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The Kervaire invariant of framed 
manifolds and its generalization* 

By WILLIAM BROWDER 

In 1960, Kervaire [11] introduced an invariant for almost framed (4k + 2)­
manifolds, (k "* 0, 1, 3), and proved that it was zero for framed 10-manifolds, 
which was a key step in his construction of a piecewise linear 10-manifold 
which was not the homotopy type of a differential manifold. Haefiiger [9] 
showed that Kervaire's invariant and the invariant of Pontrjagin [17] for 2, 
6, and 14 dimensional framed manifolds, could be defined in a common fashion, 
and this invariant is the surgery obstruction in dimensions 4k + 2 (see [12], 
[15], [6]). A central question has remained, for which dimensions can a framed 
manifold have a non-zero Kervaire invariant. Pontrjagin's invariant is non­
zero for certain framings on Sl x S\ S3 x S3 and S7 x S7, but until now all 

the results for the Kervaire invariant have been in the negative; Kervaire [11] 
showed it was zero in dimensions 10 and 18, and Brown and Peterson [8] show­
ed it zero in dimensions 8k + 2. 

In this paper we will show that the Kervaire invariant is zero for dimen­
sions "* 2k - 2. For dimension 2k - 2 we show that there is a framed manifold 
of Kervaire invariant 1 if and only if in the Adams spectral sequence for the 
stable homotopy groups of spheres the element hi in E Z persists to Eoo, (see 
[1], [2]). But it is a fact due to Mahowald and Tangora, (Topology 6 (1967) 
349-370, § 8) that h! in dimension 30 persists to Eoo. Hence there is a framed 
30-manifold of Kervaire invariant 1. (We are informed that recently Barratt 
and Mahowald have shown h; persists to Eoo, so there is a framed 62-manifold 
of Kervaire invariant 1.)1 

Now we list some of the geometric corollaries which follow from our 
result (see [12]). 

COROLLARY 1. The Pontr}agin construction from the group Fen of 
framed homotopy spheres to the stable n-stem 7rn+k(Sk), k large, is onto if 
n "* 2k - 2. Its cokernel is Zz in dimensions 2, 6, 14, and 30. 

COROLLARY 2. The group bPn+l of homotopy n-spheres which bound 
parallelizable manifolds is Zz if n = 4k + 1, n "* 21 - 3. It is zero in dimen-

* Research supported in part by an NSF grant. 
1 This implies we may add dimension 62 to the lists in Corollaries 1 and 3 below and 

61 to Corollary 2. 
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sions 5, 13, and 29. 

For the following corollaries see [15], [6]. 

COROLLARY 3. Let X be a 1-connected finite complex satisfying Poin­

care duality in dimension n, n ~ 5. Suppose that T(~) is the Thom complex 

of a k-plane bundle over X, a E n n+k( T(~)) is such that h( a) is a generator 
of Hn+k(T(~)), where h is the Hurewicz homomorphism. If n = 6,14, or 30, 

then X is the homotopy of a smooth manifold with normal bundle ~. If 
n = 4k + 2, n "* 21 - 2, and ~ is the trivial bundle, then X has the homotopy 

type of a n-manifold with normal invariant a if and only if the Kervaire 
invariant c(ofF) of (X, a) is zero (see § 3 for definition of C(ofF)). 

This corollary covers some cases not solved in [15] or [5]. Unfortunately 
there are some difficulties in defining an absolute invariant, analogous to the 
Kervaire invariant, in the case of a general bundle, but one can do this for 
some bundles. 

Our general approach to the problem of the Kervaire invariant is the 
following. Find the most general possible and simplest situation in which the 
Kervaire invariant can be defined and then study the place of framed mani­
folds in this situation. 

The Kervaire invariant is the Arf invariant of a certain quadratic func­
tion defined in a 2k-connected almost framed (4k + 2)-manifold. In [11] and 
[12] this quadratic function is obtained from the cohomology operation which 
detects the Whitehead product [c,c], while in [7] it was shown that this could 
be used to define a generalization of Kervaire's invariant to Spin-manifolds of 
dimension 8k + 2. In dimensions 8k + 2 the operation is secondary, but in 
other dimensions the operation may have higher order. 

We define here a quadratic operation in a new way, using a functional 
operation associated with SqHl to define a quadratic operation ofF in a 2q­

dimensional Poincare duality space M 2q with a certain extra structure. This 
extra structure is a lifting of the classifying map of its normal spherical fibre 
space [21] to a classifying space in which the Wu class vq+1 = 0. Any M 2q has 
such a lifting, but it is not unique and different lifts lead to different results. 
A framing induces such a lifting. We note that the definition works for all q, 

not just q odd. The operation ofF is defined on a subgroup of Hq(M2q; Z2), and 
if this subgroup has certain properties the Arf invariant of ofF can be defined. 
It coincides with the Kervaire invariant for framed manifolds. 

We show that if M 2q is a boundary in the cobordism theory above (using 
the theory where V q+1 = 0) and if the Arf invariant is defined, then it is zero. 
Then we study this cobordism theory and the image of framed cobordism in 
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it to get our results. 

In § 1 and 2, the theory in which 'U q+1 = ° is developed, and the operation 
ofr defined for a Poincare duality space M 2q which is oriented in this theory. 

In § 3 it is shown that the Arf invariant which can be described in certain 
circumstances, coincides in the case of framed manifolds with Kervaire's and 
Pontrjagin's invariants. Then it is shown that if a framed M 2q is a boundary 
in the theory based on 'U q+1 = 0, then the Kervaire invariant of M 2q is zero. 
Thus if the image of framed cobordism in this new cobordism theory is zero 
in dimension 2q, the Kervaire invariant is zero for framed 2q-manifolds. This 
is shown in §§ 6 and 7 for q =I=- 21 - 1. 

In § 4, we discuss some general properties of orientations (or "liftings" 
of the structural group of a bundle). Let n: E ----> B be a principal fibre space 
with fibre G, where B is the classifying space for a category e of fibre spaces 
or bundles, 'Y the classifying fibre space or bundle over B, '7 = n*('Y) over 
E, p: '7 ----> 'Y the induced fibre space or bundle map. Let ~ be in the category 
e, with base space X. An E-orientation of ~, (or lifting) is a map b: ~ ----> '7 in 
the category e. We define a natural notion of equivalence of E-orientations, 
and show that the equivalence classes of E-orientations of ~, are in one-to-one 
correspondence with cross-sections of the fibre space E' over X induced from 
E ----> B by the classifying map of~. This generalizes the many well known 
special cases in the literature, such as Spin structures (see [13]). 

In § 5, we use the results of § 4 to show how to construct a structure on 
sq x sq, in the theory with 'Uq+1 = 0, which has Arf invariant 1. Then in §§ 6 
and 7, it is shown that if q = 21 - 1, the image of framed cobordism in our 
theory is exactly this element if (hZ)2 in the Adams spectral sequence repre­
sents an element in the stable homotopy group of the sphere. 

In § 6 it is shown in general how to calculate up to group extensions the 
cobordism groups in the theory with 'U q+1 = ° in dimensions :;:;;2q, in terms of 
the original theory. We get an exact sequence with the original groups, the 
new groups, and relative groups. It happens to be easy to show that the relative 
groups are the homotopy groups of a space with only one non-zero k-invariant 

in stable dimensions :;:;; 2q + 1. 
In § 7 the k-invariant is computed and the case where B=Bo is considered. 

In that case it is shown that the image of framed cobordism is zero if q =I=- 21-1 
using Adams results [1], and that if q = 2z -1 only an element corresponding 

to h~ can go non-trivially. In that case, it will go to the element constructed 
in § 5, which therefore has Kervaire invariant 1. 

In a later paper we plan to further study the invariants here defined. We 
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shall prove a product formula analogous to formulas of Brown-Peterson [8] 
and Sullivan (unpublished), compare our invariant in dimension 8k + 2 to 
Brown's, and study the invariant if q is even. 

I am indebted to Ed Brown for some illuminating conversations. 

1. The operation 

A cospect'rum X is defined to be a sequence of spaces X = {Xo, Xu X 2, .•• } 
and maps In: X n+l ----> LXn> (where L is the suspension). If A is a space then 
define a cospectrum A, A = {A, LA, L2A, ••• }, with In = identity map. If X 
and X' are cospectra, a map g: X ----> X' is a sequence of maps {gk, gk+U ••• } for 
k > l, some l, gi: Xi ----> XI such that the diagram 

fi 
Xi+l --> LXi 

gi+ll ' 1 Lgi 

X I fi "'x' i+l ----jo ~ i 

is commutative. 
If g: A ----> B is a map of spaces, g induces g: A ----> B in the obvious way. 

If X = {Xo, Xl' ••• } is a cospectrum we let SkX = {Xk' Xk+U •.. } if k:> 0, SkX = 
{*, "', X o, Xl' ••• } (Xo in the -k + 1 place) if k < O. 

A cospectrum X = {Xo, Xu X 2, ••• } will be called a Wu (q + 1)-cospectrum 
if the following conditions are satisfied: 

( i) X is mod 2 coconnected, i.e., Hi(X; Z2) = lim; Hn+i(Xn; Z2) is zero for 
i > 0 and Hn(Xn; Z2) ~ Hn+l(Xn+l; Z2) ~ Ho(X; Z2) = Z2' 

(ii) SqHl: H-q-l(X; Z2)---->HO(X; Z2), is zero (Hj(X; Z2) = lim; Hn+j(Xn; Z2))' 

We note that if X is a co spectrum satisfying (i) then condition (ii) is equiv­
alent to the statement: 

(ii') SqHl: Hn-q-1(Xn; Z2) ----> Hn(xn; Z2) is zero for every n. 
If A is a space and x E Hj(A) we will denote by x E Hj(A) ~ Hj(A), the 

corresponding element. 
Let M 2q be a Z2 Poincare duality space of dimension 2q, i.e., there is an 

element p. E H 2q(M; Z2) such that ---. p.: H8(M; Z2) ----> H 2q_8 (M; Z2) is an iso­
morphism for all s. 

