William Browder^{*} Princeton University

The topology of non-singular complete intersections (i.e. a non-singular variety V of complex dimension n defined by k polynomials in \mathbb{CP}^{n+k}) has received considerable attention in recent years. It was observed by Thom in the early 1950's that the degrees of the k polynomials determine the diffeomorphism type. From the Lefschetz Theorem, it follows that for a complete intersection $V^n \subset \mathbb{CP}^{n+k}$, the pair (\mathbb{CP}^{n+k}, V^n) is n-connected, so that the inclusion $i: V \longrightarrow \mathbb{CP}^{n+k}$ induces $i_*: \pi_i(V) \longrightarrow \pi_i(\mathbb{CP}^{n+k})$ which is an isomorphism for i < n, and an epimorphism for i = n. Thus, in some sense, the topology of V is "concentrated in the middle dimension."

In particular $i_* : H_i(V) \longrightarrow H_i(\mathbb{CP}^{n+k})$ is injective for $i \neq n$, and $(\text{image } i_*)_{2n} = d(H_{2n}(\mathbb{CP}^{n+k}))$ where $d = d_1 \cdot \ldots \cdot d_k$ is the total degree of V, d_i = degree of the i-th polynomial P_i , P_1 , \ldots , P_k define V, so that $(\text{image } i_*)$ is then completely determined by Poincaré duality.

If s is the largest integer less than n/2, we can embed $\mathbb{CP}^{S} \subset V$, and V will be a bundle neighborhood U of \mathbb{CP}^{S} with handles $D^{r} \times D^{q}$ attached (along $S^{r-1} \times D^{q}$) with $r \geq n$, r+q=2n. In fact, V can be described as $W \cup U'$ where $W = U \cup (n-handles)$ and U' is another copy of U, and union is along the boundaries. The diffeomorphism type of V is then determined by the attaching maps of the n-handles, and the "gluing" map of $\partial(U')$ to ∂W .

The attaching maps of the n-handles will be closely connected to the middle

[&]quot;Research partly supported by an NSF Grant.

dimensional intersection form. When n is even, close analysis of this form (as in [Kulkarni-Wood]) leads to interesting results on the topology of V (see also [Wood], [Libgober], [Libgober-Wood]).

When n is odd, the intersection form is skew symmetric and the analysis of the middle dimensional handles relies on more subtle homological information. A basis for the middle dimensional homology $H_n(V)$, when n > 1, n odd, can be represented, using Whitney's and Haefliger's embedding theorems, by embedded spheres S_{li}^n , $S_{2i}^n \subset V$, with $S_{ij} \cap S_{ik} = \emptyset$, any j, k, $S_{lj} \cap S_{2k} = \emptyset$ for $j \neq k$ and $S_{li} \cap S_{2i} =$ one point, every i, so that $\{S_{ij}\}$ represent a symplectic base for $H_n(V)$. If each S_{ij} could be chosen to have trivial normal bundle, then a neighborhood of $S_{li} \cup S_{2i}$ would be diffeomorphic to $(S^n \times S^n - (2n-disk))$ and it would follow that

$$\mathbb{V} = (\mathbb{U} \cup \mathbb{U}') \# \stackrel{\text{def}}{=} \mathbb{S}^n \times \mathbb{S}^n ,$$

the connected sum of (U U U') with q copies of $S^n \times S^n$, where U U U' is the "twisted double" of U, i.e. two copies of the disk bundle U over ΩP^S (n = 2s + 1), glued by a diffeomorphism of the boundary.

The question of finding a basis for $H_n(V)$ represented by embedded spheres with trivial normal bundle, $(S^n \times D^n \subset V)$, can be studied by the methods of the Kervaire invariant arising in surgery theory. This involves defining a quadratic form ψ : $H_n(V) \longrightarrow \mathbb{Z}/2$, such that $\psi(x) = 0$ if and only if $x \in H_n(V)$ is represented by a $S^n \times D^n \subset V$. We give conditions in terms of the degrees of the defining polynomials of V for such a quadratic form to be defined, and show that when ψ cannot be defined, that any $x \in H_n(V)$ can be represented by $S^n \times D^n$.

When ψ can be defined one can find the sought for basis if and only if the Arf invariant of ψ (called the Kervaire invariant) is zero. We give a formula for computing it in these cases. Our specific results are as follows:

Let $V \subset \mathbb{CP}^{n+k}$ be a non-singular complete intersection of complex dimension n = 2s + l, defined by k-polynomials of degree d_1, \ldots, d_k , and let $d = d_1 \ldots d_k$ (= the degree of V).

<u>Theorem A</u>. Suppose exactly ℓ of the degrees d_1, \ldots, d_k are even (so $k - \ell$ are odd). If the binomial coefficient $\binom{s+\ell}{s+1}$ is odd, and $n \neq 1$, 3 or 7, then there exists a homologically trivial $S^n \subset V$ with non-trivial (stably trivial) normal bundle, and every element $x \in H_n(V)$ can be represented by $S^n \times D^n \subset V$. If n = 1, 3 or 7 every embedded $S^n \subset V$ has trivial normal bundle.

This was originally proved by [Morita, H] and [Wood, H] for hypersurfaces and [Wood, CI] for complete intersections.

<u>Theorem B.</u> Notation as in A, if $\binom{s+\ell}{s+1}$ is even, then a quadratic form is defined ψ : $H_n(V) \longrightarrow \mathbb{Z}/2$ such that $x \in H_n(V)$ $(n \neq 1, 3 \text{ or } 7)$ is represented by $S^n \times D^n \subset V$ if and only if $\psi(x) = 0$.

<u>Theorem C</u>. With hypothesis as in B , $H_n(V)$ has a symplectic basis represented by embeddings $S^n \times D^n \subset V$, mutually intersecting exactly as in the intersection matrix if and only if the Arf invariant of ψ (the Kervaire invariant) K(V) = 0, $(K(V) \in \mathbb{Z}/2)$.

(i) If all
$$d_1$$
, ..., d_k are odd,

$$K(V) = \begin{cases} 0 & \text{if } d \equiv \pm 1 \pmod{8} \\ 1 & \text{if } d \equiv \pm 3 \pmod{8} \end{cases}$$
(ii) If some d_i 's are even, $K(V) = 1$ if and only if $\ell = 2, 4$'s

90

and 8×d.

