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The topology of non-singular complete intersections (i.e. a non-singular
variety V of complex dimension n defined by k polynomials in mPn+k) has
received considerable attention in recent years. It was observed by Thom in
the early 1950's that the degrees of the k polynomials determine the diffeomor-
phism type. From the Lefschetz Theorem, it follows that for a complete inter-

n+k

section VB C P , the pair (HIPn+k s Vn) is mn-comnected, so that the

. . . n+k ., .
inclusion i: VvV — TP induces iy ¢

+
m (V) = 7 (@) vnich is
an isomorphism for 1 <n , and an epimorphism for i =mn . Thus, in some

sense, the topology of V is "concentrated in the middle dimension.”

In particular i, : Hi(V) — H (mPn+k) is injective for i #n ,
. : n n+k _ . . .
and (image l*)2n = d(HEn (P 7)) where & = dj * ... 0 4 is the total
degree of V , d.l = degree of the i~th polynomial Pi N Pl s ees Pk

define V , so that (image i*) is then completely determined by Poincaré

duality.

If s 1is the largest integer less than n/2 , we can embed e v y
and V will be a bundle neighborhood U of @P° with handles D° X D% attached

r-1 X Dq) with r>n , r+q=2n. In fact, V can be described as

(along S
WUTU where W = UU (n-handles) and U' is another copy of U , and union
is along the boumdaries. The diffeomorphism type of V 1is then determined by
the attaching maps of the mn-handles, and the "gluing" map of O(U') to

MW .

The attaching maps of the n~handles will be closely connected to the middle

*
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dimensional intersection form. When n 1is even, close analysis of this form
(as in [Kulkarni-Wood]) 1leads to interesting results on the topology of V

(see also [Wood] , [Libgober] , [Libgober-Wood]) .

When n 1s odd, the intersection form is skew symmetric and the analysis of
the middle dimensional handles relies on more subtle homological information. A
basis for the middle dimensional homology Hn(V) , when n>1, n odd , can

be represented, using Whitney's and Haefliger's embedding theorems, by embedded

n

spheres st s S2i

. n _ )
1 C V , with sij 8, $, any j, k ,

k

n = i n = i i
Slj S2k ¢ for J % k and Sli S2i one point, every 1 , so that
{Sij} represent a symplectic base for Hn(V) . If each Sij could be chosen
to have trivial normal bundle, then a neighborhocod of Sli U 82i would be

diffeomorphic to (8™ x s - (2n-disk)) and it would follow that
v o= (UUU')#:ttSnXSn,
q

the connected sum of (U VU U') with q copies of g™ x g" , where UUTU' is
the "twisted double" of U, i.e. two copies of the disk bundle U over {&P°

(n = 2s+ 1) , glued by a diffeomorphism of the boundary.

The question of finding a basis for Hn(V) represented by embedded spheres
with trivial normal bundle, (Sn x ot < V) , can be studied by the methods of
the Kervaire invariant arising in surgery theory. This involves defining a
quadratic form /2 Hn(V) — Z /2 , such that w(x) = 0 1if and only
if x € Hn(V) is represented by a s xpCv. We give conditions in terms

of the degrees of the defining polynomials of V for such a quadratic form to be

defined, and show that when ¢ cannot be defined, that any x € Hn(V) can be

represented by s x p" .

When 1 can be defined one can find the sought for basis if and only if
the Arf invariant of ¢ (called the Kervaire invariant) is zero. We give a

formula for computing it in these cases.
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Our specific results are as follows:

Let V C mPn+k be a non-singular complete intersection of complex
dimension n = 2s + 1 , defined by k-polynomials of degree dl s see s dk s
and let d = d) ... d (= the degree of V) .

Theorem A. Suppose exactly £ of the degrees dl seees dk are even (so

s+ £
)

<+l is odd, and n # 1, 3

k - £ are odd). If the binomial coefficient (
or 7 , then there exists a homologically trivial s" C Vv with non-trivial
(stably trivial) normal bundle , and every element x € Hn(V) can be represented

by g™ x Dn CV. If n = 1, 3 or 7 every embedded st ¢ V has trivial

normal bundle.

This was originally proved by [Morita, H] and [Wood, H] for hypersurfaces
and [Wood, ¢I] for complete intersections.

