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(i.e. a non-singular The topology of non-singular complete intersections 

variety V of complex dimension n defined by k polynomials in {pn+k) has 

received considerable attention in recent years. It was observed by Thom in 

the early 1950's that the degrees of the k polynomials determine the diffeomor- 

phism type. From the Lefschetz Theorem~ it follows that for a complete inter- 

section V n C ~pn+k , the pair (~pn+k , V n) is n-connected, so that the 

{pn+k (~pn+k) 
inclusion i : V --~ induces i. : ~i(V) --~ w i which is 

an isomorphism for i < n , and an epimorphism for i = n . Thus, in some 

sense, the topology of V is "concentrated in the middle dimension." 

In particular i. : Hi(V) ~ Hi (~pn+k) is injective for i # n , 

and (image i.)2n = d(H2n (~pn+k)) where d = d I " ... " d k is the total 

degree of V , d i = degree of the i-th polynomial P'l ' PI ' "'" ' Pk 

define V , so that (image i.) is then completely determined by Polncare 

duality. 

If s is the largest integer less than n/2 , we can embed ~pS C V , 

and V will be a bundle neighborhood U of ~pS with handles D r × D q attached 

(along S r-I × D q) with r ~ n , r+q=2n. In fact, V can be described as 

W U U' where W = U U (n-handles) and U' is another copy of U , and union 

is along the boundaries. The diffeomorphism type of V is then determined by 

the attaching maps of the n-handles, and the "gluing" map of ~(U') to 

The attaching maps of the n-handles will be closely connected to the middle 
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dimensional intersection form. When n is even, close analysis of this form 

(as in [Kulkarni-Wood]) leads to interesting results on the topology of V 

(see also [Wood] , [Libgober] , ~Libgober-Wood]) . 

When n is odd, the intersection form is skew symmetric and the analysis of 

the middle dimensional handles relies on more subtle homological information. A 

basis for the middle dimensional homology Hn(V) , when n > I , n odd , can 

be represented, using Whitney's and Haefliger's embedding theorems, by embedded 

n n C V with S. N = ~ , any j , k , spheres Sli ' S2i ' mj Sik 

SIj N S2k = ~ for j ~ k and Sli N S2i = one point, every i , so that 

[Sij} represent a symplectic base for Hn(V) . If each Sij could be chosen 

to have trivial normal bundle, then a neighborhood of Sli U $2i would be 

diffeomorphic to (S n x S n - (2n-disk)) and it would follow that 

V = (U U U') # ~ sn x S n , 

q 

the connected sum of (U U U') with q copies of S n × S n , where U U U' is 

the "twisted double" of U , i.e. two copies of the disk bundle U over ~LP s 

(n = 2s + i) , glued by a diffeomorphism of the boundary. 

The question of finding a basis for Hn(V) represented by embedded spheres 

with trivial normal bundle, (S n X D n C V) , can be studied by the methods of 

the Kervaire invariant arising in surgery theory. This involves defining a 

quadratic form ~ : Hn(V) ) ~/2 , such that ~(x) = 0 if and only 

if x e Hn(V) is represented by a 8 n X D n C V . We give conditions in terms 

of the degrees of the defining polynomials of V for such a quadratic form to be 

defined, and show that when ~ cannot be defined, that any x ~ Hn(V) can be 

represented by S n M D n . 

When ~ can be defined one can find the sought for basis if and only if 

the Arf invariant of ~ (called the Kervaire inva~iant) is zero. We give a 

formula for computing it in these cases. 
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Our specific results are as follows: 

Let V C {pn+k be a non-singular complete intersection of complex 

dimension n = 2s + i , defined by k-polynomials of degree d I , ... , d k , 

and let d = d I .... d k (= the degree of V) . 

Theorem A. Suppose exactly ~ of the degrees d I ,..., ~ are even (so 

s + ~ ) is odd, and n # i , 3 k - f are odd). If the binomial coefficient ( s + i 

or 7 , then there exists a homologically trivial S n C V with non-trivial 

(stably trivial) normal bundle , and every element x e Hn(V) can be represented 

by S n X D n C V . If n = i , 3 or 7 every embedded S n ~ V has trivial 

normal bundle. 

This was originally proved by [Morita, H] and [Wood, HI for hypersurfaees 

and [Wood, C!] for complete intersections. 

Theorem B. Notation as in A , if ( ~ + ~ ) is even, then a quadratic 
+ i 

form is defined ~ : Hn(V) --+ 2Z/2 such that x ~ Hn(V) (n ~ i , 3 or 7) 

is represented by S n × D n C V if and only if ~(x) = 0 . 

