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ON THE SIGNATURE OF A QUADRATIC FORM.

By E. T. BROwWNE.*

1. Introduction. A real quadratic form in % variables z;,---, za

1,...,n
(1) > i i (@ij = az)
th’
of rank r can always be reduced by a real non-singular linear trans-
formation to an expression of the type

2) 2 c;at.

Although the (real) transformation by which (1) is reduced to the form (2)
is not unique, it is well known that the number N of negative coefficients
in (2) is the same whatever be the particular transformation employed.
A similar remark holds for the number P of positive coefficients in (2).
Thus, P and N, and therefore their difference s = P—JN, called the
signature of the quadratic form, are arithmetic invariants under real non-
singular linear transformations. Since PN = 7, manifestly s is determined
when N and » are known.

Frobenius has shownt that if (1) is of rank » the variables can always
be so numbered that no consecutive two of the numbers in the sequence

A11y ***y A1r
,oo.’ Ar=

Ar1y +*y Qrr

Q11 Qg

(3) 4o =1, 4= ay, 4, = Ay Oss

are zero and 4,%0. (1) is then said to be regular, and its matrix
regularly arranged. Gundelfinger has shown} that in this case the number N
of negative coefficients in (2) is equal to the number of variations of sign
in the sequence (3), where a vanishing term may be given a sign at pleasure.

In the paper of Frobenius it was shown that for certain particular types
of forms, for example, recurring forms in which a;; = a;4;— even if 4, =20
and an arbitrary number of consecutive A’s in the sequence (3) vanish,
by replacing the vanishing A, by a certain new determinant 4;, the number
of negative coefficients in (2) can always be determined from the new

* Received September 16, 1928.
1 Frobenius, Uber das Trigheitsgesetz der quadratischen Formen, Crelle, vol. 114 (1895),
p. 193.
1 Gundelfinger, Zur Theorie der quadratischen Formen, Crelle, vol. 91 (1881), p. 225.
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sequence. Moreover, it was shown by Frobenius (and more recently by
Franklin)* that if (1) is a general real quadratic form of rank » in which
A,$0, N can always be determined when in the sequence (3) not more
than two consecutive A’s vanish. The interesting demonstration by
Franklin was based on certain properties of the secular equation. In this
paper we shall show that Gundelfinger’s rule and the scheme of rearrangement,
mentioned previously as used by Frobenius, furnish a very simple method
of arriving at these facts.

2. Quadratic forms which are not regular. In the quadratic
form (1) of rank r let us suppose that A4,40. Let us suppose also that

@ Ar Arto41F 0 O<r; 1o r—e—1),

Arti =0 G=1,-...,0).
Since Ar+0 while Ary1 = O there exists a real set (zi, - --, ;) such that
T
(5) @i, t+1 =,Zl aj xj G=1,.---,z41).

If from the elements of the (z -} 1)th column of A2 we subtract the sum
of the products of the elements of the first = columns by «,, - - -, xr every
element in this column is reduced to zero except the last one which is

T
k= aryo,r41— 21 Art2,j ;-
J=
Performing the same operation on the (z 4 1)th row and expanding, we have
(6) A1'+2 - — k2 Af-

If, therefore, 0 =1 in (4) so that Ary» + 0, Aryo is evidently of opposite
sign to A., a fact which is well known. If, however, 6 >1 so that
Arys = 0, (5) holds for i = v+ 2.

Now holding the first = columns fixed in Arjo41 let us transfer the
(r+ a)th column over the « —1 columns immediately preceding it and put
it in the (r41)th place. Proceeding similarly with the rows, we obtain
a new sequence of A’s which we shall denote by

(3) AO; Al; M) A‘l’y A;ﬁl’ ] A‘(l'?‘“’ A‘H“H‘l) Y AT'
On making use of the conditions (5) for ¢ =1, -.., -+ 2, and expanding

A5, we have © )
Arte = —ka 4x,
* Franklin, 4 theorem of Frobenius on quadratic forms, Bull. Amer. Math. Soc., vol. 33
(1927), pp. 447-452.
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where
T
ke = Orta,r41 —'ZZ Qrta,j Xj
J=

Now A%, cannot be zero for every choice of ¢ (3 < « < o+1) for in
that case we would have

T
Qrio,r+1 Z_EIaHa.jxj (¢ = 3,...,0+1)
J=

which in connection with (5) would give Aryg+1 = 0. Hence, for some
choice of ¢ (3 < e < o+1) A7, + 0 and is of opposite sign to 4. By
a similar argument it follows that if in the subsequence

) ()
A!', AT+17 ) A‘l‘+0’7 A‘l‘+d+l

two or more consecutive terms vanish, without affecting those terms which
do not vanish, the last ¢—1 rows and columns of Aryst1 can be so
arranged that in the new subsequence

(7) Ar; Ag-o-‘})—ly tety Ag—?—u, Ar+a+1
no two consecutive A’s vanish.

