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Cobordism theories
By W. BROWDER, A. LIULEVICIUS, and F. P, PETERSON*

1. Introduction

Since 1954 when Thom introduced cobordism theory, much attention has
been given to cobordism theories corresponding to subgroups of the orthogonal
group O. One of the main results in each of these cases (except the identity
subgroup) is that a manifold is cobordant to zero if and only if certain charac-
teristic numbers vanish. Also, one has been able to describe quite completely
the cobordism ring associated to the given subgroup (e.g., see [11] and [12]
for the groups O and SO).

In this paper we shall study cobordism theories which contain the ordinary
differentiable cobordism (corresponding to the groups O and SO). The particu-
lar examples to keep in mind are the piecewise linear cobordism theories. The
techniques we will employ will be of a completely homotopy theoretic nature
to study the Thom complex and the classifying space associated to a given
theory. Thus they will apply to more general situations where such Thom
complexes and classifying spaces exist, but where they are not known to have
interpretations in a cobordism theory.

In particular, we will assume given a classifying space BG (for some
stable fibre space theory) and a Thom spectrum MG associated with it (see
§ 2 for details). We assume a map BG x BG — BG (Whitney sum) inducing
MG N MG — MG, and a map BO — BG with MO — MG induced by it, com-
muting with Whitney sum. Define N = 7,(MG), the homotopy groups of
the spectrum., If G = O or PL (i.e., BPL is the classifying space for piece-
wise linear microbundles), then R¢ is a cobordism ring (see [11] and [16]).
The case where BG = BF', the classifying space for stable spherical fibre
spaces, is a case of interest where no such interpretation is known.

" Our first main theorem is that H *(MG; Z,) is a free left module over the
mod 2 Steenrod algebra A, and that the Hurewicz homomorphism k: 7, MG —
H,.(MG; Z,) is a monomorphism. It follows that if [M]e N5, [M] = 0 if and
only if all characteristic numbers associated to elements in H *(BPL; Z,) vanish.

Next we show that there is a Hopf algebra C(G) over Z, such that
H*(BG; Z,)~ H*(BO; Z,) ® C(G), as Hopf algebras over the Steenrod algebra,

* This paper had its origins in discussions at the Seattle Topology Summer Institute,
1963, and the authors were also supported by two N.S.F. Grants, the U.S. Army Research
Office (Durham), and the Alfred P. Sloan Foundation.
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and that Ng ~ N @ C(G)*, as algebras. Thus information about H*(BG; Z,)
gives information abut 9t¢. In the oriented case, i.e., for BSG the classifying
space of the associated oriented bundle theory, we prove that H*(BSG; Z,) ~
H*(BSO; Z;) ® C(G) as a Hopf algebra, and that if « € 7, (MSG), then 2 is of
odd order if and only if A.(x) = 0 for all », for h,: 7,(MSG) — H,(MSG; Z,).
This yields a corresponding statement in oriented piecewise linear cobordism,

that if [M]e Q% [M] is of odd order if and only if all its characteristic num-
bers associated to H*(BSG; Z,) vanish, for all r.

Next, we calculate the ideal of relations among characteristic classes in
H*(BPL; Z,) for p.l. n-manifolds; the answer is analogous to that of Brown
and Peterson [5] for the orthogonal case.

Finally, we make some remarks about C(PL). Note, that except for the
latter calculations, each theorem stated for G = PL, would hold whenever

a suitable ¢-regularity theorem could be proved for G, analogous to those of
[11] and [16].

We state the theorems precisely in §2, and prove them in the later sections.

2, Statements of results
We shall always assume the following. We have a sequence of spaces
(%) BG(1) — BG(2) — -+ —> BG(n) —> - -+
and maps BO(n) -, BG(n) —hg BF'(n) such that h,g, = j,, where BF' (n) is
the classifying space for fibre spaces with fibre the homotopy type of S*—* and

J. is the classifying map of the canonical S*! bundle over BO(n). We will
denote by &, the classifying fibre space over BF'(n), and let %, = h¥(&,), v, =
Jx(&,), so that g¥(n,) = v,. We will assume the existence of an operation
of Whitney sum for G-bundles, i.e., there is a map p: BG(n) x BG(m)—

BG(n + m) which restricted to either factor is the map coming from our
sequence (x), and such that the diagrams

BO(n) x BO(m) —> BG(n) x BG(m) — BF (n) x BF (m)

BO(n + m) ——— BG(n + m) ——— BF(n + m)
/,BG(n + 1) x BG('m)\

/ N
BG(n) x BG(m) — BG(n + m) —> BG(n + m + 1)
N /!

