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The history of classification theorems for manifolds really began with the 

classification theorem for 2-dimensional manifolds (the case of dimensions < 2 

being elementary). In this case one can describe simple algebraic invariants (such 

as H I , or the Euler characteristic and the orientability) whose values completely 

characterize the homeomorphiam type of a compact 2-manifold. 

As one increases the dimension it becomes clear that the complexity of the invariants 

required for even a classification of the homotopy type must increase 

For example the fundamental group w1(M) for manifolds of dimension m ~ h can be 

an arbitrary finitely presented group, and in general the (~] - 1)-skeleton can be 

the homotopy type of an arbitrary ~] - I dimensional finite complex. 

Hence it is natural to try to describe classification theorems in terms of the number 

of different structures of given type on a space given with less structure. 

The history of such theorems begins with EMilnor 195~ where it was shown 

that there were ~ 7 different differentiable structures (up to diffeomorphism) 

on the topological or piecewise linear (PL) S T . Subsequently the theory of 

classification of smooth structures on a given PL manifold was developed extensive- 

ly and serves as a model for such a theory. We give a brief description (see 

~ashof-Rothenberg] for the finished version of the theory). 

Let ~n be a PL manifold, and consider smooth (differentiable) structures 

on M compatible with the PL structure (so that the smooth functions are smooth 

on each simplex). Two such smoothings aO, a I of M are called concordant if there 

is a smooth structure on M x E0, i] which is ~. on M x i , i = O, I . 
1 

(We ignore technical details, which would make it more desirable to take M x R 

instead of M x ~0, I] , etc.). 

A PL manifold M has a PL tangent bundle, which is induced by a map 

f : M ~ BpL , BpL being the classifying space for stable PL bundle theory. 

There is a natural map of B 0 , the classifying space for linear bundle theory, into 

BpL , which can be considered a fibration # : B 0 ~ BpL , with fibre PL/0 . 
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The following theorem is due to Hirsch and Mazur,and Lashof and Rothenberg: 

Theorem. Let M be a PL manifold. Concordance classes of smoothings on M 

(compatible with the PL structure) are in I - I correspondence with homotopy 

classes of cross-sections of the bundle f~(w) over M , induced by f fram 

T : B 0 ÷ BFL . 

The fibration w is hemotopically like a principal bundle, so that if f*(~) 

has a cross-section, (i.e. if M has some smooth structure) then it is trivial, 

equivalent to M × PL/0 and we get: 

Theorem. Let M be a smooth manifold. Concordance classes of smooth structures 

on M (compatible with its PL structure) are in I - I correspondence with 

homotopy classes of maps into PL/O , i.e. [M, PL/~ . 

The key to this theory is the Cains-Hirsch theorem [Hirsch l which essentially 

states that smooth structures (M × R) 8 on M × R are of the form M~ × R for 

a smooth structure e on M , (unique up to concordance). It is the precision of 

this theorem which leads to the satisfactory simplicity of the smoothing theory. 

One would like to construct analogous theories starting from even less inform- 

ation than the PL type of a manifold, for example the homotopy type. This has 

been successful to a large extent, and the resulting theory and its differences 

from the above situation illustrates some deep underlying problems of homotopy 

theory, and algebra. 

The underlying structure that we will start from will be an analog in homotopy 

theory of a closed oriented manifold, namely a space satisfying Poincar~ duality. 

(We will assume that all spaces considered are CW complexes having finitely 

generated homology in each dimension). 

Definition. An (oriented) Poincar~ complex is a CW complex X and a class 

IX] ~ Hm(X) such that IX] 6]: Hq(x) ~ Hm_q(X) is an isomorphism for all q . 

An (oriented) Poincar~ pair is a CW pair (X, Y) and a class IX] e Hm(X , Y) 

such that [X]f~ : Hq(x) ÷ Hm_q(X , Y) is an isomorphism for all q . m is defined to 

be the dimension of X . 

It is easy to prove that if (X, Y) is Poincar~ pair then Y is a Poincar~ 

complex and that the definition of Poincar~ pair is symmetric, i.e. 

IX]N: Hq(x) ÷ Hm_q(X , Y) is an isomorphism for all q if and only if 

[x]n: Hq(x, Y) ~ ~m_q(X~ is an isomorphism for all q , (see [~der, S] ). 

While a suitable definition of tansent bundle or fibre space is not known for 

Poincar~ complexes, a stable version has been defined by [Spivak] . Its most natural 

definition is in terms of the analog of the normal bundle of a manifold in a high 

dimensional euclidean space. 
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Definition. 

m is an oriented (k - 1)-spherical fibration ~ over 

class m E Wm+k(T(~)) such that 

h(~) ~ u -- Ix] 

Here if ~ is the fibration p : E 0 ÷ X , then 

complex of ~") , U e Hk(T(~)) is the Thorn class, 

wicz map. 

The cap product is defined 

t'] : H+k(T(~)) @ Hk(T(~)) ÷ H(X) 

The Spivak normal fibre space of a Poincar~ complex of dimension 

X , k >m + I , and a 

T(~) = X ~ C E 0 (the "Thorn 
P 

h : w~( ) ÷ H ( ) is the Hure- 

by interpreting the terms in various relative groups, (i.e. H (T(~)) ~ H (E, E O) 

where E ÷ X is a fibre space with contractible fibre containing E 0 + X analogous 

to the disk bundle associated to a sphere bundle). 

