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TWISTED TENSOR PRODUCTS, I 

BY EDGAR H. BROWN, JR. 

(Received February 21, 1958) 

The objective of this paper, and a subsequent one, is the study of the 
singular homology structure of fiber spaces. Suppose p: X-*B is a fiber- 
ing with fiber F= p-1(bo). For any space X, S(X) will denote the singu- 
lar chains on X. A fairly complete theory is known for the case when 
X = B x F. There is first a topological theorem, the Eilenberg-Zilber 
theorem [3], which says that S(B) ( S(F) is chain equivalent to S(B x F) 
when it is given the differentiation 

&(T ? S) = (&T) ? S + (-1)qT ? AS, q = dim T. 
Then there is an algebraic result, the Ktinneth formula, which deals with 
the homology groups of the tensor product of two chain complexes. The 
objective of this paper is to generalize the Eilenberg-Zilber theorem to 
fiber spaces. In a subsequent paper we will study the algebraic construc- 
tion resulting from this generalization. 

The Eilenberg-Zilber theorem may be generalized as follows: Let a be 
a loop in B based at b0 and let x e F. Lift a to a path a ending at x and 
let ax denote the initial point of a. In Section 1 we show that if p : X-- B 
is a reasonable fibering (e.g., B paracompact and X locally a product 
space) a can be chosen for each loop a so that ax defines a continuous 
action of i2(B) on F (i2(B) denotes the space of loops on B.) In Section 4 
we define a cochain 4 e C*(B; S(&2(B))) which assigns to each q-chain of 
B a q-1-chain of &2(B) and satisfies the identity: 

( 1 ) 8@q = Dq-1-1) - q1q-k 

where 4? = Pq, 'iq e Cq(B; S(&2(B)) and the cup product is formed us- 
ing the Pontrjagin multiplication in S(i2(B)). (We use Moore paths so as 
to have an associative multiplication.) A cochain similar to 4? was intro- 
duced by J. F. Adams in his paper on the cobar construction [1]. Using 
P we define a differentiation 9,, on S(B) (? S(F) by: 

&o(T ? S)- (T) ? S + (-l)q(T D OS + (TO S>4), q = dim T. 

Note that the cap product makes sense since T (DS e C*(B; S(F)), 
P e C*(B; S(Q2(B))) and S(Q2(B)) acts on S(F). Equation (1) above im- 
plies that ' - 0. We call S(B) (g S(F), with &, as differentiation, the 
twisted tensor product of S(B) and S(F) with respect to 4? and denote it 
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224 EDGAR H. BROWN, JR. 

by S(B) (D S(F). Our main result is that S(B),, ? S(F) and S(X) are 
chain equivalent. The technique used to prove this theorem and the ex- 
istence of b is similar to one used by Eilenberg and Zilber; namely, by 
means of acyclic models. As a result, the theory is functorial. 

In Section 2 we give some algebraic preliminaries and in Section 3 we 
describe the above construction in purely algebraic terms. In Section 4 
we state the main theorems of this paper and in Sections 5 and 6 we prove 
them. Sections 7, 8, 9, and 10 contain some applications. 

The author is greatly indebted to Saunders MacLane for his many 
helpful suggestions and interest in the development of this theory. A 
portion of the work leading to this paper was supported by the Office of 
Naval Research. 

1. Fiber spaces 

In this paper we adopt Moore's definition of path space. Let RF denote 
the non-negative real numbers and I the interval 0 < t < r, r e R+. The 
space of paths P(B) in a topological space B is defined by: 

P(B) = {(a,r)Ia: Ir -* B,re R} 

Let h: P(B) -- B' x R (I= I) be given by h(a, r) = (a', r) where a'(t) = 
a(tr), 0 < t < 1. P(B) is topologized by requiring that h be a homeomor- 
phism. Paths (a, r) and (P, s), such that ck(r) = P(O), are multiplied as 
follows: (a, r)(d, s) = (r, r + s) where 

ir(t) = a(t) 0 < t < r 
-(t-r) r < t < r + S 

(eb, 0), b e B, will denote the path defined by eb(O) = b. Then (e,(0), 0) and 
(e,,(r), 0) are respectively a left and a right identity for (a, r). 

Let bo e B. E(B) and Q2(B) will denote respectively, the subspace of 
P(B) consisting of all paths ending at bo and the subspace of all paths be- 
ginning and ending at bo. The multiplication in P(B) defines an associa- 
tive multiplication with a unit in Q2(B) and defines the action of Q2(B) on 
the right of E(B). We will assume that in each space B a fixed point bo 
has been chosen as base point for E(B) and f2(B), that maps take base 
points into base points and that when p: X-- B is a fibering, " the fiber" 
is p1I(bo). 

Hereafter we will denote (a, r) simply by a and a(r) by sa. 
Suppose p : X-+ B is a map. Let Upc P(B) x X be given by 

Up= (a, x)I ea= p(x)} 
A lifting function for the map p is a map A: Up -+ X such that p2(a, x) = 
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a(O). This is substantially the notion of lifting function given by Hure- 
wicz in [4]. According to Hurewicz a lifting function is a map A: Up 
P(X) such that pA(a, x) = a and sA(a, x) = x. Note that if A exists, 
then A defined by 2(a, x) = A(a, x)(O) is a lifting function in the sense de- 
fined above. A lifting function A is transitive if 

(1.1) 2(eb, X) = X, x e X, b = p(x), 
(1.2) x(aj, x) = 2(a, 2(d, x)) when ad is defined and (I, x) e U,. 

A is weakly transitive if (1.1) holds for b = b0 and (1.2) holds when Es = 

d(O) = bo. A (transitive, weakly transitive) fiber space is a quadruple 
(X, B, p, A) where p: X B and A is a (transitive, weakly transitive) 
lifting function for p. It is easily shown that the existence of a lifting 
function is equivalent to the covering homotopy property for all spaces. 

If (X, B, p, A) is a weakly transitive fiber space, then &7(B) acts on the 
left of F = p-1(bo) by ax = 2((a, x), a e f2(B) and x e F. By (1.1), ebx = x 
and by (1.2), (ac)x = a(,@x). 

REMARK. If (X, B, p, A) is weakly transitive, the action of p2(B) on F 
determines X to within weak homotopy type. Let X' be the identifica- 
tion space formed from E(B) x F by identifying (a, Ax) with (ad, x) for 
axeE(B),j e f2(B) and xe F. Let p': X' -*B by p'a, x} = a(O). Then 
it is easily shown that A induces a map h: X' -* X such that p' = ph and 
such that h,: 7tq(X') 7 7q(X), q > 0. 

REMARK. If p: X B satisfies the covering homotopy theorem for all 
spaces, it is homotopic to a transitive fiber space in the following sense. 
Let p': Up SB be given by p'(a, x) = a(O) and let A': Up, -*Up by 
A'(ac, (I, x)) = (ad, x). Then (Up, B, p', A') is a transitive fiber space and 
there are maps 2-: Up-* X and A : X-- Up such that pi == p', p'p = p 
and such that >p and pi) are homotopic to the identity maps via homoto- 
pies which move points along fibers. 

A map of one fiber space (X, B, p, A) into another (X', B', p', A') is a 
pair (f, g) where f: X -*X' and g: B-*B' such that p'f = gp and 
f A(ac, x) = 2'(gac, f (x)) for a e E2(B) and x e F. Note that if x e F and 
a e f2(B), then f (ax) = (ga)f(x); that is, the actions of E2(B) on F and 
&2(B') on F' commute with f and g. 