NBG(n) x BGm + 1)
BG(n) x BG(m) —> BG(m) x BG(n)
AN /

NBG(m + my”
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commute up to homotopy.

Under these assumptions, we may define the Thom complex of Ny MG(n)

to be the mapping cone of the projection map of 7., 50 that the Thom isomor-
phism holds®:

@7 HY(BG(n)) — H*"(MG(n))

and there are natural maps of the suspension ZMG(n) — MG(n + 1) and
MG(n) A MG(m) — MG(n + m). Thus MG(n) is a ring spectrum (see [15]),
denoted by MG. Then define ,(MG) = dir lim,_.. T (MG(n)) and H (MG) =
dir lim, .. H,,,(MG(n)). If we define BG = lim BG(n) with the weak topology,
then we have the Thom isomorphism ®¢: H*BG) — H*(MG), and we have a
commutative diagram:

T+(MG) Q m.(MG) — 7w, (MG N\ MG) — 7, (MG)
H,(MG) ® H,(MG) — H, (MG N MG) — H,(MG)
O* ® q)*lz @*lz q)*lz
H.(BG®) ® H.(BG) — H.(BG x BG) —> H,(BG)

where MG A\ MG denotes the spectrum defined by MG(n) A MG(m). We shall

assume that H,(BG; Z) is finitely generated for each %, so that we have the
commutative diagram

H*(MG) — H*(MG N MG) — H*(MG) ® H*(MG)
4@@ zICDG z[@a@)@a
H*(BG) %> H*(BG x BG) —— H*(BG)® H*(BG)
so that H*(MG) and H*(BG) are isomorphic commutative coalgebras. The
map BO —- BG induced by g, induces MO —" MG, and g*: H*(BG) — H*(BO)
and m*: H*(MG) — H*(MO) are maps of coalgebras over the mod 2 Steenrod
algebra A (¢* actually being a map of Hopf algebras over A). Similarly for

h: BG — BF and n: MG — MF. Note that ®¢ is not a map of modules over A,
Define the Stiefel-Whitney classes in H*BG (after Thom) by the formula

W = (@) (Sq P(1) = 1 + W7 + W+ - .
Since v, W* = W* Q W* e H*(BF) ® H*(BF), it follows that
v Wé=We¢RQ Wée H*(BG) ® H*(BG) .
We define the G-bordism groups of K by N%(K) = n.(K A MG), where K A MG

! Unless otherwise stated, all coefficient groups will be assumed to be Z..
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is the spectrum K A MG(n) (r.(K A MG) = H,(K; MG) according to G. W.
Whitehead [15]). Hence N¢(point) = 7,(MG). We denote RNE by N,.
In particular, we have

THEOREM 2.1. G = PL satisfies all the above hypotheses, and in addition
N 4 isomorphic to the unoriented piecewise linear cobordism ring.

This is proved in Williamson [16] and Hirsch [6], [7].

Now we proceed to state our theorems about any BG satisfying the above
assumptions (keeping in mind the examples G = PL or F)).

THEOREM 2.2, H*(MG) ts a free left A-module.
Then, as in [11], we get

COROLLARY 2.3. The Hurewicz homomorphism ww.(MG) — H,(MG) is a
monomorphism, and thus any element in =, (MG) is detected by an element
wn H*(MG).

Note that 7,.(MG) is a Z,-module, which follows from the fact that there
is a map of the Eilenberg-MacLane spectrum K(Z,) into MG and MG is a ring
spectrum. This approach also leads to a direct proof of (2.2) and (2.3) (see
[15]). If 7.(MG) represents an unoriented cobordism group, then obviously
2[M] =0, as in [11].