Assuming that the number of variations of sign in the remainder of the
sequence (3) can be determined we proceed to the determination of the
number » of variations in the subsequence (7). Since A4 and Ag?.z have
opposite signs, » evidently satisfies the inequalities

(8) 1<rv <o,

v being even or odd according as Ar and Arye41 have the same sign or
opposite signs.

In the preceding discussion we assumed that 4 ¥ O for #>0. This

restriction’ may easily be removed. For if 4, = 43 = ... = 4¢ = 0,
we consider the quadratic form
1,.:,m
9 2+ 2wz,
tJ

the sequence (3) corresponding to which is

all’ *y A1y
(3’) Ao=1,A1=1,A,=au,---,A,.H= .

Ap1y-s vy Qpr

The canonical forms of (9) and (1) have exactly the same number of
negative coefficients. Moreover, the number of variations of sign in the
sequence (3') is exactly equal to the number of variations in the sequence (3),
and in the former 4. + 0 with «>0.
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We may draw the following immediate conclusions:

If =2, v=2 or 1 according as 4; and 4.4s have the same sign or
opposite signs.

If 6 =3 so that 1 <» <3, if 4; and 4,44 have the same sign, » is
even and hence is equal to 2; but if A; and A4+ have opposite signs,
v is odd and we cannot distinguish between the cases » =1 and » = 3.
Indeed, in this latter case the signature of (1) cannot be determined from
the sequence (3) alone. Cf. the classical example of Frobenius as quoted
by Franklin.*

If 0=4 so that 1 < o< 4, if A4r and 4:45 have the same sign, » is
even and we cannot distinguish between the cases » = 2 and » = 4; while
if A; and A.4+5 have opposite signs, » is odd and we cannot distinguish
between the cases » =1 and » = 3.

That all of these cases actually arise is clear from a single example.
Thus, consider the form

2ax, x,+2ba2+2bx, x, + axl+ 2bxl
the sequence of A’s corresponding to which is
1, 0, 0, 0, 0, —3a®b%
However, on renumbering the variables

Xy = Y5, X3 = Y1, Xz = Yz, Xy = Y3, X5 = Y4,
the form becomes

2byi +2by yy+ay;+2bys+2ay,y;,
the sequence of A’s corresponding to which is
1, 2b, 2ab, 3abd®, 0, —3a®bc.

The form is now regular and » can be determined by Gundelfinger’s rule.
In fact, if a>0 so that 4, and A; have opposite signs, » =1 or 3 ac-
cording as b >0 or b<<0; while if a<<0 so that 4, and 4; have the same
sign, » == 2 or 4 according as $>0 or b<O.

For ¢>4 it is apparent that the number of cases which may arise is
even greater.

We may therefore state the following theorem.

THEOREM 1. If for a real quadratic form (1) of rank r we set up the
sequence (3) in which A, 3 0, then the number of megative coefficients in
the canonical form (2) is equal to the number of variations of sign in the
sequence (3), where

* Franklin, loc. cit. pp. 451-452.
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(i) if Az Ar+2 F 0 while Aryy = 0, the subsequence Az, 0, Art2 gives rise
to one variation;

(ii) if Ar Arys + 0 while Ary1 = Arye = 0, we assign to the subsequence
Az, 0,0, Arys two variations or one variation according as Ar and Acys have
the same sign or opposite signs;

(iii) if Ar Adeya F 0 while Aryy = Argo = Arys = 0, we assign to the
subsequence A., 0, 0,0, Arrs two variations if Ar and Ay have the same
sign, while if Ar and Arya have opposite signs the number of variations is
undetermined.

(iv) For 0 > 4, if Az Aryot1+ 0 while Aeys = 0(G =1, ..., 0) the
number of variations in the subsequence cannot be determined by the signs
of the A’s alone.

3. Recurring forms. The scheme of rearrangement which was employed
in the preceding section on the general quadratic form will now be applied
to a recurring form, i. e., a form (1) in which

@ij = @itj—2.
We first prove the following theorem.
THEOREM 2. If for a real recurring form (1) we have Ar ¥ 0 (z>0)
while Aryi =0 (i =1,-.., 6), there exist ¢+ 1 real sets X® = (x{, ..., 2® )
kk=1,...,041) such that

T—1
_ * k=1,...,041)
(10) Urip_14i — 2“i+j"’}) {(z' =0,...,t+0—k),

and satisfying the conditions

7—1
hk=1,--,0)
an jzoafﬂ—lw J Z Prti-2j % 'kﬂ) {(i =1,...,a041).