In C, note that the condition $\binom{s+\ell}{s+1} \equiv 0 \pmod{2}$ of Theorem B, imposes a condition on the number of d_i which may be even. For example $\ell \neq 1$, and for $\ell = 2$, $\binom{s+2}{s+1} = s+2$ is even if and only if s is even, (n = 2s + 1).

As well as Theorem A, [Morita, H] proved B and C for hypersurfaces (k = 1). This case was also done in [Wood, H]. The author first proved C(i) at that time, and [Wood, CI] gave another proof. [Ochanine] first proved C(ii) in the case where V is a 8q + 2 dimensional Spin manifold, (so s = 2q), which is the only case of even degree when K(V) might equal 1.

In §1 we discuss the definition of the quadratic form in a general context and prove that when the form is not defined (for framed $M^{2n} \times \mathbb{R}^k \subset W$) there is an embedded sphere $S^n \subset M^{2n}$ (n \neq 1, 3, 7) which is homologically trivial (mod 2) in M, with non-trivial (stably trivial) normal bundle. In §2, we consider complete intersections and prove A, B and C. To prove C we invoke a theorem relating the Kervaire invariant of V^n and its hyperplane section V_0^{n-1} which will be proved elsewhere. §1. Quadratic forms.

In [Browder, K], a definition of the quadratic form arising in surgery or in framed manifolds was given using functional Steenrod squares. We give here a geometrical version of this definition, and then study when it can be defined for complete intersections, and its meaning.

First note:

(1.1) <u>Proposition</u>. For any $x \in H_n(M^{2n}; \mathbb{Z}/2)$, one can find an embedded $N^n \subset M^{2n}$, with $i_*[N] = x$.

The proof of this is standard as in Thom's proof of representability of homology by maps of manifolds, but using the additional fact that for the canonical n-plane bundle γ^n , the first non-trivial k-invariant occurs in dimension 2n + 1, so that there is no obstruction to finding a map $f: M^{2n} \longrightarrow T(\gamma^n)$ such that $[M] \cap f^*(U) = x$, ($[M] \cap$ is Poincaré duality, $U \in H^n(T(\gamma^n); \mathbb{Z}/2)$ is the Thom class). Similarly we get: (1.2) <u>Proposition</u>. If $M^{2n} \times \mathbb{R}^q \subset W^{2n+q}$, W connected, and $y \in H_{n+1}$ (W, M; $\mathbb{Z}/2$), we can find $N \subset M$ representing ∂y as in (1.1), with $N = \partial V$, $V \subset W \times [0, 1)$, V connected, with [V] representing y, $[V] \in H_{n+1}$ (V, N; $\mathbb{Z}/2$) the fundamental class. Further V meets $W \times 0$ transversally in $N \subset M$.

Now the normal bundle of N in W × 0 has a q-frame given by the product $M \times \mathbb{R}^{q}$ restricted to N. The obstructions to extending this frame to a normal q-frame on $V \subset W \times [0, 1)$ lie in $H^{i+1}(V, N; \pi_i(V_{n+q,q}))$ where $V_{n+q,q}$ is the space of orthogonal q-fames in \mathbb{R}^{n+q} , so $V_{n+q,q} = O(n+q) / O(n)$, and is (n-1)-connected. Hence all these obstructions are zero except the last, $\alpha \in H^{n+1}(V, N; \pi_n(V_{n+q,q})) \cong \mathbb{Z}/2$. Evaluating α on [V] we get an element in $\mathbb{Z}/2$, and we would like to define $\psi(x) = \alpha[V]$, (for $x = \partial y$, $y \in H_n(W, M; \mathbb{Z}/2)$) but we have made a number of choices in this

process which depend on more than the homology class x , namely the choice of N and the choice of V , with ∂V = N .

From the theory of the Stiefel-Whitney class (see [Steenrod]) the first obstruction to finding a q-frame in an (n+q) plane bundle is the Stiefel-Whitney class W_{n+1} , which becomes the ordinary Stiefel-Whitney class w_{n+1} when reduced mod 2. In the relative situation we are discussing, this is in fact the relative Stiefel-Whitney class in the sense of [Kervaire]. Thus it is homologically defined provided that this relative class does not depend on the chocie of V. This will be true provided that any closed manifold $\chi^{n+1} \subset W^{n+q} \times [0,1)$ admits a normal q-frame, that is, its normal Stiefel-Whitney class of V.

If ξ^{n+q} is the normal bundle of X in $W \times [0, 1)$, the normal class $\overline{w}_{n+1}(X)$ is given by the formula

$$\overline{w}_{n+1} \cup U = Sq^{n+1} \cup U \in H^{n+q} (T(\xi); \mathbb{Z}/2)$$

the Thom class. The natural collapsing map $c : \Sigma W = (W \times [0,1]) / boundary \longrightarrow T(\xi)$ has degree 1 (mod 2), and it follows that:

(1.3) The following are equivalent:

(a) $\overline{w}_{n+1}(X) = 0$ for all $X^{n+1} \subset W \times [0, 1)$ (b) Sq^{n+1} : $\operatorname{H}^{n+q-1}(W / \partial W; \mathbb{Z}/2) \longrightarrow \operatorname{H}^{2n+q}(W / \partial W; \mathbb{Z}/2)$ is zero (c) $v_{n+1}(W) = 0$ (v_{n+1} = the Wu class).

Thus we get the condition:

(1.4) The obstruction to extending a q-frame over N to V described above defines a quadratic form ψ : K $\longrightarrow \mathbb{Z}/2$ where K = kernel H_n (M; $\mathbb{Z}/2$) \longrightarrow H_n (W; $\mathbb{Z}/2$) if and only if v_{n+1} (W) = 0.

It is not difficult to translate this relative Stiefel-Whitney class definition into the functional Sq^{n+1} definition of [Browder, K], which shows

it defines a quadratic form.

One may prove (1.4) directly as follows:

Since we have shown that the definition is evaluation of a relative Stiefel-Whitney class it follows that the definition depends only on homology class. To show it quadratic, we first prove it in the special case of $S^n \times S^n \times \mathbb{R}^q \subset S^{2n+q} = \partial \mathbb{D}^{2n+q+1}$, which may be done directly. It is clear that the function is additive on two non-intersecting manifolds \mathbb{N}_1^n , $\mathbb{N}_2^n \subset \mathbb{M}^{2n}$, (which then bound non-intersecting \mathbb{V}_1^{n+1} , $\mathbb{V}_2^{n+1} \subset \mathbb{W} \times [0, 1)$.

