An Extension of Results of Novikov and Browder

C.T.C. Wall

American Journal of Mathematics, Volume 88, Issue 1 (Jan., 1966), 20-32.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.ac.uk/about/terms.html, by contacting
JSTOR at jstor@mimas.ac.uk, or by calling JSTOR at 0161 275 7919 or (FAX) 0161 275 6040. No part of a JSTOR
transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or

otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

American Journal of Mathematics is published by Johns Hopkins University Press. Please contact the publisher for
further permissions regarding the use of this work. Publisher contact information may be obtained at
http://www .jstor.ac.uk/journals/jhup.html.

American Journal of Mathematics
©1966 Johns Hopkins University Press

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor @mimas.ac.uk.

©2000 JSTOR

http://www .jstor.ac.uk/
Mon Nov 20 09:19:42 2000



AN EXTENSION OF RESULTS OF NOVIKOV AND BROWDER.

By C. T. C. WaALL.

Let 7» be a closed, oriented, simply-connected, smooth manifold.
According to Whitney [20], 7* can be smoothly imbedded in spheres S¥+
of sufficiently high dimension (N = v is certainly adequate). Let z€ H,(V)
be the fundamental class of V, & the normal bundle of V in SN+, V¢ the
Thom complex of & and &€ my,, (V%) the element derived by the Thom
construction (“shrinking the complement of an open tubular neighbourhood
of ¥ in 8%+ to a point®). The quadruple (V,2,4 @) has certain properties:
e.g. (V,z) satisfies Poincaré duality, and the Hurewicz image of «, h(a),
equals the image, ¢(#2), of # under the Thom isomorphism. In a remarkable
paper [10], Novikov indicated a proof that in the case N >wv =5, the
invariants above almost characterised the diffeomorphism class of V; and
Browder showed in [1] that most quadruples (V,z, «) satisfying the con-
ditions could so arise.

The main object of this paper is to extend these results to the case of
manifolds with boundary, where, somewhat surprisingly, a stronger result
can be obtained. We also use a paper of Haefliger [2] (the methods of
which were used in [5]) to extend the results to the metastable range: this
extension was first investigated by Levine [7].

Since no proofs of any of the above results have appeared in print at
the time of writing, we shall give them all here, making use only of the
work of Milnor and Kervaire [6], [8].

1. Invariant systems. We first list the data which will be required
for the construction. For a closed manifold, this was done above. It is
convenient to have a name for them: we choose the name ‘invariant systems,’
but will always abbreviate it to I.S.; we distinguish the closed case from
the bounded case by writing B.I.S. or C.I.S. We call the quadruple
(X,2,6V,e) a C.I.S. if X is a finite, simply-connected C.W. complex;
2€ Hy(X) has the property that for any integer r and abelian group G,

tN:H (X;G) > Hpr (X5 @)
is an isomorphism (we call z a fundamental class for X); &V is an N-vector
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RESULTS OF NOVIKOV AND BROWDER. 21

bundle over X with Thom space X¢; and «€ my.,(X%) has the property
h(a) =&(z).

The definition in the relative case is entirely analogous. We call
(X,0X,2,¢,a) a B.1.S. if (X,0X) is a finite C. W.-pair, with each of X,
0X connected and simply-connected ; 2 € H,(X,0X) induces isomorphisms

zN: H(X; @) > Hyr(X,0X ; G)
and
zN: A (X,0X;G) > H, (X; @)

for all , G; &V is as above, and we write 0.X¢ for the Thom complex of £ | 0X;
and « € my,, (X 0XE) again satisfies h(a) =& (2).

Since, by Whitney [20], any v-manifold has an essentially unique
imbedding in DN+ if N > v, we note that a smooth compact manifold deter-
mines an essentially unique B.I.8. or C.I.8., again provided N > .

Lemma 1. Let (X,0X,2,6a) be a B.I1.8. Then (0X,0,2,&|0X,0,a)
s ¢ C.I.8.