This is the analog oF the normal bundle ~k for a smooth manifold M m C.S m+k • 

For recall that there is a neighborhood of M diffeomorphic to the total space E 

of ~ (called a tubular neighborhood) and a map 

S m+k ÷ Sin+k/ = E/E 0 T(~) 
S m+k - int(E) 

defined by pinching the exterior of the tubular neighborhood E of M to a point, 

(E 0 = SE is the sphere bundle of ~ ) . This is called the natural collapsing map 

for the manifold M , normal bundle ~ . 

Theorem. For a Poincar& complex X , for k > m + I , there exists a Spivak 

normal fibre space (~k, a) and if (~,k, s,) is another in the same dimension 

k > m + I , there exists a fibre homotopy equivalence b : ~ ÷ ~' such that 

T(b)o(=) = m' , T(b) : T(~) ÷ T(~' ) being the induced map of Thom complexes. 

Further such a b is unique up to fibre h~notopy. 

This is an improvement of [Wall, PJ's version of [Spivak] . Note that we 

require no hypotheses on =I or on homology with local coefficients, etc. It will 

be proved in ~rowder, N] . 

One may now attempt to develop the analog of the smoothing theory of PL 

manifolds in this situation by studying the classifying map of the Spivak normal 

fibre space and the problem of lifting it to a linear (or PL or Top) bundle. 

If we let B G be the classifying space for stable spherical fibrations then we 

have natural maps 

B 0 ÷ B G , BpL ÷ B G , BTo p ÷ B G , 

and we consider the diagram 
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BH 

///// ]P / 
X ~ > B G (H = 0, PL or Top). 

Now let us discuss only the case of H = 0 , and the question of finding and 

classifying smooth manifolds of the homotopy type of X , with the understanding 

that for the other cases PL and Top a similar theory can be developed utilizing 

smoothing theory (see [Browder-Hirsch] ) and the recent work of Kirby and Sieben- 

mann in the topological case. 

Suppose then that there is a lifting of the Spire/< normal fibre space ~ to 

a linear bundle q, i.e. there is a fibre homotopy equivalence b : ~ ÷ q . Then 

the induced map of Thom complexes, T(b) : T(~) + T(q) , sends ~ ~ ~m+k(T(~)) into 

8 = T(b),m 6 ~m+k(T(q)) and by naturallity, h(8)c~ U = IX] 6 Hm(X) . 
n 

If g : S m+k ~ T(n) represents 8 , we may use the Thom transversality theorem to 

get a representative (call it again g) such that g-1(X) = N m is a closed 

manifold Nm C sm+k with normal bundle v k , gin : N ÷ X is a map of degree I 

and glE(v) is a linear bundle map of a tubular neighborhood E(v) of N into 

E(n) . 

One asks the questions: 

Q~estions: (a) Is g homotopic to a (transversal) g' such that 

N' = g'-1(X) is homotopy equivalent to X ? 

(b) If so, how many different such N' are there, up to diffeomorphism? 

An affirmative answer to (a) and a unique solution in (b) would be a very 

good analog of the Cains-Hirsch theorem, and would lead to a very exact analogy 

with smoothing theory. 

However, there is a non-trivial obstruction to solving (a) and there is non- 

uniqueness in (b) which leads to a different theory with many interesting rami- 

fications. 

Definition. Let X be an m-dimensional Polncare" ~ complex, q a linear k- 

plane bundle over X . A normal map into (X, q) is a pair of maps (f, b) , where 

f : N m + X , N m a smooth closed m manifold, f degree I , b : ~ + ~ a linear 

bundle map over f , where v is the normal bundle of Nmc S m+k , k >> m . 

(An analogous definition can be made for normal maps of manifolds with boundary 

into Poinear~ pairs. ). 

Definition. A normal cobordism of two normal maps (fo' bo)' (f1' bl) ' 

• ÷ X b i : v i + q , is a pair (F, B) where F : U ~ X x [0, I~ , fi : NI 
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au = M 0 ~ M I , FIM i = (fi' i) : M i ÷ X x i i = O, I , B : w ÷ v × [0, I~ 

covering F where m is the normal bundle of U C sm+k [0, I] and BIv i = b i × • 

etc. 

(An analogous definition can be made for normal cobordisms of Poincar~ pairs. 

Such a cobordism is called rel ~ if the cobordism of the boundary is a product). 

The Them transversallity theorem implies (as above) that normal cobordism 

classes of normal maps into (X, n) correspond to hc~otopy classes of maps 

8 : S m+k ÷ T(q) 8 ~ ~m+k(T(n)) such that h(8)f% U = IX] 
• ' n 

ThUS questions (a) and (b) above can be translated into problems about 

normal maps and cobordisms. In case m >=. 5 and wiX = 0 the situation is very 

well understood. We give a brief account following [Browder, S I . 

Fundamental Theorem of Sur~el V for ~I = 0 . 