Suppose p': X' -+ B' is the fibering induced from (X, B, p, A) by the 
map g: B' SUB, that is, 

X= {(b', x) e B' x X I g(b') = p(x)} 

p'(b', x) = b'. 
Let f: X' X be given by f(b', x) = x. 

(1.3) p' admits a lifting function A' such that (f, g) is a map of 
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(X', B', p', 2') into (X, B, p, 4). A' can be chosen to be transitive (weakly 
transitive) if A is transitive (weakly transitive). 

PROOF. Let 2'(c, (b', x)) = (a(O), 2(ga, x)). 
We conclude this section with some theorems concerning the existence 

of weakly transitive lifting functions. 

(1.4) THEOREM. If X is locally a product space over B, p: X -+ B is the 
projection and B is paracompact, then p admits a weakly transitive lifting 
function. 

(1.5) THEOREM. If (X, p, B, F, G) is a Steenrod fiber bundle and B is 
paracompact, then p admits a weakly transitive lifting function 2 and a 
product preserving map k: f2(B) -+ G such that 2(a, x) = k(a)x for x e F 
and a e f2(B). 

Since (1.4) and (1.5) can be proved by the same technique, we give only 
the proof of (1.5). 

PROOF of (1.5). Let (X, B, ,G G) be the associated principal bundle of 
(X, p, B, F, G) and let P: X x F -+ X be the principal map (see [6]). Let 
{ Us} be a set of coordinate neighborhoods covering B and Ipn: U x G -i X 
coordinate maps. Let bo e UP0. We identify G with p-'(bo) and F with 
p-1(bo) by identifying g e G with sp,0(bo, g) and x e F with P(e, x) where e is 
the identity of G. Note P(g, x) = gx for g e G and x e F. We first show 
that (1.5) is implied by: 

(1.6) p admits a weakly transitive lifting function A such that x xg) _ 
2(a, x)g for (a, x) e U-; and g e G. (Recall G acts on the right of X.) 

Let 2(a, x) = P(2(a, y), z) where (a, x) e Up, y e X, z e F and P(y, z) = x. 
By (1.6), 2(ax) is independent of the choice of y and z. Let k: 2(B) G 
by k(a) = 2(a, e). Then, 

k(ac) = A(ac, e) 
- 2(a, 2(j, e)) 
= (a, e2(d, e)) 

- 2(a, e)2(j, e) 
- k(a)k(d) 

If a e f2(B) and x e F, then 2(a, x) = P(A(a, e), x) = P(k(oz), x) = k(a)x. 
PROOF OF (1.6). Let 2,, be the lifting function for -5 I j1(U-): jih(U-) U7 

defined by 2,(a, x) = f,(a(O), g) where a e P(U-), x e soz(Uv), 6a = j(x) 
and sp(sc, g) = x. 2,, is clearly transitive and A(a, xg) = Q(x, x)g, g e G. 

(1.7) j5 admits a lifting function A' such that for each path ax: Ir -+ B 
there is a partition 0 = to < t1 < ... < t. = r satisfying: 
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( M a(Eti-11 t'bD) C U,/ 

(ii) Let ai e P(Uh ) by ci(t) = a(t + ti-1)S 0 < t < ti ti-I. 
Then, 

2'(ax) = 4vl(all,- ***, An(an l, Av/Jan, x)) ). 

Hurewicz has substantially proved (1.7) in [4], so we give only an out- 
line of the proof. Since B is paracompact, we may assume that {UsJ is 
a locally finite cover and that for each r there is a real valued function 
U, on B which is positive on U. and zero elsewhere. Let W'1.2 * * P(B) 
consist of all a: Ir -B, r > 0, such that: 

a( - m)r ' m]U70 i =1,2,...,m. 

For each a e W172,... m and x e X such that p(x) = es define Aiy2 * m(i, x) 
e X as in ((1.7) (ii)), taking ti = r/rm. The sets W11,2 ... 'M cover P(B) 
and have a locally finite subcover { WO} . Using the functions uy a real 
valued function v. can be defined on P(B) which is positive on W, 
and zero elsewhere. Well order the elements of { W.I. A' is now defined 
by, 

2'(a, x) = 20,(al*, 'nI(an, 2(an, x)) ...) 

where W,1 < W. 2 < ... < WIn are all the sets containing a and 

ai(t) = a(t + si-1) 0 t < Sb Si-1 

Si = r v(= I VWa , VW (a) 

Finally we define A. Since B is paracompact and therefore normal, we 
may assume that there is an open set V c V8o such that bo e V and 
vfn u, = 0 for r #;rO. Choose an open set V'c B such that bo e V'c V'Pc V 
and let W = B- V. Then B = WU V, VcUYo and vnu = o for 
r # ro. ai: Ir -? B and x e X such that j(x) eai. Choose a partition 0 = 
to < ti < ... < tn = r such that a([ti-1, t])c V or W and a(ti) C vn W. 
Define A(a, x), as in ((1.7) (ii)), using A' when ai e P(W) and A20 when 
ai e P( V). Note that ((1.7) (ii)) implies that when aix e P(W) is lifted by 
A', any portion of aix meeting V must be lifted by Ao. But 2,0 is transitive. 
Hence ,(a, x) is independent of the choice of partition for Ir. By the 
same argument, if 'x and : e P(B) and bo = es = :(O), then A(ad, x) = 

A(al, 2(, x), that is, A is weakly transitive. 

2. Algebraic preliminaries 

We adopt Cartan's definitions of DGA algebra, module, etc. Let A be a 
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commutative ring with a unit 1. A DGA A-module is a A-module M with 
a differentiation 8: M -* M, a grading by submodules Mq, q > 0 and an 
augmentation a: M -? A satisfying the following conditions: 

(2.1) M = T Mq (direct sum) 
(2.2) a is a A-linear map such that &6 = 0, iMqQMq , and &M, 0. 
(2.3) a is a A-linear epimorphism such that a& = 0 and a(Mq) = 0 for 

q > O. 
Let M and M' be DGA A-modules. A map f: M M' is a A-homomor- 

phism preserving all the DGA structures. The tensor product of M and 
M' is the DGA A-module M (g M' (M (g? M') where, 

(M (O M')q = Tres=q Mr (9 Ms 
8(m () m') = (Om) O m' + (-l)qM (m) ?m, meM, m' eM' 
a(m (i m') = a(m)a(m') 

A DGA algebra is an associative A-algebra A with a unit 1 which is also 
a DGA A-module such that a(1) = 1 and such that the product map 
A (g A - A is a DGA map. Let A be a DGA algebra. A DGA A-module 
is a DGA A-module M which is also a left A-module such that the product 
map A 0 M -+ M is a DGA map. A DGA coatlgebra is a DGA A-module K 
together with a DGA map V: K -+ K ? K and an element 1 e K0 satisfy- 
ing the following conditions: 

(V (? id)v = (id (g V)V where id is the identity map. 
v(1) = 1 (0 1, and 
v(k) = 1 (l k + k ? 1 + k' for k e K, k'e K (K and a(k) =a (k') = O. 
a(1) = 1. 
Let K be a DGA coalgebra with coproduct V, let G, N, and H be A- 

modules and let p: G 0 N -? H be a homomorphism. Let C (K; G) 
Hom (K., G), C*(K; G) = E CP(K; G) and define a: Cv(K; G) 
CP+1(K;G) by (UU= UR. Let Ue C*(K; G), Ve C*(K; N) and ce K(gN. 
We define the cup product Uk- V e C *(K; H) and the cap product cl-- U e 
K 0g H as follows: 