Proof. By a standard property of cap products, the following diagram
is commutative up to sign (with arbitrary coefficient group G):

Hr(X,0X)—> H7(X) — H(0X) —> H"(X,0X)—>H(X)
zN zN 0,2 N zN 2N
“Hyr(X) = Hyr(X,0X) = Hyppy (0X) —> Hyppy (X) = Hppy (X, 0X).

Since both rows are exact, we can use the Five Lemma to conclude that
02N HT(0X) = Hyyy (0X)
is an isomorphism. It now only remains to observe
h(040) =80 (0) = 0,2(2) = &(8,2).

2. Constructing a manifold. What would be nice to prove is that
there is a (1-1) correspondence between appropriately defined equivalence
classes of B.I.8. and C.I.S. and embeddings of manifolds in spheres. This
is not true, however, and one can only obtain approximations to it. We shall
start by constructing an imbedded manifold which has the wrong homotopy
type; this we shall try to rectify in subsequent paragraphs.

First, given a C.I.8., we can replace X by a homotopy equivalent
simplicial complex, imbed this in Euclidean space of large dimension, and
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take the interior of a regular neighbourhood—this is a homotopy equivalent
open differentiable manifold. For a B.I.S., we take (X,0X) as a simplicial
pair, and imbed in a simplex A* in such a way that X is imbedded in one
face, and the remainder of X in the interior. Taking a neighbourhood in A%
now allows us to replace X by a (non-compact) manifold, X by its boundary.

We can now regard the Thom complex X¢ as a manifold (except at the
‘point at infinity’) with boundary 6X¢ 1In the case of a C.I.8. we now
take a representative f: SN+ — X¢ of a, make it ¢-regular on X (c.f. Thom
[14]), and write M?=f*(X) ; this is a smooth submanifold of SN+, with
normal bundle f*(£) (by the ?-regularity). For a B.I.S., we represent
a by f: (DN, pDN+) — (X% 0X%), and make this ¢-regular on (X,0X).
Observe particularly that if a map from DN+ to 9X%, already ¢-regular on
0X, is in the homotopy class 0 ax, we can take this as the restriction of f
to 80X, by another result of Thom (loc. cit.). Again, when f is ¢-regular
on X, M?"={*(X) is a smooth submanifold of D¥+, meeting the boundary
transversely in 0M = f-*(8X), and with normal bundle in DN+ given by f* (£).

The construction, which is due to Browder [1], gives us a manifold
Mv, and a map f: M— X with f*(8X) =0M. We assert that f has degree
1. For let p=7*¢ be the normal bundle of M. Then we have maps
SN+ — Mn—> X¢ (in the closed case) or

(DN+, 9DN+) — (M, 0Mn) — (X%, 0X¢) ;

the first has degree 1 by construction, and the composite also, by the assump-
tion h(a) = ®(2). Hence the map from M7 to X¢ has degree 1 ; desuspending
by the Thom isomorphism, so has f.

Lemma 2. Let M, X satisfy Poincaré duality with fundamental classes
Y, 2. Let f: M—>X have degree 1. Write K" (M ;@) for the cokernel of
f*: H'(M;G) < H"(X;G). Then f, induces a map from Kr(M;G) to
Hr(M ;@) so that

H'(M;G)=K"(M;G) @ f*H"(X; Q).
f* is a monomorphism of rings, and
fA*H (X;G)UKs(M;H) CKs(M;GQH).
An analogous splitting occurs in homology.

Proof. Since fi(y) =2, the diagram
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*
H"(M;G) «——H"(X; Q)

yN 2N
How(M; &) -E—>H,,J,(X; &)
is commutative, for by a standard property of cap products,
2N c="Fy N c="F(y Nf*c).

Since z N is an isomorphism, (2N)~f.(y N) splits f*. We have K" (M; @)
=(yN)*Ker f,. If c,€H (X;@), and ¢, € K*(M;H), then

Fe(@ N f¥e) =Fu ((y N e) N fFes)
=f.(yNecy)) Ney=0N ¢, =0,
80 €y f*cy is in K™+s(M ;G QR H).