Let (f, b) be a normal map, f : (M, ~M) -~ (X, Y), (X, Y) a Pointer6 pair of 

dimension m ~5 , ~i X -- 0, (flBM)~ : H (~M) ÷ H (Y) an isomorphism. Then (f, b) 

is normally cobordant rel S to a homotopy equivalence (into X) if and only if 

an obstruction a(f, b) = 0 , 

f O m odd 
where ~(f, b) e Pm ' Pm = Z m = hk 

Z 2 m = 4k + 2 . 

This theorem was first proved by [Kervaire and MilnorS when X = S m or 

D m , and in this generality is in the work of Novikov and the author. This specific 

form is from [Browder, S] . 

We note that if X is a Poincar~ complex, i.e. Y = ~ , then normal cobordism 

rel ~ = normal cobordism, and the condition on flBM is empty. 

The obstruction ~ has a very simple definition for m = 4k as follows: 

If IX] ~ Hm(X , Y), m = 4k , define a symmetric bilinear pairing 

(I) ( , ) : H2k(x, Y) @ H2k(x, Y) ÷ Z by (x, y) = (x ~ y)[X~I . 

Tensoring with the rational numbers Q we get a symmetric bilinear form on a 

finite dimensional Q vector space H2k(x, Y; Q) and we define I(X) = signature 

Then define ~(f, b) = ~(I(M) - l(X)) of the form. @ 

(It is a theorem that this is an integer). Note that its value does not depend on 

the bundle map b , (nor even on the map f ). 

The definition of a(f, b)~ Phk+2 is considerably more subtile, (the Ker- 

vaire invariant), and depends on the choice of b as well as f . We omit it, 

(see [Browder, S, Chapter III]) . 
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(PI). (Cobordism property). 

then a(flBM , bl~M) = 0 • 

(P2). (Additivlty property). 

is the "union" of two normal maps 

The invariant s has many good properties, convenient for calculations: 

If (f, b), f: (M, BM) + (X, Y) is a normal map, 

If a normal map (f, b), f : (M, SM) ÷ (X, Y) 

(fi' bi) ' fi : (Mi' ~Mi) ÷ (Xi' Yi ) ' so that 

M = MI~ M2, X = XI~X 2 along "submanifolds" of the boundary, and if 

a(f, b), ~(fi' hi) i = I, 2 are defined (hypothesis a s  in Fundamental Theorem) 

then s(f, b) = ~(f1' bl) + s(f2' b2) ' 

(P3) (Hirzebruch formula). If m = 4k , Y = @ , then 

a(f, b) = ~Lk(P1(ql), ...)IX] - I(X)) , where L k is the Hirzebruch polynomial. 

(P4) (Product formula). If N is closed, I : N ~ N the identity, 

a(f × I , b × I) = l(N)a(f, b) , where f x I : (M, ~M) × N ~ (X, Y) × N . 

The last property is a well known property of index and Sullivan's formula 

for the Kervaire invariant (see [Browder, S, (III §5~ , [Rourke, Sullivan]) . 

Another indispensible tool is the theorem of [Kervaire, Milnor] : 

Plumbin~ Theorem. For each value x ~Pm ' there is a normal map (g, c) , 

g : (V, BV) ÷ (D m, S m-l) satisfying the hypothesis of the Fundamental Theorem, 

with ~(g, c) = x . If m • 4 , glBV : BV ÷ S m-1 is a homotopy equivalence. 

From the above results one may read off many powerful theorems: 

Homotopy Type of SmoothManifold s. Let X he a l-connected Poincar6 complex 

of dimension m ~ 5 • Let qk be a linear k-plane bundle over X , m & ~m+k(T(q)) 

such that h(a) ~ U = [~I (i.e. (q, a) is a lift of the Spivak normal fibre 

space). 

(I) If m is odd or (2) if m = 4k and Lk(P1(~ -I) ..... pR(~-I))[X] 

= I(X) , then X is the homotopy type of a smooth manifold with q as its stable 

normal bundle, a its natural collapsing map. 

This is due to the author and S.P. Novikov. It follows immediately from the 

Fundamental Theorem, and (P3) , noting that our hypothesis yield a normal map 

into X, q, and that in these cases there is no obstruction to getting a normal 

cobordism to a homotopy equivalence. 

One can write down a simpler theorem in the PL 

which extends to the topological case easily using 

Homotopy Type of PL (Top) Manifolds. Let X 

case [Browder-Hirsch3 , 

EKirby, Siebenmann~ : 

be a Poincar~ complex of 

dimension m ~ 5 , ~IX = 0 . Then X is of the homotopy type of a PL (Top) 

manifold if and only if the Spivak normal fibre space is fibre homotopy equivalent 

to a PL (Top) bundle. 
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We note that it is easy to avoi,] the obstruction in the PL and Top cases 

at the cost of weakening the conclusion slightly. 

