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For h = 0,r =0, 1, 2 the Seifert fibred spaces (6)

(Oo; h|b; ay, Bi; - ap By)

are lens spaces (or §*x §%). It is known that the topological classifica-
tion (1) of the lens spaces differs from their homotopy classification.
Surprisingly, the ‘wickedness’ of the lens spaces is not shared by their
‘big brothers’ for A > 0,r = 0, 1. As I shall show below, the topological
classification of these spaces follows from homology for r = 0, and, for
r = 1, from their fundamental groups via the elementary ideals (3).
However, this is not true for r = 2, and this case seems to require new
methods.

The lens spaces can be classified topologically by considering the
complementary spaces of simple closed curves in these spaces. R.H. Fox
has suggested that other 3-dimensional manifolds might be classified by
examining the complementary spaces of pairs of simple closed curves.
The results of this paper show that this is, in fact, the case.

I shall prove that the topological classification coincides with the
(unoriented) fibre classification for those spaces

(00; h|b; oy, By; g, Be)
for which
(1) (o, x5) = 1,

(i) the torsion number p = |ba, ag+PBg o+ B, ;] is greater than
14+ max{x;, ag}.

Condition (ii) necessarily holds if b ¢ —1. If these conditions are
not satisfied we may encounter the algebraic difficulties found in the
Poincaré spaces, and our method fails. I shall, however, derive some
invariants for the case (o, ap) > 1.

The homology group H, distinguishes the lens spaces from the spaces
(Oo; k) for which b > 0, r = 0, 1, 2. Hence it will be assumed through-
out this paper that A > 0.

1. The invariant A**
Throughout this paper, the same symbol will often be used for a geo-
metrical object and a closely associated element of some group. The

Quart. J. Math. Oxford (3), 13 (1962),"161-71.
3695.2.18 M



162 E. J. BRODY

symbol H, for instance, is used for a fibre of a fibred space M and also
for an associated generator of = (M): there are other cases of the same
kind and it is hoped that the convention will assist rather than confuse
the reader. By a knot we mean a simple closed curve which is polygonal
in some triangulation of M.

Let M be a compact, orientable 3-dimensional manifold such that
the Betti group B,(M) is non-trivial. Let y; (§ = 1,2) be elements of
H,(M) and let k; be disjoint knots carrying y;. By Theorem 3.1 of (1),
the torsion group 7)(M —Fk;) depends only upon y,. Suppose that y;
are such that T)(M—Fk) are trivial. The Alexander polynomial
A(M —Ek,—k;) is an element of the integral group ring J B,(M —k;—k,).
It is defined up to a multiplicative unit +u, where we B,(M —k,—k;).
Denote by ok JB(M—k,—k;) > JH,(M)

the homomorphism induced by the injection M —k,—k, - M. This is
well-defined since we have the composition

M—k—ky>M—k;>M
and H,(M —k,) is assumed torsion-free.

THEOREM 1.1. The image under % of A(M—k,—Fk,), defined up to
a multiplicative unit +v, where v € H (M), depends only upon y, and y,.
Proof. Let k; be another knot carrying y, and disjoint from k,; k; may
also be assumed disjoint from %, since a polygonal knot carrying y, and
disjoint from k,, k;, and k, is easily constructed.
Case I: y, € T)(M). Let m, n be knots disjoint from k,, %3, %, and
each other, and having the properties
(i) the cycles carried by m and by n are of infinite order in H,(M);
(ii) the cycles carried by k, and k; are homologous and of infinite
order in H,(M —m—n). Such & pair m, n does exist, as is shown in the
proof of Theorem 3.2 (Case ILb) of (1). Consider the commutative
diagram
By(M —ky—ky—m—n) > By(M—k,—k,)
/ N \
B(M—k,—ki—ky;—m—n) H(M—m—n)—> H(M),
i/
\ /

B\(M —ky—ky—m—n) > B\(M —k—k,)
where all homomorphisms are induced by injections, and H,(M —m—n)
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is the quotient group of H,(M —m—n) by the subgroup generated by
the images

WI(M—k,—k,—m—n) and T (M—kj—k;—m—n).

