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FOR h = 0, r = 0, 1, 2 the Seifert fibred spaces (6)

(Oo; h\b; <*!,&; ..., a,, ft)
are lens spaces (or S1 X S2). I t is known that the topological classifica-
tion (1) of the lens spaces differs from their homotopy classification.
Surprisingly, the 'wickedness' of the lens spaces is not shared by their
'big brothers' for h > 0, r = 0,1. As I shall show below, the topological
classification of these spaces follows from homology for r = 0, and, for
r = 1, from their fundamental groups via the elementary ideals (3).
However, this is not true for r = 2, and this case seems to require new
methods.

The lens spaces can be classified topologically by considering the
complementary spaces of simple closed curves in these spaces. R. H. Fox
has suggested that other 3-dimensional manifolds might be classified by
examining the complementary spaces of pairs of simple closed curves.
The results of this paper show that this is, in fact, the case.

I shall prove that the topological classification coincides with the
(unoriented) fibre classification for those spaces

(Oo; h\b; «!,&; a,, ft)
for which

(i) (ai,«,) = 1,
(ii) the torsion number p = l&c^ajj+fto^+ftajl is greater than

l-)-max{a1, atj}.
Condition (ii) necessarily holds if 6 # — 1 . If these conditions are

not satisfied we may encounter the algebraic difficulties found in the
Poincare spaces, and our method fails. I shall, however, derive some
invariants for the case (a1? â ) > 1.

The homology group Hx distinguishes the lens spaces from the spaces
(Oo; h) for which h > 0, r = 0, 1, 2. Hence it will be assumed through-
out this paper that h > 0.

1. The invariant A**
Throughout this paper, the same symbol will often be used for a geo-

metrical object and a closely associated element of some group. The
Quart. J. Math. Oxford (2), 13 (1962),M61-71.
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symbol H, for instance, is used for a fibre of a fibred space M and also
for an associated generator of 77X(M): there are other cases of the same
kind and it is hoped that the convention will assist rather than confuse
the reader. By a knot we mean a simple closed curve which is polygonal
in some triangulation of M.

Let M be a compact, orientable 3-dimensional manifold such that
the Betti group B^M) is non-trivial. Let yf (j = 1,2) be elements of
HX(M) and let h5 be disjoint knots carrying yy By Theorem 3.1 of (1),
the torsion group T^M—hj) depends only upon yt. Suppose that yt

are such that T^M—kj) are trivial. The Alexander polynomial
A(M—Jbj—k2) is an element of the integral group ring JB^M—Jbx—kz).
I t is defined up to a multiplicative unit ±u, where UEB^M—ky—Jc2).
Denote by ^ j B i { M _ k x _ l c % ) ^ jHi{M)

the homomorphism induced by the injection M—k±—k2 -*• M. This is
well-defined since we have the composition

M—*!—Jfcj. -+ M—kj -> M

and HX(M—kj) is assumed torsion-free.

THEOBBM 1.1. The image under ** of A(M—A^—k2), defined up to
a multiplicative unit ±t>, where v s H-^M), depends only upon yr and y2.

Proof. Let k[ be another knot carrying y2 and disjoint from &2; k[ may
also be assumed disjoint from k^ since a polygonal knot carrying yx and
disjoint from k^, k\, and kt is easily constructed.

Case I: yx e T-^M). Let m, n be knots disjoint from jfej, k[, 'fc2 and
each other, and having the properties

(i) the cycles carried by m and by n are of infinite order in H^M);

(ii) the cycles carried by /fcj and k^ are homologous and of infinite
order in HX(M—m—n). Such a pair m, n does exist, as is shown in the
proof of Theorem 3.2 (Case l i b ) of (1). Consider the commutative
diagram

Br(M—&!—k%—m—n) -> B^M—le^—kt)

/ \ \
B^M-k^-k^-k^-m-n) H^M-m-n) > H^M),

\ f /
B^M-k^-ki-m-n) -^ B^M-k^-k^)

where all homomorphisms are induced by injections, and HX(M—m—n)
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is the quotient group of HX(M—m—n) by the subgroup generated by
the images

iT^M—&!—k2—m—n) and i'T^M—k^—kt—m—n).

