
Splitting homotopy equivalences along codimension 1 submanifolds

Jeremy Brookman

August 14, 2005



Contents

1 Introduction 1

1.1 Surgeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Handle exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Obstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Algebraic Preliminaries 5

2.1 Rings with involution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Chain complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Triads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Geometric Preliminaries 8

3.1 Homology and homotopy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Covering spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Nilpotency 11

4.1 Nilpotent category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Objects in the category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 K-theory 19

6 Below the Middle Dimensions 21

6.1 Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Handle exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Forms 26

7.1 Basic properties of forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2 The surgery obstruction group, L2k(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.3 The even-dimensional splitting obstruction group UNil . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 The Even-dimensional UNil Obstruction 31

8.1 The Surgery Obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8.2 Splitting obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Even-dimensional Nilpotent Normal Cobordism 34

10 Principles of the Algebraic Theory of Surgery 37

10.1 Quadratic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



10.2 Cobordism of quadratic complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.3 Algebraic surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Surgery and Splitting Obstruction Groups 44

11.1 Surgery obstruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.2 Splitting obstruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Nilpotent normal cobordism 49

13 Formations and Short Odd Complexes 53

13.1 Surgery obstruction group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13.2 Splitting obstruction group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

14 The Odd-dimensional UNil Obstruction 61

14.1 Surgery obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14.2 Splitting problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

15 Odd-dimensional Nilpotent Normal Cobordism 65

15.1 Bordisms of f : M → X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

15.2 Construction of the nilpotent normal cobordism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

15.3 Computation of the obstruction of the nilpotent normal cobordism . . . . . . . . . . . . . . . . . . 68

16 Concluding Remarks 70

2



Abstract

The thesis addresses the problem of deciding whether a homotopy equivalence of manifolds is splittable along a
codimension 1 submanifold. If g : W → Y is a homotopy equivalence of manifolds, and X ⊂ Y is a codimension
1 submanifold, g is split if it is transverse to X and letting M = g−1(X), f = g|M : M → X is a homotopy
equivalence. g is splittable if it is h-cobordant to a split homotopy equivalence g ′ : W ′ → Y . We restrict our
attention here to the case where Y = Y1 ∪X Y2 and H = π1(X)→ π1(Yi) = Gi are injections.

Such problems were first studied in detail by Cappell in the 1970s using high dimensional surgery theory, initially
by considering the effect of handle exchanges — which vary g by a homotopy and perform surgery on the map
f : M → X inside g : W → Y . Cappell showed that not every homotopy equivalence of the above form is
splittable. In particular, in the case when X is even-dimensional (dimX = 2k ≥ 6) there are 2 obstructions to
g being splittable: the first is a K-theory obstruction φ(τ(g)); the second is an L-theory type obstruction χ(g)
lying in the so-called unitary nilpotent group UNil2k+2(Z[H ]; Z[G1],Z[G2]) which consists of UNil forms: pairs of
quadratic forms taking values in Z[Gi].

The thesis begins with a slightly modified presentation of Cappell’s results, which is more closely linked to the
language of the quadratic forms which define the L-groups. In the same way that Ranicki defined a correspondence
between quadratic formations and short odd complexes and defined the L-groups as highly connected cobordism
classes of short odd complexes, a correspondence between UNil formations and short odd nilcomplexes is established,
and UNil2k+3(Z[H ]; Z[G1],Z[G2]) is defined as cobordism classes of short odd nilcomplexes. This definition is
related to the chain complex formulation of the splitting problem due to Ranicki and a map is defined UNil2k+3 →
L2k+3.

It is shown that given a splitting problem of the form above, with dimX = 2k + 1 ≥ 5 and φ(τ(g)) = 0, there is
an obstruction χ(g) ∈ UNil2k+3(Z[H ]; Z[G1],Z[G2]) such that χ(g) = 0 if and only if g is splittable.



Chapter 1

Introduction

Let Y n+1 = Y1 ∪X Y2 where Xn is a codimension 1 submanifold of Y , and suppose that g : W → Y is a homotopy
equivalence of manifolds. Assume that g is transverse regular to X , so that M = g−1(X) is a codimension 1
submanifold of W , with W = W1 ∪M W2. g is split, if f = g|M : M → X is a homotopy equivalence, and g is
splittable if there exists an h-cobordism V of g : W → Y with g′ : W ′ → Y where g′ is split. This thesis addresses
the question:

Question 1.1 Is every homotopy equivalence g : W → Y splittable?

Note that the fundamental group of Y is given by the Seifert-van Kampen theorem as the pushout of the diagram:

π1(X) //

��

π1(Y1)

��
π1(Y2) // π1(Y )

Henceforth, assume that the maps π1(X) → π1(Yi) are injective (so that the maps π1(Yi) → π1(Y ) are also
injective), and write H = π1(X), Gi = π1(Yi) and G = π1(Y ). Then G is an amalgamated free product G =
G1 ∗H G2.

We shall call the question of deciding whether a homotopy equivalence of the above form is splittable a splitting
problem. The techniques to be used are essentially the techniques of surgery theory.

For many X ⊂ Y , the answer to this question is yes, but it is not always so; there is a counter-example due to
Cappell (see Cappell [2]). In later work Cappell constructs two obstructions to g being split when n is even; the
first is a K-theory obstruction

φ(τ(g)) ∈ Hn(Z2; I = ker(K̃0(Z[H ]→ K̃0(Z[G1])⊕ K̃0(Z[G2])));

the second is an L-theoretic obstruction χ(g) lying in an obstruction group (the unitary nilpotent group UNil)
which depends only upon the fundamental groups H,G1, G2 (see Cappell[3]). He was then able to show the
vanishing of the obstruction group for a wide class of fundamental groups; in particular for the square-root closed
condition where g2 ∈ H ⇒ g ∈ H . The thesis addresses the case when n is odd, which has previously eluded a
solution.

It has been shown that the UNil groups fit into a Mayer-Vietoris-like sequence of surgery groups (Cappell[4],
Ranicki[9]):

. . .→ LIn(Z[H ]) ⊕UNiln+1 → Ln(Z[G1])⊕ Ln(Z[G2])→ Ln(Z[G])→ LIn−1(Z[H ])⊕UNiln → . . .

(where the undecorated L-groups are the free L-groups Ln(R) = Lhn(R), and the groups LIn(Z[G]) are the inter-
mediate L-groups defined first by Cappell). Here UNiln is described in terms of chain complexes as described in
chapter 10. The map Ln(Z[G])→ UNiln is then shown to be a split surjection.

The splitting question has many similarities to the main question of surgery theory:

Question 1.2 Suppose f : M → X is a degree 1 normal map of n-dimensional manifolds. Is f normal bordant
to a homotopy equivalence?

1



The solutions to these two problems are very heavily related, although the theory relating to the surgery question
is more developed. In this thesis, to make the similarities clear, we try to recap the relevant surgery theory in
parallel with defining the splitting obstruction and proving the necessity and sufficiency of its vanishing. For this
reason, in prose, when we refer to a splitting problem as being even-dimensional, we mean that the codimension
1 submanifold X is even-dimensional, and that Y is odd-dimensional, in contrast with Cappell’s use. Throughout
the thesis, n will be used to refer to the dimension of X when considering surgery or splitting problems.

The methods in use are as usual restricted to high-dimensional manifolds and it is assumed that n ≥ 5.

In order to modify a map to become closer to a homotopy equivalence, the simplest operation that can be used is
a handle exchange: given a homotopy equivalence g : W → Y cut along f : M → X , a handle exchange on g has
the effect of a surgery on f . In this chapter we recall the effects of surgeries and handle exchanges on maps.

1.1 Surgeries

Here, let M and X be compact n-dimensional manifolds, and f : M → X a degree 1 map such that f |∂M : ∂M →
∂X is a homotopy equivalence. (In fact X need not be a manifold — it could also be any CW-complex with
Poincaré duality; however for most of our applications it will be a manifold.) Then the map H∗(M) → H∗(X) is
a split surjection; the kernel homology groups are to be denoted K∗(M), so that H∗(M) = H∗(X)⊕K∗(M).

The goal of the surgery program is to make f increasingly connected, by first making π1(M) → π1(X) an iso-
morphism, and then ‘killing off’ the kernel homology groups of the lowest dimension, in which the Hurewicz
map Kk(M) → πk+1(f) is an isomorphism; by Whitehead’s theorem, f is a homotopy equivalence if and only if
π1(M)→ π1(X) is an isomorphism and Kk(M) = 0 for all k.

The primary tool for this is that of surgery:

Definition 1.3 A framed k-embedding in f is a commutative square Θ:

Sk ×Dn−k ∂θ //

��

M

f

��
Dk+1 ×Dn−k θ // X

such that ∂θ is an embedding. The result of a k-surgery on f : M → X removing a framed k-embedding Θ, is the
map f ′ : M ′ → X where

M ′ = M \ (Sk ×Dn−k) ∪Sm×Sn−k−1 Dk+1 × Sn−k−1

with f ′ = f on M \ (Sk ×Dn−k) and f ′ = g on Dk+1 × Sn−k−1.

Implicitly, we are noting that ∂(Dk+1 ×Dn−k) = Sk ×Dn−k ∪Sk×Sn−k−1 Dk+1 × Sn−k−1, so we can cut out the
embedding of Sk ×Dn−k and replace it by an embedding of Dk+1 × Sn−k−1.

Examples 1.4 (i) Suppose that M is disconnected, with two components M1 and M2. Then there is an obvious
embedding S0 × Dn → M with 0 × Dn ⊂ M1 and 1 × Dn ⊂ M2. Then a surgery on this embedding
corresponds to forming the connected sum of M1 and M2.

(ii) Suppose that M is n = 2k-dimensional. Then a surgery on a null-homotopic (k − 1)-sphere has the effect of
taking the connected sum with Sk × Sk.

Definition 1.5 The trace of the above surgery is the cobordism (W ;M,M ′) where

W = M × I ∪Sk×Dn−k×{1} D
k+1 ×Dn−k,

together with a (normal) map to X × I .

Hence manifolds which are related by surgery are cobordant. The converse is also true: given a cobordism of two
manifolds, a Morse function can be constructed on the cobordism; then by considering the critical points of the
Morse function a handle decomposition of the cobordism can be defined. But every handle addition arises as the
trace of a surgery, and hence two manifolds are cobordant if and only if there is a finite sequence of surgeries from
one to the other.
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1.2 Handle exchanges

For this section, (and this notation is to be fixed whenever a splitting problem is referred to), assume that
g : W → Y is a homotopy equivalence of (n + 1)-dimensional manifolds which is transverse to X , so that
M = g−1(Y ) is a codimension 1 submanifold of W and f = g|M is a map f : M → X .

In order to make f increasingly connected, we would like to kill off the homotopy groups by surgery — but in this
case we need to perform ambient surgery inside W . This is made precise in the following proposition:

Proposition 1.6 (Handle exchange, Cappell[5]) Suppose that

α : (Di, Si−1)×Dn+1−i → (W1,M)

is an embedding and let T be a neighbourhood of M ∪ Imα. Then f is homotopic to a map f ′ by a homotopy
fixed outside of T with f ′−1

(Y2) = W2 ∪ Imα and f ′−1
(X) = M ′ where M ′ is obtained from M by a surgery on

the restriction of α to ∂α : Si−1 ×Dn+1−i →M .

Examples 1.7 (i) Suppose that M is disconnected, so is a disjoint union M = M1tM2 as in example 1.4. Then
there is a homotopy G : W × I → Y to a map g′ : W → Y such that the effect on f ′ is the effect of a
0-surgery. Furthermore, G−1(X) is the trace of the surgery.

(ii) Performing a handle exchange on an embedding of a null-homotopic sphere in M has the effect of taking the
connected sum with a product of spheres.

The following proposition (Cappell [5]) gives sufficient conditions to be able to represent a homotopy class by an
embedding.

Proposition 1.8 Let α ∈ πi(Wj ,M) so that f∗(α) = 0 ∈ πi(Yj , X). Then if 2i < n+ 1, α can be represented by
an embedding α : (Di, Si−1)×Dn+1−i → (Wj ,M)

Lemma 1.9 (Cappell [5]) Suppose that n ≥ 5. Then g is homotopic to a map g′ where the restriction f ′ : M ′ → X
is 2-connected.

f is then made highly connected inductively by starting at the bottom dimension and killing off the lowest
dimensional homology groups. Surgery and handle exchanges are unobstructed below the middle dimension. The
details of how to make f highly connected are given in chapter 6.

1.3 Obstructions

The first splitting obstruction is a K-theory obstruction due to Cappell and Waldhausen, which is well understood.
We recall the details in chapter 5 using the treatment given in Ranicki[7].

In answering both the surgery and splitting problems, surgeries or handle exchanges can be performed in order to
make f : M → X k-connected, if dimX = n = 2k or 2k + 1.

The cohomology of M also splits as Hk(M) = Kk(M)⊕Kk(X) and the Poincaré duality map −∩ [M ] : Hk(M)→
Hk(M) splits as (− ∩ [M ])⊕ (− ∩ [X ]) : Kk(M)⊕Kk(X)→ Hk(M)⊕Hk(X).

Hence if dimX = 2k, Kj(M) = 0 unless j = k. In this case the surgery obstruction is given by an equivalence
class of Z[H ]-valued quadratic forms on Kk(M); those forms which are zero are those which admit a Lagrangian,
a submodule of maximal rank on which the form vanishes. In the case of the splitting problem, Kk(M) = P ⊕Q,
and the splitting obstruction is given by two quadratic forms, over P and Q, taking values in Z[G1] and Z[G2]
respectively. In chapter 7, we give a new treatment of this splitting obstruction, in terms of the Nil category defined
by Waldhausen in [17]. In chapter 8 the definitions of the even-dimensional surgery and splitting obstructions are
recalled.

The key step of Cappell in showing that the vanishing of his obstruction is sufficient for g being splittable was the
construction of the ‘nilpotent normal cobordism’. This is a cobordism of g to a split problem g : W ′ → Y ; the
surgery obstruction for this was computed. Details of this are given in chapter 10 in some detail, as they will be
used later.

Ranicki also gave a homotopy invariant definition of the surgery obstruction in terms of quadratic structures on
chain complexes (a homotopy invariant generalization of quadratic forms on modules); this obviates the need to
make all maps highly connected, and makes it much easier to follow through the results of surgeries. This theory
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is reviewed in chapters 11 and 12. In Ranicki[7] a description of the UNil groups in terms of chain complexes
was given. In chapter 12 this is revisited (with a slight extra assumption). The algebraic version of the nilpotent
normal cobordism given there is considered in chapter 13 and its surgery obstruction is computed explicitly.

If dimX = 2k + 1, Kj(M) = 0 unless j = k, k + 1. In this case, Ranicki defines the surgery obstruction groups in
terms of formations and also in terms of short odd complexes — these are highly connected chain complexes with
a quadratic structure, so much of the theory follows from the previous theory. Chapter 14 recalls this theory, and
constructs two equivalent structures, UNil formations and short odd nilcomplexes; these bear the same relation to
formations and nilcomplexes as our redefined UNil forms bore to quadratic forms. Thus in chapter 15 we are able
to define the odd-dimensional splitting obstruction and show that it is well-defined.

In chapter 16, we construct an odd-dimensional nilpotent normal cobordism, and compute its obstruction. This
completes the proof of our main theorem:

Theorem 1.10 If k ≥ 2 and g : W → Y 2k+2 is a splitting problem such that φ(τ(g)) = 0, then there is an
obstruction χ(g) ∈ UNil2k+3(Z[H ]; Z[G1],Z[G2]) such that g is splittable if and only if χ(g) = 0. Furthermore
there is a map α : UNil2k+3 → L2k+3 such that for all splitting problems g : W → Y 2k+2, α(χ(g)) = 0 if and only
if χ(g) = 0.
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Chapter 2

Algebraic Preliminaries

2.1 Rings with involution

In most of our applications, we shall be considering left modules over R where R = Z[π] is the group ring of a
fundamental group of a manifold. When π is not abelian, R is not commutative; however the orientation character
determines an involution on the ring, which is used to convert right R-modules into left R-modules as described
in this section, and so one obtains a homology theory with coefficients in the group ring with involution for both
oriented and non-orientable manifolds.

Definition 2.1 An involution on a ring R is a map : R→ R such that for all r, s ∈ R:

• r + s = r + s;

• r.s = s.r;

• 1 = 1;

• r = r.

Example 2.2 Let π be a group, and w : π → Z2 = {±1} a group homomorphism. Then defining : Z[π]→ Z[π]
by Σagg = Σagw(g)g−1 makes Z[π] into a ring with involution. In particular, taking w(g) = 1 for all g ∈ π gives
an involution on Z[π]. The integral group ring with involution w is denoted by Zw[π], or simply by Z[π] if w = 1.

Definition 2.3

Let K and K ′ be modules over a ring with involution (R, ), f : K → K ′ an R-module homomorphism.

• K∗ = HomR(K,R) is the abelian group of left R-module homomorphisms θ : K → R, made into a left
R-module via (r.θ)(k) = θ(k).r;

• f∗ : K ′∗ → K∗ is the R-module homomorphism defined by f∗(θ)(k) = θ(f(k));

• eK : K → K∗∗ is the R-module homomorphism defined by eK(k) = (θ → θ(k)).

Proposition 2.4 Let K be a f.g. projective R-module. Then eK is an isomorphism.

Definition 2.5 Let K be an R-module. Then let Kt be K considered as a right R-module, with the right action
given by k.r = r.k.

2.2 Chain complexes

Definition 2.6 Let C be a chain complex of R-modules. C is:

• n-dimensional if Cr = 0 for r /∈ {0, . . . , n};

• finite dimensional if it is n-dimensional for some n ∈ Z;

• finite if Cr is a f.g. free R-module for all r.
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Definition 2.7 (Ranicki[14]) Let C be a left R-module chain complex. Define C t to be the right A-module chain
complex formed by using the involution as above.

Definition 2.8 (Ranicki[14]) Let C and D be R-module chain complexes such that for some r0, Cr = Dr = 0
when r ≥ r0. Define Z-module chain complexes:

• (Ct ⊗D)n =
⊕

r+s=n

Ctr ⊗R Ds, d(x⊗ y) = x⊗ d(y) + (−1)sd(x) ⊗ y ;

• Hom(Ct, D)n =
⊕

s−r=n

HomR(Ctr, Ds), d(θ)(x) = d(f(x)) + (−1)sf(d(x));

• C−∗
r = C−r := C∗

−r, d = d∗ : C−∗
r → C−∗

r+1 ;

Definition 2.9 Let C be a finite-dimensional projective R-module chain complex.

• The transposition involution T : Ct ⊗ C → Ct ⊗ C is defined by

T (x⊗ y) = (−1)rsy ⊗ x(x ∈ Cr, y ∈ Cs)

• The slant isomorphism is the map \ : Ct ⊗ C → Hom(C−∗, C), given by x\y = (f → f(x).y);

• The transposition involution on the chain complex C t ⊗ C is given by:

T (f) = (−1)rsf∗ (f : C−r → Cs)

Definition 2.10

Let f : C → D be a map of R-module chain complexes. Define the algebraic mapping cone C(f) by

C(f)r = Dr ⊕ Cr−1

dr =

(
dD (−1)rf
0 dC

)
: C(f)r+1 → C(f)r

Then define the homology of the map Hn(f) = Hn(C(f)).

Proposition 2.11 Let f : C → D be a map of finite-dimensional f.g. projective R-module complexes. f is a
homotopy equivalence iff C(f) is contractible.

2.3 Triads

Definition 2.12 A triad of projective R-module chain complexes is a diagram

C
f

//

g

��
k

BB
BB

!!B
BB

D

h

��
C ′

f ′

// D′

with f , f ′, g and h chain maps, and h a map of degree 1 such that dk + kd = hf − f ′g.

A triad determines a map

(
h (−1)rk
0 g

)
: C(f)→ C(f ′) so that we can define a mapping cone:

Definition 2.13 Given a triad Γ as above, define C(Γ) by:

C(Γ)r = D′
r ⊕ C

′
r−1 ⊕Dr−1 ⊕ Cr−2

dr =




dD′ (−1)rf ′ (−1)r−1h k
0 dC′ 0 (−1)r−1g
0 dD 0 (−1)r−1f
0 0 0 dC




Then define the homology groups Hn(Γ) = Hn(C(Γ)).
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Then these fit into a commutative diagram:

�� �� ��
// Hn(C)

g
//

f

��

Hn(C
′) //

f ′

��

Hn(g) //

��
// Hn(D)

h //

��

Hn(D′) //

��

Hn(h) //

��
// Hn(f) //

��

Hn(f
′) //

��

Hn(Γ) //

��
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Chapter 3

Geometric Preliminaries

In this chapter, for the sake of consistency and completeness, we recall some standard definitions and results upon
which we shall later rely.

3.1 Homology and homotopy groups

Recall that the homotopy groups πn(A) are defined to be the set of (based) homotopy classes of maps Sn → A.

Now for n ≥ 2, πn(A) ∼= πn(Ã). Furthermore, the action of π1(A) on Ã induces an action on πn(Ã) = πn(A).
Therefore the following is an equivalent definition of the homotopy groups, which makes it easier to describe the
action of Z[π1(A)]; we shall take it as our definition:

Definition 3.1 Given a pathwise connected space A, together with basepoint a0, the homotopy group πn(A) is
the set of homotopy classes of pairs (g, γ) where g : Sn → A and γ : [0, 1]→ A is a path such that γ(0) = a0 and
γ(1) = g(1, 0, . . . , 0) (homotopy keeping γ(0) fixed). Given a loop α ∈ π1(A) and (g, γ) ∈ πn(A), α.(g, γ) = (α ·γ, g)
(where · means ‘take the join of the two paths’).

In future we shall give all further definitions of homotopy groups in this way, to facilitate the description of the
group action.

Definition 3.2 Given a map of pathwise connected spaces with basepoints f : (A, a0)→ (B, b0), let πk+1(f) be
the set of homotopy classes of commutative squares:

Sk
g

//

��

A

f

��
Dk+1

h // B

together with paths γ : [0, 1]→ B such that γ(0) = b0 and γ(1) = f(g(1, 0, . . . , 0)).

Definition 3.3 Suppose that f : (B,A)→ (Y,X) is a map of pairs of pathwise connected spaces (with basepoints)
such that f∗ : π1(B)→ π1(Y ) is an isomorphism. Then:

• πk+1(B,A) = πk+1(i : A→ B)

• πk+2(f) = homotopy classes of diagrams

Sk
g

//

��

%%K
KK A

��

��=
==

Dk+1
L

//

��

X

��

Dk+1
U

//

%%KK
K

B
f

��=
==

Dk+2 // Y

together with paths γ : [0, 1]→ Y such that γ(0) = y0 and γ(1) = f(i(g(1, 0, . . . , 0))); where Dk+1
U and Dk+1

L

are the upper and lower hemispheres of Sk+1 = ∂Dk+2, with intersection in Sk.
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Definition 3.4 Let φ be a space, pair, map, or map of pairs (where all spaces are connected). Then φ is
k-connected if πi(φ) = 0 for i ≤ k.

In addition to acting on homotopy groups, the fundamental group also acts upon the singular chain complex of
the universal cover Csing

∗ (M̃), so that there is also an action on homology. Also, if M is a CW complex then
there exists a cellular chain complex for M̃ with an action of Z[π1(M)], so that CCW∗ (M̃) can be considered as
a Z[π]-complex. In this thesis, unless otherwise specified, C∗(M̃) will be used to refer to a Z[π]-module complex,
either singular or cellular, with cochain complex C∗(M̃) = HomZ[π](C∗(M̃),Z[π]).

Definition 3.5 Given a connected manifold M with fundamental group π and universal cover M̃ , define the
homology with local coefficients:

Hk(M ; Z[π]) = Hk(C∗(M̃))

and the cohomology with local coefficients:

Hk(M ; Z[π]) = Hk(HomZ[π](C∗(M̃,Z[π])))

both considered as Z[π]-modules.

Note that Hk(M ; Z[π]) = Hk(M̃ ; Z) considered as Z-modules. The same is not true for cohomology.

Convention 3.6 From now on, unless otherwise specified, all homology will be taken with local coefficients;
specifically H∗(M) shall mean H∗(M ; Z[π1(M)]).

Proposition 3.7 (Prop. 10.21, Ranicki[11]) Suppose that f : M → X is a degree 1 map of connected manifolds,
and suppose that f∗ : π1(M) → π1(X) is an isomorphism. Then the homology and cohomology of M decompose
as:

Hk(M) = Kk(M)⊕Hk(X), Hk(M) = Kk(M)⊕Hk(X)

and the Poincaré duality isomorphisms split as [M ] ∩ − = ([M ] ∩ −)⊕ ([X ] ∩ −).

These groups Kk(M), the homology kernel groups, are clearly such that f induces an isomorphism on homology
if and only if they are all zero. They are also the homology groups of the mapping cone of the map f : M → X
(sometimes denoted by Hk+1(f)), and as such there is a Hurewicz homomorphism from the above homotopy group
which permits representations of elements of the groups:

Theorem 3.8 (Hurewicz, theorem 3.26 Ranicki[11]) Given a 1-connected map f : M → X of connected spaces,
there is a Hurewicz map πk+1(f)→ Hk+1(f̃) ∼= Kk(M) such that if f is k-connected (k ≥ 1) then

πk+1(f) ∼= Hk+1(f̃) ∼= Kk(M).

Corollary 3.9 If f : M → X is a degree 1 map of connected spaces, f is k-connected if and only if f∗ : π1(M)→
π1(X) is an isomorphism and Ki(M) = 0 for i < k.

