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THE TOPOLOGICAL CLASSIFICATION OF THE LENS SPACES

By E. J. BroDY
(Received July 17, 1959)

The n-dimensional lens spaces can be classified under semi-linear equiva-
lence by the torsion invariant of Reidemeister [1]. It seems desirable to
prove the topological invariance of this classification without reference
to the Hauptvermutung. In this paper we carry out such a proof for
n = 3, using a method which, intuitively speaking, distinguishes mani-
folds by the differences in their ‘‘knot theories’’. This method was pro-
posed by Fox [16, p. 247] at the Princeton Bicentennial Conference of
1946, and later applied [17, p. 455] to re-prove the semi-linear classifica-
tion of the lens spaces.

Associated with every simple closed polygon & in a complex K there is
a principal ideal (A) of the 1-dimensional Betti group ring of K — k; A is
known as the Alexander polynomial of k. [2, 3, 4, 5]. Let M be an ori-
entable triangulable 3-dimensional manifold, v an element of H(M), k a
simple closed curve which represents v and which is polygonal in some
triangulation of M. Let A be the Alexander polynomial of k, T.(M — k)
and B,(M — k) the torsion subgroup and Betti group of H,(M — k),
© 1 H(M — k) — H(M) the injectionhomomorphism, and *: B,(M — k) —
H(M)/iT(M — k) the homomorphism induced by ¢. Then we prove:

(i) H(M — k) and ¢Ty(M — k) depend only upon 7v;

(ii) A* depends only upon 7.

Unlike the Reidemeister torsion, the invariant A* is applicable to all
orientable 3-dimensional manifolds. However, if one is interested only in
. the lens spaces, one may restrict oneself to the case H,(M — k) infinite
cyclic, which allows considerable simplification of the proof (cf., §4.).
As an additional example we givé the classification of the topological sums
of two 3-dimensional lens spaces.

In what follows, manifold will mean compact orientable 3-dimensional
manifold in the sense of [6]; similarly for bounded manifold. The term
polygonal curve will mean polygonal in some triangulation of the given
space; it should be emphasized that the assumption that two or more
curves are polygonal does not necessarily postulate their polygonality in
the same triangulation unless specifically stated. The reader is also
cautioned that all groups, including homology groups, will be written
multiplicatively to avoid confusion with group ring notation. Also, homo-

morphisms will frequently be written as superscripts, that is, f(x) as x”
and f(z~) as x7.
163



164 E. J. BRODY

1. For the basic notions of group presentations, Jacobians, and ele-
mentary ideals we refer to [5] and [7]. Let (X: R) be a finitely generat-
ed presentation of a group G, @ the associated homomorphism of X onto
G, and + the natural homomorphism of G onto its Betti group B (i.e., the
free part of the commutator quotient group of G). By the Alexander
matriz of G we mean the Jacobian matrix of (X: R) evaluated at «». The
Betti group ring JB is essentially a polynomial ring and has the unique
factorization property; every subset of JB has a greatest common divisor
(g.c.d.) determined up to a unit factor of JB. The Alexander polynomial
A of G is the greatest common divisor of the first elementary ideal & of
the Alexander matrix.

DEFINITION. A group presentation having m generators and n relators
is said to have deficiency m — n. A finitely presented group has deficiency
r if it has a presentation of deficiency 7, but no presentation of deficiency
r+ 1.

LEMMA 1.1. Let (X: R) be a presentation of deficiency one of a group
G, B the Betti group of G, A? the determinant of the minor obtained by
deleting the 7 column of the Alexander matrix A of (X: R). Let § be
the fundamental ideal® of JB and let 6 =g.c.d. F. Then &+ AY =
(x, — 1)*° « A, where x, is the generator of G corresponding to the j*
column.

ProoF. Denote by &, the 5 column of A. By the fundamental formula
(see [5], 2.8) of the free calculus E; £, +(x; — 1)** = 0; hence

AP . (xk-1)¢¢ = I“.::l’ "',gp °*cy Ek ° (xk - 1)(0(0’ ) Evl
= _Ifn M) Ej’ cc°y S](xj - I)W, cc% Evl
= (1) % |&, eoe, Ef(my — 1)¥%, wee, &y, 200, &
= (—1p-* - (@, — 1P - A
where E, denotes deletion of &,. Therefore
AP§ =g.cd. AP« (x, — 1) =g.c.d. (A® - (2, — 1) =A- (2§ — 1) .

We remark that if p(B) denotes the rank of B, we have §=0 for p(B)=0,
8 =1 for p(B) > 1, and for p(B) =1,86 =b — 1 where b is a generator
of B.

LEMMA 1.2. Let G be the first elementary ideal of the Alexander
matriz A of a finitely generated group presentation. Let & be the O™
elementary ideal of the submatrix of A obtained by deleting the j*

1See [5]. We recall that & is generated by the elements of b — 1 when b ranges over
any set of generators of B.
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column. Then
%.@U):(x}//¢_l).@

ProOF. If A has n columns, let @ be any set of » — 1 rows. Then, as
in the proof of 1.1,

(¢, — 1)%¢ « AY = (x;, — 1) - AL .
“Summing’’ over «a
(@, — 1)% « D = (x, — 1)** - G®
and the result now follows by summing over k.
THEOREM 1.3. Let G,, G,, G, be groups with presentations
Gy = (%y, oo, T, 21y 2t T, 2), ==, T(2, 2), wW(R)) ,
of deficiency one,
G, = (21 20, Yy, =+ =, Yt W(R), 84(¥, 2), 8:(¥, 2), * =)
with an arbitrary number (possibly infinite) of relators, and
Go = (xu cooy Loy Ziy Bay Yty ** %y Yn®
7%, 2), * =+, Tn(®, 2), W(2), 8:(Y, 2), 8, 2), *=*) -

