AXIOMS FOR THE GENERALIZED PONTRYAGIN COHOMOLOGY OPERATIONS

By W. BROWDER (Cornell) and E. THOMAS (Berkeley)

[Received 4 August 1961]

1. The axioms

For any space X and any abelian group G denote by $H^*(X; G)$ the singular cohomology groups of X with coefficients in the group G. Let Z denote the group of the integers and Z_q $(q \ge 2)$ the integers mod q. Let p be an odd prime number and r a fixed positive integer. Denote by ϕ and η the canonical homomorphisms

$$Z_{p^r} \xrightarrow{\phi} Z_{p^{r+1}}, \quad Z_{p^{r+1}} \xrightarrow{\eta} Z_{p^r},$$

given respectively by the inclusion and the factor map.

Let n be a fixed, positive integer and consider cohomology operations C that satisfy the following axioms:

$$C \colon H^{2n}(X; \mathbb{Z}_{p^r}) \to H^{2pn}(X; \mathbb{Z}_{p^{r+1}}); \tag{1.1}$$

$$\eta C(u) = u^p \quad (p \text{-fold cup-product}); \tag{1.2}$$

$$C\eta(v) = v^p; \tag{1.3}$$

 $\sigma C = 0$, where σ denotes the suspension of cohomology operations; (1.4)

$$C(u_1+u_2) = C(u_1) + C(u_2) + \phi \Big[\sum_{0 < i < p} \frac{1}{p} {p \choose i} u_1^i \cup u_2^{p-i} \Big], \qquad (1.5)$$

where $\binom{p}{i}$ denotes the binomial coefficient p!/i!(p-i)!.

Here X is any space; $u, u_1, u_2 \in H^{2n}(X; Z_{p^r})$; and $v \in H^{2n}(X; Z_{p^{r+1}})$. We prove the theorem:

THEOREM 1. There exists a cohomology operation C satisfying axioms (1.1)-(1.5). Furthermore, the operation C is unique.

The existence of such an operation is given by the operation \mathfrak{P}_p , defined in (5). Axiom (1.4) follows from Theorem I in (6). We prove the uniqueness of the operation \mathfrak{P}_p in § 3.

† If α is any coefficient group homomorphism, we denote by the same symbol the induced cohomology operation.

Quart. J. Math. Oxford (2), 13 (1962), 55-60.

2. Cohomology of Eilenberg-MacLane spaces

Let p be an odd prime number and m, r positive integers. We state some facts about the cohomology ring $H^*(Z_{p^r}, m; Z_p)$. The proofs are given in the work of H. Cartan (2).

Let $u \in H^m(Z_{p^r}, m; Z_p)$ denote the $(\mod p)$ -reduction of the fundamental class $\tilde{u} \in H^m(Z_{p^r}, m; Z_{p^r})$. Set

$$v = \beta_r(\bar{u}) \in H^{m+1}(Z_{p^r}, m; Z_p),$$

where β_r is the Bockstein coboundary associated with the exact coefficient sequence $0 \rightarrow Z_p \rightarrow Z_{p^{r+1}} \rightarrow Z_{p^r} \rightarrow 0.$

Then $H^*(Z_{p^r}, m; Z_p)$ is a tensor product of polynomial algebras and exterior algebras whose generators are obtained from u and v by applying certain canonical compositions of the Steenrod operations \mathscr{P}^i $(i \ge 1)$ together with the Bockstein coboundary $\beta = \beta_1$ (going from coefficients Z_p to Z_p): that is, each generator may be written

$$C_{q} \circ C_{q-1} \circ \dots \circ C_{2} \circ C_{1}(w) \quad (w = u \text{ or } v; q \ge 1),$$

where each operation C_i is either a certain Steenrod operation \mathscr{P}^{j_i} or is β . We divide the generators into three types:

Type (1): the terminal operation C_q is a Steenrod operation \mathscr{P}_q .

Type (2): the terminal operation C_q is the Bockstein coboundary β .

Type (3): u and v.

If we apply β to a generator of Type (1), we obtain a generator of Type (2). Denote by V_i (i = 1, 2, 3) the linear subspace of $H^*(Z_{p^r}, m, Z_p)$ spanned by the generators of Type (i). Then,

$$\beta: V_1 \approx V_2. \tag{2.1}$$

Define P to be the ideal generated by the decomposable elements. Then

$$H^*(Z_{p^r}, m; Z_p) = P \oplus V_1 \oplus V_2 \oplus V_3, \tag{2.2}$$

as a $(\mod p)$ -vector space. Suppose now that m > 1. Again denote by σ the suspension of cohomology operations, thought of here as a homomorphism (of degree -1) from $H^*(Z_{p^r}, m)$ to $H^*(Z_{p^r}, m-1)$. In the splitting (2.2) we have

$$\sigma(P) = 0; \quad \sigma \mid (V_1 \oplus V_2 \oplus V_3) \text{ is a monomorphism.}$$
(2.3)

Suppose now that m = 2n. We shall need the following lemma about the $(\mod p^2)$ cohomology of $K(Z_{p^r}, 2n)$:

56

[2.4] LEMMA. $H^{2pn}(Z_{p^r}, 2n; Z_{p^s}) \approx Z_{p^s} \oplus M$ (group direct sum), where pM = 0. Furthermore, a generator w can be chosen for the summand Z_{p^s} such that $\zeta(w) = u^p$, where ζ is induced by the factor homomorphism $Z_{p^s} \to Z_p$.