If N_1 , N_2 have even intersection number, then if n > 1, we may find a bordism of N_1 to N_1' in M, disjoint from N_2' , (simply the first few lines of the Whitney process produces the cobordism from each pair of intersection points). Take two intersection points a, $b \in N_1 \cap N_2$ and draw an arc on N_2 joining them. If N_2 were not connected we could first make a bordism of N_2 to a connected submanifold, if M were connected. If M were not connected, we would first take connected sum of its components, without changing the quadratic forms.

A neighborhood of this arc would be of the form $D^1 \times D^{n-1} \times D^n$ where $D^1 \times D^{n-1} \times 0$ is a neighborhood in N_2 . Then $D^1 \times 0 \times D^n$ defines a handle which when added to N_1 , produces a bordism of N_1 to N'_1 which has 2 less intersection points with N_2 .

This shows that $\psi(x_1 + x_2) = \psi(x_1) + \psi(x_2)$ whenever $x_1 \cdot x_2$ is even. If $x_1 \cdot x_2$ is odd, let g_1 , $g_2 \in H_n(S^n \times S^n)$ be the generators corresponding to the factors, so that $\psi(g_1) = \psi(g_2) = 0$, $\psi(g_1 + g_2) = 1$. Then $(x_1 + g_1) \cdot (x_2 + g_2) = x_1 \cdot x_2 + g_1 \cdot g_2$ is even, so that (a) $\psi((x_1 + g_1) + (x_2 + g_2)) = \psi(x_1 + g_1) + \psi(x_1 + g_2) = \psi(x_1) + \psi(x_2)$. But $(x_1 + x_2) \cdot (g_1 + g_2) = 0$ so (b) $\psi((x_1 + x_2) + (g_1 + g_2)) = \psi(x_1 + x_2) + \psi(g_1 + g_2) = \psi(x_1 + x_2) + 1$ Equating (a) and (b) we get

$$\psi(x_1 + x_2) + 1 = \psi(x_1) + \psi(x_2)$$

and $(x_1 \cdot x_2) \equiv 1 \mod 2$, which completes the proof that ψ is quadratic. (1.5) <u>Theorem</u>. Suppose $M^{2n} \times \mathbb{R}^q \subset W^{2n+q}$, $n \neq 0, 1, 3$ or 7, W is 1-connected, (W,M) n-connected, and suppose $v_{n+1}(W) \neq 0$. Then there exists an embedded $S^n \subset M^{2n}$ and $U^{n+1} \subset M^{2n} \times \mathbb{R}^{q+1}$ with $\partial U = S^n$ such that the normal bundle ξ to S^n in M^{2n} is non-trivial, but $\xi + \varepsilon^1$ is trivial. Hence S^n is homologically trivial (mod 2) with non-trivial normal bundle.

<u>Proof</u>: Since $v_{n+1}(W) \neq 0$ we can find an embedding of a closed manifold j: $x^{n+1} \subset W$ whose normal bundle ξ does not admit a q-frame in $W \times [0,1)$. For $v_{n+1}(W) \neq 0$ means there is an $x \in H^{n+q-1}(W/\partial W$; $\mathbb{Z}/2)$ such that $(Sq^{n+1} x) [W] \neq 0$, and hence $q \geq 2$. By Thom's theorem, since n + q - 1 > n, there is a map r: $(W, \partial W) \longrightarrow (T(\gamma_{n+q-1}), \infty)$ such that $r^*U = x$ (U the Thom class in $H^{n+q-1}(T(\gamma_{n+q-1}); \mathbb{Z}/2)$, and the transverse inverse image of the 0-section will be our manifold X^{n+1} , which we may assume connected, by choosing a component with the above property.

Let $X_0 = X - (int D^{n+1})$ so that $\partial X_0 = S^n$. Since X was connected, X_0 has the homotopy type of a n dimensional complex. Since (W, M) is n-connected, it follows that there is a map $f : X_0 \longrightarrow M$ such that

$$\begin{array}{cccc} X_{O} & \stackrel{f}{\longrightarrow} & M \\ \bigcap & & \bigcap & i \\ X & \longrightarrow & W & & commutes up to homotopy. \end{array}$$

Let g be the composite $S^n = \partial X_0 \subset X_0 \xrightarrow{f} M$, so that $g_*[S^n] = 0$. Since M is 1-connected, the Whitney process will produce a homotopy of g to an embedding (again called g), and we wish to show the normal bundle ζ^n to this embedded sphere $g(S^n)$ is non-trivial.

Using the Whitney general position embedding theorem, we may deform

 $X_0 \xrightarrow{f} M \times \mathbb{R}^q \times (-1, 0]$ to an embedding $g_0 : X_0 \longrightarrow M \times \mathbb{R}^q \times (-1, 0]$ extending g which meets $M \times \mathbb{R}^q \times 0$ transversally in $g_0(\partial X_0) = g(S^n) \subset M \subset M \times \mathbb{R}^q \times 0$.

On the other side, the embedding $g : S^n \subset M$ extends to an embedding (using general position) $\tilde{g} : D^{n+1} \subset W \times [0, 1)$ meeting $W \times 0$ transversally in $g(S^n) = \tilde{g}(\partial D^{n+1}) \subset M \times 0 \subset M \times \mathbb{R}^k \times 0 \subset W \times 0$. The two embeddings $g_0 : X_0 \subset M \times \mathbb{R}^q \times (-1, 0]$, $\tilde{g} : D^{n+1} \subset W \times [0, 1)$ together define an embedding $g_1 : X_0 \cup D^{n+1} = X \longrightarrow W \times (-1, 1)$ which is isotopic (by general position) to our original embedding $j : X \subset W \subset W \times (-1, 1)$.

The product structure $M \times \mathbb{R}^q \subset W \times 0$ defines a q-frame in the normal bundle ζ_1^{n+q} of $g(S^n) \subset M \times \mathbb{R}^q \subset W \times 0$ (so that $\zeta^n + \varepsilon^q = \zeta_1^{n+q}$) and let $\mathscr{F} \in \pi_{n+1}(V_{n+q,q})$ be the obstruction to extending this k-frame over the normal bundle of $\widetilde{g}(D^{n+1}) \subset W \times [0, 1)$.