These presentations naturally define homomorphisms h,: G, — G, and
1,: B, — B, for v = 1, 2, and the diagrams

are commutative. If €,, . and A, denote the first elementary ideals,
Sfundamental ideals, and Alexander polynomials respectively, of G, and
3. = g.c.d. Fy, then
<i?&)‘”‘” c(@e —1)- 8- (ged. §?) - A,
0z,
= (et* — 1) - (g.c.d. §y) - AT - (g.c.d. ©F) /

PROOF. Cc;nsider the Alexander matrices

or or or |he1 ow ow 0 d202
o0x 07, 072, _ 02, 0%,
Al = ’ Az =
ow ow 0s 08 08

02, 02, 0z, 02, 0y
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and
or or or  |¥
ox 0z, 02,
ow ow
A, = 0 6_z, 6_z2 0
o 08 0s s
0z, 0z, 0y

Let G denote the 0™ elementary ideal of the submatrix of A, obtained
by deleting the column corresponding to z,. Then?

@(1) _ ((aw <Ill¢1 6”‘
1= _— .

¢1¢1>
02, ox ’

ow\%*2 | 08 |[¢202 0s  0s |"2*2
o = (U(5) " |5 ) (W)
’ U 07, 6y Us 0z, 0Y s
ow\* | 6'r 0s ""’) ( v |9s 0s """))
EL = 98
(U“<<az2 oxr| oy Uel |52 02, Oyle

where the index « ranges over all sets of » rows, B over allsetsof n 4 1
rows. We conclude that®

(1) (B2)7 - @0 = (@ @)
By Lemmas 1.1 and 1.2,
B (G = (at* — 1) « AL, § - (€)= (1 — )" - 67,
B (EY) =@&*—-1)-6,.
Substituting these in equation (1) we have
(Z)" -t = 1) - B G = (7 — 17 - 5y - -

and the result follows by taking the greatest common divisor of both
sides.

2. By a tube we shall mean the topological image of an anchor ring
(Vollring); more generally by tubular manifold we mean a Henkelkorper
in the sense of [6]. A tubular manifold of genus & in S?is representable
as a tubular neighborhood of the graph L which we call an h-leaved rose.
The closed complement R, of this tubular neighborhood is also a tubular

2 The outer parentheses here mean ‘‘ideal generated by’’.
3 The homomorphic image of an ideal is not necessarily an ideal, but the product
of two subsets of JBy is defined in the obvious way.
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manifold of genus 2. Hence any closed 8-dimensional manifold M’ may
be constructed by welding a tubular manifold R of genus h to the
boundary R, of S—R, according to a given Heegard diagram. Any bound-
ed 3-dimensional manifold M may be represented as the complement in
a closed manifold M’ of a tubular neighborhood R,U --- UR, of u

roses L, «-« UL,. This system of roses may be deformed by an isotopy
of M’ into M’ — R. Thus we have

LEMMA 2.1. An arbitrary 3-dimensional bounded manifold may be
obtained from the closed complement in S* of a tubular meighborhood
ROUR Us--UR.0f a dzsyomt system LyUL,U+++ UL, of roses by weld-
g R to the boundary R of a tubular mang, .fold of the same genus.

The fundamental group of a surface Ri (of genus h; = 1) is presentable

as (g, =--, Tings Epy oo, Eihi. H [xw, fik]) where x;,, +-- L,y Eiy oo, Emi

are represented by canonical curves on Ri Sucha presentationof nl(R,) is
called canonical, the generators are called canonical generators, and the
relator, a canonical relator.

THEOREM 2.2. Let M be an orientable 3-dimensional manifold bounded
by surfaces of genus zero and surfaces S, of genus h,=1(i=1, «-., £ >1).
Then m,(M) has a presentation of deficiency

1432 (b —1)

containing canonical presentations of w(S,), «++, 7(S.-.).

PROOF. We prove the theorem first for the special case of a manifold
M'imbedded in S® whose boundary surfaces are the boundaries R,,, cee R
of tubular neighborhoods of roses L, +--, L,. The group = (M ’) =
(S —L,U --- UL, has the Wirtinger presentation with genera-
tors @y (t =0, ece, pt; G =1,¢0,by; k=1,---,v,,) and relators r,,
(E=0,cc0, ;5 j=1,000,by; k=2,---,y,) and r,({ =0, -++, ). The
generator x,,, corresponds to the k™ branch of the 5 leaf of the ™ rose
L, and

Tise = Wik 6-1WeskTisks r = H’;il xmw{fv“ .
The relators r,,, correspond to crossings, while r, is read around the node
of the 7" rose. This presentation has n = Ef_o<E:‘ Y ,) generators and
m=p+1+ E:;OE] ! (viy — 1) relators. Any of these relators, say 'r,*,v
is a consequence of the others and may be deleted. Furthermore
(WY 35 We ) (Wi HWIET 35 W4 35 Wy g0) = oo (WG = o o Wi T3 Weg, + = Wyy)
= T Tinéid
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where
Eiy = (WipWipyoy = Wige) ™" .

The elements x,,,, £,,(j = 1, - -, h,) represent a system of canonical curves
on Ri and the corresponding canonical relator 7} is obtained from », by
replacing x;;, by &;/®,,,&, for j =1, «++, h,. After we have deleted the
relator », from the given presentation we may apply Tietze transforma-
tions of the first kind to replace »; by », for 1 =0,1, ---, £ — 1. The
deficiency of this presentation is

(T i) = (+ Z Gy — D) =1+ T — 1) .