In the remainder of this proof we omit symbols for homomorphisms
induced by injection.

By Theorem 2.11 of (1), we have

A(M—k1—]c1—ki—m—n) = S(A )̂ A(M—k1—k2—m—n)

in JB-^M—ij—k2—m—n), where 8(k^) = l—k^, and

A{M—Ax—*i—kt-m—n) = S^) A^M-k'^—Jfc2—m—n)

in JB^M—k[—k2—m—n); hence

8(k[)A(M—Aj—kt—m-n) = h(fc) L(M—k^—kt—m—n)

in J3X{M—m—n), and, since Sffcj) = 8(k^) is not a zero divisor of
S

—l^—kz—m—n) = A(M—k\ — k2—m—n)

in JH-^M—m—n). Again, by two successive applications of the
theorem,

A(M—^-Asj-m-n) = S(m)8(») A(M—kx—k2)

in JB-^M—lc^—k^), and

A{M—k^-ki—m—n) = 8(m)S(n) A(M—k[—kt)

in JB^M—k^—kt). Hence

8(m)8(n)A(M—J^—jfc2) = 8(TO)S(TO) A(if—*£—fc2)

in JH-^M), and, since 8(m), 8(n) are not zero divisors of JH^M),

in JH^M).

Case II: y^^T^M). Then

A^-*!—ii—ifc 2 ) = 8(k[

in JB^M—k1—A2), and

A(Jf—fcx—Jfci—jfc,) = S ^

in JB^{M—k^—k2). Hence
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in JH^M), and, since 8(fc1) = 8(k[) = 1— yt is not a zero divisor of

in JHX{M).
We define A**(yi, ya) = •*(A(Jf-ifc1-fc2)).

2. No singular fibres
Let Jf = (Oo;A|p). Using the notation of [(6) §10], we let

C{ = AiU+li for t odd and C{ = BH for i even (t = 1, 2,..., 2A). Then
TT1{M) is presented by

(Ct,H, Qo | [C^fl], [«0,fl], Q0F-\ Q0H"),
h

where F = TJ [C^-D CM]. After Tietze transformations, this becomes

(Ci,H\[Ct,H],FH*).

Omitting commutators we have

= h, T^M) = Zp, and so h &ndp are topological invariants.
The Alexandrian is

Cs H
Ci-1

(in this and other matrices, blank spaces will indicate zeros). Let 5
denote the fundamental ideal of JBX(M). Then the non-trivial ele-
mentary ideals are (Ey, = (5,p) and (E^-! = g2. Notice that, if p = 0,
it follows from Lemma 1.2 of (1) that (Ex = 0 and hence the Alexander
polynomial \ = 0.

3. One singular fibre
Let M = (Oo; h \ b; a,0). Then ^(.Sf) is'presented by

(Ct, H, Qo, Q11 [Ct, H], [Qo, H], [Qlt H], Q0H»,Q^HP, QO Q, F~*)

-> (C, H, Qlt R | [C,, B-] , FR>*+t>, HR-', Q,

-»- (Q, i? | [Q, iZ«], FR^+P)

by Tietze transformations. Omitting commutators we write
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and therefore h and p = \ boc-\-f$ | are invariants, and p ^ 0 because
a > P > 0. The Alexandrian of TTX(M) is

Let 5 denote the fundamental ideal of JB^M). The only non-trivial
elementary ideals are d^^ = a.g* and (E^ = ($>.?)• Therefore a is
an invariant. Furthermore, d^-i distinguishes the spaces (Oo; h \ b; <x, f$)
from the spaces (Oo; h 16) since a is assumed to be greater than 1.