The answer to our question (b) requires for clarity the following definition 

first introduced by ESullivan, T~ : 

Definition. Let (X, ~X) be a Poincar~ pair with BX possibly empty. Define 

the set of homotopy structures on X , sO(x) (~PL(x), ~T°P(x)) to be the set of 

concordance classes of pairs (M, h) where M is a smooth (PL, Top) manifold and 

h : (M, aM) ÷ (X, BX) is a homotopy equivalence. Two such (Mi, h i ) i = O, I, 

are called concordant if thespis a cobordism U, aU = M O~M I ~ V , ~V = aM O~ aM I and 

a homotopy equivalence H : (U, V)--* (X ~ [0, I.], SX x [0, I]) with 

HIM i =h i : Mi ÷ X x i , i = 0, I . 

We note that such a concordance U is an h-cobordism so that if ~ i X = 0 , 

~X = ~ , m = dimension X => 5 , it follows from [Smale~ 's h-cobordism theorem 

that h11h0 is homotopic to a diffeomorphism (PL equivalence, homeomorphism) 

d : M0÷M I . 

If (M, h) represents an element in ~(X) , define a normal map (h, b) by 

taking n = (h -I )'(UM ) over X , and b some bundle map over h . 

Then h is well defined up to a bundle automorphism of n • 

Definition. Let (X, Y) be a Poincar& pair (Y possibly empty). Then 

NO(x) (NPL(x), NT°P(x)) is defined to be equivalence classes of normal maps 

(f, b) into X, n , for all linear (PL, Top) bundles D over X . Two such 

(fi' bi) ' fi : (Mi" ~Mi) ÷ (X, Y) , i = 0, I, are equivalent if (fo' bo) is 

normally cobordant to (f1' abl)' where a : n ÷ n is a linear (PL, Top) bundle 

automorphism of n (over I : X ÷ X) . 

Then we have the result of [Sullivan, ~ (See also [Browder, S, (II.h.h.)]) : 

~eorem If X is smooth then N0(Xl t IX, 0/~ where [,] denotes 

homotopy classes of maps and G/0 is the fibre of the map of classifying spaces, 

B 0 ÷ B G , (similarly for PL and Top). 

In other words, N0(X) is in I-I correspondence with homotopy classes of 

lifts of the Spivak normal fibre space ~ of X from B G to B 0 , and given one 

such (from the smooth structure) the others correspond to maps into the fibre. 

Thus it is N(X) which corresponds exactly to the lifts of ~ and there is a map 

n : ~(X) ÷ N(X) (defined above) , but it is not an isomorphism, which is where the 

analogy with the smoothing theory of PL manifolds breaks down. 

If dimension X = m , let us define an action of Pm+1 on -~0(X) in the follow- 

ing way: Let x e Pm+1 " and let (g, c) he the normal map of the Plumbing Theorem, 

g : (V, ~V) ~ (D m+1 , S m) such that c(g, c) = x , glSV : BV ÷ S TM a hemotopy 
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equivalence. If 

sum along the boundary 

g : V ÷ D m+1 , so that 

(M, H) represents an element of -~O(x) , consider the "connected 

M xl " of h x I : M x [0, I"] ÷ X x [0, I] and 

(h x 1)llg : (M x [0, I[]) v+(x~ [0, I]) l[ Dm+1 
M x l  X x l  

where _LL means identify a disk D m C M × I with a disk D m C aV similarly on the 

right. If we arrange the maps h and g so that the identified disks are sent to 

the disks in X and S m which are identified on the right, then the union defines 

a new map and the right hand end (M x I ) ~ V is mapped by a homotopy equivalence 

h' into X x I . We define x(M, h) = (M', h') , where M' = (M x I) ~& aV . 

It is not hard to see that (h x I)11 g is covered by a bundle map defined by 

some map over h and c , so that n(x(M, h)) = n(M, h) , In particular, if 

I X = 0 and m > 4 , it follows from Additivity (P2) that the obstruction to 

finding a normal cobordism of (h x 1)LLg to a concordance (of (M, h) and (M' ,h') 

is exactly the element x 6 Pm+1 which we started out with, and it then follows 

from Additivlty (P2) and the Fundamental Theorem that the operation of Pm+1 on 

S0(X>is a well defined operation of the group on the set, denoted by 

: Pm+1 --->~(X) , (~ : Pm+1 xfO(x) ÷J O(X))" We note that the operation 

is trivial on /PL(x) and~T°P(x). 

Exact Sequence of Sur~er.v (w I = O) . Let X be a Poincar~ complex of dimension 

m > 5 , ~IX = 0 . Then we have an exact sequence of sets 

Pm+1 -w-->JH(x) n > NH(x) .c > p 
m 

for H = 0 , PL or Top , and n(a) = n(S) , a, Be ~(X) if and only if 

= ~(x, 8) for some x g Pm+1 " 

This exact sequence was first developed by [Kervaire, Milnor] in case 

X = S m , and was generalized to this situation by ~ullivan, H3 . It contains 

within it the uniqueness theorem of [Novikov] . Sullivan actually showed that the 

sequence extends to a long exact sequence of abelian groups on the left if X is 

an H-manifold, where the next stage involves ~(X x [0, I~ rel X x 0 ~X x I) = 

homotopy structures on X x [0, I] which are the identity on X x O~X x I , 

and NH((x x [0, 1])la) = [ZX, G/H] , where H=0, PL or Top. 