By Tietze operations of the second kind, which do not alter the deficiency
of the presentation, we introduce &, = (w,,, +++ w;;)~'. The resulting
presentation of w,(M’') has the required properties.

By Lemma 2.1 an arbitrary bounded orientable 3-manifold M is obtained
from such an M’ by welding Ro with the boundary of a tubular manifold
R of genus h,; 7,(R) has a presentation given by the generators x,,,, &,(J =
1, ---, hy) and relators p,,, «--, Oon, corresponding to a system of meridian
2-cells in R. The relator »; is a consequence of 0y, +«+, O, Hence a
presentation of z,(M) is obtained from the above presentation of 7 (M)
by adjoining 0, *++, O, and deleting r;. This presentation has de-

ficiency equal to 1 4 3% (k, — 1) and contains canonical presentations
of 771(S1)y R ﬂl(SM—l)‘
THEOREM 2.3. Let N be a manifold bounded by at least one surface of

genus one, M a bounded manifold and T a tube with N=MUT, T =
MNT. Let A(M), A(N) be the Alexander polynomials, Fxy and F, the
Sundamental ideals of JB,(N) and JB|(T) respectively,

3(N) = g.c.d. By, T)=g.cd. Fr,
then
8x(T) « A(N) = 8(N) - Ay(M)
where the subscript N denotes injection into JB(N).
PrOOF. By Theorem 2.2, 7,(M) has a presentation
(T =22y Tmy 21, 222 71, 2), =2 =, T2, 2), [24, 25])

where z, and z, are canonical generators of T. The group 7,(T) has a
presentation (z,, 2,: w(z)) where w(z) is the relator corresponding to a
canonical 2-cell of T. Since [z, 2,] is a consequence of w(z), ,(N) has the
presentation
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(xv 0%y Ly %1y Ry rl(xy Z), M} r,,,(x, z)’ w(z))

of deficiency one. We distinguish two cases:

CASE 1. Some 2{¥ # 1, say 2z,. From the Alexander matrix of 7, using
Lemma 1.1,

S(T) . <gzﬂ)‘/’z"2 — (zl — 1)4/2(02 . A(T) — (zl _ 1)4,2(,2

2

hence in N,

(3280 = -1

From the Alexander matrix of M,

S(M) - (2, — D « |27
ox

191

(& — D - AM)

and 8(M) = 1 since p,(M) = 2. From the matrix of N,

(5 = 1%+ AN) « 85(T) = 8(N) - 8(T) - (22)"" . | 22|
= o) - e — 1 - | 22"

=8(N) - (2, — 1)*? « Ax(M)
hence
8x(T) - A(N) = &(N) - Ay(M) .
CASE II. 2{¢ = 2{* = 1. Then 8(T) = 0. Since p,(N) =1, we must
have some xf? + 1, say 2¢* #+ 1. Then from the matrix of M,

@, — 1)% « A(M) = (20 — 1) - |27 ... 97 0r
0z, 0x,, 0z,

or ... or or

J— 1 —_ z‘/’ . - —
( $) ox, 0x,, 0z,

Hence Ay(M) = 0. So the conclusion of the theorem is trivially true in
this case.

We now state without proof a classical theorem of van Kampen [8] in
a simplified form due to R. H. Fox [2].

THEOREM 2.4. Let X and Y be closed connected subsets of a connected
topological space X U Y such that X N Y is connected and is a neighbor-
hood deformation retract of X and of Y. Let iz: 7 (XN Y)—n(X) and
1p: T(X N Y)—m(Y) be the injections, Pthe free product n(X)*m,(Y)and
Q the normal subgroup of P generated by all elements i(2)*i,(2") where
z ranges over the set of generators of T1(XNY). Thenw(X U Y) ~ P|Q.
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In particular, using a circle to denote direct product, we have the
abelianized form of 2.4:

COROLLARY 2.5. The section

H(XNY)— H(X)o H(Y) = H(XU Y)— 0

of the Mayer-Vietoris sequence [9] of the triad (XU Y; X, Y) s exact
in the singular homology theory (if the triad satisfies the hypotheses of
Theorem 2.4).

Consider a tube T imbedded in a complex K. The fundamental cycle
7 of the center line of 7' may be approximated in K by a simplicial map-
ping ¢ of a circle S* (i.e., simplicial in the affine structure of K) such that
o is homotopic to 7 in 7. Furthermore, by making small deformations
we may guarantee that o is a homeomorphism. Let T, be a tubular
neighborhood ([6], p. 225) of the simple closed polygon a(S?) in the affine
structure 3 of K with T, C interior T. We call T, an approximation to
T in =.

LEMMA 2.6. Let T be a tube in the interior of a bounded manifold M.
The tmage of the injection 1: Bl(fl") — B|(M — T) is non-trivial.

ProOF. Let T, be an approximation to 7' in the given affine structure
of M. It is known [10] that the image of the injection ,: B(T,) —
B,(M — T,) is non-trivial. The injections 7’: Bl(’.l") — B(T'— T),) and
o Bl(’.l"l) — By(T — T,) are isomorphisms and we have 7, = ¢ - ¢'~* - 4],

LEMMA 2.7. Let T' be a tube in the interior of a bounded manifold
M, T" a tube in T’ such that the center line of T" is homologous in T’
to the center line of T'. Then the injection H(M — T') — H(M — T")
18 an isomorphism.

Proor. Consider the exact sequence

H(T") 2 H(M — T") o H(T — T") % H(M — T")— 0
given by Corollary 2.5.