U V = p(U? V)V 
C/-U = (it P)(i1 ? U ? i2)(v i2)(c) 

where i1: K -* K and i2: N -+ N are the identity maps. It is easily 
shown that: 

a(U\V) = (aU)>- V + (-1)"U1--'a V, Ue Cv(K; G) 
6(C'_~U) = (&c)1-U + (-1)q-PcC1_\3U. Ue C"(K; G), c e Kp ? N 

U"(V\'W) =(UV)W 
(ccUk-NW) = \(UW) 
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Let X be a topological space and let S(X) be its total singular complex. 
For the remainder of this section we take A to be the integers. S(X) is 
a DGA Z-module (Z= integers) under the usual differentiation, grading 
and augmentation. If T is a singular q-simplex, &.T, 0 < i < q, will 
denote the jth face of T. Let v: S(X) -+ S(X) ? S(X) be given by 

V(T) = Eq =0 (70k)k T ? (80)kT 

Choose a zero simplex in S(X) and denote it by 1. It is well known S(X) 
is a DGA coalgebra with V as coproduct and 1 as unit. Suppose Y is a 
topological space with an associative multiplication pt: Y x Y -* Y and 
unit e. Let r: S(Y) ? S(Y) -* S(Y x Y) be the Eilenberg-Zilber map. 
Let 1 denote the 0-simplex in S(Y) whose image is e. Then S(Y) is a 
DGA algebra under the multiplication pAf: S(Y) 0 S(Y) -* S(Y) and 
unit 1. Suppose v: Y x X -* X defines an action of Y on X, that is, 
>(e, x) = x and v(yy', x) = v(y, >(y', x)), x e X, y, y' e Y. Then S(X) is 
a DGA S(Y)-module under the action of S(Y) on S(X) defined by 
A: S(Y) 0 S( -* S(X). 

3. Twisted tensor products 
Let K be a DGA coalgebra and let A be a DGA algebra. A twisting 

cochain is a cochain Sp = E Spq e C *(K; A) such that 

(3.1) Spge Cq(K; A), (po = 0. (pj(Kg)cAq l 

(3.2) aq'1 = 0 and Oq'q = Soq_,8 - Sk '(Ok\- 

where the cup product is formed by using the multiplication in A. 
Let L be a DGA A-module. The twisted tensor product of K and L with 

respect to a twisting cochain Sp e C*(K; A) is the DGA A-module K<> 0 L 
defined as follows: With respect to grading and augmentation, K<>, ? L = 

K?( L. The differentiation Q, on K<, ? L is given by: 
(3.3) &,,(k ( 1) = (&k) (0 1 + (-1)q(k (D 81 + (k (Dl) ) where k e Kq, 

1 e L and the cap product is formed by utilizing the pairing A 0 L -* L 
defined by the A-module structure on L. It follows from (3.2) by a 
straightforward calculation that 8,&, = 0 and ah;, = 0. By (3.1) 64. lowers 
dimension by one. 

We define an increasing filtration on K4. ? L as follows: 

AP EP=0Kq (DL 

Clearly K? (0 L = UAp and &4(Ap)c Ap. Let EP,' denote the resulting 
spectral sequence in the sense of Serre [5]. Then (3.4) yields immedi- 
ately: 
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(3.5) Suppose K is A free. Then El a = Kv ?D Hq(L) and if Ho(A) = A, 
then E2" = HJ(K; Hq(L)). 

Suppose K and K' are DGA coalgebras, A and A' are DGA algebras, L 
and L' are respectively, DGA A- and A'-modules, So e C*(K; A) io' e 
C*(K' ;A') are twisting cochains and f : K-+K', g : L-+L' and h : A-+A' 
are maps such that g(al) = h(a)g(l), a e A, 1 e L, and o'f = hq'. Then 
f (D g: K9?DL -+*K, ?0 L' is a map. 

(3.6) Suppose K and K' are A free and Ho(A) = H0(A') = A. If any 
two of f, g and f ?0 g induce isomorphisms in homology, then the third 
does.' 

PROOF. (3.6) follows from (3.5) and Moore's theorem [2, Ch. 3]. 
(3.7) Suppose K = K', f is the identity and K is A free. If g induces 

an isomorphism in homology, then so does f ?D g. 
PROOF. (3.7) follows from (3.5) by well known spectral sequence argu- 

ments. 
REMARK. Considering A as a DGA A-module, we may form K9 ? A. 

Then (A, K, K9 ? A) is a construction in the sense of Cartan [2]. 

4. Main theorems 

Let B be a pathwise connected space. S(B) will hereafter denote the 
singular chains generated by singular simplexes taking the vertices of 
the standard simplex into b,. We identify I with the standard 1-simplex 
A1 by the map h: I-A, where h(t) = (1-t)d0+td1, do and d, the first and 
second vertices of A1. Then a 1-simplex in S(B) is also a point in &2(B). 
We also identify any singular 0-simplex T with its image T(dj). If 
p: X -* B is a fibering, S(X) will denote the chains generated by singu- 
lar simplexes taking the vertices of the standard simplex into F = 
p-1(b). S(F) and S(&2(B)) will denote the total singular complexes of F 
and 2(B). 

(4.1) THEOREM. There is a collection of twisting cochains (1B e C *(S(B); 
S(D(B))), one for each pathwise connected space B. satisfying the following 
conditions: 

(i) If T e S(B) is a 1-simplex and T, e S(B) is the constant 1-simplex, 
(DB(T) = T - To. (Note that by the above identifications T and To are also 
0-simplexes in S(i(B)).) 

(ii) If T is a constant simplex in S(B), (bB(T) = 0. 
(iii) If f: B -+ B' and f: f2?(B) -* i2(B') is induced by f, then fT#B = 

(DB Ifit 

1 We will frequently use the fact that a map of one free DGA-module into another is a 
chain equivalence if and only if it induces isomorphisms in homology. 
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The proof of (4.1) is given in Section 5. We will sometimes denote '1B 
simply by b. 

If (X, B, p, 2) is a weakly transitive fiber space, 2 defines an action of 
f2(B) on F = p-1(b,) which in turn defines an S(f2(B))-module structure on 
S(F). Hence we may form the twisted tensor product S(B), ( S(F). 
Suppose (f, g) is a map of (X, B, p, 2) into another weakly transitive fiber 
space (X', B', p',, 2'). Let k =fj F: Fa- F' and let -: &2(B) -* &2(B') be 
the map defined by g. Then, since k and g commute with the actions of 
&2(B) on F and &2(B') on F', ko(TU) = -,(T)k0(U) for T e S(&2(B)) and 
Ue S(F). Also by (4.1), gag = Therefore g# (D k#: S(B) (D S(F) 
S(B'), (D S(F') is a map. 

(4.2) THEOREM. Let (IB be a collection of twisting cochains as described 
in (4.1). For each weakly transitive fiber space (X, B, p, 2), where B is 
pathwise connected, there is a map VP: S(B)XB (D S(F) -* S(X) such that: 

(i) sb is a chain equivalence. 
(ii) If (f, g): (X, B, p, 2) -* (X', B', p', 2') is a map, then b(g,(D h#) = 

f#0 where k =f IF: FI-F'. 
Theorem (4.2) is proved in Section 6. 
Suppose B is n-1 connected. Let S. l(B) denote the chains generated 

by singular simplexes taking the n-I skeleton of the standard simplex 
into bo and let j: Sn l(B) -* S(B) be the inclusion map. Let V' 
'Ij e C*(Snil(B); S(f2(B))). It is well known that j is a chain equivalence 
and V is obviously a twisting cochain. Let i be the identity map on 
S(F). By (3.6) and ((4.1) (ii)) 

(4.3) COROLLARY. 0(j D i): Sn-,(B)o (D S(F) -E S(X) is a chain equiv- 
alence and Dq = 0 for q < n. 