In case we have (X, Y) a Poincar~ pair and Y # ~ we have an exact analogy 

with the smoothing theory of PL manifolds, namely: 

Theorem. Let (X, Y) be a Poincar~ pair of dimension m > 6 , X, Y l-connected, 

Y # @ . Then elements of -~H(X) (H = 0 , PL or Top) are in I - I correspondence 

with homotopy classes of cross-sections of f~(pH ) , where f : X ÷ B G is the 

classifying map of the Spivak normal fibre space and PH : BH + BG is the natural 
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map made into a fibratlon, H = 0 , PL or Top . Given one smooth (PL or Top) 

structure on X , one gets an isomorphism ~H(x) =~ IX, G/HI . H = 0 (PL or Top). 

This is a combination of ~Wall, G] (see also [Golo~]) in the smooth case, 

together with the work of ESplvak~ and ESullivaa, T~ above, and ~rowder, 

Hirsch3 , ~irby, Siebenmann] to extend to the PL and Top cases. 

To prove this theorem in the smooth case, we note first that the hypothesis 

gives us a normal map (f, b) , f : (M, ~M) + (X, Y) . By the cobordism property 

(Pl) , c(fI~M , bl~M) = O , so by the Fundamental Theorem , (fl~M , bl~M) is 

normally cobordant to a homotopy equivalence. Gluing this cobordism to (f, b) along 

~M we obtain a normal cobordism of (f, b) to (f', b' ) such that 

f' : (M', BM') + (X, Y) , f'l~M' is a homotopy equivalence. 

Let (g, c) , g : (V, ~V) ÷ (D m, S m-l) be a normal map such that gl~V is a 

homotopy equivalence and ~(g, e) = -a(f', b') . Taking connected sum along the 

bou/~dary of (f', b') and (g, c) we get 

(f'~ g, b',,¢) , f',_~ g : (M'~ V , 3) ÷ (X, Y) , 

f'~_ gIB(M' tLv) : SM' # SV ÷ Y 

is still a homotopy equivalence, and by Additlvity (P2) , (~(f'~Lt g, b' ~c) -- 0 . 
t e 

Hence by ~damental Theorem, (f'~L g, b'~ c) is normally cobordant tel S to 

a homotopy equivalence. This proves the existence part of the theorem, the unique- 

ness part following by a similar argument, (compare with the proof of the Exact 

Sequence ) . 

Besides these basic theorems, there have been many fruitful applications of 

these methods to other problems in topology, (e.g. see [Browder, T] for a discussion 

of some applications to the theory of transformation groups). 

There are still many unsolved problems in the simply connected case, in partic- 

ular, about the hehaviour of the surgery obstruction o in case the dimension is 

hk ÷ 2 , (i.e., the Kervaire invariant case). We note the absence of these dimensions 

in the Homotopy Type of Smooth Manifolds Theorem. It has so far proved very difficult 

to describe the homotopy conditions on a (hk + 2)-dimensional Poincar~ complex to 

make it homotopy equivalent to a smooth manifold, though a few partial results are 

known (c. f. [Browder, K]) . 

In general, the map a : NO(M) ÷ Phk+2 " remains mysterious, in the case where M 

is smooth. In the cases H = PL or Top , NH(x) + Po is onto for any X . 

[Sullivan, G'] has given a cohomological formula for ~ (see also [Rourke, 

Sullivan~ ). 

By Sullivan's Theorem on normal maps, NH(M) = [M, G/~] if M is an H-mani- 

fold, H = 0 , PL or Top ,and one would like to analyze G/H . 
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This remains very difficult in the case H = 0 , but in the other cases there has 

been spectacular success. First we note that one can prove that ~m(G/pL) =Pm ' 

using the Plumbing Theorem for dimensions >= 5 , and special arguments in lower 

dimensions . If V is a graded module, denote by K(V) = HK(Vj, j) , the product 

of Eilenberg-MacLane spaces with homotopy groups Vj in dimension j . Let 

Z 0 = ring of rational numbers with odd denominators. We note without proof that 

G/H is a homotopy commutative loop space, so that ~, G/~ is an abelian group. 

Theorem. [Sullivan, T and G] • At the prime 2 , G/pL ~ Y × K(P~) , where 

P' = Pi ' i • 4 , P' = 0 i < 4 Y is a fibre space over K(Z2, 2) induced by 

the map ¢ : K(Z2, 2) ÷ K(Z, 5) , such that ¢t(~5) = 6Sq2~2, (~ is the integral 

Bockstein). In other words 

~, G/pL ] ® Z 0 ~ IX, Y] ® Z 0 + IX, K(P~)]] ® Z 0 ,(isomorphism as sets). 

Theorem. ~ullivan, N, G and A~ . 

Ix, G/p  z[ i] -- K0(X) 

In other words, G/pL -~ B 0 at odd primes. 