S+,Z)
s + 1

form is defined ¢ : Hn(V) — % /2 such that x € Hn(V) (n # 1,3 or 7)

Theorem B. Notation as in A , if is even, then a guadratic

is represented by S" X D2 CV if and only if y(x) = 0.

Theorem C. With hypothesis as in B , HD(V) has a symplectic basis
represented by embeddings g% x " CV , mutually intersecting exactly as in
the intersection matrix if and only if the Arf invariant of ¥ (the Kervaire

invariant) X(V) = 0, (k(V) e Z/2 ).
(i) If all dy 5 ew 4 are odd ,

K(V) = 0 if d = *1 (mod 8)

1 if d = #3 {(mod 8)

(ii) If some d;'s are even, K(V) = 1 if and only if 4 = 2, A4ls
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and 8% 4 .

( s+ 4 )

= 2
Y = 0 (mod 2) of Theorem B ,

In C, note that the condition

imposes a condition on the number of di which may be even. For example £ % 1,

s+ 2 )

and for £ = 2, (s+l

= s+ 2 is even if and only if s 1is even,

(n = 25+ 1) .

As well as Theorem A , [Morita, H] proved B and C for hypersurfaces
(k = 1) . This case was also done in [Wood, H] . The author first proved C(i)
at that time, and [Wood, CI] gave another proof. [Ochanine] first proved
C(ii) ia the case where V is a 8q + 2 dimensional Spin manifold, (so
5 = 2q) , which is the only case of even degree when X(V) might equal 1 .

In §1 we discuss the definition of the quadratic form in a general context

M BXC W) there

and prove that when the form is not defined (for framed M
. n 2n X . .

is an embedded sphere S CM (n # 1,3, 7) which is homologically
trivial (mod 2) in M , with non-trivial (stsbly trivial) normal bundle. Tn §2, we
consider complete intersections and prove A, B and C . To prove C we

invoke a theorem relating the Kervaire invariant of V" and its hyperplane

section Vg-l which will be proved elsewhere.
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§1. Quadratic forms.

In ([Browder, K] , a definition of the quadratic form arising in surgery
or in framed manifolds was given using functional Steenrod squares., We give here
a geometrical version of this definition, and then study when it can be defined

for complete intersections, and its meaning.

First note:

2n

(1.1) Proposition. For any x € H (M~ ; Z/2) , one can find an embedded

W ou™, with 1,0V = x.

The proof of this is standard as in Thom's proof of representability of
homology by maps of manifolds, but using the additional fact that for the
canonical n-plane bundle «/n , the first non-trivial k-invariant occurs in
dimension 2n + 1 , so that there is no obstruction to finding a map

2n

£ M — 1y

* .
such that [M] N ¢ (U) = x, ( [M] N is Poincaré

duality, U e ENT(HYD) Z/2) is the Thom class). Similarly we get:

(1.2) Proposition. If M2 x B! < WY | W comected, and y € 2., 0,
M Z/2) , we can find NCM representing Jdy as in (1.1) , with N = v,

VCwx [0, 1), V connected, with [V] representing y , [V] ¢ Hn+l (v,

N Z/Z) the fundamental class. Further V meets W X O transversally in

NCM.

Now the normal bundle of N in W X O has a qg-frame given by the product

M X ]Rq restricted to N . The obstructions to extending this frame to a

normal g-frame on VC W X [0, 1) 1lie in gt (v, N; Tl'i(V . ) where
n+dq,q

A% is the space of orthogonal g-fames in IRn+q , so V = O(n+q) /

n+q,q ntq,q

O(n) , and is (n-1)-connected. Hence all these obstructions are zero except
+ ~
the last, « € gt (v ,Nn;m (V )) = Z/2 . Evaluating o on [V] we
n n+q,q
get an element in Z/2 , and we would like to define o{x) = ofv] , (for

x =9 , y € Hn (W, M3 Z/2)) but we have made a number of choices in this
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process which depend on more than the homology class x , namely the choice of

N and the choice of V , with oV = N .