We shall also need the corresponding results for bounded manifolds. Let
y € Hy(M,0M) and z € H,(X,0X) be fundamental classes; f: (M, M) — (X, 0X)
have degree 1 (i.e. foy=2); K,(M) =Kerf,: H,(M) — H,(X) ; similarly
for K,(0M) and K,(M,0M).

LemmaA 3. With the above assumptions, the exact homology sequence of
(M,0M) splits as the direct sum of an isomorphic copy of the exact sequence
of (X,0X) with the sequence of the K,. The intersection of any x€ K(M; G)
with any y € Hy,(X,0X ; H) vanishes.

Proof. Consider the diagram

H»r(X,0X ;@) > Hv"(X;G) - H""(0X ; G) > H"(X,0X ; G)
\

Hvr(M,0M ; G) = Hvr(M;G) = Hor(0M ; G) = Ho™* (M, 0M 3 G)

yN yN 05y N yN
H,(M;G) = H,(M,0M;G)—>H,,(6M; @)~ H,,(M;6)

H.(X;6) - H,(X,0X;60) > H,,(0X;6) - H,(X;0)

As in Lemma 2, the composite map of the upper row on the lower is the
isomorphism induced by zN. Since the maps induced by y N are isomor-
phisms, f* again splits fy additively. By the commutativity of the lower
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squares, the K’s form a subcomplex of the exact sequence of (M,dM) ; since
(y N)f*(2N)* also imbeds the exact sequence of (X,0X) as a subcomplex,
and the groups in the third row all split, the whole sequence splits as a direct
sum.

For the last part, recall that intersections can be computed as cup
products; we wish to show

Kv-r(M,0M;G) - f*Hr (X ; H) =0.

But by an argument as in Lemma 2, we see that the product lies in
K*(M,0M ; GQH) =0.

We remark that the sequence of K’s looks rather like the sequence of
homology groups of a manifold, except that the extreme terms are absent.
In particular, the direct sum splitting shows that the K’s satisfy Poincaré
or Lefschetz duality (appropriately interpreted) and the universal coefficient
theorem.

3. Surgery. In §?2 we constructed from a C.I.S. or B.I.8. a mani-
fold M» embedded in SN+ or DN¥+» and a map of degree 1 f: M?—> X such
that f*¢ is isomorphic to the normal bundle 5 of M, and if the map from
SN+ regp. DN+ to M7 given by the Thom construction is followed by the map
from M7 to X¢ determined by an isomorphism above, the composite has
homotopy class «. Under these circumstances we say M corresponds to the
C.L.S. or B.1.S. If also f is a homotopy equivalence, we say M realises
the invariant system.

. Let M correspond to an I. S.; we shall simplify M by surgery, making
sure that at each stage it corresponds to the I.S., and try to make f a
homotopy equivalence. We shall find it necessary to impose arithmetic
restrictions on » and N as we proceed.

Suppose inductively f r-connected (r=0), and z€ K,(M;Z).

(8.1) If r>0, z is spherical.

For r—0, Ko(M) — Ho(M) is generated by spherical classes, though
it does not consist solely of them. If r=1, M is connected, and z € K, (M)
=H,(M) is always spherical. If r=2, M and X are simply-connected, and
by the relative Hurewicz theorem, % : @py (f) = Hyia (f) is an isomorphism.
But 0, induces an isomorphism of H,.(f) on K,(M), so we can write
=04h(y) =hi.(y), and = is spherical.

(8.2) If v=2 41, « can be represented by an imbedded sphere S.

By (3.1), we can represent « by a map of S” to M, and by a general

position argument which stems from Whitney [20], we can deform such a
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map slightly to an imbedding, ¢ say. We can also obtain an imbedding if
v=2r, r>2 and M is simply-connected [3].

We now use ¢(S7) to perform surgery to kill z; however, we must be
careful that our construction gives an M’ which corresponds to the given I.S.
We shall in fact construct a submanifold W+t of SN+ X I or DN+ X I and
a homotopy F: SN+ X I— X¢ or (DN+,dDN+) X I— (X% 0X¢) which is
t-regular on X, has F-*(X) =W, and F(P,0) =f(P) for P € S¥+ or DN+,
Then, clearly, if M’ is the ‘upper end” W N (S¥+ X 1), M’ corresponds to
the 1. 8., and if W is diffeomorphic to M X I with an (r 4 1)-handle attached
to kill z € K, (M), we are one step forward in the surgery.

