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COBORDISM INVARIANTS, THE KERVAIRE INVARIANT AND 

FIXED POINT FREE INVOLUTIONS(1) 

BY 

WILLIAM BROWDER 

ABSTRACT. Conditions are found which allow one to define an absolute 
version of the Kervaire invariant in Z2 of a Wu-(q + 1) oriented 2q-manifold. The 

condition is given in terms of a new invariant called the spectral cobordism in- 
variant. Calculations are then made for the Kervaire invariant of the n-fold dis- 
joint union of a manifold M with itself, which are then applied with M = p2q, the real 
projective space. These give examples where the Kervaire invariant is not de- 

fined, and other examples where it has value I e Z2. These results are then 

applied to construct examples of smooth fixed point free involutions of homotopy 
spheres of dimension 4k + 1 with nonzero desuspension obstruction, of which 
some Brieskorn spheres are examples (results obtained also by Berstein and 
Giffen). The spectral cobordism invariant is also applied directly to these ex- 
amples to give another proof of a result of Atiyah-Bott. The question of which 
values can be realized as the sequence of Kervaire invariants of characteristic 
submanifolds of a smooth homotopy real projective space is discussed with some 
examples. Finally a condition is given which yields smooth embeddings of homo- 
topy Pm's in Rm+k (which has been applied by E. Rees). 

In [71, it was shown how to define an invariant for certain manifolds of even 

dimension which generalized the Kervaire invariant for framed manifolds. In [81 it 

was shown how to use this technique to define surgery obstructions. In this paper 

we shall continue the study of this invariant. 

First we consider the question of when the invariant is defined and give much 

weaker conditions than those employed in [71. For manifolds of dimension 2q 

these conditions are shown to be B(vq+l) cobordism invariants (using the notation 

of [71). We define a new cobordism invariant called the "spectral cobordism in- 

variant" and show how to determine whether the Kervaire invariant is defined as 

a function of this inivariant. We then study some examples (such as sums of pro- 

jective spaces), show when the Kervaire invariant is defined and when not, and 
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194 WILLIAM BROWDER 

use the results to show that (again in the notation of [71) Y2q(vq+1)= Z8 gener- 

ated by P2q. The same examples are used to construct smooth surgery problems, i.e. 

maps into real projective space P2q for each q, such that the surgery invariants 

are nonzero, for each q. We then construct examples of smooth fixed point free in- 

volutions T on j4k+1 (a generator of bP4k+2) such that there are invariant 

characteristic El C 24k+1 if and only if 4k + 1I - 0 (4) (an invariant sphere 

El is called characteristic if it is the total inverse image of the standard S1 C 

54k+l under an equivariant homotopy equivalence (14k+1, T) with (S4k+l, A), 

where A is the antipodal map). In particular this gives smooth examples in each 

dimension 4k + I where the Arf invariant of an involution (see [10]) is nonzero. 

(This result has been obtained independently by I. Berstein [51 by a direct geo- 

metric construction, and by Giffen [131 using the Brieskorn spheres (see ?6).) 

Such examples were known previously in the piecewise linear case (see [181 and 

[301) and in some special dimensions (see [211). We also study these examples 

using the spectral cobordism invariant and obtain a lower bound on the number of 

different examples one can construct this way. Finally we show that these ex- 

amples are related to the involutions on certain Brieskorn spheres studied by 

Atiyah and Bott [41 and get a new proof of their result. 

In the final section we prove a theorem about smooth embedding of homotopy 

projective spaces in euclidean space, which has been used by E. Rees [241. 

Most of this paper was written before Brown announced his definition of a 

Kervaire invariant in Z. [11]. His invariant is always defined, unlike ours, but 

his is not as natural, involving a choice. All the explicit calculations done here 

could be done with his definition, perhaps more simply. 

1. Universal manifolds, cobordism constructions and quadratic forms. In 

this section we introduce some general constructions for studying a cobordism 

theory and use them to define a certain Z2-valued quadratic form on certain sub- 

modules of Hq(M; Z2) for M a 2q-dimensional Poincare duality space. This is a 

review of results of [71 in many respects, but, in fact the constructions in [71 are 

valid for Poincare' duality spaces, while here we shall give a more geometrical 

definition valid for smooth or p.l. manifolds. In particular we give a somewhat 

different way to define cobordism invariants in terms of a homotopy construction 

different from the classical one of Thom. We shall use it later also to study 

fixed point free involutions. For simplicity we shall always talk about smooth 

manifolds and linear bundles with the understanding that one can translate the re- 

sults into the piecewise linear category using micro-bundles [191 or block-bundles 

([251, [221) and p.1. immersion theory [15]. 
Let us consider closed manifolds M of a given dimension m. Let B be a 

classifying space for a theory of n-plane bundles, n >> m, y the universal 
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n-plane bundle over B. A B-orientation of M will mean a linear bundle map of the 

stable normal bundle v of Mm C Sm +n into y. If v and y were assumed to have 

additional structure besides linearity, and the bundle map were required to pre- 

serve it, then we would have a different notion of B-orientation (for example if y 

and v were oriented in the usual sense) (see [7, ?41). A B-cobordism of two B- 

oriented manifolds MO and M1 (with orientations b O: vo- y, b1: v y) will 

be a cobordism W, dW = Mo --M1, and a bundle map b: T y, where v is the 

normal bundle of W C Sm+n x I, with M. C Sm+n x i, and blvi = b. i = O, 1. 

Now let B 1 be a finite complex with the same homotopy type as B up to 

dimension m + 2 for example take B1 = (m + 3)-skeleton of B, if B if a complex. 

Embed B1 rectilinearly in sQ for some large Q, and take B2 to be a regular 

neighborhood of B1 in SQ. Let Y2 1 be the inverse of the pull-back Y2 of the 

canonical bundle y to B2 and let Ws be the total space of the disk bundle of 

y over B2. Then W is a manifold with boundary of dimension s. We shall call 
2;j 

W a "universal B-manifold." Such a construction was first defined by Milnor [191. 

Now B2 is parallelizable as it is an open subset of SQ, so the tangent bun- 

dle of W is p*(y 1 + Q), where p: W B is the projection. It is easy to see 

that the normal bundle of Ws in Ss+n is the pull-back of the canonical bundle y, 

to W i.e. P*(y2)' 
If M' is a B-oriented manifold, b: v -* y, then since W is the same homo- 

topy type as B up to dimension m + 2, we get a unique map b2: v P*(Y2) where 

is the pull-back of y to B2. Then bv- v ) defines a unique map b - 

v p*(y2) 1, and v-1 r + Ci the stable tangent bundle of M. Hence we get 

a bundle map c: r + ci + CQ P*( 2)f + +Q c = b2 1 + 1, i.e., a linear bundle 

map of the tangent bundle of Mm x Dk in the tangent bundle of WS. s = m + k, 

k = I + Q. By Hirsch's Theorem [161 such a bundle map comes from the differen- 

tial of an immersion a: M x Dk W, which is unique up to regular isotopy. As k 

is very large compared to m, we can change a by a regular isotopy to be an em- 

bedding on M, and hence a small neighborhood of M, i.e., on a smaller M x Dk. 

By a similar argument this embedding will be unique up to an isotopy. Thus we 

have shown 

(1.1) Theorem. Let Wm +k be the universal manifold constructed above, and 

Mm a closed B-manifold. Then the B-orientation of M defines an embedding 

M x Dk c wm +k which is unique up to isotopy. Further, a B-cobordism U between 

M0 and M1 leads to an embedding of Um +1 x Dk C Wm> x I, with restrictions to 

M. x Dk the given embeddings, for i = 0, 1. 

Given a B-manifold M, and the embedding Mm x Dk c Wm +k, we can take the 

Pontrjagin-Thom construction, i.e., consider the natural collapsing map g: W/dW 

- M x Dk/M x Sk- 1 = kkM + the k-fold reduced suspension of (M u point). We 
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call g the "tspectral orientation map" of M. 

(1.2) Corollary. If Mm is a B-manifold, W a universal manifold as above, then 

the spectral orientation map g_ W/dW _ IkM + is uniquely defined up to homotopy. 

For an isotopy of the embedding leads to a homotopy of g. 

From the fact that ykM + is (k - 1)-connected and W/dW is of dimension 

m + k, it follows that, since k is larger than m + 1, all the homotopy information 

carried by g will be the same, independent of the choice of B 1 in our construction 

of W. 

The spectral orientation map g will play an important role in defining the 

quadratic form which yields the generalized Kervaire invariant. We recall that in 

[71 a more general construction was given for M a Poincare' complex, etc., using 

Spanier-Whitehead duality instead of immersion theory and the Pontrjagin-Thom 

construction. In the sequel, therefore, we could use this more general situation 

to enunciate the theorems, thinking of the construction given here as an intuitive 

special case. 

Taking the projection map M x Dk Dk and the induced map t: IkM+ 

sk, and composing with g, 

W/dWa SkM t sk 

we get an element in the cohomotopy group 77k(W/dW). Using the usual transverse 

regularity argument we then get 

(1.3) Corollary. The B-cobordism group of m-manifolds is isomorphic to 

7 k(W/dW), where W is the universal B-manifold constructed above, dimension W 

- m + k, k> m + 1. 

This corollary is just the Spanier-Whitehead dual of Thom's theorem that the 

cobordism group is isomorphic to 7m +q(T(y )), where yq is the canonical q- 

plane bundle in the B-theory. 

Instead of taking simply the projection map M x Dk Dk, let us instead 

take c x 1: M x Dk - W x Dk where c: M -- W is the classifying map for the 

normal bundle of M, considering W as the classifying space in dimensions < m 

+ 2. The induced map Ek(c): >kM + kW + may be composed with g: W/dW 
XkM+ to get h - (jk(c))g: W/dW kW 

(1.4) Corollary. The homotopy class of h is a cobordism invariant, i.e., if 

M is B-cobordant to M then ho is homotopic to h 

(We shall call the homotopy class of h E [W/dW, IkW+], the spectral co- 

bordism invariant of the manifold M.) 
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Proof. From (1.1), we get a map G: W/dW x I '.k U + with G W/dW x i = g. 

the spectral orientation map of Mi, gi: W/dw kSMW i = 0, 1. Then the clas- 

sifying maps c: M 'W extend to C: U -W with C/M =c2, i= O, 1. Thus the 

composite Ek(C) o G: W/dW x I -Y EkW+ and clearly induces a homotopy of go 

with g1 

As >kW+ has Sk as a retract, [w/dw, .kw+? has 7k(W/OW) as a retract, and 

in view of (1.3), [W/dW, IkW4 is in general much larger than the cobordism group. 

However, the richer structure of W in cohomology, as compared to Sk, makes it 

convenient for defining certain cobordism invariants which we shall do in ?2. 

Now let (Ui, d) be a Poincare' duality pair mod 2 of dimension n, i.e., there is a class 

[u] e Hn(U, aU; Z2) such that [U] n H2(U; Z2) Hn H(U, du; Z2) is an isomorphism for 

all i. This is easily seen to be equivalent to the statement that the pairing H2(U; Z2) ? 

Hn-2(U, U; Z2) Z2 given by (x, y) = (x u y)[U], is nonsingular for all i. Then 

the Wu class v.(U) e H2(U; Z2) is defined by the formula (vi(U), x) = (Sq2x)[U], 

for all x c Hn-2U, au; Z.2 It was proved by Wu that v (i) is a certain poly- 

nomial in the Steifel-Whitney classes in case M is a manifold, so that a universal 

Wu class v. e H2(BO; Z2) (or more generally vi e H2(BG; Z2) where BG is 

classifying space for spherical fibrations). We shall take B to be the classifying 

space for a bundle theory in which vq+l = 0. (A universal construction for such 

a theory is given in [7, ?21.) Then the construction above, starting from such a B, 

gives a universal manifold W such that (Sqq+ 1(x))[W] = 0 for x Hs -q-(W, dW; Z2)' 

(See [7] for a more complete discussion.) 

