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Surgery and the Theory of Differentiable
Transformation Groups :

WiLLiAM BROWDER*

Recent progress in differential topology nas developed many powerful
techniques for the study of differentiablec manifolds, for classification
of manifolds, embeddings, diffeomorphisms, ctc. These mecthods have
been applied to the study of differentiable transformation groups with
some notable successes. I will try to outline in this paper some results
of the theory of surgery (or spherical modification) which have given
many good results about manifolds, and show how these results may be
applied to study actions of groups, in particular actions of §! and §°.

For the most part, the results of Chapters I and II are cither well
known, or in print in various places, or both, and include the work of
many persons. Many of the results of Chapter Il on semifree actions
of $' arc new however.

Chapter T is an exposition of the theory of surgery on l-connccted
manifolds as developed by J. MiLNOR, M. KErvaIrg, S. P. Novikov, the
author, and others, and gives some gencral applications in differential
topology. The point of view follows that of [7] in gencral.

Chapter I1 discussces free actions of S' and §* on homotopy spherecs,
ways of constructing them, and questions about invariant and charac-
teristic spheres. The results in this arca arc duc for the most part to the
HsiaNG brothers, MONTGOMERY and YANG, and M. ROTHENBERG
(unpublished in the latter casc).

In Chapter 111, we discuss semifrce actions of S' on homotopy
spheres, that is, actions which are free outside the fixed point sct F,
under the additional assumption that /' is a homotopy sphere. The
approach here is new and yields many ncw results as well as new proofs
of known results. In particular, we construct infinitely many inequi-
valent semifrec S' actions on homotopy spheres with fixed point sct the
standard sphere.

Wec have omitted many things. In Chapter T we have not discussed
SULLIVAN's point of view on the surgery problem [47], or surgery on
non-simply connected manifolds, such as the theory of [51]. In Chap-
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ters 11 and 1 we have emphasized the construction of examples, rather
than classification. In Chapter 111 we have discussed only $' actions,
although a similar theory may be constructed for $3 actions. Also the
results may be extended to construct infinitely many actions with S!
as fixed point set, by extending some of the results of Chapter 1 in a
simple way. Throughout, we nave not discussed Z,-actions, though
many results are known.

Many questions remain open which seem amenable to attack in
this direction:

1. What are the homotopy spheres which are being operated on in
our constructions, and what is the knot type of the fixed point set?

2. In Chapter 111, in the cascs where our theorem does not construct
an infinite number of semifree ' actions, are there in rcality only a
finite number? It secms likely when the dimension of the fixed point
set 4 (a homotopy sphere) is even.

3. How can one study the problem of invariant spheres for non-free
actions, in particular, for semifree actions?

This work on transformation groups has benefited greatly from
contact with many people. In particular my collaboration with G. R.
LivEsAY began my interest in this direction, and it was further stimulated
and educated by conversations and lectures by W.-C. HSIANG, W.-Y.
HsIANG, D. MONTGOMERY, C. T. YANG, G. BREDON, C. GrIFrEN, and

others.

I. The Surgery Problem and the Fundamental Results

All manifolds we shall deal with will be compact oriented with
boundary, equipped with a differential structure, and diffeomorphisms
will preserve orientation. In fact all the theorems of this section are
valid in the piecewise linear (p.1) category also (see [15]), using p. L
microbundles instead of linear bundles (sce [32]) for stable normal
bundles, and using p. 1. “plock bundles” (see [43, 39]), in place of normal

~bundles of embeddings. However we shall restrict our attention for the
most part to the differcntiable case.

In this chapter we shall describe the results of the theory of surgery
for simply connected manifolds. The account here follows that of [7]
closcly, and may be considered a globalization of the paper of KERVAIRE-
MILNOR [29] due to S. P. Novikov ([40, 41]) and the author [8).

1. Poincaré Pairs

A pair (X,Y) is called an m-dimensional Poincaré pair over R,
(R a ring) if therc is an element [X]GH,,,(X,Y;R) such that
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[X] ﬂ II"(X'; R)=H,, - (X,Y;R) is an isomorphism for all ¢. If R=Z
the ring of integers, we call (X,Y) a Poincaré pair, and il Y=¢ wé
call_X a Poincaré complex over R. (Recall that xNy is defined on the
chain level by the formula x(y=2Z(y(x))x;, where yeC*, xeC
and 4x=2ixi®x;, 4:C,-»C,®C, being a chain approximation t*(;
the diagonal.) The element [X]eH,(X,Y;R) is called the fundamental
class of X, or the orientation class if R=Z2.

We rcfcall some simple properties of Poincaré pairs developed in [7]:

(l.l) The diagram below is commutative (up to a sign) and all thc;
vertical arrows are isomorphisms.

e HITY(Y; R)=2> HY(X, Y;R) —i% HI(X;R) —E— HY(Y;R) ———

(n[,\'])nl (x10 i [x1N l CLXIN l

o Hyy (YiR)i2> Hyyo (X3 R) 55 Hyy o, YiR) 25 Hppg oy (YiR)—

(In particular Y is a Poincaré com 1 i i i
7 plex over R of dimension n—1 ¥

fundamental class [Y]=0[X]) ; .

.Now we sha}l describe how to “add” Poincaré pairs over a Poincaré
pair contained in the boundary. One must have a compatibility relation
among the fundamental classes.

dei'l X=X,UX, Xo=X,nX,, Yi=YnX, Let xeH,(X,Y;R),
and let x;eH,(X;,Xo,uY;R) be the image under the composite

H,(X,Y;R)— H,(X, XV Y;R) «* H,(X;, X0V Y;R), i=1,2,
(i+1=1 for i=2), xo€H,,- (X0, Yo;R), Xo=0;X;=—0,X,,

f?i:Hm(X!,Xou Y;;R)-H,, _(Xo, Yo;R) being the boundary operator
in the triple T(X »Xou Y, Y), composed with the inverse of the excision
Hm'—l(XO’ YOsR)—i_) Hm—l(XOU Yi’ YA’R)

imp(l;.%%] e(;t}cll]c:;tlon property) Two of the following three statements

a) (X,Y)is a Poincaré pair over R with fundamental class x.

P) (X, X,uY) is a Poincaré pair over R with fundamental class
x; i=1and 2.

c) (X, Yo) i a Poincaré pair over R with fundamental class x,.

The theorem (1.2) may be used in various directions for vgrious
purposes: for cxample, in the form (a), (c) imply (b) it is an important
algebraic step in the proof of [9, Theorem 1.1]. In this account we shall
use it to define sums of Poincar¢ complexes, 1. ¢., we use (b), (¢) imply (a)

If’ (X, )f) and (X', Y’) are Poincaré pairs (over R), a map Ji(X Y)
—(X",Y") is said to be of degree Uil L X]=1X"]. where I d.c;m‘tcs

the induced homology map f,:H,(X,Y; R)—»H,,,(X’, Y R) Hf fis a

I Proceedings
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map of degree I, then we may define inverses for [ l(X,ViR)
—~H,(X',Y';R) and [ H{(X;R)=H{(X";R) and the analogous cohomo-
logy maps as follows:

Consider the diagram

IIm—l'(X:R) I I’Im—i(x';R)

(1.3) mnl; XN | =
H(X,Y;R) = H(X',Y":R)

It follows easily from the properties of (-products ttlxat' f([x] Ny *(.x'))
= X"]ﬂx', for XIEH'"_"(X’;R)- If we dCﬁ‘le &*Hl(X s Y,R)—*H,(X, YsR)
by a,([X]Nx)=[X] Nf*(x), then f & =1. A similar definition
dcﬁne: o, H(X;R)—=H{(X;R) such that f*a*=1‘and s1m11a1:l E?ht?ng
maps in ;ohomology, a*, a*, as follows: oc*:H'""(X;}E)-—:Ig (X ,Rg
is defined by [X1No*x)=7([X]MNx) for xeH" (X ,R); an
F* H" (X, Y;R)—>H" (X", Y;R) is defined similarly, so that a* f*=1
on H*(X';R), a*f*=1 on H*(X,Y';R). _ . }

Cle;rly the same definitions work for Y to provide f,:H,(Y';R)
—H,(Y;R) and /3*:H*(Y;R)—+H*(Y';R) and we define:
K (X;R)=(ker fi)e © Hy(X;R),
KX ;R)=(kera*)? < HY(X;R),
K, (X, Y;R)=(ker f,), © Hy(X, Y;R),
K9(X, Y;R)=(ker &*)? = H(X, ¥;R),
K (Y;R)=(ker(f11),)y = H,(Y;R),
KA(Y;R)=(ker p*)? = HU(Y; R).

i ies of the K* and K,:

One may then prove the following propertne§ 0 . "

(1.5) There is a commutative (up to sign) diagram with exact rows
and split columns:.

0 0 0 0

I

— K" Y(Y;R) — KUX, Y;R) — KYX;R) — K%(Y;R) —

(1.4)

—» HT"Y(Y;R) — HY(X,Y;R) — HY(X;R) — HY(Y;R) —
v 2 ey R)

— HT"Y(Y';R)— HY(X',Y';R)— HY(X';R)— H(Y';R)

0 0 0 0

A similar diagram exists in homology with similar propertics.
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(1.6) The functors K* and K, satisly Poincaré duality, that is | X |1
carries K*(X,Y;R) into K (X;R) etc.and [X] ) induces
[X1N:KUX.Y;R) - K, _(X:R),
[XIN:KYX;R) —— K,,_ (X, Y;R),
@LXDO:KHYR) — K, (Y;R)
which are isomorphisms for all g.

(1.7) K* and K, satisfy the formulas of Universal Coefficients. In
particular, if f:(X,Y)=(X",Y’) is a map of degree 1 of Poincaré pairs
(over Z) then

K%X,Y;R)=Hom(K (X, Y;Z),R)+Ext(K,_,(X,Y;Z),R)
and
K (X,Y;R)=K(X,Y;Z)® R+Tor(K,_,(X,Y;Z),R),
and similar formulas for K*(X;R), K*(Y;R), etc. If R is a field and
S is a map of degree 1 of Poincaré pairs (over R) then

K%X,Y;R)=Hom(K (X, Y;R),R)

and similar formulas for K*(X;R), K*(Y;R).

Taking R=Q, the rational numbers, suppose f is a map of degrce 1
over @ and suppose that (f|Y)*:H*(Y';Q)—-H*(Y;Q) is an isomor-
phism. Then from (1.5) it follows that K*(X,Y;Q)=K*(X;Q). Then
from (1.8) and the identity relating cup and cap products: z([X](y)
=(yUz)([X]), ze H*(X;R), ye H*(X,Y;R), we may deduce that the
pairing:

K'(X,Y;R)® K" /(X,Y;R)~R,

.y =Upn[x],

is for R=Q, a non-singular pairing, and if i=m—i is even, it is symme-
tric.

Thus suppose f:(X,Y)—(X',Y") is a map of degree 1 of Poincaré
pairs over Q, and that (f|Y)*: H*(Y";Q)— H*(Y;Q) is an isomorphism,
and that m=4gq. Then we may define the index of f

(1.9) I(f)=signature of (,) on K?9(X,Y;Q).
Now in the splitting
H*(X,Y;Q)=image [*+ K*(X, Y:Q)

it is easy to prove that the two factors are orthogonal under the pairing
(,) and the pairing on image f* is isomorphic to that on H*(X",Y’;Q).
It follows that if we define I(X)=signature of (,)on H*(X,Y;Q),

(1.10) I(f)=1(X)-I(X").

(1.8)

1*
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Now suppose m=4k+1, so that dimension Y=4k and supposc
S(X,Y)=(X, Yy is a map of degree 1 of Poincar¢ pairs over Q. Then
1(f1Y) is defined. On the other hand in K2*(Y;Q) the image of
K2¥(X:; Q) is a subspace of half the rank, by Poincar¢ duality (1.6) and
(1.7), and annihilates itself under the pairing. it follows that

(1.1 I(f1Y)=0.

Now suppose the pairs (X,Y) and (X', Y’) arc the “sums” of pairs,
X=X,uX,; X,nX,=X, Yi=YnX, (X,Y) and (X;,X,0Y)) are
Poincaré pairs over R, i=1,2 with compatible orientations (sce (1.2)),
and similarly for (X', Y"). Suppose f: (X,Y)—=(X,Y) is a map of
degree | over R and that f(X;) < X;. It follows easily that f;=f|X;:
(X Xou V)= (X, XouY)), i= 1,2, and fo=[1X0, Yo)— (X0, Yg) are
maps of degree 1 over R.

Suppost that (f;|Y;u Xo)* i=1,2 are isomorphisms and that f¢§
is an isomorphism (all with @ coefficients). Then it is not hard to sce
that K2*(X,Y;Q) splits as the dircct sum of K*¥(X;,XouY,; @) and
K2¥(X,,Xou Y,; @) and we get if dim (X, Y)=4k:

(1.12) (Addition property of index) I(f)=1I1(f)+ I(f,).

We will want to define an analogous invariant in Z, in dimensions

4k+2, using Z, cohomology, but its definition requires much more

structure that the definition of index, and we shall not give its explicit
definition here, (see [7, 29 and 147]). '

2. Normal Maps and Cobordisms

Let (X, Y) be a pair of spaces, & a linear k-planc bundle over X.
Let (M™,0M™) be an m-dimensional compact differential manifold with
boundary, v* its normal bundle for a smooth embedding

(M,0M) c (D™HhSm+Eh), k>m+1.

(In such dimensions it follows that cmbeddings exist and are unique up
to isotopy, so that v* is also unique.)

A normal map of (M,0M),v) into ((X,Y),&) will consist of two
maps (f,b), where f: (M,IM)-(X, Y) is a continuous map, and
b:v—¢ is a linear bundle map lying over f.

