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Fibering manifolds over a circle

W. BROWDER and J. LEVINE?)

In [7], STALLINGS proves a theorem about fibering 3-manifolds over a circle.
We propose to generalize this theorem to higher dimensions, with further
restriction on the fundamental group. There are theorems in the differential and
piecewise-linear category, but we restrict ourselves here to the differential cate-
gory. An important consequence will be the fibering of the complements of
certain knots and, in particular, the main result of [4].

1. The Fibering Theorem

1.1. Let M and N be smooth compact manifolds. A smooth map f: M—>N
is called a smooth fiber map if the differential df is an epimorphism at every point
of M-furthermore, at every point of 0, df must map the tangent space of 0. M
onto the tangent space of V. It the follows easily by the techniques of [8] that f
is a locally trivial fiber map. Furthermore, the fiber over every point of N is a
smooth submanifold of M, whose boundary lies in 6, and the coordinate
transformations are diffeomorphisms of that submanifold.

We will be interested in the case where N is the circle C, with a fixed orien-
tation. If we fix a base-point peC and consider the unit vector v at p tangent
to C in the direction determined by the orientation, then the submanifold
F = {1(p) and the normal vector field » on F which pulls back from v, via df,
form a pair (F, ») which we call a framed fiber of f.

1.2, If f: M- C is a map and weH!(C) orients C, we define 9(f) =
= f*(w)e HY(M). If M is bounded, then &#(f|0dM) is the restriction of #(f)
to H'(dM).

Suppose (F, ») is a pair consisting of a submanifold F of M of codimension
one, meeting M normally along 0F, and a normal vector field » to F. Then
there exists a smooth function f: M — C, with p a regular value, such that
F = {-1(p) and » is the pull-back, via df, of v, and, in fact, all such maps are
homotopic (see [8]). We then define #(F,v) = #(f), which is, therefore, an
invariant of the framed cobordism class of (F, v) (see [2; 1.4]).

1.3. We may ask the question: for which d#eH'(M) is there a smooth
fiber map f: M — C' with & = 9(f) ? More generally, given a smooth fiber map
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g: 0M — S' and an extension deH (M) of #(g)e HL (M), is there an extension
of g to a smooth fiber map f: M — C with 9(f) = 9? We will restrict our-
selves to the case where the fiber will have 1-connected components. It will then
follow from the homotopy sequence of the fibration that s, (M) is infinite
cyclic and & # 0. Furthermore the higher homotopy groups will be isomorphic
to those of the fiber and, consequently, finitely generated, by a theorem of SERRE
[5, p.274].

1.4. The main result of this work will be the following theorem which
agserts that these conditions on M, necessary for the existence of a fiber map,
are, in fact, also sufficient, for higher dimensions.

Theorem. Let M be a smooth compact manifold of dimension exceeding
five. Suppose ¢g: 0M — C is a smooth fiber map and #eH!(M) an extension
of #(g). If & 5 0, =, (M) is infinite cyclic and =, (M) is finitely-generated for
all 2+ > 1, then g extends to a smooth fiber map f: M- C with 4(f) = §.

1.5. The strength of the restrictions imposed on M may be seen e.g. in the
consequence that M must be irreducible. For if M is a connected sum M, 3 M,,
then either M, or M, is 1-connected (say M,) and the universal covering of M
is the connected sum of the universal covering of M, and a countable number
of copies of M, . Since the homotopy groups of M are finitely-generated, M, must
be a homotopy sphere; it follows, since » > 5, that M is irreducible.

1.6. Let K be a closed smooth submanifold of S® homeomorphic to S*-2
Then the normal bundle to K is trivial and K is contained in a submanifold of
8» diffeomorphic to K x D?. Let M be the closure of its complement; d.M is
diffeomorphic to K x C'. Suppose » > 5 and the homotopy groups of 8 — K
are finitely-generated abelian groups; then M satisfies the hypotheses of
Theorem (1.4). Since H'(M) ~ H'(0M), the projection map oM —C
extends to a smooth fiber map M — C. As an easy consequence of this we
have:

Corollary. If K is a closed smooth submanifold of 8", homeomorphic to
Sm2, with % > 5 and the homotopy groups of S» — K finitely-generated
abelian groups, -then there is a smooth fiber map S® — K — C such that the
closure of each fiber of f is a submanifold bounded by K.

1.7. We point out the particular case of (1.6), when S» — K is homotopy
equivalent to the circle C. Then K bounds a contractible submanifold of 5",
and we easily derive [4, Theorem 1].
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Conversely it is not difficult to check that the techniques of [4] generalize, in
a straightforward manner, to give an alternate proof of (1.6). But this does not
seem to yield an alternate proof of our main result, (1.4), because of troubles in
the middle dimensions.