Conversely, suppose h, p, and a given, (a,p) = 1, and let b and fi
be such th&tp = |6a+^3|. The class space Fo of the spaces (Oo; h \ b; a, /?)
is the topological product of a circle and a perforated surface of genus h.
Let H and Qo be a naturally chosen longitude and meridian, respec-
tively, on the torus Fo bounding -Fj,. Let V be an anchor ring and Mx

its meridian. Then it is clear by the discussion of [(6) 183] that
(Oo; h\b; a, /?) is obtained by matching f0 with V so that a.Q0+pH -*• Mx.
This proves the theorem:

THEOREM 3.1. The numbers h, a, |6a+/J| are a complete set of topo-
logical invariants for the (unoriented) spaces (Oo; h \ b; <x,fi).

4. Two singular fibres
Let M = (Oo; h \ b; 0 ,̂/Jj; aj,&). Then ^(M) is presented by

(<74, H, Qo, Qlt Qt | [C(, H], [Qo> H], [Qx, H], [Q2, H], Qo Q, Q2 F~\

, H], Q1t, H, Qlt Qit R,,

-> (Ct, H, Rlt R, | [Ct, H],
and

HX(M) = (Cit H, Rlt R

-* (Ct, R, | B{) = (Cit Rt

Hence h and^? = |6a1<xa+/?2a:1+/?1a2| a r e invariants.
Note that the centre of TT-^M) is generated by the element H. For

H is certainly in the centre, and the quotient group 7r1(Jtf)/(£f) has the
presentation ( ^ ^
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which is the free product of the free group X = (Ct) and the group
j , Ba | B^1, -Bf')» "with amalgamated infinite cyclio subgroups (F) and

P'B} P*) respectively. It is well known that a non-trivial amalga-
mated free product (i.e. the amalgamated subgroup is a proper sub-
group of each factor) has no centre if at least one of its factors has
no centre [see e.g. (4)]. Since X has no centre, TT-^M)/(!?) has no centre.

For future reference, we prove that, if (a1( aj) = 1, then H is of infinite
order in TTX(M): for in that case, by adjoining the relator [Rlt i?J, we
obtain the group

G { C R R

where R1 = B*; Bt = Bai, and this in turn maps homomorphically
o n t o (Ot, B | [Ct, B], B*F, [Cit [Cjt Ck]), i,j, k = 1,..., 2h),

which is the quotient group of the direct sum (XjX3) o (B) by the
normal subgroup generated by the element F o Bp. The elements of
this normal subgroup are of the form Fn o BP71 since F is in the centre
of X/Xs. Now F is of infinite order in XJX3 [see (2)]. Hence F is
certainly of infinite order in XjX3; therefore none of the elements
Fn o BPn can be a non-trivial power of B. Hence B is of infinite order
in O and so is H, which maps onto Baia:

We shall now prove that a = (a1( 02) is an invariant. First consider
the case y ^ O . Then H, Rlt and J2a represent the identity of BX(M).
The Alexandrian of n^M) reads

1-Ca .

The non-trivial elementary ideals are

6
— 1

— 1

Hence the residue a(modp) is an invariant. Since a divides p, a itself
is an invariant.

Returning to the case p = 0, the conditions

require that ^ —1, a = /^
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The last presentation of Trx(M) becomes

(C«, H, R^, R21 [C,, H], HBr°, HBf«, H^FR^)

-> (Ct, Blt R21 [Ct, R%], Bf *,-«, FRi'Rr13')
and Rx = R2 = R in H^M).
Denoting by <j>n(x) the polynomial (1—xn)/(l—x), we can then write the
Alexandrian as

C, . . . C^ R,
1-R«

Rt

(Cr—

1-Ca . . . C ^ j - l

The order ideal Go is zero since HX{M) is infinite. By Lemma 1.2 of (1),
(R—ljffi], = gfCEi, where CE£ is the ideal generated by the (2A+l)th
order determinants of the first 2A-f-1 columns. Thus

Hence the Alexander polynomial \ satisfies
(R—1)A1= (1—Ra)ih.