Suppose M2q is a manifold oriented in a theory where v = 0 and let 

g: W/dW >kM+ be its spectral orientation map. Define 71 to be the composition 

k * 

H q (N; Z2): Hq +k(jkAh+; Z2) Hq+k(WIaw; Z2). 

Following [7] we define a map V: (ker * Z 2 as follows: 

Let cc: M + -- K(Z2, q) be such that e*(z) = x, t i Hq(K(Z2, q); Z2) the funda- 

mental class, K(Z2, q) the Eilenberg-Mac Lane space with homotopy groups 

7. = ? iif i $ q, r7 = Z2. Define / to be the composition 

W/dW 9 I'kM m kK(Z , q). + 2 

If 7*X) = 0, then 1*(k(t)) g*(ka(t)) = g*Et(x) = Y X= 0. Hence we may de- 

fine the functional Steenrod square 

qq+ 1 
H2 W Z _______+i 

(im Sqq +1 + im ) 
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It is shown in [7, ?il that the denominator (im 3 )2q+I = 0, im Sq4+1 - hy 

assumption, so that Sq +l(k(t)) c H2q+k(W/dW; Z2). Define ifr(x) - 

(Sqq+l(1k(L)))[W]. Note that on the right-hand side, only the map 13 depends on x. 

In [7, ?i], it was shown that if x, y e (ker 71 then OLdx + y) = q(x) + +b(y) + 

(x, y), i.e., that qb is a quadratic form over Z2 

2. Definability and additivity of the generalized Kervaire invariant. Let M2q 

be a 2q-dimensional (mod 2) Poincare' duality space and 

ke 
W/dW_-- i km + Y. C kSw 

be maps, with g the spectral orientation map defined by the W-orientation of M and 

c the classifying map for the Spivak normal fibre space of M (or normal bundle if 

M is a manifold), W being a "universal manifold" for the fibre space (or bundle) 

theory with vq+1 = 0 (see ?1, and [7]). Recall that the homotopy class of h = 

(kc)g depends only on the cobordism class of M, and is called the spectral co- 

bordism invariant of M (see ?1). 

Then as in ?1 (see also [71) we have a quadratic form defined by qf: (ker 77*)q 

Z2 (where as in ?i, I g* k: Hq(M; Z2) -4 Hq+(W/dW; Z2)), and the asso- 

ciated bilinear form 

(x, y)- =q (x+ y) - q (x) - v(Y) 

is the intersection form (x, y) = (x u y)([M]), where [M] e H (M- Z ) is the funda- 
Y ~~~~~~~~2q 2 

mental class. In order to define the Arf invariant of a quadratic form it is neces- 

sary that the associated bilinear form be symplectic, that is, that it be non- 

singular and (x, x) = 0 for all x. For the bilinear form associated with a quadratic 

form over Z2' the second condition is automatically satisfied, i.e., (x, x) = 

qr(2x) - 2V(x) = 0. In particular it follows that (x, y)= (y, x). But the condition 

of nonsingularity is not automatic and will not be satisfied in some examples we 

shall develop later. 

If ( , ) is a symmetric bilinear form on a vector space V, we define the rad- 

ical R of (, ) by R = Jr e V such that (r, x) = 0 all x E VI. If VL is a quadratic 

form qb: V - Z2 with ( , ) its associated bilinear form, V a Z2 vector space, 

we shall call 0b proper if q/(r) = 0 for all r e R = the radical of ( , ). If rb is 

proper, then f defines a quadratic form f': V/R -4 Z2 by +/'(x) = V,(x) for x E V 

representing xi c V/R. Then x + r, r 6 R also represents x 6 V/R, and 

OX + r) = V(x) + /(r) + (x, r). Then (x, r) = 0 since r 6 R, +(r) = 0 since / is 

proper, and thus i/r': V/R Z2 is well defined. But the induced bilinear form on 

V/R is nonsingular so that the Arf invariant of l' is defined. In this case one 

may define the Arf invariant of 0' as the Arf invariant of if', and we have proved 

(compare [7, (III.1.14)1): 
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(2.1) Lemma. The Ar/ invariant of qb may be defined if qb is proper, i.e., if 

q, annihilates the radical of its associated bilinear form. 

Now we have the following theorem about the geometric situation. 

(2.2) Theorem. c*H*(W) is the annihilator of (ker rl*). In particular, if R is 

the radical of the intersection form on (ker rl*)q, R = (ker rl*)q n c*Hq(W; Z2). 

First we prove the following lemma. 

(2.3) Lemma. Let U be a compact n-manifold with boundary, i: U -+ W be an 

embedding in the interior of W, where W is a compact n-manifold with boundary. 

Let g: W/dW U/dU be the natural collapsing map. If z e Hl(U, aU), x E 

Hn-'(W), then 

(z u i*x)[U] = (g*z u x)[WI, 

where H*(W/dW) and H*(U/dU) are identified with H*(W, dW) and H*(U, aU) 
respectively. 

Proof of (2.3). Consider the following commutative diagram: 

(U, dU) e (W, W-int U) . (W, dW) 

(2.4) A1f (A) Al (B) 

(U,aU)x Uexi x 
(LI,dULI) x U -. (W, W-int U) x W.L (W, OW) x W 

where e is the map of pairs induced by i, j is the natural inclusion, and A is 

the natural diagonal map in each case, which induce the cup products in co- 

homology. Now e is an excision, so e* and e* are isomorphisms, and the diagram 

H*(W, OW) H*(W, W-int U) * H*(U,dU) 

___ 
I- 

H*(W/dW)- - - H*(U/dU) 

is commutative, together with the similar diagram in cohomology. 

Now considering square (A) in the diagram (2.4), we find that e*(e* 1(z)u x) 

= e*(e*1'(z)) u z*x = z u i x. Considering square (B), we get 

j*(e*-l(z) u x) = i*(e* -l(z)) u x. 

Hence j*e*- 1(z u i*x) = g*(z u i*x) = (g*z) u x. 
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Now [U] = g*[WI so that 

(z u i*x) [u] = (z u i*x) (g*[WI) = (g*(z u i*x)) [WI = (g*z u x) [WI, 

which proves (2.3). 

Applying (2.3) to the situation of Theorem (2.2), we let U = M x Dk, W = W 

so that i = c, and g = g. Then if x E H*(W) and y E H*(M) we have 

(y, c*x) - (y u c*x) [MI = (Iky u c*x) [M x Dk] 

(2.5) 
(g*lky U x) [WI - (77*y U x) [WI. 

Hence it follows that (ker 7i*) annihilates (im c*), so (im c*) C d = annihilator 

of (ker *). 

Since H*(M) ker q* + im 7*, it follows that rank (im c*) < rank (im 77*) = 

rank Cl. Similarly, (im 77*) C annihilator of (ker c*) so rank (im 77*) < 

rank (im c*) = rank of the annihilator of ker c*. Hence rank (im 7) = 

rank (im c*) and it follows that c *H*(W)= d, the annihilator of (ker 77*). Then 

R = Ct n (ker 77*'q = c*Hq(W) r (ker 7*)q, and (2.2) is proved. 

(2.6) Corollary. The Arf invariant of yb is well defined on (ker -7*)q if and 

only if lIfc |*Hq(W; Z 2) r(ker 7*)q q . 

We recall that tb is defined in ?1 using the functional Sqq+l associated to 

the composite 

W/dW?s - kMZf fkK(Z2, q) 

where x = a*(G) E (ker 71*)q. If x = c*(z), z E Hq(W; Z 2), then a factors through 

(: W -- K(Z2, q), so that a= (c, and we have 

W/dW g kM t + . W+ L kK(Z2q). 

Now (1kc)g = h, the map defined in ?1, whose homotopy class is the spectral 

cobordism invariant of M. 

Thus, if x 6 (ker 71*)q r) c*Hq(W; Z 2) x = C*Y. the map f3 W/dW 

.kK(Z2, q) corresponding to x is the composition 3 - (>23)h, where h: W/dW 

'kW + is the spectral cobordism invariant of M, 8(*)0 y, and h*y = 0. Thus 

Sqq+l(jk(t)) Sq +1 (2k(t)) and it follows that /(x) = 0 for all x E 

(ker 77n) q c Hq(W; Z ) if and only if (Sq+(T (Yk(t)))[WI = 0 for all (: W 
2 (Zk 8)b 

K(Z2, q), such that 5* E ker h* C H Z2 ). This condition depends only 

on b, so we get the following theorem. 
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(2.7) Theorem. Let M2q be a Poincare duality complex of dimension 2q, 

oriented in a theory which has vq+l = 0. Then for the quadratic form qs: (ker r*)q 

Z2, defined by the orientation, the Arf invariant of Vt is defined if and only if 

(Sq '+h (I8))[W] =- 0 for all t: W+ - K(Z2, q) such that 8* c e ker h*Ihn 

Hq(W I; Z )' where h: W/dW I:kW is the spectral cobordism invariant of M (see 
+ 2 + 

?1). In particular, the property that the Arf invariant is defined is a cobordism in- 

variant (in a theory with vq+1 = 0). 

If the hypothesis of (2.7) is satisfied then we set k(M) = Arf invariant of st, 

and we call it the Kervaire invariant of M. By [7, (3.2)], this is exactly Kervaire's 

invariant in the case of framed manifolds. 

(2.8) Corollary. With M2q as in (2.7), suppose also that h*(H2q+k (kw+; Z2)) 

-0. Then k(M) is defined if and only if Sq q+l(jky)[W] = 0 for every y E 

ker h*Ek n H q(W +; Z 2). 

Proof. Note that if 8*c = y, then 

Sq 
q 1 (k t) = Sq q +1(ky) mod h*(H2q+k (W; Z2)) 0. 

Hence the equality holds and (2.8) follows from (2.7). 

Now let us consider the operation of addition in our cobordism theory, which 

is represented by taking the disjoint union of the manifolds, so that Ml u M2 rep- 

resents the sum of M and M2. Suppose we have i : M1 x Dk C W and i : M2 x 

Dk C W. Then we may consider i1 x 1/3: M1 x Dk+l C W x I and i2 x 2/3: M2 x 

Dk +1 c W x I, so that the embeddings are disjoint in W x I and W x I is still a 

universal manifold. Then the spectral orientation g: W x I/d(W x I) - 

ik+l((MA U M 2) +) can be factored through W x I/d(W x I) -4 W x I/(d(Wx I)UW x '2), 

and W x I/I((W x I) u W x '/ ) = (W x I/d(W x I)) V (W x I/d(W x I)). In fact W x 

I/d(W x I) = I(W/dW) and this is the natural map I(W/dW) - I(W/dW) V Y(W/dW). 

Also(M uM) M V M so ik+l(M U M) = +lM V yk+lM and 1 2 + 1 2+'7 1 2 + 1+ 2 + 

g: X(W/dW) ,k +lM V Ik+lM2+ is g = + g, where gi' is the composite 

I(W/dW)I k + lM i + V M 2 + gi being the spectral orientation for 

Mi, and + is the addition of maps induced by the suspension structure of IWX/dW). 

Now we return to the previous notation with g: W/dW ,k(M1 U M 2)+, with the 

understanding that everything is a suspension, g = g1? gI etc. as above, and we 

have shown: 

(2.9) Lemma. Let gi: W/dW ,kM + be the spectral orientation maps for 

M., i = 1, 2. Then the spectral orientation map for M1 U is given by g =g + 

g2 (gI =i where i is the inclusion i.: kj M (Ik1+) V(E2+'A -1, 2, 
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and ykc = kc1 V kc 2). Hence h = h + h2 and the spectral cobordism invariant 

is additive on cobordism classes. 