,% 
Theorem. ~irby, Siebenmann3 . Top/pL =~ K(Z 2, 3) , G/To p = K(P o) at the 

= G/ = B 0 at odd primes. prime 2 ' G/Top PL 

We will outline the proof of Sullivan's theorem at the prime 2 . Using the 

composition 

~" G/pL] ~ NPL(M) ~ > Pm' 

the cobordism property (PI) defines a homomorphism of the bordism group 

n,(G/pL) ~ P~ • 

Using the Plumbing Theorem, it is easy to see that the composition 

~i(G/pL ) ~ %(G/pL) ÷ Pi 

is an isomorphism for i @ h , and one can show that ~h(G/pL)÷ P4 is multiplication 

by 2 • But at the prime 2 , n~(X) -~ He(X , ~,) , (see [Conner, Floyd, D] ) , so that 

one gets a map of G/pL ÷ K(P~) which induces an iscmorphism on ~i , i • h . 

One constructs another map G/pL ÷ Y by a special argument, and the resulting map 

G/p L ÷ y x K(P~) is a homotopy equivalence at the prime 2 . 

The argument for the odd prime theorem is similar in spirit but much more 

difficult to carry out. One uses the hcmomorphism o : ~(G/pL) ÷ p~ , considered 

as a a m module map (operating by multiplication by the Index on P~ ) together 

with analogous maps a n : Gm(G/pL ; Z n) ÷ P~ @ Z n , n odd. 
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By a generalization of EConner, Floyd, K~ , one gets that 

~,(X) ~ Z[~ ~ K0 (X) @ EK~] , (using the "Index" ~ -module structure of Z[~ S ) . 

Hence o and o n induce o' : K0m(G/pL) ÷ Z[~ , o n : K0m(G/pL ; Z n) ÷ Z n . 

From some universal coefficient theormes in K0 theory, one deduces that a set of 

compatible hcmomorphisms 

K0~(X) ÷ Z[~] and K0m(X; Zn) ÷ Z n 

(as above) are induced by an element of K0m(X) @ Z~S (using the Kronecker pairing 

of cohomology and homology). 

This yields a map G/pL ÷ B 0 (at odd primes) which induces the isomorphism of the 

theorem. 

We say nothing about the ~irby, Siebenman~ theory, except to remark that 

it uses the PL classification of homotopy tori of [Hsiang, ShanesonJ and 

~Wall, T~ , which emerges as one of the end products of surgery theory in the non- 

simply connected case. Thus all the results of doing surgery on topological manifolds 

are based first on the development of the whole surgery theory for smooth and PL 

manifolds, together with some elaborate calculations in the theory. 

The theory developed by ~Sullivan, NS has also produced the remarkable 

characterization of PL-bundles at odd primes. 

Theorem. The theory of PL-bundles at odd primes is equivalent to the theory 

of spherical fibre spaces with K0'-theory orientation (K0'(X) = K'(X) @ Z~] ) . 

The question of a characterization of PL-bundles at the prime 2 is still a 

mystery, seemingly related to difficult questions about the Kervaire invariant, and 

the "Kervaire manifolds" of Kervaire invariant I . 

Now we shall describe the theory of surgery when ~I ~ 0 . 

One may first discuss the question of the appropriate definition of Poincar~ complex 

or pair when ~I # 0 and there are several possibilities. 

Suppose that C is a free chain complex over Z[w] ~ the group ring of a 

group w , (acting on the left) A : C + C @ C is a diagonal such that 

A(gc) = (g @ g)A(c) for g ~ w , c EC , i.e. we have an equivariant map 

A : C ÷ C ® C with the diagonal action of r on C @ C . This is the case for 

C = chains of X , X = universal cover of X , w -- w1(X) . 

Then A defines A 0 : C/ ÷ C @ C , where w acts on the right on C by 
-I 

cg = g c , g ~w , c eC . 

If x~ Hc~ (C, M) , some w-module M , then 

x@ I : C @ C ÷ M@ C , 
W T W 

is a chain map and we have defined a chain map 
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: C/ ® Horn (C, M) ÷M ® C , 
w Z w w 

by z ~x -- (x ~ 1)Ao(Z) . 

Passing to homology we get 

: ~m(C/w) @ Hi(C; M) + ~_i(C; M) , 

where Hi(c; M) = ith homology of the cochain complex Horn W (C, M) , and 

Hj(C~ M ) is the j-th homology of the chain complex M ~@ C . 

One possible definition of Poincar~ complex in the non-simply connected case 

might be the following: 

Definition. A CW complex X satisfies Poincar~ duality with local coefficients 

if there is a clans IX] 6Hm(X) such that IX] ~ : Hi(X; M) ÷ H .(X; M) is an 
.m-I 

isomorphism for all i , all w-modules M , w = Wl(X ) . Here HI(X; M) = 

= Ham w (C,(~), M)) , Hi(X; M) = Hi(M ~ C,(~)) . 

Closed oriented manifolds satisfy Poincar~ duality of this type, but they also 

have stronger duality properties. 

We note in passing that one could have included the case of non-orientable 

manifolds by taking twisted integer coefficients for the fundamental class IX], 

and defining cap product in this context. This gives greater generallity as in 

[Wall, S] but at the cost of increasing complication, so we will restrict ourselves 

to the oriented case. 