This proves that a is also an invariant in the case p = 0.
We now assume that a = 1, and that p ^ 1. In that case

(<XVP) = (<*!, Oj) = 1,

and TX(M) is generated by H = iJj1. We proceed to calculate the in-
variant A** for the pair H*i, {npp) = 1 (; = 1,2). Let Tt (j = 1, 2)
be disjoint tubular neighbourhoods of non-singular fibres. Let kt be
a torus knot of type {n̂ , 1} in Ty Then -n^Tj—kj) is presented by

^(M-Ti-TJ by

(Cit H, Qv, Qlt Qt | [Ct, H], [Qv, H], [Qlt H], [Q2> H],

-+ (Ct, H, Qv, R,, R% | [Ct, H], [Qv, H],

and •n1{M—k1—hi) by generators
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and relators

[Ct,H], [Qoj,H], \y,,Hl H-iR«>, H-

and thus, after Tietze transformations, by
(Ct, H, R1, R2, z, | [Ct, H], [zf, H], H-*K?, H-

Omitting commutators, we write H^M—kj), say, as

(C«, H, R1, Rt, ̂  | zt

and, if (nitp) = 1, one can calculate that H^M—lc,) is free abelian.
The Alexandrian of TT-^M—k^—ifc2) can be written

Ci . . . Cjm R1 R2 Zj z2 H
\-H

\-H

where the remaining non-zero entries are confined to the last row and
last column, and are irrelevant to our calculation. By Lemma 1.1 of (1),

where e = ± 1 and u e BX{M—A^—42), and

w h e r e OLJOLJ = 1 (mod^)).

Now H±1 are distinguished generators of T-^M) since they are the
images of the generators of the centre of •n1(M). Therefore it is topo-
logically meaningful to ask: 'what are the pairs {n^,n^} such that
A**(Hn\ ff1") = (1—H)2h ?' Clearly the unit u* must be of the form Hv.
The condition is

eH'(l-H)»<f>ai(H
!i>)<f>a,(H*>)<t>ni(H)<f>n,(H)= (1-fT)* (modH'-l),

or, when we multiply by units of JH-^M),

eP(l-ff)a^ni(ff)^Bl(ff) = (l—H^^H)^^) (modH"—1).
This is true only if

(mod (HP—1)1 (H—I});
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multiplying by (1—H)2, we have

eHHH*—l)(H*-l) = (H^-IXH**-!) (modHP-1).

First suppose that e = — 1. Expanding, we have

and the exponents on opposite sides must cancel in pairs (modp). The
only possibility is T^+V = 0, say, and then

Therefore nx = — a1; say, and TI2 = &%.
Suppose that e = 1. Then

Either 7^+n t+v = 0 or v = 0. In the former case,

and so 74 = —ax, say, and n^ = — Sj. If v = 0,

and BO nj = «1( say, and n t = ctj.
Therefore the pairs of homology classes satisfying the condition are

THEOBEM 4.1. The residue classes of ±a l f ± ^ (modp) are invaria-nts
of those spaces {Oo; h \b; otj,^; otj./Sj)/or which p # a.

Proof. We have proved the theorem for the spaces satisfying the
additional condition a = 1. Suppose that ct > 1. Let

Consider all possible subgroups B\(M) c H^M) such that HX(M) is the
direct sum £f(-Jf) o TX(M). Let </»: 77-1(̂ f) - • H^M) be the abelianizing
homomorphism and let ^(Jlf) = (iij) be the subgroup of index a of
T-y(M). Consider the subgroup

G* = t-^mM) o TftM)),
of index a in -nx{M). The corresponding covering space Uk(M) is a fibred
space [(6) § 9] of the form

(Oo; A'16';«i, ft; «i,j3i),
because ffeG*. Thus to each 3f considered there is a topologically
defined class of covering spaces Uk(M) for which the multiplicities a ,̂ c4
are relatively prime. The torsion number p' of Uk(M) is a multiple
of p/ac. For H, which generates 2\( C7*(-lf)), maps into H = B%1, which
is of order p\a in TX(M). Since the residue classes of â  and <4
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are invariants, their classes {modp/a.) are invariants. Hence the classes
of ax and ĉ  (modp) are invariants.