Since ker (h 1 + h* ker(h + h )* is larger in general than ker h * + ker hb 

the condition that the Kervaire invariant is defined for two out of three for M = 

M1 + M2 is not enough to ensure it is defined for the third. We will see some ex- 

amples of this in ?3. In fact we will give examples of M1 and M2, where (a) it 

is defined for M1 and M2 and not for M1 + M2, (b) it is not defined for MI or M2 

and defined for M1 + M2, (c) it is defined for M1, not for M2, and either defined 

or not for M1 + M2. Thus all possible situations occur. 

Hence in order to state an addition theorem for the Kervaire invariant we must 

make assumptions that it is defined for each space. We give an additivity theorem 

below (2.13), but it is unclear what are the most general hypotheses under which 

additivity holds. 

Let M1 and M2 be Poincare' duality spaces (mod 2), oriented in a theory 

where vq+1 = 0, M = M 1+ M 2 (notation as above). 

By (2.9), g = ? g 2 W/dW YJM V YM2 where g! is the spectral 
2 ~~~1+ 2+' z 

orientation gi: W/dW ____ 
jkMi followed by the inclusion in YkM i+V ykM2+. It 

follows that (ker g*) D (ker g*) + (ker g2 ), and in general the inclusion may be 

strict (which causes all the difficulties, in the definability of the Kervaire invari- 

ant being nonadditive, and in proving additivity). 

Let c: (M1 u M 2) +- W+ be the classifying map for M1 U M2 so that 

i, yk:IkM1 + 2 k _+ IkW is thesum c I M. = c , the classifying map for Mi, M2c SkM +V kM+ 

Ikc =kc + I. kc Then im c* - im (c* + c* ), but note that of course this is 
1 2' 1 2' 

not the sum of the two images, in general. 

Set 7* = g*Ek, as usual, so that * = q* + 71 , where 777 = g*k, and as 

above (ker -q*) D (ker rf+) ? (ker 4* ). 

Let Vb be the quadratic form for M1 + M2, i/i the quadratic form for Mi i= 

1, 2 (as in ?1). 

(2.10) Lemma. On (ker + (ker *)q2. 

Proof. Since H*(M 1; Z 2) and H (M2, Z2) are orthogonal in H*(M; Z2), it 

follows from the fact that Vi is quadratic that tfr(x1 + x2) = ti(x1) + b(x2) if x 

ker i77 i=1X2. If /: M-K(Z2J q) is such that /"G) = xi Eker77 7i i= or 2, 
dz / 

then f factors: M -M- K(Z q) where d.: M -_ MZ is the identity on Mi and 

the constant map on the other component, ()= xi e Hq(M Z2) Then (5kdi)g _ 

(ikd )(g{ + g2) = gi, the spectral orientation for M. (using (2.9)) and hence 

g(kf) = gi/. and 5q++l (lkt) = Sqq +1(t) and hence qt(xi) = vi(x.) and the 
9( 1gf anZ 

S g (ZkI) gi i 

lemma follows. 

We get as a simple consequence 
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(2.11) Proposition. If (ker q *)q = (ker q*)q + (ker q*f) q, and i/ the Kervaire 

invariant is defined for M1 and M2' then it is defined for M1 + M2 and 

k(M 1 + M2) = k(M 1) + k(M 2). 

Proof. The radical is the sum of the radicals, so Q = V1 + V'2 annihilates the 

radicals, and k(M 1 + M2) is defined. Hence, from (2.10), k(M1 + M 2) = k(M ) + 

k(M 2). 

(2.12) Corollary. If q7*Hq(MA; Z2)= , i = 1, 2, then k is defined for M1, 

M2' and M1 + M2 and is additive, i.e., k(M1 + M2) =k(M1) + k(M 2). 

We would like to have more delicate results than (2.11), but it seems dif- 

ficult to obtain a general theorem. However, we may prove 

(2.13) Theorem. Suppose the Kervaire invariant is defined for M1 and M2, 
and that h* = 0 on Hq(W; Z ). Then the Kervaire invariant is defined for M + 

2 ' 21 

M2 and k(M1 + M2) = k(M1) + k(M 2). 

(2.14) Corollary. Suppose k(M 1), k(M 2)' and k(M1 + M 2) all defined and sup 

pose h = h* on Hq(W; Z2). Then k(M1 + M =k(M 1) + k(M). 

Proof of Corollary (2.14). Under the hypothesis, h* = h1 + h*2 = 2h* = 0 on 
H~~~(W. z ~~~~~ 1 1 2 1~~~1 1 2 Hq(W; Z2). Hence by (2.13), we have k(- M1 + (M1 + M 2)) = k(- M1) + k(M + M 2). 

But k(- M1) =k(M ), obviously, and - M1 + (M1 + M2) = M2. Hence we have 

k(M1 1= + k(M 1 + M 2)' and shifting k(M 1) to the other side of the equation 
gives the result. 

Note that in general - M may not be cobordant to M in a cobordism theory 

with vq+1 = 0, as we shall see in ?3 for p2q, the real projective space. But the 

spectral orientation and classifying maps differ by automorphisms, so that the de- 

finability and value of the Kervaire invariant is the same for M and - M. 

(2.15) Corollary. Let M2q be such that (image c*)q C (ker q*)q and k(M) is 

defined. Then k(nM) is defined for all n and k(nM) = nk(M). 

Proof. (image c*)q C (ker q*)q implies that h* = q*C* = 0, and hence h* = 

nh*= 0, where h is the spectral cobordism invariant for nM. Since k(M) is de- 
n 

fined, Theorem (2.13) applies to prove (2.15) by a simple induction. 

Proof of Theorem (2.13). Since h*2 = 0 on Hq(W; Z2) and k(M2) is defined, 

it follows that Sqr +l(Ic)[W1 = 0 for r= (ka)h2, any a: W+ K(Z2, q). Since 

k(M 1) is defined, Sqtq+l(Wc)[W] = 0 for t = (Ekf3)h1, f3: W+ - K(Z2, q) such that 

3*(c) E (ker h*)q. 
* h*W.q Now 

Now h*2 =0, and h = hi + h2 implies that (ker h*)q = (ker h1 Now 

(I ) (h1 + h2) = (V )h1 + (V )h2k so that if x E (ker h*)q, a= 3: W + ( 1k32(1 ( 3)2 1 

K(Z2, q) such that a (c)= 3*(c) = x, then qr(x) = (Sq4q+;l(jk(c)))[W]= 

(Sqq+l(Vkc) + Sq q+l(jk(c))[W] = 0 using [7, (1.6))]. Hence k(M1 + M2) is defined, by (2.7). 
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Now ker 77* D ker -7q + ker *, and if we set Ri= ker 7< r image c =radical 

of (, ) on ker 71* by (2.2), then ker 71 = R. + Bi, where (, ) is nonsingular on 

B, i =1, 2. Then we may choose a complementary subspace N to ker 77 + ker q* 
in ker 7Ti such that N is orthogonal to B 1 B (by subtracting off elements of 

B 1 +B22 if necessary). Then the Arf invariant c(a) = c(Vd1) + c(L2) + c(oL) where 

Vi' is fr t (R 1+ R 2 + N). Thus to prove the theorem we must show c(qr') = 0. 

Since h2 = Ti2C2 =0, it follows that im c2 C ker T721 so that R = im c* 

Now 71T is injective on N. For if (x, y) E N C Hq(A ; Z2) + Hq(M2 Z2), and 

Ti2(x, y) = 0, i.e., y E ker 7*, then -q*(x, y) 77*x + * x so x ker 

and (x, y) E ker 771 + ker Ti2. But N fl (ker 717 + ker Ti2) = 0, so (x, y) = 0 and Ti2 

is injective on N. Then it follows from (2.5) that z (z, ): N - Z2 defines a 

map of R2 = im c2 onto Hom (N, Z2) so that N f R =0, where R = radical of 

(, ) on ker Ti Since R 1 + R2 = 0 and R1 + R2 is a self-annihilating sub- 

space under (, ), it follows that we may choose representatives a, b. E ker Ti 

of a simplectic basis of ker 7IR so that ai e im c* = R2, b E N. Since a' I R2 

- 0, it follows that c(qG') = 0, which completes the proof of (2.13). 

We note in passing the following property of h. 

(2.16) Proposition. Let x e H*(W; F), F a field. Then h*x = 0 if and only if 

all characteristic numbers involving x are zero. 

Proof. Suppose y c H*(W; F) such that (c*x, c*y) = ((c*x) U (c*y))[M] 3 O. 

By (2.5), (c*x, c*y) = (Ti*c*x, y) = (ri*c*x U y)[W] 1 0. Hence h*x = *ic*x ? 0. 

Suppose h*x ; 0. By Poincare duality in W, there is a y E H*(W; F) such 

that (h*x, y) 0. But h*x = T*Cx, and (Ti*c*x, y) = (c*x, c*y) by (2.5) so 

(c*x U c*y)[M] O. 

Thus the induced cohomology map of the spectral cobordism invariant h may 

be interpreted in terms of characteristic numbers. But more subtle properties of 

h, such as the functional Sqq +1 of (lk a)h, a: W+ _ K(Z2, q), may be harder to 

interpret in terms of classical invariants. 

3. Multiples of a manifold. In this section we study multiples of a fixed mani- 

fold M. By (2.14) if k(M) and k(2M) are defined then k(2M) = 2k(M) = 0, and by 

(2.14), k(nM) = nk(M), so we wish to study the question: When is k(2M) defined? 

We will give a condition (which is independent of whether k(M) is defined or not): 

k(2M) is defined if and only if, in M, vq(M) E ker Ti, or equivalently, if and only 

if all characteristic numbers of M involving vq(M) are zero (Corollary (3.9)). Next 

we consider how to calculate k(2M) when k(M) is not defined and we show that 

if k(M) is not defined but k(2M) is defined, then k(2M) = qV(vq(M)) (calculated in 

M), (Theorem (3.10)). This yields the corollary (3.11) that k(4M) is defined and 

k(4M) = (vq (M))2[M}. (It follows that any M 2q with (vq (M))2[MA] 0 has order 8 in 
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the B0(vq+ )-cobordism group R 2q(vq+,), in the notation of [71.) 

Our results in this section will be based on the following: Let f: X 

K(Z2, q) such that f *(t) = x. Then If: Y.X -_ IK(Z2, q) is the suspension of f 

and 2_f is the sum of If with itself using the suspension structure of SX. 

(3.1) Theorem. The functional square Sq +I is defined and has indeterminacy 

0, so that Sq +)L H (+( K(Z2, q); Z2) -H2 +l(_X; Z2), and Sq (E(t))- 

Proof. Recall that if a, b: YX -* Y, (a + b)*= a* + b*, so that with Z2 coef- 

ficients, (2a)* = 2(a*) - 0, and image (2a)* = 0 in Z2-cohomology. Further 

Sqq+I (E) = E Sqq+I(t) - 0 since dimension t = q and Sqq+1 annihilates elements 

of dimension < q + 1. Hence Sqq-0 is defined on t. 

In YX, Sq +I, = Sqq+I implies Sq +l: Hq(XX; Z2) H2 +I(EX; Z2) is zero, for the 

same dimension reason. Since image (21f)* = 0, as above, it follows that the in- 

determinacy of the functional Sq +l is zero (compare [7, (1.1)1). 

To calculate the value of Sq qJ( (t)) we consider the map 2f: X -+ K(Z2, q) 

defined as follows: 

(3.2) X X x X L/X K(Z2 ,q) x K(Z2, q) K(Z2, q) 

where A(x) = (x, x), x e X is the diagonal, u*(t)= t e 1 + I @ t, so .t defines 

the H-space structure of K = K(Z2, q). Clearly (2f)(t) = 2x = 0 since we have 

Z2 coefficients and hence 2f is homotopic to a constant. 

Suspending the sequence (3.2) and utilizing the homotopy equivalences 

I(X x X) a 2X V IX V I(X A X) and l(K x K) E SK V SK V l(K A K) (cf. 