From the theory of the Stiefel-Whitney class (see [Steenrod]) the first
obstruction to finding a q-frame in an (ntq) plane bundle is the Stiefel-

Whitney class W s which becomes the ordinary Stiefel-Whitney class W

n+l n+1l

when reduced mod 2 . In the relative situation we are discussing, this is in
fact the relative Stiefel-Whitney class in the sense of [Kervaire]. Thus it is
homologically defined provided that this relative class does not depend on the
chocie of V . This will be true provided that any closed manifold Xn+l C
W [0,1) admits a normal q-frame, that is, its normal Stiefel-Whitney class
;n_ﬂ_(X) = 0, so that adding X to V will not change the relative class of V.

It gn+q is the normal bundle of X in W x [0 s l) , the normal class

= R
n+l(X) is given by the formula

v Uu o= sty ue ™ (2(e) ; m/2)

n+l
the Thom class. The natural collapsing map ¢ : ZW = (W X [0,1]) / boundary

—> T(£) has degree 1 (mod 2) , and it follows that:

(1.3) The following are equivalent:

() W, (X) = o forait X cwxl[o, 1)

®) sa™t . ULy sy z2) — Y (w ) w; z/2) is zero

(e) Vol w) = o (v = the Wu class) .

Thus we get the condition:

(1.4) The obstruction to extending a q~frame over N to V described above
defines a quadratic form ¥ : K —— Z/2 where K = kernel H M3 =z/2)

— H (W zZ/2) if and only if Vol W) = o.

It is not difficult to translate this relative Stiefel-Whitney class

definition into the functional Sqn+l definition of [Browder, K] , which shows
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it defines a quadratic form.
One may prove (1.4) directly as follows:

Since we have shown that the definition is evaluation of a relative Stiefel-
Whitney class it follows that the definition depends only on homology class. To

. n
show it quadratic, we first prove it in the special case of s"x s x T

2n+q _ aD2n+q+l

C S 5 which may be done directly. It is clear that the

function is additive on two non-intersecting manifolds N; 5 N; C M2n , {which

then bound non-intersecting V§+l y Vg+l C wWx [0 N l) .
If Nl B N2 have even intersection number, then if n > 1 , we may find a

bordism of Nl to Ni in M, disjoint from Né , (simply the first few lines

of the Whitney process produces the cobordism from each pair of intersection

points). Take two intersection points a , b € Nl n N2 and draw an arc on N2

Joining them. If N2 were not connected we could first make a bordism of N2

to a connected submanifold, if M were connected. If M were not connected, we
would first take connected sum of its components, without changing the quadratic

forms.

A neighborhood of this arc would be of the form Dl X Dn_l x D™ where

Dl X Dn_l X 0 1is a neighborhood in N2 . Then Dl x 0 x D™ defines a handle

which when added to N produces a bordism of N to N! which has 2 less

1’ 1 1

intersection points with N2 .

This shows that zj/(xl + x2) = w(xl) + w(xz) whenever x; * x, 1is even.
If Xy ‘ %, is odd, let & s 8 € Hn(Sn X Sn) be the generators corresponding
to the factors, so that w(gl) = w(gz) = 0, ¢(gl + g2) = 1. Then
(xl + gl) . (X2 + gg) = %X, "%, + g ° g, 1iseven, so that
(a) Pl + ) + O+ e)) = gl +ay) +lx + ) = 9(x) + 9lxy) .
But (Xl + X2> . (gl + g2) = 0 so

() gl + %) + (&) + g,)) = 9lxg + x,) +9ley +8y) = plxg +x,) + 1
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Equating (a) and (b) we get

Ylxp + %)+ 1 = gly) + 9(x,)
and (xl . x2) = 1 mod 2, which completes the proof that ¢ is quadratic. O
2n q 2n+q .
(1.5) Theorem. Suppose M~ X RiC W , n#0,1,3 or 7 , W is
l-comnected, (W,M) n-connected, and suppose vn+l(w) # 0 . Then there exists
an embedded S° CM™® ana UMY ¢ M x B! witnh U = s® such that

n 1

the normal bundle £ to S in M2n is non-trivial, but ¢ + & is trivial.

Hence S™ is homologically trivial (mod 2) with non-trivial normal bundle.

Proof: Since vn+l(w) # 0 we can find an embedding of a closed manifold
+
N Xn L C W whose normal bundle ¢ does not admit a g-frame in W X [O,l).