Suppose (X', B', p', 2') is the fiber space induced from (X, B, p, 2) by a 
map g : B -+ B' as in (1.3). Clearly (JB)g# e C *(S(B'); S(&2(B))) is a twist- 
ing cochain. Also by (1.3) and (4.1), the identity maps i1: S(B') -+ S(B') 
and i, : S(F) -+ S(F) and g,: S(f2(B')) -+ S(&2(B)) define a map: 

i1 D i2: S(B')(B, ?3 S(F) -+ S(B')(B ? S(F) 

The fact that i1 D i2 is an isomorphism yields: 

(4.4) COROLLARY. S(B')4Bo 
? S(F) and S(X) are chain equivalent. 

Suppose (X, p, B, F, G) is a Steenrod fiber bundle and B is pathwise 
connected. By (1.4), p admits a weakly transitive lifting function 2 
and a product preserving map k: &2(B) -* G such that 2(a, x)=k(ac)x, 
a e f2(B), x e F. Let So = k#B e C*(S(B); S(G)). Since k is product pre- 
serving So is a twisting cochain. By the same argument as was given 
for (4.4): 
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(4.5) COROLLARY. S(B), ? S(F) is chain equivalent to S(X), when S(F) 
is viewed as an S(G)-module defined by the action of G on F. 

REMARK. The above theory can be converted to a theory over an arbi- 
trary commutative ring with unit A simply by tensoring everything in 
sight with A. 

REMARK. If (X, B, p, A) is a weakly transitive fiber space, the additive 
homology structure of X is completely determined by the action of 
S(&2(B)) on S(F). This may be seen as follows: Let E be an acyclic, 
S(&2(B)) free DGA right S(B))-module. E ?,s(g(B))S(F) can be made into 
a DGA Z-module in the obvious fashion. By well-known arguments, the 
homology groups of E s&(B,))S(F) are independent of the choice of E 

(see [2]). But S(B). (? S(&2(B)) is an S(&2(B)) free S(2(B))-module which 
is acyclic since it is chain equivalent to S(E(B)). Furthermore, 

[S(B)P (? S(&2(B))] (?S(Q(B))S(F) = S(B)o ?3 S(F) 
Therefore, 

Hq(E ?(s(B))S(F)) > Hq(X). 

REMARK. It X = B x F, i can be chosen so that 2(B) acts trivially on 
F. In this case it can be easily shown that ((4.1) (ii), (iii)) imply that 
(T( S)-A = O Te S(B), Se S(F). Thus (4.2) is in fact a generaliza- 
tion of the Eilenberg-Zilber theorem. 

5. Proof of the existence of (lB 

Let Aq be the identification space formed from the standard q-simplex 
Aq by identifying its vertices to a point. Let $q: Aq +Aq be the identi- 

fication map and let d e Aq be the point consisting of the vertices of Aq. 
We take d as the base point for Aq. Note Aq has the same homotopy 
type as a collection of circles joined at a point. Hence Hn(2(Aq)) = 0 
for n > 0. 

Let (DB = 'bqy 'bq e Cq(S(B); S(&2(B))). We define (Tq by induction on 
q. JD is defined in ((4.1) (i)), satisfies ((4.1) (ii), (iii)), and ab1 = 0 (a is 
the augmentation). We next define P2. For each s = sod0 + sod, e A,1 let 
as e P(AX2) be given by: 

as(t) = (1-t)do + td1, 0 ? t < s 
= (1 + s1-t)s + (t-sl)d;, SI < t < S1 +1. 

If T e S(B) is a 2-simplex, let k(T): A,1 2(B) by k(T)(s) = Tas. Note 
Sk(T) = (8,T)(80T) - 81T when 8,T is viewed as a 0-simplex in S(&(B)). 
Let ha: Aq+1 / Aq denote the simplicial map which is onto, monotone 
with respect to the order of the vertices and takes di and do+l into di. 
For each singular simplex U let DU = Uhf, that is, D, is the usual de- 
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generacy operator. Finally let 2), be defined by: 

b)2(T) = k(T) - k(Do8&T) - k(D,&1T) + k(D'&2T) 

Then 4).x is clearly natural and if T is the constant 2-simplex, 4).(T) = 0. 
Let To e S(B) be the constant 1-simplex. Then, 

8(k(T) =(0T - TO) - (81T - To) + (82T - To) + (82T-To)(oT- To) 
- 11(&T) + bpqAb(T) 

Thus 1), has the desired form. Suppose that for p < q > 1, (P has been 
defined, satisfies ((4.1) (i), (ii), (iii)) and 

(5.1) 83DP = (DP-la - E (- _)kk p-k 

Let vp denote the right side of (5.1). Then vp is defined and a straight- 
forward calculation shows that &3)q = 0. Therefore q(jq) e S(&2(Aq)) is a 
q - 1 cycle. Since Hq -(2(Aq)) = 0 for q > 1, there is a chain c e S(&2(Aq)) 
such that 8C = vq($q). Let To e S(B) be the constant q-simplex. For each 
q-simplex T e S(B) let bp(T) = T,(c) - TPo(c) where " -" indicates the 
induced map of &2(Aq) -Q &2(B). 'I)q is clearly natural and (bq(To) = 0. 

8'1q(T) = (T# -To#)(c) 

= (T# - To#)!)q($q) 

= 2)q(T) - Vq(To) 
= Vq(T) 

Thus (1)q satisfies (5.1) and the proof of (4.1) is complete. 

6. Proof of Theorem (4.2) 

We first define a set of acyclic models to be used in the proof of (4.1). 
(6.1) There exists weakly transitive fiber spaces En,m, = (Xnmy Bnmy 

Pn,mr 2nm) and gn = (Xn, Bn, Pn, An) with fibers Fn,m and Fn2 and singular 
n, m and n-simplexes $n e S(Bnm), 72m e S(Fn m) and Cn e S(Xn) such that: 

(i) If 9 = (X, B, p, A) is a weakly transitive fiber space and T e S(B), 
Se S(F) and Ue S(X) are n, m and n simplexes, then there exists maps 
(u, v) ?gnm -F and (u', v') : gn F-+ such that V#(n) = T, u,(72m) = S and 
V'(Cn) = U. 

(ii) S(Xnm)g S(Xn), S(Bnm)D S(Fn m) and S(BJ)D, ? S(Fn) are acyclic. 

PROOF. Let A2n and d e A7n be as in Section 5. ?n,, mnq ;nq 72m9 Cnq (u, v) 
and (u', v') may be defined as follows: 

Xnm = E(A.) x A. 

Bnm = An 
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Pn.m(a, t) = a(O) 
Am(a, (b t)) = (a9, t) 

En /An An, the identification map. 
t= (ea, t) 

v: A-n B, the map induced by T: An -+B. 
u(a, t) = A (vaw S(t)) 

Xn = {(a, t) e E(An) x A n 2a = Ent) 
Bn = An 

Pn(a, t) = a(O) 
A (9, t)) = (ar, t) 

Cn(t) = (et,(t) t) 
vIA: A B, the map defined by pU :An -B. 
U'(a, t) (v'a, U(t)) 

To write out the appropriate definitions is to check that gn,m and gn are 
transitive fiber spaces, that (u, v) and (u', v') are maps and that ((6.1) (i)) 
holds. Xn,m is clearly contractible to a point. By shrinking paths to their 
end points, Xn may be contracted to {(et (W), x) Ix e A n} which is homeo- 
morphic to An which in turn is contractible to a point. Therefore S(Xnm) 
and S(Xn) are acyclic. 

