτ has arcs running between any
pair of the cutting disksDi, on each side, as before, and has no trivial arcs.
This is most easily seen by cutting∂H (andτ ) open along our cutting disks
(Fig. 8b); the resulting train tracks carry no trivial arcs or circles.

This curveL (and the resulting suturesC) will, in the end, still not be
sufficiently ‘complicated’ for our purposes. But several, whichwill be, share
many of the same properties, being carried by the same train trackτ .
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3 Complicated intersections imply no disk decomposition

Goda [Go] determined sufficient conditions, based on the intersections of
the sutureC in the boundary of a genus two handlebodyH with a system of
cutting disksD1, D2, D3 for H, to guarantee that the sutured handlebody
(H, C) is taut but not disk decomposable. We will prove here a slightly
weaker form of Goda’s criterion, which is sufficient for our purposes. Note
that any loopC in ∂H locally separates∂H (i.e., it separates a neighborhood
of itself), so we can always unambiguously talk about being on the ‘same
side’ ofC in ∂H.

Proposition 1. If D is a compressing disk for∂H, with ∂D transverse to
C, such thatC|D contains three parallel arcs whose ends all lie on the same
side of∂D, then (H, C) is not disk decomposable alongD.

Proof. The picture we have is as in Fig. 9. (All other possible choices of
normal orientation can be obtained from the one pictured by some combi-
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Fig. 10

nation of changing every orientation or reflecting in a vertical axis, which
will not change the essential features of our argument.) Given a transverse
orientation on the diskD, the suturedmanifold obtained by cuttingH along
D is one or two solid toriH|D, whose sutures are obtained by cutting and
pastingC and∂D near their points of intersection, as in Fig. 1. However,
because of our hypothesis, the sutures of the resulting sutured solid torus
(M, C ′) will include a component which is null-homotopic in∂M (Fig. 9),
and so(M, C ′) cannot be taut. The key point here is thatC separates∂H,
and so the transverse orientations ofC, seen along∂D, must alternate. ��

The reader can note that in Fig. 7, each of the disksDi will have 3 such
arcs on each side. We illustrate one such collection in Fig. 10.

We now assume thatC satisfies the conditions thus far introduced: the
cutting disksDi cutC into arcs in the two pairs of pants∂H|(∂D1∪∂D2∪
∂D3)=P1 ∪ P2. Each arc joins distinct∂-components in thePi, and there
are arcs running between all possible pairs of∂-components of thePi. We
also have, for each diskDi, a set of three parallel arcs in∂H|∂Di, as in
Proposition 1.

Proposition 2. Any diskD, isotopic to one of the disksDi, i = 1, 2, 3 and
transverse toC, is not a decomposing disk for(H, C).

Proof. This is essentially Claim 3.6 of [Go]; for completeness, we reproduce
the argument here, since many of the same ideas will be used later.

Without loss of generality, we may assume theD is isotopic toD1; then
by [Ep,Lemma 2.5] there is an innermost disk∆ in ∂H whose boundary
consists of an arcα of ∂D1 andanarcβ of ∂D.C intersects∆ in arcs, and by
our hypothesis, none of these arcs have both endpoints onα. If any have both
endpoints onβ, then there is an outermost such arcδ; but then it is easy to see
that either decomposing (H, C) alongD yields a trivial suture, implying the
(H, C) is not disk decomposable alongD (Fig. 11a), or we may isotopeC
across the outermost disk cut off byδ, without altering the sutured manifold
obtained by decomposing alongD (Fig. 11b). Continuing, we can remove
all such trivial intersections ofC withD (or obtain our desired conclusion).

We may therefore assume thatC meets∆ only in arcs running fromα
to β, which must therefore all be parallel to one another (Fig. 11c), and so
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we can isotope∂D across∆, removing two points of intersection of∂D
with ∂D1, without changing the intersections of∂DwithC. Continuing, we
can then assume that∂D and∂D1 are disjoint, and so by [Ep,Lemma 2.4]
they cobound an annulusB. By the same argument, we may assume that
C meetsB only in arcs running from∂D to ∂D1, and so we may isotope
∂D to ∂D1 without changing the intersections of∂D with C. Therefore
the sutured manifold resulting from decomposing alongD is identical with
the one obtained by decomposing alongD1. But by our hypotheses and
Proposition 1,(H, C) is not disk decomposable alongD1, and so it cannot
be disk decomposable alongD. ��

Next we give a criterion which is sufficient to guarantee that every com-
pressing disk for∂H has a trio of parallel arcs inC.

Proposition 3. Suppose that for every pair of cutting disksDi andDj ,
i �= j, and for each side of∂Di ⊆∂H, there is a collection of three parallel
subarcs ofC, with endpoints on the same side of∂Di, which on both ends
crossDj immediately before meetingDi (see Fig. 12). Then for every disk
D in H, with ∂D ⊆∂H transverse toC, (H, C) is not disk decomposable
alongD.