In order to prove this theorem we shall need first to establish two lemmas.

LemMMa 1. If for a recurring form (1) there exists a single set
X' = (xo, -+ -, Tr—1) satisfying

—
(10,) Brti =20ai+,~x,’- ¢G=20,---,7+0—1),
Jj=

there exist ¢ additional sets X® satisfying the conditions (10) of the theorem.
In (10x) we have on replacing i by ¢+41,
T—1
Qrthti = ._Zoai+j+1 )
T—2

- 2:aH-.H—lx +aT-H -r— (i=0"“17+6—k—‘1)-

In the first term on the right replace j by j—1 and in the second term
replace ary; by its value from (10,). We then have
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T—1 T—1
(10k+1) Trtketi :Jg ;45 %2 + x‘r"llgo @45 )
T—1
=J§a,.+jx;.k+n (=0, 7+0—k—1),
where
12) a2tV = 2 x}"“’ = xJ' o 2P, G=1,-..,7—1).

Since for k = 1, (10x) becomes (10,), we have shown that (10,) implies
(10s); this in turn implies (10;); and in general (10x) implies (10x4;) for
k < v+ 0—1 and therefore for ¥ < o. Hence the lemma is proved.

LeEMMA 2. The sets X® of Lemma 1 satisfy the conditions (11) of the
theorem.

For, on replacing in the right hand member of (11) X*+D by its value
from (12) and using (10,) with ¢ replaced byz+:¢:—2 (¢ =1,...,0+41)
the equality follows at once.

In view of these two lemmas in order to prove the theorem completely
we have merely to show the existence of a single set X' satisfying (10,).
That such a set exists for ¢ = 1 follows directly from (5) after making
obvious changes in notation. To proceed by induction we assume that
the theorem is true for ¢ and prove that it is true for o--1.

From the elements of the (z -+ k)th column of Arist1 subtract the sum
of the products of the elements of the first = columns by «, .:., a®
(k=1,...,0+41). Proceeding similarly with the rows it follows from (10)
that Arjey41 is reduced to the form
Az, 0 I
0, B

where B is a symmetric determinant of order ¢41. Indeed, B is recurring,
for if by denote the element in its sth row and %th column evidently

T—1
o > ] k=1,..,041)
(A3) by = by = Gy — 7= G-t af® {(i = 1: : a+1),

which in view of (11) equals b;—1,x+1. We may therefore write
bik = biyr—s G+k=2,...,2042).
Moreover, from (10x) with 7 replaced by z+i—1,

T—1
Aortith—2 J.;o Crii1+j x}k) =0 G+k<o+1)
so that
(14) big, = 0 (+k<o+1).
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Hence, on expanding Arisy1 We have

(15) Arpors = (— 1)°@HDR (bt 4o,

where
T—1

by = a21+6—j20 Atto+j Xfe
If, therefore, Artet1 = 0, bs = 0 so that (10;) holds for ¢ =z} and
the induction is complete.

COROLLARY 1. If Ar Ar46+1F0 (z>0) while 4:1i=0 (=1,..., )
then if o is odd, Ar and Ariect+1 have the same sign or opposite signs
according as o is of the form 4n—1 or 4n--1.

We may now state a corollary to Theorem 1.

COROLLARY 2. If in the sequence (3) for a real recurring form of rank r,
A, 40 and three consecutive terms vanish, the subsequence of five terms con-
taining these vanishing terms should be considered as presenting exactly two
variations of sign.

Now let us suppose that A; Ar4641+0 while 4;4; =0 G=1,...,0).
In Arto+1 let us place the (z+41)th row and column last. From the
elements of the last column of the new determinant subtract the sum of
the products of the elements of the first = columns by xp, ---, 2r—1.
Proceeding similarly with the last row, we have in view of (10)

Arjor1 = -—(wzr+a —2 Qr+a+i wﬁ)z Drio-1

where Dryg—1 is the principal minor determinant of order z - o—1 standing
in the upper left hand corner of the rearranged determinant Arigi:.
Evidently Dr4s—1+0 and is of opposite sign to Arigt1.

In Drio—1 place the (z+41)th row and column last. Using the multi-
pliers 7, - - -, 271 and proceeding in a manner similar to that just indicated,
we have

Drto—1 = —(azrto —'Z Orto—1+i ') Dryo—s.
This process may be continued using the multipliers 3, ..., z®  (k=3,...)
until we arrive at one or the other of the conclusions according as ¢ is
even or odd.