Let An = (E(Xn), Adn, p, A) be the transitive fiber space defined by 
Aa) = a(O) and 2.(a, P) = ad. Let (r, s) : An -+!Ynm and (r', s'): An i gn 
be the maps defined by r(a) (a, d), do e Am, r'(a) = (a, d) and s = '= 

identity. The fiber of An is &2(AJ). Let IC: &2(An) Fnm and k': &2(AXn) -+ Fn 
be the maps defined by r and r'. Since E(An), Xnm and Xn are each 
contractible to a point and s and s' are identity maps, the homotopy se- 
quence of a fiber space yields k*: 7q(2(An)) > 7tq(Fnm) and similarly for 
k'. Therefore k and k' induce isomorphisms in homology. Therefore by 

(3.7), S(An), ? S(A(/n)), S(Bnm)D (? S(Fnm) and S(Bn),p ? S(Fn) have iso- 
morphic homology groups. We complete the proof of (6.1) by showing: 

(6.2) S(An)o ? S(2(An)) is acyclic. 
PROOF. Let w =7r,(An). We make Z(7r) (the group ring of 7T) into a DGA 

Z-module by assigning to each of its elements dimension zero, zero de- 
rivative and the usual augmentation. Let h: S(2(AA ))-+ Z(r) be the map 
defined as follows: Let T e S(2(AA)) be a q-simplex. If q > 0, h(T) = 0, 
if q = 0, h(T) = the element of w represented by T. Note h is a DGA 
algebra map. Since An has the same homotopy type as a collection of 
circles joined at a point, h is a chain equivalence. Let So: S(Xn) -+ Z(w) 
be defined for each q-simplex T by So(T) = 0 if q t 1 and if q = 1, So(T) = 
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[T] - e where e is the identity element of wr and [T] is the element of 
7T represented by T. By ((4.1) (i)) Sp = hbDn and hence (p is a twisting 
cochain. Let j be the identity map on S(A) j ? h: S(Aj)q (? S(&2(A.)) 
S(A/)j ? Z(7w) is clearly a map and by (3.7) it induces isomorphisms in 
homology. Note S(A.) ?D Z(7w) = S(A.) ? DT. If T e S(Aj) is a q-simplex 
and r e 7, then 

8&(T ? r) (ST) 0g T + (-)q(&qT) ?) sv(poq-1T);- 
= (iO (-1)18jT ? r + (_ )qaqT ? [&81T]r 

But by a well-known theorem S(Aj) ?2 , with aO as above, is chain 
equivalent to the total singular complex of the universal cover Un of An. 
71( Un) = 0 and for q > 1, 7Tq(Un) t 7tq(An) = 0. Hence S(Un) is acyclic. 
Therefore S(An)so ? Z(7) is acyclic and the proof of (6.2) is complete. 

The proof of (4.2) now follows from (6.1) by standard arguments. We 
define by induction on dimension, maps sb: S(B), ? S(F) -+ S(X) and 
0: S(X) -+ S(B). ? S(F) and chain homotopies D1 and D; such that 
0Y, 0, D, and D2 are natural and &D1 + D18 = #7-identity and &D, + D28 = 
00b-identity. 

We first define sb. Let T e S(B) and S e S(F) be n and m simplexes. 
If n = 0 and m = 0 or 1, let O&(T ? S) = S. For these values of n and 
m it is clear that Sb is natural and commutes with the differentiations. 
Suppose that n = 1 and m 0. For each s = sod, + s1d, e A1 let as e P(A1) 
be given by: 

as(t) = , 0 < t < s1 
(1- t)do + tdl, 81 < t < 1 

Let T': A1 -+ X by T'(s) = 2(Tas, S), (Recall we have identified S with its 
image in F). Let To be the constant 1-simplex of B. Then OT' = TOS- TS 
when T and To, are viewed as 0-simplexes in S(Q2(B)). Let &(T?(S) = T'. 

0(8aD(T (D)S)) = {(- (bo 2 b(T)S)) 
= 0(bo (D (To T)S) 
= ToS- TS 
= 80(T (g) S) 

Thus we have defined O&(T (0 S) for n + m ? 1 so that it is natural and 
commutes with the differentiations. Suppose this has been done for 
n + m < q > 1. Suppose n + m = q. Consider the model ?gn,m given in 
(6.1). Since S(Xn,,m) is acyclic there exists a chain V($n (0 'm) e S(Xnm) 
such that 6'($,n (0 '2m) = V(8($n ( D]m)) Let O/(T (? S) = u#('($n 0 '2m)) 

where u: Xn,m -+S is the map given in (6.1). Then 0b is natural for 
n + m = q and 
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60(T ? S) = U#M(0(q(n ? (m))) 
= b((V#($g) (? U#(7;m))) 

= 0(i@(T (g S)) 

We next define 0. Let Ue S(X) be an n-simplex. If n = 0 let d(U) = 

b0 ? U, (Recall the 0-simplexes of S(X) are in S(F).) Suppose n = 1. For 
each s s=d0 + sid1 e A1 let P, e P(A1) be given by p8(t) = (1 - t)d0 + td1, 
0 < t < si. Let U': Al -+ F by U'(s) = 2(pUd8, U(s)). Then &U' = 

(pU)60U - 61U. Let To be the constant 1-simplex in S(B) and let V: Al 
Q2(B) by V(s) TjTo,. Then 6 V = To - eaO. Finally let 

O(U) = pU ? 0U-bo 0 (U'- VTOU) 

Then 

6hO(U) = -bo b (pU - To)(6oU) + bo (D ((pU)60U - QU - To~o)U + 0oU) 
= bo ?(0U - 6hU) 
= 0(6U) 

The definition of 0 for n > 1 now proceeds as in the case of sb. 
Osl' and 0bO are the identity maps in dimension zero; so we may take 
i= D2 = 0 in this dimension. For higher dimensions D1 and D2 can be 

defined by means of the models 9n, and gn in the same fashion as 0b was 
defined. This completes the proof of (4.2). 

7. Spectral sequences 

In Section 3 a spectral sequence was associated with a twisted tensor 
product. In this section we investigate the relation between the spectral 
sequence obtained from S(B). ? S(F) and a more conventionally defined 
spectral sequence for the fibering p: X -* B. 

Let T be a singular q-simplex and D, be the usual degeneracy operator. 
We define the real dimension, RdT, of T to be the least integer n such 
that 

T = D1Di2 *** Dq T' 

for some singular n-simplex T'. 
Let (X, B, p, 2) be a weakly transitive fiber space and suppose B is 

pathwise connected. We filter S(X) as follows: Let Aq(X),c S(X) be 
generated by all simplexes T e S(X) such that RdpT <q. It is easily 
checked that Aq(X) is a filtration of S(X) in the sense of Serre [5]. Let 
Er(X) denote the spectral sequence obtained from Aq(X). Let "P(X) 
and Cr(X) denote the filtration and spectral sequence obtained from 
S(B) ( S(F) as in Section 3. Let sb: S(B). ? S(F) -* S(X) be the map 
given by (4.2). 
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(7.1) THEOREM. sb can be chosen such that sI(Ag(X)) c A9(X) and 
0* : H(AII(X)) t: H(A11(X))9 q < O. 