(8.8) If v=2r and N >r-+41, we can perform surgery as above to
kil z€ K, (M) (if r=R), v€mx (M) (if r=0,1), provided if v==2r that
r=4, and r£ 7 and the sphere representing « has trivial normal bundle in M.

Since fi: 87— X is nullhomotopic, we can extend to a map j of Dr+.
The bundle j*¢ is trivial: we choose a framing fi,- - -,fy for it. As
7*E | 8rt = i*f*£=1%*), we have now a framing along ¢(S7) of the normal
bundle  of M in S¥+*. Deform i(S") along the normal vector f; into the
complement of M, and then span by a disc D™**, which we can suppose smooth.
Since N +v=38r-+2=2r-+4 3, we may suppose D™ imbedded. As also
N+4v> (r+1) 4+ v, we can suppose D! disjoint from M except along the
boundary.

The vectors fi,- - -,fv give a normal (N —1)-field to D™ along its
boundary. Since the normal bundle of D7+ is trivial, we can regard them
as defining a map from S* to the Stiefel manifold Vy,pyyna. I r<v—r,
all such maps are trivial, so we can extend fs, - -, fy to a framing fo,- - -, fwpr
over all D+, If r=wv—r, and r=£1,83,7 since

Og 7 (Viswr-1,8-1) = 71 (800r)

is then a monomorphism, and the image of the element above is clearly the
characteristic class of the normal bundle of ¢(87), which vanishes by hypo-
thesis, we can again extend. Use the vectors fw,i,* * *, fyswor to define a tube
D+t 3 D round Dr+*, meeting M in 87X Dv.

Now take M X I C SN+ I, and attach Dt Dvr X 1 in SN+ X 1.
There is a right-angle corner at 87 X §v; this is to be straightened, and
Dr+t X Int(Dvr) pushed into 8¥+ X (0,1). For more details of this con-
struction, see Haefliger [2], p. 460. This defines W. We now define the
homotopy F. We start with f: M — X, the given map extended (as given)
over a tubular neighbourhood of M to X¢ and (we may suppose) mapping
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the remainder of SV*v to the point at . Extend over W by mapping M X I
via projection on M, D™* by j, and the remainder of D+ X D" using a
retraction on (D™ X 0) U (87 X D* ), which is already mapped. Over a
tubular neighbourhood of W, for M X I we again use projection; over Dr+t
the normal framing fo,fs- - -,fx (where f, is the direction of the second
factor in SN+ X I) defines a map (recall that fy,- - -,fy framed j*¢).
When the corner is straightened, f, and f; will be forced to fit together there;
we then have covered h: W— X by a map in £ of the normal bundle of W
in §¥+ X I. Take the induced map of a tubular neighbourhood of W to the
Thom complex of £ and map the rest of SN+ X I to the point . The
constructed map has all desired properties and we have completed the proof
of (8.3).

(8.4) Letv=Rkork+1, N >k=2. Then we can perform surgery
to make M simply-connected, and f: M — X k-connected, so that K,(M) =0
for r <k.

We first add 1-handles to connect up the components of M. Next kill
in turn the generators of the fundamental group of M ; under the assumption
k=2? above, it follows from ([6] Lemma 5.2) that this reduces the group
to zero. The argument above will now permit us to kill in turn the K;(M)
for 2=1<k.

In the case when M is bounded, we can perform surgery both on M and
on M. By an observation made in §2, when V is given, and f: SN+t — gX¢
represents «, is f-regular on 9X, and has V=f*(0X), we can take M as
above with boundary V, and then perform surgery on M.

(8.5) Let v=2k-+1, N>Fk=2. Then we can perform surgery to
make M and 0M simply-connected, and kill all the K, except those lying in
the exact sequence

We may first perfofm surgery on M to make K,(0M) =0 for r <k, then

the same for M. The higher K;(0M) and K;(M,0M) vanish by duality
(Lemma 38) and the exact sequence shows that the other K’s are also zero.