(1.6) Lemma. If $n \neq 1$, 3 or 7, the obstruction $\mathscr{F} = 0$ if and only if ζ^n is trivial.

Proofs of (1.6) can be found in [Wall] or [Browder, S; (IV 4.2)].

We assume ζ^n is trivial and produce a contradiction. In that case we can find a framed handle $D^{n+1} \times D^n \times \mathbb{R}^q \subset W \times [0, 1)$ (using (1.6)) with $D^{n+1} \times 0 \times 0 = \overline{g}(D^{n+1})$ and $S^n \times D^n \times 0$ a neighborhood of $g(S^n) \subset M \subset M \times \mathbb{R}^q \times 0 \subset W \times [0, 1)$. Let V be the cobordism of M defined by $V = M \times [-1, 0] \cup (D^{n+1} \times D^n)$, so that $V \times \mathbb{R}^q \subset W \times [-1, 1]$, and $g_1(X) \subset (\text{int } V) \times \mathbb{R}^q$.

Hence we have a factorization of the collapsing map $Y = W \times [-1, 1] / \partial(W \times [-1, 1]) \xrightarrow{a} \Sigma^{q} V / \partial V \xrightarrow{b} T(\xi + \varepsilon^{1})$ so that $(ba)^{*}(U) = \Sigma_{x} \in H^{n+q}(Y; \mathbb{Z}/2)$ and $(Sq^{n+1}(x))[W] = (Sq^{n+1}(\Sigma_{x}))[Y] \neq 0$, $U \in H^{n+q}(T(\xi); \mathbb{Z}/2)$ the Thom class. It follows that $(Sq^{n+1}(b^{*}U))(\Sigma^{q}[V]) \neq 0$, so that $Sq^{n+1}(\Sigma^{-q}(b^{*}U))[V] \neq 0$, where $\Sigma^{-q}(b^{*}U) \in H^{n}(V / \partial V; \mathbb{Z}/2)$,

which leads to sought after contradiction since Sqⁿ⁺¹ annihilates cohomology of dimension n. This completes the proof of (1.5).

On the other hand we have:

(1.7) <u>Proposition</u>. If $v_{n+1}(W) = 0$, (W, M) n-connected, $n \neq 1, 3, 7$, n odd, and $\varphi : S^n \subset M^{2n}$ with φ nullhomotopic in W. Then the normal bundle of $\varphi(S^n)$ is trivial if and only $\psi(\varphi_*[S^n]) = 0$ where ψ is the quadratic form of (1.4).

(1.7) follows easily from (1.6) and the definition of ψ .

§2. Complete intersections, their normal bundles and the quadratic form.

In this paragraph, we apply the results of §l to the case of non-singular complete intersections $V^n \subset \mathbb{CP}^{n+\ell}$, give the conditions for the quadratic form of §l to be defined, and calculate the Kervaire invariant when it is defined.

Recall that a submanifold $V \subset \mathbb{CP}^{n+k}$ is a non-singular complete intersection if V is the locus of zeros of k homogeneous polynomials P_1, \ldots, P_k where dim V = 2n (real dimension) and codim V = 2k. The degrees d_i of P_i completely determine V up to diffeomorphism. Thus any question we ask in differential topology about V must have an answer in the form of a formula involving only n, and d_1, \ldots, d_k , and we will use the notation $V = V^n(d_1, \ldots, d_k)$.

From the topological point of view it is convenient to view V as a transversal inverse image, to have its normal bundle in \mathbb{CP}^{n+k} evident. We may assume $P_i(1, 0, \ldots, 0) \neq 0$ for all i. Define maps $\overline{P}_i: \mathbb{CP}^{n+k} \longrightarrow \mathbb{CP}^{n+k}$ by $\overline{P}_i(z_0, \ldots, z_{n+k}) = (P_i(z_0, \ldots, z_{n+k}), z_1^{d_i}, \ldots, z_{n+k}^{d_i})$, so $\overline{P}_i^{-1}(z_0 = 0)$ is a hypersurface of degree d_i . Define $\overline{P}: \mathbb{CP}^{n+k} \longrightarrow \prod_{i=1}^k \mathbb{CP}^{n+k}$ by $\overline{P} = \Pi \overline{P}_i$. Then $V = \overline{P}^{-1}(\bigcap_{i=1}^k (z_0^{(i)} = 0))$, where $z_0^{(i)}$ is the 0-th coordinate in the i-th copy of \mathbb{CP}^{n+k} .

Small perturbation of the coefficients (if necessary) will make \overline{P} transversal and V will be a non-singular manifold and we get: (2.1) <u>Proposition</u>. The non-singular complete intersection V^n defined by the vanishing of P_1 ,..., P_k on \mathbb{CP}^{n+k} represents the homology class $dx_n \in H_{2n}(\mathbb{CP}^{n+k})$, and the normal bundle ξ of $V \subset \mathbb{CP}^{n+k}$ has a natural bundle map into the bundle $(\alpha^{d_1} + \alpha^{d_2} + \ldots + \alpha^{d_k})$ over \mathbb{CP}^{n+k} where x_n

98

is the generator dual to $y^k \in H^{2k}(\mathbb{CP}^{n+k})$, $y = c_1(\alpha)$, α the canonical \mathbb{C} bundle over \mathbb{CP}^{n+k} , $d = d_1 \dots d_k$ the total degree of V.

We may transform this situation into the situation of §l by embedding $\mathbb{CP}^{n+k} \subset \mathbb{E}$ = the total space of a bundle γ which is stably inverse to $(\alpha^{d_1} + \ldots + \alpha^{d_k})$. Then the normal bundle of $V \subset \mathbb{E}$ has a bundle map into $(\alpha^{d_1} + \ldots + \alpha^{d_k}) + \gamma$ which has a natural trivialization. Hence (2.2) <u>Proposition</u>. The complete intersection $V^n \subset \mathbb{CP}^{n+k}$ has a natural framing in \mathbb{E} , $V \times \mathbb{R}^q \subset \mathbb{E}$, where $\mathbb{E} = \mathbb{E}(\gamma)$, γ a representative of $-(\alpha^{d_1} + \ldots + \alpha^{d_k}) \in \mathbb{K}(\mathbb{CP}^{n+k})$.