In the remainder of this proof we omit symbols for homomorphisms
induced by injection.
By Theorem 2.11 of (1), we have

A(M —k,—k—ky—m—n) = 3(k) A(M —k,—k,—m—n)
in JBy(M—k,—ky—m—n), where 8(k;) = 1—k;, and

A(M—k,—ky—ky—m—n) = 8(k,) A(M —ki—ky—m—n)
in J By(M —ky;—ks—m—n); hence

8(ky) A(M —ky—ky—m—n) = 8(k,)) A(M —ki—k,—m—n)

in JH,(M—m—n), and, since §(k,) = 8(k;) is not a zero divisor of
JH (M —m—n),

AM—k,—k,—m—n) = A(M—k;—kyg—m—n)

in JH(M—m—n). Again, by two successive applications of the
theorem,
AM—k,—k,—m—n) = 8(m)o(n) A(M —k,—k,)

in JB,(M—Fk,—k,), and
AM—ki—k;—m—n) = d(m)d(n) A(M —ki—k,)
in JB,(M —k;—k,). Hence
3(m)d(n) A(M —k,—k,) = 3(m)d(n) A(M —ky—k,)
in JH,(M), and, since 8(m), 8(n) are not zero divisors of JH,(M),

. MM —ky—ky) = A —k,—E,)
in JH (M).

Case II: y, ¢ T,(M). Then
A(M —ky—ky—ky) = 3(ky) A(M ~Fk,—k,)
in J B,(M —k,—kj), and
AM —ky—F,—ky) = 8(k,) A(M —FE,—k,)
in J B,(M —k,—k,). Hence
8(ky) A(M —ky—ks) = 8(ky) A(M —k—ky)
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in JH,(M), and, since 3(k,) = 8(k}) = 1—y, i8 not a zero divisor of

HGD, A —ky—ky) = A(M—k;—hy)
in JH,(M).
We define A**(yy, ) = #ok(A(M —k,—kj)).

2. No singular fibres
Let M = (Oo; h|p). Using the notation of [(6) §10], we let
C; = Ayy,p for ¢ 0dd and C, = B, for & even (¢ = 1,2,...,2h). Then
m(M) is presented by
(Cp H, Qo | [C{, H], [Qo: H]; Qo F-, QoHp)»
h
where F = I[ [Coi-1, Cyi]. After Tietze transformations, this becomes
-1
(Cy, H |[Cy, H], FHP).
Omitting commutators we have
H\(M) = (G, H | H?).
Thus p,(M) = h, T)(M) = Z,, and 8o h and p are topological invariants.
The Alexandrian is

¢ C, Lo Can H
C,—1
Cpp—1

1—‘0’ 01—1 . . . C?.h-l—l p

(in this and other matrices, blank spaces will indicate zeros). Let
denote the fundamental ideal of JB;(M). Then the non-trivial ele-
mentary ideals are €y, = (§, p) and Gy, = F2. Notice that, if p = 0,
it follows from Lemma 1.2 of (1) that &, = 0 and hence the Alexander

polynomial A, = 0.
3. One singular fibre
Let M = (Oo; h |b; a,B). Then m,(M) is presented by

(Ci’ H’ QO’ Ql ] [C{’ H]: [QD: H]’ [Ql: H]: Qo Hb: Q?Hﬂ! QO Q], F_l)
- (Of’ H’ Ql! R | [C(! Ra]’ F_Rbﬁ+ﬁ’ HR_G) Ql Rﬂ)
e (Ci’ .R | [C(, .Ra], FRb(!+ﬁ)

by Tietze transformations. Omitting commutators we write
H,(M) = (C,, B| B?),
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and therefore & and p = |ba+pB| are invariants, and p 7 0 because
@ > B > 0. The Alexandrian of =,(M) is

¢, G . . . Cu R
a(C,—1)
o(Cp—1)

