AXIOMS FOR THE GENERALIZED
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OPERATIONS

By W. BROWDER (Cornell) and E. THOMAS (Berkeley)
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1. The axioms

For any space X and any abelian group @ denote by H*(X; () the
singular cohomology groups of X with coefficients in the group G. Let
Z denote the group of the integers and Z, (g > 2) the integers mod g.
Let p be an odd prime number and r a fixed positive integer. Denote by
¢ and 7 the canonical homomorphisms

Zyy 2> Zopery, Ty —> 2,
given respectively by the inclusion and the factor map.
Let n be a fixed, positive integer and consider cohomology operations
C that satisfy the following axioms:t

C: H*™X; Z,,) > HP™X; Z+1); (1.1)
nC(u) = uP (p-fold cup-product); (1.2)
(o) = v7; (1.3)

oC = 0, where o denotes the suspension of cohomology operations; (1.4)
Ofuntan) = O +-Clud+4[ > JP)ivap],  (19)

o<i<p
where (f)) denotes the binomial coeffictent p!fi!(p—1)!.
Here X is any space; u, 4,, 4, € H**X; Z,); and v € H*(X; Z,,+). We
prove the theorem:
THEOREM 1. There exists a cohomology operation C satisfying arioms
(1.1}-(1.5). Furthermore, the operation C 18 unique.

The existence of such an operation is given by the operation B,
defined in (5). Axiom (1.4) follows from Theorem I in (6). We prove the
uniqueness of the operation P, in § 3.

t If a is any coefficient group homomorphism, we denote by the same symbol
the induced cohomology operation.
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2. Cohomology of Eilenberg-MacLane spaces

Let p be an odd prime number and m, r positive integers. We state
some facts about the cohomology ring H*(Z,,m; Z,). The proofs are
given in the work of H. Cartan (2).

Let we H™Z,,m; Z,) denote the (mod p)-reduction of the funda-
mental class & € H™Z,,,m; Z,.). Set

v = B,(1) € H™*N 2y, m; Zy),

where B, is the Bockstein coboundary associated with the exact co-

efficient sequence Zy—> Zppri > Z oy > 0.

Then H*(Z,,m;2,) is a tensor product of polynomial algebras and
exterior algebras whose generators are obtained from » and v by applying
certain canonical compositions of the Steenrod operations & (3 > 1)
together with the Bockstein coboundary B = B, (going from coefficients
Z, to Z,): that is, each generator may be written

C,0C,50..0C0C(w) (w=wuorv;q=1),
where each operation C, is either a certain Steenrod operation %% or is §.
We divide the generators into three types:
Type (1): the terminal operation C, is a Steenrod operation .
Type (2): the terminal operation C, is the Bockstein coboundary B.
Type (3): v and v. .
If we apply B to a generator of Type (1), we obtain a generator of Type (2).
Denote by ¥, (¢ = 1, 2, 3) the linear subspace of H*(Z,,,m, Z,) spanned
by the generators of Type (i). Then,

B:V, =, (2.1)
Define P to be the ideal generated by the decomposable elements. Then
B*(Zy,m; Z,) = POV @V, @V, (2.2)

as a (mod p)-vector space. Suppose now that m > 1. Again denote by
o the suspension of cohomology operations, thought of here as a homo-
morphism (of degree —1) from H*(Z,,m) to H*(Z,,m—1). In the
splitting (2.2) we have

a(P)=0; o|(V, DY, ®V;) t8 a monomorphism. (2.3)

Suppose now that m = 2n. We shall need the following lemma about
the (mod p%) cohomology of K(Z,, 2n):
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[2.4] LEMMA. H®™Z,,,2n; Z,,) = Z, DM (group direct sum), where

pM = 0. Furthermore, a generator w can be chosen for the summand Z,

such that [(w) = wP, where [ 18 induced by the factor homomorphism
Z > Z .
»

b 4

This also is contained in (2). Another proof can be given by combining
Theorem 5.5 and Proposition 1.2 in (1).

3. Proof of uniqueness

Suppose that C and (' are two cohomology operations satisfying
axioms (1.1}-(1.5). Set D = C—(C’. The proof of Theorem 1 is com-
pleted when we show that D = 0. The operation D has the following

properties: D: H*™X; Z,,) > H™X; Z p11); (3.1)
noD =0; (3.2)

Don=0; (3.3)

oD = 0; (3.4)

D(ty+uy) = D(uy)+D(u). (3.5)

To prove Theorem 1 it suffices to show that D(4#) = 0, where 4 is the
fundamental class of K(Z,,, 2n). Consider the following exact sequence
. of coefficient groups.
]
0> Zy —> Zppr —> Z, > 0, (3.6)
where § is the inclusion. By (3.2) and the exactness of (3.6), there is a
cohomology class x € H"™(Z,,, 2n; Z,) such that