Either Dr43 = —c? Dy (¢c$0); or Drya = —d®*4; (d+0). In order
to estimate the number of variations of sign due to the vanishing of
the o consecutive 4’s, we may employ the subsequence consisting of the
o+ 2 quantities
(16) A‘r) D1‘+1> Dryay--ey D‘r+6—1> Drto, A‘l’+0+l-

Denoting by ¢ the sign of Arisy1 and recalling Corollary 1, it is clear

that according as o is of the form 4s—1, 4s, 4s}1 or 4542 the signs
of the numbers in (16) are as follows:
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v = 4s—1, el()—e (el -to sterms..- [()—e( )el;
¢ = 4s, +ee|()—e()e]---tosterms--- |()—e()el;
¢ = 4541, —e()e|()—e()e| ---tosterms-=- |()—e()e;
6 =4s+2, +e—e()e|()—e()e]---tosterms... |()—e( )e].

The number of variations of sign in each of these subsequences is easily
estimated and we may summarize the results in the form of a theorem.
THEOREM 3. If for a real recwrring form (1) we set up the sequence (3)
in which Ar Aryo+1 + 0 while Aryi =0 =1, --., 0), then to the sub-
sequence
AT; 07 07 c 0) Ar+n+1

we assign exactly (o -+ 1)/2 variations of sign if o is odd. If o is even of
the form 4s (4s+2) we assign /2 or ¢/2+1 (6/2+1 or 6/2) variations
according as Ar and Ariot1 are of the same sign or of opposite signs.

Although Theorem 3 was proved on the assumption that 4r # 0 for z >0
the results are still true for r = 0 as is clear from the discussion in § 2.
However, this might have been proved directly. For, let 4r = 4y = 1.
Then 4; = 0, 43 =0, ---, A; = 0 imply in turn that ay, = O,
a=20,..., a6—1 = 0, and we have

(151) A , = (_ 1)0’(0—}-1)/2 ag—l—l

ot
which is (15) with z = 0 and X® = 0. If now we consider each set
X® as zero and proceed with Agyy in the same manner as we proceeded
with Ar4¢41 the result is precisely the same as that previously arrived at.
Indeed this is exactly the scheme employed by Frobenius in this special
case.

4. Recurring forms for which 4, = 0. In the preceding section
it was shown that if (1) is a real recurring form of rank » for which 4,4 0
the signature of the form was completely determined by the sequence of
A’s alone even when an arbitrary number of consecutive A’s vanish. The
rule here given for determining the signature is easily identified with that
given by Frobenius.

We now consider the case in which 4, = 0. Then A; # 0 (z <r) while
Ai=0@GE=7v+1, ..., n). Writing r+0+1 = n we may adopt the
notation of the preceding section. Manifestly the signature of the original
form is the same as the signature of the form whose matrix is (12), and
hence is the sum of the signatures of the two forms whose matrices are
A; and B. If ¢ denote the rank of B, evidently ¢ <o -1 (since 4, = 0).
In view of the fact that in the recurring matrix B b; =0 for ¢ +j < o1,
B is of rank exactly o if by = O while bg+1 + 0. Similarly, Bis of rank
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6 —1 if by = bsy1 = 0 while bsy2 ¥ 0, and in general, B is of rank
e=0+4+1—pu if bg = bo+1 = -+ = bg—14u = 0 while b}, + 0. In this
case manifestly the principal minor determinant B, of order ¢ standing in
the lower right hand corner of B is different from zero, and therefore in
view of the manner in which B was built up, it is clear that the deter-
minant of order r = 7 + ¢ formed by bordering A with the last ¢ rows
and columns of A4 is different from zero. Following Frobenius we shall
call this determinant 4;.

In B let us, while maintaining their positions relative to one another,
transfer the last ¢ rows and colums over the » rows and columns preceding
them thus bringing the determinant B, into the upper left hand corner
of B. The number N of negative coefficients in the form B is then easily
determined by the rule given in Theorem 3 for a recurring form of rank ¢
in which B, = By = ... = Bp—1 = 0 while B, 4 0. Since N, which was
determined from the sequence

1,0,0,---to¢g—1 terms---, 0, 0, By,
might have been determined just as well from the sequence
4:,0,0,-.-toe—1terms:-., 0,0, 4. B, = 4,

we may formulate the rule as follows.

If for a real recurring form of rank » we set up the sequence (3) in
which 4.4 0 (v <<7) while 4; = 0 (>7) and if we adjoin to this sequence
r—1v—1 zeros and in addition a determinant 4; formed by bordering
A, with the last » — = rows and columns of the matrix of the form

10 Ao, Ay, -+, 47,0,0, ... tor—7—1 terms-.., 0, 4,

then the number N of negative coefficients in the canonical form of (1)
is given by the number of variations of sign in the sequence (17) where
the number of variations corresponding to o consecutive zeros in the
sequence is determined by Theorem 3.
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