Proof. Suppose thatD is a decomposing disk for(H, C). By Proposition
2,D is not isotopic to any of theDi. Because it is a compressing disk,∂D
cannot be trivial in∂H. But since every simple loop in a pair of pants is
either trivial or isotopic to one of the∂-components, this means that∂D
cannot be isotoped to be disjoint from all of the∂Di; it would then lie in
one of our two complementary pairs of pants.

Consider an arcδ of D ∩ (D1 ∪ D2 ∪ D3) ⊆ D which is outermost in
D. The arcβ of ∂D which δ cuts off then lies in one of our two pairs of
pants, call itP . If β is a trivial arc inP , then, together with an arcα in one
of the∂Dk, it bounds a disk∆ in P . The sutureC meets∆ in arcs, and,
by applying the argument of the previous proposition, we may assume that
each arc runs fromα to β, since, if not, then either decomposing alongD
will create a trivial suture, implying thatD is not a decomposing disk for
H, or we can isotope∂D acrossC without changing what the sutures in the
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sutured manifold obtained by splitting alongD will look like. The pictures
are identical to those of Figures 11a and b. A trivial arc cannot lie on the
δ-side of∆, by hypothesis.

But then, as before, we can isotope∂D across∆ to reduce the number
of points of intersection of∂D with the∂Di, without changing the sutured
manifold(H|D, W ). After repeatedly carrying out these isotopies, we can
then assume that every outermost arc inD is non-trivial. By our argument
above, theremust be at least one non-trivial arc,α, since otherwiseD, hence
∂D, is disjoint from theDi.

The arcβ thatα cuts off in∂D, lying in one of the pairs of pantsP ,
must therefore separate the two∂-components∂Di and∂Dj of P which
it doesn’t meet. It therefore must intersect the three arcs running from∂Di

to itself, just before and after passing through∂Dj , which were given by
our hypothesis (Fig. 13). As before, we may assume thatβ meets each arc
of C running between∂Di and∂Dj exactly once, since otherwise we can
find a trivial subarc ofβ in P |C, allowing us, as before, to either reduce the
number of points of intersection ofβ with C, or find a trivial suture after
decomposing alongD. But then by truncating the three arcs given by our
hypothesis, by removing the short subarcs lying at the ends between∂Di

and∂D, we obtain three parallel arcs whose ends all lie on the same side
of ∂D. Together with the obvious arcs in∂D, they bound a rectangleR in
∂H.
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These arcs inC may not lie in∂H|∂D (Fig. 14); but since we may, as
above, assume that every other arc ofR∩∂D has no trivial intersections
with our triple of arcs, some subrectangle bounded by arcs of∂D will lie in
∂H|∂D, with opposite transverse orientations on the ends. The intersection
of this subrectangle withC will give us a triple of arcs with all of their ends
on the same side of∂D, giving us the triple of arcs inC which we need to
apply Proposition 1. Therefore decomposing(H, C) alongD will yield a
trivial suture, so(H, C) is not disk decomposable alongD.

Note. We can weaken our hypotheses somewhat while still retaining the
conclusion. From the proof we see the we need a trio of arcs whicheither
end atDi after passing throughDj or end atDj after passing throughDi,
sincewe really only need the fact that theendsof thearcsarepassingbetween
Di andDj . This gives us only half as many conditions to check.

4 The examples

It is fairly easy to build examples of knotsK satisfying the conditions of
Propositions 1 and 3, by our initial Dehn twisting construction. We should
note that the example given in Fig. 7 doesnot satisfy the conditions of
Proposition 3; there is no trio of arcs running from the middle disk which
immediately run through the right hand disk on both ends. However, a still
more complicated choice of initial twisting curveL will produce the exam-
ples we seek. Essentially, we need only make sure to choose a loopL so
that, for every choice of a pair of cutting disks, there isonesuch arc inL;
then the fact that Dehn twisting alongL adds many parallel copies ofL to
K0 will provide may parallel copies of each arc. One such example is given
in Fig. 15. It is easy to verify that for each choice of diskDi, side of∂Di,
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Fig. 16a

Fig. 16b

and choice of diskDj , j �= i, there is an arc inL beginning and ending atDi

on the chosen side, which immediately passes throughDj at each end (or
vice versa, which suffices for our purposes by the comment following the
proof of Proposition 3). Properly chosen subarcs of the pair of arcs shown
in Figures 16ab will suffice.