(8.6) Let v=Rk—+2, N—1>k=R®. Then we can perform surgery
to make M and 0M simply-connected and kill all the K, except

0— Kk+1(6M) s d Kml(M) '—>Kk+1(M, 3M) i d Kk(aM) — 0.

The proof is as for (3.5).
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4. Surgery in middle dimensions.

(4.1) Suppose M closed, v=R2k+1, N—1>k=R. Then we can
perform surgery to kill Ky also and so make f: M — X a homotopy equivalence.

By (8.8), the above hypotheses are sufficient to ensure that for any
x€ Ky(M), we can perform surgery to kill it. Now by §5 of [6] (particu-
larly Lemma 5.7) or §2 of [15] the result follows if %k is even. When &
is odd, the argument of §6 of [6] gives the result® provided that (3.3)
can be sharpened to state that the normal framing of i(S) in M induced
by the modification can be altered by any element in the image of

0: ‘7Tk+1(Sk+1) d 'ﬂk(sokn) .

But this is not difficult (c.f. [2], end of §3). For the extension of the
partial frame f,,- + -,fy over D! may be varied by any element a of
raa (Vsoran-1) (it is always possible to extend the resulting partial frame
over the contractible D! to a complete frame). Substituting for v and r
in terms of k, this group is w1 (Vaswn-1). Now the Stiefel manifold is the
homogeneous space SOy.x/SO0x.1, hence the above lies in the exact sequence
04 T4
w1 (Vavste,v-1) —— 7 (80x41) ——> 71 (8O0x.) -

The varying by « of the partial frame over D7+ alters the normal framing
of i(87) in M by d4x; this can be any element of Im d, —Keri,. But as
N =2, m(80y.s) is stable; Keri, is the same as for N —2, hence equals
the image of mpi1 (Vi) = maen (8%41).

(4.2) Suppose M bounded, f | 0M already a homotopy equivalence, and
f k-connected (v—=2k+1=5, N >k-1). Then we can perform surgery
to make f a homotopy equivalence.

By a remark at the end of § 3, the K, satisfy duality and the universal
coefficient theorem. Hence in the middle dimension, they have linking
numbers with the usual properties. The argument of Kervaire and Milnor
is now again valid.

We can now give

TarorEM 1A. (Browder [1]). Let v >4, v£2 (mod4), 2N > v+ 2.

11t is possible to show that the argument on p. 525 of [6], using Lemma 5. 10, can

be applied here, by obtaining Wu formulae for X. However, this argument of [6] is

sjrrelevant. For since I is nonsingular, to N corresponds a p with L(X\, u) =0, and

hence the class in M’ determined by w has order = 2. This rules out the second pos-
_ sibility on p. 526, the only one which causes trouble.
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Then o C.1.8. can be realised by o manifold, provided, if v=4j, that o=,
where o 1s the signature of X and v the (Hirzebruch) L-genus of the bundle
nwerse to &.

Proof. Only the case v==4j remains, and we can mimic the proof in
[6] provided that the signature of K, vanishes. But by Hirzebruch’s theorem,
7 is the signature of M, so this condition is equivalent to o =r.

For a more detailed discussion of the case v =44 - 2, we refer the reader
to work of S. P. Novikov [11].

ComrrEMENT 1B. If X 1is a closed smooth manifold, the result holds
also if v=4.
The above proof breaks down, as we do not have an adequate imbedding
theorem for 82 in M* However, we know that M and X have the same
signature, and that w,(M) and w.(X) are both zero or both nonzero. By
(4.2) of [18], if we take the connected sum of M with sufficiently many
copies of 52 X 82, the result is diffeomorphic to a connected sum of X with
copies of S2 X S2. This can be achieved by performing spherical modifications
on circles which bound discs in M. Now using Theorem 2 of [19], we may
suppose that M is the connected sum of X with ¥ =2 copies of §% X 8%, and
that the map of M to X is induced by shrinking these to a point. The
remainder of the proof now proceeds as usual.