Theorem C. With hypothesis as in B , Hn(V ) has a symplectic basis 

represented by embeddings S n × D n C V , mutually intersecting exactly as in 

the intersection matrix if and only if the Arf invariant of ~ (the Kervaire 

invariant) K(V) 

( i )  z f  a l l  

K(V) = 

(ii) If some 

= 0 , ( K ( V )  ~ ~ / 2  ) . 

d I , ... , d k are odd , 

I~ if d ~ ±i 

if d ~ ±3 

d.'s are even, K(V) 
I 

(nod 8) 

(mod 8) 

= 1 if and only if ~ = 2 , ~Is 
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and 8~d . 

s+ ~ ) ~ 0 (mod 2) of Theorem B , In C , note that the condition ( s + i 

imposes a condition on the number of d i which may be even. For example $ ~ i 

s + 2 ) = s + 2 is even if and only if s is even, and for ~ = 2 , ( s + I 

(n = 2s+l). 

As well as Theorem A , [Morita, H] proved B and C for hypersu~faces 

(k = i) . This case was also done in [Wood, H] . The author first proved C(i) 

at that time, and [Wood, CI] gave another proof. [0chanine] first proved 

C(ii) ~ the case where V is a Sq + 2 dimensional Spin manifold, (so 

s = 2q) , which is the only case of even degree when K(V) might equal i . 

In §i we discuss the definition of the quadratic form in a general context 

and prove that when the form is not defined (for framed M2n × ~k C W) there 

is an embedded sphere S n C M 2n (n ~ i , 3 , 7) which is homologically 

trivial (mod 2) in M , with non-trivial (stably trivial) normal bundle. In §2, we 

consider complete intersections and prove A , B and C . To prove C we 

invoke a theorem relating the Kervaire invariant of V ~ and its hyperplane 

V~ -I which will be proved elsewhere. section 



§i. Quadratic forms. 

In [Browder, K] , 

g2 

a definition of the quadratic form arising in surgery 

or in framed manifolds was given using functional Steenrod squares. We give here 

a geometrical version of this definition, and then study when it can be defined 

for complete intersections, and its meaning. 

First note: 

Proposition. For any x c H n (M 2n ; ~/2) , one can find an embedded (1. I) 

NnCM 2n with i.[N] = x 

The proof of this is standard as in Thom's proof of representability of 

homology by maps of manifolds, but using the additional fact that for the 

n-plane bundle 7 n , the first non-trivial k-invariant occturs in 

2n + i , so that there is no obstruction to finding a map 

T(v n) 

canonical 

dimension 

f : M 2n 

duality, 

such that [M] @ f*(U) = x , ( [M] S is Poincare 

~/2) is the Thom class). Similarly we get: 

M 2n × ]R q C W 2n+q , W connected, and y c Hn+ I (W , (1.2) Proposition. If 

M ; ~/2) , we can find N CM representing ~y as in (I.i) , with N = ~V , 

V C W X [0 , I) , V connected, with [V] representing y , [V] ~ Hn+ I (V , 

N ; Z~/2) the fundamental class. Further V meets W X 0 transversally in 

NCM . 

Now the normal bundle of N in W x 0 has a q-frame given by the product 

M X ]R q restricted to N . The obstructions to extending this frame to a 

normal q-frame on V C W X [0 , i) lie in H i+l (V , N ; 7ri(Vn+q,q)) where 

V is the space of orthogonal q-fames in ]R n+q , so V = 0(n+q) / 
n+q~q n+q,q 

0(n) , and is (n-l)-connected. Hence all these obstructions are zero except 

Hn+ I (Vn+q, q the last, ~ (V, ~ ~ )) ~ ~/2. Evaluating ~ on [V] we 

get an element in ~/2 , and we would like to define ~(x) = ~[V] , (for 

x = ~y , y e H n (W , M ; 2Z/2)) but we have made a number of choices in this 
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process which depend on more than the homology class x , namely the choice of 

N and the choice of V , with SV = N . 