Theorem 3.10 (Whitehead, theorem VII.11.14 Bredon[1]) A map f : M → X of connected CW complexes is
a homotopy equivalence if and only if πi(f) = 0 for all i, or equivalently, f∗ : π1(M) → π1(X) is an isomorphism
and πi(f̃) = 0 for all i.

Furthermore, the kernel homology groups behave as a homology theory, respecting the relative long exact sequence,
as well as excision, (and hence the Mayer-Vietoris sequence.) We shall also need the following variant of Mayer-
Vietoris (the proof is a trivial modification of that of Mayer-Vietoris.)

Theorem 3.11 There is an exact sequence:

. . . // Hi(A ∪ B) // Hi(A ∪ B,B)⊕Hi(A ∪ B,A) // Hi−1(A ∩B) // Hi−1(A ∪ B) // . . .

Proof. See, for example, Bredon [1] problem IV.18.4.

Theorem 3.12 (Whitehead) • There is a Hurewicz map πk+1(f)→ Hk+1(f).

• For k ≥ 2, f is k-connected if and only if f induces an isomorphism of fundamental groups, and Ki(M) = 0
for i < k.

• For k ≥ 2, if f is k-connected then the Hurewicz map is an isomorphism πk+1(f) ∼= Kk(M) (or Kk(N,M)
when f is a map of pairs).
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Finally we shall need a technical lemma of Wall ([20], Lemma 2.3).

Lemma 3.13 Let f : (N,M)→ (Y,X) be a map of pairs with Y connected (M and X may be empty). Suppose
that Hi(f) = 0 for i < k, as a module with Λ = Z[π1(Y )] coefficients. Then:

(a) If Hk+1(f ;B) = 0 for every Λ-module B, then Hk(f) is a projective Λ-module.

(b) If N and Y are finite, Hk(f) is finitely generated.

(c) If, in addition to (a) and (b), Hi(f) = 0 for i 6= k, then Hk(f) is stably free.

3.2 Covering spaces

Suppose that g : W → Y is a splitting problem. In order to understand the maps on homology induced by the
inclusions M →W{1,2}, it is necessary first to consider the structure of the covering spaces of W and Y .

Let Ỹ denote the universal covering space of Y , with covering map πY : Ỹ → Y . Choose a fixed point x ∈ X , and
choose a lift z ∈ Ỹ .

Now π−1
Y (X) will have many connected components, with each component giving a simply connected covering

space for X . The component containing z will be denoted X̃ . Similarly we denote the covering spaces containing
Y1 and Y2 containing z by Ỹ1 and Ỹ2 respectively.

Now denote by Ŷ , Ŷ1 and Ŷ2 the quotient spaces of the action of H on Ỹ , Ỹ1 and Ỹ2 respectively.

Figure 3.1: The covering space W̃

W
2

W
1M

W
R

W
L

Lemma 3.14 The covering space of Y has the following properties:

(i) π−1
Y (X) =

⋃

α∈[G;H]

X̃α

(ii) π−1
Y (Y1) =

⋃

α∈[G;G1]

Ỹ1α

(iii) π−1
Y (Y2) =

⋃

α∈[G;G2]

Ỹ2α

Note now that Ỹ \X̃ has 2 components, one of whose closure contains Ỹ1. Following Cappell, denote this component
by YR and the other by YL.

The quotients YR/H and YL/H are to be denoted by Yr and Yl respectively.

If g|M is 2-connected, the covering space of W satisfies the same properties. we define in the same way W̃ , WR

and WL, and their quotients under the action of H , Ŵ , Wr, Wl.g (See figure 3.1 for a picture.)
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Chapter 4

Nilpotency

We stated in the introduction that Cappell’s obstruction to splitting a homotopy equivalence lies in a group called
UNil, the unitary nilpotent group. In our attempts to kill off all kernel homology of f by embedding representatives
of homology classes, we find that we can not extend an arbitrary embedding of a sphere to an embedding of a disk
in W1. However, it is the nilpotency of a certain map which provides a filtration of the homology modules, and
provides the means below the middle dimension to always kill off the homology.

In this chapter, we describe an additive category, Nil = Nil(Z[H ]; Z[G1],Z[G2]), first defined by Waldhausen ([17],
pg. 148), and put an involution on it. We shall describe how a splitting problem determines objects in this
category, in the same way that a map determines objects in the category of modules via the homology with local
coefficients. These objects share many desirable properties with the usual homology.

This will enable us in following chapters to show how a splitting problem can be made increasingly highly connected,
and how in the middle dimensions certain maps determine the splitting obstruction. When the obstructions are
formulated in terms of Nil ojects, the similarities with the surgery obstructions are particularly noticeable.

Definition 4.1 Given a subgroup H ≤ Gi, define Z̃[Gi] to be the additive subgroup of Z[Gi] generated by Gi \H .

This is then also a Z[H ]-bimodule, and as a Z[H ]-bimodule, Z[Gi] ∼= Z[H ] ⊕ Z̃[Gi]. Furthermore, Z̃[Gi] is free as
a right Z[H ]-module, with basis representatives of the right cosets of Z[H ] in Z[Gi].

Convention 4.2 In this thesis, ⊗Z[Gi] is always to be interpreted as ⊗Z[H]Z[Gi] unless otherwise specified.

4.1 Nilpotent category

The next 2 definitions define the nilpotent category of Waldhausen.

Definition 4.3

• Let P and Q be f.g. Z[H ]-modules. A nilpotent structure on (P,Q) is a pair of maps (ρ1, ρ2) where

ρ1 : P → Z̃[G1]⊗Q, ρ2 : Q→ Z̃[G2]⊗ P such that there exist filtrations of P and Q as Z[H ]-modules:

P = P0 ⊇ P1 ⊇ ... ⊇ Pr = 0
Q = Q0 ⊇ Q1 ⊇ ... ⊇ Qs = 0

such that ρ1(Pj) ⊆ Z̃[G1]⊗Qj+1 and similarly for ρ2.

• Define Obj(Nil) = {(P,Q; ρ1, ρ2) : P,Q are f.g. Z[H ]-modules and (ρ1, ρ2) is a nilpotent
structure on (P,Q)}.

Definition 4.4

(i) If (P,Q) and (P ′, Q′) have nilpotent structures (ρ1, ρ2) and (ρ′1, ρ
′
2) respectively, then a map (f, g) : (P,Q)→

(P ′, Q′) is compatible with the nilpotent structures if the following diagram (and its obvious counterpart in

11



ρ2, ρ
′
2) commutes

P
ρ1 //

fP

��

Z[G1]⊗Q

1⊗fQ

��
P ′

ρ′1// Z[G1]⊗Q
′

(ii) HomNil((P,Q; ρ1, ρ2), (P
′, Q′; ρ′1, ρ

′
2)) = {(fP , fQ)|fP : P → P ′, fQ : Q→ Q′

compatible with the nilpotent structures}

Definition 4.5 Let Nil
free (resp. Nil

proj) denote the full sub-categories of Nil of objects (P,Q; ρ1, ρ2) such that
P and Q are free (resp. projective).

We now define an involution on the projective category (for definition of category with involution, see Ranicki[8]).

Definition 4.6

(i) Given (P,Q; ρ1, ρ2) ∈ Nil
proj, define ρ∗1 : Q∗ → Z̃[G1]⊗P

∗ that ρ∗1(g) is the unique element of Z̃[G1]⊗P
∗ ∼=

Hom(P, Z̃[G1]) satisfying ρ∗1(g)(p) = (1⊗ g)(ρ1(p)) for all p ∈ P .

(ii) We define an involution functor ∗ : Nil
proj → Nil

proj by:

• (P,Q; ρ1, ρ2)
∗ = (Q∗, P ∗;−ρ∗1,−ρ

∗
2)

• (f, g)∗ = (g∗, f∗)

Lemma 4.7 The above involution is a well-defined involution on the category.

Proof. We must show that (Q∗, P ∗; ρ∗1, ρ
∗
2) ∈ Obj(Nil

proj), i.e. construct filtrations of modules for P ∗ and Q∗. Let
P and Q have filtrations:

P = P0 ⊇ P1 ⊇ ... ⊇ Pr = 0
Q = Q0 ⊇ Q1 ⊇ ... ⊇ Qs = 0

such that ρ1(Pi) ⊆ Z̃[G1]⊗Qi+1 etc. Assume, by adding zero terms to the end of one sequence if necessary, that
r = s. We claim that the following is a filtration associated to (Q∗, P ∗; ρ∗1, ρ

∗
2):

P ∗ = P ◦
r ⊇ P ◦

r−1 ⊇ ... ⊇ P ◦
0 = 0

Q∗ = Q◦
r ⊇ Q◦

r−1 ⊇ ... ⊇ Q◦
0 = 0

Suppose that f ∈ P ◦
i+1. Then f(p) = 0 for all p ∈ Pi+1. Let q ∈ Qi. Then ρ∗2(f)(q) = f(ρ2(q)) = 0 since

ρ2(q) ∈ Z̃[G2]⊗ Pi+1. Hence ρ∗2(f) ∈ Z̃[G2]⊗Q
◦
i and the above is a filtration as claimed. Similarly for ρ∗1.

Definition 4.8 If Ai are objects in Nil, and fi : Ai → Ai−1 are morphisms, then the sequence:

. . . // Ai
fi // Ai−1

fi−1 // . . .

is exact if for all i, letting fi = (fPi , f
Q
i ), ker fPi−1 = Im fPi and ker fQi−1 = Im fQi .

Remark 4.9 Not every short exact sequence in Nil
proj splits — for example, we shall see later that not every

Lagrangian in a UNil form has a complementary Lagrangian, which gives an example of a short exact sequence
which does not split.

4.2 Objects in the category

In the same way that with suitable connectivity assumptions, a manifold determines homology and cohomology
objects in the category of projective modules, a splitting problem determines objects in the nilpotent category. In
this section, we shall demonstrate the construction of these objects, and show that (in some cases) they satisfy the
usual reasonable properties, such as relative exact sequences, Poincare duality and universal coefficient theorem.

For clarity of presentation, we shall first describe the case where W and M are closed. This is precisely the case
described by Cappell in [5], so we omit details of many of the proofs where they are not relevant to further work.
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4.2.1 Homology splitting

In this section, we assume that g : W n → Y n is a splitting problem, and consider those homology groups of the
restriction f : M → X which are well behaved (finitely generated projective). An example is the group Kk(M)
where n = 2k + 1 and f is k-connected. The nilpotent object that we construct will be a splitting of Kk(M). In
the next section we shall consider the more general case of a pair, however for ease of exposition we shall consider
the simpler case separately first.

Proposition 4.10 (Cappell[5]) Suppose that g : W → Y is a splitting problem and that f : M → X is
k-connected. Then:

(i) Kk(M) = P ⊕ Q where P = Kk+1(Wr ,M) ∼= Kk(Wl) and Q = Kk+1(Wl,M) ∼= Kk(Wr) are f.g. Z[H ]-
modules;

(ii) Kk(W1) ∼= Z[G1]⊗Z[H] Q and Kk(W2) ∼= Z[G2]⊗Z[H] P ;

(iii) The maps P → Kk(M) → Kk(W1) ∼= Z[G1] ⊗Q and Q → Kk(M) → Kk(W2) ∼= Z[G2] ⊗ P factor through

maps ρ1 : P → Z̃[G1]⊗Q and Q→ Z̃[G2]⊗ P respectively;

(iv) The map

(
1 ρ2

ρ1 1

)
: Z[G] ⊗ (P ⊕Q)→ Z[G] ⊗ (P ⊕Q) is an isomorphism;

(v) (P,Q; ρ1, ρ2) is an object in Nil.

Definition 4.11 With the terms as defined above:

Splk(M) := (P,Q; ρ1, ρ2)

Before we proceed further, we shall say a little about the meaning of the terms defined so far. ρ1 represents
the obstruction to being able to represent α ∈ P by an embedding (Dk+1, Sk) → (W1,M). In particular α ∈
ker(Kk(M)→ Kk(W1)) iff α ∈ P and ρ1(α) = 0 (and similarly for W2). The map ρ is nilpotent, and we use this
nilpotency below the middle dimension to show that f can be made highly connected. In the middle dimension it
will form part of our obstruction.

The proof of this will be deferred until the next section, when it will be given in more generality. We shall, however,
note that the nilpotent structure follows from (4) by the following lemma from [5], Lemma I.9:

Lemma 4.12 Let P,Q be finitely generated Z[H ]-modules and ρ : Z[G]⊗(P ⊕Q)→ Z[G]⊗(P ⊕Q) a Z[G]-linear
map, satisfying:

(i) I + ρ is an isomorphism, I the identity map of Z[G] ⊗Z[H] (P ⊕Q)

(ii) ρ(P ) ⊂ Z̃[G1]⊗Q, ρ(Q) ⊂ Z̃[G2]⊗Z[H] P

Then ρ is nilpotent, and (P,Q) has an upper-triangular filtration.

Before we leave this section, we make one further observation which will be needed later on:

Lemma 4.13 Kk+1(W1,M ; Z[G1]) ∼= Z[G1]⊗ P . The map

Kk+1(W1,M ; Z[G1])→ Kk+1(M ; Z[G1]) ∼= Z[G1]⊗ (P ⊕Q)

is given by

(
1
−ρ1

)
.

Proof. There is a Mayer-Vietoris exact sequence with coefficients in Z[G1].

Kk+1(M,M) = 0 // Kk+1(W1,M)⊕Kk+1(
⋃

[G1;H]

Wl,
⋃

[G1;H]

M)
∼= // Kk+1(W,M) //

∼=

��

0

Z[G1]⊗ (P ⊕Q) ∼= Kk(M)
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So consider the composite of the two isomorphisms, call it

(
α β
γ δ

)
. By the definition of the isomorphismKk(M) =

P⊕Q, and the long exact sequence of the pair (Wl,M) it follows that β = 0 and δ = 1. Hence α is an isomorphism.
Henceforth, we use α to identify Kk+1(W1,M) with Z[G1]⊗ P .

The composite

Z[G1]⊗ P ∼= Kk+1(W1,M ; Z[G1])→ Kk(M) ∼= Z[G1]⊗ (P ⊕Q)→ Kk(W1; Z[G1]) ∼= Z[G1]⊗Q

is zero, by the long exact sequence of the pair (W1,M). The second map is
(
ρ1 1

)
by definition. The first

component of the first map is 1 since it is simply the identification made above. Hence the map Z[G1] ⊗ P →

Z[G1]⊗ (P ⊕Q) is

(
1
−ρ1

)
as claimed.

4.2.2 Relative homology splitting

Proposition 4.14 We now suppose that g : T → Y n is a splitting problem with boundary ∂g : W → ∂Y , and
that Kk(f, ∂f) : (N,M)→ (X, ∂X) is finitely generated. (For example if Kj(N,M) = 0 for j < k.) Then:

(i) Kk(N,M) = P ⊕Q where P = Kk+1(Tr,Wr ∪N) = Kk(Tl,Wl) and Q = Kk+1(Tl,Wl ∪N) = Kk(Tr,Wr);

(ii) Kk(T1,W1) ∼= Z[G1]⊗Z[H] Q and Kk(T2,W2) ∼= Z[G2]⊗Z[H] P ;

(iii) The maps
P → Kk(N,M)→ Kk(T1,W1) ∼= Z[G1]⊗Q

and
Q→ Kk(N,M)→ Kk(T2,W2) ∼= Z[G2]⊗ P

factor through maps ρ1 : P → Z̃[G1]⊗Q and Q→ Z̃[G2]⊗ P respectively;

(iv) The map

(
1 ρ2

ρ1 1

)
: Z[G] ⊗ (P ⊕Q)→ Z[G] ⊗ (P ⊕Q) is an isomorphism;

(v) (P,Q; ρ1, ρ2) is an object in Nil.

See figure 4.1 for picture.

Figure 4.1: The covering space T̃
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Definition 4.15 With the terms as defined above:

Splk(N,M) := (P,Q; ρ1, ρ2)
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Proof of 4.14. The proof is simply the relative version of Proposition 4.10. Note that Kj(M) and Kj(N,M)
decomposes as a direct sum of modules P ⊕Q for all j; however Splj(N,M) is only an object in Nil if Kj(N,M)
is a finitely generated Z[H ]-module.

(i) Follows from the braid of Z[H ]-modules:

Kk+1(Tr,Wr ∪M N)

))SSSSSSSSS

,,
Kk(Tl,Wl)

((QQQQQQQQ

Kk+1(T̃ , W̃ ) = 0

44iiiiiiiiii

**UUUUUUUUUU
Kk(N,M)

77ooooooo

''OOOOOOO
Kk(T̃ , W̃ ) = 0

Kk+1(Tl,Wl ∪M N)

55kkkkkkkkk

22
Kk(Tr,Wr)

66mmmmmmmm

(ii) Consider the decomposition T̃ = T̃1 ∪[G1;H]Ñ [G1;H ]Tl and similarly for W . Since Ki(T,W ) = 0 for all i,
the Mayer-Vietoris sequence gives isomorphisms:

Kk(Ñ , M̃ ; Z[G1]) ∼= Kk(Tl,Wl; Z[G1])⊕Kk(T̃1, W̃1; Z[G1])

Z[G1]⊗ (P ⊕Q) ∼= Z[G1]⊗ P ⊕Kk(T1,W1)

By construction, the map Z[G1] ⊗ (P ⊕ Q) → Z[G1] ⊗ P is the map
(
1 0

)
, so we have an isomorphism

Q⊗ Z[G1] ∼= Kk(T1,W1). Similarly for Kk(T2,W2).

(iii) Follows from commutativity of the diagram:

P
∼=// Kk+1(Tr.Wr ∪M N) //

��

Kk+1(Tr,Wr ∪ T1)

��
Kk(N,M) // Kk(T1,W1)

(iv) From the Mayer-Vietoris sequence for W , we have an isomorphism of Z[G]-modules:

Z[G]⊗Z[H] Kk(N,M)
∼=
→ Z[G] ⊗Z[G1] Kk(T1,W1)⊕ Z[G]⊗Z[G2] Kk(T2,W2)

Note that in part (ii) above, the map Z[G1] ⊗ (P ⊕Q) → Z[G1] ⊗ P ⊕ Z[G1] ⊗ Q is given by

(
1 0
ρ1 1

)
. In

particular, therefore, the map Kk(N,M ; Z[G1]) = Z[G1]⊗(P⊕Q)→ Kk(T1,W1; Z[G1]) = Z[G1]⊗Q is given
by
(
ρ1 1

)
. Similarly, the map Kk(N,M ; Z[G1])→ Kk(T2,W2) = Z[G2]⊗P is given by

(
1 ρ2

)
. Hence the

Mayer-Vietoris map is

(
1 ρ2

ρ1 1

)
as claimed.

Lemma 4.16 Wherever the objects referred to are defined (for example ifKj(M) = 0 unless j = k, Kj(N,M) = 0
unless j = k + 1):

(i) If φ : W →W ′ is a map of splitting problems over Y , there is a map φ∗ : Splk(M)→ Splk(M
′);

(ii) Given a splitting problem with boundary (T,W ), there is a connecting homomorphism

∂ : Splk+1(N,M)→ Splk(M);

(iii) The sequence . . .→ Splk+1(N,M)→ Splk(M)→ Splk(N)→ Splk(N,M)→ . . . is exact.

Proof. (i) Clear from the construction.

(ii) Consider the diagram in figure (4.1). The maps are all natural, and all squares are commutative.
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P1 ⊕Q1
//

��

Kk+2(Wr ,M)⊕Kk+2(Wl,M) //

��

Kk+2(W,M) //

��

Kk+1(M)

��

// Kk+1(W1)

��

∼= P1 ⊗ Z[G1]

P2 ⊕Q2
//

��

Kk+2(Tr, N)⊕Kk+2(Tl, N) //

��

Kk+2(T,N) //

��

Kk+1(N)

��

// Kk+1(T1)

��

∼= P2 ⊗ Z[G1]

P3 ⊕Q3
//

��

Kk+2(Tr,Wr ∪N)⊕Kk+2(Tl,Wl ∪N) //

��

Kk+2(T,W ∪N) //

��

Kk+1(N,M)

��

// Kk+1(T1, N1)

��

∼= P3 ⊗ Z[G1]

P4 ⊕Q4
// Kk+1(Wr ,M)⊕Kk+1(Wl,M) // Kk+1(W,M) // Kk(M) // Kk(W1) ∼= P4 ⊗ Z[G1]

1
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4.2.3 Cohomology splitting

We shall now proceed further and show that cohomology as well as homology defines an object in UNil. Later
on we shall show analogues of Poincaré duality and the universal coefficient theorem. There are two choices of
cohomology splitting: one construction is essentially the Poincaré dual of the homology splitting; the other is the
dual of the homology splitting. These are related by a factor of −1. It is for this reason that the − signs appeared
in the definition of the involution on UNil given earlier.

Proposition 4.17 Suppose again that g : W → Y is a splitting problem and that f : M → X is k-connected.
Then:

(i) Kk(M) = P ⊕Q where P = Kk(Wr) ∼= Kk+1(Wl,M) and Q = Kk(Wr) ∼= Kk+1(Wl,M);

(ii) Kk(W1,M ; Z[G1]) ∼= Z[G1]⊗Z[H] Q and Kk(W2,M ; Z[G2]) ∼= Z[G2]⊗Z[H] P ;

(iii) The maps P → Z[G1] ⊗K
k(M) → Kk(W1,M) ∼= Z[G1] ⊗Q and Q → Kk(M) → Kk(W2,M) ∼= Z[G2] ⊗ P

factor through maps ρ1 : P → Z̃[G1]⊗Q and Q→ Z̃[G2]⊗ P respectively;

(iv) The map

(
1 ρ2

ρ1 1

)
: Z[G] ⊗ (P ⊕Q)→ Z[G] ⊗ (P ⊕Q) is an isomorphism;

(v) (P,Q; ρ1, ρ2) is an object in Nil.

Definition 4.18 With P,Q, ρ1, ρ2 as above:

Splk(M) := (P,Q; ρ1, ρ2)

Proof of 4.17. (i) Follows from the braid of Z[H ]-modules:

Kk(Wr)
,,

%%K
KKKKKKKK

Kk+1(Wl,M)

((QQQQQQQQQQQQ

Kk(W ) = 0

&&MMMMMMMMMM

88qqqqqqqqqq

Kk(M)

&&NNNNNNNNNNN

88ppppppppppp

Kk+1(W ) = 0

Kk(Wl)
22

99sssssssss

Kk+1(Wr,M)

66mmmmmmmmmmmm

(ii) Consider the decomposition of W̃ = W̃1 ∪[G1;H]M̃ [G1;H ]Wl. All components are equipped with a Z[G1]-

action giving us a Mayer-Vietoris sequence (see theorem 3.11):

Kk(M̃ ; Z[G1]) ∼= Kk+1(W̃1, ∂W̃1; Z[G1])⊕K
k+1(Wl,M ; Z[G1]).

If C∗(M̃) is a free Z[H ]-module chain complex, then:

Hk(C∗(M); Z[G1]) = Hk(HomZ[G1](Z[G1]⊗Z[H] C∗(M̃),Z[G1]))

∼= Hk(Z[G1]⊗Z[H] HomZ[H](C∗(M̃),Z[H ])

∼= Z[G1]⊗Z[H] Hk(HomZ[H](C∗(M̃),Z[H ]))

= Z[G1]⊗Z[H] H
k(M ; Z[H ])

where the first isomorphism is from the fact that C∗(M̃) is free and the second is from the fact that Z[G] is
a free Z[H ]-module.

The rest of the result follows precisely as before, with ρ1 being the map P → Z[G1] ⊗ (P ⊕ Q) →
Kk+1(W1,M ; Z[G1]) ∼= Z[G1]⊗Q.

A straight-forward compilation of the results in the previous 2 sections then allows us to make the following
definition

Definition 4.19 Suppose that g : T → Y n is a splitting problem with boundary ∂g : W → Y , and that
Kk(N,M) is f.g. projective. Then:

17



• Let P := Kk(Tl,Wl) and Q := Kk(Tr,Wr);

• Let ρ1 := P → Kk(N,M)→ Kk(N,M)→ Z̃[G1]⊗Q ⊂ K
k+1(T1,W1 ∪M N)

• Let ρ2 := Q→ Kk(N,M)→ Kk(N,M)→ Z̃[G2]⊗ P ⊂ K
k+1(T2,W2 ∪M N)

Proposition 4.20 Wherever the objects referred to are defined:

(i) If φ : W →W ′ is a map of splitting problems over Y , there is a map φ∗ : Splk(M
′)→ Splk(M);

(ii) Given a splitting problem with boundary (T,W ), there is a connecting homomorphism ∂ : Splk(M) →
Splk+1(N,M);

Proposition 4.21 (Poincaré duality) If (T n;W,W ′) is a cobordism of splitting problems, then there is a Poincaré
duality isomorphism

Spln−k(N,M) ∼= Splk(N,M
′).

Proof. Consider the following commutative diagram, where the horizontal arrows are all the Poincaré duality
isomorphisms.

