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Ix this note we give a curious fact about immersions of §” in R?". Let

8* = {z e R*+1: 2| = 1}
Let P» = 8"/~ where x ~ —z, and let p: §* - P* be the projection,
p(z) = (x, —x) = {z}. Suppose h: P* > R?" is a smooth immersion.
Then hp: 8* - R®" is a smooth immersion. Deform Zp by a regular
homotopy into an immersion k such that k(S") is in general position, that
is, £(8") cuts itself transversally and all intersections are double points.
k(8™) has an intersection number 4(k), in the integers if n is even, and
in the integers modulo two if = is odd. i(k) is obtained by counting the
intersection points (y € R2* such that A(z) = h(z') = y, = 5% 2’) with
signs when 2 is even and modulo two when # is odd. (k) is an invariant
of regular homotopy, and in fact k isregularly homotopic to an embedding
if and only if i(k) = 0.

Remark. Ifvis the normal bundle of A(P") in R2", p*v is stably trivial
and hence is determined by its Euler number when 7 is even and is
trivial or isomorphic to the tangent bundle of 8# when n is odd. Further-
more, when n is even, 2i(k) is the Euler number, and when = is odd,
and n # 1, 3, 7, i(k) is 0 or 1 according as p*v is trivial or not.

TeEOREM 1. i(k) £ 0 mod 2 if and only if n = 2/—1.
Theorem 1 and Adams’s solution of the vector field problem on spheres
in (1) yield James’s non-immersion results in (2), namely:

THEEOREM 2. If v(n) is the maximum number of linearly independent
tangent vector fields on S™ and if n = 2i—1, then P™ does not immerse in
R2n-vin}-1,

Theorem 1 suggests why James’s techniques have not been extended
to other dimensions.

Proof of Theorem 1. Let { be the canonical line bundle of P* and let
v be the normal bundle of A(P") in R2%. (! denotes the trivial I-plane
bundle. :
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‘We may assume that 2(P") is in general position. Also we may assume
that % is obtained from Ap by moving & short distance along the fibres
of v, and hence that k has the form

kz) = h(z))+o(2),

where v(z) € R%" is normal to A(P") at h({z}) and k() lies in & tubular
neighbourhood of A(P). The self-intersections of k(S") will arise from
points {z} € P* such that v(z) = v»(—z), and from pairs of points {z},
{y} € P* such that A({z}) = ({y}). We may assume that these two
phenomena are well separated.. A self-intersection of A(Pm) gives four
intersections of 4(S™) and hence may be ignored. Thus ¢(%) is the number
of points {z} € P* such that v(x) = »(—=z), modulo two.

Note @ ¢ = {(z,0):2 .8 vev, p(z) = p, ()}~

where (z,v) ~ (—z, —v). Let s: P* > » ® { be the section defined by
s({z}) = (=, v(z)—v(—2)).
One easily checks that s cuts the zero section transversally and that
8({z}) = 0 if and only if v(z) = v(—=z). Hence i(k) equals the number
of times s crosses the zero section, modulo two. Hence,
(k) = wy(v @ O)(P™),
where w,, is the nth Stiefel-Whitney class.

Since v+ (1), = 02n+1,
v ® {407+ = (2n41)L.
Therefore w,(v @ {)(P*) = (2"': 1) = 0 mod 2

if and only if n = 2¢—1.

Proof of Theorem 2. Suppose that n = 2'—1 and that P» immerses
in R»—®™-1 Tet v’ be the normal bundle of this immersion. Then
v = v'4-0""+ i3 the normal bundle of an immersion of P* in R2" and
hence by Theorem 1 and the remark preceding it, p*v, which is equivalent
to the tangent bundle of 8%, has v(n)+1 linearly independent sections,
contradicting the definition of v(n).
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