[7, (1.5)1), we get a commutative diagram: 

x __- ~( x x) 9 ,(K x K) ? SK 

(3.3) 11 + 12 + j /A + I + h(A) 

IX VI SziX V V(A A X) ZJV (fAf) EK V SK V E(K AK) 

where 1: )X - rX V VX V $(X A X) is the inclusion into the ith term of the 
t _ 

wedge, i = 1, 2, A sA, s: X x X X A X is the natural map collapsing X V X 

to a point, and h(,i): Y(K A K) -XK is the Hopf construction on , (cf. [7, 

(1.5) and after]). 

Recall that for a suspension map w = Ea, EA - EB : C we have that 

(b + ?V4o = (/t( + Oa) (which is not true for an arbitrary map ). Hence the com- 

posite map in (3.3) along the lower level gives us 1(21) E1 f + If + 

h(p)(I(f A f))(MA). Now 2f O 0 implies Y(2f) O 0 and thus we have shown 

(3.4) 2(Xf)- - h(Q) (X(/ A/)) (EA). 
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(3.5) Lemma. Let A a) B 
b 

C be maps. 1/ Sqq'+l(x) and Sqq+1 are defined 
with indeterminacy zero, then 

Sqq+l(x) = a*Sqq+l(x). 

The proof is routine from the definitions. 

Now we recall that by the argument of [26, (5.3)] we have 

(3.6) Sq qht+ (1(0) = IG( At). 

If 0b: IX - Y, - ?b is the map ?b o r where r: E X EX is given by r(x, t) 

(x, -t), for YX = X x 1/(X x 0 U X x i), so r*= (- 1). Hence by (3.5), Sqq+1 = 

r* Sqq'+1 = Sqq +. Therefore we have from (3.4), (3.5) and (3.6) 

Sqq+1f)( qq) 
1 S 2+(: (Zf) =S h (4)(z( 

f YZ ) () 

= (EA)*(E(/ Af))*Sqq )+ 1 
) = (YA) (*(/( A /)) ((C At )) 

= -(z*(/*t A/*t)) = EA*( AX) E(x2) 

This completes the proof of Theorem (3.1). 

As a corollary one gets the following result due to M. Barratt. Let X = 

Sn Ua en+1 where a: Sn o Sn is the map of degree 2. Then X 1 E EX and 

thus X is a suspension for n > 1. Hence we may add maps. n 

Corollary (M. Barratt). 2(1) is not nullhomotopic where 1: X n X is the 

identity, n > 1. 

Proof. Take /: X1 K(Z2, i), f t = x, the generator of H1(X ; Z 2). Since 

x2 0 0, by (3.1) 21/ is detected by the functional Sq2, and hence 2E/ is not 

nullhomotopic. By suspension, 2(/nf) is detected by Sq2 also and 2(/nf) is 

also not nullhomotopic. But 2(Snf) = (yn/)(2(1)) and hence 2(1) is not null- 

homotopic . 

Let M2q be a manifold oriented in a cobordism theory with vq+1 = 0, with 

W2q +k a universal manifold for this theory, for dimension 2q. Let g: W/W -gW 

EkM +, c: M -+ W be the spectral orientation and classifying maps respectively, 

so that h = (Ekc)g: W/dW A- kW+ is the spectral cobordism invariant of M 

(see ?1). 

(3.7) Lemma. Let x E Hq(M; Z2). Then in 2M = M U M, 

(x x) =x2[M, 

where x ( x c Hq(M; Z 2) + Hq(M; Z 2) = Hq(M U M; Z 2). 
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Proof. By (2.9), g2 = g + g: W/aW XkM+ V XkM+ is the spectral orientation 

map for 2M. Hence g4 k'(x @ x) = g*Xkx + g*Xkx = 0 so that x D x E (ker n*)q 

(71 g*Xlk), and f(Kx 
@ 

X) is defined. 

Now if 5: M + -.K(Z2/ q), a5 t = x, then a u a: (M u M) + K(Z2, q) repre- 

sents x E) x, (3 u a)t = x $ x, and 

yk(a U 5) = k-a V 5'ts jk vi 'V M -i xka u6) -~,k6 vka xkM V4 XkM xkK(Z2, q). 

Hence (Xk(a u 8))g2 is given by 

W / XkM V xkM+? I ,XkK(Z2, q) 

so that the composite is equal to 2((Xk8)g). We may assume k is very large so we 

are in the stable range, or we may suspend once to make g a suspension map, so 

that 2((Xk8)g)- (2Xk8)g. Then 

gqq + (Xk1 ) - 
q 

S+I q+( ((k) 
2((ZkS g) (2k$ )g g (2g + k) 

g=Ck((a*t)2) - g*Xk(x2), by (3.5) and (3. 1) 

Hence 

V(x e x) (Sq q+1 (S2k1))Fw1 
2 Qk 8)g 

g *xk(X2)[W] (Xkx2)g*[W] = (jXk2)(yk[ht]) = X2[.M1, 

(since g*[W] = [M x Rk] = XIMD). This completes the proof of (3.7). 

(3.8) Theorem. k(2M) is defined if and only if (c y)2[M1 = 0 for all y E 

Hq(W; Z2). 

(Note that if k(M) and k(2M) are defined then k(2M)= 2k(M) 0 by (2.14); 

in fact kKnM) = nA(M) by (2.13).) 

Proof. By (2.9) if c2: M u M -4W, then im c* I(c*(y) @ cNy)t yc H q(W; Z)}. 

By (2.6), (2M) is defined if and only if VAim c*) 0? since **2c h = h (2h)* 2 ci2c2 2 - 

2b =0 by (2.9) so that im c2 C ker 712. By (3.7), q(c y @ c*y) = (cy)2 [Ml and 

(3.8) follows. 

Now we have the equivalent formulation: 

(3.9) Corollary. k(2M) is defined if and only if, for M, v (M) C ker i*, or in 

other words, b *vq - 0. 
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Proof. By (3.8), k(2M) is defined if and only if (c *(y))2[M] = (vq U c*y)[M] = 0 

for all y E Hq(W; Z2), where vq E Hq(M; Z ) is the qth Wu class (see ?1). In 

other words k(2M) is defined if and only if all characteristic numbers involving vq 

are zero. By (2.16), all characteristic numbers involving vq are zero if and only 

if h *vq = 0. But h* - q*c*, so h*vq = 0 if and only if ?*(c* vq) = q W)= 0. 

This proves (3.9). 

If k(2M) is defined we would like to calculate its value. If k(M) is defined it 

follows from (2.14) that k(2M) = 2k(M), so we must consider the case where k(M) 

is not defined. 

(3. 10) Theorem. Suppose k(M) is not defined, but that k(2M) is defined. Then 

k(2M) = /(vq(M)). 

(Note that by (3.9), k(2M) is defined implies that v (M) E ker 7), so that q 
i(vq(M)) is defined.) 

(3.11) Corollary. 0(4M2q) = (Vq(M))2[Ml. 

(A similar result was obtained independently by E. H. Brown [251.) 

Proof of Corollary. The spectral cobordism invariant h4 of 4M is given by 

h = 4h, by (2.9), so that ker(2h) = H*(CkW +; Z ) and Sqq+l = 2Sq q+1 
07 SO 

so that k(4M) is defined. If k(2M) is defined, then by (3.9) vq(M) E ker 7 n 

im c so that (vq(M))2[M] = 0, since im c annihilates ker r by (2.2). But by 

(2.14), k(4M) = 2(k(2M))= 0 if k(2M) is defined. 

If k(2M) is not defined, then k(4M) = q/(vq(2M)) by (3.10) and vq(2M)= 

q(M) a vq(M) E Hq(M; Z2) + Hq(M; Z2). Hence by (3.7), qV(vq(2M)) = 

VI(Vq(M) vq(M)) = (vq(M))2[M] and k(4M) = (vq(2M)) by (3.10), which proves 

(3.11). 
Proof of (3.10). We suppose that k(M) is not defined but k(2M) is defined, so 

that v (M) E (ker Y)q by (3.9). Let R = (ker 1 
n im c*)q = radical of ( , ) on 

ker 7q, and note that fr I R is linear, b I R: R ' Z2 Let R' = ker(Q I R), so that 

R' is of codimension 1 in R. Choose a complementary subspace N to R in 

ker 17, so that (, ) is nonsingular on N, and choose a complementary subspace 

A to ker 17 in Hq(M; Z2) such that A is orthogonal to N (i.e. let A C annihila- 

tor of N in Hq(M; Z 2)). Then Hq(M; Z2) = N + R + A, and since ( , ) is non- 

singular on N, it is nonsingular on R + A and these two subspaces are orthog- 

onal. Since A n ker 7 = 0, 7 I A is injective. 

Then in 2M, HqM; Z2 )= H q(M; Z 2) + Hq(M; Z 2) so Hq(2M; Z2 N + N + 

R + R+ A + A. Now 17* Hq(2M; Z2) Hq+k(W/dW; Z2) is given by ow 
' 

2: ' 2 

172 = 7 + 7 by (2.9). Hence ker q2= ker 7* + ker 7* + ?AA where 

A: Hq(M; Z2 - Hq(M; Z2) + Hq(M; Z2) is given by Ax = x E) x. Similarly 
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im c* =ISim c*) and since ,12c2 =h 2h 0 im c C ker and im c 
2 2' 2 im2 ~-,e2 2 

radical of ( , ) on ker 47 by (2.2). Hence ker i7/im c2 * N1 + N2 + R + A 

where A = IA/im c 2 n IA, since R C im c identifying R + R/AR with R. It 

follows that the two copies of N and (R + A) are orthogonal under ( , ) and (, ) 

is nonsingular on each term. Hence if 1A2: ker 12 Z2 is the quadratic form, 

c(qi2) = c(G,2 j N1) + c(i/2 I N2) + c(qi/2 i R + A). By (2.10), 'A2 1 Ni = i I N, so that 

c(G/v2l N2) = c( I N), = 1, 2, so that c( 2) =2c( I N) + c(q 21 R +)= 

c(qi/2jR +A). 

Now R radical of i/ on ker 7i is a self-annihilating subspace of 

ker4q*/imc, and if a e a, b b E IA, then (a ? a, bffl b)=(a, b)+(a, b)=O 

so IA and hence A are self-annihilating subspaces of ker 712 and ker ij2/im c2 

respectively. Since ( ) is nonsingular on R + A, it follows that R and A are 

dually paired by ( ,) and hence any basis for R is half of a symplectic basis 

for R + A. Since / I R = A2 I R by (2.10), and L | R' - 0, it follows that if aEA 

such that, for r' e Rt (r',, ) = 0, then a basis for R' together with x E R such 

that (x, a) I are half of a sympletic basis for ker r2/im c and c(i2) 

'A 2(x)A '2(a) ir2(a), since x ' R' =ker(ir I R). 

Now W c A is represented by a e a E ASA and by (3.7), i2 (a e a) = a2[MI, 

a E Hq(M; Z2). But a2[MI = (avq(M))tM] so that 0 2(J) = (avq(M))[MI Now a 

orthogonal to R' is the same as a orthogonal to R', so that a generates the 

annihilator of R' in A. Hence (av q(M))[M] (a, vq(M)) = 0 if and only if 

v (M) E R', or in other words /(v (M))= 0. Hence k(2M)= c(Gf2)= qi 2(a) 
q Iq 

(a, vq(M)) =q(vq(M)), which proves 3. 10). 

Finally combining all the results of this section we get the following formula 

which will be useful in ?4. 

(3.12) Corollary. Let M2q be such that (a) k(M) is defined, and (b) 

(Vq(M))2[MI / 0. Then for any integer n, k(nM) is defined if and only if n 

2 (mod 4) and 

A(nM) k(M) for n + I (mod 8), 

= k(M) + 1 for n + 3 (mod 8), 

-1 if n 4 (mod 8), 

=0 if n - (mod 83 

The typical example of such M we use in ?4 is projective space p2q, or 

some M with a normal map into P2q. 