From the theory of the Stiefel-Whitney class (see [Steenrod]) the first 

obstruction to finding a q-frame in an (n+q) plane bundle is the Stiefel- 

Whitney class Wn+ I , which becomes the ordinary Stiefel-Whitney class Wn+ I 

when reduced mod 2 . In the relative situation we are discussing, this is in 

fact the relative Stiefel-Whitney class in the sense of [Kervaire]. Thus it is 

homologically defined provided that this relative class does not depend on the 

chocie of V . This will be true provided that any closed manifold X n+l C 

W n+q X [0,i) admits a normal q-frame, that is, its normal Stiefel-Whitney class 

~n+l(X) = 0 , so that adding X to V will not change the relative class of 

If ~n+q is the normal bundle of X in W × [0 , i) , the normal class 

+I(X) is given by the formula 

u u = sq n+l u u ~ ~+q (T(~) ; ~/2) 
n+ i 

the Thom class. The natural collapsing map c : EW = (W X [0,I]) / boundary 

) ~(~) has degree l (mod 2) , and it follows that: 

(1.3) The following are equivalent: 

(a) w+ l(X) = o for all X~+ICW× [0, l) 

(b) Sq n+l : H n+q-1 (W / ~W ; 25/2) > H 2n+q (W / ~lW ; 25/2) is zero 

(C) Vn+ I (W) = 0 (Vn+ I = the Wu class) . 

Thus we get the condition: 

(1.4) The obstruction to extending a q-frame over N to V described above 

defines a quadratic form ~] : K ----e ZZ/2 where K = kernel H n (M ; 25/2) 

, ~ ( w ;  25/2) i f  and only i f  Vn+ l ( w )  = 0 .  

It is not difficult to translate this relative Stiefel-Whitney class 

definition into the functional Sq n+l definition of [Browder, K] , which shows 

V. 
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it defines a quadratic form. 

One may prove (1.4) directly as follows: 

Since we have shown that the definition is evaluation of a relative Stiefel- 

Whitney class it follows that the definition depends only on homology class. To 

show it quadratic, we first prove it in the special case of S n × S n × ~q 

C S 2n+q = ~D 2n+q+l , which may be done directly. It is clear that the 

function is additive on two non-intersecting manifolds ~i ' ~2 C M 2n , (which 

then bound non-intersecting ~i +I ~2 +I , C W × [0 , i) • 

If N 1 , N 2 have even intersection number, then if n > 1 , we may find a 

bordism of N 1 to N{ in M , disjoint from N~ ~ (simply the first few lines 

of the Whitney process produces the cobordism from each pair of intersection 

points). Take two intersection points a , b e N 1 N N 2 and draw an arc on N 2 

joining them. If N 2 were not connected we could first make a bordism of N 2 

to a connected submanifold, if M were connected. If M were not connected~ we 

would first take connected sum of its components~ without changing the quadratic 

forms. 

A neighborhood of this arc would be of the form D 1 × D n-I × D n where 

D I × D n-I × 0 is a neighborhood in N 2 . Then 

which when added to N I , produces a bordism of 

intersection points with N 2 . 

This shows that ~(x I + x2) 

If x I " x 2 is odd, let gl ' g2 

to the factors, so that ~(gl ) = 

(x1+gl) " (x2+g2) = ~l" x2 

(a) @((x I + gl ) + (x 2 + g2) ) 

But (Xl + x2) " (gl + g2 ) = 0 

(h) ~((~I + x2) + (gl + g2 )) = 

D I × 0 × D n defines a handle 

N I to N{ which has 2 less 

= ~(x l) +~(x 2) 

S n e" Hn( × S n) 

?(gz) : o , ~(gl + g2 ) = 

+ gl " g2 is even, so that 

whenever x I " x 2 is even. 

be the generators corresponding 

i . Then 

SO 

= *(xl + gl ) + ~(Xl + g2 ) = *(xl) + *(x2 )" 

~(xl+x2) +~(gl +g2 ) = ¢(xi +x2) + i 



Equating (a) and (b) we get 

¢(x I + x 2) 

95 

+ i : ¢(x l) + ~(x 2) 

and (x I • x 2) ~ i mod 2 , which completes the proof that @ is quadratic. [] 

(1.5) Theorem. Suppose M 2n × ~q C W 2n+q , n # 0 , i , 3 or 7 , W is 

1-connected, (W,M) n-connected, and suppose Vn+l(W ) # 0 . Then there exists 

an embedded S n CM 2n and D n+l C M 2n × ~q+! with ~U = 8 n such that 

the normal bundle ~ to S n in M 2n is non-trivial, but [ + s I is trivial. 

Hence S n is homologically trivial (mod 2) with non-trivial normal bundle. 

Proof: Since Vn+l(W ) # 0 we can find an embedding of a closed manifold 

j : X n+l C W whose normal bundle ~ does not admit a q-frame in W × [0,i) . 

For Vn+l(W) # 0 means there is an x ~ H n+q-1 (W/~W ; ~/2) such that 

(Sq n+l x) [W] # 0 , and hence q ~ 2 . By Thom's theorem, since n + q - I > n, 

there is a map r : (W , ~W) ~ (T(Tn+q_ I) , ~) such that r U = x (U the 

Thom class in H n+q-I (T(Tn+q_l) ; ~/2) , and the transverse inverse image of 

the O-section will be our manifold X n+l , which we may assume connected, by 

choosing a component with the above property. 

