A REMARK CONCERNING IMMERSIONS OF S^n IN \mathbb{R}^{2n}

By EDGAR H. BROWN, JR.†

[Received 6 October 1972]

In this note we give a curious fact about immersions of S^n in \mathbb{R}^{2n} . Let

 $S^n = \{x \in \mathbb{R}^{n+1} \colon |x| = 1\}.$

Let $P^n = S^n/\sim$ where $x \sim -x$, and let $p: S^n \to P^n$ be the projection, $p(x) = (x, -x) = \{x\}$. Suppose $h: P^n \to \mathbb{R}^{2n}$ is a smooth immersion. Then $hp: S^n \to \mathbb{R}^{2n}$ is a smooth immersion. Deform hp by a regular homotopy into an immersion k such that $k(S^n)$ is in general position, that is, $k(S^n)$ cuts itself transversally and all intersections are double points. $k(S^n)$ has an intersection number i(k), in the integers if n is even, and in the integers modulo two if n is odd. i(k) is obtained by counting the intersection points $(y \in \mathbb{R}^{2n}$ such that $h(x) = h(x') = y, x \neq x')$ with signs when n is even and modulo two when n is odd. i(k) is an invariant of regular homotopy, and in fact k is regularly homotopic to an embedding if and only if i(k) = 0.

Remark. If ν is the normal bundle of $h(P^n)$ in \mathbb{R}^{2n} , $p^*\nu$ is stably trivial and hence is determined by its Euler number when n is even and is trivial or isomorphic to the tangent bundle of S^n when n is odd. Furthermore, when n is even, 2i(k) is the Euler number, and when n is odd, and $n \neq 1, 3, 7, i(k)$ is 0 or 1 according as $p^*\nu$ is trivial or not.

THEOREM 1. $i(k) \not\equiv 0 \mod 2$ if and only if $n = 2^{j} - 1$.

Theorem 1 and Adams's solution of the vector field problem on spheres in (1) yield James's non-immersion results in (2), namely:

THEOREM 2. If v(n) is the maximum number of linearly independent tangent vector fields on S^n and if $n = 2^i - 1$, then P^n does not immerse in $\mathbb{R}^{2n-v(n)-1}$.

Theorem 1 suggests why James's techniques have not been extended to other dimensions.

Proof of Theorem 1. Let ζ be the canonical line bundle of P^n and let ν be the normal bundle of $h(P^n)$ in \mathbb{R}^{2n} . 0^l denotes the trivial *l*-plane bundle.

† This work was supported by NSF Grant 28938.

Quart. J. Math. Oxford (2), 24 (1973), 559-60

We may assume that $h(P^n)$ is in general position. Also we may assume that k is obtained from hp by moving a short distance along the fibres of ν , and hence that k has the form

$$k(x) = h(\{x\}) + v(x),$$

where $v(x) \in \mathbb{R}^{2n}$ is normal to $h(P^n)$ at $h(\{x\})$ and k(x) lies in a tubular neighbourhood of $h(P^n)$. The self-intersections of $k(S^n)$ will arise from points $\{x\} \in P^n$ such that v(x) = v(-x), and from pairs of points $\{x\}$, $\{y\} \in P^n$ such that $h(\{x\}) = (\{y\})$. We may assume that these two phenomena are well separated. A self-intersection of $h(P^n)$ gives four intersections of $h(S^n)$ and hence may be ignored. Thus i(k) is the number of points $\{x\} \in P^n$ such that v(x) = v(-x), modulo two.

Note
$$\nu \otimes \zeta = \{(x,v) : x \in S^n, v \in \nu, p(x) = p_v(v)\}/\sim,$$

where $(x, v) \sim (-x, -v)$. Let $s: P^n \to v \otimes \zeta$ be the section defined by $s(\{x\}) = (x, v(x) - v(-x)).$

One easily checks that s cuts the zero section transversally and that $s(\{x\}) = 0$ if and only if v(x) = v(-x). Hence i(k) equals the number of times s crosses the zero section, modulo two. Hence,

$$\lambda(k) = w_n(\nu \otimes \zeta)(P^n),$$

where w_n is the *n*th Stiefel-Whitney class.

Since

$$\nu + (n+1)\zeta = 0^{2n+1},$$

 $\nu \otimes \zeta + 0^{n+1} = (2n+1)\zeta.$

Therefore $w_n(\nu \otimes \zeta)(P^n) = \binom{2n+1}{n} \not\equiv 0 \mod 2$

if and only if $n = 2^{i} - 1$. *Proof of Theorem 2.* Suppose that $n = 2^{i} - 1$ and that P^{n} immerses in $\mathbb{R}^{2n-\nu(n)-1}$. Let ν' be the normal bundle of this immersion. Then

in $\mathbb{R}^{2n-v(n)-1}$. Let ν' be the normal bundle of this immersion. Then $\nu = \nu' + 0^{v(n)+1}$ is the normal bundle of an immersion of P^n in \mathbb{R}^{2n} and hence by Theorem 1 and the remark preceding it, $p^*\nu$, which is equivalent to the tangent bundle of S^n , has v(n)+1 linearly independent sections, contradicting the definition of v(n).

REFERENCES

- 1. J. F. Adams, 'Vector fields on spheres', Ann. of Math. 75 (1962) 603-32.
- 2. I. M. James, 'On the immersion problem for real projective spaces', Bull. Amer. Math. Soc. 69 (1963) 231-8.

560