
Published in ”Prospects in Topology”
Proceedings of a conference in honor of William Browder

Ann. of Maths. Study 138, 314-327, Princeton (1995)

Bordism of automorphisms of manifolds
from the algebraic L-theory point of view

by Andrew Ranicki

Dedicated to William Browder

Introduction

Among other things, Browder [1] initiated the application of surgery theory to the
bordism of automorphisms of manifolds and the related study of fibred knots and
open book decompositions. In this paper the bordism of automorphisms of high-
dimensional manifolds is considered from the point of view of the localization exact
sequence in algebraic L-theory.

The mapping torus of an automorphism f : M−−→M of a closed n-dimensional
manifold is a closed (n+ 1)-dimensional manifold

T (f) = M × [0, 1]/{(x, 0) = (f(x), 1) |x ∈M} .
Given a space X let ∆n(X) be the bordism group of pairs (M,f) with M a closed
oriented n-dimensional manifold (in one of the standard categories O, PL, TOP )
and f : M−−→M an orientation-preserving automorphism, together with a map g :
M−−→X and a homotopy gf ' g : M−−→X . The mapping torus construction of
Browder [1, 2.28] defines a morphism of abelian groups

T : ∆n(X) −−→ Ωn+1(X × S1) ; (M,f) −−→ T (f)

to the bordism group Ωn+1(X ×S1) of closed oriented (n+ 1)-dimensional manifolds
N with a map N−−→X × S1. The relative group ABn(X) in the exact sequence

. . . −−→ ABn(X) −−→ ∆n(X)
T
−−→ Ωn+1(X × S1) −−→ ABn−1(X) −−→ . . .

is the bordism group of oriented (n+2)-dimensional manifolds with boundary (W,∂W )
with a map W−−→X × S1, such that ∂W = T (f) for some representative (M,f) of
an element of ∆n(X).

López de Medrano [6] applied the Witt group of automorphisms of symmetric forms
to the study of ∆∗(pt.). Neumann [7] computed the automorphism Witt group over
Z, and Kreck [5] used this to compute ∆∗(pt.) for ∗ ≥ 5. The automorphism bor-
dism groups ∆∗(X) are closely related to open book decompositions, as considered
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by Winkelnkemper [17]. Quinn [8] developed a surgery theory for open book decom-
positions, in which the obstruction groups are defined for any ring with involution A
by

Wn(A) =
{

Witt group of nonsingular asymmetric forms over A if n is even
0 if n is odd.

The automorphism bordism groups AB∗(X) are geometrically isomorphic to the open
book bordism groups BB∗(X) of [8]

AB∗(X) = BB∗(X) .

The main result of [8] identifies

BBn(X) = Wn+2(Z[π1(X)]) (n ≥ 5)

for any space X with finitely presented fundamental group π1(X). The main result
of this paper (Theorem 3.1) obtains a different algebraic expression for the high-
dimensional groups AB∗(X) = BB∗(X), as the surgery obstruction groups of Wall
[16]

ABn(X) = Ln+2(Ω−1Z[π1(X × S1)]) (n ≥ 5)

of the following (noncommutative) localization Ω−1Z[π1(X × S1)] of the Laurent
polynomial extension of the group ring Z[π1(X)]

Z[π1(X × S1)] = Z[π1(X)][z, z−1] (z = z−1) .

A k × k matrix ω in the Laurent polynomial extension A[z, z−1] of a ring A is
Fredholm if the A[z, z−1]-module morphism ω : A[z, z−1]k−−→A[z, z−1]k is injective
and the cokernel is f.g. projective as an A-module. In Proposition 1.7 it will be
proved that the localization Ω−1A[z, z−1] inverting the set Ω of Fredholm matrices
in A[z, z−1] has the property that a finite f.g. free A[z, z−1]-module chain complex
C is A-finitely dominated (i.e. A-module chain equivalent to finite f.g. projective
A-module chain complex) if and only if

H∗(Ω−1A[z, z−1]⊗A[z,z−1] C) = 0 .