We have
Y(@) = (@) o Yr(x™),  2Y) = PuY) - PY) ,
where
o :HM—T"Y— H(M — T"), @ H(T — T"Yy— H(M — T"),
Yry H(T")— HM — T"), . 2 H(T")— H(T — T")

are injections; clearly +, is an isomorphism. Now we have p(H,(M —T"))=
H(M — T"). For givena € H(M — T"), let
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(@), a,) € H(M — T") o H(T — T")

with ¢(a,, a,) = a, let b € HI(T’) with yr,(b) = a,. Then (a,, a,) - Y(b~) =
(a1, 1) € H(M — T') and ¢((a,, a,) - ¥(b7Y)) = ¢(a,, a,) = a. Furthermore
kernel (| H(M — T')) = (kernel ¢) N H(M — T"') = (image ) N H(M —
T') = 0 since kernel v, = 0. Thus

o HM —T'Y— H(M —T")
is an isomorphism.

LEMMA 2.8. Assume the hypotheses of Lemma 2.7 and moreover that
T" is smooth'. Then there exists a homomorphism Q of m(M — T") onto
(M — T') such that the diagram

T(M — T") 2 (M — T")

¢"’l l(ﬁ

H(M—T") <&~ H(M — T")

18 commutative, where "' and r are the natural homomorphisms and ¢
18 the isomorphism of Lemma 2.7.

PrOOF. Since T’ is smooth we may assume that 7T’ is a tubular
neighborhood of the center line of another smooth tube 7. Consider
the commutative diagram

HM —T) & a(M - T) (T — T") > H(T — T
| s |
@1 Qll > w(T) < le 2
¢ & N ¢
H(M—T) (M — T) 2T — T -4 H(T — T")

where ¢, Q,, 1, 1,, J, are injections (in particular, @, and Q, are identities),
\, ¥, yr are natural homomorphisms, @, = (i,)5; 'y and Q, = Y~'p; "y
the last two definitions are permissible because (yri,), 5, and +» are iso-
morphisms. The homomorphisms Q,, Q, define a homomorphism Q,*Q, of
(M — T)xm(T — T") onto m(M — T)*xn (T — T"). If te ﬂl(T) then
Q% Q(14(T) *1(77Y)) =1,(7) * 5(v~"). Hence we have by Theorem 2.4, Q,*Q,
induces a homomorphism Q of 7,(M—T") onto 7,(M—T"). Since the iso-
morphism ¢: H(M — T') — H(M — T") of Lemma 2.7 is induced by
(P, o) H(M — T)o H(T—T")— H(M — T)o H(T — T"), the remain-
der of the lemma follows from Corollary 2.5 and the commutativity

¢ That is, T is contained in a concentric tube in M. A tubular neighborhood of
a polygonal curve in the interior of a bounded manifold is smooth.
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of the squares in the above diagram.

LEMMA 2.9. Let T be a smooth tube in a finite complex K. Then
(K — T) is finitely generated.

ProoF. Let T, C T, be tubes concentric with and containing 7. There
exists a polyhedron P in a subdivision of K with K — TH>DP>K — T,.
The injection h: 7,(K — T\) — m,(K — T') is an isomorphism, since K — T,
is a deformation retract of K — T. But A is the composition of the injec-
tions +: (K — T,) — m(P) and j: 7(P)— 7 (K — T). Hence j is onto
and since 7,(P) is finitely generated, 7 ,(K — T) is finitely generated.

Let us remark that in all that follows equations involving the Alexander
polynomial are only true up to a unit factor of the ring JB.

LEMMA 2.10. Let M be a bounded 3-dimensional manifold bounded by at
least one surface of genus one. Let T be a smooth tube in the interior of
M (not mecessarily in a triangulation of M), T’ a tubular neighborhood
of the center line k of T in a triangulation o of T, T" a tube in ¢ whose
center line is homologous to k in T. Then Ay(M — T") = Ay(M — T").

Proor. By Theorem 2.2 7,(T — T") and = (T — T’) have presentations

of deficiency one that contain canonical presentations of 7,(T'). Hence by
Theorems 2.4 and 1.3

Fuorr — 1)+ Sy pT — T") - (g.c.d. Fu_r(M — T)) « A(M — T") =
(Zu-r — 1) - (g..d. FM —T")) « Ay (T—T") - (g.c.d. Cy_p.(M—T))

where z could be either of the generators of Bl(T). By Lemma 2.6, z,_,
must be non-trivial for one of the generators, so by Lemma 2.7 the cor-
responding z,_,. must be non-trivial, and hence the factors Ry — 1)
may be cancelled. Let 7T, be an approximation to 7 in a subdivision of
M. Again by Lemma 2.7 g.c.d. §y_r(M — T) = g.c.d. FM—-T" =1;
and obviously p(M —T)=p(M—T)=p(M —T,) =2 (see [10]),
8(T— T')=1. From Theorem 2.3 one calculates directly that A(T — T")=
A(T) =1, hence Ay(T — T") = 1. So if we inject the above equation into
JB,(M) we are left with

Ay(M —T") = (g.c.d. Cy_(M — T))y
and similarly
Ay(M —T") = (g.c.d. Cy_r(M — T))y

But by Lemma 2.7 we have a commutative diagram



LENS SPACES 173

B(M —T")
e/ | N\
/ N
B(M —T) ¢!t B,(M)
sl 4
@ I\I /’L”
B(M —T")

and from this follows the equality of the terms on the right.

THEOREM 2.11. Let N be a manifold bounded by at least one surface
of genus one, T a smooth tube in the interior of N. Then

S5(T) - A(N) = 8(N) - Ay(N — T) .