Our main result is

THEOREM 2. Let v=25, 2N >v-+2. Then any B.I1.8. can be realised
by o manifold (provided if v=>5 that 0X is a closed smooth manifold)
Ve C DN+, If v=6, 2N >v -3, the pair (DVN*, V) is unique up to
diffeomorphism.

Proof. First suppose v==Rk-+1, k=2, N >Fk-}+1. Then it follows
by (4.2) that any manifold 9V realising the boundary of the B.I.S. is the
boundary of a manifold V realising the B.I.S. So we must check existence
of 9V. If k is even, we can observe that for X, ¢=7==0; the proof of
this is identical with the proof (Thom [138]) valid for the boundary of a
smooth manifold. The result then follows from 1A and 1B. In fact we
can give a geometrical argument which covers also the case when & is odd.

Use (8.5) to kill all the K; except those in the middle dimensions.
Next, we will kill Ky(M,0M) (c.f. [18], Theorem 1 for the proof). By
(4.2) we may suppose that Ky (M) 540, so is free abelian. Since the homo-
morphisms K., (M, 0M) — Ky (0M) and K (0M) — K (M) are dual, Ky (M)
has nonzero rank. So it is generated by primitive (i.e. indivisible) elements.
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Now if K (M,0M) is nonzero, we choose z € Ky (M) primitive and with non-
zero image in Ky (M,0M), and perform surgery starting with #. Since z is
primitive, no new element is introduced in Ky (M,9M), the effect is simply
to kill the image of z. Each such step decreases either the rank or the order
of the torsion subgroup of Ky(M,0M); making an induction on these, we
see that we can reduce the group to zero.

By duality, Ky (M) =0, so only the terms of

b
0= Kya (M, 0M) ——> K3, (0M) — Ky (M) =0

survive.

Now these groups are all free, so the extension splits, and it follows
(as in [6] Lemma 7.1), that if we can kill in turn the elements of a basis
of Imb, we reduce K(0M) to zero, and the result follows. To prove these
elements spherical, we need a ‘relative relative’ Hurewicz theorem for the
quadruple

oM—>M

e: |
1IX—>X.

Since all four spaces are 1-connected (hence the map X — X also is),
and the map M — X is k-connected, we can apply Theorem 2.4 of [9] with
m=R n=k+41,r=~k+4+1. Forq=k-+1, H(®) =Kqs(M,0M) =0, so
® is (k+1)-connected, and w2 (®) maps onto Hy,s(®) == Ky (M, 0M). So
the (isomorphic) image of Ky (M,0M) in Hy,, (M, 8M) consists of spherical
classes.

Take any element of Imb, and lift it to an element of Ky, (M, 0M).
By the above, we may represent this by a map of a disc f: D**— M with
f(0D%*) C 9M, and we may suppose the boundary k-sphere imbedded. Take
the map of the disc in general position (c.f. [21]): then the singularity
set 3 of f is 1-dimensional, and f(3) is a union of arcs and simple loops.
The map f is an immersion except at a finite set of points corresponding
to the end-points of these arcs. We assert that f is homotopic (rel #D**)
to an immersion. For by [4], the only obstruction to this lies in
H¥ (D%, 0D% 310 ( Varsr,irn) ) == 7k (Varen,ie1), @ group isomorphic either to
Z or to Z,. But each singularity point (being generic), contributes a unit
to the obstruction : since there are an even number of them (each are of (%))
contains just 2), the obstruction is zero in the Z, case: it vanishes also in
the integer case, as it is not difficult to verify that the singularities at the
R ends of an arc have opposite signs. Thus we may suppose f an immersion :
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then f(D*') has trivial normal bundle, and f(@D*) also has. Thus by
(8.8) we can perform surgery to kill elements of Imb, and the result
follows. The appeal to (8.3) fails if r=38,7. However, the existence of
the immersed disc shows directly that the obstruction there obtained in
mi(Vysts,v-1) vanishes. For this obstruction is identified (by suspension)
with the obstruction in #y(Vags,ze1) to immersing the disc. Geometrically,
if the disc is immersed in M?, 7y | D*** gives a (2% - 1)-frame, and the normal
vectors a complementary N-frame. So the isomorphic image of the obstruc-
tion in 7% (Vy.x,y) vanishes.