Hn−k(HomZ[H](C(Tl,Wl),Z[H ])) //

��
(−1)n−k

Hk+1(C(Tl,W
′
l ∪M N))

��
Hn−k(HomZ[H](C(N,M),Z[H ])) //

��

Hk(C(N,M ′))

��
Z[Gi]⊗Z[H] Hn−k(HomZ[H](C(N,M),Z[H ])) //

��

Z[Gi]⊗Z[H] Hk(C(N,M ′))

��
Hn−k(HomZ[Gi](Z[Gi]⊗Z[H] C(N,M),Z[Gi]))

��

// Hk(Z[Gi]⊗Z[H] C(N,M ′))

��
Hn−k+1(HomZ[Gi](C(T1,W1 ∪M N),Z[Gi])) //

(−1)n−k+1

Hk(C(T1,W
′
1))

The composite on the left hand side is precisely the map ρ1 in the cohomology splitting. The composite on the
right hand side is the map ρ1 in the homology splitting.

Proposition 4.22 (Universal coefficient theorem) Suppose that Hk−1(M) = 0. Then there is an isomorphism

Splk(M) ∼= Splk(M)∗.

Proof. From the commutative diagram, with the horizontal maps all isomorphisms from the universal coefficient
theorem.

Hk(HomZ[H](C(Wl),Z[H ])) //

��

HomZ[H](Hk(Wl),Z[H ])

��
Hk(HomZ[H](C(M),Z[H ])) //

��

HomZ[H](Hk(C(M)),Z[H ])

��
Z[Gi]⊗Z[H] H

k(HomZ[H](C(M),Z[H ])) //

��

Z[Gi]⊗Z[H] HomZ[H](Hk(C(M),Z[H ])

��
Hk(HomZ[Gi](Z[Gi]⊗Z[H] C(M),Z[Gi])) //

��

HomZ[Gi](Hk(Z[Gi]⊗Z[H] C(M)),Z[Gi])

��
Hk(HomZ[Gi](C(W1,M),Z[Gi])) // HomZ[Gi](Hk(C(W1,M)),Z[Gi])

The composite map on the left hand side is ρ′1 in the definition of the cohomology splitting. The composite map
on the right hand side is −ρ∗1, (simply the dual of the map in lemma 4.13).
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Chapter 5

K-theory

In this chapter the K-theoretic part of the obstruction is discussed. As in the introduction, fix I = ker(K̃0(Z[H ])→
K̃0(Z[G1]) ⊕ K̃0(Z[G2])). Let Z2 act on K̃0(Z[H ]) in the usual way T [M ] = [M∗] It was shown by Cappell that
there is an element lying in Hn(Z2; I) which is the obstruction to g being normal bordant to a split homotopy
equivalence. Much of the following theory is due to Waldhausen in the unpublished notes Waldhausen[16]. Some
of the treatment was reworked by Ranicki in [7] pp. 672–678; where available we use this treatment.

Definition 5.1 Let E be a based Z[G]-module chain complex. A Mayer-Vietoris presentation of E, (C,D1, D2, fi, gi),
consists of:

• A f.g. free based Z[H ]-module chain complex C;

• A f.g. free based Z[G1]-module chain complex D1;

• A f.g. free based Z[G2]-module chain complex D2;

• Maps fi : Z[Gi]⊗Z[H] C → Di;

• Maps gi : Z[G]⊗Z[Gi] Di → E

such that
Z[G]⊗Z[H] C → Z[G]⊗Z[G1] D1 ⊕ Z[G] ⊗Z[G2] D2 → E

is a short exact sequence and the given basis of E coincides with the basis induced by g1 − g2.

Note that if f1 ⊕ f2 is a Z[G]-homotopy equivalence then E is contractible and τ(E) = τ(f1 ⊕ f2).

Every f.g. free based Z[G]-module chain complex admits a presentation. Denote Er when considered as a Z[H ]-
module rather than a Z[G]-module by Er|Z[H]. Then:

Proposition 5.2 (Ranicki [9], Remark 8.7) Let E be a f.g. free based Z[G]-module chain complex. There exist
f.g. free subcomplexes D1 ⊂ E|Z[G1], D2 ⊂ E|Z[G2], and C ⊂ E|Z[H] such that (C,D1, D2, fi, gi)

0→ Z[G]⊗Z[H] C → Z[G]⊗Z[G1] D1 ⊕ Z[G] ⊗Z[G2] D2 → E → 0

is a Mayer-Vietoris presentation.

To define the map Wh(G) → K̃0(Z[H ]), it is necessary to decompose Z[G] as a Z[H ]-bimodule. We use the
notation of Cappell; here if g ∈ G = G1 ∗H G2, then g can be written in normal form as hg1 . . . gk where each
gi ∈ G1 or G2, and for example, g ∈ Ai if i = k and g1 and gk are both in G1.

Lemma 5.3 (Cappell [5], pg. 84) Define Ai, Bi,Γi,∆i inductively:

A1 = Z̃[G1], B1 = 0, Γ1 = Z̃[G2], ∆1 = 0

Ai+1 = ∆i ⊗Z[H] Z̃[G1], Bi+1 = Γi ⊗Z[H] Z̃[G1]

Γi+1 = Bi ⊗Z[H] Z̃[G2], ∆i+1 = Ai ⊗Z[H] Z̃[G2]

Then as a Z[H ]-bimodule,

Z[G] ∼= Z[H ]⊕
∞∑

i=1

Ai ⊕
∞∑

i=1

Bi ⊕
∞∑

i=1

Γi ⊕
∞∑

i=1

∆i
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The following algebraic result corresponds to the decomposition of the covering space shown in the previous chapter.

Definition 5.4 ([17] pg. 146, [7] pg. 673) Suppose that (C,Di, fi, gi) is a Mayer-Vietoris presentation such that
f1 ⊕ f2 is a homotopy equivalence over Z[G]. Then consider the following diagram:

. . .⊕ Γ1 ⊗ C
##HH

H
yysss

s
⊕ C

��>
>

����
⊕ A1 ⊗ C

''OOOzzvvv
⊕ ∆2 ⊗ C

''PPPwwooo
⊕ A3 ⊗ C

))SSS
S

wwooo
⊕ . . .

wwnnnnn

. . . ⊕ D2 ⊕ D1 ⊕ A1 ⊗D2 ⊕ ∆2 ⊗D1 ⊕ A3 ⊗D2 ⊕ . . .

The top row is a decomposition of Z[G] ⊗Z[H] C, the bottom is Z[G] ⊗Z[G1] D1 ⊕ Z[G] ⊗Z[G2] D2, and the arrows
are the only component maps which can be non-zero.

Define D+ to be the union of everything on the right hand side of C, i.e. the mapping cone of the map:

(A1 ⊕∆2 ⊕A3 ⊕∆4 ⊕ . . .)⊗ C → D1 ⊕ (A1 ⊗D2)⊕ (∆2 ⊗D1)⊕ (A3 ⊗D2)⊕ . . . .

Define D− similarly.

Definition 5.5 (Ranicki[7], pg. 674, [16], section 5) Let τ(E) ∈ Wh(G) for some contractible f.g. free based
Z[G]-module chain complex E, and let

0→ Z[G]⊗Z[H] C → Z[G]⊗Z[G1] D1 ⊕ Z[G] ⊗Z[G2] D2 → E → 0

be a Mayer-Vietoris presentation of E. Then C(C → D+) is finitely dominated; define φ(τ(E)) = [C(C → D+)] ∈
K̃0(Z[H ]). φ is a well-defined map Wh(G)→ K̃0(Z[H ]).

Lemma 5.6 (Waldhausen[16], section 6) Suppose that P and Q are finitely dominated Z[H ]-module complexes

such that C ' P ⊕ Q, D1 ' Z[G1] ⊗ Q, D2 ' Z[G2] ⊗ P , with maps ρ1 : P → Z̃[G1] ⊗ Q, ρ2 : P → Z̃[G2] ⊗ P ,
such that

( 1 ρ1
ρ2 1

)
: Z[G]→ Z[G] is an isomorphism such that

Z[G1]⊗ C
f1 //

'

��

D1

'

��
Z[G1]⊗ (P ⊕Q)

( 1 ρ1 )
// Z[G1]⊗Q

and its counterpart involving ρ2 and Q, commute up to chain homotopy. Then C(C → D+) ' P . In particular,
φ(τ(C)) = [P ].

Proof. We must interpret the mapping cone C(C → D+) in terms of P , Q and ρi. Since the projective class is a
chain homotopy invariant, we may assume that C = P ⊕Q, D1 = Z[G1]⊗ P , D2 = Z[G2]⊗Q. Now:

Ai ⊗D2
∼= Ai ⊗ Z[G2]

∼= Ai ⊗ Z̃[G2]⊗ P ⊕Ai ⊗ P
∼= ∆i+1 ⊗ P ⊕Ai ⊗ P.

Similarly, ∆i ⊗D2
∼= ∆i ⊗Q⊕Ai+1 ⊗Q. Thus the mapping cone C(C → D+) is the mapping cone

(∆0 ⊕A1 ⊕∆2 ⊕ . . .)⊗ (P ⊕Q)→ (∆0 ⊕∆2 ⊕ . . .)⊗D1 ⊕ (A1 ⊕A3 ⊕ . . .)⊗D2

(∆0 ⊕A1 ⊕∆2 ⊕ . . .)⊗ (P ⊕Q)→ (∆0 ⊕A1 ⊕∆2 ⊕ . . .)⊗Q⊕ (A1 ⊕∆2 ⊕A3 ⊕ . . .)⊗ P

Let C ′ = (∆0 ⊕ A1 ⊕∆2 ⊕ . . .) ⊗ Q⊕ (A1 ⊕∆2 ⊕ A3 ⊕ . . .). Define 1 + ρ = 1 ⊗ (1 + ρ1) on (Ai ⊕∆i) ⊗ P , and
1 + ρ = 1 ⊗ (1 + ρ2) on (Ai ⊕∆i) ⊗ P . Then C(C → D+) ∼= C(C ′ → P ⊕ C ′) where the restriction C ′ → C ′ is
given by the chain isomorphism 1 + ρ. Hence, C(C → D+) ' P . The second conclusion is immediate from the
definition of φ.

The K-theory splitting obstruction of Cappell is a Z2 cohomology class:

Lemma 5.7 (Cappell[5], Lemma II.4) Let g : W → Y n+1 be a splitting problem. Then φ(τ(g)) = (−1)n+1φ(τ(f))∗,
and so determines an element

φ(τ(g)) ∈ Hn+2(Z2; ker(K̃0(H)→ K̃0(G1)⊕K0(G2))).

φ(τ(g)) = 0 if and only if g is bordant to g′ : W ′ → Y such that φ(τ(g′)) = 0.

This will always be the first splitting obstruction. For the remainder of this thesis, we assume that φ(τ(g)) = 0.
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Chapter 6

Below the Middle Dimensions

It was seen in the introduction that in order to perform surgery on a normal map f : M → X , an embedding
Sk ×Dn−k →M whose image under f is null-homotopic in X is required. Given a homotopy class α ∈ πk+1(f),
there are two ways of deciding whether it can be represented by a framed embedding: either make it an embedding
first, and then try to find a framing (as in Ranicki[11], chapter 10), else find a framing first and then try to change
it to an embedding by a regular homotopy (as in Wall[20], chapters 1 and 5). We follow Wall, and fix a framing
first, and then try to represent it by an embedding.

It was stated in the introduction that it is always possible to perform surgeries / handle exchanges to make
surgery/splitting problems highly connected. In this chapter we assume that M is connected and that f : M → X
induces an isomorphism of fundamental groups. We then proceed to state how surgery problems can be made
highly connected, and the extent to which splitting problems can be made homotopy equivalences is determined
in proposition 6.11.

6.1 Surgery

In this section we review how framed embeddings of spheres can be constructed inside a normal map and the result
of surgery on such embeddings.

First recall the definition of a normal map (following Wall):

Definition 6.1 Let X be a Poincaré complex, with η a bundle over X :

• A normal map is a map f : M → X together with a stable trivialisation F of τM ⊕ f
∗η .

• A normal bordism consists of a cobordism (W ;M,M ′) together with maps (g; f, f ′) : (W ;M,M ′) → X
together with a stable trivialisation G of τW ⊕ g

∗η

The following theorem of Wall provides the regular homotopy classes of framed immersions which must be used to
perform surgery in order to produce normal bordisms.

Theorem 6.2 (Wall[20], Theorem 1.1) Let Mn be a smooth or PL manifold (with boundary), f : M → X a
continuous map, ν a vector bundle or PL bundle over X , and F stable trivialisation of τM ⊕ f

∗ν. Then any
α ∈ πr+1(f), r ≤ n − 2, determines a regular homotopy class of immersions Sr × Dn−r → M . The embedding
φ : Sr ×Dn−r →M can be used for a surgery killing α if and only if f is in this class.

We shall be using this result frequently, often without direct reference. A general position argument then gives
the corollary:

Corollary 6.3 With notation as above, if n > 2r then we can do surgery on α.

The following result says that it is always possible to perform surgery up to the middle dimension. Moreover, there
exist normal maps f : M → X which are not normal bordant to homotopy equivalences, so that this result is the
best general result.

Proposition 6.4 (Wall [20], chapter 1) Suppose that f : M → Xn is a degree 1 normal map. Then f is normal
bordant to a [n/2]-connected map.
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The proof is by induction, by showing that, given a k-connected map of n-dimensional manifolds, with 2 ≤ k <
[n/2], there is a normal bordant (k + 1)-connected map: (The arguments which show that it is always possible to
make a map 2-connected are similar to the following.)

Assume that f is k-connected. Since there is a Hurewicz isomorphism Kk(M) ∼= πk+1(f), every non-zero kernel
homology class α is represented by a map (Dk+1, Sk) → (X,M). By the above, there is a framed embedding
(Dk+1, Sk) ×Dn−k → (X,M) on which surgery produces a normal bordant map with the class α ‘killed’ in the
following sense.

Proposition 6.5 Suppose that M is the result of a k-surgery on a class α ∈ Kk(M) where k < [n/2]. Then the
homology of the resulting manifold M ′ is determined by:

Ki(M
′) =

{
Ki(M) if i < k

Kk(M)/〈α〉Z[π] if i = k

6.1.1 Manifolds with boundary

Suppose that f : (Nn+1,Mn) → (Y n+1, Xn) is a degree 1 normal map of manifolds with boundary, where
∂N = M,∂Y = X . There are 2 ways of performing surgery to obtain a normal bordant map: firstly by performing
surgeries on the interior as above, and secondly by performing surgeries on the boundary:

Proposition 6.6 Suppose that N is a manifold with boundary M (together with a degree 1 normal map f :
(N,M) → (Y,X)). Let M ′ be the result of a surgery on M with trace W . Then there is a normal bordism
g : (V, ∂V )→ (Y,X)× I with f : (N,M)→ (Y,X) of f ′ : (N ′,M ′)→ (Y,X).

Proof. The cobordism is constructed in the following way:

Let V = (N ∪M W ) × I . Then ∂V = (N ∪W ) × {0} ∪M ′ × I ∪ (N ∪W ) × {1}. This can be rebracketed as
∂V = N ∪M (W ∪M ′ × I) ∪M ′ (N ∪W ), hence V is a cobordism of manifolds with boundary, of (N,M) with
(N ∪W,M ′). See figure 6.1.1. Note that we need also to smooth over the corner at M ′ × {0}.

Figure 6.1: A cobordism of manifolds related by surgery on the boundary

N M

N’

M’
W

M’

} V x I}
V x{0}

Hence surgeries on the boundary of a manifold can be used to make the restriction map highly connected, and
then surgeries on the interior of the manifold make the map highly connected.

If N = N2k+1 then the above results imply that there is a normal bordant manifold with boundary (which we
continue to denote by N and M) such that Kk−1(N) = Kk−1(M) = 0. However we can do better than this:
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Proposition 6.7 (Wall[20], Theorem 1.4) Suppose that N 2k+1 is a manifold with boundaryM and f : (N,M)→
(Y,X) a degree 1 normal map, with f and f |M k-connected. Then there is a normal bordant manifold with
boundary (M ′, N ′) such that in addition Kk(N,M) = 0.

Proof. We outline the proof of this theorem, since we wish to generalize it later on.

From the above, surgery below the middle dimension on M can be used to make M → X k-connected, followed
by surgery on N relative to M to make N → Y k-connected.

Hence there is an exact sequence . . . // Kk(N) // Kk(N,M) // 0 .

Kk(N,M) is a finitely generated Z[π1(N)] module by 3.13. Take a finite set of generators. Then each is represented
by a sphere αi ∈ πk(N). Remove a discDk

i ⊂ αi and join a tube Sk−1
i ×I with Sk−1

i ×{0} ⊂ αi and Sk−1
i ×{1} ⊂M .

By theorem 6.2 this procedure can be framed, to give embeddings (Dk, Sk−1)×Dk+1 → (N,M). We denote the
union of these handles by H , and let N0 = N \H , M0 = ∂N0.

By excision Hk+1(N,H ∪ ∂N) ∼= Hk+1(N0, ∂N0)

Then there is a commutative braid diagram:

Hk(H ∪ ∂N0, ∂N0)
,,

))SSSSSSSS
Hk(N, ∂N)

,,

))RRRRRRR
Hk(Y,X)

Hk+1(f)

66nnnnnn

((PPPPPP
Hk(N0, ∂N0)

44iiiiiiiii

**UUUUUUUUU

Hk+1(Y,X)

55kkkkkkkk

33 Hk+1(f0)

55lllllll

22
Hk−1(N ∪ ∂N0, ∂N0)

Since three of the sequences are exact, it follows from Wall [19] that the fourth must also be exact. Combining
this with the excision isomorphism above, gives the following exact sequence:

// Hi(H ∪ ∂N0, ∂N) // Ki(N,M) // Ki(N0,M0) // Hi−1(H ∪ ∂No, ∂N) //

But by excision, Hi(H ∪ ∂N0, ∂N) ∼= Hi(H,H ∩ ∂N) =

{
〈αi〉 if i = k

0 else
.

Hence Hk−1(H ∪ ∂N0, ∂N) = 0 and Hk(H ∪ ∂N0, ∂N) → Kk(N,M) is surjective. It follows from exactness that
Kk(N0,M0) = 0.

The effect on M is to perform trivial (k − 1)-surgeries, each of which has the effect of forming the connected sum
with Sk × Sk, and therefore leaves untouched homology below the kth dimension,

6.1.2 Connectivity results

For convenience, we now put the previous sections together in the following key results:

Corollary 6.8 Suppose that f : Mn → Xn is a degree 1 normal map. Then there exists a normal bordant map
f ′ : M ′ → X which is [n/2]-connected.

Corollary 6.9 Suppose that f : (N,M)→ (Y n+1, Xn) is a degree 1 normal map of pairs. Then there is a normal
bordant map f0 : (N0,M0)→ (Y,X) such that

• f0 is [(n+ 1)/2]-connected

• f0|M is [n/2]-connected

• Kk(N,M) = 0 if n = 2k.

6.2 Handle exchanges

The following procedure of Cappell [5] performs an equivalent procedure to make a splitting problem highly
connected. We are not able, as we want, to represent every element by an embedding (Dk+1, Sk) → (Wi,M)
— although we have shown that we can find a basis with respect to which every element is represented by an
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embedding (Dk+1, Sk) → (W{r,l},M). However, there are associated to Splk(M) filtrations of P and Q. We
perform handle exchanges to make f highly connected by reducing the length of these filtrations. This works in
the following manner:

• Suppose that α ∈ P r is such that ρ(α) = 0. Then α ∈ ker(Kj(M) → Kj(W1)). Then α can be represented
by a null-homotopic embedding (Dj+1, Sj)→ (W1,M) and hence can be killed by a handle-exchange.

• The resulting map is such that the homology groups are the same up to the jth dimension, where the result
is that P is replaced by P/〈α〉, so we can kill off the submodule P r.

• Inductively we then kill off all other submodules until r + s = 0.

6.2.1 Manifolds with Boundary

We want to be able to apply the methods of section 6.1.1 to the split problem; in particular if we are to mirror the
results in the splitting case, we wish to prove the following theorem:

Proposition 6.10 Suppose that g : (V,W )→ (Y 2k+2, ∂Y ) is a homotopy equivalence of pairs,X is a codimension
1 submanifold of Y and g−1(X, ∂X) = (N,M), f = g|N . Suppose that f and f |M are k-connected. Then g is
h-cobordant to g′ : V ′ → Y such that Kk(N

′,M ′) = 0.

This will be instrumental in proving the necessity of the vanishing of the surgery obstruction. The proof will run
along the same lines as 6.7, once we show how to perform the geometric moves in the context of the codimension
1 splitting problem.

Proof. Let Splk(N,M) = (P,Q; ρ1, ρ2). As with the previous handle exchanges, the argument will proceed by
induction on the length of the filtration. We shall begin by explaining how to perform a handle subtraction (as
in 6.7) on x ∈ P such that ρ1(x) = 0. We shall then formalize the inductive hypothesis, and show that a finite
number of such handle subtractions results in a splitting problem with the desired connectivity property.

Thus suppose that P̂ is such that ρ1(P̂ ) = 0 and such that ρ2(Q̂) ⊂ P̂ i.e. let P̂ and Q̂ be the top of the
filtrations of P and Q. Take a set of generators for P̂ , {xi}. Then as before, for each xi there is an immersion
θi : (Dk+1, Sk) → (V1, N) which is an embedding on the boundary since dimN = 2k + 1. As in the surgery
case, join Sk to M by a tube Sk−1 × I bounding Dk × I which joins θi(D

k+1) to the boundary W1. This gives
an immersed disk φi : Dk+1 → V1 with embedded boundary Dk ∪Sk−1 Dk → N ∪M V1. Then the methods of
the π − π theorem of Wall (Wall[20], pg 40) apply. Namely the only intersections and self-intersections of the φi
are isolated points in the interior of V1. Therefore at each intersection point either 2 branches of the same disc
intersect or else 2 different discs intersect. Take a path along each branch to W1 (NB not to W1∪M N). Then since
π1(V1) = π1(W1) there exists a triangle in V1 bounding these 2 paths and a path in W1 joining the 2 endpoints.
Then the φi can be changed by regular homotopy to new embeddings removing the intersection points and leaving
fixed all but a neighbourhood of these triangles. Then in particular the representatives xi ∈ Kk(N,M) have been
left fixed. These embeddings can be framed in the usual way. Displace the embedding φi slightly into W2 so that
the boundary of φi is transverse to N . Now remove the embeddings Dk+1 ×Dk+1. Let V 0 be the space formed
by removing the φi. Then V = V 0 ∪Dk×Dk+1∪

Dk×SkDk+1×Sk Dk+1 ' V so V ' V 0, and in particular g0 : V 0 → Y

is a homotopy equivalence. Also V2 = V 0
2 ∪Dk×Dk+1 Dk+1 ×Dk+1 ' V 0

2 .

Then the exact sequence of 6.7 extends to an exact sequence of Nil objects:

(Z[H ]n, 0; 0, 0)→ (P,Q; ρ1, ρ2)→ (P ′, Q′; ρ′1, ρ
′
2)→ 0.

Clearly then Q = Q′. We claim that if q ∈ Q is such that ρ2(q) ∈ P̂ , then ρ′2(q) = 0 and therefore the length of
the filtration has been reduced. For the following diagram commutes and the rows are exact:

0 //

��

Q

ρ2

��

jQ
// Q′

ρ′2

��

// 0

Z[H ]n
xi

// P
jP

// P ′ // 0

Suppose that ρ2(q) ∈ P̂ . Then ρ2(q) =
∑

(aixi), so ρ′2(jQ(q)) = jP (ρ2(q)) = 0 by commutativity and exactness.

We have now shown that if x ∈ P is such that ρ1(P ) = 0, then a handle subtraction can be performed inside the
splitting problem; we now finish the argument by induction in the following way:

Take generators for a filtration to construct a sequence f r : P r → P , gr : Qr → Q such that
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• P 0 = Q0 = 0.

• For each r either P r+1 = P r ⊕ Z[H ]nr and Qr+1 = Qr or vice versa;

• For each r, ρ1(f
r) ⊂ Z[G1]⊗ g

r−1(Qr−1) and vice versa.

• For some R, PR = P , QR = Q.

The inductive claim is then that there is a sequence of handle subtractions of the above form so that

P r ⊕Qr → Kk(N,M)→ Kk(N
r,Mr)→ 0

is exact. Clearly when r = R this implies that Kk(N
R,MR) = 0 as required. To prove it, suppose that the claim

is true for r (clearly true for 0) and assume wlog that Qr+1 = Qr and that P r+1 = Pr ⊕ 〈x1, . . . , xn〉. Then the
images f r+1(xi) are represented by discs in (N,M) which can be taken as disjoint from any previous embeddings.
Furthermore, since ρ1(f

r+1) ⊂ Z[G1] ⊗ Q
r and the map Qr → Q′ is zero by exactness. Hence these embeddings

bound in V ′
1 as before and handle subtractions can be performed as above. The result of the handle subtractions

is a pair (Nr+1,Mr+1) such that
Z[H ]n ⊕ 0→ P ′ ⊕Q′ → P ′′ ⊕Q′′ → 0

is exact. We claim that the sequence

P r+1 ⊕Qr+1 → P ⊕Q→ P ′′ ⊕Q′′ → 0

is therefore exact.

To see this consider the commutative braid diagram:

P r
))

""E
EEE

EE
EE

P
((

##F
FF

FF
FF

FF
P ′′

��@
@@

@@
@@

@

P r+1

$$H
HH

HH
HH

HH

::uuuuuuuuuu
P ′

  A
AA

AA
AA

A

==||||||||
0

Z[H ]n

<<yyyyyyyy

66 0

??��������

Three of the sequences are exact hence the fourth is also and the result is shown.

6.2.2 Connectivity results

Once again, we conclude the section with a summary of the results regarding handle exchanges below the middle
dimension.

