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I N this note we give a curious fact about immersions of 8n in R2n. Let

/Sn = {x6R n + 1 : |x | = 1}.
Let P " = Sn/~ where x ~ —x, and let p: Sn -*• P™ be the projection,
p(x) = (x, —x) = {x}. Suppose h: Pn-> R2n is a smooth immersion.
Then hp: 8n-+Rin is a smooth immersion. Deform hp by a regular
homotopy into an immersion h such that k(Sn) is in general position, that
is, k(Sn) cuts itself transversally and all intersections are double points.
k(8n) has an intersection number i(k), in the integers if n is even, and
in the integers modulo two if n is odd. i(k) is obtained by counting the
intersection points (y e R2n such that h(x) = h(x') = y, x -^ x') with
signs when n is even and modulo two when n is odd. i(k) is an invariant
of regular homotopy, and in fact k is regularly homotopic to an embedding
if and only if i(k) = 0.

Remark. If v is the normal bundle of h(Pn) in R2n, p*v is stably trivial
and hence is determined by its Euler number when n is even and is
trivial or isomorphic to the tangent bundle of 8n when n is odd. Further-
more, when n is even, 2i(k) is the Euler number, and when n is odd,
and n ^ 1, 3, 7, i(k) is 0 or 1 according as p*v is trivial or not.

THEOREM 1. i(k) ^ 0 mod 2 if and only ifn — 2*— 1.
Theorem 1 and Adams's solution of the vector field problem on spheres

in (1) yield James's non-immersion results in (2), namely:

THEOREM 2. / / v(n) is the maximum number of linearly independent
tangent vector fields on 8n and ifn = 2*— 1, then P " does not immerse in

Theorem 1 suggests why James's techniques have not been extended
to other dimensions.

Proof of Theorem 1. Let $ be the canonical line bundle of Pn and let
v be the normal bundle of A(P") in R2n. 01 denotes the trivial /-plane
bundle.
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We may assume that h(Pn) is in general position. Also we may assume
that k is obtained from fop by moving a short distance along the fibres
of v, and hence that k has the form

k(x) = h({x})+v(x),

where v(x) e R2n is normal to A(Pn) at h({x}) and k(x) lies in a tubular
neighbourhood of ^(P*1). The self-intersections of k(Sn) will arise from
points {x} 6 P " such that v(x) = v(—x), and from pairs of points {a;},
{y} e Pn such that h({x}) = ({y}). We may assume that these two
phenomena are well separated. A self-intersection of A(P") gives four
intersections of h(Sn) and hence may be ignored. Thus i(k) is the number
of points {a;} e P " such that v(x) = v(—x), modulo two.

N o t e v ® £ = {(x, v):xe.S»,vev, p(x) = pv(v)}l~>

where (x, v) ^ (—x, —v). Let s: P " -»• v ® t, be the section defined by

s({x}) = (x,v{x)-v{-x)).

One easily checks that s cuts the zero section transversally and that
«({x}) = 0 if and only if v(x) = v{—x). Hence i(k) equals the number
of times s crosses the zero section, modulo two. Hence,

i(k) = wn(v

where wn is the nth. Stiefel-Whitney class.
S i n c e V +

Therefore wn(v ® 0(-P") = [2n+1) & 0 mod 2

if and only if n = 2*—1.

Proof of Theorem 2. Suppose that n = 2*—1 and that P n immerses
in R«»-^(n)-ii Let v> ^ e ^he normal bundle of this immersion. Then
v = v'-\-Q«ri+i is the normal bundle of an immersion of P n in R2fl and
hence by Theorem 1 and the remark preceding it, p*v, which is equivalent
to the tangent bundle of 5 n , has v(n)+l linearly independent sections,
contradicting the definition of v(n).
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