A cobordism of a map [: (M,0M)-(X,Y) is a cobordism W of

(M,0M), ie, a manifold wm+l with dW=MuVuM’', where
2V =0aM M, together witha map F: (W, V)—(X,Y) such that FiM =1.
Il o is the normal bundic of (W. ¥y (D" ¥ x1, §""* "' x 1) (where
(M,0M) < (D" *x 0, Smrl=lsy, (M',0M') < (D"*kx 1, Sk 1)),
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and i.f (/,b) is a normal map, b:v—¢ over f, then a normal cobordism
of (f,b) will be a cobordism (W, F) of f together with a linear bundle
map B:w—¢ lying over F such that B|(w|M)=B|v=». .

We_shall say that the cobordism is rel Y if V=M xI), an
FlV.szOM’, Bl(w|V)=b|(v|0M). (We note that if Y=@, this is’auto—
matic.)

Now there is a natural collapsing map '
C:(D"*%, §"*k=H(T(v), T(v|J0M)) where T(v) is the Thom complex
of v, TW)=E(V)/Eo(v), where E(v) is the unit disk bundle, E,(v) is
the unit sphere bundle associated to v. The linear map b:v—¢ igduccs
a map of Thom complexes T(b): (T(v), T(v|0M))—(T(£), T(¢]Y)), and
Tb)y: T i(TO), TOM))> 7, ((T(E), T(]Y)). Then the clement
T®),({ChHem, . (T(), T(Y)) will be called the Thom invariant of the
normz}l map {f,b). Then as a standard application of the Thom trans-
versality theorem (see [49, 1, 7]) we have

(2.1) Theorem. The Thom invariant establishes a one to one corre-
spondence between normal cobordism classes of maps of m-manifolds into
(X,Y), &, and elements in =, (T(E), T(E|Y)).

This theorem allows one to apply the methods of homotopy theory
to' the study of normal cobordism of normal maps, to calculate upper
bounds to the number of such classes etc.

Nc?w suppose (X,Y) is a Poincaré pair of dimension m and that

gf,b) 1slasnormal m;:\p f2((M™,0M™)—(X,Y), b:v—¢ such that f is of
egree 1. Suppose that v and ¢ are oriented and that b S

oricntation. First we recall preseres the

f2.2) Thom lsor‘norphism Theorem. If & is an oriented k-plane bundle

over X , then there is a class Ue H¥(T(£)) such that U restricted to each
Sibre is the orientation class, and such that

Vu: BX) H*Y(T(©))

UU: HY(X,Y) ——— HH(T(Q), T(E|Y)

NU:H,(T (&) —— H,_,(X)

OUH,(TE), TEY)) = H,-(X,Y)
are isomorphisms.

(See [49, 33,27])
Here the cup and cap products are defined using the isomorphisms
H (T(@) = H (E), Eo(&)s
H,(T(&), T(|Y)) = H,(EC), Eo() v ECIY)),
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(and the corrcsponding isomorphisms in cohomology) and the appro-
priatc products in the pair, (E(&), Eo(¢)), etc.

It follows easily that if b:v—¢ preserves orientation, then the ap-
propriatc diagrams involving the Thom isomorphisms commute, for
example:

H(T(), TORM)) =2 H(T(&), TEY))

ne.| o |

H,_{M,0M) — L H _,(X,Y)
Hence if f, is of degree 1, then T'(b), is of “degree 1” also. In particular,
since if g is a gencrator of H, . (D"** S"**=1y C (9)=xeH,, ((TH),
T(v|dM)), such that xNU,=[M], it follows that the Thom invariant
a€m, +1(T(€), T(£]Y)) of the normal map (f,b) of degree 1 satisfies

2.3 he) U, =[x],

where h:n,—H, is the Hurewicz homomorphism.

Using (2.1) and (2.3) we get: '

(2.4) Normal cobordism classes of normal maps of degree 1 of m-mani-
folds into (X,Y), & are in one-to-one correspondence with elements
aem, +(T(&), T(E)Y)) suchthat h(@)U ¢=[X], the correspondence being
given by the Thom invariant.

In particular two such elements differ by an element in kernel k so
that we get:

Normal cobordism classes of normal maps of degree 1 of m mani-
Solds into (X,Y), & are in one-to-one correspondence with the elements
of kernel h,

h: 4l (T(E), TEIY)) > Hpi(T(E), TEIY)).

In the stable range, it is a well known result of homotopy theory
that kernel h is finite. Thus there arc only a finitc number of normal
cobordism classes of normal maps of dcgree 1.

Now if (f,b) is a normal map of degree 1, such that
(floM),: H (0M)—H (Y) is an isomorphism, m=4k, then we have:

(2.5) I(f) is divisible by 8.

This follows from the fact that I(f) is the index of the intersection
form on K,,(M; Z)/torsion, and this form has determinant 1 and is
even (i.e. (x,x)e2Z for all xeK,,(M;Z)/torsion). But a unimodular
symmetric matrix over Z with even diagonal entries has determinant
divisible by 8, (scc [34]). That the form is even may be deduced from
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the fact that & normal map scnds Wu elasses to Wu classes, or in several
other ways (c. f. [7]).
Then besides /8 in dimension 4k, for nor
h sion E mal ma b

S AM™,0M)—~(X,Y), m=4k+2, such that P LA,
(leM)*_: H (OM;Z,)-H (Y;Z,) is an isomorphism, we may dcfine
an invariant called the Kerv:ire invariant, or Arf invariant (it is given as
the Arf invariant of a quadratic form on (ker S 2x+1 OVEr Z,). Then
we have the basic theorem:

(2.6) Invariant Theorem. Let (f30), [:(M,0M)—(X,Y), b:v—& be
a normal map of degree 1, Jxt H (OM)—>H (Y) an isomorphism, (j( YY)
a Poincaré pair of dimension m, ete. Then there is an invariant ¢ defined
with the following properties:

() o€z, if m=4k, a=1(f)/8,
0€l,, if m=4k+2, ¢=Kervaire invariant,
=0, if mis odd.

(i) If (f,b) is normally cobordant rel Y to b)) s
St H (M)>H (X) is an isomorphism, then ¢ =0, URb) such tha

(ii)) a(f|OM,b|(v|oM))=0.

(iv) oisadditive,i.c.if M=M, UM, M3~ =M, nM,, X=X, v X,,
Xo=X,NnX,, etc, as in (1.2), (M,0M) and (X,Y) are the sum of two
manifolds and two Poincaré pairs, respectively, (f,b) is a normal map
of degreel, f(M)<X,, so that Ji=SIM,, b;=b|(vIM), etc. (fi,b))
i=1,2 are normal maps, and ¢ is defined for each. Then o

o(f)=0a(f)+a(f2).
(V) If Y=¢ and m=4k, then o(f,b)=g (Index M — Index X).

In the case m=4k, most of these properties follow easily from the
results of § 1. The definition and properties of the Kervaire invariant
(m=4k+2) are much more difficult to deduce, and we refer to [7] for
the complete account in the form given here.

It turns out that in the simply connected situation when dimension
m2=5, the invariant ¢ is the only obstruction to finding a normal co-
bordism rel Y to a homotopy equivalence. Explicitly we have:

(2.7) Fundamental Theorem of Surgery. Let (X,Y) be a Poincaré pair
of dimension m>=5, X 1-connected, & a linear k-plane bundle over X ,
and let (f,b) be a normal map of degree 1, f:(M,0M)—(X,Y), b: v—{,
such that f,: H,(0M)—-H (Y) is an isomorphism. Then (f,b) is norm-
ally cobordant rel Y to (f',b') with S M= X a homotopy equivalence
if and only if o(f,b)=0. In any case (1.b) is normally cobordant to
(/. 6)) with f* [m/2]-connected, where [a] = greatest integer <a.
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This thcorem was first proved by KirvairRe and MiLNOR [29] in the
case where X was a disk or a sphere, and subsequently gencralized by
S. P. Novikov [40, 41] and the author [8]. A complete account in the
present form is given in [7]. Extensions of these results for the non-
simply connected case have been given by WALL [51, 52].

The following theorem of KERVAIRE-MILNOR was to appear in the
second part of [297, which unfortunately has not been published to date.
A proof is given in [7].

(2.8) Plumbing Theorem. For (X,Y)=(D",S""!), E =trivial bundle,
m235, all values are realized for o(f,b), for (f.b) normal maps of
degree 1, f:(M™,0M)—(D",8™" ') with f:0M—S""' a homotopy equi-
valence.

(2.9) Remark. For m=6, 14, 30 all valucs are realized for o(f,b),
ST M-8,

The proof is well known for m=6, 14, and for m=30 it is proved
in [14].

One may now deduce some powerful corollaries such as the follow-
ing due to S. P. Novikov [41] and the author [8].

(2.10) Homotopy Type of Manifolds. Ler X be a 1-connected Poincaré
complex of dimension m=35, & a linear k-plane bundle over X, k>m+1,
%€ 7, 11 (T(E)) such that h(0)NU,=[X]eH,(X). If either

(i) m is odd,
(if) m=4k and condition H below holds
or

{iii) m=6, 14 or 30,
then there is a homotopy equivalence f of a smooth m-manifold M™ with X,
J:M—X such that f*(&) is the normal bundle of M™ < §"**. In cases
(i) and (ii) above, a represents the normal cobordism class of the homotopy
equivalence f.

The condition (H) is essentially that the Hirzebruch Index Theo- .

rem [24] hold. Namely, let ¢! be the bundle inverse of &, p, be: the
Pontryajin class, and L, be the Hirzebruch polynomial [24].

(H) Index X = Lk(h(f—"),--wpk(f'i)) [x7 .

Then (2.10) is an immediate consequence of (2.4), (2.7), in case m=4k
of (2.6) (v) and the Hirzebruch index theorem, and in case m=6, 14
or 30, of (2.9) and (2.6) (iv).

If (fub), fi:(M}",0M)—(X,Y) are normal maps of degree 1,
i—1,2, then we may define the sum of the two along a cell in the two
boundaries, (see (1.2)). We choose a component V; of Y, i=1,2 and
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let l/_,.=V,9ue}"*‘, with attaching map o;: §"~ 2 y0 -1 being the
top dimensional cell of ¥, so that H,,_{(V?)=0. Then the sum Xllx,
along 1| and V, is defined X,[[X,=X, U(em"! xI)u X,, with

e""!'x0 identified with ef~! <V,
e""!'x 1 identified with eJ~! < V,,

and the sum Y, #Y, along ¥, and V, is defined by Y2 U (S"~2 x nUy?
with Y?=V? U other components of ¥,, i=1,2 and :

§™72x0 identified with o,(S""2)< ¥,
§"72x 1 identified with a,(S"~2?)< V9,

Then (X,[[X,, Y, #Y,) is the Poincaré pair which is the sum (sce (1.2)).

The connected sum M,[[Mm, along components of dM, and
OM, is defined similarly using differentiably embedded cells in oM,
and 0M,, OM,#0M, defined similarly. There is a canonical way to
put a differential structure on the sum known as “straightening the
angle” (see [19, Chapter I, §3).

If we choose the cells in dM; so that f; maps them into those chosen
for Y;, we may, if necessary changing f; by a homotopy, and covering
by a homotopy of b;, get an induced map

flI_IfZ:(MIUMZ’aMl#aMZ)—)(XIUXb V,#Y,),

of degree 1, and arrange a map b, b, covering f,[]f,.

It follows from results of [18, 42] that the sum of manifolds de-
pends only on the components and orientations of the cells chosen, and
a similar fact is true for Poincaré pairs. On the other hand, the maps
defined may depend on the choice of homotopies if Y; is not simply
connected.

(2.11) Theorem. Let (X,Y) be an m-dimensional Poincaré pair with
X 1-connected, Y+#¢, m=5, and let (fib), f:(W™aW™—(X, Y) bea
normal map of degree 1 such that (floW),: H, (0 W)-H_(Y) is an iso-
morphism. Then there is a normal map of degree 1,
(g,c),g:(U”’,(?U’")—-»(D’”,S"'“’) with gloU a homotopy equivalence, such
that (f,b)] l(g.¢) is normally cobordant relY to a homotopy equivalence.
In particular, (f,b) is normally cobordant to a homotopy equivalence.

Proof. Let a=0(f,b) be the obstruction to surgery relY in (2.6).
Let g:(U™*1,0U™*")>(D"*!,8") (g.c) a normal map, with o(g,c)= —g,
fmd gloU:0U—S" a homotopy equivalence, which exists by the Plumb-
ing Theorem (2.8). Take the sum of the two normal maps (f,b) and
{9,c) along a cell in @W and another in ¢U. Then by (2.6) (iv),
,a{j'Ug,ﬂJc)=a-a=0, so by the Fundamental Theorem (2.7),
(/Llg.bl]e) is normally cobordant rel Y to a homotopy equivalence. -
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Recall that a cobordism W, dW=M UM’ is called an h-cobordism
if the inclusions M <« W and M’ < W are homotopy equivalences. It
is a result of SmALE [44] that if OM =¢, dimW>6, and W is 1-con-
nected then Wis diffeomorphic to M x1 and M’ x I, and in particular,
M is diffeomorphic to M.

As a conscquence of (2.11) we have a classification theorem due to
S. P. Novikov [40, 41],

(2.12) Classification of Manifolds. Let (f;,b) be normal maps,
SitM;=» X, i=0,1, such that f; are homotopy equivalences, X a 1-con-
nected Poincaré complex of dimension mz=4. Suppose (f4,b,) and
(f1,by) are normally cobordant. Then M, is h-cobordant to M,#Z,
where X is a homotopy m-sphere which bounds a parallelizable manifold.
In particular if m is cven >4, then M, is diffeomorphic to M.

KERVAIRE and MILNOR [29] have shown that the group of h-cobord-
ism classes of homotopy mm-spheres which bound parallelizable mani-
folds m>=4 is a cyclic group of finite order, 0 if m is even, or m=35,13,
order at most 2 if m=4k+1, and for m=4k+3 they calculated its
order, up to a factor of 2 in some cases. In [17], it was shown the order
is 2 for m=8k+1, and in [14], it is shown that the order is 2 for
m=4k+1 except possibly for m=27—3, and for m=29 the group is
.zero. This information together with (2.12) gives some upper bounds for
the number of closed manifolds in a given normal cobordism class.