Let X be a Wu (q + 1)-cospectrum. An X orientation of M 2q is a map of 
cospectra 1): X ---->S-2qM+ such that 1)* (a) =.u where a E Ho(X; Z2) is a generator. 
That is, there are maps 1]2q+n: X 2q+n ----> Ln M+ for all n > m, some m, such that 
the diagram 
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commutes and 1}~+n(IX2q+n) = Ln(p) where IX2q+n is a generator of H 2q+n(X2q+n; Z2). 
Suppose M 2q is X oriented where X is a Wu (q + l)-cospectrum, 7]: X -> 

S-2qM+, let x E H-q(S-2qM+; Z2) be such that 1}*(x) = 0. 

This means that there is an r > ° such that 1};Q+r(Lr(x») = ° (which im­
plies 1}~+8(L8X) = 0, for s ~ r). 

We define a map ofF: (ker 7])-Q -> Z2 as follows. 
Take a mapf: M+->K(Z2' q) such thatf*(c) = x, where c E HQ(K(Z2' q); Z2) 

is the fundamental class. Let g = f 07] 

X ~ S-2QM+ ~ S-2QK(Z2' q) . 

We define ofF(x) = Sqq+lg(l) where 

HO(X·, Z2) Sq q+ 1 g: (ker 7] *) -Q ~ -,------''----'---,'~-
im SqHl + im g* 

is the functional Steenrod square (see [22]). 
It is equivalent to consider a single map 1}2Q+k: X 2Q+k -> LkM+, or suppress­

ing subscripts 1}: X -> Lk M+. We may assume 1}*(Lk(X») = 0, and we may take 
ofF(x) = Sqq+l g(Lk(C»), where 

H 2Hk(X·, Zz) Sq q+ 1 g: (ker g *)H k ~ -,---:-_-'----'-:c---=.:..._ 

im SqHl + im g* 
g = (L,kf) 01} • 

These two definitions of y can easily be seen to agree (cf. (1.2»). We 
will use the second for the remainder of this section. 

We note that SqHl(C) = ° since dim c = q, so SqQ+\(Lk(C») is defined. We 
must take Lk K(Z2' q) on the right, rather than Lk M+ in order to make the 
indeterminacy zero, as indicated in the lemma below. 

LEMMA 1.1. The indeterminacy (im Sqq+l + im g*)ZHk = 0, so that range 

ofF = ZZ. 

PROOF. By hypothesis (im SqHl) n H2Q+k(X; Zz) = ° so it remains to show 
that (im g*)ZQ+k = 0. But HZHk(Lk K(Z2' q); Zz) =:: H 2Q(K(Zz, q); Zz) =:: (Sl(z)Qc, by 
a theorem of Serre [1], where (Sl(z)Q is the q-dimensional component of 
the Steerod algebra Sl(z. Hence (im g*)Zq+k = (Sl(z)Q(g*(Lkc»), and g*(Lk(C») = 
1}*(Lkf)*(L kc) = 1}*LkX = 0, so (image g*)2Hk = ° and the lemma follows. 

LEMMA 1.2. The value of y is independent of k, i.e., if one uses 

LX ~ Lk+1M in place of 1) it defines the same ofF. 

LEMMA 1.3. IfYand X are WU (q + l)-cospectra and ifY -> X is a map 
of degree 1 (i.e., isomorphism on Ho) then X orientable spaces get a natural 
Y orientation which defines the same function y on the intersection of their 

domains of definition. 
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THEOREM 1.4. y is quadratic, i.e., if Xl! X2 E (ker r;*)q, 

""'(Xl + X2) = ""'(Xl) + ""'(X2) + r;*(XI '-' X2) • 

PROOF. Letfi:M-K(Z2,q) such thatfi*(c)=xi' Then 

t:. !IX!2 P-
M ~ M x M ~ K(Z2' q) X K(Z2' q) ~ K(Z2' q) 

represents Xl + X 2 , where a is the diagonal, and p is the multiplication in 
K(Z2' q). 

Let X, Y be connected complexes with base points Xc, Ye, 

i: X -X x Y, i(x) = (x, Ye) 

j: Y - X x Y, j(y) = (Xo, y) 

p: X X Y - X, q: X x Y - Y, the projections, 
s: X x Y -X 1\ Y = X x Y/X V Y, the natural identification map, 

and 
h: 1:(X 1\ Y) - 1:(X x Y), the Hopf construction on the identity map. 

LEMMA 1.5. 1:i + 1:j + h: 1:X V 1: Y V 1:(X 1\ Y) - 1:(X x Y) 

and 

1:p + 1:q + 1:s: 1:(X x Y) --+ 1:X V 1: Y V 1:(X 1\ Y) 

are natural inverse homotopy equivalencBs. 

For a proof see [10]. 
Applying Lemma 1.5 to our situation we get a commutative diagram: 

1:M --~~ 1:(M x M) ~(fl ~ 1:(K x K) ~ 1:K 

"p + EH E'] Ep + Eq + ",1 j "wClA + E; + h) 

1:M V 1:M V 1:(M 1\ M) ~!1 + ~!2 ~ ~(fl ~ 1:K V 1:K V 1:(K 1\ K) • 

It then follows that the composite map of 1:M --+ 1:K which represents Xl + X2 
is (1:p)(1:i + 1:j + h)(1:fl + 1:f2 + 1:(fl 1\ f2»)(1:P + 1:q + 1:s)(1:a) = 1:r. Now 
(1:p + 1:q + 1:s)(1:a) = 1:11 + 1:12 + 1:A where A: M-M x M-M 1\ M, 1i:M-M 
in i th place in M V M. Now 1:fi o1:1 j = 0 if i "* j and 1:p 0 (1:i + 1:j + h) = 

1:51 + 1:52 + h(p) where 5i is identity on K in the i th place in K V K. Hence 
1:r = 1:f1 + 1:f2 + h(P)(1:(f1 1\ f2»)1:A. 

LEMMA 1.6. If 1:g: 1:A - 1:B, 1:g = 1:a + 1:b, a*(x) = b*(x) = 0 and 
(im a*)2Hk = (im b*)2Hk = 0, then 

Sq~g = SqL + Sq~b • 

PROOF. 1:a + 1:b is defined by 
t:. La V I.b t:.' 

1:A ~ 1:A V 1:A --~ 1:B V 1:B ~ 1:B , 
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where fl.' is the "folding map." 

1~~ 
(~B V r.B) ~ (IoH!)' C~A --> (~B V r.B) ~ raV!! C(~A V ~A) = (~B ~ 1:a ~A) V (~B ~!! C~A) 

A'~11 1~'~1 
l~A 

(~B)~I' C~A --> (~B)~"('aH" C(~A V ~A) 

The proof is immediate from the above commutative ·diagram and the 
calculation of Sqk(fl.'*(X)) in ('2:,B -~a '2:,A) V ('2:,B -~b '2:,A). 

LEMMA 1.7. Sqq+\(!')('2:,c) = '2:,(c /\ c). 

The proof is the same as [23, (5.3)]. 
Then it follows from Lemmas 1.5, 1.6, and 1.7 that 

y(XI + x2) = Sqq+\kg = Sqq+l~ktJ'2:,kC) + Sqq+l~kf2('2:,kC) + r;*(XI - x2) 

= y(x I ) + y(x2) + r;*(X I -X2) 

which proves Theorem 1.4. 
We shall say that an X oriented Poincare duality space M 2q is an X 

boundary if there is a map i: M 2q -> W 2HI such that (W, M) is a relative 
Poincare duality pair and the map 

r; k Pi k X 2q+k --~ '2:, M+ ~ '2:, W+ 

is null-homotopic, some k. 

PROPOSITION 1.8. Image i* c ker r;* and y(x) = ° for x E Image i* . 

The proof is obvious. 

2. W u spectra and cospectra 

Let Y = {Yo, Y" Y 2 , ••• } be a spectrum, i.e., there are maps '2:, Y i -> Y H1 • 

Then Y will be called a Wu (q + l)-spectrum if the following conditions are 
satisfied. 

( i) H i( Y i; Z2) ::::=: HHI( Yi+l; Z2) ::::=: Ho(Y; Z2) = Z2 and Hi(Y; Z2) = ° for i < 0, 
and 

(ii) X(Sqq+I): HO(y; Z2) -> HHI(y; Z2) is zero, (where X is the canonical 
anti-automorphism of the Steenrod algebra, see [23]. 

If Y is a spectrum of cw-complexes of finite type, we may define the 
Spanier-Whitehead dual of Y to be a cospectrum X = {Xo, X" ••• } where X 3i = 
8 4i+1 - (Yi)2i, and X 3H, = '2:,'X3i for c = 1 or 2, (where (Yi )2i is the 2i-skeleton 
of Y;). 

LEMMA 2.1. If Y is a WU (q + l)-spectrum, the 8panier- Whitehead dual 
of Y is a Wu (q + l)-cospectrum. 

PROOF. This follows immediately from the fact that Sqq+1 and X(SqHI) 
correspond under Spanier-Whitehead duality. 
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Now let Bn be the classifying space for an (n - I)-spherical fibre space 

theory, n ~2q. (E.g., Bn = B on , BPLn' BGn' B Unf2 , BSPnf4 etc.) Define the Wu class 
V = 1 + V1 + V2 + ... , Vi E Hi(Bn; Z2) by the formula V = Sq-l W-1, where 
Sq-l = 1 + X(Sql) + X(Sq2) + ... so that SqSq-l = Sq-1Sq = 1 (see [23, p. 36]), 
W = 1 +w1 + W 2 + ... is the total Stiefel-Whitney class defined by W-U = 

Sq U, (U E Hn(T('Y); Z2) is the Thom class) and W - W-1 = 1. The following 
propositions give some standard properties of V. 

PROPOSITION 2.2. Let U E Hn(T('Yn); Z2) be the Thom class. Then V-U = 

Sq-l U, so Vi - U = X(Sqi) U. 