COROLLARY 2.4, Let [M]eRi-. Then [M] = 0 if and only if all char-
acteristic numbers defined by elements of H*(BPL) vanish.

Unfortunately, H*(BPL) is not known. The following two theorems shed
some light on the structure of H*(BG).

THEOREM 2.5. There is a Hopf algebra over the Steenrod algebra C(G),
such that H*(BG) ~ H*(BO) ® C(G) as Hopf algebras over the Steenrod

algebra.,

H*(BO) is a free right A-module (see [5]). We define a right A-module
structure on H*(BO) ® C(G) by the formula (b c)a =Y (b)a: ® x(ai)(c)
where y(a) = Y a!® a} is the diagonal map in A, and y is the canonical
anti-automorphism of the Steenrod algebra (see [10]).

THEOREM 2.6. The isomorphism of Theorem 2.5 is an tsomorphism of
right A-modules and H*(BO) Q C(G) s a free right A-module on generators
w: & c;, where {p;} is a right A-base for H *(BO), and {c;} is a vector space
basts for C(G).

C(G) also gives us the structure of R¢ in the following theorem.

THEOREM 2.7. N$ ~ N, Q C(G)* as an algebra.

COROLLARY 2.8. If [M], [N]e N5, M not cobordant to a C=-manifold,
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[N]e R CREE [N] # 0, then M x N 1is not cobordant to a C=-mansifold.

We now turn to the orientable case. Let BSG(n) denote the two-fold
covering space of BG(n) defined by W,(y,) e H(BG(n)). Then BSG(n) satis-
fies the same hypotheses as BG(n) with O(n) replaced by SO(n). Let ‘A, C A,,
the mod p Steenrod algebra, be the Hopf subalgebra generated by all P, where
p is an odd prime.

THEOREM 2.9. H*(MSG) is a direct* sum of copies of A and A/A(Sq).
H*(MSG; Z,) s a free’'A,-module for p odd.

COROLLARY 2.10. Let [M]e Q% = n.(MSG). Then [M] is of odd order vf
and only if all characteristic numbers defined by elements of H*(BSG; Zy)
vanish.

THEOREM 2.11. H*(BSG) ~ H*(BSO) R C(G) as a Hopf algebra over the
Steenrod algebra (operating on both the left and right). There is a Hopf
algebra over the Steenrod algebra, CyG), such that

H*(BSG; Z,) ~ H*(BSO; Z;) ® C4(G)
as a Hopf algebra over the mod 3 Steenrod algebra.

THEOREM 2.12. The additive structure of Q%/(elements of odd order) is
determined by C(G) as a left module over A and the Bockstein spectral se-
quence of H*(BSG).

Let M™ be an n-dimensional, closed, PL-manifold. Let z,: M — BPL be
the classifying map. Define I,(PL, 2) © H*(BPL) by I,(PL, 2) = Ny Ker ¢},
where the intersection is taken over all such %n-dimensional, closed, PL-mani-
folds. The following is a generalization of the main theorem in [5].

THEOREM 2.13. I,(PL,2) =Y Hi(BPL)Sq'.

COROLLARY 2.14. (a) I,(PL,2)?= 01f2¢q = n.
(b) IL(PL, 2)" is generated by [Sq’ + viu](H”—"(BPL)) fort=1, .-+ n,
where v; = (1)Sq‘ € H(BPL).

THEOREM 2.15. (a) Ci(PL)=0, 1 <7 = T.

(b) C¥PL) = Z,, C°(PL) = Z, &P Z,, C*(PL) # 0.

(e) Ci(PL)y== 0, 7= 24,

The proofs of Theorems 2.2-2.8 will be given in § 3, of 2.9-2.121in § 4, and
of 2.13-2.14 in § 5. Theorem 2.15 (a) and (b) is known (see [14]), and (c) is very
technical and complicated. A proof can be constructed using the techniques of
[2], [3], and [4], but we omit the details.

2i>n—3

2 H*(MSG) is a simple module over A in the notation of Wall [10].
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3. The unoriented case

We first state Theorem 4.4 of Milnor and Moore [10]. Let A be a con-
nected Hopf algebra over a field F. Let M be a coalgebra over F' and a left
module over A such that the diagonal map is a map of A-modules.