Let X 0 = X - (int D n+l) so that ~X 0 = S n . Since X was connected, 

X 0 has the homotopy type of a n dimensional complex. Since (W , M) is 

n-connected, it follows that there is a map f : X 0 ~ M such that 

Let g be the composite S n 

f 
X O ~ M 

n ni 
W commutes up to homotopy. 

~X 0 C X O ~ M , so that g,[S n] = 

Since M is 1-connected, the Whitney process will produce a homotopy of g 

an embedding (again called g) , and we wish to show the normal bundle ~n 

embedded sphere g(S n) is non-trivial. 

Using the Whitney general position embedding theorem, we may deform 

0 . 

to 

to this 
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X 0 f , M × ~q X (-i , O] to an embedding go : 

extending g which meets M x ]R q X 0 

M C M X ~q x 0 . 

On the other side, the embedding g : S n C M 

general position) g : D n+l C W X [0 , I) meeting 

g(S n) : g(SD n+l) C M X 0 CM X m k X 0 C W X 0 . 

X 0 = ~ M X ~q X (-i , O] 

transversally in go(SXo) = g(S n) C 

extends to an embedding 

W X 0 transversally in 

The two embeddings 

go : XO C M X ~q X (-i , O] , g : D n+l C W X [0 , i) together define an 

embedding gl : X 0 U D n+l = X---~ W x (-i , i) which is isotopic (by 

general position) to our original embedding j : X C W C W X (-i , i) . 

The product structure M x ]R q ~ W X 0 defines a q-frame in the normal 

.n+q ~n gq ~+q) and bundle C1 of g(S n) C M X]R q C W x 0 (so that + = 

let ~ e Wn+ 1 (Vn+q, q) be the obstruction to extending this k-frame over the 

normalbundle of ~(D n+I) cwx [0 , l) 

(1.6) Lemma. If n ~ 1 , 3 or 7 , the obstruction ~ = 0 if and only if 

~n is trivial. 

Proofs of (1.6) can be found in [Wall] or [Browder, S ; (IV 4.2)] . 

(using 

We assume ~n is trivial and produce a contradiction. In that case we can 

find a framed handle D n+l x D n X ]R q C W × [0 , i) (using (1.6)) with 

D n+l X 0 X 0 ~(D n+l) and S n X D n X 0 a neighborhood of g(S n) ~M C M 

]R q X 0 C W X [0 , I) . Let V be the cobordism of M defined by 

V = M X [-i , O] U (D n+l X D n) , so that V X ]RqC W X [-i , l] , and 

gl(x) c (intv) x m q 

Hence we have a factorization of the collapsing map Y = W X [-i , i] / 

~(W X [-i , i])) a-a--~ E q V/~V b ) T(~ + g I) so that (ba)*(U) = Zx e 

~n+q (y ~ ~/2) and (Sq n+l(x)) [W] = (Sq n+l (Zx)) [y] # 0 , ~ 

H n+q (T(~) ; ~/2) the Thom class. It follows that (Sq n+l (b'U)) (zq[v]) 

so that Sq n+l ( Z -q (b'U)) [V] ~ 0 , where E -q (b'U) e Hn(v/~v ; ~/2) , 

× 

0 , 
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n+l 
which leads to sought after contradiction since Sq annihilates cohomology of 

dimension n . This completes the proof of (1.5). [] 

On the other hand we have: 

(1.7) Proposition. If Vn+l(W) = 0 , (W , M) n-connected, n # i , 3 , 7 , 

n odd , and ~ : S n C M 2n with ~ nullhomotopic in W . Then the normal 

bundle of @(S n) is trivial if and only ~(~.[sn]) = 0 where ~ is the 

quadratic form of (1.4) . 

(1.7) follows easily from (1.6) and the definition of %~ . 
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§2. Complete intersections, their normal bundles and the quadratic form. 

In this paragraph, we apply the results of §i to the case of non-singular 

complete in te r sec t ions  v n c  ~pn+; , give the conditions for  the quadratic 

form of §i to be defined, and calculate the Kervaire invariant when it is 

defined. 

Recall that a submanifold V C GLP n+k is a non-singular complete intersection 

if V is the locus of zeros of k homogeneous polynomials PI 7--., Pk where 

dim V = 2n (real dinension) and codim V = 2k The degrees d. of P. 
• 1 l 

completely determine V up to diffeomorphism. Thus any question we ask in 

differential topology about V must have an answer in the form of a formula 

involving only n , and d I ,..., ~ , and we will use the notation 

V = V ~ (d I .... , ~). 