PROOF. V = Sq-1W-\ so that 

Sq(V-U) = Sq V-SqU= (SqSq-1W-l)_(W-U) 

= W-l_W-U = U. 

Hence applying Sq-\ we get V-U = Sq-1U. 

Let (X, Y) be a connected Poincare duality pair of dimension N and let 
h: X - Bn be a map which induces the normal spherical fibre space v of X 
from 'Y n (see [21]). 

PROPOSITION 2.3. The map Sqi: HN-i(X, Y; Z2) - HN(X, Y; Z2) is equal 

to - h*(vi). 

PROOF. h*(V)-U = Sq-l U, where U is the Thom class in Hn(T(v); Z2)' 

by naturallity. Now HN+n(T(v), T(v I Y); Z2) is in the image of the Hurewicz 
homomorphism since v is the normal spherical fibre space of X (see [21]). 
Hence, if A = ao + a1 + ... , ai E Hi( T(v), T(v I Y); Z2)' it follows that 
(Sq-1A)N+n = aN+n, (since no non-trivial cohomology operation can hit the top 
dimension). 

Note that - U: Hk(X, Y; Z2) - Hn+k(T(v), T(v I Y) ; Z2) is an isomor­
phism. ThenifxEHN-i(X, Y;Z2),(Sqx-U)N+n = (SqiX)-U. But 

(Sq-l(Sqx_U»)N+n = (x_Sq-1U)N+n = (x_h*V_U)N+n = X-h*Vi-U, 

but 
(Sq-l(Sqx_U»)N+n = ((Sqx)_U)N+n = (SqiX)-U. 

Hence x -h *Vi -- U = (Sqi x) - U, and since - U is an isomorphism, x - h *Vi = 
Sqi x. 

Definition. Bn<v q+1> is the total space of the fibre space 7r: Bn<v q+1> -Bn 

with K(Z2' q) (the Eilenberg-MacLane space) as fibre induced from the space 
of paths of K(Z2' q + 1) by a map J: Bn - K(Z2' q + 1) such that J*(c) = Vq +1-

The space Bn<vq+1> and its associated spaces and theories will play a 
central role in this work. 



KERV AIRE INVARIANT 165 

We let '7n = n*('Yn) be the canonical fibre space pulled back to Bn<vq+1), 

and we note that since n*(VQ+l) = 0, it follows that X(Sqq+l)U = 0 where 
U E Hn( T('7 n); Z2) is the Thom class. Therefore we have proved 

PROPOSITION 2.4. T('7 n) defines a Wu (q + I)-spectrum, so that the dual 
X of T('7 n) defines a Wu (q + 1)-cospectrum. 

Since the index n plays no role if it is large enough, we will suppress it 
from now on, i.e., B = B n , 'I' = 'I'M etc. 

If M 2Q is a Poincare duality space (or smooth manifold, PL manifold, etc.), 
a B<vQ+1)-structure on M 2Q will be a map of fibre spaces (or vector bundles, or 
PL bundles) of v into '7, where v is the normal spherical fibre space (or normal 
bundle) of M 2Q in S2q+n. Then this gives a map of T(v) ---> T('7) and hence the 
S-dual is a map of the Wu (q + 1)-cospectrum X ---> S-2QM+ which gives M an 
X orientation. 

M 2q is a B<vq+1)-boundary if there is an i: M ---> W such that (W, M) is 
a relative Poincare duality space and the map VM ---> '7 extends to a map of 
Vw ---> '7, where Vw is the normal spherical fibre space of W 2q+l in D 2q+l+", 
(M2q C S2q+n = aD2q+l+n). 

PROPOSITION 2.5. If M2q is a B<vq+1)-boundary, then M is an X-bound­
ary in the sense of § 1, (where X is dual to T('7»). 

PROOF. Considering the map of Vw as going into '7 X lover B<vq+1) x I 
we get a map of pairs (vw, vM) ---> ('7 x I, '7 x 0), inducing a map 

such that the diagram commutes: 

T(vw)/T(VM)~ T('7) x 1/* x IU T('7) x 0 

1 1 
LT(vM) ~ LT('7) 

where g: T(vM) ---> T('7) is the map induced by the B(,vq+1)-orientation. Taking 
S-duals and using the Milnor-Spanier-Atiyah theorem [4] that the S-dual of 
T(vw)/T(vM) is Lk+l W+, we get 

LX~ L k +1M+ 

1 1 
where Y is the dual of T('7) x 1/ * x I U T('7) x o. But the latter space is 
clearly contractible, so Y is also contractible and the result follows. 
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3. The Kervaire invariant 

Using the results of § 1 and 2 we may now define an Arf invariant in 
certain circumstances. 

Let M 2q be a B<vq+1)-oriented Poincare duality space and suppose that 
the bilinear form given by the - product is symplectic and non-singular on 
a subspace A c (ker r;*)q. Then the Arf invariant [3] of 1fF on A may be defined 
as follows. 

Let Xi' Yi E A be a symplectic basis, i.e., XiXj = YiYj = 0, all i, J", xiYj = 0ij. 
Then c(1fF, A) = 'Ei1fF(Xi)1fF(Yi) is the Arf invariant of 1fF on A and is independent 
of the choice of basis, (see [3]). Note that it is defined this way for any q. 

In general c(1fF, A) will depend on the choice of A, as well as the B<vq+1)­

orientation of M 2q. 

LEMMA 3.1. If M 2q is B<vq+1)-boundary of Wand if (im i*)q n A is a 
submodule of rank = 1/2(rankA), then C(1fF, A) = 0 (i:M~ W is the inclusion). 

PROOF. (Image i*)q is a self-annihilating subspace, so that a basis of 
(Image i*)q n A is 1/2 a symplectic basis for A. By Proposition 1.8, 1fF = 0 on 
image i* so that c(1fF, A) = O. 

An important case is when the - product is symplectic and non-singular 
on all of (ker r;*)q. In that case we set c(1fF, (ker r;*)q) = c(1fF). (We emphasize 
again that the definition of 1fF and hence c(1fF) depends strongly on the B<vq+1)­

orientation, as will be demonstrated in § 5.) This will be the case for example 
if (ker r;*)q = Hq(M; Z2)' which will be the case if M is a x-manifold. 

Now if M 2q is framed, then the framing is a reduction of J)n to the trivial 
bundle, i.e., the fibre over a point of In. Thus a framing induces a B<vq+1)­
structure of M 2q. (In fact a trivialization over the q-skeleton of J)M induces a 
B<vq+1)-structure on M 2q.) Now we relate the Kervaire invariant (see [11], [9], 

[12]) to c( 1fF). 

THEOREM 3.2. If (M2q, F) is a framed manifold, q odd, and 1fF is defined 
using the induced B<vq+1)-structure, then c(1fF) = Kervaire invariant of 
(M,F). 

(Actually this holds with similar proof if F is a framing on the q-skeleton 
of M.) 

PROOF. To define the Kervaire invariant, we do framed surgery on M 2q 

to make it (q -l)-connected. By Lemma 3.1, this will not affect the invariant 
c(1fF). Thus we may assume M 2q is (q - l)-connected, and in fact using more 
surgery we may assume Hq(M; Z2) = Z2 + Z2' with generators X, y, such that 

x-x = Y-Y = 0, X-Y = 1, (see [12]). 
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Now q "* 1,3,7 the Kervaire invariant is defined as c(x) c(y) where c(x) = ° 
if the normal bundle of an embedded Sq dual to x is trivial, and c(x) = 1 if 
the normal bundle is non-trivial. Hence to prove the theorem when q"* 1, 3,7, 
it suffices to show that 't(x) = c(x) in this case. 

Let SqcM2q be an embedded sphere, ~q its normal bundle and let a: M 2q-> 

TW) be the natural collapsing map. Let U E Hq( T(~); Z2) be the Thorn class, 
so that a*U = x, the cohomology class dual to Sq. Then the map f: M-> 

K(Z2' q) such that f*c = x may be factored 

er f' 
M ~ T(~) ~ K(Z2' q) 

where j'*(c) = U. 

Now the map T(IJM ) -> T('7 "') factors through T(IJ,'I) -> s'" -> T('7 n) since it 
comes from a framing, so that the dual map 1) factors 

X ~ S2Hk ~ LkM+ . 

Hence by Lemma 1.3, 't may be defined using (3 instead of 1). 

Now suppose ~ is trivial, so that T(~) = Sq V S2q• Then we have 

so that we may look at the map 

Per "/3 Sj2Hk __ ~ LkT(~) 

g: Ipp 
'" Lkf" 

Lk K(Z2' q) <------- LkSq 

where p: T(~) -> Sq comes from the trivialization of ~ and f": sq -> K(Z2' q) is 
such that f"*(c) = w, generator of Hq(Sq; Z2). It follows easily that 

where 

and 

g = (Lkp).(Lka).(3: S2Hk ~ Sq • 

But if SqHlg(Lk(W)) "* 0, then g is a map of Hopf invariant 1, so that is Im­
possible by the Theorem of Adams [1], if q "* 1,3,7. Hence if c(x) = 0, then 
't(x) = 0. 

Now suppose c(x) = 1 so that ~q is non-trivial, and since ~q is stably triv­
ial, it follows that ~q = "sq. So we must consider a map 0, 
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Set t = (,Lkf').o. 

If 0 = (~?a) • .e, then 1fr'(x) = SqH\(Lk(C»). Then the result follows from 
the following. 

LEMMA 3.3. If ~q = "sq, q * 1,3,7, and 0: S2Hk -> T(~) is any map such 
that 

0*: H2q+k("LkT(~); Z2) ~ H 2q+k(S2q+k; Z2) 

is an isomorphism, then SqH\("Lk(C») * 0. 