Now suppose that A = Z[π] is a group ring, so that

A[z, z−1] = Z[π × Z] .

If N is a connected finite CW complex with universal cover Ñ and fundamental group
π1(N) = π × Z the infinite cyclic cover N = Ñ/π of N is a connected CW complex
with π1(N) = π. The infinite CW complex N is finitely dominated if and only if the
Z[π][z, z−1]-module chain complex C(Ñ ) is Z[π]-finitely dominated, if and only if

H∗(N ; Ω−1Z[π][z, z−1]) = 0 .

If N is a closed (n+ 1)-dimensional manifold with π1(N) = π × Z, and N = Ñ/π is
finitely dominated, then the fibering obstruction Φ(N) ∈Wh(π×Z) of Farrell [4] and
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Siebenmann [14] is defined, such that Φ(N) = 0 if (and for n ≥ 5) only if N = T (f)
for an automorphism f : M−−→M of a codimension 1 submanifold M ⊂ N such that
f∗ = 1 : π1(M) = π−−→π. The mapping torus function

T : {closed n-dimensional manifolds M with an automorphism f : M−−→M
such that f∗ = 1 : π1(M) = π−−→π}

−−→ {closed (n+ 1)-dimensional manifolds N such that π1(N) = π × Z,

H∗(N ; Ω−1Z[π][z, z−1]) = 0 and Φ(N) = 0 ∈Wh(π × Z)} ;

(M,f) −−→ T (f)

is thus a bijection for n ≥ 5. The relative bordism group ABn(X) can thus be
viewed as the bordism group of oriented (n+2)-dimensional manifolds with boundary
(W,∂W ) with a map W−−→X × S1, such that

π1(W ) = π1(∂W ) = π1(X)× Z ,

H∗(∂W ; Ω−1Z[π1(X)][z, z−1]) = 0 , Φ(∂W ) = 0 ∈Wh(π1(X)× Z) .

In Theorem 3.1 the bijection will be used to identify

ABn(X) = Ln+2(Ω−1Z[π1(X)][z, z−1]) (n ≥ 5) .

The open book surgery of Quinn [8] is replaced here by the homology surgery of
Cappell and Shaneson [2] and Vogel [15]. Combining the identification of 3.1 with the
result of [8] gives geometric identifications

L∗(Ω−1Z[π1(X)][z, z−1]) = W∗(Z[π1(X)]) .

In Ranicki [13] we shall give direct algebraic identifications

L∗(Ω−1A[z, z−1]) = W∗(A)

for any ring with involution A.

I am grateful to the Royal Society of Edinburgh for the travel grant which enabled
me to attend the conference.

§1. Finite domination

Given a ring A let A[z, z−1] be the Laurent polynomial extension, the ring of

polynomials
∞∑

j=−∞
ajz

j with coefficients aj ∈ A such that {j ∈ Z | aj 6= 0} is finite.

Definition 1.1 An A[z, z−1]-module chain complex C is A-finitely dominated if it is
A-module chain equivalent to a finite f.g. projective A-module chain complex.
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The Novikov completionsA((z)), A((z−1)) of A[z, z−1] are the rings of formal power
series defined by

A((z)) = {
∞∑

j=−∞
ajz

j | {j ≤ 0 | aj 6= 0 ∈ A} finite} ,

A((z−1)) = {
∞∑

j=−∞
ajz

j | {j ≥ 0 | aj 6= 0 ∈ A} finite}

with A((z)) ∩A((z−1)) = A[z, z−1].

Proposition 1.2 (Ranicki [12]) A finite f.g. free A[z, z−1]-module chain complex C
is A-finitely dominated if and only if

H∗(A((z))⊗A[z,z−1] C) = H∗(A((z−1))⊗A[z,z−1] C) = 0 .