D(a) = 6(z). (3.7)
Using the splitting given in (2.2) we may sett
z = y+v,+v,, (3.8)

where y€ P and v;eV, (+ = 1,2). By (2.1), V; = BV, and therefore
6V, = 68V, = 0. Thus, in view of (3.7), we may assume without loss of
generality that v, = 0 in (3.8). Now by (2.3), o(y) = 0. Since fo = of,
we obtain from (3.4) that
fo(v,) = fo(z) = of(z) = oD(%) = 0.
Therefore, from (3.6), ov; = B.(z))
for some element z, € H*"-*Z,,2n—1;Z,). Since Bo B, =0 and
since off = Bo, we obtain that
afv, = 0.
t Since 2pn > 2n4-1, the component of z in V, is zero.
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Therefore, by (2.3) and (2.1), v, = 0: that is,
D(u) =6(y) (yeP)

Set K = K(Z,,,2n) and recall that KX may be taken to be a group.
Denote by p and =, (¢ = 1, 2) the maps from X X K to K given respec-
tively by the multiplication and the projection on the ith factor. Set

§ = pr—at—nt: HYK;GQ) > HYEXK;®),

where @ is any coefficient group and p*, »f denote the cohomology
homomorphisms induced by the maps u and =, (s = 1, 2). By definition
anelementw € H*(K; G)is primitive if y(w) = 0. Therefore, if £ denotes
a cohomology operation defined on 4, then by Steenrod [(4) 8.7], ¥ is
additive if and only if $E(d) = 0. Now ¢ commutes with operations
induced by coefficient group homomorphisms, and therefore by (3.5),

Bi(y) = Yb(y) = yD(a) = 0.
Consequently, by the exactness of (3.6),

¥ly) = B(2)

for some element z € H*"YK X K; Z,). Again, gince 8o B, = 0 and
since 8 = B, we obtain that

$(By) = 0.

Thus, By is primitive. But By € Psincey € P and Bis a derivation. Hence,
by Proposition 4.23 of (3), By = 0 since dim By is odd.
Now consider the exact coefficient sequence
0> 2, —"> Zpu—t> 2,50, (3.9)

where « is the inclusion and { is the factor map. Since g8 is the Bockstein
coboundary associated with (3.9) and since By = 0, there is a class
Y € H**™K; Z,») such that y = {(Y). By (2.4) we may write

Y =aw+t+z (aeZ),

where {(w) = u? and pz = 0. One can easily show that there are classes
s € H*YK;Z,) and { € H**"-Y(K; Z,) such that

z = o(8)4+8(t),
where & is the Bockstein coboundary from coefficients Z,, to Z,,. There-
fore y = UY) = Law+a(s)+8(1) = auwr+B(t)
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since {a = 0 and {8 = B. Now 68 = 0 and hence, if we set
g =y—B(t) = aw?, (3.10)
we continue to have 0(9) = 8(y) = D(n).
Thus the proof of Theorem 1 is completed when we show that a = 0.

To do this we use property (3.3). Let « denote the fundamental class

of H*(Z, 2n; Z), and set ¢, = j,(:), where j,: Z - Z_, (¢ = 1). Then, by
3.3),

@3) D(s) = Drltr1r) = 0.
Let p denote the homomorphism Z,,+. - Z,. Then, by (3.10),

9(,) = af = ap(y,.1)?,
since p is a multiplicative homomorphism. Now 6p(z) = p"(x) for any
class z € H*(Z, 2n; Z,,+:), and consequently

0 = D(,) = 8§(s,) = B(ap,,) = ap'i®, .

But 2, , has order "+, a8 will be shown in a moment. Thus a = 0, which
completes the proof of Theorem 1.

Denote by X the infinite-dimensional complex projective space. Then,
H*(X, Z) is a polynomial ring on a 2-dimensional generator z. Let f be
& map from X to K(Z,2n) such that f*. = 2*, where f * is the homo-
morphism induced by f. By naturality,

F*&py = Jra [H(P) = Jra(@P™).

Since j,,,(z?") has order p"+1, the same is then true of %, ;, as asserted.

4. The Pontryagin square
The axioms given in § 1 were relative to an arbitrary odd prime p.
There is a corresponding set of axioms for the prime 2: that is, consider
cohomology operations C' which satisfy axioms (1.1)-(1.3) (with p = 2),
together with the axiom
oC = p, the Postnikov square. (4.1)

The Postnikov square p: H®(X ; Z,) - H"+YX ; Z,+), i8 completely
characterized by
pu) = (uU dw)  (we H™X; Zy)),

where ¢ is induced by the inclusion Z; c Z,+ and 8 is the Bockstein
coboundary from coefficients Z, to Z;. Onethenhasthe theorem:

THEOREM 2. There exisis a cohomology operation satisfying arioms
(1.1)~(1.3) (with p = 2), together with axiom (4.1). Furthermore, this
operation 18 unique.
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The operation is the Pontryagin square. Notice that it is not necessary
to include the analogue of axiom (1.5). This is because the only decom-
posable element in H4*(Z,,, 2n; Z,) is u?, where u is the {mod 2) reduction
of the fundamental class. The proof of Theorem 2 is quite similar to that
of Theorem 1, and we leave the details to the reader.
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