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1. The axioms
FOB any space X and any abelian group 0 denote by H*(X; 0) the
singular cohomology groups of X with coefficients in the group 0. Let
Z denote the group of the integers and Zg (q ̂  2) the integers mod q.
lietp be an odd prime number and r a fixed positive integer. Denote by
<f> and T) the canonical homomorphisms

Zpr *- Zpr + 1, Zpr+l >- Zpr,

given respectively by the inclusion and the factor map.
Let n be a fixed, positive integer and consider cohomology operations

C that satisfy the following axioms :f

C.H^X-Z^ + H^iX-Z^); (1.1)

•qC(u) = uP (p-fold cup-product); (1-2)

CV(v) = W; (1.3)

aC = 0, where a denotes the suspension of cohomology operations; (1.4)

where I. I denotes the binomial coefficient p\/i\(p—t)!.

Here X is any space; u, ult ut e H2n(X; Z^)\ and v e Hin(X; Z^+i). We
prove the theorem:

THEOREM 1. There exists a cohomology operation C satisfying axioms
(1.1)—(1.5). Furthermore, the operation G is unique.

The existence of such an operation is given by the operation ipp)

defined in (5). Axiom (1.4) follows from Theorem I in (6). We prove the
uniqueness of the operation fyp in § 3.

t If a. is any coefficient group homomorphism, we denote by the same symbol
the induced cohomology operation.
Quart. J. Math. Oxford (2), 13 (1962), 55-60.

 at U
niversity of E

dinburgh on A
pril 26, 2010 

http://qjm
ath.oxfordjournals.org

D
ow

nloaded from
 

http://qjmath.oxfordjournals.org


66 W. BROWDER AND E. THOMAS

2. Cohomology of Eilenberg-MacLane spaces
Let p be an odd prime number and TO, r positive integers. We state

some facts about the cohomology ring H*(Zpr,m;Zp). The proofs are
given in the work of H. Cartan (2).

Let u e Z7m(Zp,,m; Zp) denote the (modp)-reduction of the funda-
mental class u e Em(Z^, m; Z^). Set

where f2r is the Bockstein coboundary associated with the exact co-
efficient sequence ft 7 7 „ n

Then H*(Zpr, TO; Zp) is a tensor product of polynomial algebras and
exterior algebras whose generators are obtained from u and v by applying
certain canonical compositions of the Steenrod operations 0* (i ^ 1)
together with the Bockstein coboundary {} = & (going from coefficients
Zp to Zp): that is, each generator may be written

Cg o Cfl_! o ... oCjO C^w) (w — u or t;; q > 1),

where each operation Ct is either a certain Steenrod operation {?*' or is fi.
We divide the generators into three types:

Type (1): the terminal operation Cq is a Steenrod operation &*.
Type (2): the terminal operation CQ is the Bockstein coboundary f$.
Type (3): u and v.

If we apply j3 to a generator of Type (1), we obtain a generator of Type (2).
Denote by T̂  (t = 1, 2, 3) the linear subspace of E*{ZpT, m, Zp) spanned
by the generators of Type (i). Then,

p: Vx « Vt. (2.1)

Define P to be the ideal generated by the decomposable elements. Then

H*{Zpr,m;Zp) = P@Vx@Vi®V3, (2.2)

as a (mod^)-vector space. Suppose now that m > 1. Again denote by
a the suspension of cohomology operations, thought of here as a homo-
morphism (of degree —1) from H*(Zpr,m) to H*(Zpr,m—1). In the
splitting (2.2) we have

CT(P) = 0; a\<yi@Vi@Vi) is arrumomorphism. (2.3)

Suppose now that TO = 2n. We shall need the following lemma about
the (modj>2) cohomology of K(Zp., 2n):
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ON PONTRYAGIN COHOMOLOGY OPERATIONS 57
[2.4] LEMMA. H^^Z^, 2n; Zp,) « Zp,@M (group direct sum), where

pM = 0. Furthermore, a generator w can be chosen for the summand Zp%
such that £(u>) = vP, where £ is induced by the factor homomorphism
Zp.^Zp.

This also is contained in (2). Another proof can be given by combining
Theorem 5.5 and Proposition 1.2 in (1).

3. Proof of uniqueness
Suppose that G and C are two cohomology operations satisfying

axioms (1.1)-(1.5). Set D = C—C. The proof of Theorem 1 is com-
pleted when we show that D = 0. The operation D has the following
properties: D: Hin(X; Z^)-^ H^iX-Z^; (3.1)

r)oD = 0; (3.2)

D o 77 = 0; (3.3)

oD = 0; (3.4)

£(«!+«*) = £>K)+£>K). (3.5)
To prove Theorem 1 it suffices to show that D(u) = 0, where fi is the

fundamental class of K(Zvr, 2n). Consider the following exact sequence
of coefficient groups.

0^Zp-^Zp,+1^UZp,-+0, (3.6)

where 6 is the inclusion. By (3.2) and the exactness of (3.6), there is a
cohomology class x e Hipn(Zpr, 2n; Zp) such that

D(u) = 6(x). (3.7)

Using the splitting given in (2.2) we may setf

* = y+Vi+vt, (3.8)

where y e P and vt e Vt (i = 1,2). By (2.1), V2 = ̂  and therefore
6V2 = 6pVx = 0. Thus, in view of (3.7), we may assume without loss of
generality that «2 = 0 in (3.8). Now by (2.3), a(y) = 0. Since 9a = ad,
we obtain from (3.4) that

OaiVj) = 6a(x) = <T6(X) = oD(u) = 0.