Recall El(X) = H(Aq(X), AX-1(X)) and similarly for C1. Hence (7.1) 
implies: 

(7.2) COROLLARY. C4(X) > Er(X), r > 1. 
PROOF of (7.1). Let C(An)CS(An) be generated by all T: Am An 

such that T = T'$, where En: An -+ A'n is the identification map and 
T': Am dAn is a simplicial map. If (X, A,, P, A) is a fiber space, let 
C(X) = p# '(C(An)). We first prove: 

(7.3) If (X, An, P, A) is one of the model fiber spaces given in (6.1), then 
C(X) and C(An)v, ? S(F), 4' = b I C(A.), are acyclic. 

It is easily checked that for each of the model fiber spaces E(An) is a 
deformation retract of X by a deformation F, such that pF, is the identi- 
ty map. Hence C(X) and C(E(An)) are chain equivalent. Let w: Un -* An 

be the universal cover of An. Then w induces a homeomorphism w': E(Un) 
E(An) such that p;7' = p' where p and p' are the usual projections. There- 
fore C(E(Un)) and C(E(An) are isomorphic. wz(Un) = 0 for i > 0 and 
hence Un is contractible. (In fact, Un is euclidean n space.) Therefore, 
Un can be embedded in E(Un), and a little geometry shows that Un is a 
deformation retract of E(Un) by a deformation F, such that p'F, is the 
identity. Hence C(E(Un)) and C(Un) are chain equivalent. But all pos- 
sible liftings of sn : An -di An define a simplicial subdivision of Un, and 
C(Un) is simply the simplicial chains with respect to this subdivision. 
Hence C(Un) is acyclic. 

Just as in the proof of ((6.1) (ii)), C(A),,), ? S(F) is chain equivalent 
to C(An),. (0 Z(74(A,,)) where spq = 0, q # 1 and 6p1(T) = [T] - e e w1(An) 
for 1-simplexes T e C(An). But the latter complex is isomorphic to C(Un). 

Let S be the category whose objects are weakly transitive fiber spaces 
with base space An for some n > 0, and whose maps are fiber space maps 
(f, g) where g: An -` Am is defined by a simplicial map g': An + Am. By 
virtue of (7.3), Theorem (4.2) and its proof remain valid on 54 when 
S(B) and S(X) are replaced C(A,) and C(X). That is, there are maps 

J: C(AJD' ? S(F) -+C (X) and 9 : C (X) -+C (An)-, ( S(F) and chain 
homotopies D, D, such that &D1 + D,& = - id, -M ID, + Day = 90 - id 
and V', 9, D, and D, are natural with respect to the maps of a. 

Using s, 9, D1, and D, on 5, we define sb, 9, D, and D2 for (X, B, p, A) 
by means of the model fiber spaces just as in the proof of (4.2). For ex- 
ample, S : S(B) (g S(F) -+ S(X) is defined as follows: Let T e S(B) and 
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Se S(F) be n and m simplexes. 

V(T ? S) = U#(tn (m) 

where En, '2m, and u are as in (6.1) and V($n (0 onm) is as defined above. But 
V'($n 0 'Jm) G C(Xnm)czAn(Xnm). Hence O(T ? S) e An(X). 0, D1, and D, 
are defined in a similar fashion so as to preserve the filtrations. It then 
follows that v,%: H(JAn(X)) 1 H(An(X)) and the proof of (7.1) is com- 
plete. 

Let i: F -* X be the inclusion map and let j: S(F) -* S(B)q 0 S(F) 
and r: S(B). ? S(F) -* S(B) be defined as follows: Let To be the zero 
simplex of S(B) and let a be the augmentation of S(F). 

j(S) = TO0S, SeS(F) 
w(T ? S) = a(S)T, T e S(B), S e S(F) 

(7.4) sb: S(B).?S(F) -* S(X) can be chosen so that Oj = is and p#0 = 

w mod D(B) where D(B) is the degenerate chains of S(B). 
PROOF. The first part of (7.4) is immediate from the proof of (4.2). 

Let 0b be chosen as in the proof of (7.1). Consider the model TnO* It is 
sufflcient to show that ?o#0$n ) = en mod D(A). We prove this by 
induction on n. For n = 0, 1, it is true by the way Sb was defined in the 
proof of (4.2). Suppose it is true for n - 1. Then, 

iPn,0#0($V (9 C = Pn,#W)n (9 0o + (-l1)n$, ? (23O^> 

= 6$n mod D(An) 
Suppose C e C(An), n > 1, and 8C = en mod D(A-). c = c' + c" where 
c" e D(An) and c' does not involve degenerate simplexes. Then i(C'- $0 
0 mod D(An). Therefore '(C' - $ = 0. But C(An) is acyclic and 
Cn+1(An)czD(An). Hence c' = ant 

We next investigate the relation between K1 and the transgression. 
Suppose B is n - 1 connected, n > 1, and F is pathwise connected. Let 
Sn l(B) c S(B) be as defined in Section 4 and let Dc S(B) be generated by 
the constant p-simplexes, q>O. Let C(B)=Sn 1(B)/D. By (4.1), 1(D)=O 
and hence 4' defines a twisting cochain (D: C(B) -* S(&2(B)). By (3.7), 
C(B), (g S(F) and S(B). (g S(F) are chain equivalent. Since (p = 0 for 
q < n, (3.2) yields 

t39q = fq-~1& for q < 2n 

Let S0 e S(F) be a 0-simplex and let t: Cq(B)--S(F)q l, q < 2n, be defined 
by t(T)= (q(T)SO, Te Cq(B). Then t defines a homomorphism t*: Hq(B)--+ 
Hqil(F), q < 2n -1. to is obviously independent of the choice of SO. 
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(7.5) THEOREM. For each u e H0(B), q < 2n - 1, there is v e Hq(X, F) 
such that prv = u and 6,v (-1)gt*u where p,: H0(X, F) -+ H,(B) and 
6*: H0(X, F) -+ H01(F). 

PROOF. By (7.4) and (4.2), we may use C(B), (? S(F) and Co(B) X S(F) 
in place of S(X) and S(F). Let Ve Zq(B) represent u. 

6(U? So) = (- )0(T 0 ?(PU)So). 

Hence U?( S e Z(C(B), (? S(F), CO(B) ( S(F)). Let v be the class of 
U ? S0. Then i9v (-_ 1)t*u. 

Continuing the notation and hypotheses on B as given in the previous 
paragraph, suppose X= E(B) and p is the usual projection. R(Pn= ( 0n-,i =? 
and amen = (pniR = iR~+p, Therefore (pn defines a cocycle V e Cn(f2(B)). 
Let k: Hn (&2(B)) : 7rn(B) be the well-known isomorphism. Let r e 
Hn(B; 7n(B)) be represented by (- 1)nk V. 

(7.6) r is the characteristic class of B. 
PROOF. Let t be the homomorphism given above. By the same 

argument as was given by (7.5), 

(_-1)nt* :Hn-'(f2(B) ; 7rn(B)) -+Hn(B ; 7rn(B)) 

is the transgression. Let W be an extension of the natural map Zn1(f2(B)) 
onto Hn_1(f2(B)). Let w be represented by kW. It is well known that the 
transgression of w is the characteristic class of B. On the other hand, 
t*w - (-l)n because tOw = Von Zn(B; Hn (Q2(B))) and Hn-1(B) = 0. 

(7.7) THEOREM. If (X, B, p, 2) is a weakly transitive fiber space and B 
is pathwise connected, then 

C2(X) = H(B; H(F)) 

where H(B; H(F)) is formed using local coefficients defined by the action 
of 7r1(B) on H(F). 

PROOF. If T X S e q(XA), 

ac(T ? S) = ST ? S + ()q(T?S + T X S ( ^1) mod ' (q (X). 
By (4.1), 

(pi= qT ? ([9V-1T]S -S) 

where [q-1] e S(72(B)),. Theorem (7.7) then follows from the definition 
of C2. 