Proof. Since r*(vq(M)) 
= 77 Vc q = h vq i 0 and since (vq(M))2[MI A 0 (cf. 

(2.16)), it follows from (3.9) that k(2M) is not defined. For sM, h5 = sh; so for 
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s odd, h* sh* = h*, and by (3.9) k(2sM) is not defined for s odd. Since h2 

2h* = 0, it follows from (3.9) that k(4M) and k(8M) are defined, so by (3.11), 

k(4M) = 1, and by (2.14) or (2.15), k(8M) = 0. Since h4 = 4h = 0 and k(4M) is de- 

fined it follows from (2.13) that k(5M) is defined and k(5M) k(M) + k(4M) - 

k(M) + 1. Now k(- M) is defined if k(M) is, and k(- M) = k(M) (cf. (3.5)). Hence, 

by (2.13), k(3M) is defined and k(3M) - k(- M) + k(4M) = k(M) + 1. It follows from 

(2.13) that k(7M) is defined and k(7M) = k(8M) + k(- M) = k(M), and periodicity 

mod 8 follows also from (2.13). 

4. Applications to surgery and fixed point free involutions. Let M2q be a 

smooth (or piecewise linear) manifold, and let ek, k >> 2q, be a linear (or p.l.) 

bundle over M2q. A normal map (/, b) (see [8, ?21) consists of a map of degree 1, 

f: M' -. M, M' a smooth (or p.l.) 2q-manifold, b: vk dk a linear (or p.I.) bundle 

map covering f, vk = normal bundle of M' in S2+k. We will use M as the class- 

ifying space, and the total space of E(- 1 + r 1) - W r = tangent bundle of M, 

as the universal manifold to define the spectral orientations and the Kervaire in- 

variant. The existence of the normal map (/, b) ensures that vq+ (c) = 0 so that 

W can be used to define the Kervaire invariant (see [8, Chapter 31). In fact we 

have the following: 

(4.1) Theorem. With (f, b) defining the orientation, k(M') is defined and if q 

is odd and M is 1-connected or if M is nonorientable and 7n1(M)= Z2, then k(M') 

is the obstruction to surgery, i.e., the obstruction to finding a normal cobordism 

of (f, b) to a homotopy equivalence. 

This is proved in [8, ?31 for q odd, M oriented (no other hypothesis on M). 

If M is nonorientable, then Wall [291 has shown the obstruction to surgery is the 

Arf invariant of a quadratic form from Hq(M'; Z2) to Z2 Using this, the same 

proof as in [8, ?31 holds. 

Now we will use the results of ?3 to construct normal maps with surgery 

obstruction k(M') / 0 for particular kinds of manifolds M. 

Let Nm be a smooth (or p.l.) m-manifold and T: Nm Nm a smooth (or p.l.) 

fixed point free involution. Let Mm = N/T be the quotient manifold, ek the nor- 

mal bundle of Mm in Sm +k, and let (f, b) be a normal map f: M' M, b: v -, 

as above. 

We shall define the operation of multiplication by an odd integer on normal 

maps as follows: 

(4.2) Definition. Let n = 2s + 1, and define n(f, b) = (g, c), g: M'(n) M, 

M'(n) = nM' U - sN where nM' = M' U. * U M', n times, - sN = (- N)u- * *u (- N), 

s times, - N is N with the opposite orientation. Then g = f on each copy of M', 

g = 2-fold covering map p on each copy of N, so 
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degree g = n degree f - s degree p = n - 2s 1. 

Then c = b over each M, and a fixed map d covering p over N, where d is the 

inverse of dp: TN - TM. Hence (g, c) is a normal map. 

We will be interested in computing the invariants of n(f, b) in terms of the in- 

variants of (/, b). We will start with the spectral orientation map and spectral co- 

bordism invariant. 

Since $k is the normal bundle of M, it follows that W = M x Rk is the uni- 

versal manifold. Then the map dp: TN TM stably is the differential of an embed- 

ding e: N x Rk - M x Rk unique up to isotopy, using the Hirsch immersion the- 

orem and general position. Then the embedding of M'(n) x Rk C M x Rk is the dis- 

joint union of M' x Rk C M x Rk corresponding to (f, b), and e: N x Rk C M x Rk, 

translated by some values in Rk to make them disjoint. Hence it follows: 

(4.3) Proposition. The spectral orientation map corresponding to n(f, b) is 

the composite 

Vgv Vr 

kM M v lkM -- -V EkM V V V kN 
n +sns 

where 8 is the map which pinches n + s - 1 copies of Ik 1M+ to a point, g is 

the spectral orientation of M' given by (f, b), and r is the spectral orientation of 

N given by d. 

Now the classifying map of MO(n) is f on each copy of M'and p on each copy 

of N so that the spectral cobordism invariant is the composite 

s M4gL V M EM V V y VfvVP kM 
n +s ns 

and hence we get 

(4.4) Proposition. The spectral cobordism invariant of n(f, b), n = 2s + 1, is 

given by 

h(M'(n)) = nh(M') - sh(N) 

where ho ) denotes the spectral cobordism invariant of the corretponding manifold 

and the suspension structure of Y.kM+ defines the sum. 

Since n = 2s + 1 we can also rewrite (4.4) as 

(4.5) h(M'(n)) = h(M) + s(2h(M) - h(N)) 

which will be convenient later. 



212 WILLIAM BROWDER 

Now let suppose m = 2q and let us consider the following additional 

assumption: 

(4.6) If hN is the spectral cobordism invariant of N, assume 

(a) h*: Hq +k(kM +; Z ) - Hq+k(kM+; Z2) is the zero map; N ~ ~ '2 +'2 zeomp 
(b) k(N) is defined and k(N) 0 Q (with the orientation induced by p and d). 

(4.7) Lemma. Under the assumption (4.6), if n is odd, k(M'(n)) is defined 

and k(M'(n)) = k(nM'). 

This follows immediately from (2.13) and the fact that k(nM') is defined since 

nM' -+ M is of degree 1 mod 2 if n is odd. 

(4.8) Theorem. Suppose M, N, (f, b) etc. as above and suppose (4.6) is satis- 

fied and (v (M))21M1 A 0. Then 

k(M'(n)) = k(M') for n + 1 (8), 

= k(M') + I for n + 3 (8). 

Proof. Since (f, b), f. M' - M is a normal map, f is of degree 1, so vq(M') 
f(vq(M)), f[M'l [Ml, and (v q(M'))2[M'1 = (f*(vq(M))2)[MII = (v (M))2f*[ M'1 

(vq(M))2[MI A 0. Then (4.8) follows from (4.7) and (3.12). 

The obvious situation to apply these results is where M = pm, the real pro- 

jective space, so N = Sm. 

(4.9) Corollary. For any homotopy real projective space M2q, there are nor- 

mal maps (n(identity), n ? + 3 (8)) of manifolds into M2 (with its normal bundle) 

of Kervaire invariant (i.e. the surgery obstruction) nonzero. 

Proof. Simply take (f, b) = identity, and apply (4.8). It follows that for n 

+ 3 (mod 8), n(f, b) has Kervaire invariant 1. 

(4.10) Corollary. There are smooth normal maps into real projective space 

p2q with Kervaire invariant 1 (i.e. n(identity) for n -- + 3 (8)). 

This was known in the p.l. case by S. Lopez de Medrano [181 and Wall [301. 

Let f: Mm pm be a homotopy equivalence. Taking 4k over pm to be 

f -*((vAM) we may define a normal map (f, b) into pm, 6k. Then if we make f 
transverse regular on p2q c pm 2q < m, we get a normal map (fq, bq): fq: 

f l(p 2q) p 2q, b induced by b and f I tubular neighborhood of f 1(p2q). Let 
q 

us define 

(4.11) Definition. kq(M) = k(f l(p2q)) c Z2, i.e. kq(M) = Kervaire invariant 

of f- l(p2q) using the normal map (fq, bq) to define the orientation (as at the 

beginning of ?4). 
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(4.12) Proposition. kq(M) depends only on the piecewise linear equivalence 

class of M, in particular, it is independent of the choice of the homotopy equi- 

valence f or the bundle map b. 

Proof. There is only one other homotopy equivalence f': M p2q up to 

homotopy, i.e., the equivalence of opposite degree from f. But clearly f' with any 

choice of bundle map b' is normally cobordant to (f u p. b"), f u p: M U (- Sm)1- 

pm, p: sm -+ Pm the twofold cover. Hence fl(p2q) is normally cobordant 

(using transversality) to fq U pq: f l(p S 2U (- 5 p2q so by Lemma '4.7, 

the Kervaire invariant defined by (f', b') is the same as that defined by (f, b"). It 

remains to show it is independent of the choice of bundle map. 

If b, b': v -o are two bundle maps covering the homotopy equivalence 

f: Mm ,- pm, then there is a bundle map c: - 4 such that b' = cb. Therefore, 

bq = cqbq, where subscript q denotes restriction to fl(p2q) or to p2q. It follows 

that the spectral orientation maps corresponding to b and b' differ by the homo- 
f 1~y2qq 

q 
topy equivalence of :kp2q which is S-dual to T(c): T(G) -. T(6) so that the qua- 

dratic forms and the value of k(f -l(p2q)) are unchanged. 

Clearly if g: M1 - M2 is a p.l. equivalence, and if f1 = g2g, then 

g-f 
- 

l(p2q) - p l(p2q) and it is clear that the Kervaire invariants are the same. 

This completes the proof of (4.12). 

(4.13) Proposition. If m = 4q + 1, then k2q(M) = desuspension invariant de- 

fined in [101. 

This result has been proved by many people, e.g. Wall [30], Lopez de Medrano 

[18], and Berstein [51. 

(4.14) Proposition. k2q_1(M) = k2q(M), all q. 

This has also been proved by many people including Lopez de Medrano [18], 

Wall [301, Orlik and Rourke and others. 

One may ask the question, what sequences k2, k4, * *, k2q E Z2 actually 

arise as the Kervaire invariants k2i(M) for a homotopy projective space M. Lopez 

de Medrano [18] and Wall [301 have shown that for piecewise linear M, all such 

sequences can occur. We shall study this question in the smooth case. 

(4.15) Theorem. Suppose a sequence K - 1k22 k4, ... , k 2q occurs as k2i 

k2i(Mj), m = 4q + 1, M' a smooth (or p.l.) homotopy real projective space. Then 

the sequence K' = K, *., 
k' I} k'2i =2i + 1, also occurs for some smooth M' 

(or p.l. M' with the same stable normal bundle as M). 

Proof. Let M"= M(n), n odd, as in (4.2). Then (nf): M(n) - Pm, and it 

follows easily from the definition (4.2) that (nf)- l(p 2i) = (/- lf p 2'))(n). Now it 

follows from results of Wall [291 that in dimension m = 4q + 1 any normal map into 
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pm is normally cobordant to a homotopy equivalence, so that Mi is normally co- 

bordant to M', f': M' pm a homotopy equivalence. Using transversality, it 

follows that /11(p2i) is normally cobordant to (nf)-l(P2i) so that k2.(M') = 

k((/- l(p2))(n)) = k2i(M) + 1, if n + 3 (mod 8) by (4.8), which completes the 

proof of (4.15). 

Taking K = (0, *, 0) (with M Pm) we deduce from (4.15) 

(4.16) Corollary. There are smooth homotopy projective (4q + 1) spaces M 

(normally cobordant to P4 +(n) for n + 3 (8)) such that k2(M) = I, all i, so 

that in particular the desuspension invariant is nonzero. 

Different constructions leading to a similar result have been found indepen- 

dently by Berstein [51 and Giffen [131. .Giffen's examples are on the Brieskorn 

spheres, a result which we also found (see ?6). 