THEOREM 3.1. Assume M ts connected with 1€ M°. Define v: A— M by
v(a) = a(l), and assume v is a monomorphism. Then M is a free left A-
module.

Using this theorem, we now prove Theorem 2.2, Let A = A and v: A —
H*(MG) be as above. Then m*v: A — H*(MO) is a monomorphism by a
theorem of Thom, and hence v is a monomorphism. Theorem 2.2 follows.

The proofs of Corollaries 2.3 and 2.4 are similar to the classical case
(see [9]).

LeEMMA 3.2. There is a map f: H*(BO) — H*(BG) such that g*f = id, f
18 a map of Hopf algebras, and f is a map of left and right A-modules.

ProOF. Define f(W,) = W¢. This defines a map of Hopf algebras, since
e W = W(n) Q W(y), and H*(BO) = Z,[W,, ---]. Then g¢*f = identity as
m*®¢ = ®°* and W€ is defined analogously to W. f is a map of left A-
modules by a theorem of Hsiang [8] as he shows W¢ satisfies the Wu rela-
tions. The right A-module structure in H*(BG) is defined by

b(a) = (P ((@)D4(D)) ,
and satisfies (b)a = Y_ (1)a}-x(a})(b), where (1)a} is a polynomial in W (see [51).
Since f preserves W'’s, the left A-module structure, and products, f preserves
the right A-module structure.
We now proceed to prove Theorem 2.5. The basie tool is Theorem 4.7 of

Milnor and Moore [10]. Define C(G) to be the kernel of v which is the follow-
ing composite:

H*(BG) —— H*(BG) ® H*(BG)

O 7+(BO) @ H*(BG) 123 H*(BO) ® H*(BG) .

In the notation of Milnor and Moore, C(G) = Z,0 g+, H*(BG). Let 1:
C(G) — H*(BG) be the inclusion and -: H*(BG) Q H*(BG) — H*(BG) be the
multiplication. Then Theorem 4.7 of [10] shows that

6 = -(f®1): H*(BO) ® C(G) — H*(BG)

is an isomorphism of left H*(BO)-comodules and right C(G)-modules, where
C(G) is an algebra, and ¢ a map of algebras. Since H*(BG) is commutative
as an algebra, - is a map of algebras. Hence 6§ is a map of algebras. To show
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¢ is a map of coalgebras, we need to show that C(G) is closed under the
diagonal map in H*(BG). Now C(G) ® H*(BG) is the kernel of

7 Q 1: H*(BG) @ H*(BG) — H*(BO) ® H*(BG) ® H*(BG) .

The following diagram is commutative as H *(BG@) is co-associative:

H*(BG) —*— H*(BG) ® H*(BG)
lzlz lr@ 1
H*(BG) ® H*(BG) Z2%, g(B0) @ H*(BG) Q H*(BG) .

Hence (v @ L)y(C(G)) = 0, and C(G)c C(G) ® H*(BG). Since 4 is com-
mutative, vC(G)C C(G) ® C(G). Finally, -, f, and ¢ are maps of left A-
modules and hence so is 4.

We now wish to show 6 is a map of right A-modules, where the right A-
structure in H*(BO) Q C(G) is given before Theorem 2.6. Letbe H *(BO) and
ceC. Then

(b @ e)a) = 63 (b)al ® x(al)(0)) = X f((b)al)- x(al’)(c)

= 22 (f®)al-x(al’)(c) = (f(b)-c)a = (6(b R c))a .
Let {¢;} be a right A-basis for H*(BO), and {c;} a Z,<basis for C(@). By
counting, it is clear that H*(BO)® C(G) and the free right A-module gen-
erated by {¢; @ ¢;} have the same number of elements in each dimension.
Hence we must show that {y¢; ® c;} generate H*(BO)® C(G) as a right A-
module. We show (#;)a ® ¢; is in this submodule by induction on r, the di-
mension of a.