Therefore, from (3.6), <rv1 = ftfo)

for some element z^eHipn-i(Zpr,2n—l;Zpr). Since fi o /?r = 0 and
since CT/3 = fio, we obtain that

oflvx = 0.

"f Since 2pn > 2n+1, the component of x in Vt is zero.
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58 W. BROWDER AND E. THOMAS
Therefore, by (2.3) and (2.1), t>2 = 0: that is,

(yeP).

Set K = K(Zpr, 2ra) and recall that K may be taken to be a group.
Denote by /i and ni (i = 1,2) the maps from K X K to K given respec-
tively by the multiplication and the projection on the tth factor. Set

4, = ii+—n\—n\: H*{K;G) •+ H*{KxK;G),

where O is any coefficient group and \L*, n* denote the cohomology
homomorphisms induced by the maps /x and wt (i = 1, 2). By definition
an element w e H*(K; 0) is primitive if >p(w) = 0. Therefore, if E denotes
a cohomology operation defined on u, then by Steenrod [(4) 6.7], E is
additive if and only if \pE{u) = 0. Now ifi commutes with operations
induced by coefficient group homomorphisms, and therefore by (3.5),

() = 0.

Consequently, by the exactness of (3.6),

4>{y) = &(*)

for some element z e Hipn-1(KxK; Zp,). Again, since /? o fir = 0 and
since ipfi = ffy, we obtain that

= 0.

Thus, fiy is primitive. But/Jt/ e Psincey 6 P and ft is a derivation. Hence,
by Proposition 4.23 of (3), pty = 0 since dim fly is odd.

Now consider the exact coefficient sequence

0 -* Zp -?U Zp. - i * Zp -* 0, (3.9)

where a is the inclusion and £ is the factor map. Since /? is the Bockstein
ooboundary associated with (3.9) and since fiy = 0, there is a class
Y e H^n{K; Zp,) such that y = £(7). By (2.4) we may write

7 = aw+z (a e Zp),

where £(«>) = vP and pz = 0. One can easily show that there are classes
8 e H**>n{K\ Zp) and t e H^n-l{K; Zp) such that

z = «(«)+«(«),
where S is the Bockstein coboundary from coeflBcients Zv to Zp,. There-
f o r e y = 1(7) = t(aw+*(s)+8(t)) = au?+p(t)
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ON PONTRYAGIN COHOMOLOGY OPERATIONS 59

since £a = 0 and £8 = /3. Now dfi = 0 and hence, if we set

0 = y-p{t) = avP, (3.10)

we continue to have 6(0) = 9(y) = D(u).

Thus the proof of Theorem 1 is completed when we show tha t a = 0.
To do this we use property (3.3). Let i denote the fundamental class

ofH*n(Z, In; Z), and set ig = je(i), where j , : Z -* Zp. (s Ss 1). Then, by

<3-3)> £(«,) = Dr>W+i) = 0.

Let p denote the homomorphism Z^+i -> Zp. Then, by (3.10),

since p is a multiplicative homomorphism. Now 6p(x) = ]f(x) for any

class x e fi*(Z, 2n; Zp,+i), and consequently

0 = D(h) = 6${iT) = e(aP#+1) = opV+i-

But tf+1 has order jf+1, as will be shown in a moment. Thus a = 0, which
completes the proof of Theorem 1.

Denote by X the infinite-dimensional complex protective space. Then,
H*(X; Z) is a polynomial ring on a 2-dimensional generator x. Le t /be
a map from X to K(Z, 2n) such that /*i = xn, where / * is the homo-
morphism induced by / . By naturality,

/ V + l = j r + l / *('")= ir+l(*Pn)-

Since j r+1(ipn) has order ^ r + 1 , the same is then true of ij?+1, as asserted.

4. The Pontryagln square
The axioms given in § 1 were relative to an arbitrary odd prime p.

There is a corresponding set of axioms for the prime 2: that is, consider
cohomology operations C which satisfy axioms (1.1)—(1.3) (with^j = 2),
together with the axiom

aC = p, the Postnikov square. (*•!)

The Postnikov square p: Hin(X; Zv) ->• #4 n + 1(X; Zr+.), is completely
characterized by

p(«) = 4>{u U S(u)) (« 6 H*»(X; Zir)),

where <f> is induced by the inclusion Zv c ZF+i and S is the Bockstein
coboundary from coefficients Zv to ZP. One then has the theorem:

THEOREM 2. There exists a cohomology operation satisfying axioms
(1.1)-(1.3) (with p = 2), together toith axiom (4.1). Furthermore, this
operation is unique.
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60 ON PONTBYAGIN COHOMOLOGY OPERATIONS

The operation is the Pontryagin square. Notioe that it is not necessary
to include the analogue of axiom (1.5). This is because the only decom-
posable element in E*n(Zv, 2n; Z2) is u*, where u is the (mod 2) reduction
of the fundamental class. The proof of Theorem 2 is quite similar to that
of Theorem 1, and we leave the details to the reader.
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