If we define f -(pt) C M, f: M pm, as a t dimensional characteristic sub- 

manifold of M, one may ask for what t a given M admits a characteristic sub- 

manifold Qt C M which is a homotopy projective space. This is equivalent to an 

analogous question about "characteristic" homotopy spheres in dimension t in the 

2-fold covering space p: N -. M. We remark that one may show, using the results 

of Wall 1301, Lopez de Medrano [181, and Browder [9]: 

(4,17) Proposition. The manifold M of (4.16) admits homotopy projective 

spaces as characteristic submanifolds only in dimensions t =_ 1 (mod 4). 

We can use our technique to study the twofold cover p: N M. 

(4.18) Proposition. For M the manifold of (4.16), the twofold cover N repre- 

sents a generator of bp4q+2, i.e. it is the Kervaire sphere which bounds a framed 

manifold of Kervaire invariant 1. 

Proof. By the construction, M is normally cobordant to Pm(n), n - + 3 

(mod 8). Now Pm(n) C Pm +1(n) and it follows easily that Mm C Wm +1, Wm +1 

normally cobordant to Pm+l(n). For if dU = M U Pm(n), g: U - pm, then take 

E(g*(a)) = the total space of the line bundle gk(`, a = canonical line bundle over 

Pm, and take the union Vm+2 = E(g*(a)) u (Pm+ (n) x I) with E((g|Pm(n))*(a)) 

identified with the normal bundle of Pm(n) C Pm 1(n) x 0. Then aV = 

W u pm +l(n) x 1 and Mm C Wm +1 as required (compare the construction in [91). 

Now the normal bundle of Mm C Wm + is (g I M)*(a) which is the canonical 

line bundle over M so that the boundary is Nm the 2-fold cover of MA. By (4.8), 

Pm +1(n) has Kervaire invariant 1 if n + 3 (mod 8), so that k(W) = 1. But f: 
W - pm +1 with M = f- l(Pm), f I M a homotopy equivalence, so that it follows 

that k(W)= k(W - E(a')) = 1 where a' normal bundle of M C W, and 

a(W - E(a')) = N (compare [8, (III.4.14)1). But f: W - E(a') pm+l E(a) = Dm 
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a disk, / N: Nm S' a homotopy equivalence, so that it follows that W - E(a') 

is a framed manifold of Kervaire invariant 1 whose boundary is N. This proves 

(4.18). 

In ?5 we shall show that the N discussed above is a certain (4q + 1) dimen- 

sional Brieskorn sphere so that (4.18) gives a new proof of the theorem due to 

Levine and Milnor [20, ?81 on the differential structure of these spheres. 

The examples of (4.16) give smooth examples with homogeneous Kervaire in- 

variants, i.e. with k2i = k2j, all i, j < m/2. We conclude this section by con- 

structing some inhomogeneous examples. 

In his thesis, Sullivan [27] shows that there is a smooth A8 homotopy equi- 

valent to CP4 with no characteristic 6-dimensional homotopy complex projective 

space, and which has CP2 as a characteristic submanifold. An Sl-bundle B9 

over A8 is then a homotopy P9 with P5 as a characteristic submanifold, so that 

k2(B9) - O. However, Montgomery and Yang [21] have shown that under these cir- 

cumstances B9 has a characteristic homotopy P8 if and only if A8 has a charac- 

teristic homotopy CP3. Hence k 8(B9) 1, since k8 is the obstruction to finding 

such a characteristic homotopy P8 (see (4.13)). Hence K = 10,7 1 can be realized. 

Using the construction of (4.15), it follows that K' = II, 01 also occurs so that we 

get: 

(4.19) Proposition. For smooth 9-dimensional homotopy projective spaces all 

combinations K = lk2, k can occur as Kervaire invariants. 

5. Smooth invariants of fixed point free involutions. In this section we apply 

the results of ??1-4 to study free involutions on homotopy spheres. Recall that 

if T: Em y Em is a fixed point free involution of a homotopy m-sphere X, then 

the orbit space YI/T is homotopy equivalent to real projective m-space Pm. 

(5.1) Proposition. Let Mn have the homotopy type of pn. Then there are 

exactly two homotopy classes of homotopy equivalences of Mn with pn deter- 

mined by the degree (or the degree of the map of universal covering spaces 

Nn ___ Sn). 

For a proof we refer to Olum [231. 

(5.2) Lemma. Suppose Mn is a smooth homotopy real projective m-space, 

and let /: Mm . pm be a homotopy equivalence. Then (*(vpm) = vMm9 where 

VM, Vp are the stable normal bundles in Sm+k, k large. 

Proof. From the result of Atiyah [21 and Hirsch [161, we know that I *(v P) 

is fibre homotopy equivalent to vM. If J: KO( ) J( ) is the functor which sends 

a stable linear bundle into its fibre homotopy type, Adams [1i has shown that 

J: KO(Pm) ) J(Pm) is an isomorphism, so that f *(vp) and vM are linearly 

equivalent, proving (5.2). 
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It follows from (5.2) that any smooth homotopy projective m-space Mm admits 

normal maps into pm, so that Mm can be oriented in the theory with universal 

manifold pm x Rh, k large, or xm x Rk for any homotopy projective space X. We 

shall study such Mm by means of this, through the spectral cobordism invariant 

of (1.4) and the Kervaire invariants of ?4. 

Let Mm be a homotopy real projective m-space, Nm Mm its twofold cover- 

ing, so that Nm is a homotopy m-sphere, and choose an orientation of Nm. We 

will call this an oriented homotopy projective space. By (5.1) there is a unique 

(up to homotopy) homotopy equivalence h: Mm- pm such that h: Nm Sm is 

of degree 1. By (5.2), h *(v PM)= vm so that it follows that h*([rpm1) [r mi 
(where [ I denotes the stable bundle). Hence, if we replace the composition M 

pm C pm x Rh, k >> m, by an embedding, it follows that the normal bundle rlt of 

Mm C pm x Rh satisfies [V1 f* [rpm]- MmI = 0 and since k >> m, Q is the 

trivial bundle. Thus Mm x Rh is embedded in pm x Rk as a tubular neighborhood 

of the embedded Mm. Since k >> m the homotopy class of h determines the em- 

bedding of Mm up to isotopy in pm x Rh and by the tubular neighborhood theo- 

rem, another embedding of Mm x Rk as a tubular neighborhood of Mm differs from 

the given one by a linear map on each fibre, or in other words by twisting each 

fibre by a map a: Mm O(k) (normalizing to make it orthogonal). If we orient 

Nm x Rk and Sm x Rk and require the induced embedding Nm x Rk C Sm x Rk to 

be orientation preserving, then a: Mm SO(k). Further changing a by a homo- 

topy changes the embedding by an isotopy, so that up to isotopy our only ambi- 

guity is {at E [Mm, SO(k)] KO- 1(M) (since k >> m). 

(5.3) Proposition. KO01(Pm) = Z2 for m - 1 (mod 4), KO l(Pm) = z2 + Z 

if m - 1 (mod 4), where the Z is the image of KO l(Sm) under the map j: 
pm Sm of degree 1. 

This is proved in [121. 

In [26, Chapter IV] a map 3: pm SO(m + 1) is described with the property 

that 13*a*w. = xi, where w+ E Hzl(B0; Z2) is the (i + l)st Stiefel-Whitney 

class, x c HI(PM; Z2) is the generator, a : H'+'(BO; Z2) H i(Q; Z2) is the co- 

homology suspension. Hence the Stiefel-Whitney classes w29 .* ., wm+I of the 

corresponding bundle over Ypm are nonzero and therefore the bundle is not fibre 

homotopically trivial. Hence we get 

(5.4) Lemma. The class I/3} 6 KO-'(Pm) generates Z2 C KO -(Pm) J is a 

monomorphism on the Z2 and the inclusion j: pi C pm induces 1*: KO-l(pm) 

KO- (Pi) which is an isomorphism on Z and annihilates the Z factor. 

Thus for a given homotopy projective space Mn and an orientation of its two- 

fold cover Nn, if n - 1 (4), there are exactly two choices of normal maps 
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M- Xn (or Xn x Rk orientations of Mn) where Xn is a fixed homotopy pro- 

jective space, corresponding to the two elements of KO -l(P), while for n - 1 

(4) there are other choices coming from the image of KO (Sn) in KO- l(pn)* If 

we take the spectral cobordism invariants in [FkXn , EknX], then the set of ele- 

ments corresponding to Mn is an orbit under the action of the group [Xn, SO(k)] 

KO-'(Xn) on [IkXn, IkXn], where SO(k) operates on 5k in the right hand 

ykXn = Sk A (Xn). 

If a: Sn SOW(k), and j: Xn - Sn has degree 1 then the result of acting by 

aj on a map f: Ikxf + kXn is given by 

(5.5) Lemma. If a represents x 
E 7rn(S0(k)), [/1 E [IkXn, SkX?+] then xk* [/n 

If] + j*i(J(x)) where i*: 77k(Sk) [Sn +k, -kXn+] is induced by inclusion 

S C E Ij* is induced by ykj: ykXn XkSn , and J: 77(SO(k)) 7 (k) 

is the J-homomorphism. 

The proof is routine and we omit it. 

It follows that if M'1, M2 are smooth homotopy projective spaces, with N 1' 

N their (oriented) twofold covers, and hi, h2 e Ekx,+ Ekxn*1 their spectral co- 

bordism invariants using Xn a homotopy projective space, then M1 is orientably 

diffeomorphic to M2 implies that hi is in the orbit of h2 by KO- (Xn). If 

r: [Fk-X+, EkXn4] [kXn, IkXn+] is the involution induced by the generator of 

order 2 in KO- 1(Xn), then h1 h 2 or rh2 modulo j*i*(J7rn(SO(k))). Thus we have 

shown 

(5.6) Theorem. The spectral cobordism inivariant defines a map from dif- 

feomorphism classes of (oriented) smooth homotopy projective n-spaces to orbits 

of [kk +kXn I by KO- 1(Xn), so that diffcrcnt elements h1, h2 of 

[YkXn+, .kXnl may represent orientably diffeomorphic homotopy projective spaces 

if and only if h1 = h2 or rh2 modulo j*i*(JT7(SO(k)). Further, if n - 1 (4) then 

this condition reduces to h , h2 or rh2. 

(5.7) Lemma. [kXln, ykXnl = [XkXn, IkXn1 + [Sk, IkXn1. 

This is a consequence of the general fact that the map i' + i*: [X V Y, Z] 

[X, ZI + [Y, ZI is an isomorphism, where i1, i2 are the injections of X and Y 

in X V Y. 

Now [Sk, YkX?j] Z Z and the isomorphism is given by the degree of the 

homology map. For the spectral cobordism invariants of homotopy equivalences 

this degree is always 1, so we may concentrate our attention on the component in 

[FkXn, I kXn . 

(5.8) Lemma. For k very large (k > n + 1), [EkXn, IkXn+4 [kX, XkXn] 

+ [kXn Sk] 
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This follows from the general fact that the map 77*?+ 72*: [K, A x B]- 

[K, A] + [K, B] is an isomorphism. For the inclusion JkXn = IkXn V Sk C 

IkXn x Sk induces an isomorphism for the functor [K, I when dim K < 2k + 1 

and, if k > n + 1, then dim EikXn = k + n < 2k + 1. 