Note that the framing is determined by the structure of V as a complete intersection, and the polynomials P_1 ,..., P_k , not simply by the differentiable structure of V.

To apply §1, we need to calculate $v_{n+1}(E(\gamma))$, to see if the quadratic form is well defined. Note that if n is even, $v_{n+1} = 0$ since it lies in a zero group.

(2.3) <u>Theorem</u>. $v_{n+1}(E) \neq 0$ if and only if $\binom{s+\ell}{s+1} \neq 0 \pmod{2}$, where ℓ = the number of even integers among the degrees d_1, \ldots, d_k , n = 2s + 1.

Proof: The Stiefel-Whitney class

$$W(E) = W(\tau_{\mathbb{C}P}^{n+k} + \gamma) = W((n+k+1)\alpha - (\alpha^{d_1} + \ldots + \alpha^{d_k}))$$
$$= \frac{(1+x)^{n+k+1}}{\prod_{i=1}^{k} (1+d_ix)} = \frac{(1+x)^{n+k+1}}{(1+x)^{k-\ell}} = (1+x)^{n+\ell+1}.$$

Hence $W(E) = W(\tau_{\alpha p}^{n+\ell})$ in dimensions where both cohomologies agree, and hence $w_{n+1}(E) = v_{n+1} (\mathfrak{A}P^{n+\ell})$. But $v_{n+1} (\mathfrak{A}P^{n+\ell}) \neq 0$ if and only if Sq^{n+1} : $H^{n+2\ell-1} (\mathfrak{A}P^{n+\ell}; \mathbb{Z}/2) \longrightarrow H^{2n+2\ell} (\mathfrak{A}P^{n+\ell}; \mathbb{Z}/2)$ is non-zero. The group $H^{n+2\ell-1} (\mathfrak{A}P^{n+\ell}; \mathbb{Z}/2)$ is generated by $x^{s+\ell}$, where x generates $H^2 (\mathfrak{A}P^{n+\ell}; \mathbb{Z}/2)$ (since n = 2s + 1), so $\operatorname{Sq}^{n+1} (x^{s+\ell}) = \operatorname{Sq}^{2s+2} (x^{s+\ell})$ = (^{s + l} _{s + 1}) x^{n+l}, which completes the proof.□ In E, x^{s+1} is represented by X = MP^{s+1}, so X₀ in the proof of (1.5) may be taken oriented, and we get: (2.4) <u>Corollary</u>. (Morita, Wood) If n = 2s + 1, V non-singular in MP^{n+k} defined by P₁,..., P_k of degree d₁,..., d_k, and if (^{s + l} _{s + 1}) is odd, l = number of even degrees among the d₁'s, then there is an embedded Sⁿ ⊂ V which is homologically trivial, and has a non-trivial normal bundle, (provided n ≠ 1, 3 or 7).

To calculate the Kervaire invariant (the Arf invariant of ψ) in the other cases (where ψ is well defined) we use the following theorem. The proof will be given in another paper, and it follows from a combination of an additivity theorem for the Kervaire invariant (analogous to Novikov's theorem on index) and the product formula for the Kervaire invariant.

(2.5) <u>Theorem</u>. Let $V^n \subset \mathbb{CP}^{n+k}$ be a non-singular complete intersection, and let $V_0^{n-1} \subset \mathbb{CP}^{n+k-1}$ be a non-singular hyperplane section. If the quadratic forms are defined for both V^n and V_0^{n-1} , then their Kervaire invariants are equal, $K(V) = K(V_0)$.

Note that the definition of $K(V_0)$ may have some extra subtlety as we will see in the calculation.

We can immediately derive the formula for K(V) when $d = d_1 \dots d_k$ is odd. In that case (2.3) implies that the quadratic forms are defined for all the iterated hyperplane sections $V_0^{n-1} \supset V_1^{n-2} \dots \supset V_{n-1}^0$ so that (2.5) implies $K(V^n) = K(V_{n-1}^0)$, and we are left with the problem of computing $K(V^0)$ for the zero dimensional complete intersection of degree d, that is, for d similarly oriented points.

This calculation is a special case of that of [Browder, FPK] and is actually equivalent to it using a product formula. We do it explicitly as follows.

Suppose $V^{0}(d) = d$ disjoint points, embedded in W. A <u>framing</u> of

100

 $v^{O}(d)$ is simply an orientation on a neighborhood of each point and the condition $v_{1}(W) = 0$ means that W is orientable. Suppose W is connected, d is odd, and the orientations at all the points are the same.

(2.6) Proposition.
$$K(V^{O}(d)) = \begin{cases} 0 & \text{if } d \equiv \pm 1 \mod 8 \\ 1 & \text{if } d \equiv \pm 3 \mod 8 \end{cases}$$

<u>Proof</u>: Since W^m is connected we may assume that $V^O(d) \subset B^m \subset W$ and that the symmetric group Σ_d acts on $V^O(d)$, preserving the framed embedding, so that

$$\begin{split} \psi(\sigma \mathbf{x}) &= \psi(\mathbf{x}) \quad \text{for} \quad \sigma \in \Sigma_{\mathbf{d}} , \\ \varepsilon \ \mathbf{K}_{\mathbf{0}} &= \ker \ \mathbf{H}_{\mathbf{0}} \ (\mathbf{V}^{\mathbf{0}}(\mathbf{d}) \ ; \ \mathbf{Z}/2) \longrightarrow \ \mathbf{H}_{\mathbf{0}} \ (\mathbf{D}^{\mathbf{m}} \ ; \ \mathbf{Z}/2) . \end{split}$$

Now K_0 has a basis $\{x_1 + x_0, x_2 + x_0, \dots, x_{2s} + x_0\}$, where the d points are x_0, \dots, x_{2s} , d = 2s + 1. Since Σ_d acts transitively on this basis, (2.7) $\psi(x_1 + x_0) = \psi(x_j + x_0)$ for all i, j.

Further the intersection product

х

(2.8)
$$(x_{i} + x_{0}) \cdot (x_{j} + x_{0}) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$

Define a module A_s with quadratic form ψ by letting a_1, a_2, \ldots, a_{2s} be a basis for A_s , $\psi(a_i) = 0$ for all i, and

$$(a_{i}, a_{j}) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases}$$

(the opposite of an orthonormal basis). It is easy to check that the bilinear form (,) is non-singular on A_s and is the associated bilinear form to ψ .