For v_, (W) 0 means there is an x e ©Ta7% (yw/dw ; Z/2) such that
n+l

n+l

(8q x) [W] # O, ond hence g >2 . By Thom's theorem, since n+ q - 1L > n,

*
there is amap r : (W, oW) — (T(y ), » such that rU = x (U the

n+q-1
. Hn+q-l . . .
Thom class in (T(y )3 Z/2) , and the transverse inverse image of

n+1

n+g-1

the O-section will be our manifold X , which we may assume connected, by

choosing a component with the above property.

Let X, = X~ (int Dn+l) so that BXO = s% . Since X was connected,

XO has the homotopy type of a n dimensional complex. Since (W , M) is

n-connected, it follows that there is a map f : XO — M such that
by
XO — M
N ns
X —_— W commutes up to homotopy.
Let g be the composite 8" = 3%, C X, L5 M, so that g [s"] = 0.

Since M is 1l-connected, the Whitney process will produce a homotopy of g to
n .
an embedding (again called g) , and we wish to show the normal bundle ¢ to this

embedded sphere g(Sn) is non-trivial.

Using the Whitney general position embedding theorem, we may deform
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% N Mx R x (-1 s, 0] to an embedding gy i Xy~ MX & x (-1, 0]
extending g which meets M X R X 0 transversally in gO(BXO) = g™ <

M C MxXx R*%XO0.

On the other side, the embedding g : s cu extends to an embedding (using

general position) E : Dn+l cwx[o, 1) meeting W X O transversally in
g8 = D) CcMxoCHMx BEXOCWXO. The two embeddings
gy ' X, C MX Bix(-1,0] , g: ™rcwx o , 1) together define an

embedding g ¢ x. U pttl

5 = X— WX (-1, 1) which is isotopic (by

general position) to our original embedding j : X CWCWX (-1, 1)

The product structure M X El CWX0 defines a g-frame in the normal
bundle £5°1 of g(s") € MxB CWx 0 (sothat %+l - ) an
let & ¢ 7 (V ) be the obstruction to extending this k-frame over the

n+l n+q,q
normal bundle of E(Dnﬂ') cwx[o, 1).

(1.6) Lemma, If n#1, 3 or T, the obstruction & = O if and only if

t" is trivial.

Proofs of (1.6) can be found in [Wall] or [Browder, S ; (IV L.2)7.

n . - s
We assume ¢ 1s trivial and produce a contradiction. In that case we can

find a framed hendle D1 x D% x B C Wx [0, 1) (using (L.6)) with
™ x0x0 = O™ and s x D% X 0 a neighborhood of g(sB) CM C M x
Bix0 Cc Wx[0,1). Iet V be the cobordism of M defined by

nhloo ™)

v = Mx[-1,0] U (D , sothat Vx BRICwWx[-1, 1], and

g, (X) < (int V) x &Y.

Hence we have a factorization of the collapsing map Y = WX [-1, 1]/
*
3w x [-1, 11)-2s 22 vy 25 7(2 + &) so that (ba) (U) = Ix e
+
(75 z/2) and (5™ (x)) 0] = (5™ () [¥] £ 0 , U e

9 (T(£) 3 Z/2) the Thom class. Tt follows that (¢ (b'0)) (23[v]) 4 0,

so that 8a™1 (21 (') (V] # 0, where =9 (07U) e HAV/OV z/2) ,
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which leads to sought after contradiction since Sqn+l annihilates cohomology of

dimension n . This completes the proof of (1.5). I
On the other hand we have:

(1.7) Proposition. If vn+1(w) = 0, (W,M) n-comected, n#1,3,7,
2

n odd , and P : Sn cM n with @ nullhomotopic in W . Then the normal

bundle of @(s%) is trivial if and only ¢(<p*[sn]) = O where ¥ 1is the

quadratic form of (1.L) .

(1.7) follows easily from (1.6) and the definition of ¢ .
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§2. Complete intersections, their normal bundles and the quadratic form.