In general we may study the group [ykXn, XkXn4l by applying functors to it, 

such as homology, or mapping spaces into the left variable IkXn , or mapping the 

right variable .kXj into another space. For example, take the map 1: Xn -P 

which induces the canonical line bundle on X, and suspend it, giving a map 

[ykXn, Y2kXn] [IkXn, Ikp ], As ykp,o is k-connected, 1 [YkXn, kpo1- 
3kXn, ykpol is an isomorphism, where j* is induced by the suspension of the 

inclusion j: Xn- X. We denote by y the homomorphism y: [IkXn +kXn+]- 

[EkXn, Ekpoo]* 

(5.9) Lemma. Let p.: Nn . Mn be the twofold covering of the smooth homo- 

topy projective space and let h(N) E [>kXn, IkXn+] be the spectral cobordism in- 

variant of N (using the induced embedding coming from an embedding of M x Rk C 

Xn x Rk). Then rh(N) = h(N) and y(h(N)) = 0 in [IkXn, jkpOOj. 

Proof. We give the proof for X = pn, the proof in general being similar. r is 

induced by iatf in the diagram: 

Nn P Mn 

/ j f 
(5.10) S n_-E, p n a ---SO(n + 1) 

pk- 1 a - SO(k) (see [261). 

Then the new embedding of Nn x Rk C pn x Rk is induced by ictfp - aIi pf. 

Since k >> n, 7(pk 1) = 0 and thus i'p is homotopic to a constant, hence iafp 

is homotopic to a constant and the new embedding is isotopic to the original. 

Thus rh(N)= h(N)o 
Now h(N) is the composite map 

Xkpn 
C 

IkMn LikN + E kM + f 
E Pn 

+ + 
_N -* 

m+ + 

where c is the spectral orientation map for M, s the Thom-Pontrjagin construc- 

tion on N x Rk C M x Rk. Then y(h(N)) is the composition with the map lkl: 

ykpn 0 ykpO, where 1: Pn o P ,. Then y(h(N)) is represented by 
+ + 0 



COBORDISM INVARIANTS AND THE KERVAIRE INVARIANT 219 

(kl)(ik/)(ik)sc. But since N is 1-connected, l/p: N+ P is homotopic to a 

constant. 

Hence Sk(1jp) = (Ek1)(Ekj)(Ekp) is homotopic to a constant and thus yh(N) 

= 0. 

(5.11) Lemma. Let 1 = identity E [ykXn, ykXn]. Then y(l) = cAl e + + ~~~~~~n 
[E Xn, ykEPj. 

This is obvious. 

Clearly r induces an involution (called again r) on [FkXn, jkpoo 

[EkXn, Ekpool. 

Consider the diagram 

[Skpm, S~kpo _ [Ikpm lkpO] 

(5.12) i*I i*I 

[Ikpn, !kpooj _ [Ikpn, jkpoo 

where i* is induced by the suspension of the inclusion pn C pm, m > n. It 

follows from the commutativity of (5.10) that (5.12) commutes. Also j*(jkI ) = m 
Ik1 where / : Pm Po is the inclusion. 

n m 
Now we recall [28] the following: 

(5.13) Theorem (Toda). 1/ k is large, n even, the order of the identity 1 e 

[kp EMpn] is equal to the order of the group KO(Pn). 

We recall also from [20]: 

(5.14) Theorem. KO(Pn) is a cyclic group of order 2s(n), generated by 1- x, 

where 1 is the trivial line bundle, x is the canonical line bundle over pn, Further 

s(n) = number of integers - O, 1, 2, or 4 mod 8 which are < n. (In particular 

s(4k + 1) = 2k + 1.) 

(5.15) Corollary. [Ikpn, Y] is a Z2s(n)-module for any space Y, for n even. 

Proof. [Ikpn, Y] is a module over the ring [ykpn, .kpnJ. Since by (5.13) 

[>kpn, ykpn] is a Z2s(n)-module, it follows that [Fkpn, Y] is also. 

(5.16) (orollary. The order of I e [IkXn, lkp ] is exactly 2s(n). 

Proof. By (5.15), 2s(n)l - 0 On the other hand, (yk1 )* 0\-tk(ykp) n n 

KO-k(ykXn), 1* (1) =1, l(x) = x (1, x being the trivial or canonical line bundles 
nn 

over Xn and P), and (Xkl ) -k(l*). Hence jkl* sends (x - 1) e 

KO- 1(kp) KO(P) into a generator of KO't(>Xn) ~ KO(Pn), by (5.14). 
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Now it is well known that (N(Wl ))* = N(5l )*, so that (N(Ikl ))*(x- _) = 

N(x - 1). Hence (N(kln))*(x - 1) / 0 for N < 2s(n) by (5.14), so that N(Ikl ) is 

not nullhomotopic for N < 2'(n). Hence order kik = 2s(n). n 

(5.17) Lemma. (rYkl + - 
k l*: KO-k(1kPm) - KOl(IkXn). n n 

Proof. From (5.12) it follows that (iGrXl ) = ri*5.k = l kl so that m * m nl 

(rLik )n (i*rkl M)* for m > n. Since r2 = 1, KO k(>kPn) = Z2s(n) and 

KO-k(1kPm) -. KO k(XkPn) is reduction mod 2s(n), and KO-k(YPm) = 

KO(Pm) is generated by $* j - x) (x the canonical line bundle over P?") it follows 

that the only involutions of KO-k(kPn) for all n compatible with this situation 

are + 1 so that the lemma follows. 

Using the construction in ?4, for Mm a homotopy projective space, N its 

(oriented) double covering, consider the normal map 

f2r-+: (2r + I)Mm U (- rNm) 
Mm 

given by the identity on each Mm, the twofold cover on each - Nm. If m = 41 + 1 

it follows from a theorem of Wall [291 that f2r+l is normally cobordant to a homo- 

topy equivalence g2r+1: Mm(2r + 1) Mm. 

(5.18) Theorem. For 0 < r < s < 22 l, M41+i(2r + 1) is not normally co- 

bordant to M41+1(2s + 1) (and a fortiori not orientably diffeomorphic). 

Proof. By (4.5), the spectral cobordism invariant h(M(2r + i)) = 1 + 

r(2(1) - a) E [IkMm, XkMmi, where I = identity, a= spectral cobordism invariant 

of the twofold cover Nm Mm. By (5.9), y(a) = 0, so yh(M(2r + 1)) = 

(2r + )>lkl E [ykMm Ykpool. If M(2r + i) and M(2s + 1) are orientably diffeo- 

morphic by (5.6), either h(M(2r + i)) = h(M(2s + i)) or rh(M(2s + i)M. By (5.17), 