1-C, C—1 . . . Cy,—1 batB

Let § denote the fundamental ideal of J B,(M). The only non-trivial
elementary ideals are €g,_;, = . §* and Gy = (&, ). Therefore « is
an invariant. Furthermore, &,,_, distinguishes the spaces (Oo; & | b; a, B)
from the spaces (Oo; h | b) since « is assumed to be greater than 1.
Conversely, suppose A, p, and « given, (a,p) = 1, and let b and 8
be such that p = |bau-+8|. The class space F, of the spaces (Oo; h | b; a, B)
is the topological product of a circle and a perforated surface of genus h.
Let H and @, be a naturally chosen longitude and meridian, respec-
tively, on the torus ¥, bounding F,. Let ¥ be an anchor ring and M,
ite meridian. Then it is clear by the discussion of [(6) 183] that
(Oo; h | b; a, B) is obtained by matching ¥, with V' so that aQq+pH — M;.
This proves the theorem:
THEOREM 3.1. The numbers k, a, |ba+8| are a complete set of topo-
logical snvariants for the (unoriented) spaces (Oo; h |b; o, B).
4. Two singular fibres
Let M = (Oo; h|b; ay, By; o, Bs). Then = (M) is presented by
(Ci: H; QO: le Qz I [C{) H], [Qo’ H]» [Qli H]v [QB’ H]r QO Ql QB F—l’
@ H, @3 HP:, Q3" HP)
> (Cu H, @1, @ By, B, | [C,, H), @y R, @, R,
HR;®™, HR;*, REHF RfY)
-~ (C, H, Ry, Ry | [C,, H], HR; ™, HR; ™, REHCF RE")
and
Hy(M) = (C, H, R, R, | HR{ ™, H Ry ™, RB:H RE:)
- (Cy, B, | R}) = (Cy, R, | RY).
Hence & and p = |ba; ay+B; a, +; ay| are invariants.
Note that the centre of (M) is generated by the element H. For
H is certainly in the centre, and the quotient group m,(M)/(H) has the

presentation (C Ry, Ry | R, R3s, RERF),
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which is the free product of the free group X = (C}) and the group
{R,, R; | R}*, Ry"), with amalgamated infinite cyclic subgroups (F') and
(R; B Ry B) respectively. It is well known that a non-trivial amalga-
mated free product (i.e. the amalgamated subgroup is a proper sub-
group of each factor) has no centre if at least one of its factors has
no centre [see e.g. (4)]. Since X has no centre, 7,(M)/(H) has no centre.

For future reference, we prove that, if (a;, og) = 1, then H is of infinite
order in m,(M): for in that case, by adjoining the relator [R,, R,], we
obtain the group

G = (Oi’ R I [C{: Ra;a,]: MF),

where R, = R, R, = R®, and this in turn maps homomorphically
onto (C,, R |[C,, R), R F, [C,, [C,, Cy]), 6,5, b = 1,..., 2R),

which is the quotient group of the direct sum (X/X;) o (R) by the
normal subgroup generated by the element F o RP. The elements of
this normal subgroup are of the form F™ o RP™ since F is in the centre
of X/X,. Now F is of infinite order in X,/X, [see (2)]. Hence F is
certainly of infinite order in X/X,; therefore none of the elements
F™ o R*™ can be a non-trivial power of R. Hence R is of infinite order
in G and so is H, which maps onto R,

We shall now prove that « == (x,, ay) i8 an invariant. First consider
the case p % 0. Then H, R,, and R, represent the identity of B,(M).
The Alexandrian of =,(M) reads

C ... Cen R, R, H
C—1
Con—1

1-C, . . . Cy,—1 B, B b
a O —1

0 o —1

The non-trivial elementary ideals are
Cony = F and Gy = (o, p).
Hence the residue a (mod p) is an invariant. Since « divides p, o itself
is an invariant.
Returning to the case p = 0, the conditions
> >0, o> B: >0, (@1, B1) = (%,Bz) =1
require that g =0g=a b=-—1, a=p+4h,
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The last presentation of 7,(M) becomes
(Ci H, By, By | (C, H, HR;®, HR;*, H-'F R Rf))
> (Cy By, B, | [C,, BY), By By=, FERR;P)

and R, = R,= R in H(M).
Denoting by ¢,(z) the polynomial (1—z")/(1—z), we can then write the
Alexandrian as

C, e Cop R, R

2
1 Re (Ci—1) $a(B)
1— Re (Con—1) $a( B)
$u(B)  —du(R)
1-CG . . . Cyy—l d’B.(R) —'¢B.(R)

The order ideal &, is zero since H;(M) is infinite. By Lemma 1.2 of (1),
(R—1)E, = § &, where E;, is the ideal generated by the (244 1)th
order determinants of the first 2k-+1 columns. Thus
€ = (1—R*)**($o(R), ¢5,(R)),
(BR—1) €, = (1—R*)**($,(R), $5,(R)) §-
Hence the Alexander polynomial A, satisfies
(R—1)A; = (1—R>)H,
This proves that « is also an invariant in the case p = 0.
We now assume that « = 1, and that p % 1. In that case
(al’.p) = (aliaz) = l,
and 7}(M) is generated by H = R}*. We proceed to calculate the in-
variant A** for the pair H™, (n,p) = 1(j = 1,2). Let T} (j = 1,2)
be disjoint tubular neighbourhoods of non-singular fibres. Let k; be
a torus knot of type {n,, 1} in 7;. Then = (T}—k;,) is presented by
(H’ yj’ zj ] [yj’ H]’ Hwyjzj—m)!
m(M—T,—T;) by
(C{’ H’ on) Ql) QB l [C{r H]» [on: H]r [Ql: H]s [QB: H]:
Qo Qop @1 @z F1, QU HP, Q3 HP:)
- (C(’ H' on’ Rl’ Ri I [C{r H]r [Qop H]: Qo1 Qoe Rl_ﬁl R;ﬁ'F—li