The two conditions of 1.2 can be united, using the diagonal ring morphism

A[z, z−1] −−→ A((z))×A((z−1)) ; x −−→ (x, x) .

A finite f.g. free A[z, z−1]-module chain complex C is A-finitely dominated if and
only if

H∗((A((z)) ×A((z−1))) ⊗A[z,z−1] C) = 0 .

Proposition 1.3 The following conditions on a k × k matrix ω in A[z, z−1] are
equivalent :

(i) the A[z, z−1]-module morphism ω : A[z, z−1]k−−→A[z, z−1]k is injective and the
cokernel is a f.g. projective A-module,

(ii) ω becomes invertible in A((z))×A((z−1)),
(iii) the 1-dimensional f.g. free A[z, z−1]-module chain complex

C : C1 = A[z, z−1]k
ω
−−→ C0 = A[z, z−1]k

is A-finitely dominated.
Proof. (i) =⇒ (iii) C is A-module chain equivalent to the 0-dimensional f.g. projec-
tive A-module chain complex P defined by P0 = coker(ω).
(ii) ⇐⇒ (iii) Immediate from 1.2.
(iii) =⇒ (i) The A[z, z−1]-module morphism ω : A[z, z−1]k−−→A[z, z−1]k is injective
(i.e. H1(C) = 0) since A[z, z−1]−−→A((z)) ×A((z−1)) is injective. We have to prove
that H0(C) = coker(ω) is a f.g. projective A-module. Let

ω =
N−∑

j=−N+

ωjz
j
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with ωj a k × k matrix in A, and −N+ ≤ 0 ≤ N−. Let C+ be the A[z]-module
subcomplex of C defined by

d+ = ω| : C+
1 =

∞∑
i=0

ziAk −−→ C+
0 =

∞∑
j=−N+

zjAk ,

and let C− be the A[z−1]-module subcomplex of C defined by

d− = ω| : C−1 =
−1∑

i=−∞
ziAk −−→ C−0 =

N−−1∑
j=−∞

zjAk .

The intersection C+∩C− is the 0-dimensional f.g. free A-module chain complex with

(C+ ∩C−)0 =
N−−1∑
j=−N+

zjAk ,

and there is defined an exact sequence

0 −−→ C+ ∩ C− −−→ C+ ⊕ C− −−→ C −−→ 0

with

A[z, z−1]⊗A[z] C
+ = A[z, z−1]⊗A[z−1] C

− = C .

As in the proof of 1.2 there are defined short exact sequences

0 −−→ C+ −−→ (A[[z]]⊗A[z] C
+)⊕ C −−→ A((z))⊗A[z,z−1] C −−→ 0 ,

0 −−→ C+ ∩ C− −−→ C+ ⊕ (A[[z−1]]⊗A[z−1] C
−) −−→ A((z−1))⊗A[z,z−1] C −−→ 0 .

By hypothesis

H∗(A((z))⊗A[z,z−1] C) = H∗(A((z−1))⊗A[z,z−1] C) = 0 ,

so that there are defined A-module isomorphisms

H0(C+) ∼= H0(A[[z]]⊗A[z] C
+)⊕H0(C) ,

H0(C+ ∩C−) ∼= H0(C+)⊕H0(A[[z−1]]⊗A[z−1] C
−)

∼= H0(A[[z]]⊗A[z] C
+)⊕H0(C)⊕H0(A[[z−1]]⊗A[z−1] C

−) .

Thus H0(C) is (isomorphic to) a direct summand of the f.g. free A-module H0(C+ ∩
C−), verifying that H0(C) is a f.g. projective A-module.

Definition 1.4 A square matrix ω in A[z, z−1] is Fredholm if it satisfies any one of
the equivalent conditions of 1.3.
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Example 1.5 (i) If ω = z−h for an invertible k×k matrix h in A then ω is Fredholm :
the A[z, z−1]-module morphism ω : A[z, z−1]k−−→A[z, z−1]k is injective with cokernel
the f.g. free A-module Ak (z acting by h).
(ii) If ω = 1− zp for a projection k × k matrix p = p 2 in A then ω is Fredholm : the
A[z, z−1]-module morphism ω : A[z, z−1]k−−→A[z, z−1]k is injective with cokernel the
f.g. projective A-module im(p) (z acting by 1).