This also is contained in (2). Another proof can be given by combining Theorem 5.5 and Proposition 1.2 in (1).

3. Proof of uniqueness

Suppose that C and C' are two cohomology operations satisfying axioms (1.1)-(1.5). Set D = C - C'. The proof of Theorem 1 is completed when we show that $D \equiv 0$. The operation D has the following properties: $D: H^{2n}(X; Z, z) \rightarrow H^{2pn}(X; Z, zz)$: (3.1)

$$H^{\mu\nu}(\Lambda; \mathcal{L}_{p^r}) \to H^{\mu\nu\nu}(\Lambda; \mathcal{L}_{p^{r+1}}); \tag{3.1}$$

$$\eta \circ D = 0; \tag{3.2}$$

$$D \circ \eta = 0; \tag{3.3}$$

$$\sigma D = 0; \qquad (3.4)$$

$$D(u_1 + u_2) = D(u_1) + D(u_2).$$
(3.5)

To prove Theorem 1 it suffices to show that $D(\bar{u}) = 0$, where \bar{u} is the fundamental class of $K(\mathbb{Z}_{p^r}, 2n)$. Consider the following exact sequence of coefficient groups.

$$0 \to Z_p \xrightarrow{\theta} Z_{p^{r+1}} \xrightarrow{\eta} Z_{p^r} \to 0, \qquad (3.6)$$

where θ is the inclusion. By (3.2) and the exactness of (3.6), there is a cohomology class $x \in H^{2pn}(Z_{p^r}, 2n; Z_p)$ such that

$$D(\tilde{u}) = \theta(x). \tag{3.7}$$

Using the splitting given in (2.2) we may set[†]

$$x = y + v_1 + v_2, \tag{3.8}$$

where $y \in P$ and $v_i \in V_i$ (i = 1, 2). By (2.1), $V_2 = \beta V_1$ and therefore $\theta V_2 = \theta \beta V_1 = 0$. Thus, in view of (3.7), we may assume without loss of generality that $v_2 = 0$ in (3.8). Now by (2.3), $\sigma(y) = 0$. Since $\theta \sigma = \sigma \theta$, we obtain from (3.4) that

$$\theta \sigma(v_1) = \theta \sigma(x) = \sigma \theta(x) = \sigma D(\bar{u}) = 0.$$

Therefore, from (3.6), $\sigma v_1 = \beta_r(z_1)$

for some element $z_1 \in H^{2pn-2}(Z_{p^r}, 2n-1; Z_{p^r})$. Since $\beta \circ \beta_r = 0$ and since $\sigma\beta = \beta\sigma$, we obtain that

$$\sigma\beta v_1=0.$$

† Since 2pn > 2n+1, the component of x in V_1 is zero.

Therefore, by (2.3) and (2.1), $v_1 = 0$: that is,

$$D(\bar{u}) = \theta(y) \quad (y \in P)$$

Set $K = K(Z_{p^r}, 2n)$ and recall that K may be taken to be a group. Denote by μ and π_i (i = 1, 2) the maps from $K \times K$ to K given respectively by the multiplication and the projection on the *i*th factor. Set

$$\psi = \mu^* - \pi_1^* - \pi_2^* \colon H^*(K;G) \to H^*(K \times K;G),$$

where G is any coefficient group and μ^* , π_i^* denote the cohomology homomorphisms induced by the maps μ and π_i (i = 1, 2). By definition an element $w \in H^*(K; G)$ is primitive if $\psi(w) = 0$. Therefore, if E denotes a cohomology operation defined on \bar{u} , then by Steenrod [(4) 6.7], E is additive if and only if $\psi E(\bar{u}) = 0$. Now ψ commutes with operations induced by coefficient group homomorphisms, and therefore by (3.5),

$$\theta \psi(y) = \psi \theta(y) = \psi D(\bar{u}) = 0.$$

Consequently, by the exactness of (3.6),

$$\psi(y) = \beta_r(z)$$

for some element $z \in H^{2pn-1}(K \times K; Z_{p^r})$. Again, since $\beta \circ \beta_r = 0$ and since $\psi \beta = \beta \psi$, we obtain that

$$\psi(\beta y) = 0.$$

Thus, βy is primitive. But $\beta y \in P$ since $y \in P$ and β is a derivation. Hence, by Proposition 4.23 of (3), $\beta y = 0$ since dim βy is odd.