Proof of (2.12). If (F,B) F: W— X is the normal cobordism, consider

F as a map
F:(W,MaUM,)> (X xI,Xx0UX x1),

F(M;)< X xi,i=0,1. Then (F,B) satisfies the hypotheses of (2.11), so
(F,B)] [(g.¢) (along M,) is normally cobordant relX x0UX x1) to a
homotopy equivalences, i. e. an h-cobordism between M, and M, #4d U,
(0U=2Z). Since g¢:(U,8U)—(D™*1,8™) and D™*! is contractible, it fol-
lows that the stable normal bundle of U is trivial, and since U has non-
empty boundary, it follows that U is parallelizable.

~ As another application of (2.11) we have the following theorem of
WALL [53] which extends (2.10) and (2.12) to the case of bounded mani-

folds.

(2.13) Theorem. Let (X,Y) be an m-dimensional Poincaré pair,
Y#¢,m=6,X and Y 1-connected, & a k-plane bundle over X, k>m+1, and
A€M+ 1 (T (&), T(EIY)) such that h(w)(\U,=[X]eH,(X,Y). Then there
is a normal map (f,b) in the class determined by o, f:(M,0M)—(X,Y),
such that f is a homotopy equivalence, and such an (f, b) (and hence (M,0M))
is unique up to diffeomorphism.
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Proof. Consider a representative (h,a) of the normal ¢obordism
_class of a h:(N,0N)-(X,Y). Then by (2.6) (iii) and (2.7), (h|ON,a|ON)
is nqrmally cobordant to a homotopy cquivalence. This normal co-
bordism cxtends in an obvious way to a normal cobordism of (h,a) to
(W,a) such that h':(N',0N")—(X,Y), W|ON:ON'>Y is a homotopy
cquivalence. Then (2.11) implics (K,a') is normal cobordant rel Y to a
homotopy equivalence.

To prove uniqueness we consider (/},5;), f;: (M;,0M)—(X,Y) homo-
topy cquivalences, i=0,1, F:(wm"!, V™)=(X,Y), (F,B) a normal
cobqrdism between (fy,b,) and (f;,b,). As in the proof of (2.12), we
consider F as a map F{W.V,My,M)>(X xI,YxI, X x0, X x B (we
recall that dW=M,0VuM,, OV=0M,udM,. Then a(FlowW)
=a(FIV)+o(FIMy)+0(FIM,) by (2.6) (iv), o(FloW)=0 by (2.6) (iii),
and ¢(FIM)=0, i=0,1, since F{M,=J; is a homotopy cquivalence.
Hence o(F|V)=0 so there is by (2.7) a normal cobordism of F|V rel
YxOu.Yx 1 to a homotopy equivalence. Hence we get a new normal
cobordism (F', B) between (f,,b,) and ( J1,b;) which is an h-cobordism
between OMy and M, in Yx I. Then as in (2.11) we may add a normal
map (g,¢), g:(U™*1,0U™* )>(D"*1, 5™ to (F',B') so that the result
1s normally cobordant to a homotopy equivalence, i.e. h-cobordism. .
But if (g,c) is added to (F',B’) along the part of the boundary of W’
between 0M,, and OM, i.e. away ‘rom My and M, then (F]lg,B]]c)
is still a normal cobordism between (fo-bo) and (f1,b,). Hence v&;e arrive
at an h-cobordism between them, and applying the h-cobordism theorem
of SMALE [44] twice, first to the boundary, and then to the interior, we
arrive at the result.

Now we give an example of an embedding theorem that can be
proved with these methods. The theorem is similar to a theorem of the
author in [10] and the proof is identical.

Suppose the total space of a g-planc bundle of over a space A is
contained as an open set in a space X, and let & be a k-plane bundle
over X. If (f;b), M™>X, b:v—¢ is a normal map, then by making f
transverse regular to A < X, we may suppose f~!(A)=N", N" has
normal bundle #7 in M™, m—n=gq, and f|E(y) is a linear bundle map,
c:n—a, where E(n) is the total space of the vector bundle n which is a
tubular neighborhood of N in M. Then (f]N, c+b|(v|N)) is a normal
map into A, with bundle «+(¢|A), (since the normal bundle of N in
D™** is the sum of its normal bundle in M and the restriction of M’s
normal bundle in D"** i.e. n+(v|N).)

. Suppose X, A Poincaré complexes arc, and the collapsing map X— T(x)
is of degree 1, and suppose M a closed manifold and [ is of degree 1.
Then (fIN, c+b|(v|N)) is a normal map of degree 1, and hence
o(fIN, c+b|(v|N)) is defined. We will sct o(fIN, e+b|(v|N)) =0 ,(/,b)
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to emphasize that its valuc does not depend on the particular way in
which f was made t-regular on A (see (2.0) (iii)).

Now suppose f:M™—M™ is a homotopy equivalence of smooth
manifolds. Then if we take over M’ the bundle & such that f*(&)=v,
the normal bundle of M in D"*¥ k>m+1, then choosing a bundle
map b:v—¢,(f;b) isanormal map. If N"isa smooth closed submanifold
of M'™, then as above oy.(f;b) is defined, and it can be shown to be
independent of the choice of b, above, so we may write in this case

- oy (fib)=on(f).

(2.14) Theorem. Let f:M™—M'™ be a homotopy equivalence of
closed smooth 1-connected manifolds, N = M'™ a l-connected smooth
submanifold, o its normal bundle, such that M'— N’ is l-connected,
nzS. If on.(f)=0, then (f,b), for any choice of b, is normally cobordant
to (f,b), f':M—=M' a homotopy equivalence, such that, if f'~'(N')=N,
S :{M,N,M —N)>(M',N',M’'=N’) is a homotopy equivalence on each
term. In particular, M has a submanifold homotopy equivalent to N’,
with complement homotopy equivalent to M’'—N' and normal bundle
induced from o'.

This theorem is a special case of a very gencral theorem about
submanifolds and “supermanifolds” which has many applications, to
existence and isotopy of embeddings, to study of manifolds with free or
free abelian fundamental group (c.f. [11, 10, 9], and a general treatment
will be given in a later paper. ‘

Proof. If oy.(f;b)=0, then f~'(N')=N" is normally cobordant
to an N homotopy equivalent to N'. Let (G,B), G:(U"*',N"UN)
—(N’xI,N'xOUN'x 1) be the normal cobordism, B:w—a +(IN'),
o the normal bundle of U < S"**xI. Then B™'(¢)=0a, is a g-plane
bundle over U, oo|N”"=«", the normal bundle of N"< M. Then
M xIUE(a,) with E(@”)x 1 identified with E(xo|N"), defines a co-
bordism W of M, and f on M x[ together with Bla, defines a map
F:W-M' with F~!(N)=U, (see figure). Then b over M xI and B

Mxl

Fig.
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restricted to the orthogonal complement of «, defines a map of the
normal bundle of W into ¢, to get a normal cobordism of (f,b) with
(/1,b,). Now f,:M,—-M’ is no longer a homotopy equivalence, but
JiYN)=N, fiIN:N->N' is a homotopy equivalence, f}(«)=a=nor-
mal bundle of N« M,, so_f,|0E(x):0E(x)—0E(') is also a homotopy
equivalence. Hence (f;,b,) is the sum of two maps '

J11E(0):(E(), OE(@))—(E(), 0E(2))
and

Jil(M, —E(®)), (M — E(a),0E())—(M’' — E(«), 0E("))
along 0E(x). Hence

a(fi)=0(fi|E(@)+a(f,IM,—E(x)

by (2.6) (iv), and since f|E(x) is a homotopy equivalence, o(f,|E(x))=0
and

o(f)=0a(f,I1M, - E(x)).

Now f; is normally cobordant (by the construction) tc f, and f is a
“ homotopy equivalence, so o(f))=0a(f)=0, by (2.6) (iii), and hence
o(f1|M,—E(x))=0. Now M’'—E(x') is homotopy equivalentto M'— N’
which is 1-connected by hypothesis, so from (2.7) it follows that
SilM | —E(a) is normally cobordant rel JE(a) to a homotopy equi-

. valence. This gives a normal cobordism of f; with f,:M,—»M’, f,=f,

on E(a) and f,|M,—E(x) is a homotopy equivalence with M'— E(«').
It follows from the Mayer-Vietoris theorem that f,.: H (M,)—H (M)
is an isomorphism, and hence a homotopy equivalence, by the theorem
of J. H. C. WHITEHEAD, and f,:(M,,N,M, —~N)-»(M',N',M'—~N’) is a
homotopy equivalence on each term. Now (f,,b,) is normally cobordant
to (f,b), so by Novikov's theorem (2.12), (f,b) is diffeomorphic to
(f2,b2)#(g,c), where g:2Z™—S™ is a homotopy equivalent. But if 2
is added to M,—N, i.e. away from N, then M=M,#ZX still contains
N with normal bundle o, complement homotopy equivalent to M'—N’,
ete. This completes the proof of (2.14).

Next we use the methods of surgery to construct exotic diffeomor-
phisms of simply connected manifolds. This method was developed in
[13] and we review it in the special case of diffeomorphisms homotopic

"~ to the identity.

. Let W"*! be a manifold, M™< W""! a smooth submanifold, M
1-connected, and let h:W™"*!'->M"xS' be a homotopy equivalence
with the property that W™ '(Mxs)=M < W, some se8*; and
h'=hiM:M—M x s is given by II'(x)=(x,s), xe M. Let m>=5.
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(2.15) There is a diffeomorphisim f:M—M such that f is howiotopic
to the identity and W is diffeomorphic to the mapping torus M rof £
M, =M x1 modulo the identification (x,0)=(f(x),1), xe M.

If we “cut W along M”, i.c. remove a neighborhood M xI of M
in W, we obtain a manifold W, dW=Mx0UMx1, and f restricts
to a map

FWMx0UMx 1)»(MxI,Mx0UM x 1)

with fIM x i=identity, i=0,1, (thinking of M x S'=(M x I)U(M x I)
and assuming f|M x I =identity, M xI < W). Since M is 1-connected
and f is a homotopy equivalence, it is easy to deduce that W is 1-con-
nected and f is a homotopy equivalence, and hence W is an h-cobordism
between M x0 and M x 1. Since m>S5, SMALE’s h-cobordism theorem
implies that there is a diffeomorphism F:W-sM x I such that F|M x0
=identity. Define f=F|M x1:M—M, which is a diffeomorphism.
Then W=WuU(M xI) with M xic W identified by the identity with
MxicMxI, i=0,1. Then G=Fuidentity: W=Wu(M xI)-M,
=(MxI)u(M xI) (with M x0 identified with M x0 by the identity,
M x1 identified with M x 1 by f) defines a diffeomorphism of W with
M ; =the mapping torus of f.

Now hG™':M,—M x S* is a homotopy equivalence and hG~!|M
=identity: M—M x5, seS'. “Cutting along M” again we get a map
H: MxI-MxI, H|M x 0 =identity, HMx1=hG '|Mx1
=(Mx1)f'=f"" since h|M x 1 =identity, Mx1 < W, Hence H
defines a homotopy between f~! and the identity, and hence f is
homotopic to the identity, which proves (2.15).

We note that the analog of (2.15) is true with a similar proof if we
take another bundle over S!' instcad of M xS'. Also similar results
hold for bounded M (see [13]).

Now we investigate the problem of finding such manifolds W as in
(2.15), using the methods of surgery.

Let & be a linear k-plane bundle over M™ x S' where M™ is a smooth
1-connected manifold of dimension m>5, k>m+2. Let v**?! be the
normal bundle of M™ in §™***! and let b:(&|M xs)+¢e'—v**! be a
linear bundle equivalence, seS*. Let 5:T(E)—T(E|M x s)+¢') be the
natural map which collapses T(£|M x I) toapoint,where M x I < M x S*
is disjoint from the fibre M xs. Let cen,, 4.4 (T(v)) be thc homotopy
class of the natural collapsing map.

(2.16) Theorem. Let a€m, ;4 (T() be such that T(b),n,(x)
=CEMyx+1(T(V), and let (f;b) be the normal map f:W—-M xS
corresponding to o. Then (f,b) is normally cobordant to (f',b),
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f’:W'—-»MXS‘, W =M s g.M—DM a di 'i{(;mor his " Yy
if and only if o(,b)=0." Weomorphism, J'|M = identity,

Thi§ theorem is essent‘iglly a special case of a thcdrem about mani-
folds with =, =7 proved in [11]. Tke proof is similar to that of (2.14),

Proof. Since T(b)en (@)=c, it follows by a transversality argument
that flf~'"(M xs) is normally cobordant to the identity MM x g
By the Same argument as in the proof of (2.14) we may find a norm:«;i
cobordism of f to S W-MxS'\, MxIcW and fIMxI:Mxt{
SMxIcMxS* is the identity. Let U=W—intM x 1 éo that
f”‘=f’lU: U—>M x I (the other half of M x S* =(M xI)U(M x I)). Then
f"isa nqrmal map, f"|0U is the identity, so o(f",b") is defined, and
by (2.6) (iv), o(f",b")=a(f",b"), while o(f,bY=0(f,b) since they are
normal}y cobordant. Hence if o( £b)=0, then o(f ",b")=0, and since
M x1 is l-connected, dimension 235, it follows from (2.7) that (f”,b")
1s normally cobordant rel M x0UMx1 to a homotopy equivalex;ce
S (UL0U) (M x I, M x {0,1}), OU'=Mx0UM x1 and STIM xd
UM x 1=identity. Then the union UuMxI=W, and Sruid:
W--MxS! is a homotopy equivalence satisfying the hypotheses of -
(2.15) and the result follows.