Cohn [3, pp. 254-255] defines the localization Σ−1R for any ring R and any set Σ of
square matrices with entries in R to be the ring with generators all the elements of R
and all the entries m′ij in formal inverses M ′ = (m′ij) of the matrices M ∈ Σ, subject
to all the relations holding in R as well as

MM ′ = M ′M = I (M ∈ Σ) .

The canonical ring morphism i : R−−→Σ−1R has the universal property that any ring
morphism f : R−−→S such that f(M) is invertible for each M ∈ Σ has a unique
factorization

f : R
i
−−→ Σ−1R −−→ S .

In general, i : R−−→Σ−1R may not be injective – for example, if 0 ∈ Σ then Σ−1R = 0
is the zero ring.

Definition 1.6 Let Ω be the set of Fredholm matrices inA[z, z−1], and let Ω−1A[z, z−1]
be the localization of A[z, z−1] inverting Ω.

The diagonal ring morphism

A[z, z−1] −−→ A((z))×A((z−1)) ; x −−→ (x, x)

is injective, and has a factorization

A[z, z−1]
i
−−→ Ω−1A[z, z−1] −−→ A((z))×A((z−1))

so that the canonical ring morphism i : A[z, z−1]−−→Ω−1A[z, z−1] is injective.

Given an A[z, z−1]-module chain complex C let

Ω−1C = Ω−1A[z, z−1]⊗A[z,z−1] C

be the induced Ω−1A[z, z−1]-module chain complex.

Proposition 1.7 The following conditions on a finite f.g. free A[z, z−1]-module chain
complex C are equivalent :

(i) H∗(Ω−1C) = 0,
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(ii) H∗((A((z)) ×A((z−1)))⊗A[z,z−1] C) = 0,
(iii) C is A-finitely dominated,
(iv) C is A[z, z−1]-module chain equivalent to the algebraic mapping cone C(z − h :

P [z, z−1]−−→P [z, z−1]) for an automorphism h : P−−→P of a finite f.g. projec-
tive A-module chain complex P .

Proof. (i) =⇒ (ii) Immediate from the existence of a ring morphism

A[z, z−1] −−→ A((z))×A((z−1)) .

(ii) =⇒ (i) Choose a basis for each Cr, writing

Cr = A[z, z−1]kr (r ≥ 0) .

There exist A[z, z−1]-module morphisms Γ : Cr−−→Cr+1 (r ≥ 0) such that the
A[z, z−1]-module endomorphisms

ω = dΓ + Γd : Cr = A[z, z−1]kr −−→ Cr = A[z, z−1]kr (r ≥ 0)

induce automorphisms over A((z)) × A((z−1)). Each ω has a Fredholm matrix in
A[z, z−1] by 1.3, so that H∗(Ω−1C) = 0.
(ii) ⇐⇒ (iii) This is 1.2.
(i) =⇒ (iv) Assume that C is n-dimensional, and let

Cr = A[z, z−1]kr (0 ≤ r ≤ n) .

There exist A[z, z−1]-module morphisms Γ : Cr−−→Cr+1 (0 ≤ r ≤ n − 1) such that
the A[z, z−1]-module endomorphisms

ω = dΓ + Γd : Cr = A[z, z−1]kr −−→ Cr = A[z, z−1]kr (0 ≤ r ≤ n)

are defined by Fredholm matrices ω in A[z, z−1], with Γ2 = 0. The A[z, z−1]-module
morphism

d+ Γ =


d 0 0 · · ·
Γ d 0 · · ·
0 Γ d · · ·
...

...
...

. . .