Similarly, define $B_{_{\rm S}}$, ϕ by the basis b_1 ,..., $b_{_{\rm 2S}}$, $\phi(b_1)$ = 1 , all i , and

$$(\mathbf{b}_{\mathbf{j}}, \mathbf{b}_{\mathbf{j}}) = \begin{cases} 0 & \mathbf{i} = \mathbf{j} \\ 1 & \mathbf{i} \neq \mathbf{j} \end{cases}$$

(2.9) <u>Lemma</u>. $A_s \cong A_1 + B_{s-1}$ $B_s \cong B_1 + A_{s-1}$

(as modules with quadratic forms).

<u>Proof</u>: Define a new basis for A_s by $a'_i = a_i + a_1 + a_2$, and let $A_1 \subset A_s$ be generated by a_1 , a_2 , $B'_{s-1} \subset A_s$ be generated by a'_3 ,..., a'_{2s} . Then $A_1 \perp B'_{s-1}$, and it is easy to check that $B'_{s-1} \cong B_{s-1}$.

Similary, define a new basis for B_s by $b'_1 = b_1 + b_1 + b_2$, let $B_1 \subseteq B_s$ be generated by b_1 , b_2 , $A'_{s-1} \subseteq B_s$ generated by b'_3 ,..., b'_s . Then $B_s \cong B_1 + A'_{s-1}$ as orthogonal direct sum, and $A'_{s-1} \cong A_{s-1}$. Since Arf $(A_1) = 0$, Arf $(B_1) = 1$, we get :

(2.10) Proposition. Arf
$$(B_s) = \begin{cases} 1 & \text{if } s \equiv 1 \text{ or } 2 \mod 4 \\ 0 & \text{if } s \equiv 3 \text{ or } 4 \mod 4 \end{cases}$$

But in (2.6), $K_0 \cong B_s$ if d = 2s + 1 which completes the proof of (2.6) and the calculation of $K(V^n(d_1, \ldots, d_k))$ when $d = d_1 \ldots d_k$ is odd, i.e. Theorem C(i).

The case of even degree d is more difficult, since the quadratic form may not be defined for the iterated hyperplane sections. However, it is always defined for the first hyperplane section $V_0^{n-1} \subset V^n$, (since the appropriate Wu class v_n lies in a zero group when n is odd). To make the calculation in V_0^{n-1} we need:

102

(2.11) <u>Proposition</u>. Let $M^{2m} \times \mathbb{R}^k \subset W$, $v_{m+1}(W) = 0$, m even, and M oriented. If $x \in H_m(M; \mathbb{Z})$, $i_*(x_2) = 0$, $i : M \longrightarrow W$ inclusion, $x_2 \in H_m(M; \mathbb{Z}/2)$ the reduction of $x \mod 2$, then $\psi(x_2) \equiv \frac{x \cdot x}{2} \mod 2$. We sketch a proof, (compare [Morita, P], [Brown]).

First note that if $i_*(x_2) = 0$, then $v_m(M)(x_2) = i^*(v_m(W))(x_2) = v_m(W)$ $(i_*x_2) = 0$, so $x \cdot x \equiv x_2 \cdot x_2 \mod 2$, and $x_2 \cdot x_2 = (y \cup y)[M] = (v_m(M) \cup y) [M] = v_m(M) ([M] \cap y) = v_m(M)(x_2) = 0$ (where $[M] \cap y = x_2$). Hence $x \cdot x$ is even, so $\varphi(x) = \frac{x \cdot x}{2} \mod 2$ is a well defined quadratic form.

(2.12) Lemma. Let ψ be our usual quadratic form ψ : K $\longrightarrow \mathbb{Z}/2$ (K = ker H_m (M^{2m}; Z/2) \longrightarrow H_m (W; Z/2)) as in §1, and φ : K \longrightarrow Z/2 another quadratic form defined in these circumstances such that $\psi(x) = 0$ implies $\varphi(x) = 0$. Then $\psi = \varphi$.

The proof is similar to that of [Browder, S; (IV. 4.7)]. For the condition implies that on the diagonal $\Delta \in \operatorname{H}_{m}(\operatorname{S}^{m} \times \operatorname{S}^{m}; \mathbb{Z}/2)$ (for $\operatorname{S}^{m} \times \operatorname{S}^{m} \subset \operatorname{S}^{2m+1}$), $\varphi(\Delta) = 1 = \psi(\Delta)$. Then by adding $\operatorname{S}^{m} \times \operatorname{S}^{m}$ to M^{2m} and adding Δ to an arbitrary $x \in K$ if necessary we get $\varphi(x) = \psi(x)$ (compare the proof of (1.4)).

Thus to prove (2.11) it suffices to show $\psi(\mathbf{x}) = 0$ implies $\varphi(\mathbf{x}) = 0$. (2.13) <u>Lemma</u>. If k is large, $\psi(\mathbf{x}) = 0$ implies there exists a framed bordism $U^{2m+1} \times \mathbb{R}^k \subset W \times [0, 1]$, $\partial(U \times \mathbb{R}^k) = M \times \mathbb{R}^k \times 0 \cup M' \times \mathbb{R}^k$ $\times 1 \subset W \times \{0, 1\}$, and $V^{m+1} \subset U$, $\partial V = N^m \subset M$ with $[N^m] = x_2 \in$ H_m (M; ZZ/2).

<u>Proof</u>: As in §1, we can find $\mathbb{N}^m \subset \mathbb{M}^{2m}$ representing $x \in H_m$ (M; $\mathbb{Z}/2$) and $\mathbb{V}^{m+1} \subset \mathbb{W} \times [0, 1)$ with $\partial \mathbb{V} = \mathbb{N} \subset \mathbb{M} \times 0$. Then $\psi(x) = 0$ implies that the normal bundle to U admits a k-frame extending that of N (coming from the framing of M in W). The complement of this frame is a D^m bundle over V which meets M^{2m} in the normal disk bundle of N^m in M, and adding this disk bundle to $M \times [0, \varepsilon]$ clearly defines a framed cobordism of the type required except for the condition $M' \subset W \times 1$, but this may be achieved by an isotopy if k is large.