Now consider the exact coefficient sequence

$$0 \to Z_p \xrightarrow{\alpha} Z_{p^*} \xrightarrow{\zeta} Z_p \to 0, \qquad (3.9)$$

where α is the inclusion and ζ is the factor map. Since β is the Bockstein coboundary associated with (3.9) and since $\beta y = 0$, there is a class $Y \in H^{2pn}(K; \mathbb{Z}_{p^1})$ such that $y = \zeta(Y)$. By (2.4) we may write

$$Y = aw + z \quad (a \in Z_n),$$

where $\zeta(w) = u^p$ and pz = 0. One can easily show that there are classes $s \in H^{2pn}(K; Z_p)$ and $t \in H^{2pn-1}(K; Z_p)$ such that

$$z = \alpha(s) + \delta(t),$$

where δ is the Bockstein coboundary from coefficients Z_p to Z_{p^3} . Therefore

$$y = \zeta(Y) = \zeta(aw + \alpha(s) + \delta(t)) = au^p + \beta(t)$$

Downloaded from http://qjmath.oxfordjournals.org at University of Edinburgh on April 26, 2010

58

t

ON PONTRYAGIN COHOMOLOGY OPERATIONS

since $\zeta \alpha = 0$ and $\zeta \delta = \beta$. Now $\theta \beta = 0$ and hence, if we set

$$\hat{y} = y - \beta(t) = a u^p, \qquad (3.10)$$

59

we continue to have $\theta(\hat{y}) = \theta(y) = D(\tilde{u}).$

Thus the proof of Theorem 1 is completed when we show that a = 0.

To do this we use property (3.3). Let ι denote the fundamental class of $H^{2n}(Z, 2n; Z)$, and set $\iota_s = j_s(\iota)$, where $j_s: Z \to Z_{p^s}$ ($s \ge 1$). Then, by (3.3), $D(\iota_r) = D\eta(\iota_{r+1}) = 0.$

Let ρ denote the homomorphism $Z_{p^{r+1}} \rightarrow Z_p$. Then, by (3.10),

$$\hat{y}(\iota_r) = a\iota_1^p = a\rho(\iota_{r+1})^p,$$

since ρ is a multiplicative homomorphism. Now $\theta \rho(x) = p^{r}(x)$ for any class $x \in H^{*}(Z, 2n; Z_{p^{r+1}})$, and consequently

$$0 = D(\iota_r) = \theta \hat{y}(\iota_r) = \theta(a\rho\iota_{r+1}^p) = ap^r \iota_{r+1}^p.$$

But ι_{r+1}^p has order p^{r+1} , as will be shown in a moment. Thus a = 0, which completes the proof of Theorem 1.

Denote by X the infinite-dimensional complex projective space. Then, $H^*(X; Z)$ is a polynomial ring on a 2-dimensional generator x. Let f be a map from X to K(Z, 2n) such that $f^*\iota = x^n$, where f^* is the homomorphism induced by f. By naturality,

$$f^*\iota_{r+1}^p = j_{r+1}f^*(\iota^p) = j_{r+1}(x^{pn}).$$

Since $j_{r+1}(x^{pn})$ has order p^{r+1} , the same is then true of ι_{r+1}^p , as asserted.

4. The Pontryagin square

The axioms given in § 1 were relative to an arbitrary odd prime p. There is a corresponding set of axioms for the prime 2: that is, consider cohomology operations C which satisfy axioms (1.1)-(1.3) (with p = 2), together with the axiom

$$\sigma C = \mathfrak{p}, \text{ the Postnikov square.}$$
(4.1)

The Postnikov square $p: H^{2n}(X; Z_{2^r}) \to H^{4n+1}(X; Z_{2^{r+1}})$, is completely characterized by

$$\mathfrak{p}(u) = \phi(u \cup \delta(u)) \qquad (u \in H^{2n}(X; Z_{\mathfrak{z}^r})),$$

where ϕ is induced by the inclusion $Z_{g^r} \subset Z_{g^{r+1}}$ and δ is the Bockstein coboundary from coefficients Z_{g^r} to Z_{g^r} . One then has the theorem:

THEOREM 2. There exists a cohomology operation satisfying axioms (1.1)-(1.3) (with p = 2), together with axiom (4.1). Furthermore, this operation is unique.

60 ON PONTRYAGIN COHOMOLOGY OPERATIONS

The operation is the Pontryagin square. Notice that it is not necessary to include the analogue of axiom (1.5). This is because the only decomposable element in $H^{4n}(Z_{2^{r}}, 2n; Z_2)$ is u^2 , where u is the (mod 2) reduction of the fundamental class. The proof of Theorem 2 is quite similar to that of Theorem 1, and we leave the details to the reader.

REFERENCES

- 1. W. Browder, 'Torsion in H-spaces', Annals of Math. 74 (1961) 24-51.
- 2. H. Cartan, Seminaire H. Cartan, 1954-5 (Paris, mimeographed).

!

- 3. J. W. Milnor and J. C. Moore, 'On the structure of Hopf algebras' (to appear). 4. N. Steenrod, 'Cohomology operations', Symp. Int. Top. Alg. (Univ. Mexico,
- 1957).
- 5. E. Thomas, 'The generalized Pontryagin cohomology operations and rings with divided powers', Memoir no. 27, American Math. Soc. 1957.
- -----, 'The suspension of the generalized Pontryagin cohomology operations', Pacific J. of Math. 9 (1959) 897-911.

[This research has been supported by the National Science Foundation and the Air Force Office of Scientific Research.]