 :

Codd = C1 ⊕ C3 ⊕ C5 ⊕ . . . −−→ Ceven = C0 ⊕ C2 ⊕ C4 ⊕ . . .
is injective with f.g. projective A-module cokernel. The (n − 1)-dimensional f.g.
projective A-module chain complex P defined by

Pr =


coker(d+ Γ : Codd−−→Ceven) if r = 0
coker(ω ⊕ ω ⊕ . . . : Cr+1 ⊕ Cr+3 ⊕ . . .−−→Cr+1 ⊕ Cr+3 ⊕ . . .)

if r = 1, 2, . . . , n− 1 ,

d : Pr −−→ Pr−1 ; [x] −−→
{

[0, x] if r = 1
[(d+ Γ)(x)] if r = 2, 3, . . . , n− 1
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is equipped with an automorphism

h : P −−→ P ; [x] −−→ [zx]

such that C is A[z, z−1]-module chain equivalent to the algebraic mapping cone C(z−
h : P [z, z−1]−−→P [z, z−1]).
(iv) =⇒ (iii) The algebraic mapping cone C(z − h) is A-module chain equivalent to
P .
(iv) =⇒ (i) Each of the A[z, z−1]-module morphisms

z − h : Pr[z, z−1] −−→ Pr[z, z−1] (r ≥ 0)

induces an Ω−1A[z, z−1]-module isomorphism

z − h : Ω−1Pr[z, z−1] −−→ Ω−1Pr[z, z−1] ,

so that

H∗(Ω−1C) = H∗(z − h : Ω−1P [z, z−1]−−→Ω−1P [z, z−1]) = 0 .

Example 1.8 If A = K is a field then Ω consists of all the square matrices in K[z, z−1]
with non-zero determinant, and Ω−1K[z, z−1] = K(z) is the function field of K. A
finite f.g. free K[z, z−1]-module chain complex C is K-finitely dominated if and only
if H∗(K(z)⊗K[z,z−1] C) = 0, if and only if the homology K-vector spaces H∗(C) are
finite-dimensional.

Definition 1.9 (i) The automorphism category of A is the exact category Aut(A) in
which an object (P, h) is a f.g. projectiveA-module P together with an automorphism
h : P−−→P , a morphism f : (P, h)−−→(P ′, h′) is an A-module morphism f : P−−→P ′
such that h′f = fh, and a sequence (P, h)−−→(P ′, h′)−−→(P ′′, h′′) is exact if the A-
module sequence P−−→P ′−−→P ′′ is exact.
(ii) The automorphism class group Aut0(A) is the class group of the automorphism
category

Aut0(A) = K0(Aut(A)) .

Proposition 1.10 The torsion group of Ω−1A[z, z−1] is a direct sum

K1(Ω−1A[z, z−1]) = K1(A[z, z−1])⊕Aut0(A) .

Proof. The relative term K1(i) in the localization exact sequence of algebraic K-
theory

. . . −−→ K1(A[z, z−1])
i
−−→ K1(Ω−1A[z, z−1])

∂
−−→ K1(i) −−→ K0(A[z, z−1]) −−→ . . .
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is the class group of the exact category of f.g. Ω−1A[z, z−1]-torsion A[z, z−1]-modules
of homological dimension 1, which is isomorphic to the automorphism category Aut(A),
with

∂ : K1(Ω−1A[z, z−1]) −−→ K1(i) = Aut0(A) ; τ(Ω−1C) −−→ [C, ζ]

sending the torsion τ(Ω−1C) for anA-finitely dominated finite based f.g. freeA[z, z−1]-
module chain complex C to the class of the A-module automorphism

ζ : C −−→ C ; x −−→ zx .

The morphism ∂ is a surjection which is split by

∆ : Aut0(A) −−→ K1(Ω−1A[z, z−1]) ;

[P, h] −−→ τ(z − h : Ω−1P [z, z−1]−−→Ω−1P [z, z−1]) .