PROOF. First let us note that "Sq = normal bundle of the diagonal in 

Sq x Sq. Hence we have the natural map Sq x Sq ~ T(~) such that 
a*( U) = w ® 1 + 1 ® W E Hq(Sq x Sq; Z2)' Hence, if f": T(~) -> K(Z2' q) is 
such that f"*(c) = U, then (f" 0 a)*(c) = W ® 1 + 1 ® w. Embedding sq x Sq 
in S2Hl with trivial normal line bundle, we get 

a I.J 
S2Hl ~ "L(sq x sq) ~ "LK(Z2' q) 

where J = f" ·a. 
Now a is the Hopf construction on the identity sq x Sq -> Sq x sq, and 

J = p(a x a), where a: sq -> K(Z2' q) such that a*(c) = w. Hence "LJ.o = 
h(J), the Hopf construction on 1. But h(J) = h(p)'s, where s: S2Hl-> 
"L(K(Z2' q) /\ K(Z2' q») is a map such that s* is an isomorphism on H2H\ so that 

SqH\lfl("L(C») = s* SqH\IPl("L(C»). But SqH\IPl("L(C») * ° by Lemma 1.7. Hence 
the lemma is proved for 0 = ("La). a. 

Now if 0' is another map 0': S2q+k -> "LkT(~) such that 0'* is an isomorphism 
on H 2q+k, then 0' = 0 + i*(, where (E 1r2q+k(SHk) and i: SHk -> "LkT(~) is the 
suspension of Sq -> T(~), which comes from the inclusion of the fibre. Let 
a = "LkJ.o, l="LkJ.(i.() so that a+l=("LkJ).o'. Then by Lemma 1.6, Sqq+la+l = 
SqH\ + SqH\. But, if Sqq+\("Lk(C») * 0, it follows easily that (has Hopf invari­
ant 1, which is impossible by Adams [1). Hence Sqq+11 = ° and the lemma 
follows. 

This completes the proof of Theorem 3.2 if q * 1,3,7. 
In case q = 1,3 or 7, one may give a similar proof, using the different 

definition of the Kervaire invariant (i.e., the Pontrjagin invariant) in these 
dimensions, which depends on a framing. Here the normal bundle ~q to an 
embedding Sq c M is always trivial, but the map 0: S2q+k -> T(~) (as in (3.3») 
plays an important role. We omit the details. (See [6, Ch. Ill, § 4).) 

COROLLARY 3.4. If (M2q, F) is a framed manifold and as a B<vq+1>­
manifold (M, F) is cobordant to zero, then the Kervaire invariant of 
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(M, F) = O. 

This follows immediately from Theorem 3.2 and Lemma 3.1, using 
Poincare duality. 

Hence if the image of Q~~amed in B(vq+1>-cobordism of smooth manifolds in 
dimension 2q is zero, then the Kervaire invariant of any framed 2q-manifold 
is zero. We will show in § 7 that this is the case if q *- 2n - 1. 

4. Orientations 

In this section we discuss some generalities about "orientations" or 
"liftings of the structural group" of a bundle, which will be convenient to 
have. Special cases of these results are well known such as in the case of 
Spin structures [13). We then apply these generalities to the case of B<vq+1>­
orientations. 

Let, n be the canonical bundle over B, the classifying space for "bundles" 
in some category, (such as linear or PL bundles, or even spherical fibre spaces), 
and let '7 n = n*(, n), the induced bundle over E, where n: E -> B is a fibre map. 
Let p: '7 ->, be the natural bundle map, and let ~ be a bundle in the category 
over a space X. An E-orientation of ~ is a bundle map b: ~ ->'7. Two E-orienta­
tions bo, b1: ~ -> '7 are equivalent if there is an orientation b: ~ x 1->'7 where 
~ x I is the induced bundle over X x I and b(x, i) = b,(x), i = 0 or 1, x E~. 

Let c: ~ ->, be a bundle map, and call an E-orientation b: ~ -> '7 canonical 
(with respect to c) if pb = c. Two canonical orientations bo, b1 will be called 
canonically equivalent if there is an equivalence b: ~ xl ->'7 which is canonical 
for each t E 1. 

Let us denote by 0(~) the set of equivalence classes of E-orientations of 
~, and by 0(~, c) the set of canonical equivalence classes of canonical E-orienta­
tions of~. There is a natural map r;: 0(~, c) -> 0(~). 

LEMMA 4.1. r; is a one-to-one correspondence. 

PROOF. First we show r; is onto. Let b: ~ -> '7 be an E-orientation of ~. 
Since, is universal, the maps c and pb, on ~ x 0 and ~ x 1 respectively, extend 
to a bundle map e: ~ x 1->,. If h: X x I->B is the map of base spaces covered 
bye, then by the covering homotopy theorem for n: E -> B, h is covered by 
h: X x 1-> E. Then the pair of maps (e, h) defines a map of ~ x I into the 
induced bundle n*(,) = '7 which defines an equivalence of b with a canonical 
orientation. 

Now we show r; is one-to-one. Let bo, b1 be canonical E-orientations and 
let b: ~ x 1->'7 be an (ordinary) equivalence between them. We must find a 
canonical equivalence. 
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Now we define a bundle map a: ~ x I2 I X x (JI2 - "1 as follows. On 
~ x I x 0 U ~ x 0 x I U ~ x 1 x I we take a(x, t, s) = c(x), x E e, s = 0 or t = 0 
or 1. On ~ x 1 x I define a(x, t, s) = b(x, t). Since "1 is universal, a extends 
to a: ~ x [2-"1. Let h be the map, h: X x I x I -B covered by a, and note 
that if Y = X x I x 0 U X x I x 1 U X x 1 x I, h I Y is covered by a map 
H: Y -E. Since Y is a deformation retract of X x I2, the covering homotopy 
theorem implies that H extends to H: X x I2 - E. Then (a, H) together 
define a map ~ x I2_iJ, and on ; x I x 0 it yields a canonical equivalence be­
tween bo and b1• 

This proves (4.1). 

THEOREM 4.2. The set (9(~) of E-orientations of ~ is in one-to-one corres­
pondence with the set of homotopy classes of cross-sections of f*(E), where 
f: X - B is a classifying map for e. 

PROOF. By Lemma 4.1 it suffices to prove this for (9(~, c), where c covers 
f. Now homotopy classes of cross-sections of f*(E) are in one-to-one corres­
pondence with homotopy classes of maps g: X - E such that 11:g = f, (where 
the projections of the homotopies are also constantly f). Now a map g: X - E 
such that 11:g = f, together with c:~-'Y, induces a bundle map b:~-iJ = 11:*("1) 

such that pb = c, i.e., a canonical E-orientation. Similarly a homotopy lying 
over f induces a canonical equivalence so that a map is defined from classes 
of cross-sections to (9(~, c). On the other hand, if b E (9(~, c), b covers a map 
g: X - E such that 11:g = f (since pb = c). Similarly, canonical equivalences 
yield homotopies lying over f, so that a map is defined from (9(~, c) to cross­
sections. It is easy to verify these two maps are inverses, which proves 
Theorem 4.2. 

COROLLARY 4.3. If 11:: E - B is a principal fibre space with group G, 
and if ~ has an E-orientation, then (9(e) is in one-to-one correspondence with 
[X, G]( = the homotopy classes of maps X-G). 

For [X, G] is in one-to-one correspondence with sections of a trivial G­
bundle, and since f*(E) has a section, it is trivial. 

COROLLARY 4.4. If a bundle ~ over X has a B<vq+1>-structure, then the 
equivalence classes of B<vq+1>-structures are in one-to-one correspondence 
with elements of Hq(X; Z2)' 

For B<vq+1> - B is a principal fibre space with group K(Z2, q). 
We note that if f3: X - G and g: X - E such that 11:g = f, the new map 

corresponding to f3 is given by g'(x) = p(f3(x), g(x»), where x E X and p: G x E­
E is the action of the group on E. 
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5. Examples of manifolds with c(ofF) = 1 

LEMMA 5.1. With any B<vq+1>-orientation on a x-manifold 
(ker r;*)q = Hq(M; Z2). 
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PROOF. Since x: B<vq+1> -> B is a fibre space with K(Z2' q) as fibre, and 
non-zero k-invariant V q+H 

x *: Hq(B< vq+1>; Z2) -----" Hq(B; Z2) 

is mono. Since M is a x-manifold, the classifying map c: M -> B is null-homo­
topic and if a: M -> B<vq+1> is an orientation, xa = c, so x*a* = c*. Hence 
a*: Hq(M; Z2) -> H q(B<vq+1>; Z2) is zero, and by the Thorn isomorphism, 

T(b)*: Hq+,,(T(v JI ); Z2) -----" H q+n(T("1,,); Z2) 

is zero. Since for the map of Spanier-Whitehead duals, 

r;: X -----" 1? M+ , 

r;* = (T(b)*)*, r;*: HHk(M; Z2) -----" Hq+k(X; Z2) 

is zero. 
Let us consider Sq x Sq framed in S2H\ so that it is naturally framed 

cobordant to zero. Then, of course, c(ofF) = 0, for the ofF coming from this 
framing. We will construct a new B<vq+1>-orientation on sq x sq so that 
c(ofF) = 1, for each q. (Here B may be taken to be B o", B PL", Bc", etc.) 

Let q: sq x Sq -> B<vq+1> be the map coming from the framing above, 
which we may take to be the constant map, and let d: sq x sq --> K(Z2' q) be 
such that d*(c) = g 01 + 10 g, g = generator of Hq(Sq; Z2). Then let us 
consider the B<vq+1>-orientation corresponding to q(x) = fl(d(x), q(x)) (see § 4). 

THEOREM 5.2. With the B<vq+1>-orientation on Sq x Sq corresponding 
to q, c(ofF) = 1. 