It follows from the existence of the Spivak normal fibre space and [Wall, 

F II, Theorem 87 that if X satisfies Poincar~ duality with local coefficients 

and if wIX is finitely presented, then it is dominated by a finite complex, 

[Browder, N] , though it may not be the homotopy type of a finite cemplex, 

[Wall, P. Theorem 1.5] . If ~I were not finitely presented on the other hand, 

it would be impossible to find a manifold with the same fundamental group, which 

leeds us to: 

Definition. A (oriented) Poincar~ complex is a CW complex X with WlX 

finitely presented, which satisfies Poincar~ duality with local coefficients. 

We will call X a finite Poincar& complex if in addition X has the homotopy 

type of a finite complex. 

If X is a finite complex, then the chains and cochalns of the universal 
,% 

cover X have natural w = ~I X bases, as free w-modules. 

If x 6 Cm(X) is a chain representing IX] ~ Hm(X) and if x ~ : C~(~) ~ C,(~) 

is a simple chain homotopy equivalence, then we call X a simple Poincar~ complex. 

This is the definition used by [Wall, S] . 
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Poincar~ pairs of these different types may be defined analogously, and smooth 

(PL) manifolds are Poincar~ complexes in each sense. 

One may attempt to develop a theory of surgery in the context of (i.e. for 

normal mappings into) Poincar& complexes of these three types. This has been done 

in EWall, S] for simple Poincar~ complexes and the other cases can be dealt with 

similarly. We now describe Wall's theory. 

Let X be a Poincar~ complex, and define the set of homotopy structures 

~H(x) as in the simply connected case. If X is a simple Poincar~ complex, define 

the set of simple homotopy structure ~(X) analogously to ~H(x) by requiring 

the homotopy equivalences and h-cobordisms in the definition to be simple. 

Theorem. [Wall, S~ . There exists a functor from finitely presented groups 

into graded abelian groups, Ln( ) and if X is a simple Poincar~ complex of 

dimension n ~ 5 with w1(X) = w , there is an exact sequence of sets 

Ln+1(w) ~,#~(X) n > NH(x) o >Ln(X ) 

where H = 0 , PL or Top. 

Further Ln+1(w) acts on ~s(X) so that n(x) = n(Y) if and only if x = ty for 

some tC Ln+1(w) . (Note that/H(X)s , NH(x) may be empty.) 

There are analogous sequences for pairs with a functor Ln(f) for group 

homomorphisms f : w ÷ ~' , and similar theories for Poincar& complexes and finite 

Poincar~ complexes without simplicity, but we shall concentrate our attention on 

this case. 

Partly generalizing the Product Formula for the obstructions in the simply 

connected case we have the 

Periodicity Theorem. l~all, S] . There is a natural isomorphism 

: Ln(W) ~ Ln+h(~) for all n such that the diagram 

Ln+1(~ ) __. ~s(X ) __9_>n NH(x) o -~ ~(~) 

I0 I 1 
H 

L+5(~ ) --->~s(X x ~p2) ~ NH(x x ~p2) ~ Ln+h(~ ) 

H N H commutes, where the map on ~S and are indueed by multiplying a normal map 

or simple homotopy equivalence by the identity map of ~p2 to itself. 

The calculation of these groups Ln(~) seems to~b~difficult problem, and not 

much is yet known about it. It can he approached algebraicly using the definition 

of ~all, S~ . For example the group L2k(~) is defined to be a Grothendieck 
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group of quadratic forms of a certain type on free finitely generated Z~-modules, 

with some extra structure. For w = Z 2 this was calculated in [Wall, N~ , and for 

= Zp more recently by Wall and Petrie. In EPetrie, AS] , it is shown how to 

use the Atiyah-Singer theory to help calculate these groups, and the relations 

between various surgery problems. 

In pall, N] , L2k+I(Z2) is also calculated, and JR, Lee, C~ has shown that 

L3(Z p) = O for p an odd prime, by algebraic arguments. 

In this paper, I would like to discuss geometric approaches to the calculation 

of Ln(W) and to ways of calculating the map o . 

Let us begin by considering ~ = Z . This case was essentially done in 

EBrowder, Z~ before the theory of [Wall, S~ had been developed. The analysis in 

that case is based on the observation that if W m+1 is a connected manifold with 

~i w = Z and if m >= h , then there is a I - connected U m+1 with 

BU = M x OO M x I , M i I - connected, so that W is diffeomorphic to 

U ~ (M x EO, 13) . Then one can analyze a normal map into W by analyzing the 

induced normal map over M x ~ and over U , i.e. two l-connected problems. 

More explicitly, let (f, b), f : W' ÷ W be a normal map, and make f transverse 

regular to M x ~ CW, so that f-1(M × [O, I~)= N x [0, 1]g_lW' , 

f-1(M x t) = N x t , and let V = W' - N x (0, I) . 

Then the restrictions of f and b define normal maps fo : N ÷ M , fl : V ÷ U , 

where Bfl is two copies of fo " 

A normal cobordism of f0 induces normal cobordisms of f and fl . Then if one 

can make f0 a homotopy equivalence N ÷ M , and take the resulting map V ÷ U 

(which is now a homotopy equivalence on BV = N x O~ N x I) and find a normal 

cobordism rel ~ of it to a hcmotopy equivalence into U then the result will 

be a normal cobordism of f to a homotopy equivalence. 