(e @ e; = (1t @ €)a + X pma; o, (1) @ A(ay)(e;)
= (/11 ® Cj)a =+ Edima,’,a (#z)a;c ® E Cik »
which belongs to the above right A-module by induction. This proves
Theorem 2.6, and, of course, gives another proof of Theorem 2.2.

We now prove Theorem 2.7. Let 7% H*(BG) — (9¢)* be the evaluation
map on elements of 7.(MG), i.e., H*(BG)—H*(MG)—(m.(MG))*, 7% = h*d*,
where & is the Hurewicz homomorphism. By our results, %¢ is an epimorphism
with Ker 7° = H*(BG)A, where A denotes the positive dimensional elements of
A. Also, 77 is a map of coalgebras. We first study the case G = O.

Let S © H*(BO) be the vector space generated by s.(W) for all partitions
® having no numbers of the form 2/ — 1 (see [11]). The following lemma may
be of independent interest.

LemMA 3.3. 7 = 7°|S: S — N* 1s an isomorphism of coalgebras.
PrOOF. Note v(s,) =3, ., Sw @ s, (see [11]), hence S is a sub-
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coalgebra of H*(BO). 7° is a map of coalgebras, hence so is 7, and it is
classical that 7 is an isomorphism of vector spaces.

Define 6: R¥* ® C(G) — N by 6 = »*(Hn*®1id). 7% 77, and id are maps of
coalgebras, thus 6 is. By Theorem 2.6, ¢ is an isomorphism of vector spaces.
Hence 6*: ¢ — N, ® C(G)* is an isomorphism of algebras.

Corollary 2.8 is immediate from Theorem 2.7.

4. The oriented case

We first prove Theorem 2.11. By the same proof as for Theorem 2.5, we
have H*(BSG) ~ H*(BSO) ® C’' where C’ is the kernel of the composition

H*(BSG) —X- H*(BSG) ® H*(BSG)
—— H*(BSO) ® H*(BSG) — H*(BS0) ® H*(BSG) .
Let 7,: BSG— BG. 7w is a map of Hopf algebras, hence +¢: H*(BG) —
H*(BSG) is an epimorphism with kernel, the ideal generated by W (see [1]).
Let f5: H*(BSO) — H*(BSG) and note that /7y = =} f: H*(BO) — H*(BSG).
Hence, the following two diagrams are commutative:

C(G) — H*(BG) -~ H*(BG)® H*(BG) —> H*(BO)R® H*(BG)

[lcer | | |

¢’ — H*(BSG)—— H*(BSG) ® H*(BSG) — H*(BSO) ® H*(BSG)

H*(BO) ® C(G) —— H*(BG)
|z @=¢ 10 |2
H*(BSO) ® C' 2= H*(BSG) .
Since Ker 7} = W¢-H*(BG) and W¢-H*(BG) NC(G) = 0,7¢ |C(G) =g is a
monomorphism, Consider

W 99, gxBSO)® C’

—— H*(BSO) Q C'/H*(BSO) R C' ~ C' .
This is an epimorphism. H*(BO) ® C(G) is in the kernel, hence
C(G) ~ H*(BO) ® C(G)/H*(BO) ® C(G) — C’
is an epimorphism, or ¢ is an isomorphism.? The second part of Theorem 2.11
is proved in a way similar to the proof of Theorem 2.5 as H*(BSG; Z,) —
H*(BSO0; Z,) is an epimorphism, and there is a splitting map.*

3 A similar theorem holds for H*(B Spin G), where B Spin G is obtained from BSG by
killing Ws.

+ H*(BSG; Z,) — H*(BSO; Z,) is not necessarily an epimorphism if p>3, so our methods
fail in that case.