PROOF. By (5.1), ofF is defined on all of Hq(Sq x sq; Z2). We must show 
that ofF(g 01) = ofF(10 g) = 1, for this ofF. Now the map f: sq x Sq --> K(Z2' q) 
such thatf*(c) = g01, factors through the projection p: sq x sq -->sq, p(x, y) = 

x, i.e., f = rp where r: Sq --> K(Z2' q) is such that r*(c) = g. Hence we have 
r; L"p Lkr 

X -----" '2}(sq X sq)+ -----" "LkS q -----,,"Lk K(Z2' q) and if t = ("Lkp) .r;, and t' = 

("Lkr)·t, then clearly SqH\(("Lkr)*("Lkc)) = SqH\,("Lk(c)), and then ofF(g 01) = 

SqH\("Lk(g) ). 
Now considering the natural embedding of Sq x Sq in S2H\ one can 

deduce from the Milnor-Spanier theorem that (sq x Sq)+ is stably (2q + 1)­
dual to itself (see [4]) and that the inclusion in the second factor i: Sq --> Sq x sq 
is S-dual to p. Hence "L"i: "L"sq --> "L"(sq x sq)+ is S-dual to p, and the 
compositel: "L"Sr. --> "L"(sq x sq)+ -> T("1,,) is S-dual to t. It follows from 
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[16] (see also [231) that SqH\: HHk('f.kSq; Z2) - H 2q+k(X; Z2) is dual to 
X(SqHl)l: H"'(T('Y",); Z2) - H",+q('f."'St; Z2). We will show X(SqHl)1 is non-zero 
so that SqH\ is onto, and hence SqH\('f.k(g)) *- O. (We use here the fact that 
if f: X - Y, Sqq+1, is calculated from SqHl in the space Y -, cX, and 
(Y-,cX)* = X* -rcY*, where * denot~s S-dual.) _ 

Now the composite map s = qi, sq ~ sq x sq ~ B<vq+1> generates 
the (kernel 7r*)q, 7r*: 7riB<vq+1» -7riB). Hence, 1f: B<vq+1> -. eH1 _ B which 
extends 7r, is an isomorphism on 7ri , i ~ q. 

If q = 1,3, or 7, then the inclusion j: K(Z2, q) - B<vq+1>, is zero on 
7rq(K(Zu q)) = Z2' while if q *- 1,3,7, 

j*: 7rq(K(Z2, q)) ----+ 7rq(B<vq+1» 

is mono. This comes from the fact that there is a spherical fibre space over 
SHl with V q+1 *- 0 if and only if q + 1 = 2,4 or 8, (cf. proof of (5.3)). 

Hence if q *- 1, 3, 7, then 1f* is onto 7rq+1(B), for any choice of 1f extending 
7r, while if q = 1,3 or 7, then s is homotopic to a constant so that 

B<vq+1> -. eH1 ~ B<vq+1> V SHl , 

and if we choose 1f on SHl to go onto a generator of 7rq+1(B), 1f will map onto 
7rq+1(B). Therefore we may assume 1f *: 7r,(B<vq+1> -. eH1 ) -7r,(B) is an isomor­
phism for i ~ q and onto for i = q + 1, and hence 7r,(1f) = 0 for i ~ q + 1. By 
the relative Hurewicz theorem, H,(1f) = 0 for i ~ q + 1 so that H,(1f; Z2) = 0 
and H'(1f; Z2) = 0 for i ~ q + 1. Hence 1f*: H'(B; Z2) -+ Hi(B<vq+1> -. eH1 ; Z2) 
is mono for i ~ q + 1, and hence 1f*(vq+1) *- O. 

Now sq - sq x sq -+ B<vq+1> is covered by a bundle map inducing l, 

'f."'St ----+ 'f."'(sq x sq)+ ----+ T('Y",) 

and hence T('Y "') -I e"'+Hl is the Thorn complex of the induced bundle 1f*('Y .. ) 
over B<vq+1> -. eH1• Since1f*(vq+1) *- 0, it follows from (2.2) that X(SqHl) U *- 0 
in T(1f*('Y,,)), and hence X(SqHl)1 *- 0 on H"(T('Y,,); Z2), and SqH\('f.kg) *- 0, 
which completes the proof of Theorem 5.2. 

We note the following 

PROPOSITION 5.3. The structure q on Sq x sq comes from a framing if 
and only if q = 1,3, or 7. 

PROOF. If q comes from a framing, then q is homotopic to a constant 
map into B<vq+1>' so that if j: K(Zu q) -+ B<vq+1>' j*(7rq(K(Z2' q))) = 0 and 
a: 7rq+1(B) -+ 7rq(K(Z2, q)) is onto, where a is the boundary in the exact sequence 
of the fibre space. By the natural relation between a and the transgression 
in cohomology, since! E Hq(K(Zu q); Z2) transgresses to Vq+1, it follows that if 
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oa generates 7rq(K(Z2' q»), a: SHl - B, then a*(vq+1) =1= 0 and a induces a 
spherical fibre space over SHl with V q+1 =1= O. But then the Thorn complex has 
two cells and X(SqHl) =1= 0 (by (2.2») so that q = 1,3, or 7 by Adams [1]. 

If q = 1, 3, or 7, then there are linear bundles over SHl with vqH =1= 0, 

and by an argument similar to the above, we may deduce from this that q is 
homotopic to a constant. 

The structure q on sq x Sq determines an element of B<vq+1>-cobordism 
for any classifying space B, any q, which is non-zero since it has c(ofF) = 1. 

THEOREM 5.4. The structure q on S q x S q has Thom invariant (in 
7rnHq(T('7))} which is equal to 2*(W), where 2: L.nK(Z2' q)- T('7) coming from 
the inclusion of K(Z2' q) - B<vq+1>, and where WE 7rnHq(L.nK(Z2, q») = Z2 is 
a generator. 

The proof is routine from the definitions, using the fact that the Hopf 
construction on p: K(Z2' q) x K(Z2' q) - K(Z2' q) sends the generator of 
7r2q+1(L.K(Z2, q) 1\ K(Z2' q») into the generator of 7r2q+1(L.K(Z2, q»). 

6. B<x>-cobordism 

Let B be a classifying space as usual and let 7r: E - B be a fibre space 
with K(Z2' q) as fibre, induced by f: B - K(Z2' q + 1) such that f*(c) = 
x E HH1(B; Z2). Let '7 = 7r*('). In this section we shall compute 7ri (T('7») for 
i ~ n + 2q up to a group extension in terms of 7r*(T(,») andH*(T(,); Z2). If 
x = Vq-'-l and B is a classifying space for which transversality holds (such as 
BOn' Bson,B PLn , etc.), this gives us a computation ofB<vq+1>-cobordism in dimen­
sions ~2q in terms of B-cobordism and H*(B; Z2). We will use these results 
in § 7 to prove that the Kervaire invariant of a framed manifold M 2q is zero 
unless q = 2m - 1, and in that case that the Kervaire invariant is related to 
the element h!. in the Adams spectral sequence. 

Below we use concepts of "disk" bundle associated with a fibre space with 
some fibre F, etc., notions which are explained in detail in an appendix. In­
tuitively one may think of the "disk" bundle as the mapping cylinder of the 
projection and make analogous constructions as in the case of linear bundles. 

Let 7r: E - B be a fibre space with fibre K(Z2' q), let B be connected, and 
let, be an (n - l)-spherical fibre space over B, n very large, '7 = 7r*'. Let 
1f: E - B be the disk bundle associated with 7r, with contractible fibre 
CK(Z2' q), (see appendix) and let it: E - B be the sum of 7r with a trivial So 
bundle, so that the fibre of it is L.K(Z2' q). Let 1f*(,) also be denoted by" 
and let 'Y = it*(,). The fibre space E = E+ U E_, where E+, E_ are two copies 
of E, E+ n E_ = E, and let IT' ,_ be the restrictions of 'Y to E+, E_, (so '± 
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corresponds to 'Y under the identification of E± with E). 
Now we have the exact sequence of the pair (T('Y), Ten), 

••• ~ 7rn+i+l(T('Y), TC'n) ~ 7rn+i(T(,?)) 

~ 7rn+i(T('Y)) ~ 7rn+i(T('Y), T('?)) ~ .... 

THEOREM 6.1. There is a map h: T('Y)/T('?) ---> K(Z2' q + 1) 1\ T('Y) which 
is an isomorphism on Hn+i( ; Z2) for i ;;;; 2q + 1, and with kernel h * in di­
mension n + 2q + 2 generated by a single element X. 

THEOREM 6.2. 7rn+i(T('Y), T('?)) ~ H n+i_q_ 1(T('Y); Z2)' for i;;;; 2q and is 
detected by the Hurewicz homomorphism mod 2, and for i = 2q + 1, the 
sequence 

o ~ Z2 ~ 7rn+2Q+1(T('Y), T('?)) ~ Hn+Q(T('Y); Z2) ~ 0 

is exact, and the Z2 on the left is the kernel of the Hurewicz homomorphism 
and generated by the image of 

7rnHQ+1(cLnK(Z2' q), LnK(Z2' q)) = Z2 in7rn+2Q+1(T('Y), T('?)). 

The first part of (6.2) is equivalent to 

THEOREM 6.2'. K(Z2' q + 1) 1\ T('Y) is a product of K(Z2' ti) in dimen­
sions ;;;;n + 2q + 2, with 7r*(K(Z2' q + 1) 1\ T('Y)) in these dimensions iso­
morphic to HQ+1(K(Z2' q + 1); Z2) ® H*( T('Y); Z2)' 

PROOF OF THEOREM 6.1. If we include the pair (E+, E) ---> eE, E_), this is 
an excision map so that it induces an isomorphism on H*( ; Z2)' Hence the 
map of Thom complexes above this inclusion (T('Y +), T('?)) ---> (T('?), T('Y _)) also 
induces an isomorphism in H*( ; Z2)' We are interested in stable homotopy 
groups and since n is assumed very large, we have that (T('Y+), T('?))--> 

(T('Y+)/T('?), *) and (T('?), T('Y_)) ---> (T(,?)/T('Y_), *) induce isomorphisms on 
stable homotopy groups. Hence we shall deal with T(,?)/T('Y_). But if a: B--+ 
E is the canonical cross-section a(B) c E_, then (E, E_) is homotopy equiva­
lent to (E, a(B)), and T(,?)/T('Y_) is homotopy equivalent to T('?)/T('Y) , where 
'Y is identified with'? I a(B). 