2. Some constructions

2.1. Let (F,,,) be a framed fiber of g (see (1.1)). We first notice that
(Fy, v,) ‘‘extends’” to a pair (F,»), consisting of a submanifold F of M and
normal field » to F, such that 0F = F,,v|F, = v, and &(F,») = ¢. This
is seen as follows. By obstruction theory g extends to a map f' : M — C with
#(f') = ¥. According to [8] we may approximate f’ by a smooth map " : M—C,
also extending g, and with a regular value at the given point peC. We now
define F = f"-1(p) and » to be the pull-back of v by df".

2.2. Let M be a smooth compact manifold and F a smooth submanifold,
of codimension one, meeting M transversely along 0F. We may construct a
new manifold, which we denote by My, by “cutting” M along ¥. Then oM r
consists of two copies of F—which we denote by F’ and F”—and M ,5; there
are corners at dF’ and 9F".

If (F, v)is a framed fiber of a smooth fiber map g : M — C, then one constructs
a smooth fiber map g : M r— I (I is the unit interval with the usual orientation)
as the pull-back, under the orientation-preserving collapsing map I — C, of g.
If »' and »" are the normal fields on F' and F” lifting from v, then (¥’,+") and

(F",") are the framed fibers over I. Conversely, if we are given a smooth

fiber map g : Mp— I with (F',»') and (F", ") the framed fibers over I, then
one constructs a smooth fiber map g : M — C with (¥, ») as a framed fiber.

2.3. Returning to the situation of (2.1), suppose we can establish the
following strong property of (F, »):

(*) The components F are 1-connected and F’ and F" are deformation retracts
of M F.

Then (M p, 9M,z) is a relative h-cobordism between (F’, 0F’) and (F”, oF").
Let g : @M, — I be the smooth fiber map constructed from g, as in (2.2). To
fix notation assume 9F" is the fiber over 0.

Since n > 5 and the components of F' and F” are 1-connected, it is a direct
consequence of [6, Corollary 3.2] that g extends to a smooth fiber map f : M p—
— I, with (F',+') and (F”, v") the framed fibers over 0 and 1, resp. If F' has
closed components, there is a choice to be made in defining f on the corre-
sponding components of M r; but this choice is determined by demanding that
F' be the fiber over 0.
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Now f_ induces a smooth fiber map f: M — C with (F, ») a framed fiber, as in

(2.2). It is clear that f is an extension of g, since f is an extension of g. Since
?(f) = ¢(F,v) = &, f satisfies the requirements of Theorem (1.4).

2.4. Our task is now reduced to modifying (F,»), without changing
(0F, v|0F) or the element & (F, v), to achieve (*). The basic modification we will
perform upon (¥, ») will now be described.

Let d be a k-disk embedded in the interior of M, meeting F transversely
along ad, so that »| dd coincides with either the inward or outward radial field
of d. We say that d protrudes from (F,»). If T is a tubular neighborhood of d,
we may identify the pair (7', d) diffeomorphically with the pair (d x D»~*, d x 0),
where Dm* is the unit disk in (n — k)-space. We may assume 7 ~ F =
= 98d x D"*. Now define a new submanifold G = M — dd x D** v d x oD *
(rounding the corners at dd x 0D"*). The field | F ~ G extends in a unique
(up to homotopy) way to a normal field £ on G.

It is clear that (9G, &|9G) = (9F,»|0F). The fact that &(F,») = &(d, §)
follows from the arguments of [2; 3.3] since (F,») and (@, &) are ‘“framed
cobordant’’. We refer to (G, &) as a modification of (F, v) along d.

2.5. Let X be the (not necessarily connected) covering space of M induced
from the usual covering R — C by a map M — C representing 3¢ H'(M). Then
the number of components of X is the order of the quotient group of H'(M) by
the subgroup generated by 9 ; since ¢ # 0, this is finite. Since 7, (M) is infinite
cyclic, each component of X is a copy of the universal cover of M. By hypo-
thesis, their homotopy groups are finitely generated, and, therefore by the
above considerations and [5, p.271] the homology groups of X are finitely
generated.

2.6. Let (F,v)beasin (2.1). If o: Mp— M is the projection, then g lifts
to a map p: Mr— X, since ¢*(#) = 0; moreover it is easily seen that o is
an imbedding. By means of the covering translations of X we obtain an infinite
sequence M, — oo < ¢ < oo, of copies of M r imbedded in X, whose union is X.
If F;, F} are those parts of M, lifted from F', F” we may assume, by correct
numbering, that F; = F;,,, for every every i, and these are the only identi-
fications among the M. This description of X is due essentially to NEUWIRTH
(see [3; 6]).