In this paragraph, we apply the results of §1 to the case of non-singular
. . n+4 . - .
complete intersections vic gp , give the conditions for the quadratic
form of §1 to be defined, and calculate the Kervaire invariant when it is
defined.

k

Recall that a submanifold V C EPn+ is a non-singular complete intersection

if V is the locus of zeros of k homogeneous polynomials Pl seess Pk where
dimV = 2n (real dinension) and codim V. = 2k . The degrees di of Pi
completely determine V up to diffeomorphism. Thus any question we ask in
differential topology about V must have an answer in the form of a formula

involving only n , and dl PR dk , and we will use the notation

v o= v (4, 5ees &) -

From the topological point of view it is convenient to view V as a

k

transversal inverse image, to have its normal bundle in mPn+ evident. We

may assume Pi(l s O ueney 0) # 0 for all 1 . Define maps

n+k n+k

Péi: 6P ;;——» TP _Ei P, (zo yeens Zn+k) = (B, (25 5--05 Zn+k) R
297 seens B , SO Pi (zo = 0) 1is a hypersurface of degree di
k
Define P : mPn+k —_— II mPn+k by P o= HEi . Then
X i=1
v = 7% ( (7 (zéi) = 0)) , where zéi) is the O-th coordinate in the
i=1

i-th copy of TPVE .

Small perturbation of the coefficients (if necessary) will make P

transversal and V will be a non-singular manifold and we get:

(2.1) Proposition. The non-singular complete intersection v defined by
n+k
EERERE Pk on {F represents the homology class

+

, and the normal bundle ¢ of V C.CILPn k has a natural
d 4. d.

bundle map into the bundle (o * + o 2 F ...+ O k) over EPn+k where X,

the vanishing of P

ax € H (e?™tF)
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. 2
is the generator dual to yk € H K n+k) 5

{(¢p y=-c_ (&), @ the canonical

1
n+k
T bundle over {F , 4 = dl .- dk the total degree of V .

We may transform this situation into the situation of §1 by embedding

+

mPn k CE = the total space of a bundle 7 which is stably inverse to
d !

(o L + ...+ QA k) . Then the normal bundle of V CE has a bundle map into
a

(a 1 + ... FQ k) + 7 which has a natural trivialization. Hence

(2.2) Proposition. The complete intersection v mPn+k has a natural

framing in E , VX RY C E, where E = E(y)

a a
(at+ ... +a®)

, ¥ a representative of

e K(LP™E)

Note that the framing is determined by the structure of V as a complete

intersection, and the polynomials P P

k not simply by the differentiable

L osees
structure of V .

To apply §1 , we need to calculate Vol (E(7)) , to see if the gquadratic
form is well defined. Note that if n is even, Vv = O since it lies in

n+1

a zero group.

(2.3) Theorem. vn+l(E) # 0 if and only if (

w wm

+ £
1 ) i 0(mod 2) , where
£ = the number of even integers among the degrees d .y d n=2=22s+1.

l," k’

Proof: The Stiefel-Whitney class

dy Sk
WE) = Wt o or7) = Wm+rk+Da- (@ +ra’))
TP

(l + X)n+k+l (l 4 X)n+k+]_ nt ol

(1l +d.x 1+ x

i1 i
Hence W(E) = W(rt n+E) in dimensions where both cohomologies agree, and hence

P
+ £ +

v (B) = v (@P™ ") . But Vo (@) # 0 if and only if 8¢™TT :

+2 fm + £
" 2f-1 (QIPn 3 Z/2) — H2n+2£ ((lanHZ 5 Z/2) 1is non-zero. The group

s+2

+24- +
o 24-1 ((IPn £ H 2/2) is generated by x , where x generates

2
e (mPn+z ; Z/2) (since n=2s+ 1), so Sqn+l (xs+£) = Sq28+2 (xs+ )
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s+ £ + £
Yy x%, which completes the proof.

-

s+ 1
+

In E, x° = is represented by X = EPS+1 , SO XO in the proof of
(1.5) may be taken oriented, and we get:
(2.4) Corollary. (Morita, Wood) If n = 2s+ 1, V non-singular in

n+k . . s+ 4

aP defined by Py ,..., P, of degree d; ;... 4., end if ( s+ 1 )
is odd , £ = number of even degrees among the di's s, then there is an

embedded S" CV which is homologically trivial, and has a non-trivial normal

bundle, (provided n# 1, 3 or 7).