From/the topological point of view it is convenient to view V as a 

transversal inverse image, to have its normal bundle in ~pn+k evident. We 

may assume Pi(! , 0 ,..., O) # 0 for all i . Define maps 

~. : ~pn+k , ~pn+k by ~i (z0 Zn+k) = (Pi (z0 Zn+k) 

di di 7~l 
z I ,..., Zn+ k ) , so (z 0 = O) is a hypersurface of degree d i . 

k 
g~pn+k gpn+k 

Define 7: ' M by T = A i. Then 
i=i 

k 

<o V : 7 "l ( ~ (z i) = 0>) , where z is the 0-th coordinate in the 

i=l 

i-th copy of ~pn+k . 

Small perturbation of the coefficients (if necessary) will make 

transversal and V will be a non-singular manifold and we get: 

(2. i) Proposition. The non-singular complete intersection V n defined by 

,. ~pn+k 
the vanishing of PI ""' Pk on represents the homology class 

(~pn+k) 
dx n H2n , and the normal bundle ~ of V C ~pn+k has a natural 

d2 ~ dk) over where x bundle map into the bundle ( dl + (~ + ... + ~.pn+k 
n 
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is the generator dual to k ¢ , c (~) , ~ the canonical 

bundle over {pn+k d = d I d k the total degree of V , .-° 

We may transform this situation into the situation of §i by embedding 

[pn+k C E = the total space of a bundle 7 which is stably inverse to 

(Jl + ... + dk) . 

(~l+... + dk) 

(2.2) Proposition. 

framing in E , V × ~q C E , 

_ ( J 1  + . . .  + y k )  C K({P n+k) . 

Then the normal bundle of V C E has a bundle map into 

+ Y which has a natural trivialization. Hence 

The complete intersection Vn C {pn+k has a natural 

where E = E(7) , 7 a representative of 

Note that the framing is determined by the structure of V as a complete 

intersection, and the polynomials PI "''' Pk ' not simply by the differentiable 

structure of V . 

To apply §l , we need to calculate Vn+ I (E(Z)) , to see if the quadratic 

form is well defined. Note that if n is even, Vn+ I = 0 since it lies in 

a zero group. 

+ ~ ) @ 0(mod 2) , where (2 .3 )  Theorem. Vn+ l (E)  # 0 i f  and on ly  i f  ( ~ + 1 

= the number of even integers among the degrees d I ,..., d k , n = 2s + i . 

Proof: The Stiefel-Whitney class 

+ ~ )  = W ( ( n + k + l ) ~ - ( ~ l + . . . + J ~ ) )  W(S) = W(~pn+ k 

(I + x) n+k+l (i + x) n+k+l 
= (i + x) n+~+l 

k x)k_~ n ( l +  di~) ( 1+  
i = l  

Hence W(E) = W(T n+~) in dimensions where both cohomologies agree, and hence 
CP 

h+l(E) Vn+l (¢pn+~) But Vn+ l (¢pn+~) # 0 if and only if Sq n+l 

H ~+2~-I (~+$ ; 9Z/2) ~ ~n+2~ ({pn+~ ; 7z/2) is non-zero. The group 

Hn+2~-i ({pn+ ~ s+~ 
; Z~/2) is generated by x , where x generates 

H 2 ({pn+~ ; 2Z/2) (s ince  n = 2s + 1) , so Sq n+ l  (x  s+~) = Sq 2s+2 (x  s+~) 
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s + ~ n+~ 
= ( s + i ) x , which completes the proof. O 

In E , x s+l is represented by X = ~pS+l , so X 0 in the proof of 

(1.5) may be taken oriented, and we get: 

(2.4) Corollary. (Morita, Wood) If n = 2s + i , V non-singular in 

s + ~ ) 
~pn+k defined by PI ''''' Pk of degree d I ,..., d k , and if ( s + i 

is odd , 2 = number of even degrees among the d.'s , then there is an z 

embedded S n C V which is homo!ogically trivial, and has a non-trivial normal 

bundle, (provided n ~ I , 3 or 7). 

To calculate the Kervaire invariant (the Arf invariant of ~ ) in the 

other cases (where ~ is well defined) we use the following theorem. The 

proof will be given in another paper, and it follows from a combination of an 

additivity theorem for the Kervaire invariant (analogous to Novikov's theorem 

on index) and the product formula for the Kervaire invariant. 