Now it: E --+ B is a fibre space with LK(Z2' q) as fibre, and with a cross­
section a: B ---> E (as above). Hence, it follows that there exists a 
g' E HH1(E; Z2) such that j*(g') = L(c) the generator of HH1(LK(Z2' q); Z2), 
where j: LK(Z2' q) ---> E is the inclusion. If g = g' - it*a*(g'), then j*(g) = L(c) 
also, for j*it* = (itj)* = 0 as itj is the constant map. Further 

a*(g) = a*(g') - a*it*a*(g') = a*g' - a*g' = 0 , 

since a*it* = (ita)* = (identity) * , (a being a section of it). Let (3: E-+ 
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K(Z2 ,q + 1) be such that f3*(c) = g and define 

f: E ~ K(Z2' q + 1) x B by f(x) = (f3(x), ft(x)) • 

Then the diagram 

~ f 
E--~ K(Z2' q + 1) x B 

1 projection 

B 

clearly commutes, so that f is a map of fibre spaces. Now 

I' = f I ~K(Z2' q): ~K(Z2' q) ~ K(Z2' q + 1) 

175 

is the usual suspension map, so that 1'* is an isomorphism on Hi( ; Z2) for 
i ~ 2q +1, and (kernelf'*)2H2 is generated bySqHl(cq +1) E H 2H2(K(Z2,q+1);Z2)' 

(see [19]). 
Now from the commutative diagram 

~B 

(S) 

we get a commutative diagram of Thorn complexes 

~n(~K(Z2' q)+) ~ T('?) ~ T('Y) 

7' 1 ~ 71 11 
~n(K(Z2' q + 1)+) ~ K(Z2' q + 1)+ 1\ T('Y) ~ T('Y) • 

(T) 

Now the section a: B -E has the property that pJa is null-homotopic where 
Pl:K(Z2' q + 1) X B-K(Z2' q + 1) is the projection. Hence fa: B-K(Z2' q + 1) x B 

is homotopic to the inclusion of the second factor B-xo x B, XO E K(Z2' q + 1). 
Then we get 

(R) 

K(Z2' q + 1)+ 1\ T('Y) ~ K(Z2' q + 1)+ 1\ T('Y)/T('Y) 

where T('Y) = Xo x T('Y) C K(Z2' q + 1)+ 1\ T('Y). Hence 

K(Z2' q + 1)+ 1\ T('Y)/T('Y) = K(Z2' q + 1) 1\ T('Y) • 

Using diagram (S), the fact that 1'* is an isomorphism on Hi( ; Z2) for 
i ~ 2q + 1, and kernel 1'* C H2H2(K(Z2' q + 1); Z2) is generated by one element 
SqHl(Cq+1), we get using the spectral sequences of the two fibre maps that 



176 WILLIAM BROWDER 

f*: Hi(K(Z2' q + 1) x B; Z2) ~ HiCE; Z2) 

is an isomorphism for i ~ 2q + 1, and j'* maps (kernel f7H2 isomorphically 
onto (kernel f'*)2H2. Hence (kernel f*)2H2 is generated by a single element Y, 
and j'* Y = SqHl(Cq+J. Similarly, it follows that (cokernel f*)2H2 is generated 
by a single element Z and j*(Z) = L(C-Sql c). 

Then using the Thorn isomorphism for the spherical fibre spaces 'Y, ,?, etc., 
we find that in diagram (T), 

J*: Hi+n(K(Z2' q + 1)+ /\ T('Y); Z2) ~ Hi+n(T(,?); Z2) 

is an isomorphism for i ~ 2q + 1, and (kernel J*)2H2 is generated by a single 
element X = <I>( Y), (<I> is Thorn isomorphism) and i'*(X) = Ln(SqHl Cq+1) = 

SqH l(Ln cq+1). This proves Theorem 6.l. 
To prove Theorem 6.2 we have to compute H*(K(Z2' q + 1) /\ T('Y); Z2) 

and show that it is a free module over the Steenrod algebra a2 in dimensions 
~n + 2q + 2, with basis in dimension l isomorphic to Hl-q-l(T('Y); Z2)' 

l ~ 2q + 2 + n. 
Now we have the following well known lemma. Let a be a connected, 

locally finitely generated (!.f.g.) Hopf algebra over a field, associative as an 
algebra, (see [14]). 

LEMMA 6.3. If F is a free !.f.g. module over a in dimensions ~r, Fi = 0 

for i < 0, and M is any !.f.g. module over a, with Mi = 0 for i < n, then 
F 0 M is free over a in dimensions ~ r + n, with basis, V 0 M, where 
F = a 0 V (where 0 is as modules over the Hopf algebra a, see [23]). 

PROOF. F 0 M is additively isomorphic to a 0 V 0 M in dimensions 
~r + n, and has the structure of an a-module using the diagonal map, i.e., 

if ofra = Ei ai 0 a:, 

a(a0v0m) = E i a/i0 v 0 a;m 

where ofr: a -> a 0 a is the diagonal of a. We will show that F 0 M is iso­
morphic as an a-module to a0(V0 M) where a(a0(v 0 m») = aa0(v0 m). 

Since a 0 (V 0 M) is free over a, the inclusion V 0 M -> F 0 M extends 
to a map of a-modules, f: a 0 (V 0 M) -> F ® M. 

Now we show that fis onto in dimensions ~r+n. By induction supposef 
isontoEi<",a0Vi0McF®Min dimensions ~r+n, andletx E a0V",0M, 
dimension x = s ~ r + n, (where if m < 0, this is trivial). Assume by a second 
indll'ttion that f is onto ak 0 V", 0 M, k < l, (where for k = 0 this is obvious). 
Let a 0 v 0 mEal 0 V", 0 M. Since a is connected, ofra = a 01 + Ei ai 0 a:, 
dim a i < l. Then 
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f(a®(v®m)) = a(l®v®m) = Eiai®V®a~m + a®v®m. 

Hence a ® v ® m - f(a ® (v ® m)) E Ek<l Ci'k ® Vm ® M, so that 
a ® v ® m - f(a ® (v ® m)) E (image f) by induction, and hence f is onto 

Ci'l ® V m ® M. Hence by induction Ci' ® V m ® M c image f, so by induction f 
is onto. 

But F ® M and Ci' ® (V ® M) are isomorphic as graded vector spaces, and 
finite dimensional in each dimension (i.e., l.f.g.). Hence f is an isomorphism 

in dimensions ~ r + n. 

We apply Lemma 6.3 to Ci' = Ci'2' the Steenrod algebra, F = 

H*(K(Z2' q + 1); Z2)' r = 2q + 2, M = H*(T('n); Z2)' n = n. Hence 
H*(K(Z2' q + 1) /\ T(,); Z2) is free over Ci'2 in dimensions ~2q + 2 + n, 
so that K(Z2' q + 1) /\ T(,) is homotopy equivalent to a product of 
K(Z20 ki)'s in these dimensions where the homotopy groups are isomorphic to 

HH1(K(Zu q + 1); Z2) ® H*( T(,); Z2) in these dimensions, by Lemma 6.3. 

Let t: T('?)/T(,) ----> K(Z2' n + 2q + 2) such that t*(c) = <D(Z). Then 

J x t: T('?)/T(,) ---- (K(Z2' q + 1) /\ T(,)) X K(Z2' n + 2q + 2) 

is a map into a product of K(Z2' kJ's, (J x t)* is an isomorphism on 
Hn+i( ; Z2), i ~ 2q + 1, (J x t)* is onto for i = 2q + 2, and kernel (J x t)2H2 

is generated by X, where 

3'*(X) = SqH\Lncq+1) E Hn+2H2(Ln K(Z2' q + 1); Z2) • 

Then in dimensions ~ n + 2q + 2, J x t is the projection into the first stage 
of a generalized Postnikov system for T('?)/T(,) (generalized meaning we 

use products of Eilenberg-MacLane spaces). Using diagram (T), since 
SqHl(LncQ+1) generates (kernel l't+2H2, it follows that, for a generator 

WE 1rn+2Q+l(Ln+1K(Z2' q)), 3*(W) generates the Z2 subgroup of 1rn+2Q+l( T('?)/T(,)) 

detected by the element X, considered as a cohomology operation. 

This completes the proof of Theorem 6.2. 

7. The Kervaire invariant of framed manifolds 

In this section we show that the image of framed cobordism Q~~amed in 

B o<vQ+1>-cobordism is zero if q *- 21 - 1, so that by Corollary 3.5 the Kervaire 
invariant is zero if q *- 21 - 1. 

If q = 21 -1, we shall show that image Q~~amed in BlvQ+1>-cobordism is the 

subgroup generated by (sq x sq, q) (see § 5) if the element h7 in the Adams 

spectral sequence (see [2]) represents an element in the stable homotopy 
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groups of spheres, and the image Q~~amed is 0 otherwise. But for (sq x sq, q), 
c(oJr) = 1, (see (5.2») so that we get 

THEOREM 7.1. There exists a framed manifold M 2q of Kervaire in­

variant 1 if and only if q = 21 - 1 and the element h7 in the Adams spectral 

sequence represents an element of the stable homotopy groups of spheres. 

COROLLARY. There is a framed manifold of dimension 30 with Kervaire 

inva'i'iant 1. Equivalently, the Kervaire manifold of dimension 30 is 

smoothable. 

It has been proved by Mahowald and Tangora (Topology 6 (1967), 349-
370 § 8) that hi persists to E= in the Adams spectral sequence. Hence the 
corollary follows from (7.1). 

Coupling this example with the framed S' x S" S3 X Sa, and S7 x S7 of 
Pontrjagin, we get 

There are framed manifolds of Kervaire invariant 1 in dimensions 

2,6,14, and 30. 

Now the inclusion of the fibre of '7 induces the map Sn -> T('7) and the 

question about the image of Q~~amed in B o<vq+1>-cobordism is, by transversality, 
equivalent to the question: "What is the image of 7rn+2q(sn) in 7rn+2q(T('7»)?" 