PRrOOF. Let T, be an approximation to 7 in a subdivision of N, and let
T' be an approximation to T, in a triangulation of 7. Now, it follows
from 4.8 and 4.4 of [7] that the elementary ideals of a group G are divided
by the corresponding elementary ideals of any homomorph® of G. Hence
by Lemma 2.8 Ay(N — T) divides Ay(N — T,) and Ay(N — T)) divides
Ay(N — T"). If T’ is a tubular neighborhood of the center line of 7 in
a triangulation of T, then Ay(N — T) = Ay(N — T’). By Lemma 2.10
Ay(N—T') = Ay(N — T"). Hence Ay(N — T) = Ay(N — T,). By Theo-
rem 2.3, 8y(T)) « A(N) = 8(N) « Ay(N — T,) and since 64(T,) = 5(T),
we have

on(T) « A(N) = &(N) - Ay(N —T) .

3. THEOREM 3.1. Let k, k' be disjoint knots carrying homologous
cycles in a 3-dimensional orientable manifold M. Then

(a) B(M — k) =~ B(M — k'), in particular, B(M — k — k') has a sub-
group which injects isomorphically onto both B(M — k) and B(M — k').
If k carries an element of order p in M, then p(M — k — k')
=l1+pM—-k)=2+pM) if 0>0, and p(M—k—Fk)=1+
pM — k) =1 + p(M) if p = 0.

(b) The ingection of the torsion group T(M — k — k') — T(M — k) is
an 1somorphism.

The proof is preceded by an easy lemma.

LEMMA. If the sequence G —— H—"> J —— 0 is exact and J is free
abelian on generators a,, « - - ,a,, and a,=vb;, then H = ((G)o(b;)o «+« o(b,),
where (b,) denotes the subgroup generated by b,.

PROOF OF THEOREM 3.1. Consider the commutative diagram

5 That is, a homomorph the kernel of which is contained in the kernel of ¢e.
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0
Hy (M)
i/ \<
H(M, k) < j H,(M, k')
9
H(M, kUK
b F) o
H(kUK)
e N
H(k) ¢ i / H(k')
N Y
H(M)
a N
H(M, k N H(M, k'
( , ) \y¢ ’ / ? )
N 9
‘3 Hx(M; k U k’) ‘3/
g J

h R
Hyk) — Hyk U k') «—— Hy(k')
formed from the exact sequences of the pairs (M, k), (M, k U k'), (M, k'),
and additional injections g and . We first prove (a) by exhibiting a basis
for B(M — k — k') having a sub-basis which represents bases for both
B(M — k) and B(M — k'). By hypothesis iH,(k) = i'H(k') = (), a
cyclic group of order p, 0 < p. We consider explicitly only the case 0>0;
the modifications of the proof for o = 0 will be obvious. Let H,(k) = (58),
H(k") = (B) with i@ ='8'=a. Let v = (WB)-(hB™*). Then iy =0
and it may be verified by a trivial calculation that
kernel ¢ = (h8%) o (v) = (W'(B'Y) o (v) .
By exactness there exist &, 8, in H (M, k U k') with 88, = k3, 35, = 1.
Let &f = §, - 8; then 88, = h'(8'y. By the lemma,

H(M, k UK') = JH(M) o () o (8,) = TH{M) o (8) o (3,) .

By exactness there exist &, in Hy(M, k), &, in H(M, k') with 8%, = /3,
0'8 = (B'Y, then g% =38,-41, g8 =8 -j7. Let ¢ =23 -4y e =
&+ '™, then de, = B, d'¢) = (B'Y, g, = &, g'e) = &). Since B° and (B')y
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generate the images of 6 and 8’ respectively, we have by the lemma,
H (M, k) = jH(M) o (g,), H(M, k') = j'H(M) o (¢}) .
Using the fact that 7, 5* and j have kernel 0 it is easily verified that
9 : H(M, k) — jH(M) o (3,)
9’ H(M, k') — jH,(M) (&)

are isomorphisms. Let \,, -+, \,_, be a Betti basis for H, (M), ¢, = 7\,
€ =4N, & =4\ for =1, -, 7 — 1. Then &, ¢, ++-,¢,_, is a Betti
basis for H,(M, k), &), &, -+, ¢l_, is a Betti basis for H(M, k'), and
8 81y +++, 8, is a Betti basis for Hy (M, k U k'). By the Lefschetz duality
theorem there exists a basis &, &, -+ 5 of B(M — k — k') with inter-
section matrix || @(Si, ) = |84l where d;; is the Kronecker delta. The
sub-basis 80, 81, 8, , represents a basis for Bl(M k); it also repre-
sents a basis for B,(M — k'). For @(85, ;) = (85, 8;) = & for 0 =<1,
i=r—1,8@0,¢e)=6@0,8)=28, for 0<i<r—1,1<j=<r—1,
and &, &) = &S, &) = &(S;, 8, - 87) = 8, for 0 <i<r—1. This
proves (a).

Now we prove (b) by exhibiting a basis for T\(M — k — k') which also
represents a basis for T,(M — k). Since k is a connected set, 0 H(M, k)=0,
so by exactness 7 is onto. Now 8H(M, k U k') is an infinite cyclic group
(@). Consider 8 in H(M, k U k') with 88 = a. By the lemma we have

H(M, kU k') = jH(M) o (8) = gH(M, k) ° (8)

Since image i=image 7, we have kernel j = kernel 7; from gjH(M) =
JH(M) it then follows that kernel g=0. By the Lefschetz duality
theorem there exist dual bases ¢, --+, 7, and %,, -+, T, 0of (M, k Uk')
and T,(M — k — k') respectively with linking matrix [|B(7;, 7))|| =
|| 8;,/order 7,||. Since B is of order zero, g-'r,, -+, g7'7, is a basis for
T(M, k), and ||B(%;, g7'7,))|| = ||B(%, T,)||. So %y, «++, T, also represents
a basis for T(M — k). This completes the proof.