‘ H-1R», H-1R3),

and 7, (M —k,—k,) by generators
O() H) onr Rl: Ra; yj: Zj
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and relators
[Cy H), [@op, H), [y, H), H-B, H-Ry, Hroy, 257,
471Quy HY-D, Q, Qua Ry R PF 1,

and thus, after Tietze transformations, by
(Cy H, Ry, Ry, 2| [C,, H), (2, H), H- Ry, H- By,

2 Ry PRy BH-m-m-F-1).
Omitting commutators, we write H,(M —k,), say, as

(Ci, H, Ry, Ry, 2, | 27 ™ RQ REHY+m, RPH-L, Ry H-Y),

and, if (n;,p) = 1, one can calculate that H,(M—*%,) is free abelian.
The Alexandrian of = (M —k,—k,) can be written

¢, . . . Cu R R, 2 2g H
1—H .

1—H
b (R1)
Pa(Ry)

(1—H),,(21)
. Pni(28)

where the remaining non-zero entries are confined to the last row and
last column, and are irrelevant to our calculation. By Lemma 1.1 of (1),

AM —ky—k;) = eu(1—H)** ¢, (Ry) § o, ( B5) $1,(21) Pna(23),
where ¢ = 41 and » € B,(M—k,—k,), and
A**(H™, H™) = eu* (1—H)* ¢,,(H*) $,,(H) ¢, (H) ¢, (H),
where a;&; = 1 (mod p).

Now H#! are disttnguished generators of T,(M) since they are the
images of the generators of the centre of m,(M). Therefore it is topo-
logically meaningful to ask: ‘what are the pairs {n,,n;} such that
A**¥(H™, H™) = (1— H)?*?’ Clearly the unit «* must be of the form H".
The condition is
eH” (1 _H)Zh ¢u|(H&l) ‘#an(H&’) ¢m(H) ¢m(H) = (I—H)” (mOd Hr— 1)’
or, when we multiply by units of JH, (M),

eH” (1—H)* ¢, (H) $o(H) = (1—H)** ¢5,(H) ¢5,(H) (mod HP—1).
This is true only if

eH" ¢, ,(H) $,(H) = ¢5,(H) $a(H) (mod (H*—1)/(H—1));
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multiplying by (1— H)2, we have
eH (H™—1)(H™—1) = (H%—1)(H%—1) (mod HP—1).
First suppose that e = —1. Expanding, we have
H&1+H51+Hnn+v+Hm+v — Hv+Hm+ﬂa+v+H&,+&,+ 1,
and the exponents on opposite sides must cancel in pairs (modp). The
only possibility is n,+v = 0, say, and then
H&I+H&I+Hﬂl—nl - H—n1+Hm+H&1+&a.

Therefore n, = —g&,, say, and ny = &,.

Suppose that e = 1. Then

Hm+m+V+Hv_|_H&1+Hi. = H&l+&'+H"1+"+H""+"+ 1.
Either n,+n,+v = 0 or v = 0. In the former case,
H-m-mp HA 4 H% — A48 f-m| H-™,
and 80 n, = —a,, say, and ny, = —a,. If v =0,
Hmtm | H% | H&% — Ha+6 | fm | Hm

and 8o n, = &,, say, and n, = a,.

Therefore the pairs of homology classes satisfying the condition are
{H;tax’ H:I:&-}

THEOREM 4.1. The ressdue classes of +«,, +oy (mod p) are invariants
of those spaces (Oo; h | b; ay, By; g, Bs) for which p # a.