To calculate the Kervaire invariant (the Arf invariant of ¢ ) in the
other cases (where P is well defined) we use the following theorem. The
proof will be given in another paper, and it follows from a combination of an
additivity theorem for the Kervaire invariant (analogous to Novikov's theorem
on index) and the product formula for the Kervaire invariant.

+
(2.5) Theorem, Let Vn C mPn k be a non-singular complete intersection, and

- +K =
let Vg 1 C mPn k-1 be a non-singular hyperplane section. If the quadratic

n -
forms are defined for both V  and Vg L , then their Kervaire invariants are

equal, K(V) = K(VO) .

Note that the definition of K(VO) may have some extra subtlety as we

will see in the calculation.
We can immediately derive the formula for K(V) when d = dl oo dk
is odd. 1In that case (2.3) implies that the quadratic forms are defined
for all the iterated hyperplane sections Vg_l ) Vﬁ_g eee D Vg_l so that
(2.5) implies KV = K(Vg_l) , and we are left with the problem of computing

K(VO) for the zero dimensional complete intersection of degree d , that is,

for 4 similarly oriented points.

This calculation is a special case of that of [Browder, FPK] and is
actually equivalent to it using a product formula. We do it explicitly as

follows.

Suppose VO(d) = d disjoint points, embedded in W . A framing of
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Vo(d) is simply an orientation on a neighborhood of each point and the condition
vl(W) = O means that W 1is orientable. Suppose W 1is connected, 4 is odd,

and the orientations at all the points are the same.

(2.6) Proposition. K(Vo(d)) = 0 if 4 = 1 med 8
roposition

1 if 4 = %3 mod 8 .

Proof: Since wm is connected we may assume that Vo(d) C.Bm CW and
that the symmetric group Zd acts on Vo(d) , DPreserving the framed embedding,

so that

plox) = ¢(x) for 0o Zd s

x €Ky = ker H P m/fe) —s B, o5 =m/e) .

Now KO has a basis {Xl t Xy, Xt Xy seers Koo + XO} , where the d points

are Xy see.y X5 d = 2s + 1. Since Zd acts transitively on this basis,

(2.7) Pxg + xo) = z[/(xj + xo) for all i, j .

Further the intersection product

(2.8) (xi + xo) . (xj + xo) = 0 i = j

a,

Define a module AS with quadratic form ¢ by letting 81 5 85 seres Bpg

be a basis for A_, w(ai) =0 for all i , and
, a,) = 0 if 1=
1 if i# ]
(the opposite of an orthonormal basis). It is easy to check that the bilinear

form ( , Y s non-singular on AS and is the associated bilinear form to ¥ .

Similarly, define B, @ by the basis by ,..., b, cp(bi) = 1

3

all 1, and
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ne

(2.9) Lemma. A

(as modules with quadratic forms).

Proof: Define a new basis for A by a] = a., +a. + a , and let
—_— s i i 1 2
C ! o L
Al AS be generated by &y 5 3y 5 Bs-l C AS be generated by a3 N s B
1 3 3 1 =
Then A1 L Bs-l , and it is easy to check that Bs-l Bs—l .
. Py Y Y 1 -
Similary, define a new basis for BS by bi = bi + bl + b2 , let
C ! Dy .
B1 BS be generated by bl s b2 5 As-l C'.BS generated by b3 B 5 bS
= ! i ' =
Then BS Bl + As-l as orthogonal direct sum, and As-l As-l .
Since Arf (Al) = 0, Arf (Bl) = 1 , we get:
Arf (AS) = Arf (Bs_l)
so that Art (Bs> = 1+ Arf (As-l)
Arf (AS) = 1+ Arf (AS_E)
Arf (BS) = 1+ Arf (Bs_e) . Hence:
(2.10) Proposition. Arf (BS) = 1 if s=1 or 2 mod b
0 if s=3 or 4 mod k.
But in (2.6) , LN = B, if d = 2s+ 1 which completes the proof of
(2.6) and the calculation of K(V" (4 seees &)) whem d = d ... 4y is

odd , i.e. Theorem C(i) .