We are now in a position to make our basic definition. Let M be an
orientable 3-dimensional manifold, « an element of H,(M), k a polygo-
nal knot carrying . The injection 7: H(M — k) — H,(M) induces a homo-
morphism

%: B(M — k) — H(M)iT(M — k) = D(k)

The Alexander polynomial A(M — k) is determined up to a multiplicative
factor +3, 8 in B(M — k). So the image A¥(M — k) in JD(k) is deter-
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mined only up to a multiplicative factor +3*. We define A*(a) to be
AXM — k).

We proceed to justify our definition. Let &’ be another polygonal knot
carrying a. By Theorem 8.1b, ¢Ty(M — k) = i'T(M — k'), hence D(k) =
D(K') = D(a) so A*(M — k) and A¥(M — k') are elements of the same
ring. Furthermore we may assume that % and k' are disjoint, for a
polygonal knot k" homologous to and disjoint from both % and %’ is easily
constructed. It remains to prove:

THEOREM 3.2. Let k and k' be disjoint polygonal knots carrying ho-
mologous cycles in an orientable 8-dimensional manifold M. Then
A¥(M — k) = A¥(M — k).

We first prove a lemma which will enable us to assume k, k' in the same
triangulation.

LEMMA. Let %, 2’ be affine structures on M, and let k be a knot in 3.
Then there exists a knot k' in %' such that k' is homotopic to k and
A¥(M — k') = A¥(M — k).

ProOF. Let T be a tubular neighborhood of ¥ and Vc Uc T tubes
concentric with 7. It follows from Lemma 2.6 that there is an element
o of By( U ) which injects non-trivially into B,(M — V) and is represented
by a loop m homotopic to k£ in U, hence in M. Let m be approximated
by a knot &’ in 3’ with a tubular neighborhood 7" disjoint from V. By
Theorem 2.11,

(1) duv(T") + AM — V) =8M— V) Ayy(M -V — T
(1) Our (V) AM —T')=8M —T") + Ayr(M —V — T")
The injections induce a commutative diagram
B(M—V)
o/ l* ANA
/ AN
B(M —V — T')—> D(k) «—— B(M — T)
\. I*’ /
RN %
B(M —T")

and 1,, %, are isomorphisms. If we consider a tube 7" in M — T, near T
and congruent to 7, and denote by ¢ the element of B(M — T) carried
by T", it is clear that i o — 1) = §,_,(T") and i(c — 1) =8y (V).
Thus if we apply ¢;* to (1) and 4;* to (1') we have
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(60— -7’ AM—-V)=8M—T) - i;AM — V — T
=(—1)-i;'AM—-T"
and since 0 + 1, i;'A(M — V) = i;'A(M — T"), hence
A M —k)=A*M —V)=A¥M —T") = A*(M — k') .

PROOF OF THEOREM. By [10] we have p(M — k) = 1, so we may dis-
tinguish two cases.

CASE I: B,(M — k) has rank one: in the notation of the proof of Theo-
rem 3.1, B(M — k) = (5,) = B(M — k'), where i = 0 (hence r = 1) if
©>0andi=1(hence r = 2) if p = 0. Let &, be represented by a po-
lygonal knot m ¢ M — k — k', in the triangulation carrying k and k. We
have @(51, 8,) =0, and we may assume that §, is represented by an
orientable surface bounded by kU %’, which is intersected an even number
of times by the polygon m. By joining the intersections in pairs by small
tubes enclosing segments of m we may construct an orientable surface
in M — m bounded by k and %'. Hence we have k homologous to %' in
M — m. Now suppose k represented an element of T (M — m), (which
implies 0 > 0.) Then there would exist an element ¢ of H,(}M, k) with
de = 37,0 > 0. But any such element is of the form & - II;Z, &%, so
@(VBO, ¢)=o hence ¢ cannot be represented in M — m. So %k and similarly
k' represent elements of order zero of H,(M—m). By applying Theorem
2.11 to the appropriate tubular neighborhoods we have

(2)  Sus(m) < AM — k) =8M —k) « Ay (M — k& — m)
(2') Oup(m) - AMM — k') = &M — k') + Ay_(M — k' — m)
and since (M — k — m) = 8(M — k' — m) = 1:

(3)  Ou-kmll) - AM —Fk —m) =Dy (M — k — k' — m)

(3)  Oywrml) c AM —F —m) = Ay (M — bk — k' — m) .

Using 8y_(m) = 8(M — k) and 8,_,.(m) = &M — k'), (2) and (2') become
(4) AM —k)y=Ay_ (M —Ek —m)

(4" AM —K)=Ay_o(M — k' — m) .

Let 9: H(M — k — m) — H(M —m) and g": H(M — k' — m)— H(M — m)
be injections, and let G be the subgroup of H,(M — m) generated by
9T(M — k — m) and ¢'T(M — k' — m) (it can be shown that these im-
ages are identical but this fact is not required). Define C(M — m) =

H(M — m)|G. Because G maps into 1T,(M — k) under the injection
J: H(M — m) — H(M) we have the commutative diagram
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B(M — k — m)—> B(M — K)

VAN N
N AN
B(M—Fk— kK —m) C(M — m) — D(x)
N 7 S
\ /#I /*/

B(M — k' — m)—> B(M — k')
where all homomorphisms are induced by injection. Injecting (3) and (3')
into C(M — m)
SE') « AHM — k — m) = &(k) - A"(M — k' — m)
and since k, k', represent elements of order zero of H (M — m), &(k') =
8¥(k) cannot be a zero divisor in JC(M — m). Hence AYM — k — m) =

A¥(M — k' — m). Using (4), (4') and the commutativity of our diagram,
it follows by applying the homomorphism j that

A*(M — k) = A¥(M — k')

CASE II. B,(M — k) is of the rank > 1. Again we consider two cases:
(a) ais an element of order zero of H(M). By Theorem 2.11,

Su_w(K') - AM — k) = Ay-(M — k — k")
hence
S*(K") « AX(M — k) = A¥(M — k — k') = &*(k) - A*(M — k')
and since 8§*(k') = &*(k) is not a zero divisor of JD(x),
A*M — k) = AX(M — k') .