Proof. We have proved the theorem for the spaces satisfying the
additional condition « = 1. Suppose that « > 1. Let

o4 = o a, oy = apa.
Consider all possible subgroups B¥(M) c H;(M) such that H,(M) is the
direct sum B¥(M) o T)(M). Let ¢: m (M) - H,(M) be the abelianizing
homomorphism and let T¢(M) = (RY) be the subgroup of index « of
T\(M). Consider the subgroup
6% = X BHH) o TS(M)),
of index « in m (M). The corresponding covering space U*(M) is a fibred
space [(6) § 9] of the form
(00; K Ib,; a;:B;; 0‘-’2’ ﬁ;)’

because H € G*. Thus to each M considered there is a topologically
defined class of covering spaces U*(M) for which the multiplicities aj, o
are relatively prime. The torsion number p’ of U¥ M) is a multiple
of p/x. For H, which generates Ty(U*(M)), maps into H = R{*, which
is of order p/a in 7}(M). Since the residue classes of o; and oy (mod p’)
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are invariants, their classes (mod p/«) are invariants. Hence the classes
of «; and oy (mod p) are invariants.
We add the remark that »p = « is possible only if b = —1.

THEOREM 4.2. The Betti number h, the torsion number

P = |bay agt+-Boay+B) o),

and the unordered pair {«,, oy} are a complete set of topological invariants
for the (unoriented) spaces (00; b |b; ay, By; g, By) satiafying (ay, @) = 1
and p > 1+max{a,, ap}.

Proof. The numbers «,, ay are then determined by the residue classes
of +o;, + . For a given triple {p, a;, a5} with (o, o) = 1, the equation
P = |bay ag+By o +PB; ay| has at most two solutions {b, B,, Bg} for which
oy > By >0, ag > By > 0. The fibred spaces corresponding to these
two solutions differ only in orientation [(6) 184].

The spaces (Oo; k| b; oy, B;; oy, B;) are distinguished from the spaces
(Oo; b | p) by the elementary ideal €, _, if p # 0, and by the Alexander
polynomial A, if p = 0. Can a space M, = (Oo; k |b; ay, By; o, By) be
homeomorphic to a space of the form M, = (Oo; b |b';o',f')? (The
referee has pointed out that (Oo; Ak |b; 3,1;4,1) and (Oo; k1b; 12,7),
for example, have isomorphic fundamenteal groups.) We can supply
a partial answer as follows. If we compare the values of &,;,_,, homeo-
morphism would require o’ = «; «y. If we use €y, (2F,2) = (&, 2),
and hence o = 1 (mod p); therefore « = 1. Also p 7 Osince o’ > ' > 0.
If p # 1, then, the calculation of the invariant A** proceeds as before
if we regard M, as a space with r = 2 and oy = 1, B3 = 0. The previous
argument showing that H was a distinguished generator of 7)(M)
breaks down in the case of M;,. However, we know there is some
distinguished generator (call it K = HY, (¢,p) = 1), and that

A*¥(K%, K%) = (1—K)2A,
Substituting K = H¢, and using the above expression for A** in terms
of H, we have, after simplifying, the condition
+u(1—-H9» = (1—H)?» (mod H?—1) (u e H,(M)).
Clearly u is of the form H*. Mspping H into 6, a primitive pth root
of unity, we have $2M(0) = +07,

which is impossible unless ¢ = 1 (modp), for otherwise |$,(6)] > 1.
Hence H is indeed a distinguished generator. Thus Theorem 4.1 also
applies in our broader sense, i.e. allowing «y = 1, 8; = 0. Therefore
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THEOREM 4.3. If p # 1, the space (Oo; h | b; ay, By; as, Be) (g > By > 0)
18 not homeomorphic to any space (Oo; h|b'; o, B'). -

5. Open questions

How does the homotopy classification of the Seifert spaces compare
with the results found here and, more generally, with the fibre
classification ?

Since the fundamental groups of the Seifert spaces Oo are non-
abelian for A > 0, the Reidemeister torsion is inapplicable. Can the
theory of simple homotopy types (7) yield the information derived here
(assuming that the homotopy classification could not)?

The examples of non-fibreable 3-manifolds given by Seifert (6) are
topological sums of lens spaces, the latter being fibreable. Can every
3-manifold be decomposed into a sum of fibreable spaces? Conversely,
does there exist a non-trivial (i.e. not including &%) sum of fibred spaces
which can be fibred? An affirmative answer to the former question,
and a negative answer to the latter, together with Milnor’s results (5)
would bring the 3-manifold classification problem significantly closer
to solution (modulo the Poincaré conjecture), provided that the results
of the present paper could be generalized to all fibred spaces.
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