Corollary 6.11 Suppose that g : W n+1 → Y n+1 is a splitting problem restricting to f : Mn → Xn. Then there
exists a bordant splitting problem g′ : W ′ → Y such that f ′ : M ′ → X is [n/2]-connected.

Corollary 6.12 Suppose that g : (V,W ) → (Y, ∂Y ) is a pair of splitting problems, restricting to (f, ∂f) :
(N,M)→ (X, ∂X) a degree 1 map of pairs. Then there is a bordant splitting problem g′ restricting to (f ′, ∂f ′) :
(N ′,M ′)→ (X, ∂X) such that

• f ′ is [(n+ 1)/2]-connected

• f ′|M is [n/2]-connected

• Kk(N,M) = 0 if n = 2k.
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Chapter 7

Forms

The even-dimensional L-groups and UNil groups are both defined as equivalence classes of forms. In this chapter
we describe the groups algebraically, and give some relevant results, before describing in the next chapter how a
geometric problem determines an obstruction in these groups. We shall first recall the theory of quadratic forms
which define the surgery obstruction groups, together with the definition of Ranicki of split quadratic forms. We
shall then recall the definition of UNil forms of Cappell, give a slight reformulation in terms of the category defined
in chapter 4 to make them resemble quadratic forms more closely, and define split quadratic UNil forms.

7.1 Basic properties of forms

In this section we establish the basic definitions of quadratic forms over a ring with involution, and some results
which we shall use later on.

Throughout this section, R is a ring with involution, M is an R-bimodule with involution, K and L are projective
R-modules and ε = ±1.

Definition 7.1 A sesquilinear pairing is a map λ : K×L→M , additive in each component, such that λ(rk, sl) =
s.λ(k, l).r. The additive group of sesquilinear pairings is denoted S(K,L;M). In the case that M = R, we shall
write simply S(K,L).

Lemma 7.2

S(K,L;M) ∼= HomR(K,HomR(L,M)) ∼= M ⊗R HomR(K,L∗)

If λ ∈ S(K,L;M) then Λ : K → Hom(L,M) is given by Λ(k) = (l→ λ(k, l)).

Definition 7.3 • S(K;M) := S(K,K;M);

• Tε : S(K;M)→ S(K;M), the ε-transposition morphism, is the morphism given by Tε(λ)(x, y) = ελ(y, x)

• The ε-symmetric group over M is

Qε(K;M) = {λ ∈ S(K;M) : λ(x, y) = ελ(y, x)} = ker(1− Tε);

• An ε-symmetric form over M is a pair (K,λ) where λ ∈ Qε(K;M);

• The ε-quadratic group over M is Qε(K;M) := coker(1 − Tε) : S(K;M) → S(K;M). Then in particular,
using the isomorphism M → S(R;M) given by m→ ((r, s)→ smr), Qε(R;M) = M/{x− εx : x ∈M};

• Qε(K) := Qε(K;R), Qε(K) := Qε(K;R);

• An ε-quadratic form over M is a triple (K,λ, µ) such that (K,λ) is an ε-symmetric form and µ : K →
Qε(R;M) such that

µ(x+ y)− µ(x) − µ(y) = λ(x, y) ∈ Qε(R;M)

µ(x) + εµ(x) = λ(x, x) ∈M

µ(ax) = aµ(x)a ∈ Qε(R;M)

Lemma 7.4 The ε-transposition Tε onM⊗RHomR(K,K∗) defined by Λ→ εΛ∗ corresponds to the ε-transposition
defined above under the isomorphism S(K,K;M) ∼= M ⊗R HomR(K,K∗).
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7.2 The surgery obstruction group, L2k(R)

7.2.1 Quadratic forms

We shall explain in detail in the next chapter how a surgery problem is represented by a quadratic intersection form
on its middle dimensional homology (Kk(M), λ, µ). If M bounds some (highly connected) manifold N then there
is a boundary map (∂ : Kk+1(N,M) → Kk(M)) such that λ(∂x, ∂y) = 0. Hence the even-dimensional surgery
obstruction group is defined to be a Witt group of quadratic forms over a ring with involution R, where a form
represents 0 in the group if and only if it has a Lagrangian.

Definition 7.5 (i) A sublagrangian L in a symmetric form (K,λ) is a direct summand L ⊆ K, such that
λ(L,L) = 0.

(ii) Given a sublagrangian L in a symmetric form (K,λ), define L⊥ = {x ∈ K : λ(x, L) = 0}.

(iii) A sublagrangian L in a quadratic form (K,λ, µ) is a sublagrangian L of (K,λ) such that µ(L) = 0.

(iv) A lagrangian L (of a symmetric or quadratic form) is a sublagrangian such that L = L⊥.

Note that L is a Lagrangian of a form (K,λ) if and only if the sequence:

0 // L
i // K

i∗λ // L∗ // 0

is exact.

In fact any (−1)k-symmetric quadratic form over a ring with involution R takes a particular form; namely the
quadratic intersection form of the map Sk×Sk → S2k. In other words, the surgery obstruction remains unchanged
by taking the connected sum with Sk × Sk.

Definition 7.6 (i) The hyperbolic ε-symmetric form of a f.g. projective R-module K is (K ⊕ K∗, λ) where
λ((x, f), (g, y)) = f(y) + εg(x)

(ii) The hyperbolic ε-quadratic form of a f.g. projective R-module K is Hε(K) := (K ⊕K∗, λ, µ) where λ is as
above and µ(x, f) := f(x)

Lemma 7.7 (Prop. 2.2, Ranicki[12]) A non-singular ε-quadratic form (K,λ, µ) over R admits a Lagrangian L if
and only if it is isomorphic to the hyperbolic form Hε(L)

Another fact we shall need later is the following:

Lemma 7.8 Suppose that (K,λ, µ) is a representative of x ∈ Ln(Z[G]). Then there is another representative
given by (K̃, λ̃, µ̃) with

K̃ = K∗

λ̃ = λ−1

µ̃(x) = µ(λ−1(x))

We complete this section by noting the group structure on the L groups.

Lemma 7.9 For any form (K,λ, µ), there exists an isomorphism

φ : (K,λ, µ)⊕ (K,−λ,−µ)→ Hε(K)

Definition 7.10 The 2k-dimensional L-group L2k(A) is the set of non-degenerate ε-quadratic forms (K,λ, µ),
modulo the equivalence relation (K,λ, µ) ∼ (K ′, λ′, µ′) if there exist r, s such that

(K,λ, µ)⊕H(−1)k (Ar) ∼= (K ′, λ′, µ′)⊕H(−1)k(As)

It is given an additive group structure with addition given by

(K,λ, µ)⊕ (K ′ λ′, µ′) := (K ⊕K ′, λ⊕ λ′, µ⊕ µ′)

and inverse by
−(K,λ, µ) := (K,−λ,−µ)
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7.2.2 Split quadratic forms

It is readily seen that a symmetric form in which all diagonal entries are even can be expressed as the sum of an
upper triangular matrix and its transpose. This observation motivates the consideration of ε-quadratic forms by
representing each as the sum of a map plus its ε-transpose. Such maps will be called split ε-quadratic forms.

Definition 7.11 • A split ε-quadratic form (K,ψ) is a f.g. stably free A-module K together with an element
ψ ∈ HomA(K,K∗).

• An equivalence of split ε-quadratic forms (K,ψ), (K,ψ′) is an element χ ∈ Q−ε(K) such that ψ′ − ψ =
(1− Tε)χ.

• A morphism of split ε-quadratic forms (f, χ) : (K,ψ)→ (K ′, ψ′) is an A-module morphism f ∈ HomA(K,K ′)
together with an element χ ∈ Q−ε(K) such that f∗ψ′f − ψ = χ− εχ′ : K → K∗.

Proposition 7.12 The ε-quadratic structures (λ, µ) on a stably f.g. free A-module K are in one-one correspon-
dence with the equivalence classes ψ ∈ Qε(K) of split ε-quadratic forms (K,ψ).

Proof. We shall simply state the maps.

A split ε-quadratic form (K,ψ) determines an ε-quadratic form (K,λ, µ) where λ = (1+Tε)ψ and µ(x) = ψ(x)(x).

For the reverse, choose a basis x1, . . . , xn for K, with dual basis f1, . . . , fk. Define

ψ(xj) =
∑

i<j

λ(xi, xj)fi + µ̃(xj)fj

where µ̃(xj) is some lift of µ(xj) to R.

Proposition 7.13 Let (K,ψ) be a representative for the split form corresponding to the ε-quadratic form
(K,λ, µ). Then i : L ⊂ K is a Lagrangian iff the inclusion i : L→ K is such that χ− εχ∗ = i∗ψi.

Proof. Again choose a basis x1, . . . , xk for K and a dual basis f1, . . . , fk. Then define

χ(xj) =
∑

i<j

i∗ψi(xi)(xj)fi + i∗ψi(xj)(xj)

which is such that χ− εχ∗ = 0 since i∗(1 + Tε)ψi = 0 and µ(ix) = 0 for all x ∈ L.

There is also a (trivial) correspondence between split forms and quadratic complexes (to be defined later). This is
an important use, and split UNil forms are defined to bridge the gap between Cappell’s theory and the algebraic
theory of codimension 1 splitting problems (see Ranicki [7]).

7.3 The even-dimensional splitting obstruction group UNil

The UNil obstruction group was defined by Cappell to consist of pairs of forms, with values in Z̃[G1] and Z̃[G2],
with a nilpotency condition on their adjoints, as in the Nil category defined in section 3. We shall show that these
can also be considered as forms on objects in the Nil category. We shall extend the concept of split quadratic
forms to split UNil forms. Whilst being of apparently little benefit at this stage, this reformulation will play a
large part in our more general theory.

Let M1 and M2 be A-bimodules with involution which are f.g. free over R.

Definition 7.14 hfill

(i) A non-singular ε−UNil form over (M1,M2) is a pair C = ((K1, λ1, µ1), (K2, λ2, µ2)) where:

• K1 and K2 are f.g. free Z[H ]-modules;

• K1 = K∗
2 ;

• (Ki, λi, µi) is an ε-quadratic form over Mi.

• There exist finite filtrations of A-modules such that

K1 = K0
1 ⊇ K1

1 ⊇ ... ⊇ Kr
1 = 0

K2 = K0
2 ⊇ K1

2 ⊇ ... ⊇ Ks
2 = 0
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• Letting ρ1 : K1 → M1 ⊗R K2 denote the adjoint of λ1 and ρ2 : M2 ⊗R K2 → K1 denote the adjoint of
λ2,

ρ1(K
i
1)(M1) ⊆M1 ⊗R K

i+1
2

ρ2(K
i
2)(M2) ⊆M2 ⊗r K

i+1
1

(ii) Set −C = ((K1,−λ1,−µ1), (K2,−λ2,−µ2)).

(iii) A UNil Lagrangian of a form C is a pair of free direct summands Vi ⊆ Ki such that V2 is the annihilator of
V1 (V2 ⊆ K2 = K∗

1 ) with λi|Vi×Vi
= 0 and µi|Vi

= 0.

(iv) A UNil form C is a kernel if it has a UNil Lagrangian.

(v) Define UNil2k(R;M1,M2) to be the set of equivalence classes of non-singular (−1)k-UNil forms under the
equivalence relation

C1 ∼ C2 if C1 ⊕ (−C2) is a kernel.

Note that although a quadratic form has a Lagrangian if and only if it is hyperbolic, there is no corresponding
result for UNil forms, as the following example shows:

Example 7.15 Let 〈t1〉Z denote the free Z-module generated by t1. Then there exists a (Z; 〈t1〉Z, 〈t2〉Z)-UNil
form which possesses a Lagrangian which has no complementary Lagrangian.

Proof. Let P = Z⊕3 = 〈x1, x2, x3〉, Q = P ∗ = 〈y1, y2, y3〉.

Let

ρ1 =




0 t1 0
t1 0 0
0 0 0




ρ2 =




0 0 0
0 0 0
0 0 2t2




µ1(ax1 + bx2 + cx3) = abt1

µ2(ay1 + by2 + cy3) = c2t2

Let L be the Lagrangian (〈x3〉, 〈y1, y2〉).

Suppose that there exists a complementary Lagrangian (〈x′1, x
′
2〉, 〈y

′
3〉).

Then y′3 = αy1 + βy2 + γy3 where γ 6= 0.

Then µ2(y
′
3) = µ2(αy1 + βy2) + µ2(γy3) + λ2(αy1 + βy2, γy3) = γ2t2 6= 0.

But this is a contradiction of the assumption that (〈x′1, x
′
2〉, 〈y

′
3〉) is a Lagrangian.

7.3.1 UNil again

We can reformulate symmetric UNil forms in terms of the Nil defined earlier. This will draw an even closer parallel
with the surgery obstruction group, and will be more useful for the formulation of the odd-dimensional obstruction
group in terms of formations.

Definition 7.16

An ε-symmetric Nil-form (KS, λ) is an object KS ∈ Nil together with a morphism λ : KS → KS∗ such that
λ = ελ∗. It is non-singular if λ is an isomorphism.

An ε-quadratic Nil-form (KS, λ, µP , µQ) is an ε-symmetric Nil-form (KS, λ) together with maps µP : P →

Qε(Z[H ]; Z̃[G1]), µQ : Q → Qε(Z[H ]; Z̃[G2]), such that µP (x) + εµP (x) = (−ρ∗1λ)(x)(x), and µQ(x) + εµQ(x) =
(−ρ∗2λ)(x)(x).

Definition 7.17 A Lagrangian of a non-singular symmetric Nil-form (KS, λ) is an object LS in Nil with an
injection i : LS → KS such that the sequence

0 // LS
i // KS

i∗λ // LS∗ // 0
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is exact.

Similarly a Lagrangian LS = (LP , LQ) of a non-singular Nil-form (KS, λ, µP , µQ) is a Lagrangian of the symmetric
Nil-form (KS, λ) such that µP (LP ) = 0 and µq(LQ) = 0.

Lemma 7.18 Non-singular Symmetric/quadratic UNil forms are in 1-1 correspondence with non-singular sym-
metric/quadratic Nil forms, and UNil lagrangians are in 1-1 correspondence with Nil lagrangians.

Proof. Suppose that ((P,Q; ρ1, ρ2), (λ1, λ2)) is a symmetric Nil form. Define a UNil form by (P,Q, λ1ρ
∗
1, λ2ρ

∗
2),

using λ1 = λ∗2 to identify P ∼= Q∗. This correspondence is easily seen to be reversible.

Suppose that (i1, i2) : (L1, L2;σ1, σ2)→ (P,Q; ρ1, ρ2) is the inclusion of a Nil lagrangian. Then in particular

0 // L1
i1 // P

i∗2λ1
// L∗

2
// 0

is exact.

Hence L1 = ker(P → L∗
2) i.e. L1 is the annihilator of L2 with respect to the isomorphism P ∼= Q∗ given by λ1. L1

is a direct summand since the short exact sequence is a short exact sequence of projective modules and therefore
splits. The form L1 → L∗

1 = i∗1λ2ρ1i1 = σ∗
1 i2 ∗ λ1i1 = 0 (up to sign). Similarly with L2, and hence (L1, L2) is a

symmetric UNil lagrangian.

Conversely, suppose that (L1, L2) is a UNil lagrangian. Then P = L1 ⊕ L
∗
2, Q = L2 ⊕ L

∗
1. Define σ1 to be the

composite L1 → P → Z[G1]⊗Z[H] Q→ Z[G1]⊗Z[H] L2.

It would be nice to have an equivalent of the result that every quadratic form with a Lagrangian is hyperbolic. As
Example 7.15 shows, this is not true in such a naive form. However, we can still define hyperbolic forms which are
quadratic forms with Lagrangians:

Definition 7.19 Given a Nil-module KS = (P,Q; ρ1, ρ2), define the hyperbolic form

Hε(KS) = (P ⊕Q∗, Q⊕ P ∗;

(
ρ1 0
0 ρ∗1

)
,

(
ρ2 0
0 ρ∗2

)
).

7.3.2 Split UNil forms

Definition 7.20 A split ε-quadratic UNil form (KS, θ, ψP , ψQ) consists of:

• KS = (P,Q; ρ1, ρ2) ∈ Nil;

• An isomorphism θ : P → Q∗;

• ψP : P → P ∗ ⊗ Z̃[G1], ψQ : Q→ Q∗ ⊗ Z[G2], such that ρ∗1θ = ψP + εψ∗
P , ρ2θ

∗ = ψQ + εψ∗
Q.

Definition 7.21 An equivalence of split ε-quadratic UNil forms

(KS, θ, ψP , ψQ) ∼ (KS′, θ′, ψ′
P , ψ

′
Q)

is a pair (χP , χQ) ∈ Q−ε(P ; Z̃[G1])⊕Q−ε(Q; Z̃[G2]) such that ψP −ψ
′
P = (1−T+ε)χP and ψQ−ψ

′
Q = (1−Tε)χQ.

Lemma 7.22 The non-singular ε-quadratic forms (KS, λ, µP , µQ) on KS ∈ Nil are in 1-1 correspondence with
the equivalence classes of split ε-quadratic forms over KS.
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Chapter 8

The Even-dimensional UNil Obstruction

In this chapter, assume that f : M 2k → X (k ≥ 3) is a highly connected degree 1 normal map (sitting inside a
homotopy equivalence g : W → Y for the splitting case). We recall the definition of the surgery and splitting
obstructions defined in the even-dimensional case by Wall and Cappell respectively.

The even-dimensional surgery obstruction σ(f) was defined by Wall to be the quadratic intersection on the kernel
homology of M , and the splitting obstruction χ(g) was defined by Cappell similarly, so long as a K-theoretic
obstruction vanishes.

These definitions are here recalled, for use later in the thesis.

8.1 The Surgery Obstruction

Once again, before defining the splitting obstruction, we recall the theory of the surgery obstruction. In this
chapter let f : Mn → Xn where n = 2k, X is a Poincaré complex and M is a manifold. By previous results, we
can further assume that f is highly connected. Then by Poincaré duality and the Universal Coefficient Theorem,
Kj(M) = 0 for j 6= k.

Given such a map f , the surgery obstruction σ(f) ∈ L2k(Z[π1(X)]) is the quadratic form (K,λ, µ) with the
following components:

• K = Kk(M)

• λ = the homology intersection form on K.

• µ, the ‘self-intersection’, measures the obstruction to being able to represent an element by a framed embed-
ding Sk ×Dk →M .

We follow Wall in not defining µ on homotopy classes x ∈ πk+1(f), but instead defining it only on particular
regular homotopy class determined by the normal bundle data.

Construction 8.1 With f : M → X as above, suppose that x ∈ Kk(M) ∼= πk+1(f). Let θ : Sk → M be in
the unique regular homotopy class of immersions determined by the normal data, and assume that θ is in general
position. Then θ has only a finite set of self-intersections. Suppose that p = (y1, y2) is a self-intersection, i.e.
θ(y1) = θ(y2) with y1 6= y2. Let γ be a path in Sk from y1 to y2 via the base point, and avoiding all other
self-intersection points. Fix a local orientation at θ(y1), and let ε(p) = 1 if transporting the orientation around
θ∗(γ) gives the same orientation and −1 else. Let g(p) = θ∗(γ) ∈ π1(X). Then let µ(x) be the sum over all
self-intersections p,

∑
g(p)ε(p).

µ(x) is then a regular homotopy invariant and is the obstruction to representing x by an embedded sphere framed
in a manner compatible with the normal map.

Proposition 8.2 (Chap. 5, Wall[20]) For f : M → X2k, where k ≥ 3, σ(f) = 0 if and only if f is normal
bordant to a homotopy equivalence.

Outline of proof. Suppose that F : N → X × I is a normal bordism with f ′ : M → X . Then after making F
highly connected Kk+1(N,M) is a Lagrangian of M .
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Suppose that σ(f) = (K,λ, µ) is stably hyperbolic. Then surgeries on 0 ∈ Kk(M) have the effect of adding a
hyperbolic form (the effect of surgery is to take the connected sum with a torus). Hence it can be assumed that
the obstruction is hyperbolic.

Let L be a Lagrangian generated by x1, . . . , xr. Since the self-intersection of these elements is zero, they can be
represented by framed embeddings. Surgery on these has the result of killing the middle-dimensional homology,
resulting in a homotopy equivalence.

Remark 8.3 Suppose that f : M → X2k is a highly connected normal map of manifolds, not necessarily open,
but such that the homology and cohomology do satisfy Poincaré duality. Then σ(f) is defined in the same way as
above and is the surgery obstruction to there existing a relative Poincaré cobordism to a homotopy equivalence.
All the steps outlined above follow through without modification.

8.2 Splitting obstruction

Again assume that f : M → X2k is k-connected, then from the previous chapter, Kk(M) = P ⊕Q. Assume that
φ(τ(g)) = 0 ∈ H0(Z2; ker(K̃0(Z[H ]) → K̃0(Z[G1]) ⊕ K̃0(Z[G2]))). Then by the results of chapter 5, it can be
assumed that φ(τ(g)) = 0 = [P ], so that P is stably f.g. free.

Then trivial (k−1)-handle exchanges can be performed to assume that P is f.g. free, and then Splk(M) determines
a free Nil object. Then the Poincaré duality map defines a symmetric UNil form λ = (θ, (−1)kθ∗) : (P,Q; ρ1, ρ2) =
Splk(M)→ Splk(M)∗.

The splitting obstruction is to be a quadratic UNil form, so a quadratic refinement must now be defined. Its
definition is slightly hidden in the literature — the ‘nilpotent normal cobordism’ is constructed, a cobordism with
homology kernel Z[G] ⊗ (P ⊕Q), and the splitting intersection forms µP and µQ must be the self-intersection in
this cobordism of x− ρ1(x) and x− ρ2(x) respectively.

Construction 8.4 Let ∆ be a planar triangle, with three edges e1, e2, e3. Define:

W ′
1 = M ×∆ ∪M×e1 Wl × I ∪M×e2 Wr × I ∪M×e3 W1 × I

(and smoothing corners). Let x ∈ P = Kk+1(Wr,M). Then x can be represented by an immersed disc φ : Dk+1 →
Wl ∪M W1 with boundary φ : Sk → M . Since P is a Lagrangian of the kernel form of f : M → X , the boundary
can be taken to be an embedding.

In addition, φ bounds an immersed disc φ′ in Wr. Thus φ ∪φ φ
′ defines an immersion of a k + 1-dimensional

sphere into (W1 ∪M Wl) ∪M Wr which embeds into W ′
1 as shown by the dotted lines in the figure. Let µ1(x) ∈

Q(−1)k+1(Z[G1]) be the self-intersection of the immersion.

Figure 8.1: W ′
1 used in defining the self-intersection µ1(x)

W1Wl

Wr

M

µ(x) is the self-intersection of an immersed sphere in the 2k+ 2-dimensional manifold with boundary W ′
1 in figure

8.1. Namely, let ∆ be a planar triangle. Then W ′
1 is formed by joining W1 × I , Wl × I and Wr × I onto the three

edges M × I of ∆ × I (and smoothing corners). Then πφ : Dk+1 → W1 ∪M Wl ⊂ W ′
1 is an immersed disc, with

boundary πφ = φ : Sk →M ⊂W ′
1 an embedding. Let θ : Sk+1 → W ′

1 be given by:

θ(Sk+1) = θ(Dk+1 ∪Sk Dk+1) = πφ(Dk+1) ∪Sk φ(Dk+1) ⊂ (W1 ∪M Wl) ∪M Wr ⊂W
′
1.

Remark 8.5 µ1(x) ∈ Q(−1)k+1(Z[G1]) is the self-intersection of the above class θ; the map µ : P → Q(−1)k+1(Z[G1])

factors through the inclusion Q(−1)k+1(Z̃[G1]) ⊂ Q(−1)k+1(Z[G1]).

This will follow once we have seen that it is the self-intersection of a certain sphere in the nilpotent normal
cobordism constructed by Cappell and which is described in the next chapter.
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Definition 8.6 We define the UNil obstruction of the map g above to be

χ(g) ∈ UNil2k+2(Z[H ]; Z̃[G1], Z̃[G2])

represented by the UNil form:
((P, λ1, µ1), (Q, λ2, µ2))

where λ1 = ρ∗1θ, λ2 = ρ∗2θ
∗.

Then Cappell proved:

Theorem 8.7 (Cappell [3]) g is h-cobordant to a split homotopy equivalence if and only if χ(g) = 0 and

φ(τ(g)) = 0. Furthermore, given any α ∈ UNil2k+2(Z[H ]; Z̃[G1], Z̃[G2]), there exist manifolds W , Y and a map
g : W → Y such that χ(g) = α.

Remark 8.8 Note that if g is h-cobordant to a split homotopy equivalence, i.e. if there exists an h-cobordism
(G; g.g′) : (V ;W,W ′)→ (Y ×I ;Y ×{0, 1}), restricting to a cobordism (F ; f, f ′) : (N ;M,M ′)→ (X×I ;X×{0, 1})
with f ′ a homotopy equivalence, then it can be seen by proposition 6.12 that the pair can be made highly connected
so that Splk+1(N,M) → Splk(N,M) determines a UNil lagrangian. If χ(g) = 0 and φ(τ(g)) = 0 then g is
h-cobordant to a homotopy equivalence: this followed from the computation of the surgery obstruction of the
‘nilpotent normal cobordism’, which will be described in the next chapter.
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Chapter 9

Even-dimensional Nilpotent Normal

Cobordism

In this chapter we describe the nilpotent normal cobordism. This is a cobordism between a given splitting problem
and a split homotopy equivalence (i.e. a cobordism which is a homotopy equivalence on the boundary) whose
surgery obstruction can therefore be computed. If the surgery obstruction is zero, then the splitting problem is
solved. We have defined the splitting obstruction χ(g).