Consider the exact sequence of the pair (T('Y), T('7»): 

... ~ 7r2q+Hn( T('Y) , T('7») ~7r2q+n( T('7») L 7r2q+n( T('Y»)~ .•• 

Since by the theorem of Thom, T('Y) = IT K(Z2' t;), so that the Hurewicz 
homomorphism is mono in T('Y) , it follows that 

image (7rn+zisn») C image 0 C 7rn+zq(T('7») . 

We first prove 

PROPOSITION 7.2. image (7rn+2q(sn»)co(.J*(7rn+2q+l(cLn K(Z2' q), LnK(Z2' q»))) 
so that the only possible non-zero element in image 7rn+2isn) is the Thom 
invariant of (sq x sq, q). 

Here, i: (cLnK(Zu q), LnK(Z2' q») -> (T('Y), T('7») is the map of Thom com­

plexes induced by J: (CK(Z2' q), K(Z2' q») -> (E, E), (see § 6). 

PROOF OF PROPOSITION 7.2. We consider the map of i: Sn -> T('7), and 
suppose a: Sn+2q -> Sn represents some element of 7rn+2q(sn). Then pia is 
homotopic to zero, so we may factor L(ia) through the map 7): T('Y)/T('7) -> 

LT('Y). Since we are considering a stable homotopy group, it suffices to study 
L(ia) = (Li)(~a). 

If we set Y = Sn "-'Cl en +2H" we get a commutative diagram (see [18]), 
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La 
--> S n+l --> ••. 

(S) 

which yields a map of exact sequences (coefficients Z2 throughout) 

(.1* il* La* 
Hk(sn+2Q) ~ Hk(sn) ~ Hk(y) ~ H"(sn+2Hl) ~ Hk(sn+l) 

(H) r i* r i: r i: r (Li)* 

Hk( T(?)) ~ Hk( T('Y)) ~ Hk(T('Y)/T(?)) L Hk(LT(?)) 

where the horizontal sequences are the usual cohomology exact sequences. 

Since J*7rn+2Q+l(cLn K(Z2' q), Ln K(Z2' q)) is the kernel of the Hurewicz 
homomorphism mod 2 in (T('Y), T(?)) (by Theorem 6.2), it follows that Proposi­
tion 7.2 is equivalent to the statement that i: = ° in diagram (H). So we 
consider, in (H), k = n + 2q + 1, and we note that i:r;* = ° since (Li)* = ° in 
this dimension, and i:r;* = (La)*(Li)*. Hence, if x E Hk( T('Y)/T(?)), and 
i:(x) =F 0, then (j'*x =F 0. Now T('Y) is (in the stable range) a product of K(Z2' t i ), 

so that (j'*x corresponds to a 1st order cohomology operation mod 2. Now 
(j*: Hk(sn+2Hl) -> Hk( Y) is an isomorphism for k = n + 2q + 1, so that 
i:«(j'*)(x) = (j*i:(x) =F 0, and hence the operation corresponding to (j'*x is non­
zero in Y. But by the result of Adams [1], the only pt order cohomology 
operations mod 2 which can be non-zero in a space Y with only two cells are 
Sq\ Sq2, Sq4 and Sq8, and since (j'*x changes dimension by an odd integer 
2q + 1 and q > 0, we get a contradiction. 

Hence it follows that i: == ° and the Proposition 7.2 is proved. 

Thus to prove Theorem 7.1 it remains to determine under what conditions 
the element in the kernel of the Hurewicz homomorphism in 7rn+2Q+l( T('Y)/T(?)) 

may be in the image of i,*, (where i, is as in diagram (S) above). We will do 
this in a similar fashion to the proof of Proposition 7.2, but in order to do 
this we must identify the k-invariant X of T('?)/T('Y), and find out which 
elements in 7rn+2Q(sn) can be detected by the second order cohomology opera­
tion which X will determine. 

Let C E HH1(K(Z2' q + 1); Z2) be the generator, U E Hn( T('Y); Z2) the Thom 
class, and Wi E Hi(Bo; Z2) the Stiefel-Whitney classes of 'Y, Vi E Hi(Bo; Z2) the 

Wu classes, so that Wi'-' U = Sqi U, Vi'-' U = X(Sqi) U, where X: (f2 -> (f2 is the 

canonical anti-automorphism of the Steenrod algebra. 

PROPOSITION 7.3. The first non-zero k-invariant of T('Y)/T(?) is given 

by 
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x = SqHl(C'--' U) + c '--' Vq+t '--' U + EO&i&q (SqiC) '--' (W j '--' U) 
i+j=q+l 

(see (6.1) and (6.2'») . 

To prpve this proposition we need the following elementary lemmas, 
which generalize the standard property of the Euler class. 

LEMMA 7.4. If j: X -> (X, Y) is the inclusion, x E Hn(x, Y; Z2), then 
Sqn(x) = x,--,j*x. 

PROOF. Sqnx = x2 = X'--' j*x, by the standard property of relative cup 
product. 

LEMMA 7.5. If g E HHl(E, E; Z2) is the generator, where E is the total 

space of the fibre space rr: B O<vq+1> -> Bo, E is the associated "disk bundle", 
then SqHl(g) = g,--,vq+1 • 

PROOF. By (7.4) SqHlg = g'--' (j*g) where j: E -> (E, E). But J"*g is the 
lowest dimensional element in kernelrr*, 

rr*: HHl(Bo; Z2) ----+ HHl(Bo<vq+1>; Z2) 

so j*g = "k-invariant" of rr = Vq+1• 

PROOF OF (7.3). By (6.1), (6.2') X is the unique non-zero element in 
(kernel h*)n+2H2, h: T('Y)/T('7)->K(Z2' q + 1) 1\ T('Y). Now h*(c,--,U) = g'--'U 
(where H*( T('Y)/T('7); Z2) is considered as a left H*(E, E; Z2) module). Hence 

h*(SqHl(c'--' U») = SqHl(g'--' U) = Ei+j=Hl (Sqig)'--'(SqjU) 

= g '--' Vq+1 '--' U + Ei+j=Hl (Sqig) '--' (w j '--' U) . 
i<q+l 

But h *(c '--' Vq+1 '--' U) = g '--' Vq+1 '--' U, and h *(Sqic '--' (w j '--' U») = Sqig,--, (w j '--' U) 

(since h * is a map of Ci'2-modules, and also of H*(Bo; Z2) modules)" Hence, it 
follows that h*(X) = 0. But X"* 0, since J'*(X) = ~n(SqHlc) "* 0, where 
J': ~n K(Z2' q + 1) -> K(Z2' q + 1) 1\ T('Y) (since J'*(I) = ° where I is the ideal 
generated by H*(Bo; Z2»)' Hence X is the first non-zero k-invariant of 
T('Y)/T('7), and Proposition 7.3 is proved. 

Now if is: Sn+2Hl -> T('Y)/T('7) (from diagram (S») represents a non-zero 
element in rrn+2q+l(T('Y)/T('7») then it is detected by the functionalI st order 
cohomology operation defined by X. Then we shall show that the composite 
map 

(~i)(~a): S n+2Hl ----+ ~ T('7) 

will be detected by a functional 2nd order operation which X defines in a 
natural way, and we shall use the theory of Adams [1] of second order co-
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homology operations to study it. 
To define a second order cohomology operation, we consider the composite 

map 

0' h 
T(,) ~ T(,)/T('Y) ~ K(Z2' q + 1) /\ T(,) . 

Now T(,) is a product of K(Z2' t.)'s in the stable range, and by (6.2'), 
K(Z2' q + 1) /\ T(,) is a product of K(Z2' t;)'s in these dimensions, so that the 
composite d = hO' is a map of "generalized Eilenberg-MacLane spaces", and 
using the methods of Adams [1], is a universal model for certain 2nd order 
co homology operations. On the other hand (hO')*(X) = 0 since h*(X) = 0 so 
that, in the notation of [1], the pair (d, X) defines a stable 2nd order 
cohomology operation <D. Since K(Z2' q + 1) /\ T(,) is a product of many 
K(Z2' t;)'s, <D is an operation of many variables. 

PROPOSITION 7.6. The functional operation associated with <D detects the 

element aJ*(w) E 1rn+2i T('Y») , where w generates 1rn+2Q+l(Ln+lK(Z2, q») . 

PROOF. First we recall the construction of <D from (d, X) following 
Adams [1]. 

The map d gives us a map of generalized Eilenberg-MacLane spaces which 
is realized geometrically in our context as 

0' h 
T(,) ~ T(,)/T('Y) ----+ K(Z2' q + 1) /\ T(,) . 

Then we let p: U ---> T(,) be the induced fibre space from the path fibration 
over K(Z2' q +1)/\ T(,) , so that the fibre F = Q(K(Z21 q + 1) /\ T(,») is a 
generalized Eilenberg-MacLane space. Given a space Y, and a map a: Y---> 
T(,) (which is essentially a collection of elements in H*(Y, Z2») such that 
(hO')a~O (which means that the 1st order operation d is zero on this collection), 
we lift the map a to at: Y ---> U, such that pal = a. The choice of maps a l 

depends on an element of [Y, F]. 

Let X' E Hn+2H'(U; Z2) be such that k*(X')=a*(X), k:F---> U is inclusion, 

a*: Hn+2H2(K(Z2' q + 1) /\ T(,); Z2) ----+ Hn+2Ht(F; Z2) 

the cohomology suspension. Then <D is defined as at(X') and the ambiguity 
of <D depends on the choice of at and X' with the above properties. 

We show first that for Y = T('Y), a: Y ---> T(,) the natural map a = 15 in­
duced from the bundle map p, we can choose a" X' so that <D = O. 

Since we are dealing with stable operations we consider the suspended 
situation (where we have made obvious identifications which are valid in the 
dimension range of our interest). 
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Then a 2 is defined as the map of "fibre spaces" induced by the map h', so that 
h is the map on fibres. Such interpretations are valid in the stable range; 
here U = QU', a 1 = Qa2• Now k'*(X') = X, and h*(X) = 0 so by exactness, 
a:(X') E image 15'*. Hence X' E H*(U'; Z2) may be changed by an element in 
image p'*, X" = X' + p'*(a) so that a: X" = O. 