Let o:W™t ' M"xS! be a homotopy equivalence such that
Mc W, o|M=identity: M—>M x5, and let ¢* be the normal bundle
of Win §"*4*1 k> m+2 Then it follows that &{M +e&' =y**! i5 the nor-
mal bundle of M in §"*¥*1 since Mc M x [ = W, and it follows from the
theorem of Hirscu [23] and ATivan [2] that there is a fibre homotopy
equ§valence B:&—vxe® covering ¢ such that B|(&|M) is a linear
cquivalence.

'Ijhus in looking for bundlecs ¢ to use in applying (2.16), we may
restrict our attention to bundles ¢ over M xS! such that there is a
ffbre homotopy equivalence B:&E—vx:c® which restricted to EIM is a
linear equivalence. Now MxS'YMxs is homeomorphic to 2(M ),
tl.1e reduced suspension of M., wherc M, =M u(point). Then the
virtual bundle ¢—(vx&%)|M xs is trivial (as a lincar. bundle), so
E—(vxe®=h*(y) where h:M x S'->Z(M,) is the collapsing map,
7€KO(Z(M,)). Since Mxsc M xS! is a retract it follows that

0-KO(Z(M,))»KO(M x S)= K O(M x 5)-0

S0 7 is unique, and it follows similarly that y is fibre homotopically
tr§v§al. Wedenote by L(X)<= KO(X ) the subgroup offibre homotopically
trivial bundles.

‘ _an\'grsely if Y€ L(Z (M), then one may assume the fibre homotopy
trivialization of y is linear at the base point. Then this induces a fibre
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homotopy equivalence f:h*(y) -9, such that /fl(h*(}')lM‘x s5) is lincar.
Henee a=id-+fiv xe® -+ 0¥ () > (v x ")+ &9 = (v + &4 x £© s a fibre ho-
motopy trivialization, lincar over M xs, and v*+¢% is the normal
bundle of M in S"**4 Let cemy,y iy e (T((V+29) x %) be the col-
lapsing map for M x S', where (v*+2%)x¢° is the normal bundﬂlc. of
MxS' in §"*k*a*l Then ¢=vxe’+h*(y) and T(e "), (c) satisfy
the hypotheses of (2.16).

(2.17) Lemma. The Pontryagin class defines a linear map
P:KO(Z X)-H*"(Z X), i.e. P(x+y)=P(x)+P(y)—1, where
X.yeKOZX), P=1+p,+p,+ - is the total Pontryagin class, p;e H,

Proof. In general P(a+ )= P(a) P(f3) (sce [33,27]), but £ X being
a suspension, products of positive dimensional classes are zero, and the
result follows. )

If I=(,is,...,i,), define the Pontryagin number of a bundle §
over a4 manifold N, by

P& [N = <p;,(3)pi,0)-.. pi,(OL[N]>.

(2.18) Lemma. The map R:KO(2(M.,))—-Q given by
RV =2 A P(L, (v X €%+ h*(y)) [M x §'7, 4,€Q is a linear map.

Proof. Since all products of positive dimensional elements
of H¥(¥(M,)) are zero, and h*(P(y))=P(h*(7), it follows that for
any polynomial G(x, ..., x,), G(a;,a,,..., p,(h* (7)), ..., pi(h* () is linear
in the elements p,(h*(y)), and the coefficients depend only on the a;s
and the coefficients of G. Since P(vxe®+h*(y)) is a polynomial,
P(I,(vx &%) +h*(y)) is a polynomial, and the result follows.

(2.19) Theorem, Let M™ be a 1-connected manifold, m>=5, m even or
m=35, 13 or 29. Then for each element yeL(Z(M.)) there is a diffeo-
morphism  f:M—M such that f is homotopic to the identit », and the
bundle over M xS' corresponding to the normal bundle of the mapping
torus My is vXe®+h*(y), h:M xSt —% (M ), v the stable normal bundle
of M. If m=3mod4, this is true for a submodule 1! of L(Z(M.)), where
L'=kernel of the linear map L(Z(M.,))»Q induced by the Hirzebruch
L-genus.

This follows immediately from (2.16), the discussion following and
(2.18). N ‘
Now 1let us consider the question of whether the dlffeomor_phnsms
corresponding to different elements of L(Z(M,)} arc actually dx'fferent,
up to isotopy or pseudo-isotopy. If @(M)=group of pseudo-isotopy
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classes of orientation preserving diffcomorphisms SiM-M, and let
Do(M)=subgroup of f which are homotopic to the identity. One would
like to define a map .@JM)—»L(Z(MQ) inverse to the construction
above but thereisa difficulty created by the fact that there may be several
different ways of defining a homotopy of J€Dy(M) to the identity,

Let f:M—M be a map, heMxI-Mx1, i=1,2, two homotopies
of f with the identity, i. e. hi(x,0)=(x,0), hi(x,1)=(f(x),1), i=1,2. Define
hi:MxS'M by hix,0)=(h(x,¢), 1), which respects the identifications
of MxI to MxS' and M. Thus h; has the properties:

(i) fi,- is a homotopy cquivalence,
(ii) hIM x s=inclusion of the fibre M < M o
(ili) ph;=p, where PiM;—S' p:M xS§'-S!

are the natural projections induced by (x,1)—(t).
Let us consider the induced homotopy equivalence g=hy'h,:
MxS'S>MxS'. Let ~ mean “homotopic to”.

(2.20) Lemma. Let g:M x $'— M x S! be the homotopy equivalence
induced by two different homotopies of amap f to the identity (as above).
Then

a) g|M x s~ inclusion,

b) pg~p, where p: M x S'= 8" is projection.

The proof follows immediately from the properties (ii) and (iii) of
the h;, i=1,2.

Let I (w)=group of homotopy classes of bundle maps b:o-—w,
@ some stable bundle over M, b covering p(b):M—M, the induced
map of base spaces, which is assumed a homotopy equivalence. Then
p: T (w)->H (M)=the group of homotopy classes of homotopy equi-
valences, is a homomorphism of groups. There is an easy argument that
the groups 7 (w), 7 (@™') and T (9 are all isomorphic, &7 the trivial
bundle, provided they are all stable (i. e. fibre dimension » dim M),

Let T (w)=kerp, and define 7 #(w)=group of homotopy classes
of bundle maps ¢:w—w which lie over the identity of M (as do the
homotopies). Then there is a natural homomorphism {: 9 w(0)=T o(w),
which is clearly onto by the bundle covering homotopy theorem, but
may not in general be 1 —1.

If b:w-w is a bundle map covering the map f:M-—M of basc
spaces, then we define a bundle @ over M s by identifying wx0 and
wx1in wxI over M x I, using the bundle map b. Then @|M x s=q.
Suppose f=identity, so that @ is a bundle over M x S! and oM xs
=wx’ Then (@—wxe®)\M x s=0 in KO(M xs) sothat @— x £°

2 Proceedings
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maps in rational cohomology. FFor the special case of K-theory we refer
to [3] or [4].
Now we recall that for any space X
(2.26) Lemma. L(X)< KO(X) is a submodule of maximal rank.
Proof. L(X) is defined to be the kernel J: KO(X)-J(X ) (see [2]).
But J(X) is finite [2], so L(X) is of maximal rank.
Combining (2.24), (2.25) and (2.26) we get the result:

(2.27) Corollary. With hypotheses of (2.24) if m is even or m=35, 13,

or 29, Ag@(M)) has rank=rank H**(X(M.)), while rank Ay(2,(M)) |

=rank H¥*(Z(M,))—1 if m=4n—1.

Without special assumptions on M we may define invariants using
Pontryagin numbers.

Let f;:M,—»M,; be diffeomorphisms, i=1,2. We shall say that
f, is cobordant to f; if there is a W, cobordism between M, and M,,
and a diffcomorphism F:W->W such that F|M;=f,. In the uspal
way one may speak of oriented cobordism (of orientation preserving
diffeomorphisms of oriented manifolds) etc., just as in the usual theory
of cobordism. Clearly, if f; is cobordant to f,, then M, is cobordant
to M, (W; being the cobordism). As usual the Pontryagin numbers
depend only on the cobordism class and we get:

(2.28) Theorem. The mapping torus construction defines a map
0:9(M™)—Q,,+ such that

(i) 0(f) depends only on the cobordism class of f,

(i) O(/"=n0()), . .
(i1) If [1,f2€2o(M),0(f,f2)=00/1)+0(]2)

Proof. (i) is obvious, (ii) follows from the fact that M . is the n-fo{d
cover of M. (iii) follows from (2.18), (2.22) and the fact that such a g is
of degree 1.

II. Free Actions of S! and S3 on Homotopy Spheres

The first strong application of the modern methods of differential
topology to transformation groups was the paper of W. C. and W. Y.
1s1aNG [26] on $' and $? actions on S'*, followed soon by the paper
of MONTGOMERY and YANG [35], on S! actions on homotopy seven
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spheres. In the former, the special results of Exres and Kuipkr [20] on
8-manifolds were.used, while in the latter, special propcerties of dimension
7 were used to translate the classification of free $! actions into a question
about knotted $%'s in S°, and then the results of HAEFLIGER [22] were
applicd.

In order to generalize the theorems of the HSIANGs and MONTGOMERY
and YANG to higher dimensions it is necessary to use the techniques of
surgery, using the results of Chapter I. This was first done by W. C. HsIANG
[25], as well as in unpublished work of M. ROTHENBERG. More recently
SULLIVAN [47, 48] obtained some interesting examples, and some very
comprehensive piecewise linear results, but we will not discuss them
here.

In § 3, we shall discuss the construction of free S' and $§3 actions,
studying the orbit space with the results of Chapter I, and in § 4 we study
the question of finding invariant embedded spheres.

3. Construction of Free S! and S3 Actions

Let us denote by (M™,¢,G) a differentiable action of the Lic group
G on the smooth manifold M, i.e. ¢:GxM—-M such that, if meM,
x,yeQ@,
) o(x,0(,m)=0e(xy,m),
(i) @(e,m)=m, e=identity of G,
(iii) ¢ isa C*® map.
The action ¢ is called free if for any me M

o(g,m)=m implies g=e.

We recall that if M™/p=N is the orbit space, N ={Gm,meM}, then
for a free G-action, M™—N is a principal G-bundle, N is a differentiable
n-manifold, m—n=dimension of G.

Now if M™ is a homotopy m-sphere, then M is (m—1)-connected
and thus by [45, (19.4)], the principal G-bundle M—N is m-universal,
and N is the homotopy type of the classifying space of G, up to dimen-
sionm. If G=5',i=0,1,3, a classifying space for G is the projective space
over the reals, complexes, or quaternions, respectively, and the fibrations
of spheres, S"—RP", S§2"*!LCP" §*"*3LHP" are k-universal for
k=n,2n+1, 4n+3 respectively, for the different groups.

Let (2™ ¢,S') be a free action of the circle group S' on a homotopy
m-sphere Z™. By the Lefschetz fixed point thcorem, since S! is connected
and the action is free (so without fixed points), it follows that m must be
odd, m=2n+1. Then the orbit space N=2Z/¢p is of dimension 2a,



c=h*(y), yeKO(Z(M ) where Z(M  )=M xS'/M x s, and 7y is unique,
since M xs is a retract of M x S*.

(2.21) Proposition. The correspondence b—y above, depends only
on the class of bedJ ,(w), and defines a homomorphism B:J 4(w)
—KO(Z(M,)).

Proof. To check that the definition depends only on the class in
T 4(w) is routine.

To show that f8 is a homomorphism, we use the fact that for a stable
bundlew, 7 4(w)=T ,(w+e%), anyq. If by,b,€T (), Bb;=D;— v x £°,
then consider 14+1+4b, and b, +1+1e7 y(w+w ' +w). Clearly b,
and b;+1+41 have the same image in KO(Z(M,)), similarly for b,.
Also b b7 ,(w) corresponds to (b, +1+1)(1+1+by)=b,+1+b,
eﬁ/"ﬁ(a)+w" +w). But the bundle corresponding to b, +1+b, over
MxS' is clearly @+w™!xe°+@®,. Then since o™ '=-w in KO,
B, +1+b)=0;+0 ' x4+ D~ X =0, —w x £°+ Dy —w x £°
=pf(b,)+ B(b;), which proves (2.21).

(2.22) Lemma. Let x4,x,€7 y4(w) such that {(x)={(x;)eT o(w),
and let wy,0,€ KO(M x S') be the elements corresponding to x, and x,.
Then there is a homotopy equivalence g:M x S'—>M x S' such that (a)
glM x s ~inclusion, (b) pg~p, where p:M xS'—>S! is projection, and
such that g*w,=wy, and if G:Z(M,)->Z(M,) is the homotopy equi-
valence induced by g, G*(B(x,))=B(x,).

The lemma follows from the bundle covering homotopy theorem
and (2.20).

Proof. Let b;:w—w be representatives of x,€7 4(w), i=0,1, so
that b; lies over 1:M—M. Then {(xy)={(x,) implies there is a bundle
map B:wxI—wxI covering h:M xI—-M x1 such that Bloxi=b,
so that h|M x i=identity, i=0,1. Takingthe bundlemap B'=B(hy ' x 1):
wxI—wxI over h, we find B'|wx0=identity, Blox1=bbhy"', and
thus defines a map of the identified bundles wy—w,, where w;=w x|
with (v,0) identified with (b,(v),1), veE(w). For B'(1,0)=(v,0) and
B'(bo(v),1)=(b bg ' bo(v),1)=(b(v),1), so preserves identification. Hence
the map g induced by h, g:M xS'—>M x S' has properties (a) and (b)
and g*(w,)=wy.

With strong hypotheses on M we may define some strong invariants.

Condition K. A manifold satisfies condition K if for any homotopy
equivalence g: M x S'—>M x S' such that a) g|M xs~inclusion and b)
pg~p, we have g*: H**(M x S'; Q)— H**(M x §'; Q) is the identity.