The morphism

i : K1(A[z, z−1]) −−→ K1(Ω−1A[z, z−1]) ; τ(C) −−→ τ(Ω−1C)

is an injection which is split by

Φ : K1(Ω−1A[z, z−1]) −−→ K1(A[z, z−1]) ; τ(Ω−1C) −−→ Φ(C)

with C anA-finitely dominated (= Ω−1A[z, z−1]-contractible) based f.g. freeA[z, z−1]-
module chain complex and Φ(C) ∈ K1(A[z, z−1]) the algebraic fibering obstruction
(Ranicki [11, §20]).

Example 1.11 Let N be a connected finite CW complex with universal cover Ñ ,
such that π1(N) = π×Z and the infinite cyclic cover N = Ñ/π is finitely dominated.
Let

Λ = Z[π1(N)] = Z[π][z, z−1]

and let ζ : N−−→N be a generating covering translation, inducing z : C(Ñ )−−→C(Ñ )
on the Λ-module chain level. The cellular Λ-module chain complex C(Ñ ) is Ω−1Λ-
contractible, and the Ω−1Λ-coefficient Whitehead (or rather Reidemeister) torsion of
N is given by

τ(N ; Ω−1Λ) = τ(Ω−1C(Ñ))

= (Φ(N), [N, ζ]) = (Φ(C(Ñ )), [C(Ñ ), ζ])

∈ K1(Ω−1Λ) = K1(Λ)⊕Aut0(Z[π]) .
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§2. Localization in L-theory

We refer to Ranicki [9] for an exposition of the quadratic and symmetric L-groups
L∗(A), L∗(A) of a ring with involution A, which we take to be defined using (unbased)
f.g. free A-modules. The quadratic L-group Ln(A) of Wall [16] was identified in [9]
with the cobordism group of n-dimensional quadratic Poincaré complexes (C,ψ) over
A, with C a f.g. free A-module chain complex.

Extend the involution on A to A[z, z−1] by z = z−1. The conjugate transpose of a
Fredholm matrix ω = (aij) in A[z, z−1] is a Fredholm matrix ω∗ = (aji) in A[z, z−1],
with

coker(ω∗) = HomA(coker(ω), A) ,

so that Ω−1A[z, z−1] is also a ring with involution.

We refer to Ranicki [10, §3] for the localization exact sequence in algebraic L-theory,
which applies also to Ω−1A[z, z−1] :

Proposition 2.1 For any ring with involution A there is defined an exact sequence

. . . −−→ Ln+2(A[z, z−1])
i
−−→ Ln+2(Ω−1A[z, z−1])

∂
−−→ LAutn(A)
T
−−→ Ln+1(A[z, z−1]) −−→ . . .

with LAutn(A) the cobordism group of automorphisms of f.g. projective n-dimensional
symmetric Poincaré complexes over A, T given by the algebraic mapping torus, and

∂ : Ln+2(Ω−1A[z, z−1]) −−→ LAutn(A) ; Ω−1(C, φ) −−→ (∂C, ∂φ, ζ)

for any Ω−1A[z, z−1]-Poincaré f.g. free (n+2)-dimensional symmetric complex (C, φ)
over A, with ∂C = C(φ0 : Cn+2−∗−−→C)∗+1, ζ : x−−→zx.

§3. Bordism of automorphisms of manifolds

Let X be a connected space with universal cover X̃ .

The symmetric signature map

σ∗ : Ωn(X) −−→ Ln(Z[π1(X)]) ; (M−−→X) −−→ σ∗(M) = (C(M̃ ), φ)

is defined as in Ranicki [9], with φ the symmetric Poincaré duality structure on the
cellular Z[π1(X)]-module chain complex C(M̃) of the pullback cover M̃ of the oriented
n-dimensional manifold M , so that

φ0 = [M ] ∩− : C(M̃)n−∗ −−→ C(M̃) .
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There are corresponding symmetric signature maps on the automorphism bordism
groups ∆∗(X), AB∗(X) defined in the Introduction.

