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REMARK ON THE POINCARE DUALITY THEOREM
WILLIAM BROWDER!

1. Introduction. In this note we study the homology properties of
spaces X in which Poincaré duality holds, such as compact orientable
manifolds. For such spaces we show that Poincaré duality holds also
for the Bockstein spectral sequences (see [3]). As a consequence we
get:

THEOREM 1. Let X be a space with Poincaré duality, dim X =2m -1,
m even. Then either (1) Ho(X)=F+1T+T or 2) HW,(X)=F+1T4+7T
+Zs, where F is free abelian and T is a torsion group. In case (2)
Sqm: H™ (X ; Zo)—H?* (X ; Z,) is not zero, so that the Stiefel-Whitney
class W50, If m=2 then Hy(X)=F+ T+ T4 Zyif and only if ws0.

THEOREM 2. Let X be a space with Poincaré duality, dim X =2m -1,
m even, H(X; Z3) =0 for i<m. Then H,(X)=F+T4+T1T4Z; if and
only if m=2 and wy0.

Here Hx(X) denotes the integral homology of X; Z, denotes the
integers mod p.

Similar results to these have been obtained by M. Rueff [4] using
Seifert’s “Linking invariant” [5].2 C. T. C. Wall [7] has also studied
a similar situation. Our methods have similarity to theirs, but use of
the Bockstein spectral sequence instead of more conventional homol-
ogy theories allows us to refine the results somewhat, bringing in
Steenrod squares.

I am endebted to Wall for his comments, and to Emery Thomas
who pointed out Lemma 7, enabling me to sharpen my original ver-
sion of Theorem 2.

2. Poincaré duality and the Bocksiein spectral sequence. All
spaces X considered shall be assumed to have H;(X) finitely gener-
ated for all 4.

DerINITION. A space X is said to satisfy Poincaré duality if
H,(X)=2Z, H(X)=0 for ¢>n, and if p&H,(X) is a generator, then
Np: H(X)—H, ,(X) is an isomoerphism for all ¢. We will write
n=dim X.

We refer to [3, p. 48] for the definition of cap product. Let

Presented to the Society, October 28, 1961; received by the editors September 18,
1961.

1 The author was supported by an NSF grant, NSF G-15984.
2 | am endebted to J. Eells and W. Massey for these references.
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928 WILLIAM BROWDER [December

e=C,(X) be a cycle representing u. Then Me is a chain map (see
[3; Lemma 7.5]) and (Me)x=Nu. (This requires a slight modification
of the coboundary.)

We recall that the Bockstein spectral sequence of a chain complex
C is the spectral sequence associated with the homology exact couple:

HO) — ()
5 i

HC® Z,)

We refer to [3] for details of the definition and properties of the spec-
tral sequence. In particular, a chain map induces a map of spectral
sequences, and a chain map which induces homclogy isomorphism
induces isomorphism of spectral sequences.

Hence, we may consider My as inducing isomorphism of the co-
homology Bockstein spectral sequence in dimension g, (Ef,), with the
homology Bockstein spectral sequence in dimension #—gq, (E®,). By
the usual argument, this is equivalent to the statement that the cup
product pairing E}y® Eiy*—Ely=Z, is a nonsingular pairing.

LemMA 1. dim(image d.)?=number of summands Zyr in HY(C),
(d,=the differential in the cohomology Bockstein spectral sequence Ey).

This lemma follows immediately from the results of [3, §3].

LemMa 2. If X satisfies Poincaré duality and dim X=mn, then
(tmage d,)*=0,

This follows immediately from Lemma 1, and the fact that H*(X)
=7 is free,

Lemma 3. Let X satisfy Poincaré duality, dim X =2m-+1. If
x, YE LG, then (dx)y=(—1)""x(d,y).

PrOOF. xy C Efy so that d,(xy) = (d.x)y+ (—1)™x(d.y), which equals
zero by Lemma 2, which proves Lemma 3.

Let K,=kernel of d, in Ej}), I,=image of d, in E{"™. Then I, is
orthogonal to K, under the cup product pairing, from Lemma 3.
Hence the cup product induces a nonsingular pairing of Ef})/K, with
I,. Further d, induces an isomorphism of Ef /K, with I, so that we
define the inner product 4% on I, by A?(x, y) = (d; 'x)y. (Where there
is no ambiguity, we shall denote the inner product simply by {,)).
Lemma 3 implies that if m is odd then (x, y)=(y, x), i.e., {, ) issym-
metric,
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LeMMA 4. If m is even, and if either p#2 or p=2 and r>1, then
{,) is symplectic, i.e., {x, x)=0 for x&I,.