rYJl1' = + Xkl* so that m - m 

(yh(M(2r + i)))O (2r + I)ykl* = + (yh(M(2s + 1))) = + (2s + 1)kl* m 
~~~~~~~m 

Since 1*(1- x) generates KO(Pm) = KO-k(kMm) t-Z it follows that this m 2 21+1' 

is impossible for 0 < r < s < 221- 1. 

Note that by (5.16), 1k1* has order 22k +1 in [IkMm, XkpOO, so that one m 
cannot improve (5.18) without studying more delicate invariants, e.g. the part of 

the spectral cobordism invariant in [EkM +, 5k]. 
One may use the same construction in other dimensions, but there will be a 

surgery obstruction which is the Kervaire invariant (see (4.1)) if m = 2q, or the 

Kervaire invariant of a codimension 1 submanifold if m = 41 + 3 (see proof of 

(7.1)). These obstructions are zero if and only if 2r + 1 + 1 (8) (see (4.8)) so 

we get, by a similar argument as above, 
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(5.19) Theorem. For m 4 1 (4), (2r + 1)Mm u (- rNtm) -. Mm is normally co- 

bordant to a bomotopy equivalence g 2r2+1 Mm(2r + 1) -* Mm if and only if 2r + 1 + 1 

(mod 8), and different values of r give at least 2s(m) 3 orientably nondiffeomorphic 

homotopy projective spaces. 

6. Involutions on certain Brieskorn spheres, smooth and PL classifications. 

Let us consider the equation 

(6.1) z z + 1z2 + 2 . 2q+1 ? 

for zi C C, the complex numbers and d odd. Then (6. 1) defines an affine alge- 

braic variety with the origin as the unique sinjgularity, of real dimension 4q + 2. 

The intersection of the locus of (6.1) with the unit ball: 

(6.2) lizIl =EzT 1 

gives a smooth manifold X q+1 of dimension 4q + 1. This manifold is a homotopy 

sphere. The possibility of representing homotopy spheres in this way was dis- 

covered by Brieskorn, and these representations are called Brieskorn spheres. 

They have been studied by him and others including Hirzebruch and Milnor. A 

beautiful account of this theory is given in [201. 

The algebraic equations defining E4q'4 have natural symmetry which gives 

naturally many groups acting smoothly on X4qil, which have been studied by 

many authors (e.g. [171, [61). Here we shall study the natural fixed point free in- 

volution T: x4Edq+1 * 
q +1 given by 

(6.3) T(z0 o z 7q +1) -.- (zg 01-ZP z21 . * z 
*2ql+0 

Clearly, if z = (zo, .., z 2q.1) is fixed under T, then zl = z2 - ... = z2q+l = ? 

so that, from (6. 1), z0 = 0 also, and z 0. Hence T is without fixed points on 

Edx4l These involutions were studied in the paper of Atiyah-Bott [41? and we 

shall recapture and extend their results on smooth classification of them using 

our methods. We shall also calculate the Kervaire invariants of them. Related 

work has been done by Giffen ([131, [141). 

(6.4) Theorem. X4k+'l/T is normally cobordant to P4k+l(d). (See ?4 for the 

definition of p4k+l(d) ) 

Proof. If we modify (6.1) to 

(6. 1)' P() = zd 
ci 2 

+ 
2 (6.1) P(z) =z0 +z1 + i + = c small, real, 

and consider 
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we get a manifold W4k+2 C C2k+2, and it is easy to see that dW is equivariantly 
diffeomorphic to Ed with T defined by (6.3). 

Now (6.3) defines an involution T: W W which has fixed points F - 

K(X, O, * . ., O) e W, where Ad = cl. 
Consider N = C x D4k+2 c C2k+2, - = 

.**O z 2k1) such that 

>z zi < 51 where 5 << c, & real. Then N is invariant under T and N' 
N n W = d disjoint disks, a neighborhood of F. Then T W - N' is fixed point 
free. 

Since T is smooth, T N' is smoothly equivalent to a linear involution, and 

since it is free on AN' it follows that T N' is smoothly equivalent to the anti- 
podal map on each disk. Hence (W - N')/T is a cobordism of Id/T with 
dP4k+l N=IT. 

Now W-N' c C2k+l - x 0, where W- N' = P 1(t) ri (D4k+4 -N), 
(0, .*.. D ) 6 C2k, P: C2k+l C, t is a regular value. Since P is invariant under 
T, PT P, it follows that P induces P': C2k+l - C x O T- C and (W- N')- T 

- P'1(t) n V, where V = D4k+4 - N. Since T(z0, z, . .., z2k 1) = (ZO'-Z't 
- z2k ) C2k+l - C x O/T = p4k+1 x R3. Since (W'- N')/T = P'-l(t) rl V and t 
is a regular value of P', (W - N')/T has a trivial normal bundle in p4k+1 x R3 
and hence it defines a "normal" cobordism between Ed/T and dP4k+1, except 
that the inclusion maps of the boundary components into p4k+1 have degree d. 
Take the 2-fold cover p: S4k+1 p4k+1 and make it regularly homotopic to an 
embedding a S4k +1 x I x Rt- 1 p4k+l X Rt, t very large. This has degree 2 
so if we take a connected sum along the boundary Ed/T of (W - N')/T with 
(_ l)S4k +1 x I x Rt 1 we get a normal cobordism of Id7IT (- S4k +1) =d/T with 
p4k+l(d), which completes the proof of (6.4). 

Applying (5.18) we obtain a different proof of the result of Atiyah-Bott [4]: 

(6.5) Theorem. On the Brieskorn spheres y4k+1, with involution T: T E d d 
Ed' Yd/Td is not normally cobordant to and hence not di/feomorphic to Ed,lTd, 
if 0 < r < s < 22 1, d = 2r + , d = 2s + 1. 

2k 
Giffen [14] has improved this result to 2 , for which we also have a proof, 

which will be given elsewhere. 

Applying (4.15), (4.16), (4.17), noting that Y.d/T is normally cobordant to 
p 4k + l(d), we get 

(6.6) Theorem. 

k2i (d,+I/T) if d + 3 (8), 

= 0 if d _ 1 (8), 
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and thus T admits homotopy I-spheres as characteristic submanifolds if and only 
if d _ + 1 (8) or l - 1 (4). 

(This has also been proved by Giffen [131.) 
From (4.18) we deduce a result of [201: 

(6.7) Theorem. The Brieskorn sphere 4k +I bounds a manifold of Kervaire d 
invariant 1 if d_ + 3 (8) and of Kervaire invariant 0 if d- + 1 (8). Hence I4k+1 d 
generates bP4k+2 for d = + 3 (8) nd o4kr - 54k+1 d + 1 (8). 

7. Embedding homotopy projective spaces. As an application of ??2, 3, and 

4, and the results of [91 we give a theorem for finding embeddings of homotopy 
real projective spaces. This theorem grew out of conversations with E. Rees and 
is applied by him in [24] in the case where n = 7 and (k = C2. 

(7.1) Theorem. Suppose (k is a k-plane bundle over Pn, n > 5 k > 2. Sup- 
pose p*(g) is fibre homotopy trivial, where p: S - Pn is the 2-fold cover and 
let a e v7 k(TGf)) be such that h(at) n U = [pn] E H (pn; Z 2) where h is the 
Hurewicz homomorphism, U E Hk(T(6); Z2) the Thom class, and [pn] the funda- 
mental class. Then there is a smooth Mn C Sn +k +1 and a homotopy equivalence 
f: Mn - pn' with the normal bundle of M equal to f*(,;) + d. 

Proof. Since p*e is fibre homotopy trivial, there is a /3 6 77n+k(T(p*(G))) such 
that h(f) n U = [Sni. Making /3 t-regular, we get a manifold Qn c Sn +k with 
normal bundle VQ and a normal map s: Qn Sn, e: vQ - p*k. By using surgery, 
we may assume Qn is 1-connected. If the Kervaire invariant of this normal map 
(i.e. k(Q) with the orientation induced by e) is nonzero, we can get another 
normal map s t s: Q # Q - Sn # Sn - Sn etc., and k(Q # Q) = 0. The composite with 
p: Sn -- pn, and a map p *6 4 gives us a map of degree 2, p': Q' , pn, 
covered by e': vQI o (, where Q' C Snk with normal bundle vQI, and k(Q') = 0. 
Then (p', e') represents a class /3' e 77nf+k(T(M)), and since Q' is 1-connected, 
p'- 0 on H1(P"; Z2) and hence v 0. 

Now by making a: Sn+'k - T($) t-regular on pn we get a map g: Nn pn 
covered by a bundle map b: vN - , where vN is the normal bundle of N in 
Sn . Now degree g - 1 (2) from the condition h(a) n U = [pn] in H ((pn; Z ) 
so by taking the disjoint union with a number of copies-of the normal map pl: 
Q l p n we obtain a normal map (i.e. of degree 1) g': N' pn , b': VNI 
represented by an element a' e 77rn +k(T(c)), where a' = a + /3'. 

By the corollary of [9], if a 'e 7 M(TO)) suspends to the "normal invariant"2 
nk 

of some homotopy projective space M, then M C Sn+k +1 with normal bundle in-- 
duced from e+ ? I by the homotopy equivalence. But this is equivalent to the 
statement that the normal map into Pn represented by a' is normally cobordant 
to a homotopy equivalence, i.e., that its surgery obstruction is zero, if n > 5. 
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From the results of Wall [291 there is no surgery obstruction if n 1 (4) so in that 

case we are finished. If n = 2q, the surgery obstruction is the Kervaire invariant 

k(N') (see (4.1)). Hence if k(N') 4 0, take the new normal map g: 3N' U (- Q') 
pn etc. g = 3gf u p'. 

Since p"*- 0, it follows from (2.13) that k(3N' U (- Q')) = k(3N') + k(Q') 

k(3N') since Q' was constructed to have k(Q') = 0. Then by (4.8), k(3N')= 

k(N') + l = 0, so that the surgery obstruction is zero for the normal map g and the 

proof is finished as before using [91. 
If n - 1 (4), then we use the same process as above to construct a E 

nk(T(f)) so that the normal map induced into pn1 has surgery obstruction zero. 

The remainder of the map is a normal map into a disk Dn which is a homotopy 

equivalence on the boundary, so it can be made normally cobordant to a homotopy 

equivalence leaving the boundary fixed. Thus this normal map into pn is normally 

cobordant to a homotopy equivalence (compare the proof of [91 and of (5.19)), and 
again we are done, 

BIBLIOGRAPHY 

1. J. F. Adams, On the groups 1(X). II, Topology 3 (1965), 137-171. MR 33 #6626. 
2. , Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632. 

MR 25 #2614. 
3* M. F. Atiyah, Thom complexes, Proc. London Math, Soc. (3) 11 (1961), 291-310. 

MR 24 #A1727. 

4. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. 
II. Applications, Ann. of Math. (2) 88 (1968), 451-491. MR 38 #731. 

5. I. Berstein, Involutions with nonzero Arf invariant, Bull. Amer. Math. Soc. 74 
(1968), 678-682. MR 38 #5225. 

6. G. Bredon, Exotic actions on spheres, Proc. Conf. on Transformation Groups (New 
Orleans, La., 1967), Springer, New York, 1967, pp. 47-76. MR 42 #1 146. 

7. W. Browder, The Kervaire invariant of framed manifolds and its generalization, 
Ann. of Math. (2) 90 (1969), 157-186. MR 40 #4963. 

8. , Surgery on simply connected manifolds, Springer-Verlag, 13erlin and 
New York, 1972. 

9. _ , Embedding smooth manifolds, Proc. Internat. Congress Math. (Moscow, 
1966), "Mir", Moscow, 1968. MR 38 #6611. 

10. W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, 
Bull. Amer. Math. Soc. 73 (1967), 242-245. MR 34 #6781. 

11. E. H. Brown, Jr., The Arf invariant of a manifold, Conf. on Algebraic Topology 
(Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968), Univ. of Illinois at Chicago 
Circle, Chicago, Ill., 1969, pp. 9-18. MR 40 #4964. 

12. M. Fujii, K0-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149. 
MR 36 #2143. 

13. C. H. Giffen, Desuspendability of free involutions on Brieskorn spheres, Bull. 
Amer. Math. Soc. 75 (1969), 426-429. MR 39 #2168. 



COBORDISM INVARIANTS AND THE KERVAIRE INVARIANT 225 

14. C. H. Giffen, Smooth homotopy projective spaces, Bull. Amer. Math. Soc. 75 
(1969), 509-513. MR 39 #964. 

15. A. Haefliger and V. Poenaru, La classification des immersions combinatoires, 
Inst. Haute Etudes Sci. Publ. Math. No. 23 (1964), 75-91. MR 30 #2515. 

16. M. W. Hirsch, On the fibre homotopy type of normal bundles, Michigan Math. J. 12 

(1965), 225-229. MR 32 #1724. 

17. F. Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, exotische Spharen und 
Singularitaten, Lecture Notes in Math., no. 57, Springer-Verlag, Berlin and New York, 
1968. MR 37 #4825. 

18. S. Lopez de Medrano, Some results on involutions of homotopy spheres, Proc. 
Conf. on Transformation Groups (New Orleans, La., 1967), Springer, New York, 1968, pp. 
167-174. MR 40 #6564. 

19. J. Milnor, Microbundles and differentiable structures, Princeton University, 
Princeton, N. J., 1961 (mimeographed notes). 

20. , Singular points of complex hypersurfaces, Ann. of Math. Studies, no. 61, 
Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1968. MR 39 #969. 

21. D. Montgomery and C. T. Yang, Free differentiable actions on homotopy spheres, 
Proc. Conf. on Transformation Groups (New Orleans, La., 1967), Springer, New York, 
1968, pp. 175-192. MR 39 #6354. 

22. C. Morlet, Les voisinages tubulaires des variete's semi-lineaires, C. R. Acad. 
Sci. Paris Ser. A-B 262 (1966), A740-A743. MR 35 #4930a. 

23. P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math. (2) 58 
(1953), 458-480. MR 15, 338. 

24. E. Rees, Embeddings of real projective spaces, (to appear). 
25. C. P. Rourke and B. J. Sanderson, Block bundles. I, II, III, Ann. of Math. (2) 

87 (1968), 1-28, 256-278, 431-483. MR 37 #2234a, b; MR 38 #729. 
26. N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. 

Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #3056. 
27. D. Sullivan, Triangulating homotopy equivalences, Ph. D. Thesis, Princeton 

University, Princeton, N. J., 1966. 
28. H. Toda, Order of the identity class of a suspension space, Ann. of Math. (2) 

78 (1963), 300-325. MR 27 #6271. 
29. C. T. C. Wall, Surgery on compact manifolds, Academic Press, London, 1971, 
30. , Free piecewise linear involutions on spheres, Bull. Amer. Math. Soc. 

74 (1968), 554-558. MR 36 #5955. 

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 
08540 


	Article Contents
	p.193
	p.194
	p.195
	p.196
	p.197
	p.198
	p.199
	p.200
	p.201
	p.202
	p.203
	p.204
	p.205
	p.206
	p.207
	p.208
	p.209
	p.210
	p.211
	p.212
	p.213
	p.214
	p.215
	p.216
	p.217
	p.218
	p.219
	p.220
	p.221
	p.222
	p.223
	p.224
	p.225

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 178 (Apr., 1973), pp. 1-508
	Volume Information
	The Genera of Amalgamations of Graphs [pp.1-39]
	Asymptotic Abelianness of Infinite Factors [pp.41-56]
	Geodesic Flows on Negatively Curved Manifolds. II [pp.57-82]
	Algebraic Cohomology of Topological Groups [pp.83-93]
	Alternating Chebyshev Approximation [pp.95-109]
	Decomposable Braids and Linkages [pp.111-126]
	Elementary Properties of Free Groups [pp.127-138]
	Iterated Limits in N(U) [pp.139-146]
	Free Products of Von Neumann Algebras [pp.147-163]
	Surjective Stability in Dimension 0 for K and Related Functors [pp.165-191]
	Cobordism Invariants, the Kervaire Invariant and Fixed Point Free Involutions [pp.193-225]
	Kernels in Dimension Theory [pp.227-240]
	Equivariant Cobordism and Duality [pp.241-258]
	The Trace-Class of a Full Hilbert Algebra [pp.259-270]
	Multiplicities of Second Order Linear Recurrences [pp.271-284]
	Submanifolds and a Pinching Problem on the Second Fundamental Tensors [pp.285-291]
	Local and Asymptotic Approximations of Nonlinear Operators by (k,⋯, k)-Homogeneous Operators [pp.293-305]
	Infinite Particle Systems [pp.307-340]
	Additive Set Functions on Lattices of Sets [pp.341-355]
	A Nonlinear Optimal Control Minimization Technique [pp.357-381]
	Decreasing Rearrangements and Doubly Stochastic Operators [pp.383-392]
	On the Zeros of Power Series with Hadamard Gaps--Distribution in Sectors [pp.393-400]
	Some Integral Inequalities with Applications to the Imbedding of Sobolev Spaces Defined Over Irregular Domains [pp.401-429]
	On Fibering of Cobordism Classes [pp.431-447]
	Equivariant Bordism of Maps [pp.449-457]
	Exit Properties of Stochastic Processes with Stationary Independent Increments [pp.459-479]
	Monotonically Normal Spaces [pp.481-493]
	Generalized Dedekind Eta-Functions and Generalized Dedekind Sums [pp.495-508]
	Back Matter