(2.5) Theorem. Let V n C ~pn+k be a non-singular complete intersection, and 

let ~0 -I C ~pn+k-i be a non-singular hyperplane section. If the quadratic 

n ~0_ 1 forms are defined for both V and , then their Kervaire invariants are 

equal, K(V) = K(V O) . 

Note that the definition of K(V O) may have some extra subtlety as we 

will see in the calculation. 

We can immediately derive the formula for K(V) when d = d I ... 

is odd. In that case (2.3) implies that the quadratic forms are defined 

vo 
for all the iterated hyperplane sections -i D ... D n-i so that 

(2.5) implies K(V n) = K(VnO_I ) , and we are left with the problem of computing 

K(V O) for the zero dimensional complete intersection of degree d , that is, 

for d similarly oriented points. 

This calculation is a special case of that of [Browder, FI~K] and is 

actually equivalent to it using a product formula. We do it explicitly as 

follows. 

Suppose vO(d) = d disjoint points, embedded in W . A framiD~ of 
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vO(d) 

vI(W) = 0 means that W is orientable. Suppose 

and the orientations at all the points are the same. 

is simply an orientation on a neighborhood of each point and the condition 

W is connected, d is odd, 

(2.6) Proposition. 

Proof: Since 

that the symmetric group 

so that 

K(V0(d)) = I 0 if d ~ ±i mod 8 

i if d ~ ±3 rood 8 . 

W m is connected we may assume that vO(d) C ~m C W and 

Z d acts on V0(d) , preserving the framed embedding, 

#](C-X) = #](X) for ~ ~ E d , 

x c K 0 = ker H 0 (V0(d) ; Z~/2) ~ H 0 (D TM ; ~/2) . 

Now K 0 has a basis {x I + x 0 , x 2 + x 0 ,..., X2s + x 0} , where the d points 

are x 0 ,..., X2s , d = 2s + i . Since Z d acts transitively on this basis, 

(2.7) #](x i + x O) = #](xj + x O) for all i , j . 

Further the intersection product 

(2.8) (~i +~o ) " (xj +~o ) = I° i : j 

1 i ~ j  

Define a module 

be a basis for A , 
S 

As with quadratic form #] by letting a I , a 2 7..., a2s 

#](a i) = 0 for all i , and 

(ai ~ aJ)= I~ if i = j i f  i ~ j 

(the opposite of an orthonormal basis). It is easy to check that the bilinear 

form ( , ) is non-singular on A s and is the associated bilinear form to #] . 

Similarly, define B s , ~ by the basis b I ,..., b2s , ~(bi) = i , 

all i , and 
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(2.9) Lemma. 

(b i , hj) 

As ~ AI 

B s ~ B I 

+ B 
s-i 

+ As_ I 

0 i = j 

1 i ~ j 

(as modules with quadratic forms). 

by a~ = a i + a I + a 2 , and let Proof: Define a new basis for A s m 

t a ! • 

A I CAs be generated by a I , a 2 , B's_l C As be generated by a 3 "''~ 2s 

Then A I ± B's_l ' and it is easy to cheek that B's_l ~ Bs-I " 

by b'. = b i + b I + b 2 , let Similary, define a new basis for B s l 

v ... b t • B I C Bs be generated by b I , b 2 , A's_l C B s generated by b3 ' ' s 

Then Bs ~ BI + A's_l as orthogonal direct sum, and A's_l Z- As_l . 

Since Arf (A I) = 0 , Arf (B I) i , we get : 

A~f (As> : Arf (Bs_ l) 

so that Arf (B s) = i + Arf (As_i) 

Arf (A s ) = I + Arf (As_ 2) 

Arf (B s) = i + Arf (Bs_ 2) . Hence: 

f 

(2.10) Proposition. Amf (B s) = )! if s - i or 2 nod 4 

0 if s - 3 or 4 nod 4 . 

But in (2.6) , K 0 ~ B s 

(2.6) and the calculation of 

odd , i.e. Theorem C(i) . 

if d = 2s + i which completes the proof of 

K(V n (d I ,..., dk)) when d = d I ... d k is 

The case of even degree d is more difficult, since the quadratic form 

may not be defined for the iterated hyperplane sections. However, it is always 

defined for the first hyperplane section ~0 -I C V n , (since the appropriate 

Wu class v lies in a zero group when n is odd). To make the calculation 
n 

in V~ °I we need: u 
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(2.11) Proposition. Let M 2m x ]R k C W ~ Vm+ I (W) = 0 , m even, and M 

oriented. If x ~ H (M ; 7z) , i. (x 2) = 0 , i : M---~ W inclusion, 
m 

x 2 ~ H m (M ; EZ/2> the reduction of x nod 2 then ~(x2> - x • x nod 2 
2 " 

We sketch a proof, (compare [Morita, P] , [Brown]) . 