H*(BO) ® C(G)
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The second part of Theorem 2.9 follows from Lemma 3.1 just as Theorem 2.2
does. To prove the first part of Theorem 2.9, we define, following Wall [13],
a simple right A-module to be an A-module which is a direct sum of a free
A-module and copies of A/Sq'A. Wall [12] proves that H*(BSO) is a simple
right A-module. Let {z;} be a basis for the free part, and {v,} the generators
of copies of A/Sq*A. Write

CGE=C.pC,PHImSq",

where Sq'(C,) = 0, and Sq": C, — Im Sq' is an isomorphism. Let {c}} and {ci}
be Z.-bases for C, and C, respectively, and {c"} a basis for C(G). Then one
can show that H*(BSO) ® C(G) is a direct sum of a free right A-module on
{¢t: ® ¢ U {v; @ cf} and copies of A/Sq'A generated by {v; ® cl}. The proof
is similar to that of Theorem 2.6. Rather than give the details, we give an
alternate proof based on Wall [13]. He shows that a right A-module M is
simple if and only if there is a free module F' and an exact sequence

0— ML F S m—o,

where f and g have degrees 1 and 0 respectively. Let 0 — H*(BSO) — F —
H*(BSO) — 0 be such a sequence. Consider the exact sequence

0— H*(BS0)® C(G) —> F Q C(G) — H*(BSO) ® C(G) — 0 .
By the proof of Theorem 2.6, F'(Q C(G) is a free right A-module. Hence
H*(BSG) ~ H*(BSO) ® C(G) is a simple right A-module, and H*(MSG) is
a simple left A-module.

We now consider Corollary 2,10, We prove the following lemma, which
seems to be of independent interest, from which Corollary 2.10 follows.

LeEMMA 4.1, Let M be a spectrum such that H*(M) is a simple left A-
module. Then there is a map h: M — IL, K(z, n;), where m = Zy or Z, and
h*: H¥(I1, K(z, n,)) — H*(M) is an isomorphism.

ProoF. Replace M, if necessary, by an Q-spectrum [15]. Consider the
mod 2 Adams spectral sequence for M. Each generator of a copy of A in
H™(M) gives an element u; € K™, Each generator of a copy of A/A(Sq?) in
H™(M) gives elements hjv; € E;*** s = 0. These are all the non-trivial ele-
ments in E;t, Since ho; = 0, the only non-trivial d”’s are, after a change of

“basis, d, (hjvy;) = hit"vy_, t =1, -+, k, where n,;_, = n,; — 1. Thus the only
non-trivial elements in K., are u,e€ E%™, hiv, for © > 2k, and hiv,_, for ¢ =
1,---,k,ands=0, -+, 7, — 1. Hence r,.(M)/(elements of odd order) has a Z,
for each u,, a Z for each v, ¢ > 2k, and a Z,, for each v,,_,,72 =1, ---, k. Note
that in the stable range, H*(K(Z, n)) ~ A/A(Sq’) as a left A-module, and
H*(K(Zy,n)), r>1, is A/A(Sq') ® A/A(Sq"), the two generators being ¢
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and 0(¢).

We now show, by induction on dimension, that the two-torsion Postnikov
invariants of M are all zero. Assume true in dimensions < ». Then H*(M"~")
is a simple A-module on generators of dimension < n. Since H *(K(er, m); Z )
and H*(K(Z, m); Z) have no elements of order 4 in stable dimensions = m + 2,
krtte H (M ; m,(M)/(elements of odd order)) is of order two or is zero.

The following statement is easy to prove, and we omit the proof. Let J,
be the Bockstein associated with the sequence 0 —» Z, —» Zy+1 — Z» — 0. If
H**(X; Z) and H**(X; Z) have no elements of order 4 or of infinite order,
and ke H**\(X; Zy), k + 0, then k reduced mod2 # 0 or 6,(k) # 0. In our
case, if k™' =+ 0, then a mod2 relation is introduced into H""(M™) or
H**M™) on the A-module generated by elements of dimension < n. This
contradicts the hypothesis that H*(M) is simple. Hence k**' = 0, and the
lemma is proved.

Corollary 2.10 now follows easily, as does Theorem 2.12,

5. Relations among PL-characteristic classes

The proof of Theorem 2.13 is essentially identical to the proof of [5, Th.
3.5]. We need the following facts to use this proof. First, that H*(BPL) is
a free right A-module; this is Theorem 2.2, Second, that Ni(K), defined
geometrically as bordism classes of maps of PL-manifolds into K, is isomor-
phic to H,(K; MPL); this follows from [16]. The proof is now formally the

same as that in [5]. The proof of Corollary 2.14 is also the same as that of
[5, Cor. 3.6].
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