If B is n - 1 connected and &2(B) acts on F, a pairing wn(B) ? H(F) 
H(F) is defined by 7n(B) t Hn (&2(B)) and the pairing H(2(B)) ? H(F) 
H(F). 

(7.8) THEOREM (Hurewicz and Fadell). If (X, B, p, A) is a weakly transi- 
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tive fiber space, B is n-1 connected and F is pathwise connected, then 

H(B; H(F)) = C2(X) - = C(X) 

Also dn: Cn(X) -- C,(X) is given by 

dnU =( _-l)q +nU 

where r is the characteristic class of B and the pairing wn(B) ? H(F) 
H(F) is defined by the action of Q2(B) on F. 

PROOF. Theorem (7.8) follows from the definition of Cr, (7.6) and 

6<P(T (g S) = i9T &S S + (_-l)q(T (g IRS + T (D S f n) mod 'jq-n-I(X) 

for T ? S e q(X), T e Cq(B). 

8. Some exact sequences 

Using S(B),, ? S(F), one can derive various exact sequences involving 
the homology groups of B, F, and X, i.e., Wang, Gysin, and Serre se- 
quences. In this section we derive a few less known exact sequences by 
a technique that will also give the above mentioned sequences. 

Let 9' = (X', B', p', 2') be a weakly transitive fiber space, let f: B -+ B', 
and let (X, B, p, 2) be the fiber space induced from ?9' by f. 
(8.1) THEOREM. Suppose B is rn-1 connected, F= p'-(bj) is n-1 connect- 

ed, and B' is n connected, n, m > 1. Then there exist exact sequences: 

Hm+2n i(B x F, B V F) * - - 
* * Hg+l(B) -Hq(B x F, B V F) Hq(X, F) Hq(B>) 

H2m 1(F) + - - 

*-+ Hq(X) -+ H(B x F, bo> x F) Hs,-(F) Hqi-(X) 
H~n (B x F, B x x0) ** -- 

* -- Hq(B) -+ Hq (B x F, B x x) HHq,(F) Hq i(X) 
The above sequences are exact for any coefficient group and similar exact 
sequences hold for cohomology. 

PROOF. Let M and N be free DGA Z-modules and let g: Mq g- Ng be 
a homomorphism defined for q < r. Let g be the DGA Z-module defined 
as follows: 

AqMgq+Nq q<r 
=0 q>r 

-1(x + y) = ix + gx + ay 

x e M, y e N. Then by well-known arguments: 
(8.2) If a2 = 0 ga =- g and there is an exact sequence 

Hr-i(N) * +* * Hgq+(M) flq(N) --+ Hq(g) Hq(M) 
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The above sequence is exact for any coefficient groups and a similar se- 
quence is exact for cohomology. 

By well-known constructions we may assume f is a fiber map. Let 
F' = f -(b,). Let K be the subcomplex of S(B) generated by simplexes 
taking the n and mr-1 skeletons of Aq into F' and b0 respectively. Let 
D cS(B) be generated by the constant q-simplexes, q > 0 and let C(B) = 
KID. Since B is m-1 connected and 7r,(B, F')t;z(B')= 0, i<n, C(B) 
and S(B) are chain equivalent. Let C(F) be the subcomplex of S(F) de- 
fined as follows: Let SO be a 0-simplex in S(F) 

Co(F) is generated by SO 
Cq(F) = 0 0 < q < n 

= Z.(S(F)) q = n 
= S(Fiz)q q > n 

Let C(&2(B')) c S(f2(B')) be defined just as C(F) was defined. Since H%(F) = 
RI(2(B,))=0, i<n, C(F) and C(&2(B')) are chain equivalent to S(F) and 
S(P(B')) respectively. C(72(B)) inherits an algebra structure from S(72(B)) 
and C(F) is a C(Q2(B))-module. Let 5o: C(B) -* C(Q72(B)) be the twisting 
cochain defined by so(c + D) = DB(f#C), ce K. Note 4DB4(f#D) = 0 and 
fPq = 0 for p < max (n, m-1) because 4)BI is zero on constant simplexes. 
By (3.7) C(B), ? C(F) and S(B) BfI ? S(F) are chain equivalent and by 
(4.3) the later complex is chain equivalent to S(X). 

Suppose T e Cq(B) and S e C(F). Then because 'fq = 0 for q < 
max (n, m-1) and Cq(B) = 0 0 < q < m, 

(8.3) T (g S i p= To 0 (?(T)S, q < max (2m-1, m + n) 
=0, q<n 

Theorem (8.1) now follows from (8.2), and (8.2) by the following choices 
for M, N, g, and r. Let C(B) ? C(F) denote the complex with the usual 
product differentiation. For the first sequence let 

M= C(B) 
N = C(B) (? C(F)/Co(B) (? C(F) + C(B) (? Co(F) 
r = m- + 2n 

g(T) = (- 1)9T (& SO 5D Te Cq(B) q < r 
For the second let 

M = C(B) ? C(F)/Co(B) 0 C(F) 
N= C(F) 
r = 2m 

g(T?S) = (-l)qsD(T)S T e Cq(B), SeC(F) 
For the third let 
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M= C(B) 
N = C(B) ? C(F)/C(B) ? Co(F) 
r = 2n 

g(T) = (- 1)QT ? S o T e Cq(B) 
In each case gj = (C(B)<, ? C(F))q for q < r. 

9. Theory of Hirsch2 

Let K, A, and L be a DGA coalgebra, algebra, and A module. Let 
S e C*(K; A) be a twisting cochain. Let L* be the DGA algebra defined 
as follows: 

Lq* = {he Hom {H(L), H(L)} I h(Hp(L))cHpq(L), P > O} 

L* has trivial differentiation, multiplication by composition, and aug- 
mentation given by a(h) = ah(l), h e L*, 1 e L. H(L) is then a DGA L* 
module with trivial differentiation. 

(9.1) THEOREM. If A is a principal ideal ring and L, K, and H(L) are 
A free, then there exists a twisting cochain a* e C*(K; L*) and a chain 
equivalence ap: K,> ? L -+ K8 H(L). 

(9.2) COROLLARY. If (X, B, p, A) is a weakly transitive fiber space, B is 
pathwise connected and H(F; A) is free where A is a principal ideal ring, 
there is a twisting cochain a*: S(B) ? A -+ (S(F) ? A)* such that 
S(B) ? A,,* ? H(F; A) and S(X) ? A are chain equivalent. 

Corollary (9.2) stated in terms of cohomology gives: 
(9.3) COROLLARY (Hirsch). Under the hypotheses of (9.2) there is a dif- 

ferentiation on C*(B; H*(F; A)) which makes it chain equivalent to 
C*(X; A). 

PROOF OF (9.1). Let ': K,> &L-+ H(L) be a dimension preserving 
homomorphism and let ft: K<> ? L -+K K H(L) be defined by p = 
(id X p')(A X id) where A is the coproduct on K. Let AQ and A', be the 
filtrations on K<> ? L and K ? H(L) as given in Section 3. Suppose 
K-*:K KL* is a homomorphism such that 9*(Kq) c L*l. Simple calcula- 

tions show that: 
(9.4) s 2= 0 on A'P if and only if 

31= E (-1) k (' for q < p 
(Note this is the twisting cochain identity for (n*). 