The realization for elements of the UNil group will be achieved via the realization of the nilpotent normal cobordism.
The monomorphism UNil → L is given by the nilpotent normal cobordism. Hence we can think of UNil ⊂ L as
consisting of those obstructions which arise as the nilpotent normal cobordism of a splitting obstruction.

We describe the nilpotent normal cobordism construction here since we shall soon give a generalization of this
construction in terms of algebraic surgery, and it will be useful to have some geometric intuition behind it.

Theorem 9.1 (Cappell[5]) There is a split monomorphism α : UNil2k+2(H ;G1, G2)→ L2k+2(G1∗HG2). Suppose
that k ≥ 3 and g : W → Y 2k+1 is an even-dimensional splitting problem with φ(τ(g)) = 0 and splitting obstruction
χ(g) ∈ UNil2k+2(H ;G1, G2). Then there exists a cobordism G : V 2k+2 → Y of g : W → Y with g′ : W ′ → Y ,
where g′ is split, with σ(h) = α(χ(g)). In particular, if χ(g) = 0 then σ(h) = 0 so g is splittable.

The K-theoretic obstruction has already been described as the relative finiteness obstruction of the kernel of the
maps of Z[H ]-covers Wl → Yl and Wr → Yr. Since these kernels are finitely dominated, (so finite in this case),
P and Q are stably free and so determine Lagrangians of Kk(M). Hence it is possible to perform surgeries on
f : M → X on spheres representing generators of P or Q. This gives two cobordisms (CP ;M,MP ) → X and
(CQ;M,MQ)→ X , where fP : MP → X and fQ : MQ → X are homotopy equivalences.

Construction 9.2 (Nilpotent normal cobordism) Take an embedding M × [−2, 2] ⊂ W ; glue CP × [−2,−1]
and CQ × [1, 2] onto W × I by joining M × [−2,−1] ⊂ CP × [−2,−1] to M × [−2,−1] × {1} ⊂ W × {1} and
M × [1, 2] ⊂ CQ × [1, 2] to M × [1, 2]×{1} ⊂W ×{1}. Call the resulting cobordism h : T → Y , Denote W × I by
∂−T and the remainder of the boundary of T by ∂+(T ). See Figure 9.1.

Figure 9.1: Construction of the nilpotent normal cobordism T

∂−T 44

∂+(T ) **









CP × [−2,−1] CQ × [1, 2]

•
MP

�
�
�

�
�

•

•
MQ

�
�
�

�
�

••
M

︸ ︷︷ ︸
M × I × [−2, 2]

W2 × I W1 × I

Proposition 9.3 (Cappell [5]) The nilpotent normal cobordism has the following properties:
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• ∂−(T ) = W ;

• h+ : ∂+(T )→ Y is a split homotopy equivalence;

• The kernel homology Kk+1(T ) = Z[G1 ∗H G2]⊗ (P ⊕Q)

• The intersection form λT is such that λT ((1 − ρ)x, (1 − ρ)y) =

(
−λ1 (−1)k+1

1 −λ2

)
: Kk+1(T ) → Kk+1(T )∗,

and µT ((1− ρ)x) = µP (x) for x ∈ P , µT ((1− ρ)x) = µQ(x) for x ∈ Q.

Proof. That it is split is clear, since the maps MP → X and MQ → X are both homotopy equivalences. Note that
there is an inclusion of CP ∪M CQ ⊂ W ′ and the restriction CP ∪M CQ → X is a homotopy equivalence (in fact

CP ∪M CQ is a compact manifold homotopy equivalent to Ŵ ). Then

W ′ = (W2 ∪M CP ) ∪MP
(CP ∪M CQ) ∪MQ

(CQ ∪M W1).

Since Kk(W2) = P ⊗Z[H] Z[G2] and CP is formed by attaching cells to a basis of P , Kk(W2 ∪ CP ) = 0. Similarly
with Kk(W1 ∪ CQ) and then the Mayer-Vietoris sequence implies that Kk(W

′) vanishes as claimed.

Cappell proves that the nilpotent normal cobordism has surgery obstruction λT , which satisfies λT ((1− ρ)x, y) =

L(x, y), where x, y ∈ P or Q and L =
(

0 1
(−1)k+1 0

)
. This is proved by constructing explicit immersions representing

x and (1− ρ)x for x ∈ P,Q, and showing that their intersection in T is given by the form L. On the other hand,

if ε = (−1)k, then L =

(
0 ε
1 0

)
, 1− ρ =

(
1 −ρ2

−ρ1 1

)
, ερ1 = λ1 and ερ2 = λ2 so

L(1− ρ) =

(
0 ε
1 0

)(
1 −ρ2

−ρ1 1

)
=

(
−ερ1 ε

1 −ρ2

)
=

(
−λ1 ε
1 −ρ2

)
=

(
−λ1 ε
1 −λ2

)
.

In particular the construction of (1− ρ)x is the following:

Construction 9.4 Let x ∈ P . Then x is represented by a sphere Sk which bounds discs in CP and in W1∪M CQ.
Thus the union of these discs is a sphere Sk+1 → TM ; as always there is a unique regular homotopy class in this
homotopy class determined by the normal data.

At this point we shall depart slightly from the proof of Cappell and define an infinite version of the preceding: this
will (a) justify the definition of the self-intersection form given earlier, and (b) not depend upon the dimension of
X being even.

Lemma 9.5 Let g : W → Y n+1 be a homotopy equivalence such that φ(τ(g)) = 0, and define T∞
M to be the

open surgery (Maumary [6]) problem given by glueing copies of Wr and Wl where CP and CQ were glued before.
Then there is defined a surgery obstruction, σ(T∞

M ) = α(χ(g)) ∈ Lhn+2(Z[G]).

Figure 9.2: Infinite nilpotent normal cobordism







Wr × [−2,−1] Wl × [1, 2]

�
�
�
�
�

•
�
�
�
�
�

•

M × I × [−2, 2]W2 × I W1 × I

Lemma 9.6 Suppose that (W,M) is a split homotopy equivalence. Then T∞
M → T∞

X is a homotopy equivalence.

Proof. T∞
M = W × I ∪M×I Ŵ × I , so the map is a homotopy equivalence if and only if M → X is, since W → Y

and Ŵ → Ŷ are homotopy equivalences.

Proposition 9.7 Let g : W → Y n+1 be a homotopy equivalence, and let σ(T∞
M ) be the surgery obstruction of the

infinite nilpotent normal cobordism construction. Suppose that (V ;W,W ′) is a cobordism of splitting problems
with W’ split and with φ(τ(W )) = 0. Then σ(T∞

M ) = σ(V ) ∈ Ln+2(V ).
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Figure 9.3: Infinite nilpotent normal cobordism construction applied to a cobordism
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The benefit of this result is that it does not rely upon the parity of the dimension, or upon highly-connectedness,
and we will be able to apply this result directly in the odd-dimensional case.

Proof. As before, define T∞
N = N× I ∪Vr× I ∪Vl× I . Let V0 = V1∪M Vr ∪Vr ∪M Vl∪Vl∪M V2, which is homotopy

equivalent to Y1∪X Yr∪Yr ∪X Yl∪Yl∪X Y2. Then the boundary of T∞
N is the union of TM , T∞

M ′ , V and V ′. Regard
T∞
N as a cobordism rel ∂ of TM with V ∪′W TM ′ ∪M ′

0
N0, so that these have the same surgery obstruction. Then

we claim that the surgery obstruction of the latter is the surgery obstruction of V . This is because the following
are all homotopy equivalences:

• W ′ → Y ′;

• T∞
M ′ → T∞

X since W ′ is split;

• V0 → Y0.

Remark 9.8 In the case when f : M → X2k is highly connected, the computation of the surgery obstruction of
the infinite nilpotent normal cobordism is identical to the surgery obstruction of the nilpotent normal cobordism,
sinceKi(Wr ,M) ∼= Ki(CP ,M). In particular, the definition we gave of µP (x) is such that µP (x) = µ∞

T ((1−ρ1)(x)).

For convenience, we restate the results of this chapter in terms of split UNil forms.

Corollary 9.9 Let Ψ = (KS, θ, δψP , δψQ) be a split UNil-form. α(Ψ) is the split quadratic form

(Z[G]⊗ (P ⊕Q),
(

(−1)kδψP 0

(−1)k+1θ (−1)kδψQ

)
).
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Chapter 10

Principles of the Algebraic Theory of

Surgery

We have now covered in detail the theory which related to highly connected even-dimensional surgery problems
and splitting problems.

In the next few chapters we consider the work of Ranicki, which constructs the surgery obstruction without first
performing surgery below the middle dimension. The purpose of this chapter is to lay out the foundations: to
define quadratic structures on chain complexes, pairs and triads, to relate them to the geometry, and give some
basic results which we shall need later.

For the purposes of surgery, a degree 1 normal map of CW complexes can be represented by an algebraic ‘quadratic
complex’, a chain complex with a quadratic structure. If the CW complexes satisfy Poincaré duality, there is a
corresponding notion for quadratic complexes. Given a Poincaré n-ad of CW complexes (e.g. a CW complex
satisfying Poincaré duality, or a pair satisfying Poincaré-Lefschetz duality), there is a Poincaré pair of quadratic
complexes.

10.1 Quadratic structures

Example 10.1 ε-quadratic forms (ε = ±1) over a module M can be identified with equivalence classes of split
quadratic forms ψ ∈ Hom(M,M∗), with ψ ∼ ψ′ if ψ − ψ′ = χ− εχ∗ for some χ. This idea goes back to Wall[18].
Let Z2 = {1, T}, and let Z2 act on Hom(M,M∗) by Tψ = εψ∗. Then ε-quadratic forms over M are in 1-1
correspondence with Z2-hyperhomology classes in H0(Z2; Hom(M,M∗)), called split quadratic forms by Ranicki
in Ranicki[12].

Definition 10.2 Let W be the Z[Z2]-module resolution of Z:

W = . . .
1+T
−→ Z[Z2]

1−T
−→ Z[Z2]

1+T
−→ Z[Z2] = W1

1−T
−→ Z[Z2] = W0

Definition 10.3 Let C be a finite R-module chain complex. Define the chain complex:

(W%C) = W ⊗Z[Z2] (Ct ⊗ C).

Then:

(W%C)n =
⊕

s≥0

⊕

r

HomR(Cn−r−s, Cr)

d(ψ) =
∑

s≥0

∑

r

dψr+1
s + (−1)rψrsd

∗ + (−1)n−s−1(ψrs+1 + (−1)s+1+r(n−s)(ψn−r−s−1
s+1 )∗)

where ψ ∈ (W%C)n, so that ψrs ∈ HomR(Cn−r−s, Cr)

Then define:

• The group of n-dimensional quadratic structures on C, Qn(C) := Hn(W%(C));

• An n-dimensional quadratic complex is a pair (C, [ψ]) where C is a chain complex, and ψ ∈ (W%C)n is a
representative for [ψ] ∈ Qn(C);
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• An n-dimensional quadratic complex (C,ψ) is Poincaré if (1 + T )ψr0 : Cn−r → Cr is a chain equivalence.

Convention 10.4 When the meaning is clear from the context we shall drop the [ ] notation.

Remark 10.5 It is sometimes helpful to represent quadratic complexes diagrammatically. So given a chain
complex C, we shall represent ψ ∈ (W%C)n by a diagram of maps:

. . . // Cn−k−1 //

**��
ψk

1

JJ
JJ

$$J
JJJ

Cn−k

�� $$J
JJJJJJJJ
// Cn−k+1

ψ
k−1
0

��

// . . .

. . . // Ck+1
// Ck // Ck−1

// . . .

where the complexes C∗ and Cn−∗ are aligned so that ψk0 : Cn−k → Ck is represented by a vertical arrow, and
then ψks is represented by an arrow with ‘gradient’ s.

Now, any chain map f : C → D gives rise to a chain map f% : W%C → W%D given by f%(ψrs) = fψrsf
∗. So

(W%C(f))j = (W%C)j−1 ⊕ (W%D)j , and there are defined relative quadratic structure groups:

Definition 10.6 • Qn(f : C → D) = Hn(C(f%))

• An (n+ 1)-dimensional quadratic pair is a triple (f : C → D, [(δψ, ψ)]) where (δψ, ψ) is a representative for
[(δψ, ψ)] ∈ Qn(f : C → D).

• An (n+ 1)-dimensional quadratic pair (f : C → D, (δψ, ψ)) is Poincaré if
(

(1+T )δψr
0

(1+T )ψr−1
0 f∗

)
: Dn+1−r → C(f)r

is a chain equivalence.

Similarly with triads, with sign modifications:

Lemma 10.7 Given a triad Γ of chain complexes:

C
f

//

g

��

k

!!B
BB

BB
BB

B D

h

��
C ′

f ′

// D′

so that k is a null-homotopy of f ′g−hf , with f ′g−hf = dk+ kd, define the map Γn : (W%C)n → (W%D
′)n+1 by

Γ(ψ)rs = (−1)n+1kψr−1
s f∗h∗ + (−1)1+r+nf ′gψrsk

∗ + (−1)1+r+(r+1)(n+s)k(ψn−r−ss+1 )∗k∗.

= (−1)n+1kψr−1
s f∗h∗ + (−1)1+r+nf ′gψrsk

∗ + (−1)r+1kT (ψn−r−ss+1 )k∗.

Then Γn−1dn − dn+1Γn = (−1)n((f ′g)% − (hf)%) : (W%C)n → (W%D
′)n.

Corollary 10.8 The map (g, h; k)% =

(
h% Γn
0 g%

)
: C(f%)n+1 → C(f ′

%)n+1 is a chain map.

Proof. Recall that C(f%)n+1 = (W%D)n+1 ⊕ (W%C)n, d =
(
d (−1)nf%
0 d

)
: C(f%)n+1 → C(f%)n.

The condition that the map be a chain map is that
(
d (−1)nf ′

%

0 d

)(
h% Γn
0 g%

)
=

(
h% Γn−1

0 g%

)(
d (−1)nf%
0 d

)

i.e. that dΓn + (−1)nf ′
%g% = (−1)nh%f% + Γn−1d, or that Γn−1d− dΓn = (−1)n(f ′

%g% − h%f%).

Corollary 10.9 Suppose that g : C → C ′ is a homotopy equivalence with homotopy inverse h : C ′ → C and
null-homotopy such that hg − 1 = kd + dk. Suppose that (f : C → D, (δψ, ψ)) is an n+ 1-dimensional quadratic
pair. Then the triad

C
f

//

g

��
kf

AA
A

  A
AA

D

1

��
C ′

fh
// D

induces a homotopy equivalence of pairs, with the quadratic structure in Qn+1(fh) given by

(δψ′r
s, ψ

′) = (δψrs + (−1)n+1kfψr−1
s f∗ + (−1)n+1−rfhgψrsf

∗k∗ + (−1)r+1kfT (ψn−r−ss+1 )f∗k∗,

g%ψ).
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Definition 10.10

The triad quadratic Q-groups Qn+2(Γ) are defined by:

Qn+2(Γ) = Hn+2(−(g, h; k)%).

An (n+ 2)-dimensional quadratic triad (Γ, (δχ, χ, δψ, ψ)) is Poincaré if

• (C,ψ) is an n-dimensional Poincaré complex;

• (g : C → C ′, (χ, ψ)) is an (n+ 1)-dimensional Poincaré pair;

• (f : C → D, (δψ, ψ)) is an (n+ 1)-dimensional Poincaré pair;

• 


(1+Tε)δχ0

(−1)n−r(1+Tε)δψ0h
∗

h(1+Tε)χ0k
∗ + (−1)n−r(1+Tε)f

′∗

(1+Tε)ψ0f
∗h∗


 : D′n+2−∗ → C(Γ)

is a chain equivalence.

Thus the triad quadratic Q-groups fit into the commutative diagram:

�� �� ��
// Qn(C)

g
//

f

��

Qn(C
′) //

f ′

��

Qn(g) //

��
// Qn(D)

h //

��

Qn(D
′) //

��

Qn(h) //

��
// Qn(f) //

��

Qn(f
′) //

��

Qn(Γ) //

��

Lemma 10.11

W%(Γ)n+2 = W%f
′
n+2 ⊕W%fn+2 = W%D

′
n+2 ⊕W%(C ′)n+1 ⊕W%(D)n+1 ⊕W%(C)n

with differential given by: 


d (−1)n+1f ′
% (−1)nh% (−1)nΓn

0 d 0 (−1)ng%
0 0 d (−1)nf%
0 0 0 d




Proposition 10.12 (pg. 248, Ranicki[13]) Any degree 1 normal map f : M → Xn determines an n-dimensional
quadratic Poincaré complex (C,ψ), with Hk(C) ∼= Kk(M). A map of (n + 1)-dimensional Poincaré pairs f :
(N,M)→ (Y,X) determines an n+1-dimensional Poincaré pair (f : C → D, (δψ, ψ)). An n+2-dimensional triad
of manifolds likewise determines an n+ 2-dimensional Poincaré triad.

Example 10.13 (Quadratic forms revisited) Let f : M → X be a highly connected 2k-dimensional normal map.
Let Ck = Kk(M)∗. Let ψk0 be a split quadratic form representing the surgery obstruction. ψ is Poincaré since
(1+T )ψ0 = λ, the intersection form.

10.2 Cobordism of quadratic complexes

The surgery obstruction group of a ring R is defined to be cobordism classes of f.g. free Poincaré complexes over
R: so we now define cobordism.

Definition 10.14 • An n + 1-dimensional cobordism of Poincaré complexes (C,ψ) and (C ′, ψ′) is an n + 1-
dimensional quadratic Poincaré pair (

(
j1 j2

)
: C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′)).
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• An n+ 2-dimensional cobordism of Poincaré pairs, (f : C → D, (δψ, ψ)) and (f ′ : C ′ → D′, (δψ′, ψ′)) is an
n+ 2-dimensional quadratic Poincaré triad:

( C ⊕ C ′ ( i1 i2 )
−−−−→ δC

( f⊕f ′ )

y g

y

D ⊕D′ ( j1 j2 )
−−−−−→ δD

, (ψ ⊕ ψ′, δψ ⊕ δψ′, χ, δχ)

)

Example 10.15 (Forms again) As before, a highly connected degree 1 normal map f : M → X2k determines a
Poincaré complex with Ck = Kk(M). If f : M → X bounds a normal cobordism g : N → Y with π1(N) ∼= π1(Y )
then it was seen before that g can be made highly connected so that Kj(N) = 0(j 6= k + 1), when the map
Kk+1(N,M)→ Kk(M) is the inclusion of a Lagrangian. Then letting Dk = Kk+1(N,M), and setting j : Ck → Dk

to be j = ∂∗ : Kk(M)→ Kk+1(N,M), (j : C → D, (0, ψ)) is a null-cobordism of (C,ψ).

The identification is reversible so that given a highly connected map f : M → X2k and a cobordism j : C → D, Dk

is a stably free Z[π1(X)]-module; then the inclusion j∗ : Dk = Z[π]n → Ck is such that surgeries can be performed
on the images of the generators of Dk giving a homotopy equivalence f ′ : M ′ → X .

As geometric cobordisms can be glued together, so algebraic cobordisms can be glued together:

Proposition 10.16 (Glueing, Ranicki([7], p.77)) Let (
(
j1 j2

)
: C ⊕ C ′ → D, (δψ, ψ ⊕ −ψ′)) and (

(
j′1 j′2

)
:

C ′ ⊕C ′′ → D′, (δψ′, ψ′ ⊕−ψ′′)) be n+ 1-dimensional Poincaré cobordisms. Let D′′ be the chain complex defined
by D′′

r = Dr ⊕ C
′
r−1 ⊕D

′
r, with differential given by

dD′′ =



dD (−1)r−1j2 0
0 dC′ 0
0 (−1)r−1j′1 d′D




and define δψ ∈ (W%D
′′)n+1 by

δψ′′r
s =




δψrs 0 0
(−1)n−rψ′r

sj
∗
2 (−1)n−r−s−1(ψn−r−ss+1 )∗ 0

0 (−1)sj′1ψ
′r
s δψ′r

s


.

Then the result of glueing the cobordisms along the common boundary component (C ′, ψ′) is the Poincaré cobor-
dism: ((

j1 0
0 0
0 j′2

)
: C ⊕ C ′′ → D′′, (δψ′′, ψ ⊕−ψ′′)

)
.

and there is also a relative version:

Proposition 10.17 (Glueing, Ranicki([7], p.117)) Let Γ and Γ′ be cobordisms of pairs:

C ⊕ C ′
f⊕f ′

//

( g g′ )

��

( k k′ )

%%K
KKKKKKKKK
D ⊕D′

(h h′ )

��
δC

δf
// δD

and C ′ ⊕ C ′′
f ′⊕f ′′

//

( g̃′ g′′ )

��

( k′ k′′ )

&&LLLLLLLLLL
D ⊕D′

( h̃′ h′′ )

��
δC ′

δf ′

// δD′

and let (δχ, χ, δψ⊕−δψ′, ψ⊕−ψ′) and (δχ′, χ′, δψ′⊕−δψ′′, ψ′⊕−ψ′′) be cycles in W%(Γ) and W%(Γ′) respectively,
so that there are determined Poincaré cobordisms of pairs with a common boundary component. Then the union
is the cobordism, with

Γ′′ = C ⊕ C ′′
f⊕f ′′

//

( g̃ g̃′ )

��

( k̃ k̃′ )

%%LLLLLLLLLL D ⊕D′′

( h̃ h̃′ )

��
δC ′′

δf ′′

// δD′′
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where:

δC ′′ = δCr ⊕ C
′
r−1 ⊕ δC

′
r

dδC′′ =



dδC g′ 0
0 dC′ 0
0 (−1)r−1g̃′ dδC′




δD′′ = δDr ⊕D
′
r−1 ⊕ δD

′
r

dδD′′ =



dδD h′ 0
0 dD′ 0

0 (−1)r−1H̃ ′ dδD′




(
g̃ g̃′′

)
=



g 0
0 0
0 g′′




(
h̃ h̃′′

)
=



h 0
0 0
0 h′′




(
k̃ k̃′′

)
=



k 0
0 0
0 k′′




χ′′
s =




χs 0 0
(−1)n−r+1ψ′

sg
′∗ (−1)n−r−sTψ′

s+1 0
0 (−1)sg′ψ′

s χ′
s




δχ′′
s =




δχs 0 0
(−1)n−r+1δψ′

sh
′∗ (−1)n−r−sTδψ′

s+1 0

0 (−1)sh̃′ψ′
s δχ′

s




10.3 Algebraic surgery

In the same way that two normal maps are bordant if and only if they are related by a sequence of surgeries,
there is a corresponding notion of algebraic surgery so that Poincaré complexes (C,ψ) and (C ′, ψ′) are cobordant
if and only if (C ′, ψ′) is homotopy equivalent to the result of surgery on (C,ψ). In ‘Topology of high-dimensional
manifolds’ ([15]), Ranicki described how algebraic surgery can be used to calculate the result of geometric surgery.
We review this material now, as we shall need to use it later on.

Definition 10.18 (Ranicki([12]), pg. 145) Let (C,ψ) be an n-dimensional quadratic complex.

• Surgery data is an (n+ 1)-dimensional quadratic pair (not necessarily Poincaré)

(j : C → D, (δψ, ψ)).

• The result of surgery on the data is the quadratic Poincaré complex (C ′, ψ′) where

Cr = Cr ⊕Dr+1 ⊕D
n−r+1

dC′ =




dC 0 (−1)n+1(1 + Tε)ψ0f
∗

(−1)rf dD (−1)r(1 + Tε)δψ0

0 0 (−1)rd∗D




ψ′r
0 =



ψ0 0 0
0 0 0
0 1 0




ψ′r
s =



ψs (−1)r+sTεψs−1f

∗ 0
0 (−1)n−r−sTεδψs−1 0
0 0 0




• The trace of the surgery is the (n+ 1)-dimensional quadratic Poincaré cobordism

(
(
g g′

)
: C ⊕ C ′ → D′, (p, ψ ⊕−ψ′))
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where

D′
r = Cr ⊕D

n+1−r

drD′ =

(
dC (−1)n+1(1 + Tε)ψ0f

∗

0 (−1)r+1d∗D

)

g = ( 1
0 ) : Cr → D′

r

g′ = ( 1 0 0
0 0 1 ) : C ′

r → D′
r

This gives the effect of geometric surgeries in the following way:

Lemma 10.19 (Ranicki [15])

Suppose that (C,ψ) is the quadratic kernel of an n-dimensional degree 1 normal map f : M → X . Let D = . . .→
0→ Dn−m → 0→ . . . for some n ≥ m ≥ n/2, with Dk = Z[π]l = 〈e1, . . . , el〉 and (j : C → D, (δψ, ψ)) be surgery
data as above. Then C ′ is the result of surgeries on the homology classes (1 + T )ψ0j

∗ei ∈ Kk(M).

Moreover, if the surgeries succeed in giving a homotopy equivalence, then the surgery data is just the trace:

Lemma 10.20 The following are equivalent:

• The surgery data (j : C → D, (δψ, ψ)) is a Poincaré pair;

• The result of surgery (C ′, ψ′) is contractible and the trace of surgery is homotopy equivalent as a Poincaré
pair to (j : C → D, (δψ, ψ)).

We shall also need to compute the effect of surgery on the interior of manifolds with boundary (algebraically
on Poincaré pairs). This is accomplished by means of the following correspondence between Poincaré pairs and
(non-Poincaré) quadratic complexes.