On the other hand, since the functional operation associated with X 
detects J*(w), it follows from naturality that the functional operation associ­
ated with X" detects YJ*J*(w) = 1:(aJ*(w»), which completes the proof of (7.6). 

Let i: S'" -> T("I) be the inclusion of a fibre. Then from Proposition (7.2), 

and (7.6), it follows that i*7r",+2q{S"') *- 0 if and only if the functional opera­

tion <I> (using the map S'" ~ T("I) ~ T('Y) to define it) detects an element 
in 7r,,+2q(S"). Such a question can be settled in many cases using the tech­
niques of Adams [1] and ]2]. 

Now to detect an element of 7r"+2q(S"') the operation <I> reduces to an op­
eration of one variable 'I" of dimension n. Adams [1] has described such 2nd 

order operations in terms of Ext~2(Z2' Z2), which is the E2 term in the Adams 
spectral sequence. It follows from Adams work that 'I" corresponds to some 
relation in the Steenrod algebra Cl'2' and we will try to identify it. 

Now the element X E H"+2q+2(K(Z2, q + 1) 1\ T('Y); Z2) can be written in 
the form Eaic. where a. E Cl'2 and Ci are part of an Cl'2-base for the free Cl'2-module 
H*(K(Z2' q + 1) 1\ T('Y); Z2)' We consider the map 

d = hO': T('Y) ~ K(Z2' q + 1) 1\ T('Y) 

and a map 

.;: K(Z2' n) ~ T('Y) 

where .;*( U) = C E H"'(K(Z2' n); Z2) is the generator, and 'I" is defined on 

g = hO'';: K(Z2' n) ~ K(Z2' q + 1) 1\ T('Y) • 

Then g*(ci ) = Mc), bi E Cl'2' and the relation defining 'I" is Ea.b. = O. 

Since K(Z2! q + 1) 1\ T('Y) is (q + n)-connected, it follows that dimension c. 
~ q + 1 + n for all i. We recall some theorems of Adams (see [1, § 2.1, § 3.8 
and Th. 2.5.1]). 



KERVAIRE INVARIANT 183 

THEOREM 7.7 (Adams). A basis over (1'2 for stable 2nd order co homology 
operations of one variable is in natural one-to-one correspondence with 
a basis (over Z2) of Ext~: (Zz, Zz). Further there exist elements 
hi E Ext~:i (Z2' Z2) = Primitive elements of (1'; in dimension 2i, so that these 
{hi} are a basis for Ext~: (Z2' Z2) and so that the products hjhi, j ;;;; i ;;;; 0, 
j =1= i + 1, form a basis for Ext~: (Zz, Z2)' 

The following theorem is also contained in the work of Adams (see [1, in 
particular Lemma 2.2] and [2]). 

THEOREM 7.8. Let 'I' be a stable 2nd order co homology operation based on 
the relation in the Steenrod algebra Eiaib; = 0, ai, b; E (1'2' Then 'I' detects an 
element in 7r*(S") if and only if (hjhk) (Eaibi) = Eihj(ai)hk(b;) =1= 0 for some 
j,k and (hjhk) is a permanent cycle in the Adams spectral sequence. 

Here hi E Extt:i (Z2' Z2) is considered as an element of Homz2 «(1'2;, Z~), 
which annihilates decomposable elements, and hi(Sq2i) =1= O. 

Now our operation 'I' is based on the relation Eaib; = 0, where dimension b; 
;;;; q + 1, dimension aibi = 2q + 2. Hence for dimension reasons, 

if j > k . 

Hence the only element in Ext~: (Z2' Z2) which may have a non-zero value 
on Ea;b; is M, so that 'I' cannot detect an element in 7r"+2q(S") if q + 1 =1= 2k. 
Hence there is no framed manifold M 2q of Kervaire invariant 1 if q =1= 2k - 1, 
which proves part of Theorem 7.1. 

Now suppose q = 2k - 1. Consider 

X= SqHl(t_U) + EHj=qH(Sqit)_(WjU) + t-vqH-U, 
0.:iiii;;:;!q 

the k-invariant of T('Y)/T("1). Since q + 1 = 2k, SqHl is indecomposable, and it 
follows that X(SqHl) = SqHl + D, where DE subalgebra of (1' generated by 
Sq2\ i < k. Hence VqH = wqH + e, where e E subalgebra of H*(Bo; Z2) generated 
by Wi' i < q + 1, (see [25]). Then X = SqHl(t_U) + EO;:;;i;:;;q'i-Xi-U where 
r. E Hi+Hl( T.T(Z q + 1)' Z) and x· E HH1-i(B . Z) ~, AI 2, ,2 '" 0, 2. 

Now t- U goes to X(SqHl)U in H*(TCY); Z2)' so that b1 = X(SqHl) and 
since q = 2k - 1, hk(X(SqHl») = 1. Also a1 = SqH\ so (M)(a1b1) = 1. 

Let us write ECj-Xj- U = E i <;;2 aici, ai E (1', Ci are generators of 
H*(K(Z2' q + 1) 1\ T('Y); Z2) over (1', so that dimension Ci ;;;; q + 1. It follows 
that if dimension C2 = q + 1 and dimension C; > q + 1 for i > 2, then 
(hd(Ea;c;) =hk(a2). Now a2 E (1'Hl, so (hi) (Eaici) =1= 0 if and only if a2 =SqHl+D 
where D is a decomposable element in (1'2' But C2 = t- U, so that would mean 
that a2c2 = SqHl(t_ U) + D(c- U) and hence.1'*(a2c2) = SqHl(t,,+q+l) + D(t,,+qH) 
where 
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i': L"(K(Z2' q + 1)) ~ K(Z2' q + 1) 1\ T('Y) • 

Now since dimension Ci > q + 1, for i > 2, it follows that 1'*(ci) = eiL"cq+1 
where ei E a, so that 1'*(aici) = aieiL"cq+l' Hence 1'*(aici) = SiL"Cq+1 where 
Si is a decomposable element of a when i > 2, while 1'*(a2c2) = 
SqH1L"cq+1 + DL"cq +1 and SqHl is indecomposable since q + 1 = 2k. Hence 

1'*CLi0i:2aiCi) *0. But Ei<;;2aici = E(j '--' Xj '--' U where (j E H*(K(Z2' q+ 1); Z2)' 
Xj E H*(Bo; Z2)' Now J'*«( '--' x '--' U) = ° if dimension x > 0, X E H*(Bo; Z2)' 
since l' is induced by the inclusion map K(Z2' q + 1) -- K(Z2' q + 1) x BD, and 
('--' x '--' U = ('--' p*(x) '--' U where p: K(Z., q + 1) x BD -- BD is the projection on 
the second factor. Hence 1'*(E(i '--' Xi '--' u) = 0, and hence hHE(i'--'Xi'--' U) = 

0. Therefore, hHX) = h%(SqHl(C'--' U)) * 0, and it follows that the image of 
Q~~amed in Bo<vq+1>-cobordism is non-zero if and only if q = 2k -1 and h% persists 
to E= in the Adams spectral sequence. Then the remainder of Theorem 7.1 
follows from Proposition 7.2 and Theorem 5.2. 

Appendix 

"Disk" bundles, etc. In this appendix we describe some constructions of 
fibre spaces which we used in §§ 6 and 7. One could use different construc­
tions, analogous to those of linear bundle theory, but it is harder to verify 
the necessary facts with this approach. We refer to [20] for the constructions 
used here. 

Let f: A -> B be a map. Using the mapping cylinder construction we may 
replace f by an equivalent map g: A -> C so that g is an inclusion with the 
homotopy extension property. 

Consider the function space Cl, and the two projections r, l: Cl -> C, 
r(a) = a(I), l(a) = a(O), for a E Cl. Both rand l are fibre maps, where the 
homotopy lifting is functorial, using the path defined by the homotopy in C 
to define the homotopy in the path space. The fibres of rand l are just the 
path space P of C beginning at a base point, so are contractible. 

Let r': C' --A be the induced fibre space over A from r: Cl -> C, so C' = 
{(x, a) E A x Cl such that x = r(a) = a(I)}. Then i: A -> C' is defined by 
i(x) = (x, a x) where ax(t) = x all t. Then r' and i are inverse homotopy equiv­
alences. We have a commutative diagram 

where p(x, a) = a. 
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Define g': C' -> C by g' = lp. Clearly l is homotopic to r so g' is homotopic 
to gr', and further g' is a fibre map, using the functorial lifting of homo­
topies. 

If f: A -> B is a fibre map it is routine to show that there is a homotopy 
equivalence of fibre spaces 

A~C' 

so that the new situation is equivalent to the original, for homotopy theory. 
So we replace f by g'. 

Now C' C Cl, and the fibre of l: Cl -> C is contractible, being the based 
path space of C. Hence we shall call l: Cl -> C the "disk bundle" or "cone 
bundle" of g' (or f) and its fibre is a contractible space containing the fibre of 
g'. Further, the pair (C l, C') satisfies the homotopy extension property, since 
the pair (C, A) does, and (Cl, C') is a fibre pair (under r) over (C, A). 

Then we may define the "Whitney sum of f: A -> B with a trivial SO­
bundle" as follows. Take two copies of Cl, call them C~ and C~ and identify 
C~ and C'- to get C. Since the covering homotopies for C~, C~ and C' are all 
given functorially by the same formula, the covering homotopy theorem works 
for C = C~ U C~. Clearly the fibre of g: C -> C is the union of the fibres, so 
it is P+ U P_ with P+ n P_ = fibre of g'. Since P+ and P_ are contractible, 
this is homotopy equivalent to the suspension of the fibre of g'. 

We will use the following (abuse of) notation. 

If IT: E -> B with fibre F, 7f: E -> B will be the "disk bundle" of IT with 
fibre cF, ft: E -> B will be the sum of IT with a trivial SO-bundle, with fibre LF 
and E/E = E/E_ is the Thom complex of IT. 
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