First note that if i.(x 2) = 0 , then Vm(M)(x2) = i*(Vm(W))(x2) = 

Vm(W) (i.x 2) = 0 , so x • x - x 2 • x 2 mod 2 , and x 2 • x 2 = (y U y)[M] 

= (Vm(M) U y) [M] = Vm(M) ([M] n y) = v m (M)(x 2) = 0 (where [M] R y = 

x 2) • Hence x - x is even, so 9(x) x - x mod 2 is a well defined 
2 

quadratic form. 

(2.12) Lemma. Let ~ be our usual quadratic form % : K ~ ZZ/2 

(K = ker % (M 2m ; ZZ/2) ' ) H m (W ; ZZ/2)) as in §l , and q0 : K 

7Z/2 another quadratic form defined in these circumstances such that ~(x) = 0 

implies M(x) = 0 . Then ~ = ~ . 

The proof is similar to that of [Browder, S ; (IV. 4.7)] • For the condition 

implies that on the diagonal f~ e Hm(Sm × S TM ; Z~/2) (for S TM X S m C S 2re+l) , 

(p(A) = i = @(Z~) . Then by adding S m × S m to M 2m and adding Z~ to an 

arbitrary x c K if necessary we get M(x) = ~(x) (compare the proof of 

(l.4)) . 

Thus to prove (2.11) it suffices to show @(x) = 0 implies q0(x) = 0 . 

(2.13) Lemma. If k is large, ~(x) = 0 implies there exists a framed 

bordism U 2m+l x ]Rk C W × [0 , i] , 8(U X ]R k) = M × ]Rk X 0 U M' X ]Rk 

× 1 C W × {0 , i} , and V m+l C U , ~V = N TM C M with IN m] = x 2 e 

(M ; =12) . 
m 

Proof: As ill §i ~ we carl find N TM C M 2m representing x 6 }{ (M ~ 2Z/2) 
m 

and V m+l C W x [0 , l) with ~V = N CM x 0 . Then 9(x) = 0 implies that 

the normal bundle to U admits a k-frame extending that of N (coming from 

the framing of M in W). The complement of this frame is a D m bundle over 
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V which meets M 2m in the normal disk bundle of N m in M , and adding this 

disk bundle to M × [0 , s] clearly defines a framed cobordism of the type 

required except for the condition M' C W × i , but this may be achieved by an 

isotopy if k is large. 

Now to show ~(x) = 0 we note that if [M] N ~ = x , since x 2 = ~j , 

Y~+I(u'MUM' ; m/2) , byPoinear~duality, ~2 = iy , ~m(~; 

~/2) , i' y = 0 , i : M---~ U , i' : M' ---~ U the inclusions. 

--2 
Now x • x = x [M] e @(~2)[M] (nod 4) where ~ : H m (M ; ~/2) • 

H 2m (M ; ~/4) is the Pontryagin square (see [Morita, P]) . Now 

i. : H2m (M ; ~/2) % H2m (U ; ~/2) so that x 2 • x 2 ~ ~ (~2)[M] = 

(i*~)[M] = (i*@ (~))[M] = ~(~)(i.[M]) ~ 0 mod 2 and hence 

(y) e j. H 2m (U ; ~/2) , where 0 ~ ~/2 • .j ~ ~/4 ) ~/2 ~ 0 . 

Since i' (~) = 0 , it follows that 

x x~ @(i y)[M] =(~(i y) + ff(±'*~([M] - [M']) 

= (T~(6~(~))  [ ~ ]  = ( f ( ~ )  ( Z . [ ~ ] )  

( a l l  mod 4)  , ~ : i U i '  : M U M' = ~U------> U . 

Since ~. [~U] ~ 0 mod 2 it follows that (~,[~U]) 4 e J.H2m (U ; ~/4) 

(j : ~/2 ---~ ZS/4). But ,~(~) e j. H 2m (U ; ~/2) and j. H 2m and J.H2m 

are paired to zero (we get a factor of 2 from each j. which multiply to 

become 0 mod 4) 

Hence x • x - 0 mod 4 so ~p(x) = 0 , which complete the proof of (2.11) 
17. 

We now proceed to the calculation of K(Vn(dl ,..., ~)) for d = d I ... 

s + ~ ) _ 0 nod 2 even. Recall ~ = number of even di's and ( s + i 

(to have ~ defined), where n = 2s + i . By (2.5) , K(Vn(d I ,..., dk)) = 

K(Vo -I (d ! .... , ~)) but we must make this statement more precise. 