Definition 10.21 (Ranicki [12] pp. 141–144) Let (f : C → D, (δψ, ψ)) be an (n+ 1)-dimensional Poincaré pair
and let (E,χ) be an (n+ 1)-dimensional quadratic complex.

• The boundary of (E,χ) is the Poincaré pair ∂(E,χ) = (∂E, ∂χ) where

∂Er = Er+1 ⊕E
n+1−r

dr∂E =

(
dE (−1)r+1(1 + T )χ0

0 (−1)r+1d∗E

)

∂ψrs =

(
(−1)n−r−s−1Tεχ

r+1
s−1 0

0 0

)

• The Poincaré thickening of (E,χ) is the Poincaré pair

(iE : ∂E → En+1−∗, (0, ∂χ))

where iE =
(
0 1

)
: ∂Er = Er+1 ⊕N

n+1−r → Dn+1−r .

• The algebraic Thom complex of (f : C → D, (δψ, ψ)) is the quadratic complex (C ′, ψ′) where

C ′ = C(f)

ψ′r
s =

(
δψs 0

(−1)n−rψr−1
s f∗ (−1)n−r−sTεψ

r−1
s+1

)
.

Proposition 10.22 (Ranicki [7], Prop. 1.3.3) The algebraic Thom complex construction and algebraic Poincaré
thickening operations are inverse to each other up to homotopy equivalence, defining a natural 1-1 correspondence
between homotopy equivalence classes of (n+ 1)-dimensional Poincaré pairs and homotopy equivalence classes of
(n+ 1)-dimensional quadratic complexes. The correspondence preserves boundaries.

Moreover, algebraic surgery does not change the homotopy type of the boundary, so the effect of surgery on the
interior of a Poincaré pair can be computed as the Poincaré thickening on the result of surgery on the algebraic
Thom complex.
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Remark 10.23 We can also perform handle additions on the boundary. Suppose that

(f : C → D, (δψ, ψ))

is a Poincaré pair, and
(j : C → E, δχ, ψ)

is surgery data on the boundary. Then, letting the result of the surgery be (C ′, ψ′) and the trace of the surgery
be the cobordism (

(
g g′

)
: C ⊕ C ′ → E′, (0, ψ ⊕ ψ′)), the result of handle additions is the union

(f : C → D, (δψ, ψ)) ∪ (
(
g g′

)
: C ⊕ C ′ → E′, (0, ψ ⊕ ψ′)),

which is a Poincaré pair of the form (f ′ : C ′ → D′, (δψ′, ψ′)).
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Chapter 11

Surgery and Splitting Obstruction

Groups

In the final chapter of ‘Surgery on Compact Manifolds’ ([20]), after defining the L-groups separately in the odd
and even-dimensional cases, Wall suggested that it should be possible to replace these definitions of the L-groups
with one in terms of some kind of generalized quadratic form on chain complexes, independent of the polarity of
the dimension.

This was completed by Ranicki in ‘The Algebraic Theory of Surgery’ (Ranicki [12]). The techniques developed
in these papers were then applied in ‘Exact Sequences in the Algebraic Theory of Surgery’ ([7]), section 7, to
give a definition of the UNil groups independent of the polarity of the dimension of the splitting problem. In
Ranicki[10], the odd-dimensional L groups were defined in terms of ‘short odd complexes’, a slight refinement of
1-dimensional complexes in the theory above; it was also shown that every degree 1 normal map f : M → X 2k+1

has a ‘presentation’ (definition 14.1) which determines a short odd complex.

This then will be our outline for the next few chapters:

In this chapter, we shall recall the chain complex version of the definition of the L-groups, and give (a slight
reworking of) Ranicki’s definition of the UNil groups in terms of algebraic splitting problems. Furthermore, we shall
give a map from this group into the corresponding surgery obstruction group, analogous to the even-dimensional
nilpotent normal cobordism.

In the next section, we shall again restrict to the odd-dimensional splitting problems, and define UNil2k+3 as a
group of ‘short odd nilcomplexes’, which will be highly connected algebraic splitting problems. We shall need
to use the notion of a highly connected cobordism of splitting problems, which we shall show is an equivalence
relation. We shall also see that the construction of this section gives a well-defined map UNil2k+3 → L2k+3(Z[G]).

In the final chapter, we shall show that every highly connected odd-dimensional splitting problem determines a
well-defined element of this UNil group, such that the obstruction vanishes if and only if the splitting problem is
soluble.

11.1 Surgery obstruction groups

Lemma 11.1 Cobordism is an equivalence relation on n-dimensional Poincaré complexes.

Proof. • Symmetry is clear;

• Transitivity follows from the glueing formula;

• Reflexivity follows from the fact that (
(
1 1

)
: C ⊕ C → C, (0, δψ ⊕−δψ)) is a Poincaré pair.

Definition 11.2 Ln(Z[π]) is the group of cobordism classes of quadratic Poincaré complexes of f.g. free Z[π]-
modules.

Example 11.3 (Construction of L2k(Z[π])) Let K be a f.g. free Z[π]-module, and let C be the chain complex
with Ck = K∗, Cj = 0 else. Then (W%C)2k = (W%C)2k+1 = Hom(K,K∗), and the differential is given by
d(χ) = χ+ χ∗.
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So Q2k(C) is precisely the equivalence classes of split quadratic forms over K, which are given by the surgery
obstruction.

Now let D be the chain complex with Dk = L∗, and let j∗ : Ck → Dk. (W%D)2k+1 = Hom(L,L∗). Suppose that
(j : C → D, (δψ, ψ)) is a quadratic pair. Then ψ = ψ0 : K → K∗, δψ = δψ1 : L → L∗, and d(ψ, δψ) = 0 =⇒
δψ1 + δψ∗

1 = jψj∗, so that j is the inclusion of a Lagrangian in a split form (j, δψ); (L, 0)→ (K,ψ).

11.2 Splitting obstruction groups

In ([7]), Ranicki defined the LS and UNil groups in terms of Poincaré complexes, and provided a dimension-
invariant definition of the UNil groups. In this section, we recall (a slight specialization of) this definition, and
show how it gives rise to a map from the UNil groups defined in this way, to the L groups defined in terms of chain
complexes. We show that this agrees with the previous definitions in the case of highly connected even-dimensional
codimension 1 splitting problems. Note — in this section the letters P and Q will, unless otherwise specified, be
f.g. free Z[H ]-module chain complexes.

11.2.1 Nilcomplexes

Definition 11.4 A nilcomplex CS = (P,Q; ρ1, ρ2) consists of:

• Free Z[H ]-module chain complexes P and Q;

• Chain maps ρ1 : P → Z̃[G1]⊗Q, ρ2 : Q→ Z̃[G2]⊗ P

such that
( 1 ρ2
ρ1 1

)
is a homotopy equivalence of Z[G]-modules. (We are again using the multiplication map

Z̃[Gi]⊗Z[H] Z[G]→ Z[G] to extend ρi to Z[G]-linear maps.)

The notation is motivated by the result of Cappell which is quoted in proposition 4.9, which states that if P and
Q are 0-dimensional complexes then (P,Q; ρ1, ρ2) is an object in Nil.

Definition 11.5 A map of nilcomplexes

F = (fP , fQ; kP , kQ) : CS = (P,Q; ρ1, ρ2)→ CS′ = (P ′, Q′; ρ′1, ρ
′
2)

is a pair of chain maps fP : P → P ′ and fQ : Q→ Q′, with homotopies k1 : fQρ1 ' ρ1fP , and k2 : fP ρ2 ' ρ2fQ.

Lemma 11.6 Suppose that (P,Q; ρ1, ρ2) is a nilcomplex and that fP : P → P ′ and fQ : Q→ Q′ are homotopy
equivalences. Then there exists a nilcomplex (P ′, Q′; ρ′1, ρ

′
2) and homotopies kP , kQ such that (fP , fQ; kP , kQ) is a

map of nilcomplexes.

Proof. Choose homotopy inverses fP and fQ for gP and gQ respectively. Let ρ′1 = fQρ1gP and ρ′2 = fP ρ2gQ.
Let hP be such that gP fP − 1 = dhP + hP d, hQ be such that gQfQ − 1 = dhQ + hQd. Then fP ρ2 − ρ

′
2fQ =

fP ρ2(1− gQfQ) = fP ρ2(dkQ + hQd) = d(fP ρ2hQ) + (fP ρ2hQ)d and similarly for ρ1.

Then (fP , fQ; fQρ1hP , fP ρ2hQ) is a map of nilcomplexes.

Lemma 11.7 Suppose that (fP , fQ; kP , kQ) : CS → CS′ is a map of nilcomplexes, such that each map is a
homotopy equivalence. Then there exists a map of nilcomplexes (gP , gQ; k′P , k

′
Q) : CS′ → CS such that gP and gQ

are homotopy inverses for fP and fQ respectively.

Proof. Let gP and gQ be homotopy inverses for fP and fQ. Then ρ1gP fP ' gQfQρ1 ' gQρ
′
1fP . So ρ1gP fP gP '

gQρ
′
1fP gP , and therefore ρ1gP ' gQρ

′
1.

11.2.2 Quadratic structures on nilcomplexes

Lemma 11.8 Let (g : W → Y n+1, f : M → Xn) be a splitting problem, so that:

• C(f) ' P ⊕Q;

• C(gl) ' P ;
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• C(gr) ' Q;

• C(g2) ' Z[G2]⊗ P ;

• C(g1) ' Z[G1]⊗Q;

•
(
1 0

)
: C(f)→ C(gl);

•
(
0 1

)
: C(f)→ C(gr);

•
(
1 ρ2

)
: C(f)→ C(g2);

•
(
ρ1 1

)
: C(f)→ C(g1);

Then (P,Q; ρ1, ρ2) is a nilcomplex, and there exists θ : P n−∗ → Q a homotopy equivalence, δψP ∈ (W%(Z[G2]⊗
P )n+1), δψ

Q ∈ (W%(Z[G1]⊗Q)n+1) such that letting

ψs =





(
0 0

θ 0

)
if s = 0

0 otherwise

the quadratic signatures are:

• σ(f) = (P ⊕Q,ψ);

• σ(gl) = (
(
1 0

)
: P ⊕Q→ P, (0, ψ));

• σ(gr) = (
(
0 1

)
: P ⊕Q→ Q, (0, ψ));

• σ(g2) = (
(
1 ρ2

)
: P ⊕Q→ Z[G2]⊗ P, (δψ

P , ψ));

• σ(g1) = (
(
ρ1 1

)
: P ⊕Q→ Z[G1]⊗Q, (δψ

Q, ψ));

Proof. By Prop. 1.4 of Ranicki [12], Qn(P ⊕ Q) ∼= Qn(P ) ⊕Qn(Q) ⊕ Hom(P n−∗, Q). Let ψ = σ(f) =

(
α 0
θ β

)
,

where α ∈ (W%P )n, β ∈ (W%Q)n, θ ∈ Hom(P n−∗, Q) and let σ(gl) = (
(
1 0

)
: P ⊕Q→ P, (χ, ψ)) (so θs = 0 for

s ≥ 1). The content of the lemma is that α and β can be taken to be 0, and that σ(gl) and σ(gr) are of the form
claimed.

Since σ(gl) is a quadratic pair:

d(χ) =
(
1 0

)
%

(ψ) =
(
1 0

)(α 0
θ β

)(
1
0

)
= α.

Then (0,
(
χ 0
0 0

)
) ∈ (W%

(
1 0

)
)n+2, and d(0,

(
χ 0
0 0

)
) = (χ,

(
d(χ)=α 0

0 0

)
). Hence

(χ, ψ) = (χ, ψ)− d(0,

(
χ 0
0 0

)
) = (0,

(
0 0
θ β

)
) ∈ Qn+1(gl).

Similarly, we can arrange that β = 0 so that ψ = ( 0 0
θ 0 ) ∈ Qn(f), and then σ(gl) and σ(gr) are in the stated

form.

Lemma 11.9

Suppose that θ ∈ Hom(P n−∗, Q) is a homotopy equivalence. Then any quadratic pair (
(
1 ρ2

)
: P ⊕ Q →

P, (δψP , θ)) or (
(
1 ρ2

)
: P ⊕Q→ P, (δψP , θ)) is a Poincaré pair.

Proof. Up to sign,

(1 + T )ψ0 =

(
0 Tθ
θ 0

)
: Pn−∗ ⊕Qn−∗ → P ⊕Q

is a chain homotopy equivalence since both θ and Tθ are.

C(
(
1 ρ2

)
)r = Pr ⊕ Pr−1 ⊕Qr−1, d =



dP (−1)r (−1)rρ2

0 dP 0
0 0 dQ


 : Pr+1 ⊕ Pr ⊕Qr →

Pr ⊕ Pr−1 ⊕Qr−1
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The Poincaré duality map P n+1−∗ → C(
(
1 ρ2

)
) is given by α =

(
(1+T )δψP

0

Tθ
θ

)
, which is a homotopy equivalence

if and only if the mapping cone C(α) is contractible.

The mapping cone is C(α)r = Pr ⊕ Pr−1 ⊕Qr−1 ⊕ P
n+2−r, and the differential is given by:

d =




dP 1 ρ2 (1 + T )δψP0
0 dP 0 Tθ
0 0 dQ θ
0 0 0 d∗P




Let E′ be the complex with E′
r = C(α)r and

d′ =




dP 1 0 0
0 dP 0 0
0 0 dQ θ
0 0 0 d∗P


.

The map 


1 0 0 0
0 1 ρ2 (1 + T )δψP

0 0 1 0
0 0 0 1




is a chain isomorphism C(α)→ E ′, and E′ is contractible (since it is the direct sum of the mapping cone of 1 : P →
P and θ : Pn−∗ → Q). Hence the Poincaré duality map is a homotopy equivalence, and so (

(
1 ρ2

)
, (δψP , ψ)) is a

Poincaré pair. The case
(
ρ1 1

)
is similar, and the remaining two claims follow from these by applying the above

with ρi = 0 and δψi = 0.

Definition 11.10

Let (P,Q; ρ1, ρ2) be a nilcomplex. Then define a chain complex W%(P,Q; ρ1, ρ2) by:

(W%(P,Q; ρ1, ρ2))n = Hom(P n−∗, Q)⊕ (W%(P ⊗ Z[G2]))n+1 ⊕ (W%(Q⊗ Z[G1]))n+1

d%(θ, δPψ, δQψ) = (dθ + (−1)rθd∗, d%(δPψ) + (−1)nρ2θ, d%(δQψ) + (−1)nθρ∗1)

Then as before, define Qn(P,Q; ρ1, ρ2) = Hn(W%(P,Q; ρ1, ρ2))), and call a triple (θ, δPψ, δQψ) a quadratic struc-
ture on (P,Q; ρ1, ρ2).

Definition 11.11 An n-dimensional quadratic nilcomplex is a pair (CS, ψ = (θ, δPψ, δQψ)), where CS is a

nilcomplex and (θ, δPψ, δQψ) is an n-dimensional quadratic structure on it. It is Poincaré if in addition θ is a
homotopy equivalence.

Lemma 11.12 A map of nilcomplexes F : CS → CS ′ induces a map F% : W%(CS)→W%(CS′).

Proof. Define

F%(θ, δPψ, δQψ) = ((−1)nfQθf
∗
P , (−1)nfP δ

Pψf∗
P + (−1)n+1k2θf

∗
P ,

(−1)nfQδ
Qψf∗

Q + (−1)n+r+1fQθk
∗
1).

Definition 11.13 Given a map of nilcomplexes F as above, define Qn(F ) = Hn(C(F%)).

Definition 11.14 An (n+ 1)-dimension quadratic nilpair (F : CS → DS, (χ, ψ)) is:

• An n-dimensional quadratic nilcomplex (CS, ψ);

• A map of nilcomplexes F = (fP , fQ; kP , kQ) : CS → DS;

• (χ, ψ) ∈ Qn+1(F )) where χ = (φ, δPχ, δQχ). It is Poincaré if

(
φ
θf∗
P

)
is a chain equivalence.
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Lemma 11.15 Let (F : CS → DS, (χ, ψ)) be a quadratic Poincaré nilpair as above, and CS = (P,Q; ρ1, ρ2),

DS = (P̂ , Q̂; ρ̂1, ρ̂2). Then

((
fP 0
0 fQ

)
: P ⊕Q→ P̂ ⊕ Q̂,

((
0 0
φ 0

)
,

(
0 0
θ 0

)))

is a Poincaré pair; (ΓP , ωP ∈ Qn+2(ΓP )) is a Poincaré triad, where ΓP is the triad:

P ⊕Q
( 1 ρ2 )

//

fP ⊕fQ

��
( 0 kP )
DD

D

""D
DD

D

P

fP

��
P̂ ⊕ Q̂

( 1 ρ̂2 )
// P

and ωP =
(
δPχ, ( 0 0

θ 0 ), δPψ,
(

0 0
φ 0

))
.

Proof. The first statement is immediate from the definition of the Poincaré property of pairs (cf. 11.9). That the
structures claimed are quadratic structures, quadratic pair structures, quadratic triad structures etc. is immediate
from the definitions. It remains to check that the triad is Poincaré.

Note first that the mapping cone of the triad CΓ is homotopy equivalent to SC(fQ) : Q → Q̂, where S is the

suspension of the chain complex. This is because C(Γ)r = P̂r ⊕ P̂r−1Q̂r−1 ⊕ Pr−1 ⊕ Pr−2 ⊕ Qr−2 and the map(
0 0 1 0 0 0
0 0 0 0 0 1

)
is a chain equivalence. (ΓP , ωP ) is Poincaré if and only if




(1+T )δPχ0

φ∗ρ̂∗2
φ

ρ2θ
∗k∗P +(1+T )δPψ0f

∗

P

θ∗f∗

Qρ̂
∗

s

θf∗

P


 : Pn+2−r → C(Γ)r

is a chain equivalence, which is (by the above) true iff
(

φ

θf∗

P

)
P̂n+2−r → Q̂r−1 ⊕ Qr−2 = SC(fQ) is a chain

equivalence.

Definition 11.16 A cobordism of n-dimensional quadratic Poincaré nilcomplexes α = (CS, χ) and α̂ = (ĈS, χ̂),

(β;α, α̂) is an n+ 1-dimensional Poincaré quadratic nilpair (F : CS ⊕ ĈS → DS, (δχ, χ⊕−χ̂)).

Definition 11.17 UNiln+2(Z[H ]; Z̃[G1], Z̃[G2]) is the group of cobordism classes of quadratic n-dimensional
Poincaré nilcomplexes.

Example 11.18 (Even-dimensional UNil groups) Suppose that P and Q are just chain complexes of the form
0→ Pk → 0 and 0→ Qk → 0, so ρ1 and ρ2 are just module homomorphisms.

Then (W%(P,Q; ρ1, ρ2))2k = Hom(P ∗, Q) ⊕ Hom(P ∗, P ⊗ Z[G2]) ⊕ Hom(Q∗, Q ⊗ Z[G1]), and a cycle is just
(θ, δψP , δψQ) such that ρ2θ = δψP + δψP ∗, and ρ1θ

∗ = δψQ + δψQ∗, which again is precisely a split UNil
form.

48



Chapter 12

Nilpotent normal cobordism

Before we move on to consider odd-dimensional obstructions, we consider the nilpotent normal cobordism in the
generality of the preceding chapter. The nilpotent normal cobordism should be interpreted as a cobordism of the
original splitting problem

P
( 1 ρ2 )
←− P ⊕Q

( ρ1 1 )
−→ Q

with the (splittable) splitting problem

Q
( 0 1 )
←− P ⊕Q

( 1 0 )
−→ P.

When f : M → X is a highly connected map of even-dimensional manifolds, the nilpotent normal cobordism of
9.1 is seen to have this effect algebraically by considering the following diagram. (Note that since CQ is defined so
that Kk+1(CP ,M) = P , Kk(CP ) = Q and similarly Kk(CQ) = P .)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

W2 × I

CP × I

W1 × I

CQ × I

M ×D2

P ⊕Q Q
( ρ1 1 )

//P
( 1 ρ2 )

oo

P ⊕Q P
( 1 0 )

//Q
( 0 1 )

oo

Geometrically, we obtain a map from splitting problems to surgery problems by computing the nilpotent normal
cobordism. Algebraically, the following proposition does the same thing:

Proposition 12.1 Given an algebraic splitting problem χ ∈ UNiln+2(Z[H ]; Z̃[G1], Z̃[G2]), the algebraic nilpotent

normal cobordism is α(χ) ∈ Ln+2(Z[G]), given by (P ⊕Q, ψ̂), with:

ψ̂rs =

(
(−1)n+r+sδPψr−1

s+1 0
(−1)rθr−1 (−1)n+r+sδQψr−1

s+1

)
. (12.1)

We use the definition of Lk(Z[G]) as the group of cobordism classes of free Poincaré Z[G]-module complexes; α is
then well-defined.

Lemma 12.2 The surgery obstruction of the nilpotent normal cobordism is given by (Ĉ, ψ̂) with

ψ̂rs =

(
(−1)n+r+sδPψr−1

s+1 0
(−1)rθr−1 (−1)n+r+sδQψr−1

s+1

)
.

Proof. We construct the nilpotent normal cobordism algebraically by mimicking Cappell’s nilpotent normal cobor-
dism construction. The nilpotent normal cobordism is to be subdivided as (CP ∪M CQ)× I ∪M×I W × I as in the
following diagram, where again the dotted lines represent homotopy equivalences.
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�

�

�

�

�

�

�

�

�

�

�

�

�

�

W1 × I

W2 × I

CQ × I

CP × I

M ×D2

P ⊕Q P
( 1 0 )

//Q
( ρ1 1 )

oo

P ⊕Q Q
( 0 1 )

//P
( 1 ρ2 )

oo

Hence, for the purposes of algebraic glueing, it can be considered as the union of two null-cobordisms of pairs
corresponding to

((W × I,W1 tW2); (M × I,M tM), (W, 0))

and
(((CP ∪M CQ)× I, CP t CQ); (M × I,M tM), (CP ∪M CQ,MP tMQ)).

Thus on the chain level, the surgery obstruction of the nilpotent normal cobordism is the union of glueing two
triads:

D0 = P ⊕Q

��

C = P ⊕Q⊕ P ⊕Q
f0=

�
1 ρ2 0 0
0 0 ρ1 1 �

oo
f1=( 0 0 1 0

0 1 0 0 )
//

g=( 1 1 )

��

D1 = P ⊕Q

��
0 D2 = P ⊕Qoo // 0

with quadratic structures

ψ =

( 0 0 0 0
0 ψ 0 0
0 0 0 0
0 0 ψ 0

)
∈ Qn(C) (12.2)

δψ0 =
(
δPψ 0

0 δQψ

)
∈ Qn+1(f0) (12.3)

δψ1 = 0 ∈ Qn+1(f1) (12.4)

δψ2 = 0 ∈ Qn+1(g) (12.5)

By Ranicki([7]), the result of the glueing is the Poincaré pair
(

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

)
: C ′

r → D′
r

with

C ′
r = Pr−1 ⊕Qr−1 ⊕ Pr−1 ⊕Qr−1 ⊕ Pr ⊕Qr ⊕ Pr ⊕Qr (12.6)

D′
r = Pr−1 ⊕Qr−1 (12.7)

d′C =




dP 0 0 0 (−1)r (−1)rρ2 0 0
0 dQ 0 0 0 0 (−1)rρ1 (−1)r

0 0 dP 0 0 0 (−1)r 0
0 0 0 dQ 0 (−1)r 0 0
0 0 0 0 dP 0 0 0
0 0 0 0 0 dQ 0 0
0 0 0 0 0 0 dP 0
0 0 0 0 0 0 0 dQ




(12.8)

d′D =

(
dP 0
0 dQ

)
(12.9)

ψ′ =




δPψrs 0 0 0 0 0 0 0
0 δQψrs 0 0 ψ 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 (−1)sθr 0 0 0
0 0 0 0 0 0 0 0

(−1)n−rθr−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 (−1)n−rθr−1ρ∗1 0 0 0 0 0 0




(12.10)

δψ′ = 0 (12.11)
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Now d′r is of the form

(
d (−1)rA
0 d

)
, with

A =




1 ρ2 0 0
0 0 ρ1 1
0 0 1 0
0 1 0 0


, A−1 =




1 0 0 −ρ2

0 0 0 1
0 0 1 0
0 1 −ρ1 0


.

Then there is a null-homotopy of the above pair to (0 : 0 → D, (ψ̂, 0)) which is the image of the above structure
under the map of pairs given by the triad:

C
f

//

δf

@@
@

  @
@@

��

D

1

��
0 // D

By corollary 10.8,

ψ̂rs = (−1)n+2f∆ψr−1
s f∗ + (−1)r+1kT (ψn+1−r−s

s+1 )k∗ : Dn+2−r−s → Dr

where ∆ =

(
0 (−1)r−1A−1

0 0

)
, which satisfies d′C∆ + ∆d′C = 1.

This gives that

ψ̂s =

(
(−1)n+s+rT (δPψs+1) + (−1)r+sρ2θ

r−1 0

(−1)rθr−1 (−1)n+s+rTδqψQs+1

)
(12.12)

=

(
(−1)n+s+rT (δPψs+1) 0

(−1)rθr−1 (−1)n+s+rTδqψQs+1

)
, (12.13)

since

ρ2θ =
(
1 ρ2

)(0 0
θ 0

)(
1
ρ∗2

)
= 0 ∈ Qn+1(P ⊗ Z[G1]).

This structure is equal to that claimed since T (δPψ) = δPψ ∈ Qn+1(P ).