Proor. It follows from Lemma 3 that (x, y)= —(y, x), which
proves Lemma 4 if ps£2. If p=2 and r>1, we recall that by [3,
Theorem 5.4], if d,x =7y, x CE}, m even, then d...{x2} = {xy}. Then
by Lemma 2, {xy} =0 in E}y, and since Efy=Eby, xy=0in E},,
and (y, ¥)=0.

LeEmMA 5. If m is even and xEH™(X; Zy), then Sq™Sq*x =xSq'x
=(Sq'x, Sq'x).

ProOF. By [3, Theorem 5.4], da{x?} = {xSq'x+SgmSq'x}. Since
d2{x?} =0 by Lemma 2, {xSqx+Sg"Sqg'x} =0 in E(,, hence xSq'x
=S¢ Sq'x.

Next we define Stiefel-Whitney classes (S-W classes) w; in
H*(X; Zy) after the method of Wu (see [8]). Namely, since Poincaré
duality holds in H*(X; Z,), the homomorphism Sg¢i: H*#(X; Z,)
—H"(X; Zs) coincides with u;\U for some u;EH*(X; Z;). Set
U= iui, Sqg=p,;Sq¢i. Define W= yuy, wiECH*(X; Z;) by
W=_SqU. We get immediately:

LeMMA 6. W=0 if and only if U=0 if and only if Sqi: H (X ; Z,)
—H"(X; Zy) is zero for all 1.

Proor or THEOREM 1. A vector space with a symplectic inner
product is even dimensional (see [2]). Then it follows from Lemma 4
and Lemma 1 that if p is odd the number of summands Z,r in
Hm™t1(X) (hence H,(X) by Poincaré duality) is even. This gives us
alternatives (1) or (2). If Sgm: I1— H*(X; Z,) 1is zero
(I= (image Sg')™+!), then from Lemma 5, A? is symplectic and
alternative (1) holds. Hence if alternative (2) holds, by Lemma 6,
W#0.

Since (image S¢*)*=0 by Lemma 2, and Sg?+! = S¢*S¢?, it follows
that only even squares reach dimension # and hence U is the sum of
even dimensional elements. If m=2, then U=u,, for S¢*=0 for di-
mensional reasons in H*(X; Zy). If alternative (2) holds in this case,
then Sq?: I1—H5(X; Z,;) is nonzero so that U=u7#0 and u.Sq'x
=S5¢2Sq¢'x #0, and u2Sq'x = (Sq'us)x by Lemma 3. Hence ws;=Sq'u,
#0.

Conversely if m=2 and w3520, then w;=Sq¢'us. From Lemma 3
and the fact that A2 is nonsingular it follows that us-y5%0 for some
y=S¢'x EH¥X; Z,). Hence Sg?y=us-y=S5¢2Sq'x#0 and kernel
S¢*: 1—H%(X; Z,) is not all of I, so that dim (kernel Sg?) =dim I;—1
(since Sq?is a linear map into a space of dimension 1). Restricted to
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930 WILLIAM BROWDER

kernel Sq?, A? is symplectic by Lemma 5, so that dim I; is odd and
alternative (2) holds. This completes the proof of Theorem 1.
Theorem 2 will follow from Theorem 1 and the following lemma:

LemMMA 7. If w;=0 for 1 <m, m even> 2, then w,,1=0.

ProoF. By a result of J. F. Adams [1] relations holding among
S-W classes in differentiable manifolds, hold also for our case. If
m=2l, according to the formula of Wu [9]3 S¢'wi1=wn1+D,
where D is a product of w,’s for 1 <m. Since w;=0 for 1 <m, D=0 so
that S¢'wi1=wWn1. If I>1, then [41<2] so that w;11=0 and hence
'wm+1=0.

Proor oF THEOREM 2. First let us suppose H,(X)=F+T+T+2Z,.
Then A? is not symplectic and Sg™Sq'x %0 for some xS H™(X; Z).
As in the proof of the last part of Theorem 1, U=u, and #,Sq'x
= Sq™Sq'x #0. But #,.S¢'x = (Sq*un)x, so that Sq'u,#0 and W=1u,
+Sq'un so that w, =, and wWnu11=S¢'%.#0. Hence m =2 by Lemma
7.

The converse follows immediately from Theorem 1.

Example of differentiable manifolds which satisfy the hypotheses
of Theorem 2 are described in [6].
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CorRNELL UNIVERSITY

3 This fact does not require the full strength of Wu’s formula, but can be seen very
easily by considering the cohomology suspension ¢*: H*(Bo; Z2)—H*(0; Z2). It is
well known that o*(w;) =h:_; where {h.} are a simple system of generators for
H*(0; Zs), the w; are a set of generators for H*(Bo; Z,) and kernel ¢* =decomposable
elements. Then the result we need follows from the relation Sg*hw = h% = ho in H*(0;Z2).
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