(b) @ is in T(M), thus, in the notation of Theorem 3.1, B(M — k) =
(8)©(8) 0 ++=0(8,-,), » > 1. Let m,nc M —Fk — k' be disjoint polygonal
knots in the given triangulation, representing 51 and 50 . 51 respectively.

We verify as in Case I that k and %’ represent the same element, of order

zero, of H,(M — m — n); note that n represents an element of order zero
of H,(M), hence of H(M — m). By Theorem 2.11,

(5) Su-r(m) « AM — k) = Ay (M — k — m)
(6) Ou-i-m(M) « AM — k —m) = Ay_y(M — k — m — n)
(7) Out—t-m-n(l') « A(M — k — m — n)
=Ay vmnMM—k—FK —m—mn)

and similar equations (5’), (6'), (7') involving k’. Let f:H,(M —k—m—n)—
HM~—-m —mn)and fmHM — ¥ —m —n) —» H(M — m — n) be the
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injections, F the subgroup of H,(M — m —n) generated by
ST(M—k—m—n) and f'T(M — k' — m — n). Define C(M — m — n) =
H(M — m — n)/F, and C(M — m) as in Case 1. Then the injections
induce a commutative diagram

B(M—k —m —n)— B(M — k — m)—> B(M — k)

/! N§ AN Nk
/ \ wN .
BM—k—k —m—n) CWM—m—mn)—> C(M— m)—— D(a)
AN / / /
N Y ¥ S

BM—-FkK —m—n)— B(M— kK —m)— B(M — k)
Applying (§), (§') to (7), (7),
S - AM—k—m—mn)=58Ek) - AYM — kK — m —n) .
Since 8%(k') = 8¥(k) is not a zero divisor,
(8) AM—k—m—n)=AY M —k —m —n).
Applying h to (8) and using (6), (6'),
S*m) - AMM — k — m) =8(n) - A¥ (M — k' — m) .
Since 8*n) is not a zero divisor,
(9) A M —k —m) =AY (M — k' — m) .
Applying 5 to (9) and using (5), (5'),
8*(m) « A¥(M — k) = %' (m) - A¥(M — k')
Since §*(m) is not a zero divisor,
A* (M — k) =AY (M — ') .

4. ExAMPLE I. THE 3-DIMENSIONAL LENS SPACES. Let T and U be
tubes, a and b the meridian and longitude of T, ¢ and d the meridian and
longitude of U. The lens space L(p, q) is obtained from T and U by identi-
fying T with U in such a way that ¢ = a?-b” and d = a” - b¢ where
qq — rp = 1 (hence gq = 1 mod p). Thus 7,(L) is the cyclic group (b: b?).

Any polygonal knot % in L may be transformed by an isotopy of L into
a knot in U. Let n = B(c, k). In order to compute A* we may, by Theo-

rem 3.2, assume that k is in the form of a torus knot of type (n, 1) (see
[6, p. 179]). Using Theorem 2.4 to combine 7 and U — k, we have

(L — k) = (¢, d,z:[e,d],cd” - ", a,c' - a® - b*,d"" - a” - bq_)
= (b, x: b**"0 . g=) .
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We propose to characterize the homology classes v having the proper-
ties:

(1) Hy(L — v) is infinite cyeclic.

2) A*(y)=1.
From the relation matrix for H,(L — k)

b x
Ilp + ng — nl|

we see that condition (1) is satisfied if and only if (n, p) = 1; in that case

H(L — k) = (t) where b = t* and & = t**", Hence the Alexander matrix
for the given presentation of 7 (L — k) is then

b x
troeno _ 1 trpend _ 1
tr —1 trened g

Using Lemma 1.1 we have
Cep . (EP )t —n
(3) AL —k)y=¢e-t-({ ¢
<( [ A— 1) . (tp-a-nq _ 1) >

with ¢ = +1. Multiplying (8) by ¢ — 1/t — 1 and mapping into JD(7)
we find that for condition (2) to be satisfied it is necessary that

n’q n

e-t“o<t_q_1>=t_1 (mod t* — 1) .
™ — t—1

Letting ¢t = 1 we have ¢ = 1. Multiplying (3) by (¢* — 1)(t**™ — 1) and

mapping into JD we obtain

gra+n-y Tt % +t= tn2&+1 + na-v L1 (mod tr—1).

For this to be an identity in JD(vy), the exponents on the right and on
the left must cancel in pairs (mod p). Since n and g are relatively prime
to p we must have

(i) eithery=0or ng + n — v = 0 (mod p), and

(ii) either ng —v=1or n — v =1 (mod p).
These four possibilities lead to » = 1, —1, ¢, —q (mod p). But conditions
(1) and (2) are satisfied for » = +1 by the curves +d and for n = +q by
the curves +b. Since k represents the homology classes b=, the ele-
ments v in H,(L) satisfying (1) and (2) are precisely

b, b1, be, b .
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Under change of generator b — (b')*, with (k, p) = 1, these become

@), (0')", (0'), ()" .
Thus the ratios of the exponents of the elements of H,(L) satisfying (1)
and (2), expressed as powers of a single generator, are 1, +q, +1/q

(mod p), and are invariants of the lens space L(p, q¢). But one may ex-

hibit [6] a homeomorphism of L(p, q) and L(p, ¢’) if q¢’ = +1 (mod p).
Therefore:

THEOREM. The lens spaces L(p, q) and L(p, q') are homeomorphic if
and only if either ¢ = +¢q or q¢’ = +1 (mod p).