The proposition is then proved once the following lemma is proved:

Lemma 12.3 Let F = (fP , fQ; kP , kQ) : CS → DS, where DS = (P̂ , Q̂; ρ̂1, ρ̂2), be a pair of nilcomplexes, and
let (F : CS → DS, (χ, ψ)) be a Poincaré nilpair. Let (Z[G] ⊗ (P ⊕ Q)∗−1, ψ

NNC) be the result of the nilpotent
normal cobordism on (CS, ψ). Then there is a Poincaré pair

(fP ⊕ fQ : Z[G] ⊗ (P ⊕Q)∗−1 → Z[G] ⊗ (P̂ ⊕ Q̂)∗−1, (δψ
NNC , ψNNC)),

where

(ψNNC)rs =

(
(−1)n+r+sδPψr−1

s+1 0
(−1)rθ (−1)n+r+sδQψ

)

and

(δψNNC)rs =

(
(δχP )r−1

s+1 0
θr−1
s (δχQ)r−1

s+1

)

Note that this apparently is a different structure on the nilpotent normal cobordism, but this ψNNC = ψ̂ ∈
Qn+2((P ⊕Q)∗−1) above.

Proof. First check that the structures are indeed quadratic structures. For convenience from now on we omit the
NNC superscript in the notation. Let ψ = (θ, δPψ, δQψ) and χ = (φ, δPχ, δQχ). We must check first that

dψr+1
s + (−1)rψrsd

∗ + (−1)n+2−s−1(ψrs+1 + (−1)s−1(Tψ)rs+1) = 0.

It can be checked that (Tψ)rs+1 = (−1)s+r
(
T (δPψ)r−1

s+2 0
0 T (δQψ)r−1

s+2

)
. Hence, checking first the top left entry in

the matrix (which is identical to the bottom right):

(−1)r+s
(
dδpψrs+1 + (−1)r−1δPψr−1

s+1d
∗ + (−1)n+1−s

(
δPψr−1

s+2 + (−1)sT (δPψ)r−1
s+2

))
= 0
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since the bracket is d(δψP )r−1
s+1 . The other brackets follow similarly. The verification that the pair structure is a

quadratic pair structure is almost identical.

Finally we check that the pair is Poincaré: Since




0 T (φ)
φ 0
0 T (θ)
θ 0




is a homotopy equivalence, and 


1 −ρ̂1 0 k1

−ρ̂2 1 k2 0
0 0 1 −ρ1

0 0 −ρ2 0




is a homotopy equivalence, 


−ρ̂1φ+ k1θf
∗ T (φ)

φ −ρ̂2T (φ) + k2T (θ)f∗

−ρ1θf
∗ T (θ)f∗

θf∗ −ρ2T (θf∗)




is also a homotopy equivalence. Hence

(
(1 + T )δψr0

(1 + T )ψr−1
0 f∗

)
=




(−1)n+1−r(1− T )δPψr−1
1 (−1)r+1T (φ)r−1

(−1)rφr−1 (−1)n+1+r(1− T )δQχr−1
1

(−1)n+1+r(1− T )δPψr−1
1 j∗ (−1)r+1T (θ)r−1

(−1)rθr−1 (−1)n+1+r(1− T )δQψr−1
1




'




(−1)r+1ρ̂1φ+ k1θf
∗ (−1)r+1T (φ)

(−1)rφ (−1)rT (φρ̂∗2 + fθk∗2)
(−1)rρsφ (−1)rT (θ)
(−1)rθ (−1)rT (θρ∗1)




is a homotopy equivalence, hence the pair is Poincaré.

Note that the above formula for (1 + T )ψ0 agrees with the formula given by Cappell for the intersection form on
the even-dimensional nilpotent normal cobordism.
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Chapter 13

Formations and Short Odd Complexes

The odd-dimensional surgery obstruction groups have been described in several equivalent ways. The first, by Wall
in [20], was in terms of automorphisms of hyperbolic quadratic forms. Later, they were described by Ranicki as
quadratic formations, quadratic (hyperbolic) forms with pairs of Lagrangians. As forms had a refinement in terms
of split forms, so formations carried an equivalent notion of split formations.

Once again, we begin by reviewing the surgery obstruction— it is necessary to compute the surgery obstruction
of the odd-dimensional nilpotent normal cobordism; and then we extend the ideas to the splitting obstruction.

13.1 Surgery obstruction group

The surgery obstruction group will be described in two ways in this section. The first, in terms of formations, is
more closely related to the original definition due to Wall, who described the odd-dimensional L-groups as groups
of automorphisms of forms. The second, in terms of short odd complexes, is the highly connected version of the
chain complex description of the odd-dimensional L-groups, and was explicitly described by Ranicki in [10].

The definitions of the odd-dimensional UNil groups will be given analogously using short odd complexes, and when
the surgery obstruction of the nilpotent normal cobordism is computed it will be given as a short odd complex.
However, where possible connections will be made both between short odd complexes and formations and between
their UNil equivalents. The reason for this is a trade-off between the merits of short odd nilcomplexes and UNil
formations : the odd-dimensional L-groups are described as equivalence classes : representatives of equivalence
classes are best described by UNil formations, but the equivalence relation is most easily expressed in terms of
short odd nilcomplexes.

13.1.1 Formations

A formation is a quadratic form with a pair of Lagrangians. For surgery problems, a formation describes a
Heegaard-type decomposition, although no generalization of this is known for splitting problems. Therefore this
will not be described in this thesis; instead an alternative means of obtaining formations will be used.

Definition 13.1 • A quadratic formation over a ring with involutionR, (K,λ, µ;F,G) is a nonsingular quadratic
form (K,λ, µ) together with an ordered pair of lagrangians (F,G).

• An isomorphism of quadratic formations

f : (K,λ, µ)→ (K ′, λ′, µ′)

is an isomorphism of forms f ; (K,λ, µ)→ (K ′, λ′, µ′) such that f(F ) = F ′, f(G) = G′.

Lemma 13.2 Every quadratic formation is isomorphic to one of the type (Hε(F );F, α(F )) for some automor-
phism α : Hε(F )→ Hε(F ).

Definition 13.3

• A formation T = (K,λ, µ;F,G) is trivial if it is isomorphic to (Hε(F );F, F ∗).
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• A stable isomorphism of formations

f : (K,λ, µ;F,G)→ (K ′, λ′, µ′;′ F,G′)

is an isomorphism of quadratic formations of the type

f : (K,λ, µ;F,G) ⊕ T → (K ′, λ′, µ′;F ′, G′)⊕ T ′

with T and T ′ trivial.

• Given a (−ε)-quadratic form (K,λ, µ), the graph lagrangian is the lagrangian

Γ(K,λ) = {(x, λ(x)) ∈ K ⊕K∗|x ∈ K}

in the hyperbolic ε-quadratic form Hε(K).

• The boundary of (K,λ, µ) is the graph formation

∂(K,λ, µ) = (Hε(K);K; Γ(K,λ)).

• Quadratic formations (K,λ, µ;F,G) and (K ′, λ′, µ′;F ′, G′) are cobordant if there exists a stable isomorphism

f : (K,λ, µ;F,G) ⊕B → (K ′, λ′, µ;F ′, G′)⊕B′

Definition 13.4 The (2k+1)-dimensional L-group L2k+1(R) of a ring with involution A is the group of cobordism
classes of (−1)k-quadratic formations (K,λ, µ;F,G) over R, with addition and inverses given by:

(K1, λ1, µ1;F1, G1) + (K2, λ2, µ2;F2, G2)

= (K1 ⊕K2, λ1 ⊕ λ2, µ1 ⊕ µ2;F1 ⊕ F2, G1 ⊕G2)

−(K,λ, µ;F,G) = (K,−λ,−µ;F,G)

13.1.2 Short odd complexes

Definition 13.5 A 2k + 1-dimensional short odd complex (denoted (C,ψ)) over a ring R consists of:

• f.g. free R-modules Ck+1, Ck;

• d : Ck+1 → Ck ;

• ψ0 : Ck → Ck+1 where Ck := C∗
k ;

• ψ1 : Ck → Ck

such that:

• dψ0 + (ψ1 + (−1)k+1ψ∗
1) = 0;

• The chain complex:

Ck

�
d∗

ψ0 �
// Ck+1 ⊕ Ck+1

(ψ∗

0 d )
// Ck

is contractible.

In other words, a short odd complex is just a highly connected 2k+1-dimensional Poincaré complex (C,ψ) (in the
notation of 10.3) with ψk+1

0 = ψ0, ψ
k
1 = ψ1, ψ

k
0 = 0.

The equivalence relation is given by (highly connected) Poincaré cobordism:

Definition 13.6 A null-cobordism of (C,ψ), denoted (j : C → D, (δψ, ψ)) is

• A f.g. free R-module Dk+1;

• j : Ck+1 → Dk+1;

• δψ : Dk+1 → Dk+1;
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such that

(
(δψ0 + (−1)k+1δψ∗

0 j
ψ∗

0j
∗ d

)
is an isomorphism.

Definition 13.7 A cobordism of short odd complexes (C,ψ) and (C ′, ψ′),(j : C → D, (δψ, ψ ⊕ −ψ′)), is a
null-cobordism of (C ⊕ C ′, ψ ⊕−ψ′).

Definition 13.8 A map of short odd complexes (f, χ) : (C,ψ) → (C ′, ψ′) is a chain map f : C → C ′, χ = {χ1 :
C ′k → C ′

k+1, χ2 : C ′k → C ′
k} such that

fψ0f
∗ − ψ′

0 = χ1 and fψ1f
∗ − ψ′

1 = dχ1 + χ2 + (−1)kχ∗
2.

A homotopy equivalence of short odd complexes is a map of short odd complexes which is a homotopy equivalences
of chain complexes.

Then the odd-dimensional surgery obstruction groups are defined as follows:

Definition 13.9 L2k+1(R) is the group of cobordism classes of (2k + 1)-dimensional short odd complexes, with
addition given by direct sum, and −(C,ψ) = (C,−ψ).

Remark 13.10 The correspondence between formations and short odd complexes is as follows:

Suppose that (H(−1)k+1(F );F,G) is a formation. Let i =

(
γ
µ

)
be the inclusion G → F ⊕ F ∗. Define a short odd

complex (C,ψ) by letting Ck+1 = F , Ck = G∗, d = µ∗, ψ0 = γ, and ψ1 is any map such that γµ∗ = ψ1+(−1)k+1ψ∗
1

(since i is the inclusion of a Lagrangian, using 7.13). For details, see Ranicki[10].

Under this correspondence, two short odd complexes are homotopy equivalent iff the corresponding formations are
stably isomorphic, and are cobordant iff the corresponding formations are cobordant. This result has not been
extended to short odd nilcomplexes.

13.2 Splitting obstruction group

13.2.1 Short odd nilcomplexes

In ‘An Introduction to the Algebraic Theory of Surgery’ (Ranicki, [10]), the odd-dimensional L-groups were ex-
pressed in terms of short odd complexes - which are essentially highly connected quadratic Poincaré complexes,
with the equivalence relation given by highly connected cobordisms of quadratic Poincaré complexes. However
instead of working with homology classes [ψ] ∈ Qn(C), short odd complexes were defined as highly connected
complexes together with cycles ψ ∈ (W%C)n of a particular form, and the cobordism relation was such that if
[ψ] = [ψ′] ∈ Qn(C), then the short odd complexes (C,ψ) and (C ′.ψ′) are cobordant.

In this section, we do the same thing with nilcomplexes - short odd nilcomplexes are defined in terms of highly
connected nilcomplexes CS together with a cycle in (W%CS)n.

For the sake of clarity, note that in this section, if the symbols P and Q are used, they will refer to Z[H ]-modules,
not chain complexes.

Definition 13.11 A (2k + 1)-dimensional short odd nilcomplex (CSk+1, CSk, d, θ, δψ
P , δψQ) consists of:

• CSk+1 = (Pk+1, Qk+1; ρ1, ρ2) ∈ Nil
free;

• CSk = (Pk , Qk; ρ1, ρ2) ∈ Nil
free; together with morphisms in Nil

• d = (dP , dQ) : CSk1 → CSk;

• θ = (θP , θQ) : CSk → CSk+1 such that dθ = (−1)k+1θ∗d∗ is a (−1)k+1-symmetric UNil form with quadratic
refinement δψP , δψQ such that

• δψP + (−1)k+2δψP ∗ = ρ2dP θQ;

• δψQ + (−1)k+2δψQ∗ = ρ1dQθP ,

such that the mapping cone:

0 −−−−→ CSk −−−−→ CSk+1 ⊕ CSk+1 −−−−→ CSk −−−−→ 0

is contractible.
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In the next chapter, we shall show that any highly connected odd-dimensional splitting problem gives rise to a
short odd nilcomplex. The connection between this definition and the preceding chapter is given by the following
lemma:

Lemma 13.12 Let (CSk+1, CSk, θ, d, ψP , ψQ) be a short odd nilcomplex. Then there is a Poincaré nilcomplex
(φ, δPω, δQω) given by:

φk+1 = θQ

φk = θ∗P

δPω : P k //

−ρ′2θQ

$$H
HHHHHHHHHHHHHH

δψP

TTTTTTT

))TTTTTTTTTTTTTTTTTTTTT

P k+1

0

��

0

$$H
HH

HHH
HHH

HH
HHH

HH

Pk+1
dP

// Pk

Proof. We have to prove that d
((

0 0
φ 0

))
= 0, and that d(δPω) + (−1)2k+1( 1 ρ2 )%

((
0 0
φ 0

))
= 0.

Firstly,

(
dP 0
0 dP

)(
0 0
θQ 0

)
+ (−1)k

(
0 0
θ∗P 0

)(
d∗P 0
0 d∗Q

)

=

(
0 0

dQθQ + (−1)kθ∗P d
∗
P

)
= 0

since it was assumed, that dθ = (−1)k+1θ∗d∗.

Secondly, to check that ( 1 ρ2 )%
((

0 0
φ 0

))
= d%(δPω), there are 3 things to check:

d(δPω)k+1
0 = ρ′2θQ

d(δPω)k0 = ρ2θ
∗
P

d(δPω)k1 = 0

Firstly, d(δPω)k+1
0 = −δPωk+1

1 = −(−ρ′2θQ). Secondly, d(δPω)k0 = (−ρ′2θQ)∗ = −θ∗Qρ
′
2
∗ = ρ2θ

∗
P . Finally,

d(δPω)k1 = −dP ρ
′
2θQ + δψP + (−1)kδψ∗

P = 0.

13.2.2 Cobordism of short odd nilcomplexes

We now define highly connected cobordisms:

Definition 13.13

A cobordism between short odd nilcomplexes α = (CSk+1, CSk, d, θ, δψ
P
2 , δψ

Q
2 ) and α′ = (CS′

k+1, CS
′
k, d

′, θ′, δψ′
2
P , δψ′

2
Q):

(β = ((P̂ , Q̂, ρ̂1, ρ̂2), (fP , fQ), (θ̂, δψ̂P1 , δψ̂
Q
1 ));α,−α′), is:

• (P̂ , Q̂; , ρ̂1, ρ̂2) ∈ Nil
free

• Maps δψ̂P : P̂ ∗ → P̂ , δψ̂Q : Q̂∗ → Q̂;

• Maps fP : Pk+1 ⊕ P
′
k+1 → P̂ and fQ : Qk+1 ⊕Q

′
k+1 → Q̂,

• kP : Qk+1 ⊕Qk+1;→ P̂ ⊗ Z[G1], kQ : Pk+1 ⊕ Pk+1;→ Q̂⊗ Z[G1]

such that

• fP (ρ2 ⊕ ρ
′
2)− ρ̂2fQ = kP (dQ ⊕ d

′
Q);

• fQ(ρ1 ⊕ ρ
′
1)− ρ̂1fP = kQ(dP ⊕ d

′
P );
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• δψP + δψ∗
P + ρ̂2θ̂ + kP θ̂f

∗
P = 0;

• δψQ + δψ∗
Q + ρ̂1θ̂ + kQθ̂

∗f∗
Q = 0.

Lemma 13.14 Cobordisms according to the above definition are precisely those cobordisms in the previous
section which arise from maps of UNil triads (P,Q; ρ1, ρ2)⊕ (P ′, Q′; ρ′1, ρ

′
2)→ (P̂ , Q̂; , ρ̂1, ρ̂2) considering modules

as 0-dimensional chain complexes in the obvious way.

It is not obvious that this notion of cobordism is in fact an equivalence relation on the set of short odd nilcomplexes.
Symmetry is obvious. To show transitivity, we need to be able to glue two cobordisms to give another highly
connected cobordism. To show reflexivity, we show that given any short odd nilcomplex, there exists a cobordism
with another short odd nilcomplex. Reflexivity then follows by applying symmetry and transitivity.

Lemma 13.15 The union of two highly connected cobordisms is again a highly connected cobordism.

Proof. Suppose that α, α′, α′′ are short odd nilcomplexes, and let (β;α,−α′) and (β′;α′,−α′′) be cobordisms.
Then by lemma 13.14, the cobordisms determine Poincaré nilpairs. Apply lemma 10.17 giving another Poincaré
nilpair, β̂ = (P̂ , Q̂, . . .).

Claim: Hj(P ) = Hj(Q) = 0 unless j = k + 1.

Proof: Given a nilcomplex, α = (P,Q, . . .) define Cα = P ⊕ Q. Given a cobordism β = (P,Q, . . .), define
Dβ = P ⊕Q.

Then D
β̂

= Dβ ∪Cα′
Dβ′ , and there is a Mayer-Vietoris sequence:

. . . // Hj(Cα′ ) // Hj(Dβ)⊕Hj(Dβ′) // Hj(Dβ̂
) // Hj−1(Cα′ ) // . . .

For j ≤ k and j ≥ k + 3, since Dβ and Dβ′ are highly connected cobordisms, and Cα′ is a short odd nilcomplex,
there is an exact sequence

Hj(Dβ)⊕Hj(Dβ′) // Hj(Dβ̂
) // Hj−1(Cα′ )

so Hj(Dβ̂
) = 0 since all the other terms are.

It remains to consider Hk+2(Dβ̂
). By Poincaré-Lefschetz duality, this is isomorphic to Hk(Cα ⊕ Cα′′ → D

β̂
) ∼=

Hk(Cα ⊕ Cα′′ → D
β̂
)∗. From the long exact sequences of the pairs, Hk(Cα → Dβ) = 0 = Hk(Cα′′ → Dβ′). Then

there is a Mayer-Vietoris sequence

. . . // Hk(Cα → Dβ)⊕Hk(Cα′′ → Dβ′) // Hk(Cα ⊕ Cα′′ → D
β̂
) // Hk−1(Cα′) // . . .

Hence 0 = Hk(Cα ⊕ Cα′′ → D
β̂
), so Hk+2(Dβ̂

) = 0.

The following purely algebraic result will be seen later to have a geometric background — it also guarantees that
given a short odd nilcomplex α, there exists a short odd nilcomplex α′ and a highly connected cobordism (β;α, α′).

Lemma 13.16

Given a short odd nilcomplex (CSk+1, CSk, d = (dP , dQ), θ = (θ, θ′), δψP2 , δψ
Q
2 ), there exists a highly connected

cobordism between
α = (CSk+1, CSk, d, θ, δψ

P
2 , δψ

Q
2 )

and
α′ = (CSk+1, CSk, (−1)kθ∗, d∗, (−1)k+1δψP2

∗, (−1)k+1δψQ2
∗)

Proof. First we must check that α′ is a short odd nilcomplex. All properties are clear apart from the quadratic re-
finement, where (−1)k+1δψP ∗+(−1)k+2((−1)k+1δψP ∗)∗ = −(δψP+(−1)k+2δψP ∗) = −(ρ2dP θQ)=(−1)k+1θ∗Qρ

∗
2d

∗
P =

ρ2(−1)kθ∗Qd
∗
P .

Now we construct a (not highly connected) cobordism. However it will be homotopy equivalent to a highly
connected cobordism. In particular:

Let

• P̂k+1 = Pk+1 ⊕Q
k+1, Q̂k+1 = Qk+1 ⊕ P

k+1;
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• P̂k = Pk , Q̂k = Qk;

• d̂P =
(
dP (−1)kθ∗Q

)
, d̂Q =

(
dQ (−1)kθ∗P

)

• ρ̂2 is the chain map ρ̂2 =

(
ρ2 0
0 −ρ∗2

)
→
(
ρ2

)
; similarly ρ̂1;

• θ̂ is the chain map
(

0 −1

(−1)k 0

)
: P̂ k+1 → Q̂k+1;

• δχP ∈ (W%P̂ )2k+3 is the structure:

P̂ k = P k

�
d∗P
θ �

//

�
ρ2θ
0 �

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

0
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

**UUUUUUUUUUUUUUUUUUUUU

P̂ k+1 = P k+1 ⊕Qk+1

�
0 0

(−1)kρ∗2 0 �
FF

FF
F

##F
FFFFFFFFFFFFFFFFF
0

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

P̂k+1 = Pk+1 ⊕Q
k+1

( d θ∗ )
// P̂k = Pk

and δχQ similarly.

• fP is the chain map

Pk+1 ⊕Q
k+1

�
dP 0

0 (−1)kθ �
//

( 1 0
0 1 )

��

Pk ⊕ Pk

( 1 1 )

��
Pk+1 ⊕Qk+1

( dP (−1)kθ )
// Pk

and fQ is similar.

Now we claim that (P̂ , Q̂, ρ̂1, ρ̂2, θ̂, δχ
P , δχQ) is a cobordism in the sense of the preceding chapter.

First we have to show that f(θ ⊕−d∗)f∗ = d̂θ̂ + (−1)r θ̂d̂∗. There are only two non-zero terms:

d̂θ̂ =
(
dQ (−1)kθ∗P

)( 0 −1
(−1)k 0

)
=
(
θ∗P −dQ

)

=
(
1 1

)(θ∗P 0
0 −dQ

)(
1 0
0 1

)
: P̂ k+1 → Q̂k

(−1)r θ̂d̂∗ = (−1)k+1

(
0 −1

(−1)k 0

)(
d∗P

(−1)kθQ

)
=

(
θQ
−d∗P

)

=

(
1 0
0 1

)(
θ∗P 0
0 −dQ

)(
1
1

)
: P̂ k → Q̂k+1

Let χ = ( 0 0
θ 0 ). Then we have to show that

Φ = P ⊕ P ′ ⊕Q⊕Q′

�
1 0 ρ2 0
0 1 0 ρ′2 �

//�
fP 0
0 fQ �

��

P ⊕ P ′

fP

��
P̂ ⊕ Q̂

( 1 ρ̂2 )
// P

is a triad, and that ((δχ, χ), (δψ ⊕−δψ′, ψ ⊕−ψ′)) ∈ (W%(Φ))2k+3 is a cycle.

First note that the maps ρi, ρ̂i actually commute with the maps fQ, fQ, not just up to homotopy. Hence Φ is a
triad. It just remains to show that

d(δχ) = fP%(δψP ⊕−δψ′P )−
(
1 ρ̂2

)
%

(
0 0

θ̂ 0

)
(13.1)
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All of the terms in the above expression are terms in (W%P̂ ⊕ Q̂)2k+2, and so consist of 4 maps as shown below:

P k //

ω2
UUUUUUUUUUUUUUUUU

**UUUUUUω1
1 %%K

KKKKKKKKKK P k+1 ⊕Qk+1
ω0

��

ω0
1

%%KKK
KKKK

KKK
K

Pk+1 ⊕Qk+1
// Pk

Now compare terms in each structure:

d(δχ):

ω0 =

(
0 0

(−1)kρ∗2 0

)
− (−1)k+1

(
0 (−1)kρ2

0 0

)
=

(
0 ρ2

(−1)kρ∗2

)

ω1
1 = (−1)k+1

(
0 0

(−1)kρ∗2 0

)(
d∗P

(−1)kθQ

)
−

(
ρ2θQ

0

)
=

(
−ρ2θQ
−ρ∗2d

∗
P

)

ω0
1 =

(
dP (−1)kθ∗Q

)( 0 0
(−1)kρ∗2 0

)
−
(
(ρ2θQ)∗ 0

)
= 0

ω2 = dP ρ2θQ

(
1 ρ̂2

)
%

(
0 0
θ̂ 0

)
:

ω0 = ρ̂2θ̂ =

(
ρ2 0
0 −ρ∗2

)(
0 −1

(−1)k 0

)
=

(
0 −ρ2

(−1)k+1ρ∗2 0

)

ω1
1 = 0;ω0

1 = 0;ω2 = 0

fP%(δψP ⊕−δψ′P ):

ω0 = 0

ω1
1 =

(
−ρ2θQ
−ρ∗2d

∗

)

ω0
1 = 0

ω2 = δψP + (−1)kδψ∗
P

Comparing term by term, we see that equation (13.1) is satisfied. The proof for ρ1 runs similarly, so that we have
indeed defined a quadratic cobordism.

The last stage is to prove that the nilpair is Poincaré, i.e. that

CSk //

��

CSk+1 ⊕ CSk+1

��
CSk+1 ⊕ CS

k+1 // CSk+1 ⊕ CS
k+1 ⊕ CSk ⊕ CSk // CSk

is a chain equivalence. The projection of the bottom row onto 0→ CSk → 0 is a chain equivalence, and therefore,
the mapping cone is contractible if and only if the mapping cone

CSk // CSk+1 ⊕ CSk+1

��
CSk

is contractible. But this is just the condition that CSk+1 → CSk be a Poincaré complex.

Lemma 13.17 The above notion of cobordism is an equivalence relation on the set of short odd nilcomplexes
defined above.