Now we let v=2k, k=3, N >%k By (4.1), there is a manifold oM
realising the boundary C.I.S.; this bounds some M, and by (8.6) we can
kill all K’s except Kyx(M) == K, (M,0M) = K*(M). If k is even, this is a
free abelian group, with nonsingular even quadratic form (c.f. [8], Lemma
7 and Remark), hence has signature divisible by 8. If % is odd, then by the
method of [6,§8] we can define an Arf invariant ¢ of Ky(M). According
to [16], there exists an almost-closed (k—1)-connected =-manifold H of
dimension 2k, with signature minus that of Kyx(M) when % is even; with
Arf invariant ¢ when k is odd, moreover, H is a handlebody. H X I, with
corners rounded, is then also a handlebody, so by the classification ([17]
Theorem ) is diffeomorphic to a sum of copies of §% X D¥+*. So it imbeds
in R®+ and H imbeds in this, so also in SN+*%-1  with trivial normal bundle
(this result is due to Milnor). Take such an imbedding, and deform the
interior of H into that of DV+?%, Now form the (boundary-connected) sum
of (DN+*, M) with (DN+**,H) to obtain a pair (DN, N) with normal
bundle 4’. Since the normal bundle of H in DN+%* jg trivial, we can extend
f: M7—> X¢ to a map of N7, using the framing of H to map the second
part to S¥, the Thom space of the base point * in #X. Clearly the new map
of DN+# ig still in the homotopy class & € w0 (X%, 0X%), and it is ¢-regular
on X, with inverse image N. However, as H is mapped to *, K;(N)
=Ky(M) & Hi(H), so by construction it has signature (resp. Arf invariant)
zero. The proof is concluded as before by appealing to Lemma 7.3 or 8.4
of [6].

Now we consider uniqueness. Let (D¥+, V,?) and (DN*,V,?) be two
pairs, realising the given I. 8. with maps f;: (DV*, §DVN+) — (X§ 0X¢). Take
a homotopy F of f, to f,, and make it also ¢-regular on X (keeping the ends
fixed), so that F-*(X) = Wv+ is a smooth manifold with corner, and boundary
in 3 parts—V,, V,, and 8,W=W N (8D¥» X I). We now perform surgery
on W as above.

First consider a C.I.S.” If v=2k, N—1>k =2, then as in (4.1)
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we can perform surgery to make W, too, map by a homotopy equivalence.
We then have an h-cobordism of pairs (SN, V?) ; by a result of Smale [12],
since v=5, N =3, this is diffeomorphic to a product, so the pairs are
diffeomorphic. If v=2k 4 1, there is the usual obstruction to performing
the surgery, and we find

TurorEM 1C. (Novikov [10]). With the assumptions of 1A, and if
8N > v+ 3, the corresponding manifold is unique up to diffeomorphism if
v is even, and to connected sum with a pair (SN+2,3v) (where Z¥ bounds a
m-manifold) if v is odd.

We return to the uniqueness part of Theorem 2. If v is odd we perform
surgery on 9,W to obtain an h-cobordism as above. If v is even, we again
avoid the obstruction by taking a boundary-connected sum with a pair
(DN++1, H), as in the existence part of the proof. So we may suppose 9,W
an h-cobordism. Now if v is even, we can perform surgery on W (leaving dW
fixed) to obtain a homotopy equivalence. If v is odd, there appears to be
an obstruction, but the same proof as above shows that it vanishes, so we can
make F a homotopy equivalence then also. We now apply Smale’s theorem
twice, first to see that (SM+»-1X I,0,W) is diffeomorphic to a product, so
that a neighbourhood of it also is, and now again to W—4d,W, using the
product structure just obtained in the complement of a compact set, to say
that it extends over W. Thus (D¥+ X I, W) is diffeomorphic to the product
(DN+0, ¥,%) X I, and the two pairs (DV+v, V,®) and (DV+,V,®) are diffeo-
morphic, as asserted.
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