ExampLE II. THE TOPOLOGICAL SUM OF TWO LENS SPACES. Let M, and
M, be oriented 3-dimensional manifolds, E, and E, open polyhedral 3-cells
with E, c M, and E, € M,. The topological sum M = M, @D M, is the
oriented manifold obtained from M, — E, and M, — E, by semi-linearly
matching E with E in such a manner that M, — E, and M, — E, are
coherently oriented in M. By Theorem 2.4, m,(M) = m,(M,)* 7 ,(M,).

Let V, and V, be disjoint tubular neighborhoods of circles C, and C, in
the plane z = 0 of S°. Let ¢;, d; be longitude and meridian respectively
of Vi,'i =1,2. Let T, and T, be tubes; let a;, b, be meridian and longi-
tude, respectively, of Ti, 1 =1, 2. The topological sum

M= L(pv Q1) 69 L(p27 Q2)

may be formed from S® — V, — V, = U, T, and T, by identifying I./'i with
Ti in such a manner that ¢, = a% - b% and d, = aj - bl where ¢,q, — r:p, =
1,i=1,2. We have m,(M) = (b, b,: b%, b22). It is known [12] that the
elements of finite order of this group are either transforms of powers of
b, or transforms of powers of b,, hence every element of H(M) which is
an image of an element of finite order of m,(M) is either a power of b,,

or a power of b,. Thus H,(M) has two topologically distinguished cyclic
summands:

H! = (b: b"1) and H? = (b2 b)) .

Any polygonal knot k& in M may be transformed by an isotopy of M
into a knot in U. Let n, = ¥(c,, k) for i = 1, 2. Using Corollary 2.5 we
have a relation matrix

b, e
' 'pl —n, 0
O _nz p2

=ali
™
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for H,(M — k); b, is represented by the longitude of T, and e by the merid-
ian of a tubular neighborhood of &k in U.

Let v be an element of H, (M) and let ¢: T\(M — v) — H(M) be the
injection. We wish to characterize those elements v having the following
properties:

(1) HM—-v)=Z-2,,, tT(M — v) =1iZ,, = H}

(2) A*(7) =, .

Since kernel ¢ = (e), tb, = b, ib, = b, we “‘*know’’ that i~ H} is generated
by 51 and e, and that 1-'H? is generated by 52 and e.

(i) Since H(M —v)=1i"H}e Z,, i"'H} must be an infinite cyclic group
Z'. Since its relation matrix is

b, e
[l o, —m |
we must have (n,, p,) = 1.

(ii) ¢'H? must be the direct sum of Z, and the cyclic group 0.2z,
Since its relation matrix is

e b,
” — N, pz”

we must have n, = 0 mod p,.

The latter condition implies that & is homologous in U to a knot whose
linking number with the circle C, is zero, hence to a knot which is com-
pletely contained in a 3-cell F' containing V, and disjoint from V,. By
Theorem 2.4,

771(11[ - k) = 7'51((17' - V1) u Tl)*ﬂl((s — F — Vz) U Tz) .

Now (F' — V,) U T, is the complement in the lens space L(p,, q¢,) of the
knot k& and a 8-cell, while (S — F — V,) U T, is the complement of a 3-
cell in the lens space L(p,, ¢,). Hence the Alexander matrix for M — k
takes the form

A, 0
0 D.
where A, is an Alexander matrix for L(p,, ¢,) — k. Since B(M — k) has

rank one we have, by deleting an appropriate column of A, and applying
Lemma 1.1, ’

AM — k) = p, - AM—E(L(pl? ¢) — k)

hence condition (2) requires
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D * A*(L(pl’ Q1) - k) = D2
or
A*(L(pv ql) - k) =1.
This may be written as

v, (t”l(”l""‘l‘_ll) —1)+(t—1) _

e-t =
(t"’l — 1) . (tr1+nlq1 — 1)

1 mod (t7 — 1) .

Hence we are left with the condition of Example I, and we conclude that
n, = +1, +q, (mod p,). However conditions (1) and (2) are realized
by curves +d, for n, = +1and by +b, for n, = +¢q,. Hence the homol-
ogy classes satisfying (1) and (2) are

bl’ bl_l? bgl’ I)l_q1 .

Reversing the roles of L, and L, we find that the homology classes satis-
fying the analogous conditions (1), and (2), are

b2, bz—ly bz, bz_q" .

Applying a change of generators b, — (b})"1, b, — (b})": which preserves the
distinguished sub-groups of H(M), we find as in Example I that the
ratios +¢,, +1/¢, (mod p,) and +q,, +1/q, (mod p,) are invariants of M.
Thus we have proved:

THEOREM 4.2. L(py, ¢)) D L(p,, ¢.) = L(py, q1) D L(p., ¢2) of and only
if the components of the sum are pairwise homeomorphic.

5. The author does not know whether the function, which assigns to
every v in H,(M) the factor group D(y) of H,(M), is preserved by homo-
topy equivalence. That the function A*: H(M) — 37+ in a,aJD(7) is not
a homotopy invariant is shown by the fact that the homotopy classifica-
tion of the lens spaces [11] does not coincide with the topological classi-
fication.

As possibilities for further application of the A* invariant we mention

(i) the manifolds constructed by Ausbohrung [6] of knots in S?,

(ii) the.‘“fibre spaces’’ of Seifert [13], and

(iii) Alexander’s theorem [14] that every 3-dimensional manifold is a
branched covering [15] of a multiple knot in S®.
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