(2.23) Lemma, If' M satisfies condition (K) above then the formula
A(y)=P(Bx), where {x=y, defines alincar map T olm)->H*(Z(M ,); Q).

Proof. A is dcfined by the digram

T (@) <> KO(E(M ) - H¥™(5(M,,); Q)

Cl R A -

Since { is a homomorphism, 8 is a homomorphism by (2.21) and P is
linear by (2:17), and { is onto, the result will follow if 4 is well defined.
By (2.22), if {(x))={(x;) then B(x;)=7*B(x,), and hence P(f(x,))
:-—-P(g*[i().c,))ég* P(B(x,))=P(B(x,)), sincc g*=identity implies that
g*=identity since h*: H*(Z(M,))—H*(M x S') is a monomorphism.
This proves (2.23).

We may now sum up with the following theorem which we will
apply in § 6.

(2.24) Theorem. Let M™ be a closed 1-connected manifold of dimen-
sion m25, which satisfies condition (K) above. Then there is a homo-

’ morphism Aq: Do(M)—H**(£(M,); Q) such that

a) If misevenor m=5,13,29, then A, is onto the image P(L(Z(M ,))).

b) If m=4n—1, Ay(Po(M)) = P(L(Z(M ) is a submodule of rank
one less.

Proof. The differential f—df defines a homomorphism,
d:Do(M)—-7,(1), t=tangent bundlc of M. Then A of (2.23) composcd
with d defincs A,=Ad. But d(f) is casily seen to induce the tangent
bundle of M, in §™*¥'4+! Then (2.19), (2.23) complete the proof.

We note that il m=4n—1 the Hirzebruch polynomial is not zcro
on L(Z(M.)), becausc it contains p. With a non-zero cocfficient, so that
the rank is always reduced by 1 in applying (2.19), to satisfy the index
condition, (H).

(2.25) Lemma. KO(X) modulo torsion is isomorphic to Y (X))
14
modulo torsion, and the Pontryagin classes are a complete set of invariants,

modulo torsion, (X finite complex).

This is a standard fact, a special casc of a very general thcorem that
maps into H-spaccs arc determined modulo torsion by their induced
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and the principal bundie "= N2* is classified by a map [AN¥CP*,
since ST CP" is (2n+ 1)-universal. Since for the m-classifying space
B of a group G, n(B)=n,.,(G), i<m—1, [45, (19.9)], it follows that
Soim(NY=»r(CP" is an isomorphism for i<2n, and it follows that
since N and CP" are 2n-dimensional that N is homotopy equivalent to
CP". Similar arguments in the case of S° and S may be made, so that
wce get:

{3.1) Proposition. Let (™ ¢,5), i=0,1 or 3 be a jree action of a
sphere group on a homotopy m-sphere Z™. Then the orbit space N=2Z/gp
is the homotopy type of projective space, real, complex or quaternionic,
respectively, for S°, S or S3. '

On the other hand if two actions (Z7,¢,,S%) and (Z%,¢,,5) are
equivalent, i.e. there is an equivariant diffeomorphism f:Z7—2%, then
f induces a diffeomorphism of the orbit spaces f:N;—N,. On the
other hand a diffeomorphism f:N,—N, induces a diffeomorphism of
the principal bundles f:X,—X, which is a G-bundle map, i.e. an equi-
valence of the actions. It follows that:

(3.2) Proposition. Equivalence classes of actions (X™ ¢, S') are in
1—1 correspondence with diffeomorphism classes of manifolds homotopy
equivalent to projective space, over R, C or H respectively, for i=0, 1 or 3.

This problem is exactly of the type which may be studied using the
surgery techniques of Chapter I, in the case of S* and S°.
We recall the theorem of HirscH [23] and ATivaH [2]:

(3.3) Theorem. Let M, and M, be two closed m-manifolds embedded
in S™** with normal bundles v, and v, respectively, k>m+1. If 1M, —>M,
is a homotopy equivalence, then there is fibre homotopy equivalence
b:v,—v, lying over f.

Thus the stable normal bundle of a manifold homotopy equivalent
to projective space has its stable normal bundle fibre homotopy equi-
valent to that of projective space.

Let & be a linear k-plane bundle over X =CP" (or QP") which is
fibre homotopy equivalent to the stable normal bundle v* of X in S™*¥,
m=dim X =2n for CP"(m=4n for QP"). Then it follows that the fibre
homotopy equivalence f:v—¢ induces a homotopy equivalence of the
‘Thom complexes T(f):T(v)~T(). Also T(f), commutes with the
Thom isomorphism since T(f)*(Uy)="U,, so it follows that if cem,, .

S . B
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(T (or myy ( {T(V)) is the cluss of the natural collapsing map (sce §
then A(c)(NU,=[X] and it follows that h(T(f),,(c))a Uf: [)}]( s

Then if X=CP" and n=3, 7 or 15 we may immediately apply
(2.10) to get a smooth manifold M?*, homotopy equivalent to CP”
with normal bundle & in §2"+k,

A simple way to construct such bundies & over CP" n=3,7o0r15
is the following: Let #* be a bundle over $2"2, 2n—2=4g, let g:CP"~ )
—+S§2"~2 be of degree ! and suppose that p (n)#£0 and 5 is fibre homo-
topicaily trividl. Since n—1 is divisible by 2, if xeH*(CP";Z,), then
qu(.x"” ')=0, by the Cartar: formula, and therefore, since X"~ ! generates
Hl"‘_Z(CP";ZZ), the map g:CP*"!'—5%""2 extends to f:CP"-s§2"-2
(see [46]) and f*(n) is a fibre homotopically trivial bundle with g-th
Pontryagin class p,(/*(1))#0. We note that such bundles n over S§*
exist since 7,,(B,,)=Z and the number of fibre homotopy classes of
spherical fibre spaces is finite, being the order of Taq+x(SY), (k large),
(see [2]).

Then if we set &=v+/*(y), since f*(n) is fibre homotopically
trivial, ¢ is fibre homotopy equivalent to v+¢f, ¢ =the trivial bundlc:.,
which is again the normal bundle of CP” in S2"***¢, Hence we may
apply (2.10) to get a manifold M?" homotopy equivalent to CP" but
with p,(M) different from P(CP"), (n=3, 7 or 15, g=1, 3 or 7). The
different possible n’s each give different M2" with different Pgs SO that
we get a different action of S on §2"*! for each of these, and we have
proved:

(3.3) Theorem. One can construct infinitely many different free S!
actions on homotopy (2n+1)-spheres for n=3, 7 or 15, distinguished
by the Pontryagin class p, of the orbit space, q=1, 3 or 7, with pifori<gq,
being the same as for CP".

In dimension 6 we can get a sliglitly finer result to reconstruct all
the Montgomery-Yang examples [35]. Namely if aeny(B;,) is a gene-
rator, then the smallest multiple of « which is fibre homotopy trivial is
24a. However, if g:CP2—8* is of degree 1, it can be shown that g*(12a)
is fibre homotopy trivial. Then the extension of g*(12a) to CP3 is still
fibre homotopy trivial since 75,,(S¥)=0 (sce [50]). Using all multiples
of this bundle yields the Montgomery-Yang examples, which are all
of the actions of S* on homotopy 7-spheres [35].

For §' actions on homotopy (4n+1-spheres and S* actions on
homotopy (4n+ 3)-sphercs, onc may proceed in a similar way, trying
to find bundles ¢ over CP?" or QP" which are fibre homotopy equivalent
to the normal bundle v, and with the additional restriction that condition
(H) holds, i.e. that the Hirzebruch index formula is truc for ¢ in place
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of v. This was shown by W. C. HSIANG [25]. and we refer to that paper
for the explicit construction of these bundles, by which he proves:

(3.4) Theorem. There are infinitely many free S' (or S3) actions
on homotopy (2n+1)-spheres ((4n+3)-spheres) n>3 (n>1) which are
inequivalent and distinguished by the rational Pontryagin classes of the
quotient space.

We note that the exotic S* actions on (4n+ 3)-spheres are constructed
as the restrictions of the exotic §* actions (see [25].

4. Characteristic and Invariant Spheres of
Free S! and S3 Actions on Homotopy Spheres

Let (", ¢,8), i=0,10r3beafrec S action on the homotopy sphere
™ As we saw in § 3, the quotient space I™/p=N", m—n=i, isa diffe-
rentiable manifold, homotopy equivalent to the corresponding projec-
tive space P* (real, complex or quaternionic according to whether i=0,
{ or 3). Let f:N—P* be the homotopy cquivalence, and suppose [ is
transverse regular on P* < P¥ so that Q=f “1(P) is a smooth sub-
manifold of N with normal bundle induced from that of P“< PX. We
call Q a characteristic submanifold of N and the induced S principal
bundle Q< 2™, a characteristic submanifold of Z™ Note that the
codimensions of Q and Q are the same, and are a multiple of i+1. We
consider the question: When does 2" have a characteristic homotopy
sphere of a given codimension, i.e., is f homotopic to f’ such that Q is a
homotopy sphere (or equivalently Q is homotopy equivalent to P’)?
This question for i=0 and codimension 1 was studied by G. R. LIVESAY
and the author [16], and an obstruction was defined. Though the results
were similar, the methods go outside the scope of the present context,
and we will restrict ourselves here to i=1 or 3, i.e., free actions of §*
and §° (sce [31 and 37)).

A smooth submanifold X <27 is called invariant if
Pp(GxX)c X< 2™

Now the smooth submanifolds ¥ of the orbit space N, yield invariant

submanifolds V of 2™, where V is the induced principal $' bundle over -

¥, and conversely invariant submanifolds of =™ under the action ¢, yield
smooth submanifolds of N. We may also ask if (Z™, ¢,S%) has invariant
homotopy spheres of various dimensions, which is the same thing as
asking if the mapping Pf — P* L5 N is homotopic to an embedding
of a homotopy P” into N, This may in general be much casier than
finding a characteristic sphere of this dimension; for example the freedom
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in choosing the normal bundle should make the problem considerably
casier. Thus if k>2¢, the map P =N is homotopic to an cmbedding
and thus every free action has all the standard actions of less than hali”
the dimension embedded in it as invariant spheres. This will not be
true for characteristic spheres, as we shall see later.

(4.1) Proposition. Let (Z",¢,5) be a free S action, i=1 or 3, and
let l~/c ™ be an invariant manifold of codimension i+1, corresponding
to V< N" such that i,:H,_;—(V) === Hy—;—((N). Then with appro-
priate choice of orientation, the normal bundle of V in N has Euler class
x=i*(@)e H*'(V), where ac H'*Y(N) is a generator which is the Euler
class of the canonical bundle over N, the linear bundle associated with
SN, (i:V =N, the inclusion).

!"roo.f. Recall that if j: ¥V —T(v) is the inclusion of the zero-cross-
section in the Thom complex, then y=j*(U), where Ue H*(T(v)) is

the Thom class (sec [33, 27]). Now j factors, V —— N == T(v), j=#i,

where # is the natural collapsing map. Hence x=i*(#*U).
Consider the inclusion of pairs, where E is a tubular neighborhood
of Vin N: '

jO:(E)aE)_’(NaNO)

where No=N—intE, so j, is an excision, and consider the inclusion
k:N—(N,N,). Then j&:H(N,No)—H(E,0E) is an isomorphism, and

n*=k*j¥~1. Also k*:H"(N,No)—H"(N) is an isomorphism. Now we

have the commutative diagrams with cup products

HY(N,No)® H""%(N) — H"(N.No)
a) L jmi*l 5|
HYE,0E) ® H""*E) — H"(E,JE)

HYN,N,)® H"™%(N) — H"(N,N,)
b) Py K| =
HY(N)® H""%N) ——— H"(N)

. Now i*: H*(N)—H*(E) is an isomorphism for s=n-(i+1), since i
}s. Hence, if j*(U)=UeH'*'(E,JE), UU:H""%(E)-H"(E,0F) is a;
isomorphism by the Thom isomorphism, so that U'U:H""9(N)
—H"(N,N,) is also an isomorphism, using diagram (a). Using (b) we
get k*(U)U:H""9(N)—H"(N) is an isomorphism. But if acH'TY(N)
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is the generator, ozU is an isomorphism, so k*(U')= +a and it follows
that y=i*n*(U)=i*k*(j§ ' U)=i*k*(U’)= £ i*a, and with appropriate
choice of orientation, the proposition is proved.

(4.2) Proposition. Let (X", ,8') be a jree S' action, V<= 2™ a co-
dimension 2 invariant manifold such that i,:H,_,(V)—H,_5(N) is an
isomorphisn (with notation as in'(4.1)). Then V is characteristic.

Proof. First we note that an oriented 2-plane bundle is determined
by its Euler class. If we take the map of V into CP* (m=2k+1, n=2k)
coming from the inclusion of ¥ into N followed by the homotopy equi-
valence N to CP* this map factors through CP*~! since V is 2k—2
dimensional. Then from (4.1) and the remark above it follows that this
map s:¥—CP*~! induces the normal bundle of ¥ in N from that of
CP*~!in CP*. Now the complement of CP*~! (or a tubular neighborhood
of it) in CP* is a 2k-celt D, so that the bundle map of normal bundles
extends to the complement of ¥V in N to D**. The union of these maps
induces a map :N?*-CP* which is still a homotopy equivalence,
since the map induces an isomorphism on H?, as t*=s* on H?, and
t"Y(CP* Y=V, Hence V is characteristic.

The analogous theorem is true for S° actions, but seems less likely
for S actions. For 4-plane bundles are not characterized by the Euler
class, and in fact submanifolds of codimension 4 correspond to maps
N—-MSO(4), rather than into HP®, the quaternionic projective space.
In fact it is false in the piecewise linear case as we shall see later.