Let us denote by M%, for — oo <r < co, the union of the M,, ¢ <7;
notice that the pair (M, F') may be obtained, by excision from the pair
(M5, M%). The homology groups H, (M%), —co<r < oo, fixed k, form a
direct system, under the homomorphisms induced by inclusions, whose direct
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limit is isomorphic to H, (X). Similarly the groups H, (X, M%), — 0o < r < oo,
fixed k, form a direct system, under inclusion homomorphisms, whose direct
limit is isomorphic to H, (X, X) = 0. Furthermore, it follows from the
MAYER-VIETORIS sequence of the triad (X ; M%, X — M%), that the homology
groups of M%, and, therefore, of (X, M%), are finitely-generated.

2.7. Note that for every integer s there is a covering translation of X
which maps M7 onto M%+®, for every r. From this it follows that the triples
(X, M, M%) are all mutually diffeomorphic. This fact will be used quite
often.

3. Modiflcation of (F, »)

3.1. Let +/: F'—> MF and i": F"— My be the inclusions. We would like
the induced functions i; t g (F') = my(MF) and i;’( 17y (F") = 7wy (M ) to be
bijective.

Suppose one of them is not injective—say i;. Then there is a path in Mg
connecting two distinct components of F’'. We now project this path to M, and
use a general position argument (n > 2) to replace it with a 1-disk d which
protrudes from (F,v) and connects two distinct components of F. A modi-
fication of (¥, ») along d will obviously produce a submanifold with one less
component than F. Since F has only a finite number of components, we may
eventually assume i; and i;: are injective.

But it now follows that s, and i are, in fact, bijective. Consider instead the
homomorphisms i : Hy(F') > Hy(Mr) and i, : Hy(F") > H,(Mp); it suffices
to show they are bijective. By an argument using excision, the homomorphisms
H,(M%) - Hy(M%™) are injective, and are surjective if 'i; is surjective. But
if Hy (M%)~ Hy(M%") were not surjective—which would then be true for all
r—then X would have an infinite number of components, which, by (2.5), is
not true. A similar argument works for 1 .

So we may now assume that i, and 7, are bijective. Notice that, as a conse-
quence, the functions m,(F.) — 7y (M,) —> 71o(M’) — m,(X), induced by inclu-
sions, are all bijective.

3.2. Our next task is to make the components of F 1-connected. The modi-
fications used here will be analogous to those of (3.1).

Let 4 be a component of F' or F”,i: A — M p the inclusion, and ¢, : =, (4) —
=7 (MFp) the induced homomorphism. If « is an element of Kernel i,, we
may represent « by an imbedded 1-sphere in A which bounds an imbedded
2-disk in M . This follows from a general position argument, since n > 4. The
2-disk in M then projects to a disk d in M which protrudes from (F,). A
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modification of (F,») along d produces a new submanifold identical to F
except that A is replaced by a new component whose fundamental group is
isomorphic to the group obtained from =, (4) by adding the relation « = 1.

It follows from an argument in [4] that, after, a sequence of such modifi-
cations, we may assume 17, is injective for every component 4 of F’ or F". But
now it follows from e.g. [4,lemma 4] that 4 is 1-connected. To fit our present
needs this lemma should be changed to read as follows:

Suppose (i) ¢4 : 77, (4) - 7, (M r) is a monomorphism, for every component 4
of F' or F" and (ii) 7, (4) — 1, (M) is zero, for every component 4 of F. Then
the components of F' are 1-connected.

The proof is identical. Hypothesis (ii) is satisfied because the composition

7y (A) = 7 (M) 9% 7, (C) is zero, while g, is injective.

Notice that, since » > 2, the modifications just performed do not disturb the
results of (3.1). Furthermore, as a consequence, we may conclude that the
components of M r and M7 are 1-connected. For, by (3.1), each component of
X is a union of one component of each M,, intersecting in one component of
each F,. By the van KaMPEN theorem, the 1-connectivity of the components
of X and F, imply the 1-connectivity of the components of M,, and, therefore,
Mr. Now we can express the components of M7% as a union of one component
of each M;, i < r,intersecting in one component of each F;,i < r; by the van
KaMPEN theorem, the 1-connectivity of the components of M, and F; imply
the 1-connectivity of the components of M%.

3.3. Itis clear that (M, F') and (M y, F") are now homology 1-connected
—a pair (4, B) is homology k-connected if H,(A, B) == 0 for 0 <3 <k. Asa
consequence, we will show that (X, M%) is homology 2-connected.

From the homology sequence of the triple (X, M%', M%), and the homology
1-connectedness of (M%+', M%) it follows that the inclusion j, : H (X, M%)~
— H,(X, M%) is an isomorphism for s < 1 and an epimorphism for 7 = 2.
But since these two groups are isomorphic (see (2.7)) and finitely generated, jx
must be an isomorphism for 5 = 2 also. Thus we may conclude that, for
i <2, H (X, M%) is isomorphic to the direct limit of the H (X, M%), a8
r — oo, which is zero (see (2.8)).