The case of even degree d is more difficult, since the quadratic form
may not be defined for the iterated hyperplane sections. However, 1t is always
defined for the first hyperplane section Vn—l C.Vn s since the appropriate

0
Wu class Vo lies in a zero group when n is odd). To make the calculation

in Vg—l we need:
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(2.11) Proposition. Let M x RS C W, v, (M = 0, m even, and M

oriented. If x € H ™ z), i, (xg) = 0, i: M—— W inclusion,
. _ X+ X

x, € H (M ; Z/2) the reduction of x mod 2 , then z//(x2) = 5 mod 2 .

We sketch a proof, (compare [Morita, P] , [Brown]) .

. ¥ —

First note that if l*(x2) = 0, then Vm(M)(Xg) = i (vm(w))(xz) =
vm(W) (i*x2) =0, so x-x = X,° x, mod 2 , and X, © X, = (y U y)M]
= (Vm(M) Uy) M1 = Vm(M) (MI N y) = v (M)(XZ) = 0 (where [M]Ny-=

x2) . Hence x -« x 1is even, so (p(x) = % mod 2 1s a well defined

quadratic form.

(2.12) Lemma. ILet % be our usual quadratic form ¢ : K —> %/2

(K = ker H (Ma“; zZ/[2) — H (W3 Z/2)) asin §1, and 9 : K —
Z/2 another quadratic form defined in these circumstances such that p(x) = 0
implies ®(x) = O . Then ¢ =9 .

The proof is similar to that of [Browder, S ; (IV. L4.7)] . For the condition
2m+1
)

S

implies that on the diagonal A e H (8" x s ; z/2) (for s%xs™ C s
m

®(A) = 1 = y{A) . Then by adding % x 8% to M® and adding A to an
arbitrary x € K if necessary we get ®(x) = ¢(x) (compare the proof of
(1.4)) .

Thus to prove (2.11) it suffices to show Y(x) = O implies o(x) = 0.
(2.13) Lemma. If k is large, P(x) = 0O implies there exists a framed
bordism Ui x BEC Wwx[0,1] , dUXx B = Mx BExo U u' x T
x1 cwx{o,1} , ama Vrcu , & = wcu with [N = x, €

Hm My z/2) .
Proof: As in §l , we can find N C M representing x € H_ (M5 z/2)
+
and VOl C W x [0,1) with &V = NCMXO. Then ¢(x) =0 implies that
the normal bundle to U admits a k-frame extending that of N (coming from

the framing of M in W). The complement of this frame is a Dm bundle over
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V  which meets M in the normal disk bundle of N© in M , and adding this
disk bundle to M X [0, &) clearly defines a framed cobordism of the type
required except for the condition M' C W X 1 , but this may be achieved by an

isotopy if k 1is large.

Now to show ©®(x) = O we note that if [M]NX = x , since X, = dy ,
4 - X -
yer 4 (U, MUM' ; Z/2) , by Poincaré duality, x, = iy , yve (U ;
X
Z/E),i'y = 0, i: M—> U, i': M' —> U the inclusions.
Now x-x = % M) = @PEIM (moa X) wnere § : H' (u; z/2) —
2 . .
Faal 0V 7Z/4) 1is the Pontryagin square (see [Morita, PJ) . Now
it Hy (M, =/2) = H, (U; =/2) so that X, © X, = ¥ (xz)[M] =
H— * — —_
FEym = 1 CEHM = PE(GE,M) = 0 mod 2 and hence
— Zn !
P (¥) ej, B (U; 2/2) , where 0— Z/2 o zfh — /2 —5 0.
. * - .
Since 1i' (¥) = 0, it follows that
¥ *e o Fey, '
x x= @y =(F@Ey)+ FE YN - M)
o= b=y T
- TOE) Ul = @ (T,
(11 mod 4) , T = iUi': MUM =3U— U.
Since i, [OU] = 0 mod 2 it follows that (i*[BU])LL € 3 i, (U Z/h)
. = . . 2m .
(i : zZ/2— z/4). But FP¥) « J*Ham (U Z/2) and j, H and JH,
are paired to zero (we get a factor of 2 from each Jy which multiply to
become O mod 4)
Hence x * x = O mod 4 so ¢(x) = 0, which complete the proof of (2.11)
O.
We now proceed to the calculation of K(V'n(d:L seens d'k)) for 4 = dy e
4 even. Recall £ = mnumber of even d;'s and ( z : f ) = 0 mod 2
(to have 1 defined), where n=2s+ 1. By (2.5), K(Vn(dl seees 4 )) =
n-1
K(VO (dl seees dk)) but we must make this statement more precise.
The quadratic form ¢ is defined on L = ker (Hn 1 (VO ;s Z/2) —

K-
Hn-l (CEPn 1 ; Z/2)) and since n - 1 is even and d is even,the associated
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bilinear form is singular on L . Thus, for the Arf invariant of % on L to

be defined it is necessary that if r ¢ L and (r, x) = 0 forall x el ,
then 9(r) = O (see [Browder, FPK]) , but this is implicitly included in
(2.5) .