2 The main theorem of this section implies a theorem (see (9.2)) proved by Hirsch in 
[8]. The proof of the main theorem was suggested by a proof of Hirsch's theorem given 
by Cockcroft in a paper (as yet unpublished) on the homology groups of spaces with 
two non-trivial homotopy groups. 
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(9.5) p8Q(c) = f*,(c) for c e AP if and only if 
l8 ,(c) = >(v X id) (c) for c e AP 

where P : K0 K0 L -H(L) is given by P(kok'0) 1)=l*(k)//(k'? 1), 
ke q, k'eK, leL. 

Let r: L -+ H(L) be an extension of the natural map of Z(L) onto 
H(L). C exists because A is principal. Since L and H(L) are free, there 
is a map $: H(L) -+ L and a chain homotopy D: L -+ L such that 
SD + D& = n- id. 

We define ,/ on AP and Sp* by induction on p such that: 
(9.6) p8( = ,,*p on AP and p1(AP) = A'p. (Note if p' is defined on AP, 

so is P.) 
Let p'(k 0 1) = a(k)C(l), k 0 1 e Al and let 90* = 0. Suppose (,oq, q < p 

and P' on AP have been defined and satisfy (9.6). (9.6) implies that 
Use* = 0 on A'P and hence (p* satisfies the identity given in (9.4). (9.6) also 
implies that p' satisfies the identity given in (9.5). Consider this latter 
identity for p + 1. Rearranging its terms, it may be written: 

(9.7) If keKp,+ and l eL 
P(k 0 1 0 1) + (-1)gp'(k ? 81) 

= 2'(8k & l + (-1)P+lk I ->(V'0id)(k X I) 
where V'(k) = v(k) - k X 1. Note v(k X 1 0 1) = ( +I)P+l *(k),(l). Let 
U(k ? 1) denote the right side of (9.7). We construct p*(k) and ,'(k ? 1) 
so as to satisfy (9.7). A tedious calculation shows that U(k 0 81) = 0. 
Let 

io*(k)(x) = (-1)P+1U(k X ((x)) k e KP, x e H(L) 
p2'(k A) 1) = (-)P+'U(k &g D(l)) 

Then 
v(k 0 1 0 1) + (- 1)XP'(k 0 81) = (- 1)P+%(*(k)f(l) - p'(k 0 1)) 

= U(k 0 ($l -D l) 
=U(kO(l+ Dl) 
= U(k & l) 

Therefore p'IAP+l and Sp*X+ have been defined and satisfy (9.7). By 
(9.5) p8S0 = &9q*p on AP+'. If k e Kp+s and 1 e L, 

Ii(k A l) = k fl'(1 & 1) mod A'P 
= k 0 '(1) mod A'P 

The fact that ' is onto and the inductive hypothesis that f(AP) = A'P 
then implies thatu(AP+1) = A'P+1. Thus /2 and (p* have been defined such 
that p8 = 8,,*& and such that pa is onto. This implies is* = 0 and by (9.5) 
that (p* is a twisting cochain. 



244 EDGAR H. BROWN, JR. 

Let Er and E' be the spectral sequences obtained from AP and A'P. 
P*: Eo =K? L - E' = K?&H(L) is given by p,(k(l)=k?'r(l). 
Hence pf E1 sX Ef. Therefore, by the usual spectral sequence argument 
,2: H(K, 0 L) -+ H(K4O* ( H(L)) and since everything is free, p is a 
chain equivalence. 

10. The bar and cobar constructions 

Let K be a DGA algebra or coalgebra. We embed A in Ko by identifying 
1 e A with 1 e K. Let T(K) be the DGA A-module with differentiation 
Q, grading dim,, coproduct Vt and product ,z as follows: 

K=K/A 
Kn = K& ... * * * (g)K n factors 
K? = A9 

T(K) = E Kn direct sum 
We will denote k, k? ... * kn by [kjk, *, kn] and 1 by[ ]. 

dim,[k,, I., kn]= dim ki 
8t[kly - ** kn] = 1-)?zi]kly .. * O ki, ...I* kn] 

where n, = dim,[k,, ... k, ]. 

vt[kl, --* *, kn] Ilkj, I ki] ( [kj+1, * , n] 
pt[kl., * kn] & [ki, * * k' ] = [kj, kn, * * * k',] 

Let dim,[k,, ***, kn] = n. 
Suppose A is a DGA algebra. The bar construction [7] ?(A) is a DGA 

coalgebra defined as follows: i(A) = T(A) with coproduct vt, grading 
dimB = dim, + dim, and differentiation OB = - t + 8, where 

8s[a,, 
.. 

* * an] = E (- 1)ni[al, * 
- 

-*, ai-la, *. * *,atn] 
ni = dimB[l, *--, ai-1] 

In [7] it is shown that i(A) is a DGA coalgebra. 
Suppose K is a DGA coalgebra such that Ko = A. The cobar construc- 

tion [1] ?F(K) is a DGA algebra defined as follows: ST(K) = T(A) with 
product pt, grading dimF = dim, - dims, and differentiation &F given as 
follows. Let f?: K-+ K by f?(K) = (-1)9k for k e K1. 

Ah[k] =-[nk] + pt(?1 0 id)V' -e K 
where v'(k) = V(k) - k ? 1 -1 0 k. &F is then defined on 9(K) by the 
requirement that 9(K) be a DGA algebra. In [1] it is shown that ?F(K) 
is a DGA algebra. 

Let K be a DGA coalgebra such that Ko = A, let A be a DGA algebra, 
and let Sp e C *(K; A) be a twisting cochain. Let cow : K-+ Kn, V: K 
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T(K), f7: T(A) -+ A, and S: T(K) -+ T(A) be homomorphism defined 
as follows: 

coo0 = aX 

01 = natural map of K onto K 
n = fl(wn-l ? w)v 

?n= 

Note - is well defined for cwn(k) = 0 if dim k < n. 

,2[a1,, a, *... an] = a1a.* an 

,kn] = [('kn, *- , 

where p'(k) = (-1)9(k) for k e Kq. 

Finally let p 
B = : K -+ 9(A) and -9F = i* F(K) A. 

(10.1) pB is a DGA coalgebra map and pF is a DGA algebra map. 
PROOF. Most of the necessary verifications are straight forward. The 

only difficult ones are qpB& =OB and Vt&B = ((B ? qpB)* The latter fol- 
lows from: 

VtCI)n = En (k &@ (ln-k) = k 0 (CO~~ 

which may be proved by induction on n. pBiq= =9B 
( follows from: 

Sp*w n& = a9SD*(on + 8&*(wn,1 

This also may be fairly easily proved by induction on n. 

(10.2) THEOREM. If K and A are A free, Ko = Ho(A) = A, H1(K) = 0, 
and K, ? L is acyclic, then (pB and (F are chain equivalences. 

(10.3) COROLLARY. If Y is a simply connected topological space, S(Y) 
and S(52(Y)) are chain equivalent to ?J3(S(i2(Y))) and ?(S(Y)) respectively. 

(This result was proved for Y in [1] and for 2 when Y is an Eilenberg- 
MacLane space in [7]). 

PROOF OF (10.2). Let (B e C*(9(A) ; A) and fF e C*(K; -Y(A)) be de- 
fined by 

(PB[al, .. *I* an] = _ (-)q -la, if n = 1 and a, e Aq 
= 0 otherwise 

F(k) = (-1)lq-[k] if k e Kq . 

It is easily checked that (PF and (PB are twisting cochains and that B BP= 

(p and SDF6DF = q'. Thus we have DGA maps 
(CFB id): K, & A -+?B(A),B? A 

(id (F) : KF ?E E(K) - K (g A 
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In [2] and [1] it is shown that J(A)4. ? A and KF ? XF(K) are acyclic. 
The desired result then follows from (3.7). 
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