Now we shall consider the question of finding characteristic spheres,
using (2.14). We consider the homotopy equivalence of N with the
projective space P* over C or H, for S! or §* actions. Utilizing the nota-
tion of {2.14), we consider thc homotopy equivalence f:N—P* lct ¢
be a bundle over P* such that f*(&)=v is the normal bundle of N in a
high dimensional Euclidean space, and we consider bundle maps
b:v—¢ covering f.

(4.3) Theorem. If o, (f)=0 then N has a characteristic homotopy
(i+)(k=C)+i sphere, provided (i+1)(k—£)>4.

Thisisa direct application of (2.14). It was first proved by ROTHENBERG
in unpublished work.

We recall that for dimension of P*~“=4gq, the definition of ¢+ (f;b)
is simply the difference of two indices, namcly index P*~‘—index
V=1—index V, where V is the characteristic submanifold. Now index V
may be calculated using the Hirzebruch Index Theorem [24].

The normal bundle of ¥ in Euclidean space R? is thc sum of the
normal bundle of N in R? restricted to V, plus £, where 7 is the canonical
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bundle p over N restricted to V. Henee the stalsle tangent bundle of V is
=007 +E ) =y ¥+,
Suppose (i+1)(k—/)=4g=dim V. Then

(V)= Ly(pi(tplV+E0~ 1), ), VDD
= (P Lp ey +2p™ Y, 0 VD
= (L,(py(ty+€p71),..0), Li-e)

where i [V]=y_,, J+(te-¢)=image[P*~] in H_(P*). Hence we get

(4.4) Corollary. Let (2%**1,¢,8") (or (Z**1,0,5%) be a free diffe-
rentiable action. Then the action has a characteristic homotopy (49 +1)-
sphere((4q+3)-sphere) q>1 if and only if <Lypi(ty+€p7%),..), 1> =1
where p is the canonical bundle over N, y is the generator of H,(N),
C=k=2q (or £=k—q) ‘

Applying (4.4) to the actions on 4¢q+3 homotopy spheres constructed
in (3.3), we find that since p,(N)=p,(CP" for i <q and pq(N);épq(CP"),’
(2k=4g+2), it follows easily that nonc of these actions have charac-
teristic homotopy (4 ¢+ 1)-spheres, whilc they all have them of dimension
@i+1),i<q.

We now construct similar examplcs to those of (3.3), as follows.
Recall that the ring of complex vector bundles, K(P*)=H*(Pk),
P*=CP* or HP* and the Chern character (ch: K(P}Y—H*(P*;Q)) is a
monomorphism (see [3]). It follows that we can find complex bundles 0
over P* with ¢;=0 and ¢,#0. It follows from the formula relating
Pontryagin and Chern classes that p,(0)#0, considering 0 as a real
bundle (see [33, 27]). Since J(P) is finitc, some multiple n0=0" is fibre
homotopically trivial (sce [2]). Setting &=v+n(’, and suppose k=17
or 15, we may procced as in the proof of (3.3) to prove:

(4.5) Theorem. There are infinitely many different actions of S' on
homotopy 15 or 31 spheres, distinguished by Py of the orbit space, so that
none of them has a characteristic homotopy S-sphere.

This then demonstrates that in high codimensions invariant and
characteristic manifolds are quite different.

We end with a few remarks about the piccewise lincar (p.7.) situation.
Considering the analogous questions about p.£. submanifolds of the
orbit space N, we can show:
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(4.6) Remark. Any §* action on S™** has an invariant p.c. St
i. e. the orbit space N** has HP* ™' embedded in it.

Proof. It is easy to see that N— (point) is homotopy equivalent to
HP*-1, Now HAEFLIGER (sec [22]) and CAssEN and SULLIVAN have
shown that:

If f:N"->M™ is a homotopy equivalence of p.£. manifolds, m—n=3,
N 1-connected, closed, m=6, then f is homotopic to a p.£. embedding.

Thus HP*~! embeds p.#. in N*, so S**3 has the standard action
on $*~! embedded in it piecewise linearly :

On the other hand, a characteristic submanifold has a linear normal
bundle, so a p.£. characteristic submanifold of a smooth orbit space N
can be smoothed, using thec smoothing theory of HIRSH-MAZUR,
LASHOF-ROTHENBERG (see [30]). Hence the problem for characteristic
submanifolds is the same, p,/. or smooth.

We remark that MONTGOMERY-YANG [36] have shown that charac-
teristic spheres of codimension 2 of ! actions are unknotted. ”

II1. Semi-free S! Actions

An action (M™, ¢, G) is called semi-free if it is free off of the fixed point
set, i. . there are two types of orbits, fixed points and G. We shall study
the situation where (Z™ ¢,S!) is a semi-free differentiable action of St
on a homotopy sphere ™, and the fixed point set F? is a homotopy
sphere. For a general discussion of semi-free ' actions we refer to [6].

We shall show how to use the results of surgery to construct many
such exoticactions, generalizing the constructions of MONTGOMERY-Y ANG
[35] in dimension 6, and-in other dimensions [36].

In §5 we describe the reduction of the problem to conventional
problems in differential topology. In § 6 we use these results to construct
actions with exotic spheres as fixed point sets, and then show how to get
infinitely many exotic actions with the standard sphere as fixed point set.
The most powerful theorem proved is (6.22).

5. Constructions of Semi-free Actions of S!

Let (™ ¢,S") be a semi-free action, with fixed point set Ff< 2™, F?
a homotopy g-sphere. (i.e. §* acts freely outside F). Then S* acts freely
and lincarly on the normal space to F at each point of F (sec [38] or
[19, page 58]). Considering S'={zeC, |z}=1}, this action defines a
complex structure on the normal space, since it defines multiplication
by ieS' with the right properties. The action of ' is then linear with

s
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respect to the structure of a complex vector space, and it follows that the
action of S! is exactly the action of the complex numbers of unit modulus
in a complex vector space. Hence the normal bundle of F has a complex
structure, and the action of S* on it, is just that induced by the complex
structure*. In particular the codimension m—q=2k.

Let n be the complex bundle over F defined by the action.

(5.1) Theorem. If (Z™,¢,S') and (Z",¢',S') are equivalent, then F
is diffeomorphic to F' and n is equivalent to n'.

Proof. That F is diffeomorphic to F' is evident, and clearly the equi-
valence f:Z—Z defines a complex map of the normal bundles of F
and F’ so that they are equivalent as complex bundles.

Numerous examples in which F is an exotic sphere have been con-
structed (see [36] and [6]), and we shall construct some below.

Now let E be an equivariant tubular neighborhood of F in X (see
[19, page 57]), and let $2*~! be the boundary of a fibre of E. Now it has
been shown** by MONTGOMERY-YANG [36] that if k=1, then Z™=S8",
F=8""2 cmbedded as usual, and the action is linecar, Therefore we
restrict ourselves to k> 1. It follows from a homology argument that if
k>1, then S**~! ¢ £ —F isahomotopy equivalence. Now let N =X — E,,
where E, is the interior of an equivariant tubular neighborhood of F,
with E, < int E. Then S! acts freely on N, and on S?*"! < N, and $%*!
is homotopy equivalent to N. It follows from the exact homotopy
sequence of the fibre maps, using the diagram

S2k—l N

N

S*-1/S1 — N/

that S2*~1/S'—N/S! is a homotopy equivalence. Set N=N/S'. Since
the action of S* on $2*~1! is linear, §2*~!/S'=CP*~?, and since S%*~!
is the fibre of E over F it follows that its normal bundle is equivariantly
trivial, so that we get an embedding CP*~*x D' <« N"~!, and it is
homotopy equivalence. It follows similarly that the region between oN
and Cl*~'x 5% is an h-cobordism, so if m>6, by the h-cobordism
theorem of SMALEIf g>1 (see [44]) or its generalization, the s-cobordism

* This obscrvation was made to me by G. BREDON, who also conjectured (5.5)
below. )
** (Addced in proof) This result first appears in Wu-Y1 HsiaNG. On the un-
knottedness of the lixed point set of differentiable circle group actions on spheres ~
PA Smith conjecture, Bull. AMS 70 (1964) 678—680.
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theorem [28] il ¢ =1, it is diffcomorphic to the product CP*~ ! x S9x [,
and hence N is diffcomorphicto CP¥~!x D?*!, and N—N iscquivalent
to hx 1:82% 1 x D1* 15 CP*~ ' x D?*!, where h:S?*"'CP*! is the
Hopfl map, i.c. the principal bundle N—N is induced by the map
N-CP* 1,

Hence we have shown

(5.2) Theorem. Let (2™, ¢,S') be a semi-free action on a homotopy
sphere Z™, with fixed point set F a homotopy g-sphere, m—q=2k, k=1,
mz=6. If N is the complement of an open tubular neighborhood of F in
Z™ then N is equivariantly diffeomorphic to S**~'x D%}, with the
standard action on S**~!, trivial action on D***. In particular the pro-
jective space bundle P associated to n, which is N/S*, is diffeomorphic to
CP*~!x §9,

Now we study the bundle #.

(5.3) Theorem. The bundle of projective spaces n:P—F with fibre
CP*~ ! associated with E—F is fibre homotopically trivial, i.e., there is
a map t:P—-CP*"! x F such that t is a homotopy equivalence and com-
mutes with the projections, p,t=m, (p,:CP* ! x F—F is projection on
the second factor). Further, t*(a x °)=a' the canonical line bundle over
P, where a is the canonical line bundle over CP*™1,

Proof. Clearly P=@¢N and by (5.2) there is a diffeomorphism
h:P—-CP*~ ! x S7 such that h*(xx¢&°)=«, the canonical line bundle
over P, where a is the canonical line bundle over CP*'. Let
t:P—CP* ! x F be defined by t(z)=(p, h(z), n(z)). Clearly p,t=m,sot
preserves fibres. '

Now p*@@)=0xe’ and hence t*(axe®)=t*p¥(a)=(p,t)*x
=(p; W*(@)=h*p*()=h*(a x ) =a, by (5.2), so the last condition of
the theorem is satisficd for t. On the other hand, if i:CP*"*—P is the
inclusion of a fibre, then i*(a')=a. It follows easily that if ' is the re-
striction of ¢ to the fibres t':CP*"!—-CP*~!, then t'*(a)=a. Hence ¢’
is a homotopy equivalence on the fibres and hence t is a homotopy
equivalence, which completes the proof.

(5.4) Question. Are there non-trivial complex bundles whose pro-
jective space bundles are fibre homotopy trivial by « trivialization t sending
the canonical line bundles into each other, as in (5.3)? Such bundles are
stably trivial (see (5.5)).

As another application of (5.2) we get:
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(5.5) Theorem. The Chern classes of 1 are O so that n is stably trivial
(as a complex bundle).

Proof. Wec recall the definition of the Chern classes after
GROTHENDIECK (see [4]):

Let P—F be the CP*™! bundle associated to i1, and let xe H3(P)
be the first Chern class of the canonical line bundle over P. Then the
powers of x, i.e,, 1,x,x2,...,x*" ! are a basis for H*(P) over H*(F) and

’

hence we have a relation x"+ Y ¢;x""'=0. Then ¢;=c,(5) are the
Chern classcs. i=1

Now by (5.2), P is diffeomorphic to CP*~!x 8% and the canonical
bundle over Pisinduced from that over CP*~ 1. Henceif h: P—CP*~1 x §9,
x=h*(y), ye H*(CP*~')c H*(CP*"'x §%), and x*=h*(}*)=0. Hence
¢;(1)=0 for i>0. But a stable bundle over a homotopy sphere is detcr-
mincd by its Chern classes, so 7 is stably trivial.

(5.6) Corollary. If q<2k, thenn is trivial.

Proof. In these dimensions, 7 is already stable, hence trivial by (5.5).

It would be interesting to know if there are examples of scmi-free S*
actions (Z™,¢,5') with »# non-trivial. In fact we may characterize the
bundles # which occur by the following theorem, which describes how
to construct semi-free S! actions.

Let F be a homotopy g-sphere, 7 a complex k-plane bundle over F.
Let m:P—F be the associated CP*~' bundle to #, and suppose
h:P-CP*"'x S is an orientation prcserving diffefomorphism such
that h*(y)=x, where y=p¥(c,), p;:CP*" ! x §2-CP*~ 1, ¢, is the Chern
class of the canonical bundle over CP*~! and x is the first Chern class
of the canonical line bundle over P.

(5.7) Theorem. There is a semi-free S* action (Z™,¢,S') with fixed
point set F embedded in Z™ with (complex) normal bundle n, and such
that the orbit space is C.\JCP*"'xD'*1, where C, is the mapping

h
cylinder of m, and | ) means we identify P = C, with CP*~1 x §9 < CP*~!
h

+ . . . . .
x D?* ! via the diffeomorphism h. Every semi-free action of S' on a homo-
topy sphere of dimension > 6 with fixed point set a homotopy sphere is
given this way* :

* One can remove the condition that dimension >6 i onc substitules #-
cobordism for diffcomorphism in the statement.

g
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(5.8) Theorem. Let (X7, ¢uS Y be semi-free S U actions constructed as
in (5.7), i=0,1, with Fi, u;, by, i=0,1. Then (X o, S is equivalent to
(2" ¢, SY) if and only if there are

(i) A diffeomorphism f: Fo—Fy;

(i) Acomplexbunduleequivalence b: o=, covering the diffeomorphism [
(iii) A diffeomorphism g: CP* ! x D**' > CP*! x D4*Y such that the
diagram below commutes:

PO——P—"Z’—-—-»P,

| s

CPF—1x 8§72, CP¢ 1 x 81

where P; is the associated CP*~! bundle to n;, P(b) is the map induced
by b, and dg is the restriction of ¢.

These two theorems give us the necessary tools to attempt to con-
struct and distinguish scmi-free S* actions, using the surgery results of
Chapter 1.