Now to show $\varphi(\mathbf{x}) = 0$ we note that if $[M] \cap \overline{\mathbf{x}} = \mathbf{x}$, since $\mathbf{x}_2 = \partial \mathbf{y}$, $\mathbf{y} \in \mathbf{H}_{m+1}$ (U, $\mathbf{M} \cup \mathbf{M}'$; $\mathbf{Z}/2$), by Poincaré duality, $\overline{\mathbf{x}}_2 = \mathbf{i} \cdot \mathbf{y}$, $\overline{\mathbf{y}} \in \mathbf{H}^{\mathbf{M}}$ (U; $\mathbf{Z}/2$), $\mathbf{i}' \cdot \mathbf{y} = 0$, $\mathbf{i} : \mathbf{M} \longrightarrow \mathbf{U}$, $\mathbf{i}' : \mathbf{M}' \longrightarrow \mathbf{U}$ the inclusions.

Now $\mathbf{x} \cdot \mathbf{x} = \overline{\mathbf{x}}^2 [\mathbf{M}] \equiv \mathcal{O}(\overline{\mathbf{x}}_2)[\mathbf{M}] \pmod{4}$ where $\mathcal{O}: \mathbf{H}^{\mathbf{m}}(\mathbf{M}; \mathbf{Z}/2) \longrightarrow \mathbf{H}^{2\mathbf{m}}(\mathbf{M}; \mathbf{Z}/4)$ is the Pontryagin square (see [Morita, P]). Now $\mathbf{x} \cdot \mathbf{x}_2 = \mathbf{H}_{2\mathbf{m}}(\mathbf{M}; \mathbf{Z}/2) \cong \mathbf{H}_{2\mathbf{m}}(\mathbf{U}; \mathbf{Z}/2)$ so that $\mathbf{x}_2 \cdot \mathbf{x}_2 \equiv \mathcal{O}(\overline{\mathbf{x}}_2)[\mathbf{M}] = \mathcal{O}(\mathbf{i}^*\overline{\mathbf{y}})[\mathbf{M}] = (\mathbf{i}^*\mathcal{O}(\overline{\mathbf{y}}))[\mathbf{M}] = \mathcal{O}(\overline{\mathbf{y}})(\mathbf{i}_*[\mathbf{M}]) \equiv 0 \mod 2$ and hence $\mathcal{O}(\overline{\mathbf{y}}) \in \mathbf{j}_* \mathbf{H}^{2\mathbf{m}}(\mathbf{U}; \mathbf{Z}/2)$, where $0 \longrightarrow \mathbf{Z}/2 \xrightarrow{\mathbf{j}} \mathbf{Z}/4 \longrightarrow \mathbf{Z}/2 \longrightarrow 0$.

Since
$$\mathbf{i'}^*(\overline{\mathbf{y}}) = 0$$
, it follows that
 $\mathbf{x} \cdot \mathbf{x} \equiv \mathcal{O}(\mathbf{i} \cdot \overline{\mathbf{y}})[\mathbf{M}] = (\mathcal{O}(\mathbf{i} \cdot \overline{\mathbf{y}}) + \mathcal{O}(\mathbf{i} \cdot \overline{\mathbf{y}}))([\mathbf{M}] - [\mathbf{M}'])$
 $= (\overline{\mathbf{i}}^*(\mathcal{O}(\overline{\mathbf{y}})) [\partial \mathbf{U}] = \mathcal{O}(\overline{\mathbf{y}}) (\overline{\mathbf{i}}_*[\partial \mathbf{U}])$

(all mod 4), $\overline{i} = i \cup i' : M \cup M' = \partial U \longrightarrow U$.

Since \overline{i}_{*} [∂U] \equiv 0 mod 2 it follows that $(\overline{i}_{*}[\partial U])_{i_{1}} \in j_{*}H_{2m}$ (U; ZZ/4) (j: ZZ/2 \longrightarrow ZZ/4). But $\mathcal{P}(\overline{y}) \in j_{*}H^{2m}$ (U; ZZ/2) and $j_{*}H^{2m}$ and $j_{*}H_{2m}$ are paired to zero (we get a factor of 2 from each j_{*} which multiply to become 0 mod 4)

Hence $x \cdot x \equiv 0 \mod 4$ so $\varphi(x) = 0$, which complete the proof of (2.11)

We now proceed to the calculation of $K(V^n(d_1, \ldots, d_k))$ for $d = d_1 \ldots d_k$ even. Recall ℓ = number of even d_1 's and $\binom{s+\ell}{s+1} \equiv 0 \mod 2$ (to have ψ defined), where n = 2s + 1. By (2.5), $K(V^n(d_1, \ldots, d_k)) = K(V_0^{n-1}(d_1, \ldots, d_k))$ but we must make this statement more precise.

The quadratic form ψ is defined on L = ker (H_{n-1} (V₀; Z/2) \longrightarrow H_{n-1} ($\mathbb{C}p^{n+k-1}$; Z/2)) and since n - 1 is even and d is even,the associated

bilinear form is singular on L. Thus, for the Arf invariant of ψ on L to be defined it is necessary that if $r \in L$ and (r, x) = 0 for all $x \in L$, then $\psi(r) = 0$ (see [Browder, FPK]), but this is implicitly included in (2.5).

We will now study the middle dimensional intersection form on V_0^{n-1} and using coefficients in $\mathbb{Z}_{(2)}$ (i.e. introducing all odd denominators) we will put it in a form in which the Arf invariant of φ can be easily computed.

Since $(\mathfrak{ap}^{n+k-1}, v_0)$ is (n - 1) - connected, $i_* : H_{n-1} (v_0) \longrightarrow H_{n-1} (\mathfrak{ap}^{n+k-1}) \cong \mathbb{Z}$ is onto, and therefore splits. Hence $i^* : H^{n-1} (\mathfrak{ap}^{n+k-1}) \longrightarrow H^{n-1}(v_0)$ also splits and we let $h = i^*(g)$, where g generates $H^{n-1} (\mathfrak{ap}^{n+k-1})$.

(2.14) <u>Lemma</u>. The Poincaré dual of L = the annihilator of h under (,).

<u>Proof.</u> $g(i_{*}x) = i^{*}(g)(x) = h(x) = h([V_0] \cap \overline{x}) = (h \cup \overline{x})[V_0]) = (h, \overline{x})$. \Box

Now let $\beta \in H^{n-1}(V_0)$ be such that $(h, \beta) = 1$, (which is possible since h is indivisible.) Now $(h,h) = (\overset{*}{ig} \cup \overset{*}{ig})[V_0] = (g \cup g) i_*[V_0]$ $= (g \cup g) (d[\mathfrak{a}P^{n-1}]) = d$. Hence the quadratic form on A = the submodule generated by h, β , has the matrix

$$\begin{pmatrix} d & 1 \\ 1 & a \end{pmatrix}$$

and hence has odd determinant ad - 1, since d is even.