Similarly if one has a normal cobordism of two normal maps (fi' bi) i = O, I 

which are homotopy equivalences fi : W:z ~ W , then one could use the same technique 

as above to try to do surgery on the cobordism to make it an h-cobordlsm, provided 

that for each i , on f~1(M) = N i and fi1(U) = V i the restrictions of fi are 

homotopy equivalences. Such a situation may be achieved when W is a fibre bundle 

over S I with fibre M , using the fibering theorem of ~rowdar-Levine~ , and in 

general using EFarrell-HsiangS . 

Tl:ese arguments lead to a calculation of Ln(Z) by using the theorem of 

~Wall, S~ which describes the action of Ln+1(~) on ~Hs(X) : 

Theorem. Let M m be a manifold of dimension m > 5 with ~IM = ~ . For each 

element x a Lm+1(~) there is a normal cobordism W m+1 of the identity map 

M ÷ M to a simple hamotopy equivalence M' ~ M such that the obstruction to finding 
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a normal cobordism rel ~ of W to a simple homotopy equivalence is x . Further, 

,two such normal cobordisms are normally cobordant rel ~ . 

In other words, Lm+1(~) can be considered as the set of normal cobordism 

classes rel a of normal cobordisms of the identity of M to a simple hcmotopy 

equivalence for any m-manifold M with wIM = w . 

Then to calculate Lm+I(Z ) following [Shaneson~ we take M = S m-1 x S I 

and study normal cobordisms of M to a homotopy equivalent M' . Using [Browder, 

Levine] M' is a fibre bundle over S I with fibre N m-1 , a homotopy sphere. 

If F : W m+1 ÷ S m-1 x S I × [0, ~ is the normal cobordism between M and M' , 

we can cut W along F-I(s m-1 x ~, I~) = V m and obtain W = U oV x [a, b J  , 

where 

SU = V x a v V x b ~S m-1 x I ~N m-1 x I , 

aV -- S m-1 ~ N m-1 , (see diagram). 

S m-1 x S I 

S m-1 x I 1 

V x a 

Ii~ -I " ~  U xl 

Vxb 

Then the problem of doing surgery on W to make it an h-cobordism is reduced 

to the rpoblem of first making V into an h-cobordism by surgery leaving 

S m-1 ~ N m-1 = BV fixed and then doing surgery on the resulting U rel 3U to 

make it homotopy equivalent to S m-1 x I x E0, I~. On deduces 

Theorem. (Shaneson and Wall). 

~ ( z )  = ~ ( o )  + ~ . i ( o )  . 
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One can use a similar argument employing EFarrell~ to prove the more general 

theorem of [Shaneson-J (which has also be proved in [Wall, S]) . 

Theorem. There is a split exact sequence 

h G o ÷ LmCG) -~ nmCO ~ z )  -, ~ _ ~ (  ) + o 

where L h is the surgery obstruction group for hcmotopy equivalences, L m the 
m-1 

obstruction group for simple homotopy equivalences. 

A similar program was initiated by R. Lee to show Lm(O I • O 2 ) = Lm(G I) + Lm(G 2) 

where 01 • G 2 is the free product. He proposed to prove a codimension I embedding 

theorem to show that in the PL category if W = M I 9# M 2 (connected sum) and 

, , M: is W * W' is a simple homotopy equivalence then W' = M~ # M i where Mi÷ i 

a simple homotopy equivalence, generalizing a simply connected theorem of 

~Browder, E] . 

This WOUld replace the [Farrell~ and ~Browder-Levine~ theorems in the argument. 

His program unfortunately was only partially successful, in that he succeeded in 

proving his codimension I theorem only in half the dimensions necessary. 

His program was carried out and greatly generalized by Cappell, who has proved a 

very general codimension I embedding theorem for a suhmanifold N m-1 C W m such 

that Wl N injects into Wl w and a technical condition called "Wl N two sided in 

~i W" . With Cappell's theorem it is possible to extend the calculations of the 

surgery obstruction groups to many free products with amalgamation, some of which 

were carried out by Quinn. 

These results suggest that the groups Lm(~) may be closely related to the 

structure of submanifolds of a maniShld M with ~i M = w . 

Applying the theorem of ~haneson] inductively to calculate Lm(A) where A is 

free abelian, for example, shows how if we take M = T n = S I x ... x S I n-times, 

it is exactly the lattice of subtoruses T i C T n which are related to the structure 

of Lm(A) (compare ~Hsiang-Shaneson]). Similarly [Lopez de Medrano~ has shown 

how one can calculate Lm( Z 2) using the structure of codimension I manifolds of 

pm • as studied in [Browder-Livesay3 . It seems reasonable that there is a similar 

(though necessarily more complicated) method to calculate Lm(Zp) , or perhaps 

Lm(G) for finite G , explointing the structure of codimension I and 2 sub- 

manifolds of M (where Wl M = G) , which reflects the structure of the 2- 

skeleton of K(G, I )  , (compare [Browder, F~) . 
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