Proof of (5.7). Consider the semi-free S! action on the total space
of n, E(y), defined by the complex structure, and the free S! action on
§2k=1 4 Di+1 defined by the linear free action on $**7'. Then the
diffeomorphism h: P->CP*7! x §7 induces an -equivariant diffeomor-
phism h':Eq(n)—S* ' x 8% where Eo(n)=0E(n) is the associated
sphere bundle. Then M =E@mJES* !t x D) is then a manifold

!

with a semi-free S* action, fixed point set F with normal bundle 7. It
remains to show that M is a homotopy sphere. »

Since we have assumed k>1 throughout this section, it follows that
1, (Eon) =y (F), §27'xD**! is l-connected and no(Eo(n) = mo(F).
Therefore, by Van Kampen’s theorem, M is 1-connected.

Consider the commutative diagram

Eo(n) -2 S*~1x §?

A Y

Pt CP¥~! x 59 L2 §9

Let aeHqy - (Eo(n) be the image of the gencrator of the homology of
the fibre H,y—(S**7'). Then m (a)=0, so (pohm),(@)=0, and hence
(py )4 (a)=0. Hence (1), (@) =g ® 1)€ Hyp 1 (S**7") @ Ho(S7)
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C H,y o (S*" ' x 8%, 1eZ, geH,,—,(S*!), a generator. Since h, is a
diffcomorphism, A=+ 1. If j:$%* ! x 452 Lx D4*1 ig inclusion we
deduce:

(59 ' Jxhe(@)=*g.
Now consider the Mayer-Viettoris sequence for M:
(5.10) o > Hyy (M) — Hy(Eolm)**2>

H,(E() + Hy(S* ™' x D**!) — H (M) — -

where p=jh’. Then (i,+p,)a=i.(a)+p,(a)=0=%g. Assume the sign
is +. Let be H,(Eo(n)) be another generator for the homology of Eqy(n),
such that n(b) is a generator of H,(F), so that a and b are a basis for
H,(Eo(n) in dimensions between 0 and 2k+q—1. Let hy(b)=pg®1
+71®¢c, ¢ a generator of H, (5% < H,(§**7!x$%. Choose as a new
generator b'=b—pa. Then (1), (b)=(),(b—pa)=pg®@1+y1®c
—pg®1=y1®c. Since b’ is a gencrator, h,. (b') is a generator and
y=+1. Now =7, (b)=mn,(b)—n,(na)=mn,(b). Hence i,+p, is an iso-
morphism between H(Eo(n) and H(E(n)+H(S* ' x D**!) for
O0<s<2k+qg—1, and it follows from (5.10) that M is a homology
sphere, hence a homotopy.sphere. This completes the construction.

On the other hand (5.2) shows that all such semi-free actions arise
from this construction. Thus (5.7) is proved.

Proof of (5.8). It follows from condition (iii) of (5.7) that the diagram
commutes:;

Ey(n0) —Les Eo(n,)

S

S2k—l x $9 29, SZk—-l x S4

where ’ denotes the map induced on principal bundles by the maps of
base spaces, dg’ is the restriction of g’. Thus the maps b:E(no)—E(1,)
and ¢:82* ! x D118~ 1x D*! respect the identifications by hg
and K, and are equivariant, so define an equivariant diffeomorphism of
Z7to Z7. Hence conditions (i), (i) and (iii) yield an equivalence of actions.

Now suppose ¥:Z,—ZX, is an equivalence of actions, i.e. an equi-
variant diffcomorphism. As in (5.1), f=y|Fy:Fo—F is a diffcomor-
phism and y restricted to an equivariant tubular neighborhood N, of
F, induced a complex bundle equivalence b:ng—#n, covering f. Let
N,=y(N,), and ¥;=Z,—intN, Then sincc Y(No)=N, and y is a
diffeomorphism, Y(Vp)=V,, and y|Vy=g":V,—V, is an equivariant
diffeomorphism, and @V,= Eq(n,), ¢'|0Ve=bo=>b|Eo(no), and lct §: V,/S'
—V,/S' be the induced diffeomorphism. By (5.2) there are diffcomor-
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phisms k;: Vy/S'—>CP*~ ! x D9, so we define g:CP*~ ! x DI CP* =1 x D?
by g=k,gky'. Sincc ¢'|0Vy=by, it lollows that GIAV,/S')=4Ps=P(b),
and it follows that, since h,=%,|P;, (P,=0V,/S!), the diagram of (iii)
commutes, which proves (5.8).

6. Applying Surgery to Construct Semi-free Actions

In this paragraph we apply results of surgery together with {5.7y and
(5.8) to construct semi-free actions.

By (5.7), the problem is to find over a homotopy sphere F?a complex
k-plane bundle # and a diffeomorphism h: P()-»CP*~! x S9, where
P(n) is the associated bundle with fibre CP*~!, satisfying the condition
on Chern classes. If g#2, then any diffcomorphism k can be made to
have this property by composing % if necessary with
axe: CP* 1 xSTsCP*" ! xS? where a*(c,)=—c,e H*(CP*"!) and
e=identity if k is even, ¢ is orientation reversing if k is odd.

As I do not know of any non-trivial bundles # with the above pro-
perty, I will always take # to be the trivial complex k-plane bundle. We
will say in this case F is untwisted. We shall first consider the problem
of constructing actions with exotic spheres as fixed point set, and we
get some results extending those of BREDON[5] and MONTGOMERY-Y ANG

[36].

(6.1) Theorem. Let F2"~' be a homotopy sphere which bounds a
parallelizable manifold, n>2 (F*"~*ebP?" in the notation of [29]). Then
for each even k>1, there is a semi-free action of S* on a homotopy
sphere Z?""1*2k with F as untwisted fixed point set.

If M™ is a closed manifold, let [(M)={Ze0" such that M#X is
diffeomorphic to M}. I(M) is a subgroup and is called the inertia group
of M. Let Io(M)=I(M)nbP™*!. We recall from [29] that bP* is a
finite cyclic group, and we denote its order by m,.

(6.2) Theorem. Suppose q=4t—1 and k>1, k odd, and let £ =order
of I,(CP*"!'x89%. Then an element FebP*, t>1, occurs as an un-
twisted fixed point set of a semi-free action of S' on a homotopy sphere
24?1 where dimension 4s+1=4t—1+2k if and only if Fe(my/f)bP*.

(6.3) Theorem. Suppose q=4n+1, k odd, k>1, and F+#0 in
bP*"*2. Then F occurs as an untwisted fixed point set of a semi-free
St action on a homotopy sphere X of dimension 4n+1+2k=4s+3 if
and only if 15(CP*™1 x §9)=bP*s*2,

In case bP***2=0 for example when s=1, 3 or 7 (sce [14]) then
the condition is of coursc satisfied for any F.
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The proofs of these three theorems are very similar, utilizing
surgery techniques to create a diffeomorphism of CP*~!x F with
CPF ! x 89, :

Let F=0W?", W parallelizable. We may consider Wo=(W —int D2")
as a parallelizable cobordism between F and $2"~!, and thus we may
definc a normal map G:(W,, FUSY ™ )=(S¥ ' x 1,5 ' x0uUS? ' x 1)
with G|$?"~! =identity. By (2.7), we may assume W, to be (n—1)-
connected. Multiplying by CP*~! we get a normal map

IxG: CP¥Ix(Wo, FUS Y- CPHIx (S 1x ], §2"" 1xQu §2" 1 1)

with 1x G|CP*~! x §2"~! =identity. The remainder of the proofs of
the three thcorems is computing the obstruction ¢ for this normal
cobordism, and using this to determinc if CP*"!x F is diffeomorphic
to CP*~1x 82"~ The three theorems correspond to the three cuses:

(6.1) k is even,
(6.2) k is odd, n is even,
(6.3) k is odd, n is odd.

(6.4) Lemma. ker(1 x G),=H, (CP*"")®kerG,.

Proof. By the Kiinneth formula, sincc H,(CP*™') is torsion free
H,(CP*' x(W,, FUS*" )X H, (CP*" ") ® H (W,, FUS*""), and
(1xG),=1®G,. Thus the lemma follows.

Now dim Wy=2n, dimCP*"!=2k—2 and W, iz (n— 1)-connected,
so that ker(l xG),=H, (CP*"')® H,(W,). If k is even, then k—1 is
odd, and thus H,_,(CP*"')=0. Hence (ker(lxG),),+x-1=0 and
hence o(1 xG)=0 and by (2.7), the Fundamental Theorem, 1xG is
normally cobordant relCP*~!x $?"~!x {0,1} to a homotopy equiva-
lence, i.e. an h-cobordism between CP*~! x F and CP*~ ! x $2"~ 1. Now
dim(CP*~! x §2""1)=2k—-2+2n—1=2n+2k—3 and n>2, k>1 so
that n+k>4 so that 2n+2k—3>5. ilence Smale’s h-cobordism
theorem applies, and CP*"! x F is diffeomorphic to CP*~!x §2"~!,
Applying (5.7), it follows that there is a semi-free action of S' on some
homotopy sphere ™ with F as untwisted fixcd point set, m=2n—142k.
This proves (6.1).

In case k=2q+1 then (ker(lx G)*),,+2q=Plzq(CP2")®H,,(Wo)
and it follows easily, in the notation of § 1, that
K™ 24(CP* ' x W)= H2(CP*) @ H"(W;). Il xeH*(CP¥) is a ge-
nerator, then x? gencrates H2Y(CP29) and x29 generates H*1(CP?9).
Hence

(X*®a,x*"®b) = ((x"® a) U (x*® b)) [CP?* x W,]
= (X2 [CP* ) (ab)(W,] = (ab)[ W,] = (a.D).

S,
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Hence the pairing on K" 24(CP?x W,) is isomorphic to the pairing
on K"(W,), so it follows il n is even that 1(1 x G)=1(G). 1t follows as
in the proof of (2.12) NovikoVv's Classification Theorem and (2.11), that
CP% x F is diffeomorphic to (CP??x S82""")# L where Le bP?", and
L=0U, UeP?, index U=index W.
Hence by (5.7) CP?7x §2"~! is diffeomorphic to

(CP2x §2" " )# L=CP?x F, i.e. Lelo(CP*x §2*=1), if and only if
F is the untwisted fixed point set of a semi-free action of S' on a homo-
topy 2q+2n+1 sphere, where if F=mg,, g, a generator of bP%,
s even, then L=mg,,,,. It follows that F is the untwisted fixed point
set if and only if m is divisible by r, where rg,,,, generates

IO(CPZq X SZn-—l)C bP4q+2n’
and
r=order bP*?*2"/order I,(CP21x §2"71),

which proves (6.2).

The proof of (6.3) is similar where one shows that o(1 x G)=0(G)
using properties of ¢ in dimension=2 (mod4) which we have not dis-
cussed here (such as the definition). We refer to [14] or [7] for the
necessary techniques. In particular, SULLIVAN has proved the following
formula (in unpublished work): Let f:(M,0M)—~(X,Y), (f,b) a normal
map of degree 1, (f|0M),: H,(0M)—H (Y) an isomorphism as in § 2,
m=dimM=4k+2, N a smooth manifold n=dimN=4¢. Then
1x f: Nx(M,0M)-N x(X,Y) and 1xb give a normal map and

o(1x f)=x(N)a(f).

One cannot say much about the homotopy sphere on which S! acts
from this construction. However if one takes the “equivariant connected
sum” of X with itself #-times, i.e. connected sum along a cell which
intersects the fixed point set F and is invariant, we get a semi-free st
action on Z#Z# - #Z=¢Z with FF=F#F#-#F as fixed point
set, (see [6; § 3]). Hence if #X=S" we arrive at an action on §” with
¢F as fixed point set. For example, order 6, =992, order 0,=28 (see
[29]), so starting from any Fe 0,=bP8, using (6.1), and the above we
may obtain 992 F as the fixed point set of a semi-free action on S*!, and
9920,=40, so we get the result of MONTGOMERY-YANG [36] (sce [6]):

(6.5) There are semi-free ! actions on S'! with every
element of 40, as untwisted fixed point set.

In applying (6.2), unfortunately not much is known about calculat-
ing Io(CP29x §?""Y), (c.f. [12]). However m, is ccrtainly a multiple
of mJ/¢ so we may use the same numbers used above in deriving (6.5)
to show that there are semi-free actions of S' on homotopy 13-spheres
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with cvery element of 40, as untwisted fixed point set. But since
0,3=2Z,, we may use the connected sum method above to show that

(6.6) There are semi-free S* actions on S'* with every
clement of 40, as untwisted fixed point set.

Now we shall apply the methods of § 2 to construct exotic semi-free
S! actions on homotopy spheres with fixed point set the standard sphere.
We will construct infinitely many inequivalent such actions using (2.19),
(2.27), etc. To apply these results we must have a manifold M which
satisfies condition (K) in § 2:

Condition (K). If g:MxS'—->M xS' is a homotopy equivalence
such that

(i) g|M x s~inclusion,

(ii) pg~p,p:MxS' =S, then g*:H*(MxS';@)-H*(MxS;Q)
is the identity.

(6.7) Proposition. M =CP*"! x §%, q odd satisfies condition (K).

Proof. Let ¢:CP*"!xS§7xS'-»CP*"!x$7xS' be a homotopy
equivalence satisfying (i) and (ii), above. Then as a map into the product

M -2 MxMxM
(P19.P29.P39)
g

CPF 1 x §1%x St

commutes, where 4,(m)=(m,m,m), me M. Hence

g*(x)=(g*prx)U(g* prx)U(g*p%x) for xe H*(CP*™'x S7x S'). Now

by (ii) pg~p, and p=p;:CP* ' x $9x S' =S, so g*p¥=p}. If ¢>1,
then j*: H2(CP*~! x §7x §')—» H?(CP*"!) is an isomorphism,
j:CP¥- ' CP*~ ! x 89x S inclusion. By (i) above, j*g*=j* so that
j*g* p¥ =j* p¥ =identity on H*(CP*~!). Hence g*p}=p} on H*(CP*™}),
and since H2(CP*~!) generates H*(CP*~!) under U-product, g* p¥ =p}¥
on H*(CP*™!), .