3.4. Let us assume now, as an inductive step, the following conditions:
C,: (1) The inclusions 7y (F')— mo(M F), mo(F") — 7o(M r) are bijective,
(ii) the components of F' are 1-connected, and
(iii) (X, M%) is homology (k — 1)-connected.
Given that (F, ») satisfies (C,), we shall show how to modify (¥, ») to satisfy
(Cy41), for any value of k satisfying 3 <k <n — 3.
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As a consequence of (C,), we point out that (M, F') is homology (k¢ — 2)-
connected; this follows from the homology sequence of the triple (X, M5!, M%).

3.6. Let xe H, (M p, F'); according to [1, lemma 8], which also holds in the
caser = 2, by an easy argument using the surjectivity of my (X, M) — H,(X , M)
—in the notation of [1]—and results of WHITNEY (see, in fact, the discussion of
the paragraph preceding lemma 8), « may be represented by an imbedded k-
disk. When projected to M, we obtain a k-disk d protruding from (F, »). Let
(G, &) be the new submanifold (and normal field) obtained by modifying (F, v)
along d.

Notice that the disk d lifts to a sequence of disks d,c M;, — oo < 1 < oo,
with ad,c F;. It is clear that we may construct M?%, from M’ by adjoining, in
X, a handle whose “core’ is d,,. Also notice that d,,, represents the element
B of H, (M%t', M%) corresponding to « under the natural excision isomorphism.

It is now an easy exercise, using the homology sequence of the triple
(X, My, M%), to check that (X, M7) is homology (K — 1)-connected but:

H (X, M) ~ H, (X, M%) [ (ix8),

where 1 : (M5, M%) — (X, M%) is the inclusion and (z, ) is the subgroup of
H, (X, M%) generated by i, . Also, since k¥ <n — 3, (G, &) again satisfies (i)
and (ii) of (C,).

Since H, (X, M%) is finitely generated, after a finite sequence of such modi-
fications, the homomorphisms:

Ty Hk(M;'H’ M%)~ H (X, M%)

will be zero. Consequently, the homomorphisms H, (X, M%) — H, (X, M%),
induced by inclusion, will be monomorphisms. Since the direct limit, as r — oo,
of these groups is zero, we conclude that H, (X, M%) = 0, for every r. Thus
(F, v) now satisfies (Cy.,).

3.6. We have now reached the point where (F, ») satisfies (C,_,) of (3.4).
Consequently, as pointed out in (3.4), (M r, F') is homology (n — 4)-connected;
by the Universal Coefficient Theorem, H"-3(Mp, F') is free. Now, by duality
and (C,_,), we can conclude that H, (M, F") = 0, unless ¢ = 2 or 3, and
Hy(My, F") is free.

Since the definitions of F’' and F” are interchangeable, we will make use of
our present notation in the remainder of the proof by, at this point, switching
their roles. Therefore, we are now assuming that H,(Mr, F') = 0 unless ¢ =
or 3, and Hy(Mp, F') is free. Conditions (i) and (ii) of (C,) in (3.4) are, of
course, still satisfied.
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We now show that H,(X, M%) = Ounless ¢ = 3. If j: (X, M%) > (X, ME)
is the inclusion, it follows immediately from the homology sequence of
(X, M%, M%), that:

Jx: Hy(X, M)~ H,(X, M)

is either a monomorphism or an epimorphism, unless ¢ = 3. If j, is an epi-
morphism, then, since the range and domain are isomorphic finitely generated
groups, j, must be an isomorphism. Thus j, is 8 monomorphism, unless ¢ = 3.
But since the direct limit, as r — oo, is zero, we conclude that H,(X, M%) = 0.

3.7. We now perform a sequence of modifications, as in (3.5), to kill
Hy(X, M%). Choose a non-zero element «xeH;(Mp, F'); since Hy(Mp, F') is
free, « has infinite order. Since (F, ») satisfies (C;), we may modify (F, ») to
obtain (@, £). As mentioned in (3.5), (X, My) is homology 2-connected and
Hy (X, M%) is “smaller” than Hy(X, M%). But we also need to notice here that
H, (X, My) =0 for 1> 3. This follows from the homology sequence of
(X, My, M%), again, and the fact that « (thus ) has infinite order.

3.8. By the argument of (3.5) we can now achieve the situation in which all
the homology groups of (X, M%) vanish. Consequently all the homology groups
of (M g, F') vanish; by duality this is also true of (M r, F"). Taking into account
conditions (i) and (ii) of (C,), by a theorem of J. H. C. WHITEHEAD, (¥, ») now
has property (*) of (2.3).

This completes the proof of Theorem (1.4).

Cambridge University, Princeton University and U. of California, Berkeley.
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