The symmetric signature map on ∆∗(X) is defined by

σ∗ : ∆n(X) −−→ LAutn(Z[π1(X)]) ;

(M−−→X, f : M−−→M) −−→ (C(M̃), φ, f̃ : C(M̃ )−−→C(M̃)) .

(For π1(X) = {1}, n = 2k this is the automorphism Witt invariant of López de
Medrano [6]).

The symmetric signature map on AB∗(X) is defined by

σ∗ : ABn(X) −−→ Ln+2(Ω−1Z[π1(X)][z, z−1]) ;

((W,∂W )−−→X × S1, ∂W = T (f : M−−→M)) −−→ Ω−1(C(W̃ , ∂W̃ ), δφ/φ) .

Here, (C(W̃ , ∂W̃ ), δφ/φ) is the (n + 2)-dimensional symmetric complex over
Z[π1(X)][z, z−1] obtained by collapsing the boundary in the (n+2)-dimensional sym-
metric Poincaré pair (C(∂W̃ )−−→C(W̃ ), (δφ, φ)) over Z[π1(X)][z, z−1] associated to
the (n + 2)-dimensional manifold with boundary (W,∂W = T (f : M−−→M)). The
induced (n+2)-dimensional symmetric complex over Ω−1Z[π1(X)][z, z−1] is Poincaré
since H∗(∂W ; Ω−1Z[π1(X)][z, z−1]) = 0.

Theorem 3.1 The symmetric signature maps define a natural transformation of exact
sequences

. . . w Ωn+2(X × S1) w

u

σ∗

ABn(X) w

u

σ∗

∆n(X) w
T

u

σ∗

Ωn+1(X × S1) w

u

σ∗

. . .

. . . w Ln+2(Λ) w

i Ln+2(Ω−1Λ) w

∂ LAutn(A) w

T Ln+1(Λ) w . . .

with

A = Z[π1(X)] , Λ = Z[π1(X × S1)] = A[z, z−1] .

If π1(X) is finitely presented the symmetric signature maps

σ∗ : ABn(X) −−→ Ln+2(Ω−1Λ) (n ≥ 5)

are isomorphisms, and the automorphism bordism groups ∆∗(X) fit into an exact
sequence

. . . −−→ Ln+2(Λ) −−→ ∆n(X) −−→ LAutn(A)⊕Ωn+1(X×S1) −−→ Ln+1(Λ) −−→ . . . .

Proof. The unit

u = (1− z)−1 ∈ Ω−1Λ
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is such that u+u = 1, so there is no difference between the quadratic and symmetric
L-groups of Ω−1Λ

L∗(Ω−1Λ) = L∗(Ω−1Λ) .

Let (V, ∂V ) be an (n+1)-dimensional manifold with boundary with a π1-isomorphism
reference map (V, ∂V )−−→X such that

π1(V ) = π1(∂V ) = π1(X) .

By the realization theorems of Wall [16], Cappell and Shaneson [2] and Vogel [15]
every element

x ∈ Ln+2(Ω−1Λ) = Γn+2(Λ−−→Ω−1Λ)

is the Ω−1Λ-homology surgery obstruction x = σ∗(F,B) of a normal map of (n+ 2)-
dimensional manifolds with boundary

(F,B) : (W,∂W ) −−→ (V, ∂V )× S1

with

π1(W ) = π1(∂W ) = π1(X)× Z

and such that ∂F : ∂W−−→∂V × S1 is a Ω−1Λ-homology equivalence, i.e. such that
the pullback infinite cyclic cover of ∂W

∂W = (∂F )∗(∂V × R)

is finitely dominated. Use the direct sum decomposition given by 1.10

K1(Ω−1Λ) = K1(Λ)⊕Aut0(A)

to express the Ω−1Λ-coefficient Whitehead torsion of ∂F as

τ(∂F ; Ω−1Λ) = (−)nτ(∂F ; Ω−1Λ)∗

= (Φ(∂W ), [∂W, ζ]) − (Φ(∂V × S1), [∂V × R, 1× ζR])