To be certain that, when we perform a Dehn twist alongL, the resulting
loopC ′ will have at least three arcs parallel to each of the arcs given in the
above figures, we must check that thecomplementof each arcα in Lmeets
C at least three times. This is because as we traverseα, every time we cross
C one of the arcs inC ′ parallel toα has been grafted toC and (we must
assume) no longer runs parallel toα. Since we start with|C ∩ L| (= 22, in
this case) arcs ofC ′ running parallel toα at the start, and lose one at each
crossing, we simply need to insure that we crossC no more than 19 times
to ensure that three arcs will run parallel toα in C ′. The reader can readily
verify that for the arcs shown in Fig. 16, the complementary arcs always
meetC at least 6 times, by comparing with Fig. 15.

To seewhatL looks like in the complement of our original Seifert surface
Σ, we work with the train trackτ in ∂H of Fig. 8.L is carried byτ with
weights 2, 3, and 5, as in Fig. 17a. By keeping track of the intersections of
τ with our cutting disks andK0, we can reconstruct howτ would look in
the interior version of our picture ofXF0 ; see Fig. 17b. This in turn allows
us to reconstructL, as it sits on our 4-punctured sphereP (Fig. 18).

According to the computer program SnapPea [We], the knotK that we
obtain fromK0 by 1/1 Dehn filling alongL is hyperbolic; by the above
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work, the Seifert surfaceF0 is carried under the Dehn filling to a genus one
free Seifert surfaceF for K, which is not disk decomposable.

We can readily construct manymore such examples, since any collection
of largerweights on the train track of Fig. 16b (which represent a connected
loop, which essentially means that our replacements for 2 and 3 must be
relatively prime) will also yield a knot and Seifert surface satisfying our
theorem. Similarly,1/n Dehn filling alongL or these more complicated
loops will also suffice, since more twists simply provide more parallel arcs
for our arguments to use. We can also add full twists to the ‘arms’ of our
original Seifert surface, without changing the essential features of the con-
struction.

5 Concluding remarks

The examples the we have obtained here, in some sense, manage to raise
more questions than they answer. Perhaps the most pressing question raised
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is: do these knots that we build possessotherSeifert surfaces whicharedisk
decomposable? These other surfaces must, of course, also be free and have
genus one. More generally, we might ask:

Question 1.If the genus ofK equals the free genus ofK, doesK always
possess a disk decomposable Seifert surface?

Oneway to show that theanswer to this question is ‘No’wouldbe to show
that some of our examples possess only one minimal genus (free) Seifert
surface. There are several techniques for showing that a knot possesses a
unique minimal genus Seifert surface (see, e.g., [Ko2],[Ko3],[KK]). Most
of these can be phrased as saying that the knotK is ‘simple enough’; since
our approach to non-disk-decomposability is that the suture (= the knot) is
‘complicated enough’, applying such techniques will no doubt require some
finesse.

While the Seifert surfaces that we build fail to be disk decomposable,
they do have minimal genus, and so Gabai [Ga1] assures us that there is
some sequence of decomposing surfaces which will split our sutured han-
dlebody to trivially sutured 3-balls. What we have really shown here is that
the first surface cannot be a disk. Since the decomposing surfaces must be
incompressible, they will always (inductively) split our sutured handlebody
at each stage to another sutured handlebody. The first splitting, then,cannot
reducethe genus of the sutured handlebody (and, except for the case of a
non-separating annulus, mustraise it). An intersting question to ask, then ,
is: how high must the genus of the handlebody go? Are there, for example,
(free) Seifert surfaces (of minimal genus) for which the firstdecomposing
surface must raise the genus by an arbitrarily large amount?

Finally, we could attempt to strengthen our result by trying to replace
‘disk decomposability’ with somethingweaker. For example, a disk decom-
posable Seifert surface is always the leaf of a depth one foliation of the knot
exterior [Ga2], and so the knotK must have depth [CC] (at most) one. So
one can ask theweakerquestion:

Question 2.If genus(K) = free genus(K), then doesK have depth (atmost)
one?

An answer of ‘No’ would be a stronger result. There is in fact a fairly
simple necessary condition for a Seifert surface to be the leaf of a depth
one foliation [CC]: the result of attaching a 2-handle to the suture of the
associated sutured manifold must be the total space of a fiber bundle over
the circle. See [Ko3] for an example which uses the Thurston norm to check
this condition. Examples giving a negative answer to Question 1, which
failed to satisfy this property, would also give a negative answer to Question
2.
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Nowhere in our arguments is it really essential that our system of cutting
disks consists ofthreedisks. Theexact sameconditionsusedhere, describing
how the sutureC meets a complete system of cutting disks for a higher
genus handlebody, can therefore be used to find higher genus examples
of sutured handlebodies which are not disk decomposable. One must use
different arguments to show that the sutured handlebody is in fact taut; the
conditions we impose only guarantee that the complement of the suture in
∂H is incompressible inH, and do not imply minimal genus.
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