Proof. As noted before, symmetry is obvious. Transitivity follows directly from (13.16). For reflexivity, let

α = (CSk+1, CSk, d, θ, δψ
P
2 , δψ

Q
2 )
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be a short odd nilcomplex. Then by lemma 13.16, there exists a cobordism (β;α, α′), where

α′ = (CSk+1, CSk, θ
∗, d∗, δψP2 , δψ

Q
2 ).

Then there exists a cobordism (β′;α′, α), so the union (β ∪ β′;α, α) is a highly connected cobordism of α with
itself.

Then finally the UNil groups can be defined:

Definition 13.18 UNil2k+3(Z[H ]; Z[G1],Z[G2]) is the group of highly connected cobordism classes of (2k + 1)-
dimensional short odd nilcomplexes.

Proof that this is a group. (We use additive notation.)

The sum (C,ψ) + (C ′, ψ′) = (C ⊕ C ′, ψ ⊕ ψ′). The 0 is given by the complex 0 → 0. −(C,ψ) = (C,−ψ). Then
associativity is clear, 0 is a zero, and (C,ψ) + (C,−ψ) = 0 by the definition of the equivalence relation.
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Chapter 14

The Odd-dimensional UNil Obstruction

14.1 Surgery obstruction

As mentioned before, the surgery obstruction will be defined here not as by Wall in terms of a Heegaard-type
splitting, but rather as by Ranicki, in terms of a presentation. In this chapter, we assume that f : M → X2k+1 is
highly connected, and that k ≥ 2.

Definition 14.1 Let f : M → X2k+1 be a highly connected degree 1 normal map. Then a presentation of f is
a normal bordism F : N → X with f ′ : M ′ → X where F and f ′ are highly connected.

M2k+1 N M ′

Presentations of surgery obstructions can always be constructed in a straightforward manner:

Construction 14.2 Let Kk(M) be generated by e1, . . . , er as a Z[H ]-module. Let these be represented by framed
disjoint embeddings θi : Sk × Dk+1 → M . Let N be the trace of surgeries on these θi, with map F : N → X .
Then F : N → X is a presentation of f : M → X .

A presentation determines a short odd complex (and thence a formation) in the following way:

Definition 14.3

Let Ck+1 = Kk+1(N,M)∗ ∼= Kk+1(N,M
′), Ck = Kk+1(N)∗ ∼= Kk+1(N, ∂N), d = p∗1 where p1 : Kk+1(N) →

Kk+1(N,M) is the usual projection map, ψ0 is the composite Kk+1(N) → Kk+1(N,M
′)

∼=
→ Kk+1(N,M)∗, and

ψ1 : Kk+1(N)→ Kk+1(N)∗ is a splitting of the (usually singular) quadratic intersection form. It is Poincaré since
the sequence

0 // Kk+1(N) // Kk+1(N,M)⊕Kk+1(N,M
′) // Kk+1(N, ∂N) // 0

is exact.

The surgery obstruction is then defined to be σ(f) = (C,ψ) ∈ L2k+1(Z[H ]).

Remark 14.4 Given two different sets of generators ei and fi, disjoint embeddings θi, φi : SK × Dk+1 can be
found representing ei and fi respectively. Then the presentations N1 and N2 from these generators can both be
embedded inside the presentation N which is obtained from surgery on the generators ei ∪ fi and this induces a
homotopy equivalence of short odd complexes (see example 6.9, Ranicki([10]). This proof will not generalize when
we consider splitting problems.

From the short odd complex, the result of surgery can be computed (which is otherwise quite hard):

Lemma 14.5 Let f : M → X be a degree 1 normal map with σ(f) = (C,ψ). Algebraic surgery data (j,Dk+1.δψ)
consists of an f.g. free module Dk+1 together with map j : Ck+1 → Dk+1 and δψ0 : D∗

k+1 → Dk+1.
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The result of surgery on the data, is the short odd complex (C ′.ψ′) where C ′
k+1 = Ck+1 ⊕D

k+1, C ′
k = Ck ⊕Dk+1,

d′ =
(
d ψ∗

0 j
∗

j δψ0+(−1)kδψ∗

0

)
, ψ′

0 =
(
ψ0 0
0 1

)
, ψ′

1 =
(
ψ1 ψ

∗

0 j
∗

0 δψ0

)
.

If (j : C → D, (δψ0, ψ)) is a Poincaré cobordism, then the result of surgery is a contractible chain complex, and D
is the trace of a cobordism of f with a homotopy equivalence.

Moreover, all algebraic surgeries on (C,ψ) are realized by geometric surgeries. (See Prop. 12.36 (Ranicki [11]).)

14.2 Splitting problem

Assume that Y = Y 2k+2 (k ≥ 2) and that f is k-connected. In order to define the splitting obstruction, we shall
first construct a presentation of our splitting problem. We shall then use the associated UNil objects to define a
formation.

Definition 14.6 Given a splitting problem g : W → Y 2k+2 cut along f : M → X2k+1 such that φ(τ(f) = 0, a
presentation is a cobordism T , with ∂T = W ∪W ′, a map h : T ' Y × I transverse to X so that N = h−1(X × I)
is a (k + 1)-connected cobordism of M with a manifold M ′, and such that φ(τ(h)) = 0. (See figure (14.1).)

Figure 14.1: A presentation

M2k+1 M ′

N2k+2

Convention 14.7 The above notation shall be fixed for the remainder of this section - furthermore, we shall
neglect to mention the maps g and h, taking their existence as read.

Proposition 14.8 Any odd-dimensional splitting problem g : W → Y has a presentation.

Proof. Consider the map h : W × I → Y × I . This gives a (2k+2)-dimensional splitting problem (with boundary),
so handle exchanges can be performed on the interior of M×I giving a (k+1)-connected map to X×I as required.

In fact this is a presentation with the same splitting problem g : W → Y on both ends.

Proposition 14.9 Let g : W → Y 2k+2 be an odd-dimensional splitting problem, and h : W × I → Y × I be a
presentation of it. Then let:

• CSk+1 = Splk+1(N,M
′);

• CSk = Splk+1(N, ∂N);

• d = π : Splk+1(N,M
′)→ Splk+1(N, ∂N);

• θ = π ◦ i : Splk+1(N, ∂N)→ Splk+1(N)→ Splk+1(N,M
′)

Then ρ1dθ = δψQ + δψ∗
Q, along with a similar expression in ψP is given by the split quadratic UNil form on

W . Then χ(g;h) = (CSk+1, CSk, d, θ, δψP , δψQ) ∈ UNil2k+3. Note that all modules are stably free, and may be

stabilized to be free; the reason for the stable freedom is the following: Splk+1(N) ∈ UNilfree since we assume

that φ(τ(h)) = 0. Thus Splk+1(N)∗ ∼= CSk ∈ Nil
free, and since φ(τ(g)) = 0, CSk+1 ∈ UNilfree. The map

CSk = Splk+1(N)
d∗

−−−−→ CSk+1 = Splk+1(N,M)

θ

y
yθ∗

CSk+1 = Splk+1(N,M
′) −−−−→

d
CSk = Splk+1(N, ∂M)

is a chain equivalence, since the mapping cone is just the Mayer Vietoris sequence.

This apparently depends upon the choice of presentation. However, it follows from the following 2 results that it
is independent of choice of presentation:
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Lemma 14.10 Let (h; g, g′) : W × I → Y × I be a presentation of the splitting problem g : W → Y . Then this
can also be regarded as a presentation of g′ : W → Y . Then χ(g;h) = χ(g′;h) ∈ UNil2k+3.

Proof. The proof of this is the promised geometrical foundation of lemma 13.16. Consider again the diagram:

CSk = Splk+1(N)
d∗

−−−−→ CSk+1 = Splk+1(N,M)

θ

y
yθ∗

CSk+1 = Splk+1(N,M
′) −−−−→

d
CSk = Splk+1(N, ∂M)

As seen previously, the presentation determines a short odd nilcomplex for g, by taking the short odd nilcomplex to
be the bottom row. But it also determines a short odd complex for g′, which is no more than the right hand column.
So if χ(g;h) = (CSk+1, CSk, d, θ, δψP , δψQ) then χ(g′;h) = (CSk+1, CSk, θ

∗, d, δψP , δψQ). The cobordism of these
two complexes is given in lemma 13.16.

In fact we can say more: the cobordism constructed is the cobordism C(M)→ C(N)← C(M ′), where in this case
C(M) is constructed as the mapping cone (C(N,M) ⊕ C(N,M ′)→ C(N, ∂N)), which is homotopy equivalent to
C(N) precisely because the mapping cone of the above map is contractible.

Lemma 14.11 Suppose that (h; g, g′) is a presentation of g, and (h′; g′, g′′) is a presentation of g′. Then
(h ∪ h′; g, g′′) is a presentation of g′ and is such that χ(g;h) = χ(g;h′).

Figure 14.2: A union of presentations

M2k+1 M ′ M ′′

N2k+2 N ′

Proof. Consider the following commutative diagram:

Splk+1(N
′′,M ′′) //

��

Splk+1(N
′′,M ∪M ′)

��
Splk+1(N

′′, N ′) //

∼=

��

Splk+1(N
′′,M ∪N ′)

∼=

��
Splk+1(N,M

′) // Splk+1(N
′′,M ∪M ′′)

This shows 2 maps of nilcomplexes — the second is an isomorphism, since both maps are isomorphisms by excision.
The first is a homotopy equivalence, since the mapping cone

Splk+1(N
′′,M ′′) // Splk+1(N

′′,M ∪M ′)⊕ Splk+1(N
′′, N ′) // Splk+1(N

′′,M ∪N ′)

is just a Mayer-Vietoris sequence, and is therefore contractible.

It follows immediately from these results that the UNil obstruction is independent of the choice of presentation:

Lemma 14.12 Let (h; g, g′) and (h′; g, g′′) both be presentations of g. Then χ(g;h) = χ(g;h′). Hence an
obstruction χ(g) ∈ UNil2k+3 is defined.

Proof. Form the union h′′ = h ∪g h
′. Then by the previous 2 results, χ(g;h) = χ(g′;h) = χ(g′;h′′) = χ(g′′;h′′) =

χ(g′′;h′) = χ(g;h′).

Theorem 14.13 Let k ≥ 2 and g : W → Y 2k+2 be a homotopy equivalence. There are 2 obstructions to g being

splittable: φ(τ(g)) and χ(g) ∈ UNil2k+3(Z[H ]; Z̃[G1], Z̃[G2]). If φ(τ(g)) = 0 and g is splittable then χ(g) = 0.
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Proof. The K-theory has already been covered in chapter 5. From above, χ(g) is well-defined, and independent of
choice of presentation.

An h-cobordism with a split homotopy equivalence can be made highly connected and then gives a presentation,
which then gives a null-cobordism, so if g is h-cobordant to a split homotopy equivalence then χ(g) = 0.
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Chapter 15

Odd-dimensional Nilpotent Normal

Cobordism

Given a splitting problem, an obstruction χ(g) ∈ UNil2k+3(Z[H ]; Z̃[G1], Z̃[G2]) has been defined. Furthermore,
short odd nilcomplexes have been identified with Poincaré nilcomplexes, and the surgery obstruction associated
to the algebraic nilpotent normal cobordism has been calculated. In this chapter, it is shown that this defines

a map from UNil2k+3(Z[H ]; Z̃[G1], Z̃[G2]) → L2k+3(Z[G]) such that if g : W → Y is a highly connected 2k + 1-
dimensional splitting problem such that φ(τ(g)) = 0, there is a cobordism with a split homotopy equivalence with
surgery obstruction α(χ(g)).

The nilpotent normal cobordism has already been described algebraically when the dimension of X is odd; the
purpose of this chapter is to show how to realize this geometrically. It has been shown that the quadratic kernel of
f is the chain complex P ⊕Q where P and Q are projective chain complexes, and if we assume that φ(τ(g)) = 0,
then [P ] = 0, so that [Pk+1] = [Pk].

15.1 Bordisms of f : M → X

A critical part of the construction of the even-dimensional nilpotent normal cobordism was the construction of the
spaces CP and CQ which were cobordisms with homotopy equivalences fP : MP → X and fQ : MQ → X with the
same homology kernels as Wr and Wl.

Before constructing the odd-dimensional nilpotent normal cobordism, it is useful to understand how the pairs
(Wr,M) and (Wl,M) determine, when [P ] = 0, bordisms of f : M → X to a homotopy equivalence. The crucial
result is the following:

Proposition 15.1 Suppose that [P ] = 0. Then fr : Wr → Yr is bordant (by finitely many surgeries on the
interior) to a map f ′

r : Vr → Yr, where Vr = CQ ∪MQ
Ur, f

′
r|CQ

: CQ → X is the trace of surgeries on M , with
f ′
r|MP

: MP → X a homotopy equivalence and f ′
r : Ur → Yr a homotopy equivalence.

The proof will proceed by making Wr highly connected, and then using the proof of the π − π theorem. The
following lemma is therefore useful, computing the result algebraically of making Wr highly connected by surgeries
on the interior.

Lemma 15.2 Suppose that (P ⊕ Q → P, (0, θ)) is a Poincaré pair of free Z[H ]-modules, where Pr = 0 if
r /∈ {k, k+1}. Then surgeries can be performed on the interior to give a highly connected Poincaré pair (P ⊕Q→
P ′, (δψ, θ)) where P ′

r = 0 for r 6= k + 1.

Proof. The Thom complex of the pair gives the quadratic complex

P k //

�
0
θQ �

��

P k+1 ⊕ P k ⊕Qk //�
0 0 0
0 0 0
θ∗P 0 0 �

��

P k+1 ⊕Qk+1

��
Pk+1 ⊕Qk+1 ��

(−1)k+1 0
dP 0
0 dQ ��

// Pk+1 ⊕ Pk ⊕Qk
( dP (−1)k 0 )

// Pk
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and projection onto SQ is a homotopy equivalence with the quadratic complex (SQ, 0),where SQ is the suspended
chain complex SQr+1 = Qr.

Since the algebraic mapping cone

P k

�
d∗

θQ �
// P k+1 ⊕Qk+1

( θ∗P dQ )
// Qk // 0

is a short exact sequence of projective modules, it splits, and so we can find maps ( α β ) : P k+1⊕Qk+1 → Qk⊕P
k

and ( γδ ) : Qk → P k+1 ⊕Qk+1 such that
(
γ d∗P
δ θQ

)(
θ∗P dQ

α β

)
= ( 1 0

0 1 ).

Hence perform surgery on SQ, corresponding to surgery on the interior of the pair, to make SQ highly connected
by taking the following surgery data:

SQk+2 = Qk+1
//

β

��

SQk+1 = Qk // 0

P k

The result of the surgery is the quadratic complex:

Qk ⊕ Pk ⊕ P
k //�

0 0 0
0 0 0
0 1 0 �

��

Qk+1

Qk+1 �
dQ

β
0 � // Qk ⊕ P

k ⊕ Pk

The following is a chain equivalence:

Qk+1

�
dQ

β
0 �
//

��

Qk ⊕ P
k ⊕ Pk�
γ d∗P 0
0 0 1 �

��
0 // P k+1 ⊕ Pk

inducing the quadratic structure on the target given by ψ0 =
(

0 0
dP 0

)
: Pk+1 ⊕ P

k → P k+1 ⊕ Pk .

Then the resulting pair, given by the Poincaré thickening is:

Pk+1 ⊕ P
k

�
0 d∗P
dP 0 �

//

( 1 0
0 1 )

��

P k+1 ⊕ Pk

Pk+1 ⊕ P
k

The quadratic structure on the pair is (0, ψ′) ∈ Qk+2(j) where j is the map in the pair, and where ψ′ is the
structure:

Pk+1 ⊕ P
k //

( 1 0
0 1 )

��

�
0 d∗P
0 0 �

NNN

&&NNN

P k+1 ⊕ Pk

0

��
Pk+1 ⊕ P

k�
0 d∗P
dP 0 �

// P k+1 ⊕ Pk

(As a check, this is easily seen to be equivalent to (P ⊕Q,ψ) where ψ is the usual quadratic structure).

Proof of 15.1. Suppose that P = C(Wr) given by the presentation is such that [P ] = 0. Then [Pk+1] = [Pk], so
letting M be any module so that [M ] = −[Pk], P is homotopy equivalent to the free Z[H ]-module chain complex
Pk+1 ⊕M → Pk ⊕M with differential given by ( d 0

0 1 ). Similarly Q can be stabilized, and the above analysis then
gives surgery data for performing surgery on Wr to give Vr which is highly connected.
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Now apply the π−π theorem to the preceding example. Since Vr is (2k+2)-dimensional, M is (2k+1)-dimensional
and everything is highly connected, Kk+1(Vr ,M) is the only relative homology kernel and is free; therefore choose
a basis ei. The proof of the π − π theorem then implies that these ei can be represented by disjoint framed
embeddings θi : (Dk+1 ×Dk+1, Sk ×Dk+1) → (Vr ,M) which are null-homotopic in (Yr, X); moreover, the result
of surgery on these embeddings on M gives a homotopy equivalence MP → X , and the result of removing the
embeddings from Vr is a homotopy equivalence f ′

r : Ur → Yr. In other words, letting CP be the trace of the
surgeries, Vr = CP ∪MP

Ur where Ur ' Yr, MP ' X .

15.2 Construction of the nilpotent normal cobordism

The construction of the nilpotent normal cobordism when M is odd-dimensional is somewhat less direct than when
M is even-dimensional.

Proposition 15.3 Let g be a splitting problem such that φ(τ(g)) = 0. Then there exists a cobordism with a
split homotopy equivalence, called the ‘nilpotent normal cobordism’, with surgery obstruction αχ(g).

Proof. Since φ(τ(g)) = 0, [P ] = [Q] = 0. Then by proposition 15.1, there exist cobordisms CP and CQ of M with
MP and MQ homotopy equivalences, where CP and CQ sit inside Vl and Vr respectively.

Then perform the same construction as Cappell with these CP and CQ. The result is shown in figure 15.1. In that
figure, the dashed lines signal that the restriction of g to those subspaces is a homotopy equivalence.

Figure 15.1: The first stage of the nilpotent normal construction

___ ___
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W2 ∪M CP ""

''

W1 ∪M CQ||

ww

CP ∪M CQ

~~   

Since it is not true that the kernel chain complex C(CQ ∪M W1) is contractible, the boundary of the above is
not a homotopy equivalence. However, the boundary can be decomposed into 3 rel boundary ∂ surgery problems:
h1 : (W2 ∪M CP ,MP )→ (Y2, X), h2 : (CP ∪M CQ)→ (X × I,X ×{0, 1}), h3 : (W1 ∪M CQ,MQ)→ (Y1, X) where
the boundaries of all 3 problems are homotopy equivalences.

All of these surgery problems are soluble: Consider h1:

By the above, h1 : can be extended to h′1 : (W2 ∪M Vl)→ (Y2 ∪X Yl, X). Since h′1 is formed by joining a homotopy
equivalence Ul → Yl along a homotopy equivalence MP → X , σ(h1) = σ(h′1). But by the construction of Vl, h

′
1

is just formed by joining W2 → Y2 to Vl → Yl, and so is formed by joining W2 → Y2 to Wl → Yl and performing
surgeries on the interior. Since W2 ∪Wl → Y2 ∪ Yl is a homotopy equivalence, it follows that σ(h′1) = 0 and hence
σ(h1) = 0. Similarly for h2 and h3.

Hence surgery can be performed on each of these maps to homotopy equivalences. Join the trace of the handle
exchanges onto the boundary, and hence obtain a cobordism with a split homotopy equivalence as claimed. (See
figure 15.2; here both dashed and dotted lines are homotopy equivalences.)

Figure 15.2: The final stage of the nilpotent normal construction
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15.3 Computation of the obstruction of the nilpotent normal cobor-

dism

It remains to compute the surgery obstruction of the nilpotent normal cobordism. The algebraic effect has already
been computed on the chain complex level, so this computation effectively verifies that the quadratic Poincaré
pairs defined from the splitting obstruction are correct.

Proposition 15.4 Suppose that χ(g) = (Splk+1, Splk, d, θ, δψ
P , δψQ) is the short odd nilcomplex coming from

the presentation ((V,N); (W,M), (W ′M ′)). The surgery obstruction of the nilpotent normal cobordism α(χ) is
the short odd complex:

Z[G] ⊗ (P k ⊕Qk) //

�
ρ2θQ θP

θQ ρ1θP �
��

�
δψP 0

dP θP δψQ �
SSSSSSSS

))SSSSSSSS

Z[G] ⊗ (P k+1 ⊕Qk+1)

Z[G]⊗ (Pk+1 ⊕Qk+1) �
dP 0
0 dQ �

// Z[G]⊗ (Pk ⊕Qk)

Proof. The obstruction of the nilpotent normal cobordism will not be computed directly, since its construction
was slightly involved. The proposition is immediate from proposition 9.7 after the next lemma which computes
the surgery obstruction of the infinite nilpotent normal cobordism.

Remark 15.5 The nilpotent normal cobordism construction applied to the Poincaré nilcomplex determined by
the short odd nilcomplex gives the short odd complex:

Z[G] ⊗ (P k ⊕Qk) //

�
ρ2θQ 0
θQ ρ1θP �

��

�
δψP 0

0 δψQ �
SSSSSSSS

))SSSSSSSS

Z[G] ⊗ (P k+1 ⊕Qk+1)

�
0 0
θ∗P 0 �

��
Z[G]⊗ (Pk+1 ⊕Qk+1) �

dP 0
0 dQ �

// Z[G]⊗ (Pk ⊕Qk)

which is an equivalent quadratic structure on the same complex.

Lemma 15.6 With hypotheses as above, define T∞
M to be the non-compact Poincaré surgery problem given by

glueing copies of Wr and Wl where CP and CQ as in proposition 9.7. Then the surgery obstruction, σ(T∞
M ) =

α(χ(g)) ∈ Lh2k+3(Z[G]).

Proof. Let ((V,N); (W,M), (W ′M ′)) be the presentation used to give the surgery obstruction. Construct a pre-
sentation of T∞

M by taking V × I and glueing on copies of Vl × I and Vr × I . Denote the resulting space T∞
N (with

an implicit map to Y ∪ Ŷ ) which has two boundary components: one is TM ; denote the other by TM ′ .

Let the short odd complex of TM given by this presentation be the short odd complex of Z[G]-modules:

Dk //

χ1

HH
HH

##H
HH

Hχ0

��

Dk+1

Dk+1
δ

// Dk

Now recall the definition of the surgery obstruction. Dk = Kk+2(TN)∗ = Z[G] ⊗ (Pk ⊕ Qk) (as before by the
Mayer-Vietoris sequence). Similarly Dk+1 = Kk+2(TN , TM )∗ = Z[G] ⊗ (Pk+1 ⊕Qk+1).

δ is the map induced by the natural map Kk+2(TN , TM )∗ → Kk+2(TN )∗ which is therefore
(
dP 0
0 dQ

)
. χ0 : Dk →

Dk+1 is the composition of the maps: Kk+2(TN) → Kk+2(TN , TM ′) → Kk+2(TN , TM ). If the map Splk+1(N) →
Splk+1(N,M

′) is (fP , fQ), then the first of these maps is fP ⊕ fQ. Let λ1 : Kk+1(N,M) × Kk+1(N,M
′) be

the bilinear form inducing the isomorphism Kk+1(N,M
′) ∼= Kk+1(N,M)∗. Then the same arguments as in
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the straightforward even-dimensional case imply that the form λ1
T : Kk+2(TN , TM ) ×Kk+2(TN , TM ′) is given by

λ1
T ((1− ρ)x, y)) = λ1(x, y), and hence that λT ((1− ρ)x, (1− ρ)y) = L((1− ρ)x, y). Therefore (1− ρ)∗χ0(1− ρ)

∗ =(
ρ1θQ θP

θQ ρ2θP

)
. Similarly, by 9.9 (1−ρ)χ1(1−ρ) =

(
δψP 0

dP θP δψQ

)
. Hence the chain map (1−ρ) induces an isomorphism

between the short odd nilcomplex associated to the presentation and that claimed.
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Chapter 16

Concluding Remarks

We have now established the theorem which was the stated goal of this thesis:

Theorem 16.1 Let k ≥ 2 and g : W → Y 2k+2 be a splitting problem. Then g is splittable if and only if

φ(τ(g)) = 0 and χ(g) = 0 ∈ UNil2k+3(Z[H ]; Z̃[G1], Z̃[G2]).

Proof. It was seen in chapter 14 that χ(g) is an h-cobordism invariant. Therefore if g is splittable, α(χ(g)) = 0.
Suppose that χ(g) = 0. It was seen in chapter 12 that α is a group homomorphism, so α(χ(g)) = 0; hence
the nilpotent normal cobordism constructed above has 0 surgery obstruction, and therefore is bordant rel ∂ to a
homotopy equivalence, which is then an h-cobordism of W with g′ : W ′ → Y where g′ is split.

We would like to show two things more:

• That every element of UNil2k+3 is realized as the splitting obstruction of some splitting problem;

• That α is a split monomorphism.

There is an obvious candidate for a splitting of α; namely let β : L2k+3(Z[G])→ UNil2k+3 be defined in the following
way: Realize y ∈ L2k+3(Z[G]) as the surgery obstruction of a cobordism (h; 1, g) : (V ;Y,W )→ (Y × I ;Y, Y ) with
φ(τ(h)) = 0, and where g is a homotopy equivalence, as is always possible by the realization theorem of Wall.
Define β(y) = χ(g). It remains to prove that β(α(x)) = x.
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