Using condition (i), if ze HY(S9), xe H*(CP*"!), ye H'(S') are the
generators, then p¥z=1®:z®1 and g*pi()=1@:z@1+4 *R1I®y,
for some AeZ, g=2k+1, since 1®z®1 and xX*®1Q@y are a basis
for HYCP* ' x 8%xS'). A basis of H*(CP*"'xS8?xS') is given by
R1®L, X ®z®y, where 2£+q+1=4i. Hence g*x¥R1I®1)
=x¥®1®1 and g*(X®:z@)=x'@1N1@:@1+:1X'®1®Y)
(IR1@N=x¥R:zQy+(*@I®y)=x"®z®y, since y*=0.
Hence g*=identity on H*, and condition (K) is satisfied, if g>1.
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I g=1, then ¢*prx)=x@ 1@ 1+A{(I®g®y). Since x*=0,
g*pF(x*)=0, since g?=y*=0,
g*pi=(g* () =(x®1® 1 +A(1 ®g ® y)f
=@ 1@ 1+kAx* ' @g®y)=ki(x* "' ®g® y)=0.
Hence A=0, and g*p?=p¥. The rest of the proof proceeds as before,
and therefore condition (K) is satisfied for any odd q.

(6.8) Lemma. rank H*'(Z((CP*"! x §9),))=[(k—1)/2]+1 if g is odd
and q+2k=1mod4. Also rank H¥*(Z((CP*~*x 89, ))=[k/2] if q is
odd and q+2k= —1mod4.

(6.9) Corollary. If qg>1, q odd, k>1, and m=q+2k—2=4n—1

then Ayo(Po(CP*~ ' x 8%) has rank [(k—1)/2). If m=35, 13 or 29, then

Ao(Do(CP*1 x $9) -has rank [Kk/2].

This follows from (6.8), (6.7) and (2.27).

Now each element of 2(CP¥™! x §9), gives rise to a semi-free S'
action on a homotopy (g +2k)-sphere with S? as untwisted fixed point
set, and we shall use the homomorphism
Ao: 2o(CP* 1 x S)— H**(Z(CP*~* x §9,) and (5.8) to distinguish dif-
ferent actions.

By (5.8), if f;: CP*"! x §1—»CP*"! x §9, i=1,2 are diffeomorphisms,
then the induced S* actions are equivalent if and only if there are diffeo-
morphisms d: $?—S%, g: CP¥~! x D?*' > CP*"! x D?*! and a complex
bundle map b:C*x87—»C*xS? covering d such that the diagram
commutes:

CP*1x 57 £, Cpk-1 x 54

(U) Ji J2
CP*~1x S§1 %, CP+1x §¢

Therefore we shall study such diffeomorphisms P(b) and g.

(6.10) Lemma. Thereisamap a: S9— U (k) suchthat P(b)=(1 xd)(f,)
where f,: CP*~! x §9CP*~! x §7 is the diffeomorphism f,(x,y)
=(x-a(y),y), where U(k) acts on CP*™! on the right.

Proof. Any complex bundle map covering the identity is f, for some
a:S%—>U(k). But (1 xd)"'P(b) is a complex bundle map covering the
identity and the result follows.

TRy
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_(6.“) Lemma. The correspondence which sends o: SY—=U(k) into the
diffeomorphism  f,: CP*™! x S">CP*~! x §¢ (defined above) defines a
homomorphism of groups

@: 1 (UK) > DCP*~* x 89,

Proof. Let a,f: 89— U(k) and let h:S*xI-U(k) be a homotopy of
o to . Then H:CP*7'xS§9x1-CP*"' x 89, H(x,y,t)=(x"h(y,1),y) is
a diffeomorphism for ¢ach ¢, and hence an isotopy. Hence the isotopy
class of f, depends only on the homotopy class of .

Let S"=D‘{UD‘§, S*—mtDf cintD;, (i,)=(1,2) and (2,1). Since
«|D, is homotopic to a constant and U(k) is connnected, using the
homotopy extension theorem, a is homotopic to o such that «|D,=e,
the identity of U(k). Similarly, f is homotopic to f, f'|D,=e. Hence
f«|CP*~! x D, =identity, and f,|CP*"!x D,=identity. If we take
«f:81-UKk), «f()=ay)B(y), then «f[D,=f, «f|D,=0a', so
that f,p=f, on CP*"'xD{ and f,,=f, on CP*"!'xDj. Also
Jufp=fp on CP*"'xD, and =f, on CP*"!'xD,. Hence f,,
=f,fp. But «f is homotopic to «' + /8 by a well known argurrient.
Hence f,p isisotopicto f,,,. Since a~ao, f~f, then o + ' ~a+f,
and f,.,, isisotopic to f,,,, f, isisotopic to f,, f, is isotopic to Sp
Hence f,., is isotopic to f,f;. Hence ¢:m (U(k))—»2(CP*~! x§9)
is a homomorphism. A

(6.12) Proposition. Let f:CP*"! x S*>CP*"! x 87 be a map such
that f*(x®1)=x®1, xe H*(CP*™"), and suppose f is the restriction
to the boundary of a map F:CP*"!x D1*' > CP*~! x DI*!, Then F is
homotopic to the identity.

Proof. CP*"!x D*! is homotopy equivalent to CP*~! and
j:CP¥"' 5 CP™ is a homotopy equivalence up to dimension 2k—1, the
first non-zero homotopy group n,(CP*~1!) for i>2 being n,,_,(CP*™1).
The dimension of CP*~! is 2k—2, so thc homology class of F is de-
termined by F*|H?(CP*~!), which is detcrmined in turn by f*, so the
result follows.

(6.13) Corollary. Notation as in (6.12), the mapping torus W, of F
is homotopy equivalent to the product CP*~! x §' (W=CP*~! x D**1),

(6.14) Proposition. Let F: CP*~! x D' »CP*~! x D%} be a diffeo-
morphism homotopic to the identity, so Wy = CP*"' x S§'. Then P(W,)
=pF(P(CP*™Y)), p,=projection of the first factor.
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Proof. Let h: W, -X(W,), W=CP*"! x D% be thc map collapsing
Wxs to a point, so that (W) —p¥(CP*")x¢%e im h*. But
H**(Z(CP%1))=0, and the result follows,

(6.15) Corollary. Suppose f€Do(CP*~! xS and f=F|CP*"!'x 8,
F a diffeomorphism of CP*~' x D®*'. Then A,(f)=0.

Proof. The mapping torus M;=0W;, M=CP*"! x§, W=CP*!

x DI*L. Hence t(M)=1(W,)|M,, and P(c(M,))=i*P(x(W;))
i* p¥(P(CP*™1))=P(t(CP* ! x §% x £%), 4s stable bundles, i.e. in
KO(C™ !t xS?x S'). Hence P(v(M,))=P(v(CP*"!x8%)x¢°) and it
follows from the definition of A, (see (2.24)), that A,(f)=0.

(6.16) Lemma. Suppose in diagram (U), fe@o(CP*™!'x 8%, i=1,2.
Then the maps P(b) and dg are homotopic to the identity. Further 1xd
and f, are homotopic to the identity.

Proof. Since P(b) comes from a complex bundle map P(b)*(x)=x
where xe H2(CP*~! x §9 is the Chern-class of the canonical complex
line bundle over CP*"! x §%, and a generator. Since f; and
[2€D,(CP*~! x 89), it follows that dg=f,(P(b))fy ' ~P(b), so that
(€9)* (x)=x. By (6.12),it follows that g: CP¥~! x D¢*' > CP¥~! x D1*! is
homotopic to the identity. It follows that if i: CP*~! x §2—CP*~! x D?*!
is inclusion, then i(dg)=gi~i. If p, is projection on the first factor,
then p,i=p,, so py(8g)=p,i(0g)=p,gi~p,i=p;.

Now since P(b) is orientation preserving and P(b)*(x)=x, it follows
that P(b)*(y)=y, y a generator of HY(CP*~! x $9) = H%S9, in order to
preserve orientation. Now since P(b)=(1 xd)(f,) by (6.10), a: S*"—> U (k),
it follows that d~1, and hence p,P(b)~p,. Therefore we have
P(b)~0g, p;(0g)~Pp;, p2(P(b))~Pp,, s0 p,(dg)~p,. But
0g=(p,0g,p,09)~(p,,p,)=identity, so dg~identity and hence
P(b)~identity. We have shown 1 xd~identity, so
fo.=(1 xd)"* P(b)~identity, which completes the proof of (6.16).

(6.17) Lemma. Ay(1 xd)=0, de Dy(S9), 1 xdeD,(CP*~! x S9).

Proof. If t=1xd, then the mapping torus of ¢ is CP*™! x(89).
Now the mapping torus (SY)~S?xS!, so the normal bundle v, of
(89, is {ibre homotopy equivalent to the trivial bundle, by the Atiyah-
Hirsch Theorem [2], and is trivial along §?, and along S' (since (59,
is orientable). Hence v,=h*(y), ye KO(Sx S*, S%v $)=KO(S?A §")
= KO(S%*!'). Then since the index (§%),=0, it follows from the Index
Theorem of HIRZEBRUCH [24], that P(y)=0 and (6.17) follows.

(6.18) Proposition. Let aem(U(k), gq>1. If f:CP*"!x S
CP*~! x 8% is homotopic to the zdentlty, then o is of finite order.
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Proof.(c. f. (5.5)). The clement « is the characteristic map (see [45])
of a complex vector bundle n* over §4*', and if « is of infinite order, it
follows that the Chern class C(n)#1, (see [3]), so ¢,(n)#0, where
g+ 1=2n. Recall the relation [4], that if xe H?(P(n)) is the Chern class
of the canonical line bundle over P(n)=the projective space bundle asso-

k .
ciated to n, then Y ¢, (n)x'=0, so that x*+c,()x*""=0. Now

t=0
P(n)=CP*~ ! x D1*1UCP*"' x D**! with boundaries identified by f,.
If f, is homotopic to the identity, then it follows that there is a homo-
topy equivalence :P(n)—»CP*"! x§7*!  and since g>1 |//*(x’)= +x,
x'€ H*(CP*~! x §9%1) a generator. Now x*=0, so y*(x*)= +x*=0,
so ¢,(n)=0. Hence if f, is homotoplc to the identity, then aem, (U(k))
is of finite order.

(6.19) Corollary. Ay(m,(U(k) N Do(CP*™! x §9)=0 for g>1.

(6.20) Corollary. The natural map of m(U(k)) into homotopy equi-
valences of CP*~! x §% has kernel a torsion group for g>1.

(6.21) Theorem. Let f,,f,€2,(CP*" ! xS%, g>1, and suppose that
fi and f, define equivalent S' actions, constructed using (5.7). Then

Ao(f1)= Ao(fz)-

Proof. By (5.8) we have that there are b and g such that diagram (U)
above is commutative, where PB)=(1xad)(f), oa:SI—>U(k),
g:CP*" ! x DI*1,CP¥"! x D+t a diffeomorphism, etc, that is
flxd)f,f{'=0g. By (6.16), all these maps are homotopic to the
identity, so that we may apply the homomorphism. A,:9,(CP*~* x §9)
= H*"(Z(CP*"1x 87,). Hence Ao(f2)+Ao(l xd)+Ao(f) = Ao(f1)
=A,(dg). By (6.15), Aox(dg)=0, by (6.17), Ax(1 xd)=0, and by (6.19),
Ao(f)=0, so Ao(f2)=A4o(f1).

(6.22) Corollary. Let q be odd, q>1. If (a) q+2k=1mod4 and
k>2, or (b)if q+2k=7,15 or 31 and k>1, then there are an infinite
number of distinct semi-free S* actions on homotopy (q+ 2k)-spheres with
S7 as untwisted fixed point set.

The case g=3, k=2 is a theorem of MONTGOMERY and YANG [35].

Proof. By (6.9), A5(2,(CP*~! x §%)50 under the given conditions
on g, k, and g+2k, and therefore there are an infinite number of cle-
ments of D,(CP*~! x §% with different images under A,. Then the
result follows from (6.21).
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PART I

Differentiable Transformation Groups

Exotic Actions on Spheres
GLEN E. BREDON*

In this review article I attempt to give a compendium of examples of
exotic differentiable actions of compact Lie groups on homotopy spheres.
It was written mainly for the benefit of the participants in the Tulane
Conference on Compact Transformation Groups, May 8-June 2, 1967.

The basic arrangement of the examples is done through the linear
representations that they resemble. Thus Section 1 treats examples
resembling the standard representation of O(n) plus a trivial represen-
tation. The examples in Section 2 resemble twice the standard reprcsen-
tation of O(n) and some of the many varied examples arising from these
are given in Section 3. Section 4 treats examples resembling twice the
standard representation plus a trivial 2-dimensional representation: In
Section 5 we discuss analogues of the product of several standard
representations plus a trivial representation. In Section 6, we consider
semifree actions of S'=U(1) and $*=Sp(1). These are actions which
are free outside the fixed point set and hence resemble some multiple of
the standard representation plus a trivial one. The case of free actions
of S! and $3 is discussed in Section 7 and free involutions and cyclic
actions are discussed in Sections 8 and 9.

Some actions cannot be said to resemble any linear representation,
and we discuss some of these in Section 10.

We confine ourselves almost exclusively to the differentiable case,
although some comments are made about other cases, and differentiabi-
lity assumptions will be taken for grantcd throughout the article unless
there is specific mention to the contrary. .

Although we are mainly concerned here with various properties of
cxarp,;)les, we also discuss a few theorems of a positive nature since
these are sometimes of basic importance for adequate discussion of the
examples.

There arc many examples discussed here, due to myself as well as to
others, which are quite recent and have not yet been published. There
are also a few examples given which have more of a “folklore” nature.

* The author is supported by an ALrrin P, SLoan fellowship and by National
Science Foundation grant GP 3990,
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