Hence, over $\mathbb{Z}_{(2)}$, we can find a complementary summand B to A so that the matrix for $H^{n-1}(V_0; \mathbb{Z}_{(2)}) = A + B$ becomes

$$\begin{pmatrix} (\begin{array}{ccc} d & 1 \\ 1 & a \end{pmatrix} & & 0 \\ 0 & & T \end{pmatrix}$$

Since $B \perp h$, and B is the largest submodule of (annihilator (h)) on which the bilinear form is non-singular (mod 2), it follows that $\operatorname{Arf} \varphi = K(V_0)$ is the Arf invariant of the quadratic form $\frac{x \cdot x}{2}$ (mod 2) on B, and Tis the matrix for this intersection form.

(2.15) Proposition. The Arf invariant

$$Arf(B) = \begin{cases} 0 & \text{if det } T \equiv \pm 1 \mod 8 \\ 1 & \text{if det } T \equiv \pm 3 \mod 8 \end{cases}$$

See for example [Hirzebruch-Mayer; (9.3)]. We sketch the proof here.

Over $\mathbb{Z}_{(2)}$, a matrix T with even diagonal entries and odd determinant may be put in form of the sum of 2×2 blocks

$$STS^{t} = \begin{pmatrix} \begin{pmatrix} a_{1} & 1 \\ 1 & b_{1} \end{pmatrix} & & 0 \\ & & \begin{pmatrix} a_{2} & 1 \\ 1^{2} & b_{2} \end{pmatrix} \\ & & & \begin{pmatrix} a_{2} & 1 \\ 1^{2} & b_{2} \end{pmatrix} \\ & & & & \begin{pmatrix} a_{1} & 1 \\ 1^{2} & b_{1} \end{pmatrix} \end{pmatrix}$$

For given a generator g of B, since det T is odd, there is g' \in B such that (g,g') is odd so that over $\mathbb{Z}_{(2)}$ g and g' generate a submodule whose matrix may be made into $\begin{pmatrix} a & l \\ l & b \end{pmatrix}$ and we may then split off this module (over $\mathbb{Z}_{(2)}$) and proceed by induction.

For $\begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix}$ (a, b even) clearly the Arf invariant is 1 if and only if both $\frac{a}{2}$ and $\frac{b}{2}$ are odd. Then $ab - 1 \equiv \pm 3 \mod 8$ (i.e. ab - 1 is not a quadratic residue mod 8). The result then follows, adding Arf invariants and multiplying determinants of the 2 × 2 blocks.

Since the bilinear form is unimodular on all of $H^{n-1}(V_0)$, it follows that det $T = (ad - 1)^{-1}$. The condition $\begin{pmatrix} s + \ell \\ s + 1 \end{pmatrix} \equiv 0 \mod 2$ (for defining ψ) implies $\ell \geq 2$ so that $4 \mid d$, (ℓ = number of even d_i 's). Hence $-(ad - 1)^{-1} = 1 + ad + a^2d^2 + ... \equiv 1 + ad \pmod{8}$. Hence, by (2.15), Arf B = 0 if 8 | d or if a is even. It remains to calculate $a = (\beta \cdot \beta)$.

But $(\beta, \beta) = (v_{n-1}(V_0), \beta) \mod 2$ so a is odd if and only if $v_{n-1}(V_0)$ is nonzero and equal to h (mod 2). But $v_{n-1}(V_0) = i^*(v_{n-1}(E))$ where $E = E(-(\alpha^{d_1} + \ldots + \alpha^{d_k}))$, the total space of this stable bundle over αP^{n+k-1} , so a = (β, β) is odd if and only if $v_{n-1}(E) \neq 0$.

As in (2.3) we get that $v_{n-1}(E) \neq 0$ if and only if $v_{n-1}(\mathbb{C}P^{n-1+\ell}) \neq 0$. The latter happens if and only if $\binom{s+\ell}{s} \neq 0 \mod 2$ which completes the proof of Theorem C. \Box

Bibliography

W. Browder [K], The Kervaire invariant of framed manifolds and its generalization, Annals of Math <u>90</u> (1969), 157-186.

[FPK], Cobordism invariants, the Kervaire invariant and fixed point free involutions, Trans. A.M.S. <u>178</u> (1973), 1**9**3-225.

- [S], <u>Surgery on simply-connected manifolds</u>, Springer Verlag, Berlin 1973.
- E. H. Brown, Generalizations of the Kervaire invariant, Annals of Math. <u>95</u> (1972) 368-383.
- F. Hirzebruch and K.H. Mayer, O(n) <u>Mannigfaltigkeiten</u>, <u>exotische Sphären und</u> <u>Singularitäten</u>, Springer Lecture Notes No. 57, (1968).
- M. Kervaire, Relative characteristic classes, Amer. J. Math. 79 (1957), 517-558.
- R. Kulkarni and J. Wood, Topology of non-singular complex hypersurfaces (to appear).
- A. Libgober, A geometrical procedure for killing the middle dimensional homology groups of algebraic hypersurfaces, Proc. A.M.S. 63 (1977), 198-202.

and J. Wood, (in preparation.)

- S. Morita [H] The Kervaire invariant of hypersurfaces in complex projective space, Commentarii Math. Helv. <u>50</u> (1975), 403-419.
 - [P], On the Pontryagin square and the signature, J. Fac. Sci. Univ. Tokyo, sect IA Math <u>18</u> (1971) 405-414.
- S. Ochanine, Signature et invariants de Kervaire généralisés. CR Acad. Sci. Paris, <u>285</u> (1977) 211-213.
- N. Steenrod, Topology of fibre bundles, Princeton Univ. Press, Princeton, NJ 1951. CTC Wall, <u>Surgery of compact manifolds</u>, Academic Press, New York, 1971.
- J. Wood, [H] Removing handles from non-singular algebraic hypersurfaces in ${\tt CP}^{n+1}$, Inventiones 31 (1975), 1-6.

_____, [CI] Complete intersections as branched covers and the Kervaire invariant (to appear).