We will now study the middle dimensional intersection form on Vg—l and
using coefficients in Z(g) (i.e. introducing all odd denominators) we will
put it in a form in which the Arf invariant of ¢ can be easily computed.

-1
( ﬂ:Pn+k

Since ,V.) is (n -~ 1) - connected, i H _ (V) —

0 * P 5 Vg

+k = ~ * - -
Hn-l ((IIPn k l) = Z 1s onto, and therefore splits. Hence 1 : i L ((]1Pn+k l)

- *
— l(VO) also splits and we let h = i (g) , where g generates

H.n‘l (mPn+k-l) .

(2.14) Lemma. The Poincaré dual of L = the annihilator of h under
().
* — —
Proof. g(i,x) = i (g)(x) = n(x) = n( [Vo] Nx) = (hUXx) [VO]) =

(hyx). O

Now let B ¢ ol (vo) be such that (h , B) = 1 , (which is possible
* *
since h 1is indivisible.) Now (h,h) = (i gUig) vyl = (g g) 1,[V,]
=(gVg) (d[ﬂll’n-l]) = d . Hence the quadratic form on A = the submodule

generated by h ,  , has the matrix

and hence has odd determinant ad - 1, since d is even.

Hence, over Z » we can find a complementary summand B to A so
El (2)

that the matrix for HY1 (VO 5 Z(Z)) = A+ B becomes
4 1
(1 ) 0
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Since B Lh, and B is the largest submodule of (amnihilator (n)) on

which the bilinear form is non-singular (mod 2) , it follows that Arf ¢ = K(VO)

is the Arf invariant of the quadratic form {(mod 2) on B, and T

2

is the matrix for this intersection form.
(2.15) Proposition. The Arf invariant
arte (B) = 0 if det T = *1 mod 8
1 if det T = %3 mod 8 .

See for example [Hirzebruch-Mayer ; (9.3)] . We sketch the proof here.

Over 22(2) , amatrix T with even diagonal entries and odd determinant

may be put in form of the sum of 2 X 2 blocks

sTs’ = (%1 ) 0

For given a generator g of B, uince det T is odd, there is g' € B such

that (g , g') 1is odd so that over ZZ(Q) g and g' generate a submodule

a 1
1 b )

module (over 12<2>) and proceed by induction.

whoge matrix may be made into ( and we may then split off this

For ? % ) (a, b even) clearly the Arf invariant is 1 if and only
if both % and g are odd. Then ab -1 = 3 mod 8 (i.e. ab - 1 is not a
quadratic residue mod 8) . The result then follows, adding Arf invariants and

multiplying determinants of the 2 X 2 ©blocks.

Since the bilinear form is unimcdular on all of Hn—l(VO) , it follows
-1 s + 2
) e )

defining ) implies £>2 so that L | 4, (4 = number of even di's) .

that det T = (ad - 1 . The condition (

0 mod 2 (for
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Hence ~(ad - l)_l = 1+ ad + 228 + ... = 1l+ad (mod 8) . Hence, by
(2.15), ArfB = 0 if 8| d& or if a is even. It remains to calculate
a = (8.8).

But (B, ) = (v, ,(V),B) mod 2 so a is odd if and only if
Vn-l(vO) is nonzero and equal to h {mod 2) . But Vh-l(vo) . (vn—l(E))
where E = E(-(o?l + ...+ adk)) , the total space of this stable bundle over
et 5o a4 = (B, B) is odd if and only if v (8 4 0.

n-1+2

As in (2.3) we get that vn_l(E) # 0 if and only if v, (P ) # o

s+ £
( s

-1

The latter happens if and only if ) # 0 mod 2 which completes the

proof of Theorem C . O
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