= (Φ(∂W ), [∂W, ζ]) − (0, [∂V, 1])

∈ K1(Ω−1Λ) = K1(Λ)⊕Aut0(A) ,

with ζ : ∂W−−→∂W a generating covering translation. Moreover, for every µ ∈
K1(Ω−1Λ) it is possible to vary (F,B) by an Ω−1Λ-coefficient homology cobordism
with torsion µ, changing τ(∂F ; Ω−1Λ) by µ + (−)nµ∗. The duality involution on
K1(Ω−1Λ) defined by the conjugate transposition of matrices (aij)−−→(aji) is of the
form

∗ =
( ∗ β∗

0 ∗

)
: K1(Ω−1Λ) = K1(Λ)⊕Aut0(A)−−→K1(Ω−1Λ) = K1(Λ)⊕Aut0(A)

12



with
∗ : Aut0(A) −−→ Aut0(A) ; [P, h] −−→ [P ∗, (h∗)−1] ,

β : Aut0(A) −−→ K1(Λ) ; [P, h] −−→ τ(−zh : P [z, z−1]−−→P [z, z−1]) ,

β∗ = − ∗ β : Aut0(A) −−→ K1(A) .

Now β maps the automorphism class group Aut0(A) onto the direct summandK1(A)⊕
K0(A) in the Bass decomposition

K1(Λ) = K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A) .

The duality involution on K1(Λ) interchanges the two Ñil0(A)-summands, so that
every self-dual element τ = ±τ∗ ∈ K1(Ω−1Λ) can be expressed as

τ = (µ1, µ2)± (µ1, µ2)∗ + (0, µ3) ∈ K1(Ω−1Λ) = K1(Λ)⊕Aut0(A)

for some µ1 ∈ K1(Λ), µ2 ∈ Aut0(A), µ3 = ±µ∗3 ∈ ker(β). Applying this to

τ = τ(∂F ; Ω−1Λ) ∈ K1(Ω−1Λ)

shows that every element x ∈ Ln+2(Ω−1Λ) is realized as the Ω−1Λ-coefficient surgery
obstruction σ∗(F,B) of a normal map (F,B) : (W,∂W )−−→(V, ∂V )×S1 with fibering
obstruction

Φ(∂W ) = 0 ∈Wh(π1(X)× Z) ,

so that ∂W = T (f) is the mapping torus of an automorphism f : M−−→M of a
closed n-dimensional manifold M . The surgery obstruction is the difference of the
symmetric signatures

σ∗(F,B) = σ∗(W,∂W )− σ∗(V × S1, ∂V × S1) ∈ Ln+2(Ω−1Λ) = Ln+2(Ω−1Λ) .

The construction defines an isomorphism

Ln+2(Ω−1Λ) −−→ ABn(X) ;

x = σ∗(F,B) −−→ (W,∂W = T (f))− (V × S1, ∂V × S1 = T (1 : ∂V−−→∂V ))

inverse to the symmetric signature map σ∗ : ABn(X)−−→Ln+2(Ω−1Λ).

References

[1] W. Browder, Surgery and the Theory of Differentiable Transformation Groups,
Proc. Conf. on Transformation Groups (New Orleans, 1967), Springer (1969)

[2] S. Cappell and J. Shaneson, The codimension two placement problem, and homol-
ogy equivalent manifolds, Ann. of Maths. 99, 277–348 (1974)

[3] P. M. Cohn, Free rings and their relations, Academic Press (1971)
[4] F. T. Farrell, The obstruction to fibering a manifold over a circle, Indiana Univ. J.

21, 315–346 (1971)

13



[5] M. Kreck, Bordism of diffeomorphisms and related topics, Springer Lecture Notes
1069 (1984)
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