We add the remark that p = a. is possible only if b = — 1.

THBOBEM 4.2. The Betti number h, the torsion number

p = |6a1<x2+/?ga1+/J1o2|,

and the unordered pair {alt o^} are a complete set of topologicai invariants
for the (unorienied) spaces {Oo;h \b; u^fi^, otj,jS2) satisfying (<xv a^) = 1
and p > l+max{a1, otj}.

Proof. The numbers ax, a2 are then determined by the residue classes
of zizav ±<*a- For a given triple {p, alf otj} with (e ,̂ ctj) = 1, the equation
p = |6a1a2+/?2a1+/?1o2| has at most two solutions {6, y9l3 /32} for which
ai > Pi > °. «a > & > 0. The fibred spaces corresponding to these
two solutions differ only in orientation [(6) 184].

The spaces {Oo; h \ b; c^,/^; ctj,^) are distinguished from the spaces
(Oo; h \p) by the elementary ideal C^i-! if p ^ 0, and by the Alexander
polynomial Ax if p = 0. Can a space M^ = {Oo; h 16; a^,^; a^, j9g) be
homeomorphio to a space of the form Mx = {Oo; h\b'; a'.jS')? (The
referee has pointed out that {Oo; h | b; 3,1; 4,1) and (Oo; h } b; 12, 7),
for example, have isomorphio fundamental groups.) We can supply
a partial answer as follows. If we compare the values of &2h-i> homeo-
morphism would require a! = c^og. If we use (Eĝ , (a5>P) = (5>.P)>
and hence <x = 1 (mod^)); therefore a = 1. AIBO^J ^ 0 since a' > fi' > 0.
If # ^ 1, then, the calculation of the invariant A** proceeds as before
if we regard Mx as a space with r = 2 and ctj = 1, /?2 = 0. The previous
argument showing that 5 was a distinguished generator of TX{M^
breaks down in the case of Mv However, we know there is some
distinguished generator (call it K = Hq, (q,p) = 1), and that

Substituting K = E", and using the above expression for A** in terms
of H, we have, after simplifying, the condition

±u{l~H<')ih = {1-H)ih {modHr-l) {ueH^M)).

Clearly u is of the form H". Mapping H into 8, a primitive pth root

of unity, we have ^ ^ = ±0",

which is impossible unless q = 1 (modp), for otherwise \<j>g{8)\ > 1-
Hence H is indeed a distinguished generator. Thus Theorem 4.1 also
applies in our broader sense, i.e. allowing otj = 1, j32 =± 0. Therefore
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THEOREM 4.3. Ifp =£ 1, the space (Oo; h | b; o^,^; a,,, ft.) (ai>^i> 0)
is not homeomorphic to any space (Oo; h \ b'; a',/37).

5. Open questions
How does the homotopy classification of the Seifert spaces compare

with the results found here and, more generally, with the fibre
classification ?

Since the fundamental groups of the Seifert spaces Oo are non-
abelian for h > 0, the Reidemeister torsion is inapplicable. Can the
theory of Bimple homotopy types (7) yield the information derived here
(assuming that the homotopy classification could not) ?

The examples of non-fibreable 3-manifolds given by Seifert (6) are
topological sums of lens spaces, the latter being fibreable. Can every
3-manifold be decomposed into a sum of fibreable spaces ? Conversely,
does there exist a non-trivial (i.e. not including S*) sum of fibred spaces
which can be fibred? An affirmative answer to the former question,
and a negative answer to the latter, together with Milnor's results (5)
would bring the 3-manifold classification problem significantly closer
to solution (modulo the Poincar6 conjecture), provided that the results
of the present paper could be generalized to all fibred spaces.
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