The quadratic form ~ is defined on L = ker (%-i (Vo ~ ZZ/2) 

Hn_l (~pn+k-i ; 2~/2)) and since n - i is even and d is even,the associated 
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bilinear form is singular on L . Thus, for the Arf invariant of ~ on L to 

be defined it is necessary that if r e L and (r , x) = 0 for all x e L , 

then ~(r) = 0 (see [Browder, FPK]) , but this is implicitly included in 

( 2 . 5 )  . 

~-l We will now study the middle dimensional intersection form on and 

using coefficients in ZZ(2 ) (i.e. introducing all odd denominators) we will 

put it in a form in which the Arf invariant of ~ can be easily computed. 

,. ~n+k - I , 
Since ~ ,V0) is (n - i) - connected, i. : Hn_ 1 (V 0) ) 

* Hn-1 (¢pn+k-l) Hn_l (~pn+k-1) Z 9z is onto, and therefore splits. Hence i : 

Hn-l(v O) also splits and we let h = i@(g) , where g generates 

Hn-i ({pn+k-1) . 

(2.14) Lemma. 

( , ). 

Proof. 

( h  , ~ )  . [] 

Now let 

since h is indivisible.) 

= (g U g) (d[¢pn-1]) 

The Poincare dual of L = the annihilator of h under 

g(i.x) = i*(g)(x) : h(x) 

generated by h , 

= h([Vo] N x) = (h U x)[Vo] ) = 

e H n-I (V O) be such that (h , ~) = i , (which is possible 

Now (h,h) = (i*gU i'g) [v o] = (gUg) i.[V0] 

= d . Hence the quadratic form on A = the submodule 

, has the matrix 

and hence has odd determinant 

(: :) 
ad - ! , since d is even. 

Hence, over ZZ(2 ) , we can find a complementary summand B to A so 

that the matrix for H n-I (V 0 ; ZZ(2)) = A + B becomes 
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Since B ± h , and B is the largest submodule of (annihilator (h)) on 

which the bilinear form is non-singular (mod 2) , it follows that Arf ~ = K(V 0) 

x • x (mod 2) on B , and T is the Arf invariant of the quadratic form 2 

is the matrix for this intersection form. 

(2.15) Proposition. The Arf invariant 

Arf (B) = I O if dot T - ±i mod 8 

i if det T ~ ±3 mod 8 . 

See for example [Hirzebruch-Mayer ; (9.3)] • We sketch the proof here. 

Over ZZ(2 ) ~ a matrix T ~ith even diagonal entries and odd determinant 

may be put in form of the sum of 2 X 2 blocks 

STS t = 

I(a i ) 0 1 
i I b I 

a l) ( 12 b 2 
l) 

0 ( i t bt 

For given a generator g of B , since det T is odd, there is g' ~ B such 

that (g , g') is odd so that over 2(2 ) g and g' generate a submodule 

whose matrix may be made into ( a i ) and we may then split off this 
ib 

module (over ~(2)) and proceed by induction. 

For ( a i ) (a b even) clearly the Arf invari~t is i if and only 
ib 

a b 
if both ~ and ~ are odd. Then ab - i ~ ±3 mod 8 (i.e. ~ - I is not a 

quadratic residue mod 8) . me result then fo~ows~ addingArf invari~ts ~d 

multipl~ng dete~inants of the 2 × 2 blocks. 

Since the bilinear form is ~od~ar on all of Hn-I(Vo ) , it follows 

s + ~ ) ~ 0 mod 2 (for that dot T = (ad - i) -I . The condition ( s + i 

defining ~) ~plies ~ ~ 2 so that 4 I d , (~ = number of even di's) . 
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Hence -(ad - i) -I 

(2.15), Arf B = 

a = (~ ~) 

But 

Vn_l(V 0) 

where E 

~pn+k-I , 

= i + ad + a2d 2 + ... e i + ad (mod 8) . Hence, by 

0 if 8 I d or if a is even. It remains to calculate 

(~ , ~) = (Vn_l(V O) , ~) mod 2 so a is odd if and only if 

is nonzero and equal to h (mod 2) . But Vn_l(V O) = i* (Vn_l(E)) 

= E(-(J I + ... + ~dk)) , the total space of this stable bundle over 

~o a (~ , ~) is odd if and onlyif Vn_l(~) # O. 

~_~n-l~ 
As in (2.3) we get that Vn_l(E) # 0 if and only if vn_ik~ ) # 

The latter happens if and only if ( s + ~ ) @ 0 mod 2 which completes the 
s 

proof of Theorem C . [] 

O. 
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